WorldWideScience

Sample records for linear induction voltage

  1. Voltage-regulating constant-current sources in a linear induction accelerator

    International Nuclear Information System (INIS)

    Zhao Juan; Cao Kefeng; Deng Jianjun; Zhu Lijun; Yang Jia; Ye Chao; Huang Bin; Cao Ningxiang; Dong Jinxuan; Zhang Jichang; Yu Zhiguo; Chen Min

    2002-01-01

    Constant-current Sources are one of key units in a linear induction accelerator. The requirements for the sources are to supply stable direct current of high power for the induction coil, be easy to computer-control and highly stable and reliable. Applying the technique of linear current source regulating in series, the primary voltage of the power transformer is regulated through an MJYS-JL-350A type three-phase alterative voltage-regulating module. The output current variation is 300-500 A when the load variation is 0.06-0.1 Ω and the voltage drop of the regulator tube is controlled within 8 V±2V when the variation of mains voltage is in ±10%. Both the current ripple and stability meet the technical requirements. The constant-current sources are controlled through an industrial controller. For each of the constant-current sources has a smallest system comprised of 8051 which is communication-controlled through a RS-485 interface, the sources can be controlled remotely

  2. A new linear induction voltage adder approach to radiography

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poukey, J.W.; Frost, C.A.; Johnson, D.L.; Shope, S.L.; Halbleib, J.A.; Prestwich, K.R.; Turman, B.N.; Smith, I.

    1992-01-01

    At present, two types of accelerators are being utilized for x-ray radiography: first a linear RF or induction accelerator with multiple accelerating gaps and beam vacuum magnetic transport systems; and second, single gap pulse-power devices with a high voltage Blumlein pulse forming line. The authors present a conceptual design of a new type of linear induction accelerator that can bridge the gap between the two devices. It can produce 30--50-kA electron currents small diameter (∼ 1 mm) and high energy (12--20-MV) beams. There is no beam drifting through the device. The voltage addition of the accelerating gaps occurs at the central self-magnetically insulated cathode electrode. The electron beam is created at the high voltage end in a single gap diode. A magnetically-immersed foilless diode can produce high quality 0.5 mm radius 30--50 kA beams. A short 100--200-kG small bore solenoidal coil is required to maintain the beam radius during transport from the cathode tips to the x-ray converter target, 50--70 cm downstream. The idea of very high impedance MITL voltage adder accelerators was first tested with RADLAC II/SMILE experiments where 12--14-MV, 50-kA 1 cm radius beams were produced with 2--3 mm annulus thickness. A 12.5 m eight-stage voltage adder was utilized, coupled to a 20 kG magnetically immersed foilless diode. In addition the magnetically-immersed foilless diodes with very thin (mm diameter) cathode tips were investigated in experiments with the IBEX accelerator. As an example of this new accelerator technology the authors present the following point design for a 16-MV, 50-kA accelerator producing 1-mm diameter electron beams. The design is based on a cavity fed MITL voltage adder which performs the series addition of the voltage pulses from 16 identical inductively-isolated cavity feed systems. Each cavity is a structure that is driven by one 14 ohm pulse-forming line, providing a 1 MV voltage pulse to the accelerating gap

  3. Linear inductive voltage adders (IVA) for advanced hydrodynamic radiography

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Boyes, J.D.; Johnson, D.L.

    1998-01-01

    The electron beam which drifts through the multiple cavities of conventional induction linacs (LIA) is replaced in an IVA by a cylindrical metal conductor which extends along the entire length of the device and effectuates the addition of the accelerator cavity voltages. In the approach to radiography, the linear inductive voltage adder drives a magnetically immersed electron diode with a millimeter diameter cathode electrode and a planar anode/bremsstrahlung converter. Both anode and cathode electrodes are immersed in a strong (15--50 T) solenoidal magnetic field. The electron beam cross section is approximately of the same size as the cathode needle and generates a similar size, very intense x-ray beam when it strikes the anode converter. An IVA driven diode can produce electron beams of equal size and energy as a LIA but with much higher currents (40--50 kA versus 4--5 kA), simpler hardware and thus lower cost. The authors present here first experimental validations of the technology utilizing HERMES 3 and SABRE IVA accelerators. The electron beam voltage and current were respectively of the order of 10 MV and 40 kA. X-ray doses of up to 1 kR at sign 1 m and spot sizes as small as 1.7 mm (at 200 R doses) were measured

  4. Linear induction accelerators

    International Nuclear Information System (INIS)

    Briggs, R.J.

    1986-06-01

    The development of linear induction accelerators has been motivated by applications requiring high-pulsed currents of charged particles at voltages exceeding the capability of single-stage, diode-type accelerators and at currents too high for rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multi-stage induction machine, but the 50-MeV, 10-kA Advanced Test Accelerator (ATA) at LLNL is the highest voltage machine in existence at this time. The advent of magnetic pulse power systems makes sustained operation at high-repetition rates practical, and this capability for high-average power is very likely to open up many new applications of induction machines in the future. This paper surveys the US induction linac technology with primary emphasis on electron machines. A simplified description of how induction machines couple energy to the electron beam is given, to illustrate many of the general issues that bound the design space of induction linacs

  5. A new linear inductive voltage adder driver for the Saturn Accelerator

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Spielman, R.B.; Struve, K.W.; Long, F.W.

    2000-01-01

    Saturn is a dual-purpose accelerator. It can be operated as a large-area flash x-ray source for simulation testing or as a Z-pinch driver especially for K-line x-ray production. In the first mode, the accelerator is fitted with three concentric-ring 2-MV electron diodes, while in the Z-pinch mode the current of all the modules is combined via a post-hole convolute arrangement and driven through a cylindrical array of very fine wires. We present here a point design for a new Saturn class driver based on a number of linear inductive voltage adders connected in parallel. A technology recently implemented at the Institute of High Current Electronics in Tomsk (Russia) is being utilized. In the present design we eliminate Marx generators and pulse-forming networks. Each inductive voltage adder cavity is directly fed by a number of fast 100-kV small-size capacitors arranged in a circular array around each accelerating gap. The number of capacitors connected in parallel to each cavity defines the total maximum current. By selecting low inductance switches, voltage pulses as short as 30-50-ns FWHM can be directly achieved. The voltage of each stage is low (100-200 kv). Many stages are required to achieve multi-megavolt accelerator output. However, since the length of each stage is very short (4-10 cm), accelerating gradients of higher than 1 MV/m can easily be obtained. The proposed new driver will be capable of delivering pulses of 15-MA, 36-TW, 1.2-MJ to the diode load, with a peak voltage of -2.2 MV and FWHM of 40-ns. And although its performance will exceed the presently utilized driver, its size and cost could be much smaller (approximately1/3). In addition, no liquid dielectrics like oil or deionized water will be required. Even elimination of ferromagnetic material (by using air-core cavities) is a possibility

  6. Submicrosecond linear pulse transformer for 800 kV voltage with modular low-inductance primary power supply

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, Yu. A.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Popov, G. V.; Sedin, A. A.; Feduschak, V. F. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-12-15

    A pulsed power source with voltage amplitude up to 800 kV for fast charging (350–400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted in the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.

  7. Linear induction accelerator

    Science.gov (United States)

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  8. Air-gap field, induced voltage and thrust in the short-stator linear induction motor

    Energy Technology Data Exchange (ETDEWEB)

    Deleroi, W

    1980-07-15

    The description of the magnetic field in the air-gap of a short-primary linear induction motor, and the subsequent calculation of the thrust developed and the voltages induced in the stator bars can be made by using balancing waves. These balancing waves are generated at any point where the field wave that would exist in a machine of infinite length is disturbed. In the linear motor these disturbances occur at the ends of the stator iron and at discontinuities in the distribution of the stator winding, which exist in machines having stepped windings. From the points where they are generated, free balancing waves travel in two directions and determine the performance of these machines to a large extent. The voltage they induce in a stator bar can be determined from the core flux and mapped on a phasor diagram. The resulting voltage phasor follows a logarithmic spiral. The resulting voltages induced in the three phase windings form a strongly asymmetrical system which can be split-up into positive-, negative- and zerosequence components depending on the slip. The tangential forces may be calculated as the product of the magnetic flux density in the air-gap and the linear current density in either the stator or the reaction rail. As the 'magnetic tail' outside the machine also gives rise to forces in the direction of motion, both methods yield quite different force distributions, though for the resulting force the same value is found.

  9. Induction sensor for measuring the accelerating voltage in an iron-free induction accelerator

    International Nuclear Information System (INIS)

    Bol'nykh, N.S.; Il'in, Yu.M.; Kostyushok, A.A.; Suvorov, V.A.

    1987-01-01

    An inductive sensor is described for measuring the amplitude and form of the accelerating-voltage pulse in the storage coils in a radial iron-free linear induction accelerator. The sensor does not respond to interference from external fields and does not require adjustment after calibration

  10. Inductive voltage adder (IVA) for submillimeter radius electron beam

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen, J.E.

    1996-01-01

    The authors have already demonstrated the utility of inductive voltage adder accelerators for production of small-size electron beams. In this approach, the inductive voltage adder drives a magnetically immersed foilless diode to produce high-energy (10--20 MeV), high-brightness pencil electron beams. This concept was first demonstrated with the successful experiments which converted the linear induction accelerator RADLAC II into an IVA fitted with a small 1-cm radius cathode magnetically immersed foilless diode (RADLAC II/SMILE). They present here first validations of extending this idea to mm-scale electron beams using the SABRE and HERMES-III inductive voltage adders as test beds. The SABRE experiments are already completed and have produced 30-kA, 9-MeV electron beams with envelope diameter of 1.5-mm FWHM. The HERMES-III experiments are currently underway

  11. Cell design for the DARHT linear induction accelerators

    International Nuclear Information System (INIS)

    Burns, M.; Allison, P.; Earley, L.; Liska, D.; Mockler, C.; Ruhe, J.; Tucker, H.; Walling, L.

    1991-01-01

    The Dual-Axis Radiographic Hydrotest (DARHT) facility will employ two linear induction accelerators to produce intense, bremsstrahlung x- ray pulses for flash radiography. The accelerator cell design for a 3- kA, 16--20 MeV, 60-ns flattop, high-brightness electron beam is presented. The cell is optimized for high-voltage stand-off while also minimizing the its transverse impedance. Measurements of high- voltage and rf characteristics are summarized. 7 refs., 5 figs

  12. Linear induction accelerator and pulse forming networks therefor

    Science.gov (United States)

    Buttram, Malcolm T.; Ginn, Jerry W.

    1989-01-01

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

  13. Dragon-I Linear Induction Electron Accelerator

    International Nuclear Information System (INIS)

    Ding Bonan; Deng Jianjun; Wang Huacen; Cheng Nian'an; Dai Guangsen; Zhang Linwen; Liu Chengjun; Zhang Wenwei; Li Jin; Zhang Kaizhi

    2005-01-01

    Dragon-I is a linear induction electron accelerator. This facility consists of a 3.6 MeV injector, 38 meter beam transport line and 16 MeV induction accelerator powered by high voltage generators, including 8 Marx generators and 48 Blumlein lines. This paper describes the physics design, development and experimental results of Dragon-I. The key technology is analyzed in the accelerator development, and the design requirements and operation of the major subsystems are presented. The experimental results show Dragon-I generates an 18-20 MeV, 2.5 kA, 70 ns electron beam. The X-ray spot size is about 1.2 mm and dose level about 0.103 C/kg at 1 meter. (authors)

  14. Analog Amplitude Modulation of a High Voltage, Solid State Inductive Adder, Pulse Generator Using MOSFETS

    International Nuclear Information System (INIS)

    Gower, E J; Sullivan, J S

    2002-01-01

    High voltage, solid state, inductive adder, pulse generators have found increasing application as fast kicker pulse modulators for charged particle beams. The solid state, inductive adder, pulse generator is similar in operation to the linear induction accelerator. The main difference is that the solid state, adder couples energy by transformer action from multiple primaries to a voltage summing stalk, instead of an electron beam. Ideally, the inductive adder produces a rectangular voltage pulse at the load. In reality, there is usually some voltage variation at the load due to droop on primary circuit storage capacitors, or, temporal variations in the load impedance. Power MOSFET circuits have been developed to provide analog modulation of the output voltage amplitude of a solid state, inductive adder, pulse generator. The modulation is achieved by including MOSFET based, variable subtraction circuits in the multiple primary stack. The subtraction circuits can be used to compensate for voltage droop, or, to tailor the output pulse amplitude to provide a desired effect in the load. Power MOSFET subtraction circuits have been developed to modulate short, temporal (60-400 ns), voltage and current pulses. MOSFET devices have been tested up to 20 amps and 800 Volts with a band pass of 50 MHz. An analog modulation cell has been tested in a five cell high, voltage adder stack

  15. A high-voltage equipment (high voltage supply, high voltage pulse generators, resonant charging inductance, synchro-instruments for gyrotron frequency measurements) for plasma applications

    International Nuclear Information System (INIS)

    Spassov, Velin

    1996-01-01

    This document reports my activities as visitor-professor at the Gyrotron Project - INPE Plasma Laboratory. The main objective of my activities was designing, construction and testing a suitable high-voltage pulse generator for plasma applications, and efforts were concentrated on the following points: Design of high-voltage resonant power supply with tunable output (0 - 50 kV) for line-type high voltage pulse generator; design of line-type pulse generator (4 microseconds pulse duration, 0 - 25 kV tunable voltage) for non linear loads such as a gyrotron and P III reactor; design of resonant charging inductance for resonant line-type pulse generator, and design of high resolution synchro instrument for gyrotron frequency measurement. (author)

  16. Experimental research of double-pulse linear induction electron accelerator

    International Nuclear Information System (INIS)

    Liao Shuqing; Cheng Cheng; Zheng Shuxin; Tang Chuanxiang; Lin Yuzheng; Jing Xiaobing; Mu Fan; Pan Haifeng

    2009-01-01

    The Mini-LIA is a double-pulse linear induction electron accelerator with megahertz repetition rates, which consists of a double-pulse power system, a thermal cathode electron gun, two induction cells, beam transportation systems and diagnosis systems, etc. Experiments of the Mini-LIA have been conducted. The double-pulse high voltage was obtained with several hundred nanosecond pulse intervals (i. e. megahertz repetition rate) and each pulse had an 80 kV amplitude with a FWHM of 80 ns. In the gap of the induction cell, the double-pulse accelerating electric field was measured via E-field probes, and the double-pulse electron beam with a current about 1.1 A has been obtained at the Mini-LIA exit. These experimental results show that the double-pulse high voltage with megahertz repetition rates can be generated by an insulation and junction system. And they also indicate that the induction cell with metglas as the ferromagnetic material and the LaB 6 thermal cathode electron gun suit the double-pulse operation with megahertz repetition rates. (authors)

  17. Stabilization of Voltage Parameters of Induction Generator Excited by a Voltage Inverter

    Directory of Open Access Journals (Sweden)

    Padalko D.A.

    2017-12-01

    Full Text Available The article reveals the operational aspects of induction generator. Methods for stabilization of induction generator (IG parameters under inverter excitation are investigated. The study was carried out using mathematical description and simulation modeling in MATLAB Simulink. The paper provides analysis of causes of generated voltage amplitude and frequency displacement when the loading condition and the rate vary. Due to the parametric resonance nature of IG self-excitation, the author introduces the expression that allows estimating the capacitor capacitance required to maintain the generation process, depending on the rotor speed of electric machine, load nature and rate. Based on the studies, it was proved that it is possible to stabilize the IG voltage parameters by maintaining the magnetizing circuit inductance Lm at the constant level., and realizing a control law close to U/f = const. The study proves that using the inverter together with the voltage regulator allows ensuring the quality of electricity corresponding to modern standards. The necessity of problem solving of the required quality of the voltage by the harmonic component for the exciter - inverter with PWM is shown. The prospects of the power generation system based on induction machine (IM with a semiconductor frequency converter, which serves as an adjustable supplier of capacitive current for IM for autonomous objects, are substantiated. The use of semiconductor frequency converters makes it possible to provide high stability of the output voltage parameters and good speed of the mechatronic generation system with an asynchronous machine.

  18. Reproducible and controllable induction voltage adder for scaled beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yasuo; Nakajima, Mitsuo; Horioka, Kazuhiko [Department of Energy Sciences, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2016-08-15

    A reproducible and controllable induction adder was developed using solid-state switching devices and Finemet cores for scaled beam compression experiments. A gate controlled MOSFET circuit was developed for the controllable voltage driver. The MOSFET circuit drove the induction adder at low magnetization levels of the cores which enabled us to form reproducible modulation voltages with jitter less than 0.3 ns. Preliminary beam compression experiments indicated that the induction adder can improve the reproducibility of modulation voltages and advance the beam physics experiments.

  19. Engineering method of calculation and choice of main parameters of the linear induction accelerator inductors

    Directory of Open Access Journals (Sweden)

    В.Т. Чемерис

    2006-04-01

    Full Text Available  There is a method of simplified calculation and design parameters choice elaborated in this article with corresponding basing for the induction system of electron-beam sterilizer on the base of linear induction accelerator taking into account the parameters of magnetic material for production of cores and parameters of pulsed voltage.

  20. An implantable neurostimulator with an integrated high-voltage inductive power-recovery frontend

    International Nuclear Information System (INIS)

    Wang Yuan; Zhang Xu; Liu Ming; Li Peng; Chen Hongda

    2014-01-01

    This paper present a highly-integrated neurostimulator with an on-chip inductive power-recovery frontend and high-voltage stimulus generator. In particular, the power-recovery frontend includes a high-voltage full-wave rectifier (up to 100 V AC input), high-voltage series regulators (24/5 V outputs) and a linear regulator (1.8/3.3 V output) with bandgap voltage reference. With the high voltage output of the series regulator, the proposed neurostimulator could deliver a considerably large current in high electrode-tissue contact impedance. This neurostimulator has been fabricated in a CSMC 1 μm 5/40/700 V BCD process and the total silicon area including pads is 5.8 mm 2 . Preliminary tests are successful as the neurostimulator shows good stability under a 13.56 MHz AC supply. Compared to previously reported works, our design has advantages of a wide induced voltage range (26–100 V), high output voltage (up to 24 V) and high-level integration, which are suitable for implantable neurostimulators. (semiconductor integrated circuits)

  1. Precise derating of three phase induction motors with unbalanced voltages

    International Nuclear Information System (INIS)

    Faiz, Jawad; Ebrahimpour, H.

    2007-01-01

    Performance analysis of three phase induction motors under supply voltage unbalance conditions is normally conducted using the well-known symmetrical components analysis. In this analysis, the voltage unbalance level at the terminals of the machine is assessed by means of the NEMA or IEC definitions. Both definitions lead to a relatively large error in predicting the performance of a machine. A method has recently been proposed in which, in addition to the voltage unbalance factor (VUF), the phase angle has been taken into account in the analysis. This means that the voltage unbalance factor is regarded as a complex value. This paper shows that although the use of the complex VUF reduces the computational error considerably, it is still high. This is proven by evaluating the derating factor of a three phase induction motor. A method is introduced to determine the derating factor precisely using the complex unbalance factor for an induction motor operating under any unbalanced supply condition. A practical case for derating of a typical three phase squirrel cage induction motor supplied by an unbalanced voltage is studied in the paper

  2. State reference design and saturated control of doubly-fed induction generators under voltage dips

    Science.gov (United States)

    Tilli, Andrea; Conficoni, Christian; Hashemi, Ahmad

    2017-04-01

    In this paper, the stator/rotor currents control problem of doubly-fed induction generator under faulty line voltage is carried out. Common grid faults cause a steep decline in the line voltage profile, commonly denoted as voltage dip. This point is critical for such kind of machines, having their stator windings directly connected to the grid. In this respect, solid methodological nonlinear control theory arguments are exploited and applied to design a novel controller, whose main goal is to improve the system behaviour during voltage dips, endowing it with low voltage ride through capability, a fundamental feature required by modern Grid Codes. The proposed solution exploits both feedforward and feedback actions. The feedforward part relies on suitable reference trajectories for the system internal dynamics, which are designed to prevent large oscillations in the rotor currents and command voltages, excited by line perturbations. The feedback part uses state measurements and is designed according to Linear Matrix Inequalities (LMI) based saturated control techniques to further reduce oscillations, while explicitly accounting for the system constraints. Numerical simulations verify the benefits of the internal dynamics trajectory planning, and the saturated state feedback action, in crucially improving the Doubly-Fed Induction Machine response under severe grid faults.

  3. Ways for improvement of the LIU-5/5000 linear induction accelerator parameters

    International Nuclear Information System (INIS)

    Bobylev, V.I.; Kapchinskij, I.M.; Lapitskij, Yu.Ya.; Plotnikov, V.K.; Chuvilo, I.V.

    1987-01-01

    The reasons of limitaions to increase the beam current and improve the quality of beam in the electron linear induction accelerator LIU-5/5000 are studied. The necessity to increase the voltage in the gaps of the electron gun, increase the diameter of the cathode and aperture of the drift tube, accuracy of axial symmetry electron gun current-carrying elements and accuracy of gun fabrication are shown. Stabilization of beam parameters require a new high voltage modulators. Different versions of the linac modernization with the use of transformers with cores of 430 and 600 mm are studied. Technical possibilities at several versions of high voltage modulators are discussed

  4. A speed estimation unit for induction motors based on adaptive linear combiner

    International Nuclear Information System (INIS)

    Marei, Mostafa I.; Shaaban, Mostafa F.; El-Sattar, Ahmed A.

    2009-01-01

    This paper presents a new induction motor speed estimation technique, which can estimate the rotor resistance as well, from the measured voltage and current signals. Moreover, the paper utilizes a novel adaptive linear combiner (ADALINE) structure for speed and rotor resistance estimations. This structure can deal with the multi-output systems and it is called MO-ADALINE. The model of the induction motor is arranged in a linear form, in the stationary reference frame, to cope with the proposed speed estimator. There are many advantages of the proposed unit such as wide speed range capability, immunity against harmonics of measured waveforms, and precise estimation of the speed and the rotor resistance at different dynamic changes. Different types of induction motor drive systems are used to evaluate the dynamic performance and to examine the accuracy of the proposed unit for speed and rotor resistance estimation.

  5. Prediction of windings temperature rise in induction motors supplied with distorted voltage

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Street 83, 81-225 Gdynia (Poland)

    2008-04-15

    One of the features of ship power systems is a different level and intensity of disturbances appearing during routine operation - the rms voltage value and frequency deviation, voltage unbalance and waveform voltage distortion. As a result, marine induction machines are exposed to overheating due to the lowered voltage quality. This paper is devoted to windings temperature rise prediction in marine induction cage machines supplied with distorted voltage, which means real voltage conditions. The proposed method of prediction does not require detailed knowledge of the thermal properties of a machine. Although the method was developed for marine induction motors, it is applicable for industry machines supplied with distorted voltage. It can also be generalized and used for estimation of the steady state windings temperature rise of any electrical machinery in various work conditions. (author)

  6. Prediction of windings temperature rise in induction motors supplied with distorted voltage

    International Nuclear Information System (INIS)

    Gnacinski, P.

    2008-01-01

    One of the features of ship power systems is a different level and intensity of disturbances appearing during routine operation - the rms voltage value and frequency deviation, voltage unbalance and waveform voltage distortion. As a result, marine induction machines are exposed to overheating due to the lowered voltage quality. This paper is devoted to windings temperature rise prediction in marine induction cage machines supplied with distorted voltage, which means real voltage conditions. The proposed method of prediction does not require detailed knowledge of the thermal properties of a machine. Although the method was developed for marine induction motors, it is applicable for industry machines supplied with distorted voltage. It can also be generalized and used for estimation of the steady state windings temperature rise of any electrical machinery in various work conditions

  7. Linear induction accelerators made from pulse-line cavities with external pulse injection

    International Nuclear Information System (INIS)

    Smith, I.

    1979-01-01

    Two types of linear induction accelerator have been reported previously. In one, unidirectional voltage pulses are generated outside the accelerator and injected into the accelerator cavity modules, which contain ferromagnetic material to reduce energy losses in the form of currents induced, in parallel with the beam, in the cavity structure. In the other type, the accelerator cavity modules are themselves pulse-forming lines with energy storage and switches; parallel current losses are made zero by the use of circuits that generate bidirectional acceleration waveforms with a zero voltage-time integral. In a third type of design described here, the cavities are externally driven, and 100% efficient coupling of energy to the beam is obtained by designing the external pulse generators to produce bidirectional voltage waveforms with zero voltage-time integral. A design for such a pulse generator is described that is itself one hundred percent efficient and which is well suited to existing pulse power techniques. Two accelerator cavity designs are described that can couple the pulse from such a generator to the beam; one of these designs provides voltage doubling. Comparison is made between the accelerating gradients that can be obtained with this and the preceding types of induction accelerator

  8. Comparison of experimental and theoretical reaction rail currents, rail voltages, and airgap fields for the linear induction motor research vehicle

    Science.gov (United States)

    Elliott, D. G.

    1977-01-01

    Measurements of reaction rail currents, reaction rail voltages, and airgap magnetic fields in tests of the Linear Induction Motor Research Vehicle (LIMRV) were compared with theoretical calculations from the mesh/matrix theory. It was found that the rail currents and magnetic fields predicted by the theory are within 20 percent of the measured currents and fields at most motor locations in most of the runs, but differ by as much as a factor of two in some cases. The most consistent difference is a higher experimental than theoretical magnetic field near the entrance of the motor and a lower experimental than theoretical magnetic field near the exit. The observed differences between the theoretical and experimental magnetic fields and currents do not account for the differences of as much as 26 percent between the theoretical and experimental thrusts.

  9. Effect of inductance between middle and outer cylinders on diode voltage of pulse forming line

    International Nuclear Information System (INIS)

    Liu Jinliang; Wang Xinxin

    2008-01-01

    Based on the experimental device of the water spiral pulse forming line(PFL) type electron beam accelerator, the effect of inductance between the middle and outer cylinders of PFL on diode voltage is theoretically and experimentally studied in this paper. The formulae are introduced, with which the effect of inductance on diode voltage is calculated. In addition, the diode voltage waveform is simulated through the Pspice software. The theoretical and simulated results agree well with the experimental results, which show that large inductance between middle and outer cylinders can shorten the waveform flat part of diode voltage, increase waveform rise time and reduce the diode peak voltage. When the inductance is smaller than 200 nH, a nearly square voltage waveform can be obtained in field-emission diode. (authors)

  10. Analysis of the linear induction motor in transient operation

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, G; Rotondale, N; Scarano, M

    1987-05-01

    The paper deals with the analysis of a bilateral linear induction motor in transient operation. We have considered an impressed voltage one-dimensional model which takes into account end effects. The real winding distribution of the armature has been represented as a lumped parameters system. By using the space vectors methodology, the partial differential equation of the sheet is solved bythe variable separation method. Therefore it's possible to arrange a system of ordinary differential equations where the unknown quantities are the space vectors of the air-gap flux density and sheet currents. Finally, we have analyzed the characteristic quantities for a no-load starting of small power motors.

  11. The Study of Residual Voltage of Induction Motor and the Influence of Various Parameters on the Residual Voltage

    Science.gov (United States)

    Zhang, Shuping; Zhao, Chen; Tan, Weipu

    2017-05-01

    The majority important load of industrial area is mainly composed of induction motor, it is more common that induction motor becomes sluggishness and even tripping due to the lose of power supply or other malfunction in the practical work. In this paper, space vector method is used to establish a reduced order model of induction motor, and then study the changes of motor electromagnetic after losing electricity. Based on motion equations of the rotor and magnetic flux conservation principle, it uses mathematical methods to deduce the expression of rotor current, rotor flux, the stator flux and the residual voltage of stator side. In addition, relying on thermal power plants, it uses the actual data of power plants, takes DIgsilent software to simulate the residual voltage of motor after losing electricity. analyses the influence on the residual voltage with the changes of the moment of inertia, load ratio, initial size of slip and the load characteristic of induction motor. By analysis of these, it has a more detailed understanding about the changes of residual voltage in practical application, in additional, it is more beneficial to put into standby power supply safely and effectively, moreover, reduce the influence of the input process to the whole system.

  12. Study on quench detection of the KSTAR CS coil with CDA+MIK compensation of inductive voltages

    Energy Technology Data Exchange (ETDEWEB)

    An, Seok Chan; Kim, Jin Sub [Yonsei University, Seoul (Korea, Republic of); Chu, Yong [National Fusion Research Institute(NFRI), Daejeon (Korea, Republic of)

    2016-03-15

    Quench Detection System (QDS) is essential to guarantee the stable operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) Poloidal Field (PF) magnet system because the stored energy in the magnet system is very large. For the fast response, voltage-based QDS has been used. Co-wound voltage sensors and balanced bridge circuits were applied to eliminate the inductive voltages generated during the plasma operation. However, as the inductive voltages are hundreds times higher than the quench detection voltage during the pulse-current operation, Central Difference Averaging (CDA) and MIK, where I and K stand for mutual coupling indexes of different circuits, which is an active cancellation of mutually generated voltages have been suggested and studied. In this paper, the CDA and MIK technique were applied to the KSTAR magnet for PF magnet quench detection. The calculated inductive voltages from the MIK and measured voltages from the CDA circuits were compared to eliminate the inductive voltages at result signals.

  13. Study on quench detection of the KSTAR CS coil with CDA+MIK compensation of inductive voltages

    International Nuclear Information System (INIS)

    An, Seok Chan; Kim, Jin Sub; Chu, Yong

    2016-01-01

    Quench Detection System (QDS) is essential to guarantee the stable operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) Poloidal Field (PF) magnet system because the stored energy in the magnet system is very large. For the fast response, voltage-based QDS has been used. Co-wound voltage sensors and balanced bridge circuits were applied to eliminate the inductive voltages generated during the plasma operation. However, as the inductive voltages are hundreds times higher than the quench detection voltage during the pulse-current operation, Central Difference Averaging (CDA) and MIK, where I and K stand for mutual coupling indexes of different circuits, which is an active cancellation of mutually generated voltages have been suggested and studied. In this paper, the CDA and MIK technique were applied to the KSTAR magnet for PF magnet quench detection. The calculated inductive voltages from the MIK and measured voltages from the CDA circuits were compared to eliminate the inductive voltages at result signals

  14. Effects of symmetrical voltage sags on squirrel-cage induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Pedra, Joaquin; Sainz, Luis; Corcoles, Felipe [Department of Electrical Engineering, ETSEIB-UPC, Av. Diagonal, 647, 08028 Barcelona (Spain)

    2007-10-15

    This paper analyzes the symmetrical voltage sag consequences on the induction motor behavior when single- and double-cage models are considered, namely current and torque peaks, and speed loss. These effects depend on several variables like sag type, duration and depth. Voltage sag effects are studied by using single- and double-cage models for three motors of different rated power. The double-cage model always predicts torque and current peaks higher than those of the single-cage model. The single-cage model predicts that voltage sags can produce motor instability, whereas the double-cage model is always stable. Therefore, the double-cage model must be used for the simulation of the squirrel-cage induction motor, because the single-cage model can give erroneous results in some situations. (author)

  15. Induction-linear accelerators for food processing with ionizing radiation

    International Nuclear Information System (INIS)

    Lagunas-Solar, M.C.

    1985-01-01

    Electron accelerators with sufficient beam power and reliability of operation will be required for applications in the large-scale radiation processing of food. Electron beams can be converted to the more penetrating bremsstrahlung radiation (X-rays), although at a great expense in useful X-ray power due to small conversion efficiencies. Recent advances in the technology of pulse-power accelerators indicates that Linear Induction Electron Accelerators (LIEA) are capable of sufficiently high-beam current and pulse repetition rate, while delivering ultra-short pulses of high voltage. The application of LIEA systems in food irradiation provides the potential for high product output and compact, modular-type systems readily adaptable to food processing facilities. (orig.)

  16. Voltage linear transformation circuit design

    Science.gov (United States)

    Sanchez, Lucas R. W.; Jin, Moon-Seob; Scott, R. Phillip; Luder, Ryan J.; Hart, Michael

    2017-09-01

    Many engineering projects require automated control of analog voltages over a specified range. We have developed a computer interface comprising custom hardware and MATLAB code to provide real-time control of a Thorlabs adaptive optics (AO) kit. The hardware interface includes an op amp cascade to linearly shift and scale a voltage range. With easy modifications, any linear transformation can be accommodated. In AO applications, the design is suitable to drive a range of different types of deformable and fast steering mirrors (FSM's). Our original motivation and application was to control an Optics in Motion (OIM) FSM which requires the customer to devise a unique interface to supply voltages to the mirror controller to set the mirror's angular deflection. The FSM is in an optical servo loop with a wave front sensor (WFS), which controls the dynamic behavior of the mirror's deflection. The code acquires wavefront data from the WFS and fits a plane, which is subsequently converted into its corresponding angular deflection. The FSM provides +/-3° optical angular deflection for a +/-10 V voltage swing. Voltages are applied to the mirror via a National Instruments digital-to-analog converter (DAC) followed by an op amp cascade circuit. This system has been integrated into our Thorlabs AO testbed which currently runs at 11 Hz, but with planned software upgrades, the system update rate is expected to improve to 500 Hz. To show that the FSM subsystem is ready for this speed, we conducted two different PID tuning runs at different step commands. Once 500 Hz is achieved, we plan to make the code and method for our interface solution freely available to the community.

  17. Linear induction motor

    International Nuclear Information System (INIS)

    Barkman, W.E.; Adams, W.Q.; Berrier, B.R.

    1978-01-01

    A linear induction motor has been operated on a test bed with a feedback pulse resolution of 5 nm (0.2 μin). Slewing tests with this slide drive have shown positioning errors less than or equal to 33 nm (1.3 μin) at feedrates between 0 and 25.4 mm/min (0-1 ipm). A 0.86-m (34-in)-stroke linear motor is being investigated, using the SPACO machine as a test bed. Initial results were encouraging, and work is continuing to optimize the servosystem compensation

  18. Development of a Low Inductance Linear Alternator for Stirling Power Convertors

    Science.gov (United States)

    Geng, Steven M.; Schifer, Nicholas A.

    2017-01-01

    The free-piston Stirling power convertor is a promising technology for high efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper, eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations, and compares the predictions with experimental data for one of the configurations that has been built and is currently being tested.

  19. Development of a Low-Inductance Linear Alternator for Stirling Power Convertors

    Science.gov (United States)

    Geng, Steven M.; Schifer, Nicholas A.

    2017-01-01

    The free-piston Stirling power convertor is a promising technology for high-efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-the-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations. Additionally, one of the configurations was built and tested at GRC, and the experimental data is compared with the predictions.

  20. Doubly-Fed Induction Generator Control Under Voltage Sags

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Blaabjerg, Frede; Lima, K.

    2008-01-01

    This paper proposes a new control technique to improve the fault-ride through capability of doubly fed induction generators (DFIG). In such generators the appearance of severe voltage sags at the coupling point make rise to high over currents at the rotor/stator windings, something that makes...

  1. Inductive voltage compensation in superconducting magnet systems

    International Nuclear Information System (INIS)

    Yeh, H.T.; Goddard, J.S.; Shen, S.S.

    1979-01-01

    This paper details several techniques of inductive voltage compensation developed for quench detection in superconducting magnet systems with multiple coils and power supplies, with particular application for the Large Coil Test Facility (LCTF). Sources of noise, their magnitudes, and the sensitivity required for normal zone detection to avoid damage to the magnets are discussed. Two passive compensation schemes (second difference and central difference) are introduced and illustrated by parameters of LCTF; these take advantage of coil symmetries and other system characteristics. An active compensation scheme based on current rate input fom pickup coils and utilizing theory on ac loss voltage for calibration was tested, and the experimental setup and test results are discussed

  2. Experimental Analysis of Linear Induction Motor under Variable Voltage Variable Frequency (VVVF Power Supply

    Directory of Open Access Journals (Sweden)

    Prasenjit D. Wakode

    2016-07-01

    Full Text Available This paper presents the complete analysis of Linear Induction Motor (LIM under VVVF. The complete variation of LIM air gap flux under ‘blocked Linor’ condition and starting force is analyzed and presented when LIM is given VVVF supply. The analysis of this data is important in further understanding of the equivalent circuit parameters of LIM and to study the magnetic circuit of LIM. The variation of these parameters is important to know the LIM response at different frequencies. The simulation and application of different control strategies such as vector control thus becomes quite easy to apply and understand motor’s response under such strategy of control.

  3. Peak thrust operation of linear induction machines from parameter identification

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Eastham, T.R.; Dawson, G.E. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Electrical and Computer Engineering

    1995-12-31

    Various control strategies are being used to achieve high performance operation of linear drives. To maintain minimum volume and weight of the power supply unit on board the transportation vehicle, peak thrust per unit current operation is a desirable objective. True peak thrust per unit current through slip control is difficult to achieve because the parameters of linear induction machines vary during normal operation. This paper first develops a peak thrust per unit current control law based on the per-phase equivalent circuit for linear induction machines. The algorithm for identification of the variable parameters in induction machines is then presented. Application to an operational linear induction machine (LIM) demonstrates the utility of this algorithm. The control strategy is then simulated, based on an operational transit LIM, to show the capability of achieving true peak thrust operation for linear induction machines.

  4. Voltage and frequency control of wind-powered islanded microgrids based on induction generator and STATCOM

    DEFF Research Database (Denmark)

    Bouzid, Allal; Sicard, Pierre; Guerrero, Josep M.

    2015-01-01

    This paper presents a comprehensive modeling of a three-phase cage induction machine used as a self-excited squirrel-cage induction generator (SEIG), and discusses the regulation of the voltage and frequency of a self-excited SEIG based on the action of the static synchronous Compensator (STATCOM......). The STATCOM with the proposed controller consists of a three-phase voltage-sourced inverter and a DC voltage. The compensator can provide the active and reactive powers and regulate AC system bus voltage and the frequency, but also may enhance the load stability. Moreover, a feed forward control method...

  5. Dragon-I injector based on the induction voltage adder technique

    Directory of Open Access Journals (Sweden)

    Zhang Kaizhi

    2006-08-01

    Full Text Available The Dragon-I injector based on the induction voltage adder technique is introduced. Twelve ferrite loaded induction cells are connected in a series through central conducting stalks to achieve a pulsed voltage higher than 3.5 MV across the diode. Electrons are extracted from the velvet emitter and guided through the anode pipe by the magnets placed inside the cathode and anode shrouds. Measurements at the exit of injector show that, with an electric field of 200  kV/cm near the velvet surface and suitable magnetic field distribution, an electron beam up to 2.8 kA can be obtained with a normalized emittance of 1040π   mm mrad, and energy spread of 2.1% (3σ around the central energy of 3.5 MeV.

  6. Exponential dependence of potential barrier height on biased voltages of inorganic/organic static induction transistor

    International Nuclear Information System (INIS)

    Zhang Yong; Yang Jianhong; Cai Xueyuan; Wang Zaixing

    2010-01-01

    The exponential dependence of the potential barrier height φ c on the biased voltages of the inorganic/organic static induction transistor (SIT/OSIT) through a normalized approach in the low-current regime is presented. It shows a more accurate description than the linear expression of the potential barrier height. Through the verification of the numerical calculated and experimental results, the exponential dependence of φ c on the applied biases can be used to derive the I-V characteristics. For both SIT and OSIT, the calculated results, using the presented relationship, are agreeable with the experimental results. Compared to the previous linear relationship, the exponential description of φ c can contribute effectively to reduce the error between the theoretical and experimental results of the I-V characteristics. (semiconductor devices)

  7. Effect of Inductive Coil Shape on Sensing Performance of Linear Displacement Sensor Using Thin Inductive Coil and Pattern Guide

    Directory of Open Access Journals (Sweden)

    Hiroyuki Wakiwaka

    2011-11-01

    Full Text Available This paper discusses the effect of inductive coil shape on the sensing performance of a linear displacement sensor. The linear displacement sensor consists of a thin type inductive coil with a thin pattern guide, thus being suitable for tiny space applications. The position can be detected by measuring the inductance of the inductive coil. At each position due to the change in inductive coil area facing the pattern guide the value of inductance is different. Therefore, the objective of this research is to study various inductive coil pattern shapes and to propose the pattern that can achieve good sensing performance. Various shapes of meander, triangular type meander, square and circle shape with different turn number of inductive coils are examined in this study. The inductance is measured with the sensor sensitivity and linearity as a performance evaluation parameter of the sensor. In conclusion, each inductive coil shape has its own advantages and disadvantages. For instance, the circle shape inductive coil produces high sensitivity with a low linearity response. Meanwhile, the square shape inductive coil has a medium sensitivity with higher linearity.

  8. Diagnosis of voltage collapse due to induction motor stalling using static analysis

    International Nuclear Information System (INIS)

    Karbalaei, F.; Kalantar, M.; Kazemi, A.

    2008-01-01

    Induction motor stalling is one of the important reasons for voltage collapse. This paper presents that, for induction motor stalling diagnosis, it is not necessary to use a third or first order dynamic model of induction motors. Instead, a method is presented based on algebraic calculations for which the steady state model of the induction motor considering different kinds of mechanical loads (constant and variable torque) is added to the power flow equations. Simulation results for a simple system confirm the correctness of the proposed method as compared to dynamic simulation results

  9. High-voltage many-pulses generator with inductive energy store and fuse

    International Nuclear Information System (INIS)

    Kovalev, V.P.; Diyankov, V.S.; Kormilitsin, A.I.; Lavrent'ev, B.N.

    1996-01-01

    The high-voltage generator with inductive energy store and fuses as opening switch that generate series of powerful pulses is considered. This generator differs from the ordinary generator with inductive store by the cross-section of the series copper wires. The parameters of the wires are chosen based on empirical relations. The generation principle was tested on the two high-voltage generators with characteristic impedance 2.2 ohm, 4 ohm and with output voltages of 140 kV and 420 kV, respectively. Copper wires 0.1 to 0.23 mm in diameter were used. Series of 2 to 5 pulses of 100 to 300 ns duration, 400 to 1000 kV amplitude and 1 - 10 GW power were obtained. Pulses can be both the same and different. Two successive bremsstrahlung radiation pulses were obtain on the EMIR-M and IGUR-3 devices. Series power megavolt pulses can be generated with a power exceeding 10 11 W, pulse duration of 10 -3 to 10 -6 s, and time interval between them 10 -7 to 10 -5 s. (author). 4 figs., 2 refs

  10. The influence of transformers, induction motors and fault resistance regarding propagation voltage sags

    OpenAIRE

    Jairo Blanco; Ruben Darío Leal; Jonathan Jacome; Johann F. Petit; Gabriel Ordoñez; Víctor Barrera

    2011-01-01

    This article presents an analysis of voltage sag propagation. The ATPDraw tool was selected for simulating the IEEE 34 node test feeder. It takes into account both voltage sags caused by electrical fault network, as well as voltage sag propagation characteristics caused by induction motor starting and transformer energising. The analysis was aimed at assessing the influence of transformer winding connections, the impedance of these transformers, lines and cables, summarising the...

  11. Systematic analysis and experiment of inductive coupling and induced voltage for inductively coupled wireless implantable neurostimulator application

    International Nuclear Information System (INIS)

    Xue, Ning; Cho, Sung-Hoon; Chang, Sung-Pil; Lee, Jeong-Bong

    2012-01-01

    The main strategy for wireless power transfer to implantable devices is to use inductive coupling technology. The induced voltage of implanted devices highly depends on factors such as mutual inductance between the external transmitter coil and the receiver coil, quality factor of the receiver circuit and operation frequency. In this paper, the mutual inductance under a variety of geometries of external coil and under the condition of different vertical distances, lateral displacements and angular misalignments between two coils were theoretically calculated and simulated. To ascertain the condition of maximum power transmission for certain coils’ position requirements, an LC tank (2.7 mm × 2 mm) consisting of a microfabricated gold inductor coil and a small surface mounted capacitor was designed and fabricated as the telemetric part of a neurostimulator. The induced voltage of the LC tank was measured in both air and artificial tissue media under different sizes of power coil and operation frequencies. As a result, the optimum size of a transmitter coil is selected to be of 4 mm inner radius with six turns of coil, while the whole coupling system operates at 94 MHz resonant frequency within 5–11 mm vertical distance, 0–4 mm lateral and 0°–50° angular misalignment between two coils. With the change of the above coils’ positions, the measured induced voltage drops within 30%, satisfying the surgical requirement for neurostimulator implantation. (paper)

  12. Low voltage RF MEMS variable capacitor with linear C-V response

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-23

    An RF MEMS variable capacitor, fabricated in the PolyMUMPS process and tuned electrostatically, possessing a linear capacitance-voltage response is reported. The measured quality factor of the device was 17 at 1GHz, while the tuning range was 1.2:1 and was achieved at an actuation DC voltage of 8V only. Further, the linear regression coefficient was 0.98. The variable capacitor was created such that it has both vertical and horizontal capacitances present. As the top suspended plate moves towards the bottom fixed plate, the vertical capacitance increases whereas the horizontal capacitance decreases simultaneously such that the sum of the two capacitances yields a linear capacitance-voltage relation. © 2012 The Institution of Engineering and Technology.

  13. Effect of unbalanced voltage on windings temperature, operational life and load carrying capacity of induction machine

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Street 83, 81-225 Gdynia (Poland)

    2008-04-15

    This paper investigates the influence of the CVUF angle on the windings temperature rise and the derating factor of an induction machine supplied with unbalanced voltage. The effect of simultaneous voltage unbalance and harmonics on its operational life is analyzed as well. The results of calculations and experimental investigations are presented for two induction cage machines of rated power 3 and 5.5 kW. (author)

  14. High-voltage many-pulses generator with inductive energy store and fuse

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, V P; Diyankov, V S; Kormilitsin, A I; Lavrent` ev, B N [All-Russian Research Inst. of Technical Physics, Snezhinsk (Russian Federation)

    1997-12-31

    The high-voltage generator with inductive energy store and fuses as opening switch that generate series of powerful pulses is considered. This generator differs from the ordinary generator with inductive store by the cross-section of the series copper wires. The parameters of the wires are chosen based on empirical relations. The generation principle was tested on the two high-voltage generators with characteristic impedance 2.2 ohm, 4 ohm and with output voltages of 140 kV and 420 kV, respectively. Copper wires 0.1 to 0.23 mm in diameter were used. Series of 2 to 5 pulses of 100 to 300 ns duration, 400 to 1000 kV amplitude and 1 - 10 GW power were obtained. Pulses can be both the same and different. Two successive bremsstrahlung radiation pulses were obtain on the EMIR-M and IGUR-3 devices. Series power megavolt pulses can be generated with a power exceeding 10{sup 11} W, pulse duration of 10{sup -3} to 10{sup -6} s, and time interval between them 10{sup -7} to 10{sup -5} s. (author). 4 figs., 2 refs.

  15. Analysis of Operating Performance and Three Dimensional Magnetic Field of High Voltage Induction Motors with Stator Chute

    Directory of Open Access Journals (Sweden)

    WANG Qing-shan

    2017-06-01

    Full Text Available In view of the difficulties on technology of rotor chute in high voltage induction motor,the desig method adopted stator chute structure is put forward. The mathematical model of three dimensional nonlinear transient field for solving stator chute in high voltage induction motor is set up. Through the three dimensional entity model of motor,three dimensional finite element method based on T,ψ - ψ electromagnetic potential is adopted for the analysis and calculation of stator chute in high voltage induction motor under rated condition. The distributions long axial of fundamental wave magnetic field and tooth harmonic wave magnetic field are analyzed after stator chute,and the weakening effects on main tooth harmonic magnetic field are researched. Further more,the comparison analysis of main performance parameters of chute and straight slot is carried out under rated condition. The results show that the electrical performance of stator chute is better than that of straight slot in high voltage induction motor,and the tooth harmonic has been sharply decreased

  16. Linear Parameter Varying Control of Induction Motors

    DEFF Research Database (Denmark)

    Trangbæk, Klaus

    The subject of this thesis is the development of linear parameter varying (LPV) controllers and observers for control of induction motors. The induction motor is one of the most common machines in industrial applications. Being a highly nonlinear system, it poses challenging control problems...... for high performance applications. This thesis demonstrates how LPV control theory provides a systematic way to achieve good performance for these problems. The main contributions of this thesis are the application of the LPV control theory to induction motor control as well as various contributions...

  17. All-Pass Filter Based Linear Voltage Controlled Quadrature Oscillator

    Directory of Open Access Journals (Sweden)

    Koushick Mathur

    2017-01-01

    Full Text Available A linear voltage controlled quadrature oscillator implemented from a first-order electronically tunable all-pass filter (ETAF is presented. The active element is commercially available current feedback amplifier (AD844 in conjunction with the relatively new Multiplication Mode Current Conveyor (MMCC device. Electronic tunability is obtained by the control node voltage (V of the MMCC. Effects of the device nonidealities, namely, the parasitic capacitors and the roll-off poles of the port-transfer ratios of the device, are shown to be negligible, even though the usable high-frequency ranges are constrained by these imperfections. Subsequently the filter is looped with an electronically tunable integrator (ETI to implement the quadrature oscillator (QO. Experimental responses on the voltage tunable phase of the filter and the linear-tuning law of the quadrature oscillator up to 9.9 MHz at low THD are verified by simulation and hardware tests.

  18. Simple mechanical parameters identification of induction machine using voltage sensor only

    International Nuclear Information System (INIS)

    Horen, Yoram; Strajnikov, Pavel; Kuperman, Alon

    2015-01-01

    Highlights: • A simple low cost algorithm for induction motor mechanical parameters estimation is proposed. • Voltage sensing only is performed; speed sensor is not required. • The method is suitable for both wound rotor and squirrel cage motors. - Abstract: A simple low cost algorithm for induction motor mechanical parameters estimation without speed sensor is presented in this paper. Estimation is carried out by recording stator terminal voltage during natural braking and subsequent offline curve fitting. The algorithm allows accurately reconstructing mechanical time constant as well as loading torque speed dependency. Although the mathematical basis of the presented method is developed for wound rotor motors, it is shown to be suitable for squirrel cage motors as well. The algorithm is first tested by reconstruction of simulation model parameters and then by processing measurement results of several motors. Simulation and experimental results support the validity of the proposed algorithm

  19. Measurement and analysis of the electric field radiation in pulsed power system of linear induction accelerator

    International Nuclear Information System (INIS)

    Cheng Qifeng; Ni Jianping; Meng Cui; Cheng Cheng; Liu Yinong; Li Jin

    2009-01-01

    The close of high voltage switch in pulsed power system of linear induction accelerator often radiates strong transient electric field, which may influence ambient sensitive electric equipment, signals and performance of other instruments, etc. By performing gridded measurement around the Marx generator, the general distribution law and basic characters of electric field radiation are summarized. The current signal of the discharge circuit is also measured, which demonstrates that the current and the radiated electric field both have a resonance frequency about 150 kHz, and contain much higher frequency components. (authors)

  20. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    Science.gov (United States)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  1. A simple model for induction core voltage distributions

    International Nuclear Information System (INIS)

    Briggs, Richard J.; Fawley, William M.

    2004-01-01

    In fall 2003 T. Hughes of MRC used a full EM simulation code (LSP) to show that the electric field stress distribution near the outer radius of the longitudinal gaps between the four Metglas induction cores is very nonuniform in the original design of the DARHT-2 accelerator cells. In this note we derive a simple model of the electric field distribution in the induction core region to provide physical insights into this result. The starting point in formulating our model is to recognize that the electromagnetic fields in the induction core region of the DARHT-2 accelerator cells should be accurately represented within a quasi-static approximation because the timescale for the fields to change is much longer than the EM wave propagation time. The difficulty one faces is the fact that the electric field is a mixture of both a ''quasi-magnetostatic field'' (having a nonzero curl, with Bdot the source) and a ''quasi-electrostatic field'' (the source being electric charges on the various metal surfaces). We first discuss the EM field structure on the ''micro-scale'' of individual tape windings in Section 2. The insights from that discussion are then used to formulate a ''macroscopic'' description of the fields inside an ''equivalent homogeneous tape wound core region'' in Section 3. This formulation explicitly separates the nonlinear core magnetics from the quasi-electrostatic components of the electric field. In Section 4 a physical interpretation of the radial dependence of the electrostatic component of the electric field derived from this model is presented in terms of distributed capacitances, and the voltage distribution from gap to gap is related to various ''equivalent'' lumped capacitances. Analytic solutions of several simple multi-core cases are presented in Sections 5 and 6 to help provide physical insight into the effect of various proposed changes in the geometrical parameters of the DARHT-2 accelerator cell. Our results show that over most of the gap

  2. Derating of an induction machine under voltage unbalance combined with over or undervoltages

    International Nuclear Information System (INIS)

    Gnacinski, P.

    2009-01-01

    This work deals with the load carrying capacity of an induction cage machine under voltage unbalance combined with over- or undervoltage. The effect of complex voltage unbalance factor (CVUF) angle on the derating factor is taken into consideration. The derating curves obtained with two different methods are compared. The machine efficiency, stator currents and temperature-rise distribution after applying the required derating factor are discussed. The results of experimental investigations and computer calculations are presented for two low-power induction motors of opposite properties. One of them has a comparatively weakly saturated magnetic circuit and is especially exposed to the risk of overheating for undervoltage. The other investigated machine has a comparatively strongly saturated magnetic circuit and is especially exposed to overheating in the conditions of overvoltage

  3. Regulation of an Induction Motor under Broad Changes in DC-Link Voltage

    Czech Academy of Sciences Publication Activity Database

    Kokeš, Petr; Semerád, Radko

    2006-01-01

    Roč. 51, č. 4 (2006), s. 363-394 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20570509 Keywords : induction motor (IM) * DC-link voltage drop * stator flux vector control (SFVC) Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  4. Linearization and Control of Series-Series Compensated Inductive Power Transfer System Based on Extended Describing Function Concept

    Directory of Open Access Journals (Sweden)

    Kunwar Aditya

    2016-11-01

    Full Text Available The extended describing function (EDF is a well-known method for modelling resonant converters due to its high accuracy. However, it requires complex mathematical formulation effort. This paper presents a simplified non-linear mathematical model of series-series (SS compensated inductive power transfer (IPT system, considering zero-voltage switching in the inverter. This simplified mathematical model permits the user to derive the small-signal model using the EDF method, with less computational effort, while maintaining the accuracy of an actual physical model. The derived model has been verified using a frequency sweep method in PLECS. The small-signal model has been used to design the voltage loop controller for a SS compensated IPT system. The designed controller was implemented on a 3.6 kW experimental setup, to test its robustness.

  5. A Method for Solving the Voltage and Torque Equations of the Split-Phase Induction Machines

    Directory of Open Access Journals (Sweden)

    G. A. Olarinoye

    2013-06-01

    Full Text Available Single phase induction machines have been the subject of many researches in recent times. The voltage and torque equations which describe the dynamic characteristics of these machines have been quoted in many papers, including the papers that present the simulation results of these model equations. The way and manner in which these equations are solved is not common in literature. This paper presents a detailed procedure of how these equations are to be solved with respect to the splitphase induction machine which is one of the different types of the single phase induction machines available in the market. In addition, these equations have been used to simulate the start-up response of the split phase induction motor on no-load. The free acceleration characteristics of the motor voltages, currents and electromagnetic torque have been plotted and discussed. The simulation results presented include the instantaneous torque-speed characteristics of the Split phase Induction machine. A block diagram of the method for the solution of the machine equations has also been presented.

  6. Effects of Cascaded Voltage Collapse and Protection of Many Induction Machine Loads upon Load Characteristics Viewed from Bulk Transmission System

    Science.gov (United States)

    Kumano, Teruhisa

    As known well, two of the fundamental processes which give rise to voltage collapse in power systems are the on load tap changers of transformers and dynamic characteristics of loads such as induction machines. It has been well established that, comparing among these two, the former makes slower collapse while the latter makes faster. However, in realistic situations, the load level of each induction machine is not uniform and it is well expected that only a part of loads collapses first, followed by collapse process of each load which did not go into instability during the preceding collapses. In such situations the over all equivalent collapse behavior viewed from bulk transmission level becomes somewhat different from the simple collapse driven by one aggregated induction machine. This paper studies the process of cascaded voltage collapse among many induction machines by time simulation, where load distribution on a feeder line is modeled by several hundreds of induction machines and static impedance loads. It is shown that in some cases voltage collapse really cascades among induction machines, where the macroscopic load dynamics viewed from upper voltage level makes slower collapse than expected by the aggregated load model. Also shown is the effects of machine protection of induction machines, which also makes slower collapse.

  7. Bidirectional pulser made from pulse lines for linear induction accelerators

    International Nuclear Information System (INIS)

    Hotta, E.; Mori, T.; Kobayashi, T.; Okino, A.; Haginomori, E.; Ko, K.C.

    1996-01-01

    In order to obtain high-current charged particle beams, linear induction accelerators (LIA's) of two types have been already constructed. Conventional LIA's adopt a unidirectional pulse injected from an external pulser. The other LIA's, one of which has been proposed and constructed by Pavlovskii et al., have accelerating cavities made from pulse forming lines (PFL's). In this case, no magnetic core loaded in the cavity is necessary. However, the injected pulse must be a bidirectional one. Since a part of the voltage pulse with reversed polarity is used to accelerate a beam, it is possible to make the time integral of the output voltage zero. Thus the final magnetic energy stored in the cavity can be made zero at the end of the pulse, and the pulser-accelerator system attains the energy transfer efficiency of 100%. Accelerators of this type can be divided into two kinds, one of which has cavities with internal energy storage, and the other has cavities with energy injected from external bidirectional pulsers. The accelerator of latter type has been first proposed by Smith, but it has not been realized. Several bidirectional pulsers, which consist of three individual PFL's with arbitrary impedances and a closing switch, are analyzed. Output voltages are analytically calculated by using the method proposed by Dommel for digital computations of electromagnetic transients in networks, and conditions for attaining the maximum efficiency of energy transfer from the pulser to the beam are derived. Thus, 4 bidirectional pulsers of internal energy storage type and 2 of external pulse injection type with energy transfer efficiency of 100% are obtained, including the pulsers already reported by other authors

  8. Derating of an induction machine under voltage unbalance combined with over or undervoltages

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska St. 83, 81-225 Gdynia (Poland)

    2009-04-15

    This work deals with the load carrying capacity of an induction cage machine under voltage unbalance combined with over- or undervoltage. The effect of complex voltage unbalance factor (CVUF) angle on the derating factor is taken into consideration. The derating curves obtained with two different methods are compared. The machine efficiency, stator currents and temperature-rise distribution after applying the required derating factor are discussed. The results of experimental investigations and computer calculations are presented for two low-power induction motors of opposite properties. One of them has a comparatively weakly saturated magnetic circuit and is especially exposed to the risk of overheating for undervoltage. The other investigated machine has a comparatively strongly saturated magnetic circuit and is especially exposed to overheating in the conditions of overvoltage. (author)

  9. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    International Nuclear Information System (INIS)

    Zainal, Nurul Afiqah; Tat, Chan Sooi; Ajisman

    2016-01-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's output is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor. (paper)

  10. Comparison of Linear Induction Motor Theories for the LIMRV and TLRV Motors

    Science.gov (United States)

    1978-01-01

    The Oberretl, Yamamura, and Mosebach theories of the linear induction motor are described and also applied to predict performance characteristics of the TLRV & LIMRV linear induction motors. The effect of finite motor width and length on performance ...

  11. Segmented rail linear induction motor

    Science.gov (United States)

    Cowan, Jr., Maynard; Marder, Barry M.

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  12. Excitation of voltage oscillations in an induction voltage adder

    Directory of Open Access Journals (Sweden)

    Nichelle Bruner

    2009-07-01

    Full Text Available The induction voltage adder is an accelerator architecture used in recent designs of pulsed-power driven x-ray radiographic systems such as Sandia National Laboratories’ Radiographic Integrated Test Stand (RITS, the Atomic Weapons Establishment’s planned Hydrus Facility, and the Naval Research Laboratory’s Mercury. Each of these designs relies on magnetic insulation to prevent electron loss across the anode-cathode gap in the vicinity of the adder as well as in the coaxial transmission line. Particle-in-cell simulations of the RITS adder and transmission line show that, as magnetic insulation is being established during a pulse, some electron loss occurs across the gap. Sufficient delay in the cavity pulse timings provides an opportunity for high-momentum electrons to deeply penetrate the cavities of the adder cells where they can excite radio-frequency resonances. These oscillations may be amplified in subsequent gaps, resulting in oscillations in the output power. The specific modes supported by the RITS-6 accelerator and details of the mechanism by which they are excited are presented in this paper.

  13. Rotor Voltage Dynamics in the Doubly Fed Induction Generator During Grid Faults

    DEFF Research Database (Denmark)

    Lima, Francisco K. A.; Luna, Alvaro; Rodriguez, Pedro

    2010-01-01

    This paper presents a new control strategy for the rotor-side converter (RSC) of wind turbines (WTs) based on doubly fed induction generators (DFIG) that intends to improve its low-voltage ride through capability. The main objective of this work is to design an algorithm that would enable the sys...

  14. Modulation linearization of a frequency-modulated voltage controlled oscillator, part 3

    Science.gov (United States)

    Honnell, M. A.

    1975-01-01

    An analysis is presented for the voltage versus frequency characteristics of a varactor modulated VHF voltage controlled oscillator in which the frequency deviation is linearized by using the nonlinear characteristics of a field effect transistor as a signal amplifier. The equations developed are used to calculate the oscillator output frequency in terms of pertinent circuit parameters. It is shown that the nonlinearity exponent of the FET has a pronounced influence on frequency deviation linearity, whereas the junction exponent of the varactor controls total frequency deviation for a given input signal. A design example for a 250 MHz frequency modulated oscillator is presented.

  15. Induction and Conduction Electromagnetic Waves Caused by Lightning Strike on the Low Voltage Network

    Directory of Open Access Journals (Sweden)

    Reynaldo Zoro

    2010-10-01

    Full Text Available Direct and indirect lightning strikes can disturb and induce low voltage overheadlines and it can produced overvoltage due to traveling waves along the lines. This overvoltage can damage the equipments connected to it. It was recorded that there were already a lot of damages of electronic equipments and arrestesr located inside the building of Lightning Measurement Station at Mnt. Tangkuban Perahu. Most of the overvoltage which was developed on the low voltage lines were coming from indirect lightning strike nearby due to the fact that most of the lines were covered by trees. Research was carried out to study and evaluate the induction and conduction of the lightning strikes to the LV lines that can lead to the cause of equipment and arrester damages inside the building. Local lightning data for the analysis were derived from measurement system installed at the stations and historical lightning data from lightning detection network called Jadpen (National Lightning Detection Network. The data was used for calculating and evaluating the voltage elevation, induction voltage profiles and conduction in the form of traveling waves using Rusck Model. Two damaged arresters were evaluated and compared and it give the better understanding on how the protection system work.Keywords: 

  16. The Design of the Annular Linear Induction EM Pump with a Sodium Flowrate of 35 kg/sec

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Lee, Tae Ho; Lee, Yong Bum

    2010-01-01

    Generally, an electromagnetic (EM) pump has been employed to circulate liquid metal with a high electrical conductivity by the electromagnetic force (Lorentz force) which is the cross product of the magnetic field and its perpendicular current. Therefore, an EM pump has its advantages over a mechanical pump such as no noise, no rotating parts, and its simplicity. Actually, it can be used for the Sodium Fast Reactor (SFR) which uses liquid sodium with a high electrical conductivity as a coolant. In the present study, the annular linear induction EM pump with a flowrate of 2,265 L/min and a head of 4 bar is designed by using an electrical equivalent circuit method which is applied to linear induction machines. The designed pump will be used for the verification of the elements, which are IHX, AHX and DHX, in the component performance test sodium loop for the sodium thermo-hydraulic experimental facility. The pump is manufactured and fabricated to meet the requirements of the material and a functioning in high temperature-sodium environments. The P-Q characteristic is theoretically calculated on the designed pump according to the input currents and voltage

  17. Uncertainty estimation of non-ideal analog switches using programmable Josephson voltage standards for mutual inductance measurement in the joule balance

    International Nuclear Information System (INIS)

    Wang, Gang; Zhang, Zhonghua; Li, Zhengkun; Xu, Jinxin; You, Qiang

    2016-01-01

    Measurement of the mutual inductance is one of the key techniques in the joule balance to determine the Planck constant h, where a standard-square-wave compensation method was proposed to accurately measure the dc value of the mutual inductance. With this method, analog switches are used to compose an analog-switch signal generator to synthesize the excitation and compensation voltages. However, the accuracy of the compensation voltage is influenced by the non-ideal behaviors of analog-switches. In this paper, the effect from these non-ideal switches is analyzed in detail and evaluated with the equivalent circuits. A programmable Josephson voltage standard (PJVS) is used to generate a reference compensation voltage to measure the time integration of the voltage waveform generated by the analog-switch signal generator. Moreover, the effect is also evaluated experimentally by comparing the difference between the mutual inductance measured with the analog-switch signal generator and the value determined by the PJVS-analog-switch generator alternately in the same mutual inductance measurement system. The result shows that the impact of analog switches is 1.97  ×  10 −7 with an uncertainty of 1.83  ×  10 −7 (k  =  1) and confirms that the analog switch method can be used regularly instead of the PJVS in the mutual inductance measurement for the joule balance experiment. (paper)

  18. On the modelling of linear-assisted DC-DC voltage regulators for photovoltaic solar energy systems

    Science.gov (United States)

    Martínez-García, Herminio; García-Vílchez, Encarna

    2017-11-01

    This paper shows the modelling of linear-assisted or hybrid (linear & switching) DC/DC voltage regulators. In this kind of regulators, an auxiliary linear regulator is used, which objective is to cancel the ripple at the output voltage and provide fast responses for load variations. On the other hand, a switching DC/DC converter, connected in parallel with the linear regulator, allows to supply almost the whole output current demanded by the load. The objective of this topology is to take advantage of the suitable regulation characteristics that series linear voltage regulators have, but almost achieving the high efficiency that switching DC/DC converters provide. Linear-assisted DC/DC regulators are feedback systems with potential instability. Therefore, their modelling is mandatory in order to obtain design guidelines and assure stability of the implemented power supply system.

  19. An analysis of the electromagnetic field in multi-polar linear induction system

    International Nuclear Information System (INIS)

    Chervenkova, Todorka; Chervenkov, Atanas

    2002-01-01

    In this paper a new method for determination of the electromagnetic field vectors in a multi-polar linear induction system (LIS) is described. The analysis of the electromagnetic field has been done by four dimensional electromagnetic potentials in conjunction with theory of the magnetic loops . The electromagnetic field vectors are determined in the Minkovski's space as elements of the Maxwell's tensor. The results obtained are compared with those got from the analysis made by the finite elements method (FEM).With the method represented in this paper one can determine the electromagnetic field vectors in the multi-polar linear induction system using four-dimensional potential. A priority of this method is the obtaining of analytical results for the electromagnetic field vectors. These results are also valid for linear media. The dependencies are valid also at high speeds of movement. The results of the investigated linear induction system are comparable to those got by the finite elements method. The investigations may be continued in the determination of other characteristics such as drag force, levitation force, etc. The method proposed in this paper for an analysis of linear induction system can be used for optimization calculations. (Author)

  20. Energy Efficiency of Induction Motors Running Off Frequency Converters with Pulse-Width Voltage Modulation{sup 1}

    Energy Technology Data Exchange (ETDEWEB)

    Shvetsov, N. K., E-mail: elmash@em.ispu.ru [V. I. Lenin Ivanovo State Power University (Russian Federation)

    2016-11-15

    The results of calculations of the increase in losses in an induction motor with frequency control and different forms of the supply voltage are presented. The calculations were performed by an analytic method based on harmonic analysis of the supply voltage as well as numerical calculation of the electromagnetic processes by the finite-element method.

  1. The development and testing of a linear induction motor being fed from the source with limited electric power

    Science.gov (United States)

    Tiunov, V. V.

    2018-02-01

    The report provides results of the research related to the tubular linear induction motors’ application. The motors’ design features, a calculation model, a description of test specimens for mining and electric power industry are introduced. The most attention is given to the single-phase motors for high voltage switches drives with the usage of inexpensive standard single-phase transformers for motors’ power supply. The method of the motor’s parameters determination, when the motor is being fed from the transformer, working in the overload mode, was described, and the results of it practical usage were good enough for the engineering practice.

  2. Induction motor voltage flicker analysis and its mitigation measures using custom power devices: A case study

    OpenAIRE

    SANJAY. A. DEOKAR,; Dr. L. M. WAGHMARE

    2010-01-01

    This paper suggests methods for estimating short time flicker (PST) severity on 22/3.3 kV network supplying induction motor loads of municipal integrated water pumping system. The impact of additional connection of induction motors to the same system has been analyzed. Measurements are done at the point of common coupling (PCC) to identify background short time flicker levels and the contribution of the already operating induction motors. The paper also analyses and compares different voltage...

  3. Identification of voltage collapse point in self excited induction generator

    Directory of Open Access Journals (Sweden)

    Kalyanasundaram Rajambal

    2009-10-01

    Full Text Available This paper presents a direct equilibrium tracing method for identifying the voltage collapse point of a self-excitedinduction generator (SEIG without many trials. The technique solves differential and algebraic equations simultaneously toobtain the variables in a single step. The load parameter is also automatically varied during equilibrium tracing and thisreduces the computational time significantly. Comparing the simulation results obtained through conventional iterative procedure shows the effectiveness of the technique. An experimental verification on a 1.5KW induction machine validates the simulation results.

  4. Linear induction accelerator for heavy ions

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-01-01

    There is considerable recent interest in the use of high energy heavy ions to irradiate deuterium-tritium pellets in a reactor vessel to constitute a power source at the level of 1 GW or more. Various accelerator configurations involving storage rings have been suggested. This paper discusses how the technology of linear induction accelerators - well known to be matched to high current and short pulse length - may offer significant advantages for this application. (author)

  5. MAGNETIC INDUCTION DISTRIBUTION IN A LINEAR SYNCHRONUS MOTOR WITH MAGNETIC SUSPENSION

    Directory of Open Access Journals (Sweden)

    D.I. Parkhomenko

    2013-02-01

    Full Text Available Results of computer simulation and experimental investigations of magnetic induction distribution in a coaxial linear synchronous motor with magnetic suspension are presented. The magnetic induction distribution has been studied both in the motor air gap and on the runner surface.

  6. A 5 V-to-3.3 V CMOS Linear Regulator with Three-Output Temperature-Independent Reference Voltages

    Directory of Open Access Journals (Sweden)

    San-Fu Wang

    2016-01-01

    Full Text Available This paper presents a 5 V-to-3.3 V linear regulator circuit, which uses 3.3 V CMOS transistors to replace the 5 V CMOS transistors. Thus, the complexity of the manufacturing semiconductor process can be improved. The proposed linear regulator is implemented by cascode architecture, which requires three different reference voltages as the bias voltages of its circuit. Thus, the three-output temperature-independent reference voltage circuit is proposed, which provides three accurate reference voltages simultaneously. The three-output temperature-independent reference voltages also can be used in other circuits of the chip. By using the proposed temperature-independent reference voltages, the proposed linear regulator can provide an accurate output voltage, and it is suitable for low cost, small size, and highly integrated system-on-chip (SoC applications. Moreover, the proposed linear regulator uses the cascode technique, which improves both the gain performance and the isolation performance. Therefore, the proposed linear regulator has a good performance in reference voltage to output voltage isolation. The voltage variation of the linear regulator is less than 2.153% in the temperature range of −40°C–120°C, and the power supply rejection ratio (PSRR is less than −42.8 dB at 60 Hz. The regulator can support 0~200 mA output current. The core area is less than 0.16 mm2.

  7. Non-linear control of a doubly fed induction machine; Commande non-lineaire d'une machine asynchrone a double alimentation

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, P.E.

    2004-12-15

    This study deals with linear and non-linear control strategies applied to the rotation speed feedback of a doubly fed induction machine (DFIM), whose stator and rotor windings are connected to two Pulse Width Modulation voltage source inverters. We choose to distribute the active powers between the stator and the rotor following a certain proportionality ratio. This leads to guarantee, in steady state operation, a stator and rotor angular frequencies sharing. This distribution is initially assured by two shared angular frequencies controllers, and in a second time by the means of the Park transformation angles directly. Two models are established: the first express the currents, and the second is linked with the fluxes. The simulations results of the linear control (field oriented control), and non-linear control (sliding mode control), show a good independence between the main flux and the torque. An experimental validation is also presented. The results presented show the satisfactory DFIM flux control. Special attention is paid to the active power dispatching. (author)

  8. A low-voltage fully balanced CMFF transconductor with improved linearity

    Science.gov (United States)

    Calvo, B.; Celma, S.; Alegre, J. P.; Sanz, M. T.

    2007-05-01

    This paper presents a new low-voltage pseudo-differential continuous-time CMOS transconductor for wideband applications. The proposed cell is based on a feedforward cancellation of the input common-mode signal and keeps the input common mode voltage constant, while the transconductance is easily tunable through a continuous bias voltage. Linearity is preserved during the tuning process for a moderate range of transconductance values. Simulation results for a 0.35 μm CMOS design show a 1:2 G m tuning range with an almost constant bandwidth over 600 MHz. Total harmonic distortion figures are below -60 dB over the whole range at 10 MHz up to a 200 μA p-p differential output. The proposed cell consumes less than 1.2 mW from a single 2.0 V supply.

  9. Annular linear induction pump with an externally supported duct

    International Nuclear Information System (INIS)

    1980-01-01

    An annular linear induction pump of increased efficiency is described, capable of being readily disassembled for repair or replacement of parts, and having one pass flow of the liquid metal through the pump. (U.K.)

  10. Self-tuning Torque Control of Induction Motors for High Performance Applications

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    -link voltage a non-linear model of the inverter giving the relation between turn-on times and voltages is developed. A dynamic model of the induction motor based on space phasors is described. The model in a reference frame fixed to the rotor magnetizing current is analyzed in detail and extended with a model......: · To analyze and develop strategies for torque control of induction motors well suited for automatic tuning. · To analyze and develop methods for automatic tuning of the applied controllers. · To develop robust methods for adaptive field oriented control. · To test the final concept on different motors...... for magnetic saturating. The parameters in this non-linear model of the motor and inverter are determined by impressing some special designed stator voltage signals and measuring the stator currents. A s something new in this context a robust current controller is determined by relay experiment before starting...

  11. Study of linear induction motor characteristics : the Mosebach model

    Science.gov (United States)

    1976-05-31

    This report covers the Mosebach theory of the double-sided linear induction motor, starting with the ideallized model and accompanying assumptions, and ending with relations for thrust, airgap power, and motor efficiency. Solutions of the magnetic in...

  12. Study of linear induction motor characteristics : the Oberretl model

    Science.gov (United States)

    1975-05-30

    The Oberretl theory of the double-sided linear induction motor (LIM) is examined, starting with the idealized model and accompanying assumptions, and ending with relations for predicted thrust, airgap power, and motor efficiency. The effect of varyin...

  13. Linear induction accelerator for heavy ions

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-09-01

    There is considerable recent interest in the use of high energy (γ = 1.1), heavy (A greater than or equal to 100) ions to irradiate deuterium--tritium pellets in a reactor vessel to constitute a power source at the level of 1 GW or more. Various accelerator configurations involving storage rings have been suggested. A discussion is given of how the technology of Linear Induction Accelerators--well known to be matched to high current and short pulse length--may offer significant advantages for this application

  14. Optimum design for 12 MeV linear induction accelerator diode

    International Nuclear Information System (INIS)

    Yu Haijun; Shi Jinshui; Li Qin; He Guorong; Ma Bing; Wang Jingsheng; Wang Liping

    2001-01-01

    A series of optimization designs of electron diode in 12 Mev linear induction accelerator are studied by using numerical simulation code MAGIC and experiment method in order to improve the electron beam quality. MAGIC code solves the Maxwell equations in the presence of charged particle, electron field distribution on cathode surface which influences electron emission is given, the optimum diode is obtained by comparing the results of experiment in 12 MeV linear induction accelerator. The author also gives SEM analysis and experiment comparison of velvet emission. Finally, emitted current I e = 8.52 kA, beam current I 8 ≥ 3.0 kA, targeted current I 0 ≥ 2.30 kA with optimum diode are obtained

  15. Sodium flow rate measurement method of annular linear induction pump

    International Nuclear Information System (INIS)

    Araseki, Hideo

    2011-01-01

    This report describes a method for measuring sodium flow rate of annular linear induction pumps arranged in parallel and its verification result obtained through an experiment and a numerical analysis. In the method, the leaked magnetic field is measured with measuring coils at the stator end on the outlet side and is correlated with the sodium flow rate. The experimental data and the numerical result indicate that the leaked magnetic field at the stator edge keeps almost constant when the sodium flow rate changes and that the leaked magnetic field change arising from the flow rate change is small compared with the overall leaked magnetic field. It is shown that the correlation between the leaked magnetic field and the sodium flow rate is almost linear due to this feature of the leaked magnetic field, which indicates the applicability of the method to small-scale annular linear induction pumps. (author)

  16. Updating the induction module from single-pulse to double-pulses

    International Nuclear Information System (INIS)

    Huang Ziping; Wang Huacen; Deng Jianjun

    2002-01-01

    A double-pulse Linear Induced Accelerator (LIA) module is reconstructed based on a usual simple-pulse LIA module. By changing the length of one of the cables between the inductive cell and the Blumlein pulse forming line, two induction pulses with 90 ns FWHM and 150 kV pulse voltage are generated by the ferrite cores inductive cell. The interval time of the pulses is adjustable by changing the lengths of the cable

  17. Thyristor voltage converter in induction electric drives with microprocessor control

    Energy Technology Data Exchange (ETDEWEB)

    Braslavsky, I.; Zuzev, A.; Shilin, S. [Electric Drive Department, Urals State Technical University, Ekaterinburg (Russian Federation)

    1997-12-31

    The paper consists of some results on developed pulse model of thyristor voltage converter which is one of the most mathematically complicated unit of electric drive. The model structure and model parameter calculating method are represented. The application of the model allows to analyse stability in `locally` by the linear pulse system theory methods with talking into consideration quantise processes within the converter. Such application provides the obtaining higher accurate results comparing with the non-linear system theory approximate methods. Logarithmic frequency characteristics are used to analyse converter dynamic features and they are represented too. (orig.) 4 refs.

  18. Inductive voltage adder advanced hydrodynamic radiographic technology demonstration

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen; Rovang, D.C.

    1997-04-01

    This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of ∼ 1.5-mm spot size and 1 kR dose at sign 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. For these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180 degrees poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to ∼ 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape

  19. New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio

    Energy Technology Data Exchange (ETDEWEB)

    Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B. [Groupe de Recherche en Electronique et en Electrotechnique de Nancy - INPL - Nancy Universite, 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy Cedex (France)

    2010-01-15

    In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control. (author)

  20. New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio

    International Nuclear Information System (INIS)

    Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B.

    2010-01-01

    In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control.

  1. Evaluation of linear induction motor characteristics : the Yamamura model

    Science.gov (United States)

    1975-04-30

    The Yamamura theory of the double-sided linear induction motor (LIM) excited by a constant current source is discussed in some detail. The report begins with a derivation of thrust and airgap power using the method of vector potentials and theorem of...

  2. Analysis of doubly-fed induction machine operating at motoring mode subjected to voltage sag

    Directory of Open Access Journals (Sweden)

    Navneet Kumar

    2016-09-01

    Full Text Available Variable Speed (VS Pumped Storage Plants (PSP equipped with large asynchronous (Doubly-Fed Induction machines are emerging now in hydropower applications. Motoring mode of operation of Doubly-Fed Induction Machine (DFIM is essential and techno-economical in this application due to: (1 its uniqueness in active power controllability, (2 bulk power handing capability with less rated power converters in rotor circuit, and (3 integrating Renewable Energy Sources (RES. This paper investigates the performance of two DFIMs at different power ratings (2.2 kW and 2 MW under voltage sag with different attribute. The test results are analyzed in terms of the peaks in torque, speed, power taken and transient currents in rotor and stator circuits. During sag, stable region for DFIM operation along with speed and stator side reactive power input control is also illustrated. The negative effects of voltage sag are briefly discussed. MATLAB simulation is validated with experimentation. The various observations during simulation and experimental analysis are also supported by the theoretical explanations.

  3. Voltage harmonic variation in three-phase induction motors with different coil pitches

    International Nuclear Information System (INIS)

    Deshmukh, Ram; Moses, Anthony John; Anayi, Fatih

    2006-01-01

    A pulse-width modulation (PWM) inverter feeding four different chorded three-phase induction motors was tested for low-order odd harmonic voltage component and efficiency at different loads. Total harmonic distortion (THD) due to 3rd, 5th and 9th harmonics was less in a motor with 160 o coil pitch. Particular harmonic order for each coil pitch was suppressed and the efficiency of a 120 o coil pitch motor was increased by 7.5%

  4. An axisymmetrical non-linear finite element model for induction heating in injection molding tools

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Menotti, Stefano

    2016-01-01

    To analyze the heating and cooling phase of an induction heated injection molding tool accurately, the temperature dependent magnetic properties, namely the non-linear B-H curves, need to be accounted for in an induction heating simulation. Hence, a finite element model has been developed......, including the non-linear temperature dependent magnetic data described by a three-parameter modified Frohlich equation fitted to the magnetic saturation curve, and solved with an iterative procedure. The numerical calculations are compared with experiments conducted with two types of induction coils, built...... in to the injection molding tool. The model shows very good agreement with the experimental temperature measurements. It is also shown that the non-linearity can be used without the temperature dependency in some cases, and a proposed method is presented of how to estimate an effective linear permeability to use...

  5. High voltage high brightness electron accelerators with MITL voltage adder coupled to foilless diodes

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poukey, J.W.; Frost, C.A.; Shope, S.L.; Halbleib, J.A.; Turman, B.N.

    1993-01-01

    During the last ten years the authors have extensively studied the physics and operation of magnetically-immersed electron foilless diodes. Most of these sources were utilized as injectors to high current, high energy linear induction accelerators such as those of the RADLAC family. Recently they have experimentally and theoretically demonstrated that foilless diodes can be successfully coupled to self-magnetically insulated transmission line voltage adders to produce very small high brightness, high definition (no halo) electron beams. The RADLAC/SMILE experience opened the path to a new approach in high brightness, high energy induction accelerators. There is no beam drifting through the device. The voltage addition occurs in a center conductor, and the beam is created at the high voltage end in an applied magnetic field diode. This work was motivated by the remarkable success of the HERMES-III accelerator and the need to produce small radius, high energy, high current electron beams for air propagation studies and flash x-ray radiography. In this paper they present experimental results compared with analytical and numerical simulations in addition to design examples of devices that can produce multikiloamp electron beams of as high as 100 MV energies and radii as small as 1 mm

  6. Core reset system design for linear induction accelerator

    International Nuclear Information System (INIS)

    Durga Praveen Kumar, D.; Mitra, S.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.

    2006-01-01

    A repetitive pulsed power system based Linear Induction Accelerator (LIA-200) is being developed at BARC to get an electron beam of 200keV, 5kA, 50ns, 10-100 Hz. Amorphous core is the heart of these accelerators. It serves various functions in different subsystems viz. pulse power modulator, pulse transformer, magnetic switches and induction cavities. One of the factors that make the magnetic components compact is utilization of the total flux swing available in the core. In the present system, magnetic switches, pulse transformers, and induction cavity are designed to avail the full flux swing available in the core. For achieving this objective, flux density in the core has to be kept at the reverse saturation, before the main pulse is applied. The electrical circuit which makes it possible is called the core reset system. In this paper the details of core reset system designed for LIA-200 are described. (author)

  7. Extending the Linear Modulation Range to the Full Base Speed Using a Single DC-Link Multilevel Inverter With Capacitor-Fed H-Bridges for IM Drives

    DEFF Research Database (Denmark)

    Rahul, Arun; Pramanick, Sumit; Kaarthik, R. Sudharshan

    2017-01-01

    In this paper, a new space vector pulse width modulation method to extend the linear modulation range of a cascaded five level inverter topology with a single dc supply is presented. Using this method, the inverter can be controlled linearly and the peak phase fundamental output voltage of the in......In this paper, a new space vector pulse width modulation method to extend the linear modulation range of a cascaded five level inverter topology with a single dc supply is presented. Using this method, the inverter can be controlled linearly and the peak phase fundamental output voltage...... of the inverter can be increased from 0.577 to 0.637Vdc without increasing the dc bus voltage and without exceeding the induction motor voltage rating. This new technique makes use of cascaded inverter pole voltage redundancy and property of the space vector structure for its operation. Using this, the induction...

  8. Cost optimization of induction linac drivers for linear colliders

    International Nuclear Information System (INIS)

    Barletta, W.A.

    1986-01-01

    Recent developments in high reliability components for linear induction accelerators (LIA) make possible the use of these devices as economical power drives for very high gradient linear colliders. A particularly attractive realization of this ''two-beam accelerator'' approach is to configure the LIA as a monolithic relativistic klystron operating at 10 to 12 GHz with induction cells providing periodic reacceleration of the high current beam. Based upon a recent engineering design of a state-of-the-art, 10- to 20-MeV LIA at Lawrence Livermore National Laboratory, this paper presents an algorithm for scaling the cost of the relativistic klystron to the parameter regime of interest for the next generation high energy physics machines. The algorithm allows optimization of the collider luminosity with respect to cost by varying the characteristics (pulse length, drive current, repetition rate, etc.) of the klystron. It also allows us to explore cost sensitivities as a guide to research strategies for developing advanced accelerator technologies

  9. Low voltage RF MEMS variable capacitor with linear C-V response

    KAUST Repository

    Elshurafa, Amro M.; Ho, Pak Hung; Salama, Khaled N.

    2012-01-01

    .2:1 and was achieved at an actuation DC voltage of 8V only. Further, the linear regression coefficient was 0.98. The variable capacitor was created such that it has both vertical and horizontal capacitances present. As the top suspended plate moves towards the bottom

  10. Direct Torque Control With Feedback Linearization for Induction Motor Drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.

    2017-01-01

    This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC-type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using SMC with proportional control in the vicinity of the sliding surface. SMC assures...... in simulations. The sliding controller is compared with a linear DTC scheme with and without feedback linearization. Extensive experimental results for a sensorless IM drive validate the proposed solution....

  11. Direct torque control with feedback linearization for induction motor drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.

    2015-01-01

    This paper describes a Direct Torque Controlled (DTC) Induction Machine (IM) drive that employs feedback linearization and sliding-mode control. A feedback linearization approach is investigated, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using Variable Structure Control (VSC) with proportional control in the vicinity...... robust stability analysis are presented. The sliding controller is compared with a linear DTC scheme, and experimental results for a sensorless IM drive validate the proposed solution....

  12. Sodium flow rate measurement method of annular linear induction pumps

    International Nuclear Information System (INIS)

    Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.

    2012-01-01

    Highlights: ► We found a new method of flow rate monitoring of electromagnetic pump. ► The method is very simple and does not require a large space. ► The method was verified with an experiment and a numerical analysis. ► The experimental data and the numerical results are in good agreement. - Abstract: The present paper proposes a method for measuring sodium flow rate of annular linear induction pumps. The feature of the method lies in measuring the leaked magnetic field with measuring coils near the stator end on the outlet side and in correlating it with the sodium flow rate. This method is verified through an experiment and a numerical analysis. The data obtained in the experiment reveals that the correlation between the leaked magnetic field and the sodium flow rate is almost linear. The result of the numerical analysis agrees with the experimental data. The present method will be particularly effective to sodium flow rate monitoring of each one of plural annular linear induction pumps arranged in parallel in a vessel which forms a large-scale pump unit.

  13. Exploring inductive linearization for pharmacokinetic-pharmacodynamic systems of nonlinear ordinary differential equations.

    Science.gov (United States)

    Hasegawa, Chihiro; Duffull, Stephen B

    2018-02-01

    Pharmacokinetic-pharmacodynamic systems are often expressed with nonlinear ordinary differential equations (ODEs). While there are numerous methods to solve such ODEs these methods generally rely on time-stepping solutions (e.g. Runge-Kutta) which need to be matched to the characteristics of the problem at hand. The primary aim of this study was to explore the performance of an inductive approximation which iteratively converts nonlinear ODEs to linear time-varying systems which can then be solved algebraically or numerically. The inductive approximation is applied to three examples, a simple nonlinear pharmacokinetic model with Michaelis-Menten elimination (E1), an integrated glucose-insulin model and an HIV viral load model with recursive feedback systems (E2 and E3, respectively). The secondary aim of this study was to explore the potential advantages of analytically solving linearized ODEs with two examples, again E3 with stiff differential equations and a turnover model of luteinizing hormone with a surge function (E4). The inductive linearization coupled with a matrix exponential solution provided accurate predictions for all examples with comparable solution time to the matched time-stepping solutions for nonlinear ODEs. The time-stepping solutions however did not perform well for E4, particularly when the surge was approximated by a square wave. In circumstances when either a linear ODE is particularly desirable or the uncertainty in matching the integrator to the ODE system is of potential risk, then the inductive approximation method coupled with an analytical integration method would be an appropriate alternative.

  14. Preliminary results of Linear Induction Accelerator LIA-200

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Archana; Senthil, K; Kumar, D D Praveen; Mitra, S; Sharma, V; Patel, A; Sharma, D K; Rehim, R; Kolge, T S; Saroj, P C; Acharya, S; Amitava, Roy; Rakhee, M; Nagesh, K V; Chakravarthy, D P, E-mail: aroy@barc.gov.i, E-mail: arsharma@barc.gov.i [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2010-05-15

    Repetitive Pulsed Power Technology is being developed keeping in mind the potential applications of this technology in material modifications, disinfections of water, timber, and food pasteurization etc. BARC has indigenously developed a Linear Induction Accelerator (LIA-200) rated for 200 kV, 4 kA, 100 ns, 10 Hz. The satisfactory performance of all the sub-systems including solid state power modulator, amorphous core based pulsed transformers, magnetic switches, water capacitors, water pulse- forming line, induction adder and field-emission diode have been demonstrated. This paper presents some design details and operational results of this pulsed power system. It also highlights the need for further research and development to build reliable and economic high-average power systems for industrial applications.

  15. Voltage and pace-capture mapping of linear ablation lesions overestimates chronic ablation gap size.

    Science.gov (United States)

    O'Neill, Louisa; Harrison, James; Chubb, Henry; Whitaker, John; Mukherjee, Rahul K; Bloch, Lars Ølgaard; Andersen, Niels Peter; Dam, Høgni; Jensen, Henrik K; Niederer, Steven; Wright, Matthew; O'Neill, Mark; Williams, Steven E

    2018-04-26

    Conducting gaps in lesion sets are a major reason for failure of ablation procedures. Voltage mapping and pace-capture have been proposed for intra-procedural identification of gaps. We aimed to compare gap size measured acutely and chronically post-ablation to macroscopic gap size in a porcine model. Intercaval linear ablation was performed in eight Göttingen minipigs with a deliberate gap of ∼5 mm left in the ablation line. Gap size was measured by interpolating ablation contact force values between ablation tags and thresholding at a low force cut-off of 5 g. Bipolar voltage mapping and pace-capture mapping along the length of the line were performed immediately, and at 2 months, post-ablation. Animals were euthanized and gap sizes were measured macroscopically. Voltage thresholds to define scar were determined by receiver operating characteristic analysis as voltage, pace-capture, and ablation contact force maps. All modalities overestimated chronic gap size, by 1.4 ± 2.0 mm (ablation contact force map), 5.1 ± 3.4 mm (pace-capture), and 9.5 ± 3.8 mm (voltage mapping). Error on ablation contact force map gap measurements were significantly less than for voltage mapping (P = 0.003, Tukey's multiple comparisons test). Chronically, voltage mapping and pace-capture mapping overestimated macroscopic gap size by 11.9 ± 3.7 and 9.8 ± 3.5 mm, respectively. Bipolar voltage and pace-capture mapping overestimate the size of chronic gap formation in linear ablation lesions. The most accurate estimation of chronic gap size was achieved by analysis of catheter-myocardium contact force during ablation.

  16. Hybrid finite difference/finite element solution method development for non-linear superconducting magnet and electrical circuit breakdown transient analysis

    International Nuclear Information System (INIS)

    Kraus, H.G.; Jones, J.L.

    1986-01-01

    The problem of non-linear superconducting magnet and electrical protection circuit system transients is formulated. To enable studying the effects of coil normalization transients, coil distortion (due to imbalanced magnetic forces), internal coil arcs and shorts, and other normal and off-normal circuit element responses, the following capabilities are included: temporal, voltage and current-dependent voltage sources, current sources, resistors, capacitors and inductors. The concept of self-mutual inductance, and the form of the associated inductance matrix, is discussed for internally shorted coils. This is a Kirchhoff's voltage loop law and Kirchhoff's current node law formulation. The non-linear integrodifferential equation set is solved via a unique hybrid finite difference/integral finite element technique. (author)

  17. Power MOSFET Linearizer of a High-Voltage Power Amplifier for High-Frequency Pulse-Echo Instrumentation.

    Science.gov (United States)

    Choi, Hojong; Woo, Park Chul; Yeom, Jung-Yeol; Yoon, Changhan

    2017-04-04

    A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA) used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reducing the echo harmonic distortion components generated by the ultrasonic transducers. In order to verify the performance improvement of the HVPA implementing the power MOSFET linearizer, we measured and found that the gain deviation of the power MOSFET linearizer integrated with HVPA under 10 V DC bias voltage was reduced (-1.8 and -0.96 dB, respectively) compared to that of the HVPA without the power MOSFET linearizer (-2.95 and -3.0 dB, respectively) when 70 and 80 MHz, three-cycle, and 26 dB m input pulse waveforms are applied, respectively. The input 1-dB compression point (an index of linearity) of the HVPA with power MOSFET linearizer (24.17 and 26.19 dB m at 70 and 80 MHz, respectively) at 10 V DC bias voltage was increased compared to that of HVPA without the power MOSFET linearizer (22.03 and 22.13 dB m at 70 and 80 MHz, respectively). To further verify the reduction of the echo harmonic distortion components generated by the ultrasonic transducers, the pulse-echo responses in the pulse-echo instrumentation were compared when using HVPA with and without the power MOSFET linearizer. When three-cycle 26 dB m input power was applied, the second, third, fourth, and fifth harmonic distortion components of a 75 MHz transducer driven by the HVPA with power MOSFET linearizer (-48.34, -44.21, -48.34, and -46.56 dB, respectively) were lower than that of the HVPA without the power MOSFET linearizer (-45.61, -41.57, -45.01, and -45.51 dB, respectively). When five-cycle 20 dB m input

  18. Sensorless speed detection of squirrel-cage induction machines using stator neutral point voltage harmonics

    Science.gov (United States)

    Petrovic, Goran; Kilic, Tomislav; Terzic, Bozo

    2009-04-01

    In this paper a sensorless speed detection method of induction squirrel-cage machines is presented. This method is based on frequency determination of the stator neutral point voltage primary slot harmonic, which is dependent on rotor speed. In order to prove method in steady state and dynamic conditions the simulation and experimental study was carried out. For theoretical investigation the mathematical model of squirrel cage induction machines, which takes into consideration actual geometry and windings layout, is used. Speed-related harmonics that arise from rotor slotting are analyzed using digital signal processing and DFT algorithm with Hanning window. The performance of the method is demonstrated over a wide range of load conditions.

  19. PERFORMANCE OPTIMIZATION OF LINEAR INDUCTION MOTOR BY EDDY CURRENT AND FLUX DENSITY DISTRIBUTION ANALYSIS

    Directory of Open Access Journals (Sweden)

    M. S. MANNA

    2011-12-01

    Full Text Available The development of electromagnetic devices as machines, transformers, heating devices confronts the engineers with several problems. For the design of an optimized geometry and the prediction of the operational behaviour an accurate knowledge of the dependencies of the field quantities inside the magnetic circuits is necessary. This paper provides the eddy current and core flux density distribution analysis in linear induction motor. Magnetic flux in the air gap of the Linear Induction Motor (LIM is reduced to various losses such as end effects, fringes, effect, skin effects etc. The finite element based software package COMSOL Multiphysics Inc. USA is used to get the reliable and accurate computational results for optimization the performance of Linear Induction Motor (LIM. The geometrical characteristics of LIM are varied to find the optimal point of thrust and minimum flux leakage during static and dynamic conditions.

  20. Square-Wave Voltage Injection Algorithm for PMSM Position Sensorless Control With High Robustness to Voltage Errors

    DEFF Research Database (Denmark)

    Ni, Ronggang; Xu, Dianguo; Blaabjerg, Frede

    2017-01-01

    relationship with the magnetic field distortion. Position estimation errors caused by higher order harmonic inductances and voltage harmonics generated by the SVPWM are also discussed. Both simulations and experiments are carried out based on a commercial PMSM to verify the superiority of the proposed method......Rotor position estimated with high-frequency (HF) voltage injection methods can be distorted by voltage errors due to inverter nonlinearities, motor resistance, and rotational voltage drops, etc. This paper proposes an improved HF square-wave voltage injection algorithm, which is robust to voltage...... errors without any compensations meanwhile has less fluctuation in the position estimation error. The average position estimation error is investigated based on the analysis of phase harmonic inductances, and deduced in the form of the phase shift of the second-order harmonic inductances to derive its...

  1. A new method for compensation of the effect of charging transformer's leakage inductance on PFN voltage regulation in Klystron pulse modulators

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Akhil, E-mail: akhilpatel@rrcat.gov.in; Kale, Umesh; Shrivastava, Purushottam

    2017-04-21

    The Line type modulators have been widely used to generate high voltage rectangular pulses to power the klystron for high power RF generation. In Line type modulator, the Pulse Forming Network (PFN) which is a cascade combination of lumped capacitors and inductors is used to store the electrical energy. The charged PFN is then discharged into a klystron by firing a high voltage Thyratron switch. This discharge generates a high voltage rectangular pulse across the klystron electrodes. The amplitude and phase of Klystron's RF output is governed by the high voltage pulse amplitude. The undesired RF amplitude and phase stability issues arises at the klystron's output due to inter-pulse and during the pulse amplitude variations. To reduce inter-pulse voltage variations, the PFN is required to be charged at the same voltage after every discharge cycle. At present, the combination of widely used resonant charging and deQing method is used to regulate the pulse to pulse PFN voltage variations but the charging transformer's leakage inductance puts an upper bound on the regulation achievable by this method. Here we have developed few insights of the deQing process and devised a new compensation method to compensate this undesired effect of charging transformer's leakage inductance on the pulse to pulse PFN voltage stability. This compensation is accomplished by the controlled partial discharging of the split PFN capacitor using a low voltage MOSFET switch. Theoretically, very high values of pulse to pulse voltage stability may be achieved using this method. This method may be used in deQing based existing modulators or in new modulators, to increase the pulse to pulse voltage stability, without having a very tight bound on charging transformer's leakage inductance. Given a stable charging power supply, this method may be used to further enhance the inter-pulse voltage stability of modulators which employ the direct charging, after replacing the

  2. Linear induction accelerators for fusion and neutron production

    International Nuclear Information System (INIS)

    Barletta, W.A.; California Univ., Los Angeles, CA

    1993-08-01

    Linear induction accelerators (LIA) with pulsed power drives can produce high energy, intense beams or electrons, protons, or heavy ions with megawatts of average power. The continuing development of highly reliable LIA components permits the use such accelerators as cost-effective beam sources to drive fusion pellets with heavy ions, to produce intense neutron fluxes using proton beams, and to generate with electrons microwave power to drive magnetic fusion reactors and high gradient, rf-linacs

  3. Fully Integrated, Low Drop-Out Linear Voltage Regulator in 180 nm CMOS

    DEFF Research Database (Denmark)

    Yosef-Hay, Yoni; Larsen, Dennis Øland; Llimos Muntal, Pere

    2017-01-01

    This paper presents a capacitor-free low dropout (LDO) linear regulator based on a dual loop topology. The regulator utilizes two feedback loops to satisfy the challenges of hearing aid devices, which include fast transient performance and small voltage spikes under rapid load-current changes...

  4. Force analysis of linear induction motor for magnetic levitation system

    NARCIS (Netherlands)

    Kuijpers, A.A.; Nemlioglu, C.; Sahin, F.; Verdel, A.J.D.; Compter, J.C.; Lomonova, E.

    2010-01-01

    This paper presents the analyses of thrust and normal forces of linear induction motor (LIM) segments which are implemented in a rotating ring system. To obtain magnetic levitation in a cost effective and sustainable way, decoupled control of thrust and normal forces is required. This study includes

  5. Analytical closed-form investigation of PWM inverter induction motor drive performance under DC bus voltage pulsation

    Czech Academy of Sciences Publication Activity Database

    Klíma, J.; Chomát, Miroslav; Schreier, Luděk

    2008-01-01

    Roč. 2, č. 6 (2008), s. 341-352 ISSN 1751-8660 R&D Projects: GA ČR GA102/08/0424 Institutional research plan: CEZ:AV0Z20570509 Keywords : DC-link voltage pulsations * torque ripple * induction motor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.660, year: 2008

  6. Linearity optimizations of analog ring resonator modulators through bias voltage adjustments

    Science.gov (United States)

    Hosseinzadeh, Arash; Middlebrook, Christopher T.

    2018-03-01

    The linearity of ring resonator modulator (RRM) in microwave photonic links is studied in terms of instantaneous bandwidth, fabrication tolerances, and operational bandwidth. A proposed bias voltage adjustment method is shown to maximize spur-free dynamic range (SFDR) at instantaneous bandwidths required by microwave photonic link (MPL) applications while also mitigating RRM fabrication tolerances effects. The proposed bias voltage adjustment method shows RRM SFDR improvement of ∼5.8 dB versus common Mach-Zehnder modulators at 500 MHz instantaneous bandwidth. Analyzing operational bandwidth effects on SFDR shows RRMs can be promising electro-optic modulators for MPL applications which require high operational frequencies while in a limited bandwidth such as radio-over-fiber 60 GHz wireless network access.

  7. Electric field control methods for foil coils in high-voltage linear actuators

    NARCIS (Netherlands)

    Beek, van T.A.; Jansen, J.W.; Lomonova, E.A.

    2015-01-01

    This paper describes multiple electric field control methods for foil coils in high-voltage coreless linear actuators. The field control methods are evaluated using 2-D and 3-D boundary element methods. A comparison is presented between the field control methods and their ability to mitigate

  8. ''SensArray'' voltage sensor analysis in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Titus, M. J.; Hsu, C. C.; Graves, D. B.

    2010-01-01

    A commercially manufactured PlasmaVolt sensor wafer was studied in an inductively coupled plasma reactor in an effort to validate sensor measurements. A pure Ar plasma at various powers (25-420 W), for a range of pressures (10-80 mT), and bias voltages (0-250 V) was utilized. A numerical sheath simulation was simultaneously developed in order to interpret experimental results. It was found that PlasmaVolt sensor measurements are proportional to the rf-current through the sheath. Under conditions such that the sheath impedance is dominantly capacitive, sensor measurements follow a scaling law derived from the inhomogeneous sheath model of Lieberman and Lichtenberg, [Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005)]. Under these conditions, sensor measurements are proportional to the square root of the plasma density at the plasma-sheath interface, the one-fourth root of the electron temperature, and the one-fourth root of the rf bias voltage. When the sheath impedance becomes increasingly resistive, the sensor measurements deviate from the scaling law and tend to be directly proportional to the plasma density. The measurements and numerical sheath simulation demonstrate the scaling behavior as a function of changing sheath impedance for various plasma conditions.

  9. An improved direct feedback linearization technique for transient stability enhancement and voltage regulation of power generators

    Energy Technology Data Exchange (ETDEWEB)

    Kenne, Godpromesse [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, Universite de Dschang, B.P. 134 Bandjoun, Cameroun; Goma, Raphael; Lamnabhi-Lagarrigue, Francoise [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Nkwawo, Homere [Departement GEII, Universite Paris XIII, IUT Villetaneuse, 99 Avenue Jean Baptiste Clement, 93430 Villetaneuse (France); Arzande, Amir; Vannier, Jean Claude [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)

    2010-09-15

    In this paper, a simple improved direct feedback linearization design method for transient stability and voltage regulation of power systems is discussed. Starting with the classical direct feedback linearization technique currently applied to power systems, an adaptive nonlinear excitation control of synchronous generators is proposed, which is new and effective for engineering. The power angle and mechanical power input are not assumed to be available. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of angular speed, active electric power and generator terminal voltage. Experimental results of a practical power system show that fast response, robustness, damping, steady-state and transient stability as well as voltage regulation are all achieved satisfactorily. (author)

  10. The dynamic response of a linear brushless D.C. motor

    Energy Technology Data Exchange (ETDEWEB)

    Moghani, J.S.; Eastham, J.F. [Univ. of Bath (United Kingdom). School of Electrical and Electronic Engineering

    1995-12-31

    The paper describes the use of the Matlab Analogue Simulation Toolbox SIMULINK for the closed loop dynamic modeling of a linear brushless dc motor which is supplied from a delta-modulated inverter. The work is validated by experimental results taken from a large test rig. Linear version of all rotating machines are possible; a rotating machine can be notionally cut along a radial plane and unrolled to yield a linear version. The most popular form of linear machine, as judged by the quantities that have been produced is the linear induction motor. This has the advantage of first an inexpensive secondary that is often a simple iron backed conducting plate, and secondly the possibility of simple voltage control. The linear brushless synchronous motor is potentially more expensive to produce than its induction counterpart because of the permanent magnets which provide the excitation mmf and the necessity of an inverter supply. However the machine has a power factor efficiency product which can be double that of an induction motor together with about twice the tractive force per pole area.

  11. Comparitive study of the influence of harmonic voltage distortion on the efficiency of induction machines versus line start permanent magnet machines

    OpenAIRE

    Debruyne, Colin; Derammelaere, Stijn; Desmet, Jan; Vandevelde, Lieven

    2012-01-01

    Induction machines have nearly reached their maximal efficiency. In order to further increase the efficiency the use of permanent magnets in combination with the robust design of the induction machine is being extensively researched. These so-called line start permanent magnet machines have an increased efficiency in sine wave conditions in respect to standard induction machines, however the efficiency of these machines is less researched under distorted voltage conditions. This paper compare...

  12. Multipurpose 5-MeV linear induction accelerator

    International Nuclear Information System (INIS)

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Smith, M.W.

    1984-01-01

    Although linear induction accelerators (LIAs) are quite reliable by most standards, they are limited in repeating rate, average power, and reliability because the final stage of energy delivery is based on spark gap performance. In addition, they have a low duty factor of operation. To provide a higher burst rate and greater reliability, the researchers used new technology to develop a magnetic pulse compression scheme that eliminates all spark gaps and exceeds requirements. The paper describes the scheme. The magnetic drive system can be tailored to drive induction cells from a few kA to over 10 kA at 500 kV, with average beam power levels in the megawatts. This new 5-MeV, 2.5-kA LIA under construction at the Lawrence Livermore National Laboratory (LLNL) will be used for the development of high brightness sources and will provide a test bed for the new technology, which should lead to LIAs that surpass the radio frequency linacs for efficiency and reliability, as well as fit other industrial applications, such as sewage sterilization

  13. Reduced Order Extended Luenberger Observer Based Sensorless Vector Control Fed by Matrix Converter with Non-linearity Modeling

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2004-01-01

    This paper presents a new sensorless vector control system for high performance induction motor drives fed by a matrix converter with non-linearity compensation. The nonlinear voltage distortion that is caused by commutation delay and on-state voltage drop in switching device is corrected by a new...

  14. High power switches for ion induction linacs

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystron-like interaction with the accelerating cavities leading to enhanced momentum spread. In this paper, the author describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  15. High power switches for ion induction linacs

    International Nuclear Information System (INIS)

    Humphries, S.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystronlike interaction with the accelerating cavities, leading to enhanced momentum spread. In this paper, we describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  16. An Improved Control Strategy of Limiting the DC-Link Voltage Fluctuation for a Doubly Fed Induction Wind Generator

    DEFF Research Database (Denmark)

    Yao, J.; Li, H.; Liao, Y.

    2008-01-01

    The paper presents to develop a new control strategy of limiting the dc-link voltage fluctuation for a back-to-back pulsewidth modulation converter in a doubly fed induction generator (DFIG) for wind turbine systems. The reasons of dc-link voltage fluctuation are analyzed. An improved control...... strategy with the instantaneous rotor power feedback is proposed to limit the fluctuation range of the dc-link voltage. An experimental rig is set up to valid the proposed strategy, and the dynamic performances of the DFIG are compared with the traditional control method under a constant grid voltage....... Furthermore, the capabilities of keeping the dc-link voltage stable are also compared in the ride-through control of DFIG during a three-phase grid fault, by using a developed 2 MW DFIG wind power system model. Both the experimental and simulation results have shown that the proposed control strategy is more...

  17. Performance Improvement of Sensorless Vector Control for Induction Motor Drives Fed by Matrix Converter Using Nonlinear Model and Disturbance Observer

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2004-01-01

    This paper presents a new sensorless vector control system for high performance induction motor drives fed by a matrix converter with a non-linearity compensation and disturbance observer. The nonlinear voltage distortion that is caused by communication delay and on-state voltage drop in switching...

  18. Direct and quadrature inductances measurement of the permanent magnetic linear synchronous machines

    International Nuclear Information System (INIS)

    Li Liyi; Hong Junjie; Wu Hongxing; Kou Baoquan; Liu Rizhong

    2011-01-01

    Research highlights: → The d- and q-axis inductances are derived theoretically. → The new measurement principle of the d- and q-axis inductances is analyzed. → A corresponding measuring circuit is developed. → Measurement results match those of the FEM well. -- Abstract: Permanent magnetic linear synchronous machines (PMLSMs) are playing a more important role either in transportation systems or magnetic launch systems, for the excellent advantages. It is indispensable to high performance controllers that some machine parameters are known such as the direct axis (d-axis) and quadrature axis (q-axis) inductances. In this paper, self and mutual inductances of the three-phase winding are deduced by basic electric machinery theory, and the measured inductances are analyzed since the mutual inductances and the corresponding terminals among three-phase windings are changing as different phase winding is concerned. The d- and q-axis inductances are measured with the designed circuit, and the experimental measurement method is validated by the comparison between the experimental and finite element method (FEM) results.

  19. Direct and quadrature inductances measurement of the permanent magnetic linear synchronous machines

    Energy Technology Data Exchange (ETDEWEB)

    Li Liyi [Electrical Engineering Dept./Harbin Institute of Technology, Harbin 150000 (China); Hong Junjie, E-mail: wizard0663@126.co [School of Engineering/Sun Yat-Sen University, Guangzhou 510006 (China); Wu Hongxing; Kou Baoquan; Liu Rizhong [Electrical Engineering Dept./Harbin Institute of Technology, Harbin 150000 (China)

    2011-05-15

    Research highlights: {yields} The d- and q-axis inductances are derived theoretically. {yields} The new measurement principle of the d- and q-axis inductances is analyzed. {yields} A corresponding measuring circuit is developed. {yields} Measurement results match those of the FEM well. -- Abstract: Permanent magnetic linear synchronous machines (PMLSMs) are playing a more important role either in transportation systems or magnetic launch systems, for the excellent advantages. It is indispensable to high performance controllers that some machine parameters are known such as the direct axis (d-axis) and quadrature axis (q-axis) inductances. In this paper, self and mutual inductances of the three-phase winding are deduced by basic electric machinery theory, and the measured inductances are analyzed since the mutual inductances and the corresponding terminals among three-phase windings are changing as different phase winding is concerned. The d- and q-axis inductances are measured with the designed circuit, and the experimental measurement method is validated by the comparison between the experimental and finite element method (FEM) results.

  20. Reduction of torque ripple in DTC induction motor drive with discrete voltage vectors

    Directory of Open Access Journals (Sweden)

    Rosić Marko

    2014-01-01

    Full Text Available This paper presents а practical implementation of direct torque control (DTC of an induction machine on MSK2812 DSP platform, and the analysis of possibilities for reduction of torque ripple. Basic theoretical background relating the DTC was primarily set and the obtained experimental results have been given. It is shown that the torque ripple can be reduced by adjusting the intensity of voltage vectors and by modification of hysteresis comparator, while the simplicity of the basic DTC algorithm has been maintained. [Projekat Ministarstva nauke Republike Srbije, br. TR33016

  1. Experimental and numerical analysis of behavior of electromagnetic annular linear induction pump

    International Nuclear Information System (INIS)

    Goldsteins, Linards

    2015-01-01

    The research explores the issue of magnetohydrodynamic (MHD) instability in electromagnetic induction pumps with focus on the regimes of high slip Reynolds magnetic number (Rm s ) in Annular Linear Induction Pumps (ALIP) operating with liquid sodium. The context of the thesis is French GEN IV Sodium Fast Reactor research and development program for ASTRID in a framework of which the use of high discharge ALIP in the secondary cooling loops is being studied. CEA has designed, realized and will exploit PEMDYN facility, able to represent MHD instability in high discharge ALIP. In the thesis stability of an ideal ALIP is elaborated theoretically using linear stability analysis. Analysis revealed that strong amplification of perturbation is expected after convective stability threshold is reached. Theory is supported with numerical results and experiments reported in literature. Stable operation and stabilization technique operating with two frequencies in case of an ideal ALIP is discussed and necessary conditions derived. Detailed numerical models of flat linear induction pump (FLIP) taking into account effects of a real pump are developed. New technique of magnetic field measurements has been introduced and experimental results demonstrate a qualitative agreement with numerical models capturing all principal phenomena such as oscillation of magnetic field and perturbed velocity profiles. These results give significantly more profound insight in the phenomenon of MHD instability and can be used as a reference in further studies. (author) [fr

  2. Longitudinal and radial MHD linear induction accelerator with hot conducting plasma core

    International Nuclear Information System (INIS)

    Denno, K.

    1985-01-01

    Conceptual design of linear induction accelerator is presented using for the core continuum a highly conductive plasma with sustained pumping velocity. Karlovitz criterion of boundary theory is employed in the process of design

  3. Inductive energy storage using high voltage vacuum circuit breakers

    International Nuclear Information System (INIS)

    McCann, R.B.; Woodson, H.H.; Mukutmoni, T.

    1976-01-01

    Controlled thermonuclear fusion experiments currently being planned require large amounts of pulsed energy. Inductive energy storage systems (IES) appear to be attractive for at least two applications in the fusion research program: high beta devices and those employing turbulent heating. The well-known roadblock to successful implementation of IES is the development of a reliable and cost-effective off-switch capable of handling high currents and withstanding high recovery voltages. The University of Texas at Austin has a program to explore the application of conventional vacuum circuit breakers designed for use in AC systems, in conjunction with appropriate counter pulse circuits, as off-switches in inductive energy storage systems. The present paper describes the IES employing vacuum circuit breakers as off-switches. Since the deionization property of these circuit breakers is of great importance to the design and the cost of the counter-pulse circuit, a synthetic test installation to test these breakers has been conceived, designed and is being installed in the Fusion Research Center, University of Texas at Austin. Some design aspects of the facility will be discussed here. Finally, the results of the study on a mathematical model developed and optimized to determine the least cost system which meets both the requirements of an off-switch for IES Systems and the ratings of circuit breakers used in power systems has been discussed. This analysis indicates that the most important factor with respect to the system cost is the derating of the circuit breakers to obtain satisfactory lifetimes

  4. Association Between Local Bipolar Voltage and Conduction Gap Along the Left Atrial Linear Ablation Lesion in Patients With Atrial Fibrillation.

    Science.gov (United States)

    Masuda, Masaharu; Fujita, Masashi; Iida, Osamu; Okamoto, Shin; Ishihara, Takayuki; Nanto, Kiyonori; Kanda, Takashi; Sunaga, Akihiro; Tsujimura, Takuya; Matsuda, Yasuhiro; Mano, Toshiaki

    2017-08-01

    A bipolar voltage reflects a thick musculature where formation of a transmural lesion may be hard to achieve. The purpose of this study was to explore the association between local bipolar voltage and conduction gap in patients with persistent atrial fibrillation (AF) who underwent atrial roof or septal linear ablation. This prospective observational study included 42 and 36 consecutive patients with persistent AF who underwent roof or septal linear ablations, respectively. After pulmonary vein isolation, left atrial linear ablations were performed, and conduction gap sites were identified and ablated after first-touch radiofrequency application. Conduction gap(s) after the first-touch roof and septal linear ablation were observed in 13 (32%) and 19 patients (53%), respectively. Roof and septal area voltages were higher in patients with conduction gap(s) than in those without (roof, 1.23 ± 0.77 vs 0.73 ± 0.42 mV, p = 0.010; septal, 0.96 ± 0.43 vs 0.54 ± 0.18 mV, p = 0.001). Trisected regional analyses revealed that the voltage was higher at the region with a conduction gap than at the region without. Complete conduction block across the roof and septal lines was not achieved in 3 (7%) and 6 patients (17%), respectively. Patients in whom a linear conduction block could not be achieved demonstrated higher ablation area voltage than those with a successful conduction block (roof, 1.91 ± 0.74 vs 0.81 ± 0.51 mV, p = 0.001; septal, 1.15 ± 0.56 vs 0.69 ± 0.31 mV, p = 0.006). In conclusion, a high regional bipolar voltage predicts failure to achieve conduction block after left atrial roof or septal linear ablation. In addition, the conduction gap was located at the preserved voltage area. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Development of parallel-plate-based MEMS tunable capacitors with linearized capacitance–voltage response and extended tuning range

    International Nuclear Information System (INIS)

    Shavezipur, M; Nieva, P; Khajepour, A; Hashemi, S M

    2010-01-01

    This paper presents a design technique that can be used to linearize the capacitance–voltage (C–V) response and extend the tuning range of parallel-plate-based MEMS tunable capacitors beyond that of conventional designs. The proposed technique exploits the curvature of the capacitor's moving electrode which could be induced by either manipulating the stress gradients in the plate's material or using bi-layer structures. The change in curvature generates a nonlinear structural stiffness as the moving electrode undergoes out-of-plane deformation due to the actuation voltage. If the moving plate curvature is tailored such that the capacitance increment is proportional to the voltage increment, then a linear C–V response is obtained. The larger structural resistive force at higher bias voltage also delays the pull-in and increases the maximum tunability of the capacitor. Moreover, for capacitors containing an insulation layer between the two electrodes, the proposed technique completely eliminates the pull-in effect. The experimental data obtained from different capacitors fabricated using PolyMUMPs demonstrate the advantages of this design approach where highly linear C–V responses and tunabilities as high as 1050% were recorded. The design methodology introduced in this paper could be easily extended to for example, capacitive pressure and temperature sensors or infrared detectors to enhance their response characteristics.

  6. Comparison of computer codes for evaluation of double-supply-frequency pulsations in linear induction pumps

    International Nuclear Information System (INIS)

    Kirillov, Igor R.; Obukhov, Denis M.; Ogorodnikov, Anatoly P.; Araseki, Hideo

    2004-01-01

    The paper describes and compares three computer codes that are able to estimate the double-supply-frequency (DSF) pulsations in annular linear induction pumps (ALIPs). The DSF pulsations are the result of interaction of the magnetic field and induced in liquid metal currents both changing with supply-frequency. They may be of some concern for electromagnetic pumps (EMP) exploitation and need to be evaluated at their design. The results of computer simulation are compared with experimental ones for annular linear induction pump ALIP-1

  7. An Enhanced Three-Level Voltage Switching State Scheme for Direct Torque Controlled Open End Winding Induction Motor

    Science.gov (United States)

    Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar

    2018-01-01

    Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.

  8. Effects of switching frequency and leakage inductance on slow-scale stability in a voltage controlled flyback converter

    International Nuclear Information System (INIS)

    Wang Fa-Qiang; Ma Xi-Kui

    2013-01-01

    The effects of both the switching frequency and the leakage inductance on the slow-scale stability in a voltage controlled flyback converter are investigated in this paper. Firstly, the system description and its mathematical model are presented. Then, the improved averaged model, which covers both the switching frequency and the leakage inductance, is established, and the effects of these two parameters on the slow-scale stability in the system are analyzed. It is found that the occurrence of Hopf bifurcation in the system is the main reason for losing its slow-scale stability and both the switching frequency and the leakage inductance have an important effect on this slow-scale stability. Finally, the effectiveness of the improved averaged model and that of the corresponding theoretical analysis are confirmed by the simulation results and the experimental results. (general)

  9. Coreless Linear Induction Motor (LIM) for Space-borne Electro-magnetic Mass Driver Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Large scale linear induction motors use ferromagnetic cores, but at high speed these cores choke the system’s ability to transform electrical energy into mechanical...

  10. Improved focus solenoid design for linear induction accelerators

    International Nuclear Information System (INIS)

    Zentler, J.M.; Van Maren, R.D.; Nexsen, W.E.

    1992-08-01

    Our FXR linear induction accelerator produces a 2 KA, 17 MeV electron beam of 60 ns duration. The beam is focused on a tantalum target to produce x-rays for radiography. The FWHM spot size of the focused beam is currently 2.2 mm. We strive to reduce the spot size by 30% by improving the field characteristics of focusing solenoids housed in each of 50 induction cells along the beamline. Tilts in the magnetic axis of the existing solenoids range up to 12 mrad (0.7 degrees). We are building new solenoid assemblies which include ferromagnetic homogenizer rings. These dramatically reduce field errors. A field tilt of under 0.5 mrad has been achieved. Mechanical alignment of the rings is critical. We developed a novel construction method in which the rings are wound with 4 mil thick Si-Fe ribbon into grooves on an aluminum cylinder. The cylinder then becomes the winding mandrel for the focus solenoids. This forms a more accurate and compact assembly than the standard practice of pressing individual solid rings onto a tube

  11. Method for the mechanical axis alignment of the linear induction accelerator

    International Nuclear Information System (INIS)

    Li Hong; China Academy of Engineering Physics, Mianyang; Yao Jin; Liu Yunlong; Zhang Linwen; Deng Jianjun

    2004-01-01

    Accurate mechanical axis alignment is a basic requirement for assembling a linear induction accelerator (LIA). The total length of an LIA is usually over thirty or fifty meters, and it consists of many induction cells. By using a laser tracker a new method of mechanical axis alignment for LIA is established to achieve the high accuracy. This paper introduces the method and gives implementation step and point position measure errors of the mechanical axis alignment. During the alignment process a 55 m-long alignment control survey net is built, and the theoretic revision of the coordinate of the control survey net is presented. (authors)

  12. Graphene-Based Linear Tandem Micro-Supercapacitors with Metal-Free Current Collectors and High-Voltage Output.

    Science.gov (United States)

    Shi, Xiaoyu; Wu, Zhong-Shuai; Qin, Jieqiong; Zheng, Shuanghao; Wang, Sen; Zhou, Feng; Sun, Chenglin; Bao, Xinhe

    2017-11-01

    Printable supercapacitors are regarded as a promising class of microscale power source, but are facing challenges derived from conventional sandwich-like geometry. Herein, the printable fabrication of new-type planar graphene-based linear tandem micro-supercapacitors (LTMSs) on diverse substrates with symmetric and asymmetric configuration, high-voltage output, tailored capacitance, and outstanding flexibility is demonstrated. The resulting graphene-based LTMSs consisting of 10 micro-supercapacitors (MSs) present efficient high-voltage output of 8.0 V, suggestive of superior uniformity of the entire integrated device. Meanwhile, LTMSs possess remarkable flexibility without obvious capacitance degradation under different bending states. Moreover, areal capacitance of LTMSs can be sufficiently modulated by incorporating polyaniline-based pseudocapacitive nanosheets into graphene electrodes, showing enhanced capacitance of 7.6 mF cm -2 . To further improve the voltage output and energy density, asymmetric LTMSs are fabricated through controlled printing of linear-patterned graphene as negative electrodes and MnO 2 nanosheets as positive electrodes. Notably, the asymmetric LTMSs from three serially connected MSs are easily extended to 5.4 V, triple voltage output of the single cell (1.8 V), suggestive of the versatile applicability of this technique. Therefore, this work offers numerous opportunities of graphene and analogous nanosheets for one-step scalable fabrication of flexible tandem energy storage devices integrating with printed electronics on same substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations

    Science.gov (United States)

    Fernandez, Fernando R.; Malerba, Paola; White, John A.

    2015-01-01

    The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances. PMID:25909971

  14. Rectangular waveform linear transformer driver module design

    International Nuclear Information System (INIS)

    Zhao Yue; Xie Weiping; Zhou Liangji; Chen Lin

    2014-01-01

    Linear Transformer Driver is a novel pulsed power technology, its main merits include a parallel LC discharge array and Inductive Voltage Adder. The parallel LC discharge array lowers the whole circuit equivalent inductance and the Inductive Voltage Adder unites the modules in series in order to create a high electric field grads, meanwhile, restricts the high voltage in a small space. The lower inductance in favor of LTD output a fast waveform and IVA confine high voltage in secondary cavity. In recently, some LTD-based pulsed power system has been development yet. The usual LTD architecture provides damped sine shaped output pulses that may not be suitable in flash radiography, high power microwave production, z-pinch drivers, and certain other applications. A more suitable driver output pulse would have a flat or inclined top (slightly rising or falling). In this paper, we present the design of an LTD cavity that generates this type of the output pulse by including within its circular array some number of the harmonic bricks in addition to the standard bricks according to Fourier progression theory. The parallel LC discharge array circuit formula is introduced by Kirchhoff Law, and the sum of harmonic is proofed as an analytic result, meanwhile, rationality of design is proved by simulation. Varying gas spark discharge dynamic resistance with harmonic order and switches jitter are analyzed. The results are as following: The more harmonic order is an approach to the ideal rectangular waveform, but lead to more system complexity. The capacity decreases as harmonic order increase, and gas spark discharge dynamic resistance rises with the capacity. The rising time protracts and flat is decay or even vanishes and the shot to shot reproducibility is degenerate as the switches jitter is high. (authors)

  15. Development of a linear induction motor based artificial muscle system.

    Science.gov (United States)

    Gruber, A; Arguello, E; Silva, R

    2013-01-01

    We present the design of a linear induction motor based on electromagnetic interactions. The engine is capable of producing a linear movement from electricity. The design consists of stators arranged in parallel, which produce a magnetic field sufficient to displace a plunger along its axial axis. Furthermore, the winding has a shell and cap of ferromagnetic material that amplifies the magnetic field. This produces a force along the length of the motor that is similar to that of skeletal muscle. In principle, the objective is to use the engine in the development of an artificial muscle system for prosthetic applications, but it could have multiple applications, not only in the medical field, but in other industries.

  16. Optimization design of the main switch in 12 MeV linear induction accelerator

    International Nuclear Information System (INIS)

    Li Xin; Wang Jinsheng; Ding Hensong; Ye Yi

    2004-01-01

    A method for optimization design of the main switch (using in 12 MeV linear induction accelerator) was introduced. The switch's inductance was decreased from 63.7 nH to 35 nH by optimizing the configuration of the main switch and the size of the electric poles so that the accelerating cavity can get a better rising time of 27 ns. The accelerator's performance can be effectively improved through this method, the feasibility of the method is also proved by testing

  17. Proportional-Resonant Control of Doubly-Fed Induction Generator Wind Turbines for Low-Voltage Ride-Through Enhancement

    Directory of Open Access Journals (Sweden)

    Zhan-Feng Song

    2012-11-01

    Full Text Available A novel control strategy is proposed in this paper for the rotor side converter (RSC of doubly-fed induction generator (DFIG-based wind power generation systems. It is supposed to enhance the low-voltage ride-through (LVRT capability of DFIGs during great-level grid voltage dips. The strategy consists of a proportional-resonant (PR controller and auxiliary PR controllers. The auxiliary controllers compensate the output voltage of the RSC in case of grid faults, thus limiting the rotor inrush current of DFIG and meeting the requirements of LVRT. Sequential-component decompositions of current are not required in the control system to improve the response of system. Since the resonant compensator is a double-side integrator, the auxiliary controllers can be simplified through coordinate transformation. The feasibility of the control strategy is validated by simulation on a 1.5 MW wind-turbine driven DFIG system. The impact of the RSC converter voltage rating on the LVRT capability of DFIG is investigated. Meanwhile, the influence of angular frequency detection and control parameters are also discussed. Compared with traditional vector control schemes based on PI current controllers, the presented control strategy effectively suppress rotor current and reduce oscillations of DFIG power and torque under grid faults.

  18. Effect of Frequency and Spatial-Harmonics on Rotary and Linear Induction Motor Characteristics

    Science.gov (United States)

    1972-03-01

    A computer analysis is made of the effect of current and MMF airgap harmonics on the output characteristics of rotary and linear induction motors. The current harmonics accompanying thyristor-control operation are evaluated by Fourier analyzing the p...

  19. Design and Development of a Pressure Transmitter Using Modified Inductance Measuring Network and Bellow Sensor

    Directory of Open Access Journals (Sweden)

    Venkata Lakshmi Narayana K.

    2013-03-01

    Full Text Available In this paper, a pressure transmitter using a modified op-amp based network for inductance measurement using a bellow as sensor has been proposed to measure the pressure and to convert pressure changes in to an electrical current which can be transmitted to a remote indicator. The change in inductance due to change in pressure is measured by an improved modified operational amplifier based network. The proposed network permits offset inductance compensation of sensing coil and also minimizes the stray capacitance between sensing coil and ground using dummy inductor whose value equal to zero level inductance of sensing coil and op-amps with high input impedance. In the first part of experiment, a modified op-amp based inductance measuring circuit has been simulated using LabVIEW (Laboratory Virtual Instrument Engineering Workbench and studied with test inductance, and in the second part, the experimentation was done by replacing the test inductance with a sensing coil fitted to bellow by means of ferromagnetic wire for the measurement of pressure. It has been observed that the variation in gauge pressure from 0 to 70 psi having linear relationship with output ac voltage in the range of 0 to 85.0 mV. Corresponding to pressure variations, the ac output voltage further converted into an electric current of 4 to 20 mA for remote indication and control purpose. The investigations have been performed to sense air pressure of pressure tank fitted with pump piston. The experimental results are found to have good linearity of about ± 0.1 % and resolution.

  20. RADLAC II/SMILE performance with a magnetically insulated voltage adder

    International Nuclear Information System (INIS)

    Shope, S.L.; Mazarakis, M.G.; Frost, C.A.; Crist, C.E.; Poukey, J.W.; Prestwich, K.R.; Turman, B.N.; Struve, K.; Welch, D.

    1991-01-01

    A 12.5-m long Self Magnetically Insulate Transmission LinE (SMILE) that sums the voltages of 8, 2 -MV pulse forming lines was installed in the RADLAC-II linear induction accelerator. The magnetic insulation criteria was calculated using parapotential flow theory and found to agree with MAGIC simulations. High quality annular beams with β perpendicular ≤ 0.1 and a radius r b < 2 cm were measured for currents of 50-100-kA extracted from a magnetic immersed foilless diode. These parameters were achieved with 11 to 15-MV accelerating voltages and 6 to 16-kG diode magnetic field. The experimental results exceeded the design expectations and are in good agreement with code simulations

  1. A Robust Control Scheme for Medium-Voltage-Level DVR Implementation

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, Poh Chiang; Li, Yun Wei

    2007-01-01

    of Hinfin controller weighting function selection, inner current loop tuning, and system disturbance rejection capability is presented. Finally, the designed control scheme is extensively tested on a laboratory 10-kV MV-level DVR system with varying voltage sag (balanced and unbalanced) and loading (linear....../nonlinear load and induction motor load) conditions. It is shown that the proposed control scheme is effective in both balanced and unbalanced sag compensation and load disturbance rejection, as its robustness is explicitly specified....

  2. Induction linear accelerators for commercial photon irradiation processing

    International Nuclear Information System (INIS)

    Matthews, S.M.

    1989-01-01

    A number of proposed irradiation processes requires bulk rather than surface exposure with intense applications of ionizing radiation. Typical examples are irradiation of food packaged into pallet size containers, processing of sewer sludge for recycling as landfill and fertilizer, sterilization of prepackaged medical disposals, treatment of municipal water supplies for pathogen reduction, etc. Volumetric processing of dense, bulky products with ionizing radiation requires high energy photon sources because electrons are not penetrating enough to provide uniform bulk dose deposition in thick, dense samples. Induction Linear Accelerator (ILA) technology developed at the Lawrence Livermore National Laboratory promises to play a key role in providing solutions to this problem. This is discussed in this paper

  3. Technology demonstration for the DARHT linear induction accelerators

    International Nuclear Information System (INIS)

    Burns, M.; Allison, P.; Downing, J.; Moir, D.; Caporaso, G.; Chen, Y.J.

    1992-01-01

    The Dual-Axis Radiographic Hydrodynamics Test (DARHT) facility will employ two 16-MeV, 3-kA Linear Induction Accelerators to produce intense, bremsstrahlung x-ray pulses for flash radiography. Technology demonstration of the key accelerator sub-systems is underway at the DARHT Integrated Test Stand (ITS), which will produce a 6-MeV, 3-kA, 60-ns flattop electron beam. We will summarized measurements of ITS injector, pulsed-power, and accelerator cell performance. Time-resolved measurements of the electron beam parameters will also be presented. These measurements indicate that the DARHT accelerator design is sufficiently advanced to provide the high quality electron beams required for radiography with sub-millimeter spatial resolution

  4. Technology demonstration for the DARHT linear induction accelerators

    International Nuclear Information System (INIS)

    Burns, M.; Allison, P.; Downing, J.; Moir, D.; Caporaso, G.; Chen, Y.J.

    1993-01-01

    The Dual-Axis Radiographic Hydrodynamics Test (DARHT) facility will employ two 16-MeV, 3-kA Linear Induction Accelerators to produce intense, bremsstrahlung x-ray pulses for flash radiography. Technology demonstration of the key accelerator sub-systems is underway at the DARHT Integrated Test Stand (ITS), which will produce a 6-MeV, 3-kA, 60-ns flattop electron beam. The authors summarize measurements of ITS injector, pulsed-power, and accelerator cell performance. Time-resolved measurements of the electron beam parameters are also presented. These measurements indicate that the DARHT accelerator design is sufficiently advanced to provide the high quality electron beams required for radiography with sub-millimeter spatial resolution

  5. High average power linear induction accelerator development

    International Nuclear Information System (INIS)

    Bayless, J.R.; Adler, R.J.

    1987-07-01

    There is increasing interest in linear induction accelerators (LIAs) for applications including free electron lasers, high power microwave generators and other types of radiation sources. Lawrence Livermore National Laboratory has developed LIA technology in combination with magnetic pulse compression techniques to achieve very impressive performance levels. In this paper we will briefly discuss the LIA concept and describe our development program. Our goals are to improve the reliability and reduce the cost of LIA systems. An accelerator is presently under construction to demonstrate these improvements at an energy of 1.6 MeV in 2 kA, 65 ns beam pulses at an average beam power of approximately 30 kW. The unique features of this system are a low cost accelerator design and an SCR-switched, magnetically compressed, pulse power system. 4 refs., 7 figs

  6. High voltage MOSFET switching circuit

    Science.gov (United States)

    McEwan, Thomas E.

    1994-01-01

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET.

  7. High current, 0.5-MA, fast, 100-ns, linear transformer driver experiments

    Directory of Open Access Journals (Sweden)

    Michael G. Mazarakis

    2009-05-01

    Full Text Available The linear transformer driver (LTD is a new method for constructing high current, high-voltage pulsed accelerators. The salient feature of the approach is switching and inductively adding the pulses at low voltage straight out of the capacitors through low inductance transfer and soft iron core isolation. Sandia National Laboratories are actively pursuing the development of a new class of accelerator based on the LTD technology. Presently, the high current LTD experimental research is concentrated on two aspects: first, to study the repetition rate capabilities, reliability, reproducibility of the output pulses, switch prefires, jitter, electrical power and energy efficiency, and lifetime measurements of the cavity active components; second, to study how a multicavity linear array performs in a voltage adder configuration relative to current transmission, energy and power addition, and wall plug to output pulse electrical efficiency. Here we report the repetition rate and lifetime studies performed in the Sandia High Current LTD Laboratory. We first utilized the prototype ∼0.4-MA, LTD I cavity which could be reliably operated up to ±90-kV capacitor charging. Later we obtained an improved 0.5-MA, LTD II version that can be operated at ±100  kV maximum charging voltage. The experimental results presented here were obtained with both cavities and pertain to evaluating the maximum achievable repetition rate and LTD cavity performance. The voltage adder experiments with a series of double sized cavities (1 MA, ±100  kV will be reported in future publications.

  8. The design of the accelerating gaps for the linear induction accelerator RADLAC II

    International Nuclear Information System (INIS)

    Shope, S.L.; Mazarakis, M.G.; Miller, R.B.; Poukey, J.W.

    1987-01-01

    In high current (50 kA) linear induction accelerators, the accelerating gaps can excite large radial oscillations. A gap was designed that minimized the radial oscillations and reduced potential depressions. The envelope equation predicted radial oscillation amplitudes of 1 mm which agreed with experimental measurements

  9. Ion diode performance on a positive polarity inductive voltage adder with layered magnetically insulated transmission line flow

    International Nuclear Information System (INIS)

    Hinshelwood, D. D.; Schumer, J. W.; Allen, R. J.; Commisso, R. J.; Jackson, S. L.; Murphy, D. P.; Phipps, D.; Swanekamp, S. B.; Weber, B. V.; Ottinger, P. F.; Apruzese, J. P.; Cooperstein, G.; Young, F. C.

    2011-01-01

    A pinch-reflex ion diode is fielded on the pulsed-power machine Mercury (R. J. Allen, et al., 15th IEEE Intl. Pulsed Power Conf., Monterey, CA, 2005, p. 339), which has an inductive voltage adder (IVA) architecture and a magnetically insulated transmission line (MITL). Mercury is operated in positive polarity resulting in layered MITL flow as emitted electrons are born at a different potential in each of the adder cavities. The usual method for estimating the voltage by measuring the bound current in the cathode and anode of the MITL is not accurate with layered flow, and the interaction of the MITL flow with a pinched-beam ion diode load has not been studied previously. Other methods for determining the diode voltage are applied, ion diode performance is experimentally characterized and evaluated, and circuit and particle-in-cell (PIC) simulations are performed. Results indicate that the ion diode couples efficiently to the machine operating at a diode voltage of about 3.5 MV and a total current of about 325 kA, with an ion current of about 70 kA of which about 60 kA is proton current. It is also found that the layered flow impedance of the MITL is about half the vacuum impedance.

  10. The Prototype Inductive Adder With Droop Compensation for the CLIC Kicker Systems

    CERN Document Server

    Holma, J

    2014-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity and a nominal center-of-mass energy of 3 TeV. The CLIC predamping rings and damping rings (DRs) will produce, through synchrotron radiation, an ultralow emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the extraction kickers of the DRs are particularly demanding: the flattops of the pulses must be ±12.5 kV with a combined ripple and droop of not more than ±0.02% (±2.5 V). An inductive adder is a very promising approach to meeting the specifications. Recently, a five-layer prototype has been built at CERN. Passive analog modulation has been applied to compensate the voltage droop, for example of the pulse capacitors. The output waveforms of the prototype inductive adder have been compared with predictions of the voltage droop and pulse shape. Conclusions are drawn concern...

  11. Mathematical Model and Computational Analysis of Selected Transient States of Cylindrical Linear Induction Motor Fed via Frequency Converter

    Directory of Open Access Journals (Sweden)

    Andrzej Rusek

    2008-01-01

    Full Text Available The mathematical model of cylindrical linear induction motor (C-LIM fed via frequency converter is presented in the paper. The model was developed in order to analyze numerically the transient states. Problems concerning dynamics of ac-machines especially linear induction motor are presented in [1 – 7]. Development of C-LIM mathematical model is based on circuit method and analogy to rotary induction motor. The analogy between both: (a stator and rotor windings of rotary induction motor and (b winding of primary part of C-LIM (inductor and closed current circuits in external secondary part of C-LIM (race is taken into consideration. The equations of C-LIM mathematical model are presented as matrix together with equations expressing each vector separately. A computational analysis of selected transient states of C-LIM fed via frequency converter is presented in the paper. Two typical examples of C-LIM operation are considered for the analysis: (a starting the motor at various static loads and various synchronous velocities and (b reverse of the motor at the same operation conditions. Results of simulation are presented as transient responses including transient electromagnetic force, transient linear velocity and transient phase current.

  12. Mathematical models of flat linear induction motors used in mining drives

    Energy Technology Data Exchange (ETDEWEB)

    Tall, M

    1984-01-01

    Design parameters are calculated for electric flat linear induction motors, widely employed in the coal and ore mining industries in Poland. A mathematical model of this motor with a single-layer ferromagnetic secondary part is presented. A three-dimensional electromagnetic field analysis is carried out, taking relative magnetic permeability variation, discrete winding distribution, influence of armature grooving and pulsating field influence into account. A computer calculation algorithm is proposed for determining motor characteristics. 17 refs.

  13. Instantaneous Switching Processes in Quasi-Linear Circuits

    Directory of Open Access Journals (Sweden)

    Rositsa Angelova

    2004-01-01

    Full Text Available The paper considers instantaneous processes in electrical circuits produced by the stepwise change of the capacitance of the capacitor and the inductance of the inductor and by the switching on and switching off of the circuit. In order to determine the set of electrical circuits, for which it is possible to explicitly obtain the values of the currents and the voltages at the end of the instantaneous process, a classification of the networks with nonlinear elements is introduced in the paper. The instantaneous switching process in the moment t0 is approximated when T->t0 with a sequence of processes in the interval [t0, T]. For quasi-linear inductive and capacitive circuits; we present the type of the system satisfied by the currents and the voltages, the charges, as well as the fluxes in the interval [t0, T]. From this system, after passage to the limit T->t0, we obtain the formulas for the values of the circuits at the end of the instantaneous process. The obtained results are applied for the analysis of particular processes.

  14. Capacitor blocks for linear transformer driver stages.

    Science.gov (United States)

    Kovalchuk, B M; Kharlov, A V; Kumpyak, E V; Smorudov, G V; Zherlitsyn, A A

    2014-01-01

    In the Linear Transformer Driver (LTD) technology, the low inductance energy storage components and switches are directly incorporated into the individual cavities (named stages) to generate a fast output voltage pulse, which is added along a vacuum coaxial line like in an inductive voltage adder. LTD stages with air insulation were recently developed, where air is used both as insulation in a primary side of the stages and as working gas in the LTD spark gap switches. A custom designed unit, referred to as a capacitor block, was developed for use as a main structural element of the transformer stages. The capacitor block incorporates two capacitors GA 35426 (40 nF, 100 kV) and multichannel multigap gas switch. Several modifications of the capacitor blocks were developed and tested on the life time and self breakdown probability. Blocks were tested both as separate units and in an assembly of capacitive module, consisting of five capacitor blocks. This paper presents detailed design of capacitor blocks, description of operation regimes, numerical simulation of electric field in the switches, and test results.

  15. NASTRAN buckling study of a linear induction motor reaction rail

    Science.gov (United States)

    Williams, J. G.

    1973-01-01

    NASTRAN was used to study problems associated with the installation of a linear induction motor reaction rail test track. Specific problems studied include determination of the critical axial compressive buckling stress and establishment of the lateral stiffness of the reaction rail under combined loads. NASTRAN results were compared with experimentally obtained values and satisfactory agreement was obtained. The reaction rail was found to buckle at an axial compressive stress of 11,400 pounds per square inch. The results of this investigation were used to select procedures for installation of the reaction rail.

  16. Voltage Quality of Grid Connected Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Sun, Tao

    2004-01-01

    Grid connected wind turbines may cause quality problems, such as voltage variation and flicker. This paper discusses the voltage variation and flicker emission of grid connected wind turbines with doubly-fed induction generators. A method to compensate flicker by using a voltage source converter...

  17. Charge-pump voltage converter

    Science.gov (United States)

    Brainard, John P [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  18. Inductive energy storage commutator

    International Nuclear Information System (INIS)

    Gavrilov, I.M.

    1987-01-01

    An inductive energy storage commutator is described. The value of commutated current is up to 800 A, the voltage amplitude in the load is up to 50 kV, the working frequency is equal to 1-50 Hz, the commutated power is up to 40 MW. The commutating device comprises of the first stage commutator having two in-series connected modules of the BTSV - 800/235 high-voltage thyristor unit, the second stage commutator containing three GMI-43A parallel connected powerful pulsed triodes, a commutating capacitor, an induction coil, two supplementary high-voltage thyristor keys (20 in-series connected thyristors T2-300 (13 class)), load, control pulse shapers, thyristor keys, power supply

  19. Coreless Concept for High Gradient Induction Cell

    International Nuclear Information System (INIS)

    Krasnykh, Anatoly

    2008-01-01

    An induction linac cell for a high gradient is discussed. The proposed solid state coreless approach for the induction linac topology (SLIM(reg s ign)) is based on nanosecond mode operation. This mode may have an acceleration gradient comparable with gradients of rf- accelerator structures. The discussed induction system has the high electric efficiency. The key elements are a solid state semiconductor switch and a high electric density dielectric with a thin section length. The energy in the induction system is storied in the magnetic field. The nanosecond current break-up produces the high voltage. The induced voltage is used for acceleration. This manner of an operation allows the use of low voltage elements in the booster part and achieves a high accelerating gradient. The proposed topology was tested in POP (proof of principle) experiments

  20. Tuning the DARHT Axis-II linear induction accelerator focusing

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. [Los Alamos National Laboratory

    2012-04-24

    Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST) to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an

  1. Development of three channel linear bipolar high voltage amplifier (±2 KV) for electrostatic steerer

    International Nuclear Information System (INIS)

    Rajesh Kumar; Mukesh Kumar; Suman, S.K.; Safvan, C.P.; Mandal, A.

    2011-01-01

    Electrostatic steerers and scanners are planned for low energy ion beam facilities at IUAC to steer and scan the ion beam on target. The power supplies for electrostatic steerers are high voltage bipolar DC amplifiers and for scanners are bipolar AC amplifiers. To fulfil the requirements a common unit has been designed and assembled for AC and DC applications. It can be used with electrostatic devices in scanning, steering and sweeping of low energy ion beams at high frequencies to attain uniform implantation. The unit consist of three independent limited bandwidth high voltage, linear bipolar amplifiers (for X-axis, Y-axis and Y1-dog leg plates). The unit has been provided with both local and remote control. (author)

  2. Dynamic diagnostics of moving ferromagnetic material with the linear induction motor

    OpenAIRE

    Szewczyk Krzysztof; Walasek Tomasz

    2017-01-01

    The paper presents the application of a three-phase induction motor as a sensor measuring the force of the electromagnetic field connection between the engine and produced sheet steel. The force interaction between the engine and the manufactured sheet metal treated as a treadmill for a linear motor may be an indicator of damage to the material. Detection of places where the sheet does not meet the quality requirements may be very useful in the production process. FEM calculations were perfor...

  3. Effect of power quality on windings temperature of marine induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Str. 83, 81-225 Gdynia (Poland)], E-mail: piotrg@am.gdynia.pl

    2009-10-15

    Marine induction machines are exposed to various power quality disturbances appearing simultaneously in ship power systems: frequency and voltage rms value deviation, voltage unbalance and voltage waveform distortions. As a result, marine induction motors can be seriously overheated due to lowered supply voltage quality. Improvement of the protection of marine induction machines requires an appropriate method of power quality assessment and modification of the power quality regulations of ship classification societies. This paper presents an analytical model of an induction cage machine supplied with voltage of lowered quality, used in part II of the work (effect of power quality on windings temperature of marine induction motors. Part II. Results of investigations and recommendations for related regulations) for power quality assessment in ship power systems, and for justification of the new power quality regulations proposal. The presented model is suitable for implementation in an on-line measurement system.

  4. Induction linacs

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The principle of linear induction acceleration is described, and examples are given of practical configurations for induction linacs. These examples include the Advanced Technology Accelerator, Long Pulse Induction Linac, Radial Line Accelerator (RADLAC), and Magnetically-Insulated Electron-Focussed Ion Linac. A related concept, the auto accelerator, is described in which the high-current electron-beam technology in the sub-10 MeV region is exploited to produce electron beams at energies perhaps as high as the 100 to 1000 MeV range. Induction linacs for ions are also discussed. The efficiency of induction linear acceleration is analyzed

  5. A Differential Monolithically Integrated Inductive Linear Displacement Measurement Microsystem

    Directory of Open Access Journals (Sweden)

    Matija Podhraški

    2016-03-01

    Full Text Available An inductive linear displacement measurement microsystem realized as a monolithic Application-Specific Integrated Circuit (ASIC is presented. The system comprises integrated microtransformers as sensing elements, and analog front-end electronics for signal processing and demodulation, both jointly fabricated in a conventional commercially available four-metal 350-nm CMOS process. The key novelty of the presented system is its full integration, straightforward fabrication, and ease of application, requiring no external light or magnetic field source. Such systems therefore have the possibility of substituting certain conventional position encoder types. The microtransformers are excited by an AC signal in MHz range. The displacement information is modulated into the AC signal by a metal grating scale placed over the microsystem, employing a differential measurement principle. Homodyne mixing is used for the demodulation of the scale displacement information, returned by the ASIC as a DC signal in two quadrature channels allowing the determination of linear position of the target scale. The microsystem design, simulations, and characterization are presented. Various system operating conditions such as frequency, phase, target scale material and distance have been experimentally evaluated. The best results have been achieved at 4 MHz, demonstrating a linear resolution of 20 µm with steel and copper scale, having respective sensitivities of 0.71 V/mm and 0.99 V/mm.

  6. Improvement on the accuracy of beam bugs in linear induction accelerator

    International Nuclear Information System (INIS)

    Xie Yutong; Dai Zhiyong; Han Qing

    2002-01-01

    In linear induction accelerator the resistive wall monitors known as 'beam bugs' have been used as essential diagnostics of beam current and location. The author presents a new method that can improve the accuracy of these beam bugs used for beam position measurements. With a fine beam simulation set, this method locates the beam position with an accuracy of 0.02 mm and thus can scale the beam bugs very well. Experiment results prove that the precision of beam position measurements can reach submillimeter degree

  7. Voltage Dependence of Supercapacitor Capacitance

    Directory of Open Access Journals (Sweden)

    Szewczyk Arkadiusz

    2016-09-01

    Full Text Available Electronic Double-Layer Capacitors (EDLC, called Supercapacitors (SC, are electronic devices that are capable to store a relatively high amount of energy in a small volume comparing to other types of capacitors. They are composed of an activated carbon layer and electrolyte solution. The charge is stored on electrodes, forming the Helmholtz layer, and in electrolyte. The capacitance of supercapacitor is voltage- dependent. We propose an experimental method, based on monitoring of charging and discharging a supercapacitor, which enables to evaluate the charge in an SC structure as well as the Capacitance-Voltage (C-V dependence. The measurement setup, method and experimental results of charging/discharging commercially available supercapacitors in various voltage and current conditions are presented. The total charge stored in an SC structure is proportional to the square of voltage at SC electrodes while the charge on electrodes increases linearly with the voltage on SC electrodes. The Helmholtz capacitance increases linearly with the voltage bias while a sublinear increase of total capacitance was found. The voltage on SC increases after the discharge of electrodes due to diffusion of charges from the electrolyte to the electrodes. We have found that the recovery voltage value is linearly proportional to the initial bias voltage value.

  8. Scaling of induction-cell transverse impedance: effect on accelerator design

    International Nuclear Information System (INIS)

    Ekdahl, Carl August

    2016-01-01

    The strength of the dangerous beam breakup (BBU) instability in linear induction accelerators (LIAs) is characterized by the transverse coupling impedance Z ? . This note addresses the dimensional scaling of Z ? , which is important when comparing new LIA designs to existing accelerators with known i BBU growth. Moreover, it is shown that the scaling of Z ? with the accelerating gap size relates BBU growth directly to high-voltage engineering considerations. It is proposed to firmly establish this scaling though a series of AMOS calculations.

  9. High-efficiency FEL with Bragg resonator driven by linear induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, N S; Kaminskij, A A; Kaminskij, A K; Peskov, N Yu; Sedykh, S N; Sergeev, A P; Sergeev, A S [Russian Academy of Sciences, Nizhny Novgorod (Russian Federation). Inst. of Applied Physics

    1997-12-31

    A narrow-band high-efficiency FEL-oscillator with a Bragg resonator was constructed based on a linear induction accelerator which formed a 1 MeV, 200 A, 200 ns electron beam. At the frequency of 31 GHz, radiation with a power of 31 MW and efficiency of 25% was measured. A high efficiency and a narrow width of the spectrum were achieved owing to the selective properties of the Bragg resonator in combination with the high quality of the helical electron beam formed in the reversed guide field regime. (author). 3 figs., 3 refs.

  10. Control and Testing of a Dynamic Voltage Restorer (DVR) at Medium Voltage Level

    DEFF Research Database (Denmark)

    Nielsen, John Godsk; Newman, Michael; Nielsen, Hans Ove

    2004-01-01

    power sensitive loads from voltage sags. This paper reports practical test results obtained on a medium voltage (10 kV) level using a DVR at a Distribution test facility in Kyndby, Denmark. The DVR was designed to protect a 400-kVA load from a 0.5-p.u. maximum voltage sag. The reported DVR verifies......The dynamic voltage restorer (DVR) has become popular as a cost effective solution for the protection of sensitive loads from voltage sags. Implementations of the DVR have been proposed at both a low voltage (LV) level, as well as a medium voltage (MV) level; and give an opportunity to protect high...... the use of a feed-forward and feed-back technique of the controller and it obtains both good transient and steady state responses. The effect of the DVR on the system is experimentally investigated under both faulted and non-faulted system states, for a variety of linear and non-linear loads. Variable...

  11. Experimental research for vacuum gap breakdown in high voltage multi-pulse

    International Nuclear Information System (INIS)

    Huang Ziping; He Jialong; Chen Sifu; Deng Jianjun; Wang Liping

    2008-01-01

    Base on the breakdown theory of vacuum gaps, experiments have been done to find out the breakdown electric field intensities in high voltage single-and triple-pulse for 26 vacuum gaps with different shapes. The experimental results match up to the theory and confirm the effect of the pulse-number increase on the breakdown electric field intensity. The key point to decide the macroscopical breakdown electric field intensity of a vacuum gap has been pointed out with some advises about the design of a multi-pulse linear inductive accelerator's accelerate gap. (authors)

  12. THE STUDY OF SELF-BALANCED POTATO SORTING MACHINE WITH LINEAR INDUCTION DRIVE

    OpenAIRE

    Linenko A. V.; Baynazarov V. G.; Kamalov T. I.

    2016-01-01

    In the article we have considered the self-balanced potato sorting machine differing from existing designs of self-balanced potato sorting machines with an oscillatory electric drive. That drive uses a linear induction motor. As the counterbalancing device, the method of the duplicating mechanism is applied. The duplicating mechanism is a specular reflection of the main working body, and also participates in technological process. Its application in the drive of machine allows not only to inc...

  13. Performance Evaluation and Slip Regulation Control of an Asymmetrical Parameter Type Two-Phase Induction Motor Drive Using a Three-Leg Voltage Source Inverter

    Science.gov (United States)

    Piyarat, Wekin; Kinnares, Vijit

    This paper presents a performance evaluation and a simple speed control method of an asymmetrical parameter type two-phase induction motor drive using a three-leg VSI (Voltage Source Inverter). The two-phase induction motor is adapted from an existing single-phase induction motor resulting in impedance unbalance between main and auxiliary windings. The unbalanced two-phase inverter outputs with orthogonal displacement based on a SPWM (Sinusoidal Pulse Width Modulation) method are controlled with appropriate amplitudes for improving the motor performance. Dynamic simulation of the proposed drive system is given. A simple speed controller based on a slip regulation method is designed. The overall system is implemented on a DSP (Digital Signal Processor) board. The validity of the proposed system is verified by simulation and experimental results.

  14. One-dimensional breakdown voltage model of SOI RESURF lateral power device based on lateral linearly graded approximation

    International Nuclear Information System (INIS)

    Zhang Jun; Guo Yu-Feng; Xu Yue; Lin Hong; Yang Hui; Hong Yang; Yao Jia-Fei

    2015-01-01

    A novel one-dimensional (1D) analytical model is proposed for quantifying the breakdown voltage of a reduced surface field (RESURF) lateral power device fabricated on silicon on an insulator (SOI) substrate. We assume that the charges in the depletion region contribute to the lateral PN junctions along the diagonal of the area shared by the lateral and vertical depletion regions. Based on the assumption, the lateral PN junction behaves as a linearly graded junction, thus resulting in a reduced surface electric field and high breakdown voltage. Using the proposed model, the breakdown voltage as a function of device parameters is investigated and compared with the numerical simulation by the TCAD tools. The analytical results are shown to be in fair agreement with the numerical results. Finally, a new RESURF criterion is derived which offers a useful scheme to optimize the structure parameters. This simple 1D model provides a clear physical insight into the RESURF effect and a new explanation on the improvement in breakdown voltage in an SOI RESURF device. (paper)

  15. 1 MV low-induction pulse generator

    International Nuclear Information System (INIS)

    Koba, G.I.; Koba, Yu.V.; Slivkov, I.N.; Sukhov, A.D.; Tarumov, Eh.Z.

    1980-01-01

    A high-voltage pulse generator is described. The generator Uses the Arkadiev-Marx circuit at 1 MV voltage and 12 kJ energy; the inductance of the discharge circuit is 1.3 μN. Low inductance of the generator has been obtained due to the use of low-inductance capacitors and employment of bifilar buses with oil barrier insulation. To provide reliable generator triggering, an ignition circuit has been developed with a resistive coupling between generator steps, based on controlled three-electrode sparkgaps with a distorted field. The generator switching time is slightly dependent on pressure and constitutes 200-300 ns. The generator efficiency is 83%

  16. Modeling of fully coupled MHD flows in annular linear induction pumps

    International Nuclear Information System (INIS)

    Roman, C.; Dumont, M.; Letout, S.; Courtessole, C.; Fautrelle, Y.; Vitry, S.; Rey, F.

    2014-01-01

    The paper studies specific pumping characteristics of the Annular Linear Induction Pumps (ALIP) with travelling field for liquid sodium. The present work is focused on the analysis of very large electromagnetic pumps able to provide high flow rates. The magnetic Reynolds number is quite large, therefore, it is necessary to take into account the full magnetohydrodynamic interaction between the electromagnetic field and the liquid metal flow inside pump channel. We couple the electromagnetic aspects with the hydrodynamic ones by means of two commercial softwares. The geometry considered here is 2D axisymmetric. It is found that in such induction pumps the effect of convection is very important. Two main effects have been put forth. Firstly, due to the magnetic entrainment significant end effects are observed for large velocities. This leads to the existence of regions where the axial force is negative. Secondly, a Hartmann effect occurs near the walls. The electric current and the corresponding forces are confined near the wall in Hartmann layers. Global stability of e.m. pump is also analysed. (authors)

  17. A Method for Solving the Voltage and Torque Equations of the Split ...

    African Journals Online (AJOL)

    Akorede

    v′ Voltage applied across the d – axis rotor winding referred ... The embedded MATLAB function and other useful blocks from the ... III. EQUATIONS OF THE SPLIT PHASE INDUCTION MOTOR. The voltage, flux and electromagnetic torque equations are ..... of single phase induction motor using frequency control method ...

  18. MOSFET-based high voltage double square-wave pulse generator with an inductive adder configuration

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Qiaogen, E-mail: hvzhang@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Long, Jinghua [College of Physics, Shenzhen University, Shenzhen 518060 (China); Lei, Yunfei; Liu, Jinyuan [Institute of Optoelectronics, Shenzhen University, Shenzhen 518060 (China)

    2015-09-01

    This paper presents a fast MOSFET-based solid-state pulse generator for high voltage double square-wave pulses. The generator consists mainly of an inductive adder system stacked of 20 solid-state modules. Each of the modules has 18 power MOSFETs in parallel, which are triggered by individual drive circuits; these drive circuits themselves are synchronously triggered by a signal from avalanche transistors. Our experiments demonstrate that the output pulses with amplitude of 8.1 kV and peak current of about 405 A are available at a load impedance of 20 Ω. The pulse has a double square-wave form with a rise and fall time of 40 ns and 26 ns, respectively and bottom flatness better than 12%. The interval time of the double square-wave pulses can be adjustable by varying the interval time of the trigger pulses.

  19. Measurements of Voltage Harmonics in 400 kV Transmission Network

    Directory of Open Access Journals (Sweden)

    Ryszard Pawełek

    2014-06-01

    Full Text Available The paper deals with the analysis of voltage harmonics measurements performed in the 400 kV transmission network. The voltage was measured by means of three transducers: resistive voltage divider, inductive measuring transformer and capacitive voltage measuring transformer. Instrument errors were estimated for measuring transformers with reference to the harmonic values obtained from the voltage divider.

  20. Magnetohydrodynamic instability in annular linear induction pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.; Ogorodnikov, Anatoly P.

    2006-01-01

    In the previous work, the authors showed some detailed aspects of the magnetohydrodynamic instability arising in an annular linear induction pump: the instability is accompanied with a low frequency pressure pulsation in the range of 0-10 Hz when the magnetic Reynolds number is larger than unity; the low frequency pressure pulsation is produced by the sodium vortices that come from some azimuthal non-uniformity of the applied magnetic field or of the sodium inlet velocity. In the present work, an experiment and a numerical analysis are carried out to verify the pump winding phase shift that is expected as an effective way to suppress the instability. The experimental data shows that the phase shift suppresses the instability unless the slip value is so high, but brings about a decrease of the developed pressure. The numerical results indicate that the phase shift causes a local decrease of the electromagnetic force, which results in the suppression of the instability and the decrease of the developed pressure. In addition, it is exhibited that the intensity of the double-supply-frequency pressure pulsation is in nearly the same level in the case with and without the phase shift

  1. Handbook on linear motor application

    International Nuclear Information System (INIS)

    1988-10-01

    This book guides the application for Linear motor. It lists classification and speciality of Linear Motor, terms of linear-induction motor, principle of the Motor, types on one-side linear-induction motor, bilateral linear-induction motor, linear-DC Motor on basic of the motor, linear-DC Motor for moving-coil type, linear-DC motor for permanent-magnet moving type, linear-DC motor for electricity non-utility type, linear-pulse motor for variable motor, linear-pulse motor for permanent magneto type, linear-vibration actuator, linear-vibration actuator for moving-coil type, linear synchronous motor, linear electromagnetic motor, linear electromagnetic solenoid, technical organization and magnetic levitation and linear motor and sensor.

  2. Analysis of Voltage Forming Methods for Multiphase Inverters

    Directory of Open Access Journals (Sweden)

    Tadas Lipinskis

    2013-05-01

    Full Text Available The article discusses advantages of the multiphase AC induction motor over three or less phase motors. It presents possible stator winding configurations for a multiphase induction motor. Various fault control strategies were reviewed for phases feeding the motor. The authors propose a method for quality evaluation of voltage forming algorithm in the inverter. Simulation of a six-phase voltage source inverter, voltage in which is formed using a simple SPWM control algorithm, was performed in Matlab Simulink. Simulation results were evaluated using the proposed method. Inverter’s power stage was powered by 400 V DC source. The spectrum of output currents was analysed and the magnitude of the main frequency component was at least 12 times greater than the next biggest-magnitude component. The value of rectified inverter voltage was 373 V.Article in Lithuanian

  3. Analysis of magnetohydrodynamic flow in linear induction EM pump

    International Nuclear Information System (INIS)

    Geun Jong Yoo; Choi, H.K.; Eun, J.J.; Bae, Y.S.

    2005-01-01

    Numerical analysis is performed for magnetic and magnetohydrodynamic (MHD) flow fields in linear induction type electromagnetic (EM) pump. A finite volume method is applied to solve magnetic field governing equations and the Navier-Stokes equations. Vector and scalar potential methods are adopted to obtain the electric and magnetic fields and the resulting Lorentz force in solving Maxwell equations. The magnetic field and velocity distributions are found to be influenced by the phase of applied electric current. Computational results indicate that the magnetic flux distribution with changing phase of input electric current is characterized by pairs of counter-rotating closed loops. The velocity distributions are affected by the intensity of Lorentz force. The governing equations for the magnetic and flow fields are only semi-coupled in this study, therefore, further study with fully-coupled governing equations are required. (authors)

  4. Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique

    OpenAIRE

    Mozer, AJ; Sariciftci, NS; Osterbacka, R; Westerling, M; Juska, G; LUTSEN, Laurence; VANDERZANDE, Dirk

    2005-01-01

    Charge carrier mobility and recombination in a bulk heterojunction solar cell based on the mixture of poly[2-methoxy-5-(3,7-dimethyloctyloxy)-phenylene vinylene] (MDMO-PPV) and 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)-C-61 (PCBM) has been studied using the novel technique of photoinduced charge carrier extraction in a linearly increasing voltage (Photo-CELIV). In this technique, charge carriers are photogenerated by a short laser flash, and extracted under a reverse bias voltage ramp after ...

  5. Linear variable voltage diode capacitor and adaptive matching networks

    NARCIS (Netherlands)

    Larson, L.E.; De Vreede, L.C.N.

    2006-01-01

    An integrated variable voltage diode capacitor topology applied to a circuit providing a variable voltage load for controlling variable capacitance. The topology includes a first pair of anti-series varactor diodes, wherein the diode power-law exponent n for the first pair of anti-series varactor

  6. Comparisons between designs for single-sided linear electric motors: Homopolar synchronous and induction

    Science.gov (United States)

    Nondahl, T. A.; Richter, E.

    1980-09-01

    A design study of two types of single sided (with a passive rail) linear electric machine designs, namely homopolar linear synchronous machines (LSM's) and linear induction machines (LIM's), is described. It is assumed the machines provide tractive effort for several types of light rail vehicles and locomotives. These vehicles are wheel supported and require tractive powers ranging from 200 kW to 3735 kW and top speeds ranging from 112 km/hr to 400 km/hr. All designs are made according to specified magnetic and thermal criteria. The LSM advantages are a higher power factor, much greater restoring forces for track misalignments, and less track heating. The LIM advantages are no need to synchronize the excitation frequency precisely to vehicle speed, simpler machine construction, and a more easily anchored track structure. The relative weights of the two machine types vary with excitation frequency and speed; low frequencies and low speeds favor the LSM.

  7. Test results for three prototype models of a linear induction launcher

    International Nuclear Information System (INIS)

    Zabar, Z.; Lu, X.N.; He, J.L.; Birenbaum, L.; Levi, E.; Kuznetsov, S.B.; Nahemow, M.D.

    1991-01-01

    This paper reports on the work on the linear induction launcher (LIL) started with an analytical study tht was followed by computer simulations and then was tested by laboratory models. Two mathematical representations have been developed to describe the launcher. The first, based on the field approach with sinusoidal excitation, has been validated by static tests on a small scale prototype fed at constant current and variable frequency. The second, a transient representation using computer simulation allows consideration of energization by means of a capacitor bank and a power conditioner. Tests performed on three small-scale prototypes up to 100 m/s muzzle velocities show good agreement with predicted performance

  8. Voltage splay modes and enhanced phase locking in a modified linear Josephson array

    Science.gov (United States)

    Harris, E. B.; Garland, J. C.

    1997-02-01

    We analyze a modified linear Josephson-junction array in which additional unbiased junctions are used to greatly enhance phase locking. This geometry exhibits strong correlated behavior, with an external magnetic field tuning the voltage splay angle between adjacent Josephson oscillators. The array displays a coherent in-phase mode for f=, where f is the magnetic frustration, while for 0tolerant of critical current disorder approaching 100%. The stability of the array has also been studied by computing Floquet exponents. These exponents are found to be negative for all array lengths, with a 1/N2 dependence, N being the number of series-connected junctions.

  9. Multifunctional voltage source inverter for renewable energy integration and power quality conditioning.

    Science.gov (United States)

    Dai, NingYi; Lam, Chi-Seng; Zhang, WenChen

    2014-01-01

    In order to utilize the energy from the renewable energy sources, power conversion system is necessary, in which the voltage source inverter (VSI) is usually the last stage for injecting power to the grid. It is an economical solution to add the function of power quality conditioning to the grid-connected VSI in the low-voltage distribution system. Two multifunctional VSIs are studied in this paper, that is, inductive-coupling VSI and capacitive-coupling VSI, which are named after the fundamental frequency impedance of their coupling branch. The operation voltages of the two VSIs are compared when they are used for renewable energy integration and power quality conditioning simultaneously. The operation voltage of the capacitive-coupling VSI can be set much lower than that of the inductive-coupling VSI when reactive power is for compensating inductive loads. Since a large portion of the loads in the distribution system are inductive, the capacitive-coupling VSI is further studied. The design and control method of the multifunctional capacitive-coupling VSI are proposed in this paper. Simulation and experimental results are provided to show its validity.

  10. Initial position estimation method for permanent magnet synchronous motor based on improved pulse voltage injection

    DEFF Research Database (Denmark)

    Wang, Z.; Lu, K.; Ye, Y.

    2011-01-01

    According to saliency of permanent magnet synchronous motor (PMSM), the information of rotor position is implied in performance of stator inductances due to the magnetic saturation effect. Researches focused on the initial rotor position estimation of PMSM by injecting modulated pulse voltage...... vectors. The relationship between the inductance variations and voltage vector positions was studied. The inductance variation effect on estimation accuracy was studied as well. An improved five-pulses injection method was proposed, to improve the estimation accuracy by choosing optimaized voltage vectors...

  11. Effect of different methods of pulse width modulation on power losses in an induction motor

    Science.gov (United States)

    Gulyaev, Alexander; Fokin, Dmitrii; Shuharev, Sergey; Ten, Evgenii

    2017-10-01

    We consider the calculation of modulation power losses in a system “induction motor-inverter” for various pulse width modulation (PWM) methods of the supply voltage. Presented values of modulation power losses are the result of modeling a system “DC link - two-level three-phase voltage inverter - induction motor - load”. In this study the power losses in a system “induction motor - inverter” are computed, as well as losses caused by higher harmonics of PWM supply voltage, followed by definition of active power consumed by the DC link for a specified value mechanical power on the induction motor shaft. Mechanical power was determined by the rotation speed and the torque on the motor shaft in various quasi-sinusoidal supply voltage PWM modes. These calculations reveal the best coefficient of performance (COP) in a system of a variable frequency drive (VFD) with independent voltage inverter controlled by induction motor PWM.

  12. Effect of power quality on windings temperature of marine induction motors. Part I: Machine model

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime Univ., Dept. of Ship Electrical Power Engineering, Morska Str. 83, 81-225 Gdynia (Poland)

    2009-10-15

    Marine induction machines are exposed to various power quality disturbances appearing simultaneously in ship power systems: frequency and voltage rms value deviation, voltage unbalance and voltage waveform distortions. As a result, marine induction motors can be seriously overheated due to lowered supply voltage quality. Improvement of the protection of marine induction machines requires an appropriate method of power quality assessment and modification of the power quality regulations of ship classification societies. This paper presents an analytical model of an induction cage machine supplied with voltage of lowered quality, used in part II of the work (effect of power quality on windings temperature of marine induction motors. Part II. Results of investigations and recommendations for related regulations) for power quality assessment in ship power systems, and for justification of the new power quality regulations proposal. The presented model is suitable for implementation in an on-line measurement system. (author)

  13. Low-impedance internal linear inductive antenna for large-area flat panel display plasma processing

    International Nuclear Information System (INIS)

    Kim, K.N.; Jung, S.J.; Lee, Y.J.; Yeom, G.Y.; Lee, S.H.; Lee, J.K.

    2005-01-01

    An internal-type linear inductive antenna, that is, a double-comb-type antenna, was developed for a large-area plasma source having the size of 1020 mmx830 mm, and high density plasmas on the order of 2.3x10 11 cm -3 were obtained with 15 mTorr Ar at 5000 W of inductive power with good plasma stability. This is higher than that for the conventional serpentine-type antenna, possibly due to the low impedance, resulting in high efficiency of power transfer for the double-comb antenna type. In addition, due to the remarkable reduction of the antenna length, a plasma uniformity of less than 8% was obtained within the substrate area of 880 mmx660 mm at 5000 W without having a standing-wave effect

  14. A compact, all solid-state LC high voltage generator.

    Science.gov (United States)

    Fan, Xuliang; Liu, Jinliang

    2013-06-01

    LC generator is widely applied in the field of high voltage generation technology. A compact and all solid-state LC high voltage generator based on saturable pulse transformer is proposed in this paper. First, working principle of the generator is presented. Theoretical analysis and circuit simulation are used to verify the design of the generator. Experimental studies of the proposed LC generator with two-stage main energy storage capacitors are carried out. And the results show that the proposed LC generator operates as expected. When the isolation inductance is 27 μH, the output voltage is 1.9 times larger than the charging voltage on single capacitor. The multiplication of voltages is achieved. On the condition that the primary energy storage capacitor is charged to 857 V, the output voltage of the generator can reach to 59.5 kV. The step-up ratio is nearly 69. When self breakdown gas gap switch is used as main switch, the rise time of the voltage pulse on load resistor is 8.7 ns. It means that the series-wound inductance in the discharging circuit is very small in this system. This generator can be employed in two different applications.

  15. Profiling of barrier capacitance and spreading resistance using a transient linearly increasing voltage technique.

    Science.gov (United States)

    Gaubas, E; Ceponis, T; Kusakovskij, J

    2011-08-01

    A technique for the combined measurement of barrier capacitance and spreading resistance profiles using a linearly increasing voltage pulse is presented. The technique is based on the measurement and analysis of current transients, due to the barrier and diffusion capacitance, and the spreading resistance, between a needle probe and sample. To control the impact of deep traps in the barrier capacitance, a steady state bias illumination with infrared light was employed. Measurements of the spreading resistance and barrier capacitance profiles using a stepwise positioned probe on cross sectioned silicon pin diodes and pnp structures are presented.

  16. Optimization of the linear induction accelerator construction for maximizing the bremsstrahlung output

    Energy Technology Data Exchange (ETDEWEB)

    Zinchenko, V F; Tulisov, E V; Chlenov, A M; Shiyan, V D [Research Institute of Scientific Instruments, Turaevo-Lytkarino (Russian Federation)

    1997-12-31

    The results of experimental and theoretical optimization of the linear induction accelerator (LIA) design are presented. The major aim of the investigations was to maximize the bremsstrahlung output near the target face. The work was carried out in two stages: l) modernization of the injector module and 2) focusing of the relativistic electron beam (REB) produced at the exit of the accelerating system (AS) in the increasing axial magnetic field. In addition, the methods of diagnostics of angular and energetic parameters of REB based on measurements of radiation dose fields behind the target are described. (author). 2 figs., 4 refs.

  17. Dynamic diagnostics of moving ferromagnetic material with the linear induction motor

    Directory of Open Access Journals (Sweden)

    Szewczyk Krzysztof

    2017-01-01

    Full Text Available The paper presents the application of a three-phase induction motor as a sensor measuring the force of the electromagnetic field connection between the engine and produced sheet steel. The force interaction between the engine and the manufactured sheet metal treated as a treadmill for a linear motor may be an indicator of damage to the material. Detection of places where the sheet does not meet the quality requirements may be very useful in the production process. FEM calculations were performed in the ANSYS MAXWELL environment. The results suggest the possibility of using this type of construction to test the quality of produced materials. The computational results and their analysis are presented in this article.

  18. Comparative Study of Modulation-Based Individual Inverter Techniques for Direct and Inverse by using Star-Connection Induction Motor in Extra Low Voltage Application

    Directory of Open Access Journals (Sweden)

    Ardhia Wishnuprakasa

    2016-12-01

    Full Text Available In this study, the IEEE 519 Standard as a basis benchmarking for voltage (THDV and current (THDI in draft performance. Comparative Study based onthree-techniques of 2-Level Converter (2LC by using a Star-Connection Induction Motor (Y-CIM in ExtraLow Voltage (ELV Configuration.For the detail explanation, a primary inverter as Direct-Inverterby PWMdirect (PWM degreesand asecondary inverter as Inverse-Inverterby PWMinverse(PWM + PI degrees. It tends a modified algorithm,for eachof SPWM in six rules, and FHIPWM in 5th harmonics Injectedin standard modulation as the purpose for the Open-Ends of Pre-Dual Inverter in Decoupled SPWM for twelve rules, and Decoupled FHIPWM in combination of 5th harmonics Injectedin combination of two-standard-modulation. Those techniques are the purpose of two-inverter combination, which namelythe Equal Direct-Inverse (EDI algorithmproduct of prototyping in similarities. The observation is restricted in voltage scope between Simulation by using Power Simulator (PSIMand Application by using Microcontroller ARM STM32F4 Discovery.

  19. End effect braking force reduction in high-speed single-sided linear induction machine

    International Nuclear Information System (INIS)

    Shiri, Abbas; Shoulaie, Abbas

    2012-01-01

    Highlights: ► A new analytical equation to model the end effect braking force of SLIM is derived. ► Equations for efficiency, power factor and output thrust are analytically derived. ► The effect of design variables on the performance of the motor is analyzed. ► An optimization method is employed to minimize the end effect braking force (EEBF). ► The results show that EEBF is minimized by appropriate selection of motor parameters. - Abstract: Linear induction motors have been widely employed in industry because of their simple structure and low construction cost. However, they suffer from low efficiency and power factor. In addition, existence of so called end effect influences their performance especially in high speeds. The end effect deteriorates the performance of the motor by producing braking force. So, in this paper, by using Duncan equivalent circuit model, a new analytical equation is proposed to model end effect braking force. Employing the proposed equation and considering all phenomena involved in the single-sided linear induction motor, a simple design procedure is presented and the effect of different design variables on the performance of the motor is analyzed. A multi-objective optimization method based on genetic algorithm is introduced to maximize efficiency and power factor, as well as to minimize the end effect braking force, simultaneously. Finally, to validate the optimization results, 2D finite element method is employed.

  20. Thermal loss of life and load-carrying capacity of marine induction motors

    International Nuclear Information System (INIS)

    Gnacinski, P.

    2014-01-01

    Highlights: • The effect of voltage quality on induction motors is investigated. • Power quality significantly affects machine lifetime and load-carrying capacity. • Permissible load levels for induction motors are proposed. - Abstract: This work deals with the effect of a lowered voltage quality on the thermal loss of life and load-carrying capacity of marine induction cage machines. Results of experimental investigations and computer calculations are presented for two low power induction motors with different properties. One of them has a comparatively strongly-saturated magnetic circuit and is especially exposed to the risk of overheating under overvoltage. The other machine has a comparatively weakly-saturated magnetic circuit, and is especially sensitive to undervoltage. The induction motor lifetime expectancy is also estimated on the basis of the temperature coefficient of power quality, whose value is proportional to the windings temperature rise in induction motors especially sensitive to various power quality disturbances. The dependence of the temperature coefficient of power quality and permissible loads for induction motors supplied with voltages of lowered quality is proposed

  1. Performance improvement of a slip energy recovery drive system by a voltage-controlled technique

    Energy Technology Data Exchange (ETDEWEB)

    Tunyasrirut, Satean [Department of Instrumentation Engineering, Faculty of Engineering, Pathumwan Institute of Technology, 833 Rama1 Road, Pathumwan, Bangkok 10330 (Thailand); Kinnares, Vijit [Department of Electrical Engineering, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Ngamwiwit, Jongkol [Department of Control Engineering, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2010-10-15

    This paper introduces the performance improvement of a slip energy recovery drive system for the speed control of a wound rotor induction motor by a voltage-controlled technique. The slip energy occurred in the rotor circuit is transferred back to ac mains supply through a reactor instead of a step up transformer. The objective of the voltage-controlled technique is to increase power factor of the system and to reduce low order harmonics of the input line current. The drive system is designed and implemented using a voltage source inverter in conjunction with a boost chopper for DC link voltage, instead of a conventional drive using a 6 pulse converter or a Scherbius system. The slip power is recovered by the help of a voltage source inverter (VSI) based on a space vector pulse width modulation (SVPWM) technique. In order to keep the speed of the wound rotor induction motor constant over a certain range of operating conditions, the servo state feedback controller designed by a linear quadratic regulator (LQR) is also introduced in this paper. The overall control system is implemented on DSP, DS1104'TMS320F240 controller board. The performance improvement of the proposed system is tested in comparison with the conventional Scherbius system and the modified conventional Scherbius system by a 12 pulse converter in conjunction with a chopper at steady state and at dynamic conditions. A 220 W wound motor is employed for testing. It is found that the motor speed can be controlled to be constant in the operating range of 450-1200 rpm at no load and full load. It is also found that the efficiency of the proposed system is remarkably increased since the harmonics of the input ac line current is reduced while the ac line input power factor is increased. (author)

  2. Five-Level Current-Source Inverters With Buck–Boost and Inductive-Current Balancing Capabilities

    DEFF Research Database (Denmark)

    Gao, Feng; Loh, Poh Chiang; Blaabjerg, Frede

    2010-01-01

    This paper presents new five-level current-source inverters (CSIs) with voltage/current buck–boost capability, unlike existing five-level CSIs where only voltage–boost operation is supported. The proposed inverters attain self-inductive-currentbalancing per switching cycle at their dc front ends...... without having to include additional balancing hardware or complex control manipulation. The inverters can conveniently be controlled by using the well-established phase-shifted carrier modulation scheme with only two additional linear references and a mapping logic table needed. Existing modulators can...

  3. Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems

    Science.gov (United States)

    Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long

    2017-07-01

    According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable.

  4. Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems

    International Nuclear Information System (INIS)

    Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long

    2017-01-01

    According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable. (paper)

  5. Voltage-Controlled Floating Resistor Using DDCC

    Directory of Open Access Journals (Sweden)

    M. Kumngern

    2011-04-01

    Full Text Available This paper presents a new simple configuration to realize the voltage-controlled floating resistor, which is suitable for integrated circuit implementation. The proposed resistor is composed of three main components: MOS transistor operating in the non-saturation region, DDCC, and MOS voltage divider. The MOS transistor operating in the non-saturation region is used to configure a floating linear resistor. The DDCC and the MOS transistor voltage divider are used for canceling the nonlinear component term of MOS transistor in the non-saturation region to obtain a linear current/voltage relationship. The DDCC is employed to provide a simple summer of the circuit. This circuit offers an ease for realizing the voltage divider circuit and the temperature effect that includes in term of threshold voltage can be compensated. The proposed configuration employs only 16 MOS transistors. The performances of the proposed circuit are simulated with PSPICE to confirm the presented theory.

  6. The influence of motor re-acceleration on voltage sags

    NARCIS (Netherlands)

    Bollen, M.H.J.

    1995-01-01

    The assumption that a voltage sag is rectangular is not correct in a power system with large induction motor loads. The motors decelerate during the short circuit. After fault-clearing, they will accelerate again, drawing a high reactive current from the supply, causing a prolonged postfault voltage

  7. Experimental demonstration of the KEK induction synchrotron

    International Nuclear Information System (INIS)

    Takayama, Ken; Torikai, Kota; Shimosaki, Yoshito; Kono, Tadaaki; Iwashita, Taiki; Arakida, Yoshio; Nakamura, Eiji; Shirakata, Masashi; Sueno, Takeshi; Wake, Masayoshi; Otsuka, Kazunori

    2007-01-01

    Recent progress in the KEK induction synchrotron is presented. In the recent experiment, by using a newly developed induction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV Booster ring and captured by the barrier bucket created by the induction step-voltages was accelerated to 6 GeV in the KEK proton synchrotron

  8. Square pulse linear transformer driver

    Directory of Open Access Journals (Sweden)

    A. A. Kim

    2012-04-01

    Full Text Available The linear transformer driver (LTD technological approach can result in relatively compact devices that can deliver fast, high current, and high-voltage pulses straight out of the LTD cavity without any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The usual LTD architecture [A. A. Kim, M. G. Mazarakis, V. A. Sinebryukhov, B. M. Kovalchuk, V. A. Vizir, S. N Volkov, F. Bayol, A. N. Bastrikov, V. G. Durakov, S. V. Frolov, V. M. Alexeenko, D. H. McDaniel, W. E. Fowler, K. LeCheen, C. Olson, W. A. Stygar, K. W. Struve, J. Porter, and R. M. Gilgenbach, Phys. Rev. ST Accel. Beams 12, 050402 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050402; M. G. Mazarakis, W. E. Fowler, A. A. Kim, V. A. Sinebryukhov, S. T. Rogowski, R. A. Sharpe, D. H. McDaniel, C. L. Olson, J. L. Porter, K. W. Struve, W. A. Stygar, and J. R. Woodworth, Phys. Rev. ST Accel. Beams 12, 050401 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050401] provides sine shaped output pulses that may not be well suited for some applications like z-pinch drivers, flash radiography, high power microwaves, etc. A more suitable power pulse would have a flat or trapezoidal (rising or falling top. In this paper, we present the design and first test results of an LTD cavity that generates such a type of output pulse by including within its circular array a number of third harmonic bricks in addition to the main bricks. A voltage adder made out of a square pulse cavity linear array will produce the same shape output pulses provided that the timing of each cavity is synchronized with the propagation of the electromagnetic pulse.

  9. Computer simulation of a 3-phase induction motor

    International Nuclear Information System (INIS)

    Memon, N.A.; Unsworth, P.J.

    2004-01-01

    Computer Simulation of a 3-phase squirrel-cage induction motor is presented in Microsoft QBASIC for understanding trends and various operational modes of an induction motor. Thyristor fed, phase controlled induction motor (three-wire) model has been simulated. In which voltage is applied to the motor stator winding through back-to-back connected thyristors as controlled switches in series with the stator. The simulated induction motor system opens up towards a wide range of investigation/analysis options for research and development work in the field. Key features of the simulation performed are highlighted for development of better understanding of the work done. Complete study of an Induction Motor, starting modes in terms the voltage/current, torque/speed characteristics and their graphical representation produced is presented. Ideal agreement of the simulation results with the notional outcome encourages users to go ahead for various hardware development projects based on the study through the simulation. (author)

  10. Voltage-spike analysis for a free-running parallel inverter

    Science.gov (United States)

    Lee, F. C. Y.; Wilson, T. G.

    1974-01-01

    Unwanted and sometimes damaging high-amplitude voltage spikes occur during each half cycle in many transistor saturable-core inverters at the moment when the core saturates and the transistors switch. The analysis shows that spikes are an intrinsic characteristic of certain types of inverters even with negligible leakage inductance and purely resistive load. The small but unavoidable after-saturation inductance of the saturable-core transformer plays an essential role in creating these undesired thigh-voltage spikes. State-plane analysis provides insight into the complex interaction between core and transistors, and shows the circuit parameters upon which the magnitude of these spikes depends.

  11. Recent advances in kicker pulser technology for linear induction accelerators

    International Nuclear Information System (INIS)

    Chen, Y. J.; Cook, E.; Davis, B.; Dehope, W. J.; Yen, B.

    1999-01-01

    Recent progress in the development and understanding of linear induction accelerator have produced machines with 10s of MeV of beam energy and multi-kiloampere currents. Near-term machines, such as DARHT-2, are envisioned with microsecond pulselengths. Fast beam kickers, based on cylindrical electromagnetic stripline structures, will permit effective use of these extremely high-energy beams in an increasing number of applications. In one application, radiography, kickers were an essential element in resolving temporal evolution of hydrodynamic events by cleaving out individual pulses from long, microsecond beams. Advanced schemes are envisioned where these individual pulses are redirected through varying length beam lines and suitably recombined for stereographic imaging or tomographic reconstruction. Recent advances in fast kickers and their pulsed power technology are described. Kicker pulsers based on both planar triode and all solid-state componentry are discussed and future development plans are presented

  12. Low-sensitivity, low-bounce, high-linearity current-controlled oscillator suitable for single-supply mixed-mode instrumentation system.

    Science.gov (United States)

    Hwang, Yuh-Shyan; Kung, Che-Min; Lin, Ho-Cheng; Chen, Jiann-Jong

    2009-02-01

    A low-sensitivity, low-bounce, high-linearity current-controlled oscillator (CCO) suitable for a single-supply mixed-mode instrumentation system is designed and proposed in this paper. The designed CCO can be operated at low voltage (2 V). The power bounce and ground bounce generated by this CCO is less than 7 mVpp when the power-line parasitic inductance is increased to 100 nH to demonstrate the effect of power bounce and ground bounce. The power supply noise caused by the proposed CCO is less than 0.35% in reference to the 2 V supply voltage. The average conversion ratio KCCO is equal to 123.5 GHz/A. The linearity of conversion ratio is high and its tolerance is within +/-1.2%. The sensitivity of the proposed CCO is nearly independent of the power supply voltage, which is less than a conventional current-starved oscillator. The performance of the proposed CCO has been compared with the current-starved oscillator. It is shown that the proposed CCO is suitable for single-supply mixed-mode instrumentation systems.

  13. The LLNL Flash X-Ray Induction Linear Accelerator (FXR)

    International Nuclear Information System (INIS)

    Multhauf, L G

    2002-01-01

    The FXR is an induction linear accelerator used for high-speed radiography at the Lawrence Livermore National Laboratory's Experimental Test Site. It was designed specifically for the radiography of very thick explosive objects. Since its completion in 1982, it has been very actively used for a large variety of explosives tests, and has been periodically upgraded to achieve higher performance. Upgrades have addressed machine reliability, radiographic sensitivity and resolution, two-frame imaging by double pulsing improvements that are described in detail in the paper. At the same time, the facility in which it was installed has also been extensively upgraded, first by adding space for optical and interferometric diagnostics, and more recently by adding a containment chamber to prevent the environmental dispersal of hazardous and radioactive materials. The containment addition also further expands space for new non-radiographic diagnostics. The new Contained Firing Facility is still in the process of activation. At the same time, FXR is continuing to undergo modifications aimed primarily at further increasing radiographic resolution and sensitivity, and at improving double-pulsed performance

  14. Improved modeling of new three-phase high voltage transformer with magnetic shunts

    Directory of Open Access Journals (Sweden)

    Chraygane M.

    2015-03-01

    Full Text Available This original paper deals with a new approach for the study of behavior in nonlinear regime of a new three-phase high voltage power supply for magnetrons, used for the microwave generators in industrial applications. The design of this system is composed of a new three-phase leakage flux transformer supplying by phase a cell, composed of a capacitor and a diode, which multiplies the voltage and stabilizes the current. Each cell. in turn, supplies a single magnetron. An equivalent model of this transformer is developed taking into account the saturation phenomenon and the stabilization process of each magnetron. Each inductance of the model is characterized by a non linear relation between flux and current. This model was tested by EMTP software near the nominal state. The theoretical results were compared to experimental measurements with a good agreement. Relative to the current device, the new systemprovides gains of size, volume, cost of implementation and maintenance which make it more economical.

  15. Real-time control of ion density and ion energy in chlorine inductively coupled plasma etch processing

    International Nuclear Information System (INIS)

    Chang, C.-H.; Leou, K.-C.; Lin Chaung; Lin, T.-L.; Tseng, C.-W.; Tsai, C.-H.

    2003-01-01

    In this study, we have experimentally demonstrated the real-time closed-loop control of both ion density and ion energy in a chlorine inductively coupled plasma etcher. To measure positive ion density, the trace rare gases-optical emission spectroscopy is used to measure the chlorine positive ion density. An rf voltage probe is adopted to measure the root-mean-square rf voltage on the electrostatic chuck which is linearly dependent on sheath voltage. One actuator is a 13.56 MHz rf generator to drive the inductive coil seated on a ceramic window. The second actuator is also a 13.56 MHz rf generator to power the electrostatic chuck. The closed-loop controller is designed to compensate for process drift, process disturbance, and pilot wafer effect and to minimize steady-state error of plasma parameters. This controller has been used to control the etch process of unpatterned polysilicon. The experimental results showed that the closed-loop control had a better repeatability of plasma parameters compared with open-loop control. The closed-loop control can eliminate the process disturbance resulting from reflected power. In addition, experimental results also demonstrated that closed-loop control has a better reproducibility in etch rate as compared with open-loop control

  16. A New Asymmetrical Current-fed Converter with Voltage Lifting

    Directory of Open Access Journals (Sweden)

    DELSHAD, M.

    2011-05-01

    Full Text Available This paper presents a new zero voltage switching current-fed DC-DC converter with high voltage gain. In this converter all switches (main and auxiliary turn on under zero voltage switching and turn off under almost zero voltage switching due to snubber capacitor. Furthermore, the voltage spike across the main switch due to leakage inductance of forward transformer is absorbed. The flyback transformer which is connected to the output in series causes to high voltage gain and less voltage stress on the power devices. Considering high efficiency and voltage gain of this converter, it is suitable for green generated systems such as fuel cells or photovoltaic systems. The presented experimental results verify the integrity of the proposed converter.

  17. New circuits high-voltage pulse generators with inductive-capacitive energy storage

    International Nuclear Information System (INIS)

    Gordeev, V.S.; Myskov, G.A.

    2001-01-01

    The paper describes new electric circuits of multi-cascade generators based on stepped lines. The distinction of the presented circuits consists in initial storage of energy in electric and magnetic fields simultaneously. The circuit of each generator,relations of impedances,values of initial current and charge voltages are selected in such a manner that the whole of initially stored energy is concentrated at the generator output as a result of transient wave processes. In ideal case the energy is transferred with 100% efficiency to the resistive load where a rectangular voltage pulse is formed, whose duration is equals to the double electrical length of the individual cascade. At the same time there is realized a several time increase of output voltage as compared to the charge voltage of the generator. The use of the circuits proposed makes it possible to ensure a several time increase (as compared to the selection of the number of cascades) of the generator energy storage, pulse current and output electric power

  18. High Performance Wideband CMOS CCI and its Application in Inductance Simulator Design

    Directory of Open Access Journals (Sweden)

    ARSLAN, E.

    2012-08-01

    Full Text Available In this paper, a new, differential pair based, low-voltage, high performance and wideband CMOS first generation current conveyor (CCI is proposed. The proposed CCI has high voltage swings on ports X and Y and very low equivalent impedance on port X due to super source follower configuration. It also has high voltage swings (close to supply voltages on input and output ports and wideband current and voltage transfer ratios. Furthermore, two novel grounded inductance simulator circuits are proposed as application examples. Using HSpice, it is shown that the simulation results of the proposed CCI and also of the presented inductance simulators are in very good agreement with the expected ones.

  19. Mixed Linear/Square-Root Encoded Single Slope Ramp Provides a Fast, Low Noise Analog to Digital Converter with Very High Linearity for Focal Plane Arrays

    Science.gov (United States)

    Wrigley, Christopher James (Inventor); Hancock, Bruce R. (Inventor); Newton, Kenneth W. (Inventor); Cunningham, Thomas J. (Inventor)

    2014-01-01

    An analog-to-digital converter (ADC) converts pixel voltages from a CMOS image into a digital output. A voltage ramp generator generates a voltage ramp that has a linear first portion and a non-linear second portion. A digital output generator generates a digital output based on the voltage ramp, the pixel voltages, and comparator output from an array of comparators that compare the voltage ramp to the pixel voltages. A return lookup table linearizes the digital output values.

  20. Short primary linear drive designed for synchronous and induction operation mode with on-board energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes Neto, Tobias Rafael

    2012-06-28

    guide way (induction rail or stationary magnets), and the energy and information should be transmitted contactless to the active vehicle. Regarding the features of the material handling application, the short or long primary topology can be used. Short primary linear drives on passive track are advantageous in material handling applications, where high precision, moderate dynamic, very long track and closed paths are required. Nevertheless, depending on the requirements of the section, the costs can be reduced considerably by using a simple induction rail at the long transporting sections, instead of permanent magnets on the track. Therefore, in this thesis a combined operation of permanent magnet linear synchronous motor (PMLSM) and linear induction motor (LIM) is applied to operate the short primary as vehicle, avoiding adjustment or releasing of the material during the drive cycle. In summary, the passive track will consist of two section types: a high thrust force section (processing station) with PMLSM and a low thrust force section with LIM (transporting section). To the author's knowledge, using two operation modes (PMLSM / LIM) in the same drive is a new approach. A theoretical and experimental study was conducted to assess the feasibility of employing the short primary linear motor for a flexible manufacturing system, in which a contactless energy transmission provides the basic power and an ultracapacitor (UC) storage system provides the peak power. The system uses a bidirectional DC-DC converter between the ultracapacitor bank and the DC-link, to make sure that the ultracapacitor can store the braking energy and supply the peak power demanded by the active vehicle. A control strategy has been developed for controlling the ultracapacitor to deliver the peak of power, to charge, to protect against overvoltage and to recover the energy generated when the vehicle is braking. A control strategy for the transition between the two operation modes (PMLSM / LIM

  1. Currents and voltages in the MFTF coils during the formation of a normal zone

    International Nuclear Information System (INIS)

    Owen, E.W.

    1980-08-01

    Expressions are obtained for the currents and voltages in a pair of inductively coupled superconducting coils under two conditions: formation of a normal zone and during a change in the level of the current in one coil. A dump resistor of low resistance and a detector bridge is connected across each coil. Calculated results are given for the MFTF coils. The circuit equations during formation of a normal zone are nonlinear and time-varying, consequently, only a series solution is possible. The conditions during a change in current are more easily found. After the transient has died away, the voltages in the coil associated with the changing source are all self-inductive, while the voltages in the other coil are all mutually inductive

  2. Voltage splay modes and enhanced phase locking in a modified linear Josephson array

    International Nuclear Information System (INIS)

    Harris, E.B.; Garland, J.C.

    1997-01-01

    We analyze a modified linear Josephson-junction array in which additional unbiased junctions are used to greatly enhance phase locking. This geometry exhibits strong correlated behavior, with an external magnetic field tuning the voltage splay angle between adjacent Josephson oscillators. The array displays a coherent in-phase mode for f=(1)/(2), where f is the magnetic frustration, while for 0 p (f)=2aV dc /Φ 0 (1-2f). The locked splay modes are found to be tolerant of critical current disorder approaching 100%. The stability of the array has also been studied by computing Floquet exponents. These exponents are found to be negative for all array lengths, with a 1/N 2 dependence, N being the number of series-connected junctions. copyright 1996 The American Physical Society

  3. Development of the methodology for the MHD analysis in a linear induction electro-magnetic pump

    International Nuclear Information System (INIS)

    Seong, Seung Hwan; Hur, Seop; Kim, Seong O; Choi, Seok Ki; Wi, Myung Hwan; Jeon, Won Dae

    2004-01-01

    Generally, fast breeder reactors have adopted a liquid metal as a coolant for the heat transfer from the reactor to the heat exchangers. Since a liquid metal has an electrical conductivity, the pumping of the liquid metal may use an induction electro-magnetic (EM) pump which induces electrical current and body force on the metal flow. These linear induction pumps use a traveling magnetic field wave created by poly-phase currents and the induced currents and their associated magnetic field generate the Lorentz force whose effect can be actually the pumping of the liquid metal. The flow behaviors in the pump are very complex such as the existence of a rotational force, pulsation and so on, because the induction EM pump has time-varying magnetic fields and the induced convective currents which originate form the flow of the liquid metal. These phenomena generate a stability problem in the pump and depend on the changes of the magnetic field and fluid flow field due to the induced currents and the fluid flow of the liquid metal with time and complex pump geometry. Therefore, an exact flow analysis is required for designing and evaluating the stability of a pump

  4. High-voltage pulse generator for electron gun power supply

    International Nuclear Information System (INIS)

    Korenev, S.A.; Enchevich, I.B.; Mikhov, M.K.

    1987-01-01

    High-voltage pulse generator with combined capacitive and inductive energy storages for electron gun power supply is described. Hydrogen thyratron set in a short magnetic lense is a current breaker. Times of current interruption in thyratrons are in the range from 100 to 300 ns. With 1 kV charging voltage of capacitive energy storage 25 kV voltage pulse is obtained in the load. The given high-voltage pulse generator was used for supply of an electron gun generating 10-30 keV low-energy electron beam

  5. Power angle control of grid-connected voltage source converter in a wind energy application

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Jan [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-31

    In this thesis, the connection of a voltage source converter to the grid in a wind energy application is examined. The possibility of using a cheap control system without grid current measurements, is investigated. The control method is based on controlling the voltage angle of the inverter, which governs the active power flow. The highest frequency of the power variation, coming from wind turbine, is approx. 5 Hz. Since the proposed control method easily can handle such power variations it is very well suited for wind turbine applications. The characteristics of the system depend on the DC-link capacitor, the grid filter inductance and resistance. Large values of the resistance damp the system well but increase the energy losses. A high inductance leads to a reduced harmonic level on the grid but makes the system slower. By using feed-forward of the generator/rectifier current signal, the performance is increased compared to an ordinary PI-control. Combining the Linear Quadratic (LQ) control method with Kalman filtered input signals, a robust control method with a good performance is obtained. The LQ controller controls both the phase displacement angle and the modulation index, resulting in higher bandwidth, and the typical power angle resonance at the grid frequency disappears. 22 refs, 109 figs, 14 tabs

  6. Stability Analysis of a Matrix Converter Drive: Effects of Input Filter Type and the Voltage Fed to the Modulation Algorithm

    Directory of Open Access Journals (Sweden)

    M. Hosseini Abardeh

    2015-03-01

    Full Text Available The matrix converter instability can cause a substantial distortion in the input currents and voltages which leads to the malfunction of the converter. This paper deals with the effects of input filter type, grid inductance, voltage fed to the modulation algorithm and the synchronous rotating digital filter time constant on the stability and performance of the matrix converter. The studies are carried out using eigenvalues of the linearized system and simulations. Two most common schemes for the input filter (LC and RLC are analyzed. It is shown that by a proper choice of voltage input to the modulation algorithm, structure of the input filter and its parameters, the need for the digital filter for ensuring the stability can be resolved. Moreover, a detailed model of the system considering the switching effects is simulated and the results are used to validate the analytical outcomes. The agreement between simulation and analytical results implies that the system performance is not deteriorated by neglecting the nonlinear switching behavior of the converter. Hence, the eigenvalue analysis of the linearized system can be a proper indicator of the system stability.

  7. A voltage biased superconducting quantum interference device bootstrap circuit

    International Nuclear Information System (INIS)

    Xie Xiaoming; Wang Huiwu; Wang Yongliang; Dong Hui; Jiang Mianheng; Zhang Yi; Krause, Hans-Joachim; Braginski, Alex I; Offenhaeusser, Andreas; Mueck, Michael

    2010-01-01

    We present a dc superconducting quantum interference device (SQUID) readout circuit operating in the voltage bias mode and called a SQUID bootstrap circuit (SBC). The SBC is an alternative implementation of two existing methods for suppression of room-temperature amplifier noise: additional voltage feedback and current feedback. Two circuit branches are connected in parallel. In the dc SQUID branch, an inductively coupled coil connected in series provides the bias current feedback for enhancing the flux-to-current coefficient. The circuit branch parallel to the dc SQUID branch contains an inductively coupled voltage feedback coil with a shunt resistor in series for suppressing the preamplifier noise current by increasing the dynamic resistance. We show that the SBC effectively reduces the preamplifier noise to below the SQUID intrinsic noise. For a helium-cooled planar SQUID magnetometer with a SQUID inductance of 350 pH, a flux noise of about 3 μΦ 0 Hz -1/2 and a magnetic field resolution of less than 3 fT Hz -1/2 were obtained. The SBC leads to a convenient direct readout electronics for a dc SQUID with a wider adjustment tolerance than other feedback schemes.

  8. Voltage-pulse generator for electron gun

    International Nuclear Information System (INIS)

    Korenev, S.A.; Enchevich, I.B.; Mikhov, M.K.

    1987-01-01

    A voltage-pulse generator with combined capacitive and inductive storage devices of an electron gun is described. The current interrupter is a hydrogen thyratron (TGI1-100/8, TGI1-500/16, or TGI1-1000/25) installed in a short magnetic lens. The current interruption time of the thyratrons is 100-300 nsec. When the capacitive storage device is charged to 1 kV, a voltage pulse with an amplitude of 25 kV is obtained at the load

  9. Crowbar System in Doubly Fed Induction Wind Generators

    Directory of Open Access Journals (Sweden)

    Maurício B. C. Salles

    2010-04-01

    Full Text Available In the last 15 years, the use of doubly fed induction machines in modern variable-speed wind turbines has increased rapidly. This development has been driven by the cost reduction as well as the low-loss generation of Insulated Gate Bipolar Transistors (IGBT. According to new grid code requirements, wind turbines must remain connected to the grid during grid disturbances. Moreover, they must also contribute to voltage support during and after grid faults. The crowbar system is essential to avoid the disconnection of the doubly fed induction wind generators from the network during faults. The insertion of the crowbar in the rotor circuits for a short period of time enables a more efficient terminal voltage control. As a general rule, the activation and the deactivation of the crowbar system is based only on the DC-link voltage level of the back-to-back converters. In this context, the authors discuss the critical rotor speed to analyze the instability of doubly fed induction generators during grid faults.

  10. Theoretical analysis of magnetic sensor output voltage

    International Nuclear Information System (INIS)

    Liu Haishun; Dun Chaochao; Dou Linming; Yang Weiming

    2011-01-01

    The output voltage is an important parameter to determine the stress state in magnetic stress measurement, the relationship between the output voltage and the difference in the principal stresses was investigated by a comprehensive application of magnetic circuit theory, magnetization theory, stress analysis as well as the law of electromagnetic induction, and a corresponding quantitative equation was derived. It is drawn that the output voltage is proportional to the difference in the principal stresses, and related to the angle between the principal stress and the direction of the sensor. This investigation provides a theoretical basis for the principle stresses measurement by output voltage. - Research highlights: → A comprehensive investigation of magnetic stress signal. → Derived a quantitative equation about output voltage and the principal stresses. → The output voltage is proportional to the difference of the principal stresses. → Provide a theoretical basis for the principle stresses measurement.

  11. Effect of antenna capacitance on the plasma characteristics of an internal linear inductively coupled plasma system

    International Nuclear Information System (INIS)

    Lim, Jong Hyeuk; Kim, Kyong Nam; Park, Jung Kyun; Yeom, Geun Young

    2008-01-01

    This study examined the effect of the antenna capacitance of an inductively coupled plasma (ICP) source, which was varied using an internal linear antenna, on the electrical and plasma characteristics of the ICP source. The inductive coupling at a given rf current increased with decreasing antenna capacitance. This was caused by a decrease in the inner copper diameter of the antenna made from coaxial copper/quartz tubing, which resulted in a higher plasma density and lower plasma potential. By decreasing the diameter of the copper tube from 25 to 10 mm, the plasma density of a plasma source size of 2750x2350 mm 2 was increased from approximately 8x10 10 /cm 3 to 1.5x10 11 /cm 3 at 15 mTorr Ar and 9 kW of rf power

  12. Design and performance of a 3.3-MeV linear induction accelerator (LIA)

    International Nuclear Information System (INIS)

    Cheng Nianan; Zhang Shouyun; Tao Zucong

    1992-01-01

    A 3.3-MeV linear induction accelerator (LIA) has been designed and constructed at the China Academy of Engineering Physics. The parameters of 3.4 MeV, 2 kA, 80 ns and 1 x 10 4 A/(rad.cm) 2 have been achieved. It has been used for SG-1 FEL experiments. The accelerator is mounted on a movable frame so that , after moving 3 m transversely, it can be assembled with more modules into a 10-MeV LIA. The authors summarize the physics and engineering aspects of the LIA facility and describe the measuring means of characters for the beam

  13. Proton induction linacs as high-intensity neutron sources

    International Nuclear Information System (INIS)

    Keefe, D.; Hoyer, E.

    1981-01-01

    Proton induction linacs are explored as high intensity neutron sources. The induction linac - concept, properties, experience with electrons, and possibilities - and its limitations for accelerating ions are reviewed. A number of proton induction linac designs are examined with the LIACEP program and general conclusions are given. Results suggest that a proton induction accelerator of the lowest voltage, consistent with good neutron flux, is preferred and could well be cost competitive with the usual rf linac/storage ring designs. (orig.)

  14. The use of charge extraction by linearly increasing voltage in polar organic light-emitting diodes

    Science.gov (United States)

    Züfle, Simon; Altazin, Stéphane; Hofmann, Alexander; Jäger, Lars; Neukom, Martin T.; Schmidt, Tobias D.; Brütting, Wolfgang; Ruhstaller, Beat

    2017-05-01

    We demonstrate the application of the CELIV (charge carrier extraction by linearly increasing voltage) technique to bilayer organic light-emitting devices (OLEDs) in order to selectively determine the hole mobility in N,N0-bis(1-naphthyl)-N,N0-diphenyl-1,10-biphenyl-4,40-diamine (α-NPD). In the CELIV technique, mobile charges in the active layer are extracted by applying a negative voltage ramp, leading to a peak superimposed to the measured displacement current whose temporal position is related to the charge carrier mobility. In fully operating devices, however, bipolar carrier transport and recombination complicate the analysis of CELIV transients as well as the assignment of the extracted mobility value to one charge carrier species. This has motivated a new approach of fabricating dedicated metal-insulator-semiconductor (MIS) devices, where the extraction current contains signatures of only one charge carrier type. In this work, we show that the MIS-CELIV concept can be employed in bilayer polar OLEDs as well, which are easy to fabricate using most common electron transport layers (ETLs), like Tris-(8-hydroxyquinoline)aluminum (Alq3). Due to the macroscopic polarization of the ETL, holes are already injected into the hole transport layer below the built-in voltage and accumulate at the internal interface with the ETL. This way, by a standard CELIV experiment only holes will be extracted, allowing us to determine their mobility. The approach can be established as a powerful way of selectively measuring charge mobilities in new materials in a standard device configuration.

  15. Design of shielded voltage divider for impulse voltage measurement

    International Nuclear Information System (INIS)

    Kato, Shohei; Kouno, Teruya; Maruyama, Yoshio; Kikuchi, Koji.

    1976-01-01

    The dividers used for the study of the insulation and electric discharge phenomena in high voltage equipments have the problems of the change of response characteristics owing to adjacent bodies and of induced noise. To improve the characteristics, the enclosed type divider shielded with metal has been investigated, and the divider of excellent response has been obtained by adopting the frequency-separating divider system, which is divided into two parts, resistance divider (lower frequency region) and capacitance divider (higher frequency region), for avoiding to degrade the response. Theoretical analysis was carried out in the cases that residual inductance can be neglected or can not be neglected in the small capacitance divider, and that the connecting wires are added. Next, the structure of the divider and the design of the electric field for the divider manufactured on the basis of the theory are described. The response characteristics were measured. The results show that 1 MV impulse voltage can be measured within the response time of 10 ns. Though this divider aims at the impulse voltage, the duration time of which is about that of standard lightning impulse, in view of the heat capacity because of the input resistance of 10.5 kΩ, it is expected that the divider can be applied to the voltage of longer duration time by increasing the input resistance in future. (Wakatsuki, Y.)

  16. Reverse engineering of inductive fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Pina, J M; Neves, M Ventim; Rodrigues, A L [Centre of Technology and Systems Faculdade de Ciencias e Tecnologia, Nova University of Lisbon Monte de Caparica, 2829-516 Caparica (Portugal); Suarez, P; Alvarez, A, E-mail: jmmp@fct.unl.p [' Benito Mahedero' Group of Electrical Applications of Superconductors Escuela de IngenierIas Industrials, University of Extremadura Avenida de Elvas s/n, 06006 Badajoz (Spain)

    2010-06-01

    The inductive fault current limiter is less compact and harder to scale to high voltage networks than the resistive one. Nevertheless, its simple construction and mechanical robustness make it attractive in low voltage grids. Thus, it might be an enabling technology for the advent of microgrids, low voltage networks with dispersed generation, controllable loads and energy storage. A new methodology for reverse engineering of inductive fault current limiters based on the independent analysis of iron cores and HTS cylinders is presented in this paper. Their electromagnetic characteristics are used to predict the devices' hysteresis loops and consequently their dynamic behavior. Previous models based on the separate analysis of the limiters' components were already derived, e.g. in transformer like equivalent models. Nevertheless, the assumptions usually made may limit these models' application, as shown in the paper. The proposed methodology obviates these limitations. Results are validated through simulations.

  17. Reverse engineering of inductive fault current limiters

    International Nuclear Information System (INIS)

    Pina, J M; Neves, M Ventim; Rodrigues, A L; Suarez, P; Alvarez, A

    2010-01-01

    The inductive fault current limiter is less compact and harder to scale to high voltage networks than the resistive one. Nevertheless, its simple construction and mechanical robustness make it attractive in low voltage grids. Thus, it might be an enabling technology for the advent of microgrids, low voltage networks with dispersed generation, controllable loads and energy storage. A new methodology for reverse engineering of inductive fault current limiters based on the independent analysis of iron cores and HTS cylinders is presented in this paper. Their electromagnetic characteristics are used to predict the devices' hysteresis loops and consequently their dynamic behavior. Previous models based on the separate analysis of the limiters' components were already derived, e.g. in transformer like equivalent models. Nevertheless, the assumptions usually made may limit these models' application, as shown in the paper. The proposed methodology obviates these limitations. Results are validated through simulations.

  18. Application of an imperialist competitive algorithm to the design of a linear induction motor

    International Nuclear Information System (INIS)

    Lucas, Caro; Nasiri-Gheidari, Zahra; Tootoonchian, Farid

    2010-01-01

    In this paper a novel optimization algorithm based on imperialist competitive algorithm (ICA) is used for the design of a low speed single sided linear induction motor (LIM). This type of motors is used increasingly in industrial process specially in transportation systems. In these applications having high efficiency with high power factor is very important. So in this paper the objective function of design is presented considering both efficiency and power factor. Finally the results of ICA are compared with the ones of genetic algorithm and conventional design. Comparison shows the success of ICA for design of LIMs.

  19. A Study on Energy Saving of Single Phase Induction Motor By Voltage Control

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jong Moon [Pusan College of Information Technolgy, Pusan (Korea); Kim, Joon Hong [Dong Myong College, Pusan (Korea)

    2001-06-01

    This paper describes a simple effective method for energy saving of AC motors having a widely variable load. The proposed method is based on an optimal efficiency control which is operated by voltage-current pattern such as to maintain the maximum efficiency on the efficiency-output characteristics of the motor, TRIAC voltage control characteristics. The parameters of simplified voltage-current pattern can be determined approximately and reliably from the rated voltage and current of the motor. Experiments are focused on a single phase capacitor motor, the optimal energy saving are proved by proposed method. (author). 8 refs., 15 figs.

  20. Responsive demand to mitigate slow recovery voltage sags

    DEFF Research Database (Denmark)

    Garcia-Valle, Rodrigo; da Silva, Luiz Carlos Pereira; Xu, Zhao

    2012-01-01

    , and reactive power reserve for peak load management through price responsive methods and also as energy providers through embedded generation technologies. This article introduces a new technology, called demand as voltagecontrolled reserve, which can help mitigation of momentary voltage sags. The technology...... faults. This article presents detailed models, discussion, and simulation tests to demonstrate the technical viability and effectiveness of the demand as voltage-controlled reserve technology for mitigating voltage sags....... can be provided by thermostatically controlled loads as well as other types of load. This technology has proven to be effective in distribution systems with a large composition of induction motors, when voltage sags present slow recovery characteristics because of the deceleration of the motors during...

  1. Performance Evaluation of Eleven-Phase Induction Machine with Different PWM Techniques

    Directory of Open Access Journals (Sweden)

    M.I. Masoud

    2015-06-01

    Full Text Available Multiphase induction machines are used extensively in low and medium voltage (MV drives. In MV drives, power switches have a limitation associated with switching frequency. This paper is a comparative study of the eleven-phase induction machine’s performance when used as a prototype and fed sinusoidal pulse-width-modulation (SPWM with a low switching frequency, selective harmonic elimination (SHE, and single pulse modulation (SPM techniques. The comparison depends on voltage/frequency controls for the same phase of voltage applied on the machine terminals for all previous techniques. The comparative study covers torque ripple, stator and harmonic currents, and motor efficiency.

  2. Magnetic field cycling effect on the non-linear current-voltage characteristics and magnetic field induced negative differential resistance in α-Fe1.64Ga0.36O3 oxide

    Directory of Open Access Journals (Sweden)

    R. N. Bhowmik

    2015-06-01

    Full Text Available We have studied current-voltage (I-V characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP 0.345(± 0.001 V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%, magnetoresistance (70-135 % and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.

  3. Magnetic field cycling effect on the non-linear current-voltage characteristics and magnetic field induced negative differential resistance in α-Fe1.64Ga0.36O3 oxide

    Science.gov (United States)

    Bhowmik, R. N.; Vijayasri, G.

    2015-06-01

    We have studied current-voltage (I-V) characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP) 0.345(± 0.001) V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (˜500-700%), magnetoresistance (70-135 %) and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.

  4. Identification and observability problems of the induction motor for sensor-less industrial speed variation; Problemes d'identification et d'observabilite du moteur a induction pour la variation de vitesse industrielle sans capteur

    Energy Technology Data Exchange (ETDEWEB)

    Malrait, F.

    2001-02-15

    In order to improve the efficiency of a speed variator or to make autonomous the control of induction motors without mechanical sensor, the speed variator must integrate with a good precision the parameters of the motor to which it is connected. In this work, an identification phase when the motor is off is proposed. This raises the problem of the modeling of the induction motor and of the power stage (saturation model, voltage drop in the power stage components) in an unusual operation zone for a speed variator. The knowledge of the off-line electrical parameters is thus not sufficient. During normal operation, the thermal drift of resistors leads to a parametric error which can create blocking problems in the low sped domain or which can significantly lower the efficiency. The low-speed zone has been analyzed. This zone contains some intrinsic properties of the induction motor: instability, non-observability (first order). The synthesis of an observer of the induction motor is proposed which is based on the linearization of the system around a trajectory. A construction method has been developed to generate a non-singular observer for a system changing with time and having observability singularities. This result comes from this study on systems having controllability singularities for linear systems with time-variable coefficients. An exogenous loop is explicitly proposed which allows to transform the original system into integrator chains without singularities. (J.S.)

  5. Voltage protection scheme for MG sets used to drive inductive energy storage systems

    International Nuclear Information System (INIS)

    Campen, G.L.; Easter, R.B.

    1977-01-01

    A recent tokamak proposal at ORNL called for MG (motor-generator) sets to drive the ohmic heating (OH] coil, which was to be subjected to 20 kV immediately after coil charge-up to initiate the experiment. Since most rotating machinery is inherently low voltage, including the machines available at ORNL, a mechanism was necessary to isolate the generators from the high voltage portions of the circuit before the appearance of this voltage. It is not the expected 20 kV at the coil that causes difficulty, because the main interrupting switch handles this. The voltage induced in the armature due to di/dt and the possibility of faults are the greatest causes for concern and are responsible for the complexity of the voltage protection scheme, which must accommodate any possible combination of fault time and location. Such a protection scheme is presented in this paper

  6. Low voltage initiation of damaging arcs between electrical contacts

    International Nuclear Information System (INIS)

    Cuthrell, R.E.

    1975-07-01

    Metallic arcs were found to precede the firm contacting of electrical contacts which were closed without bounce. When the open-circuit voltages were below the ionization potential, the initiation of these arcs was found to depend on the presence of asperities on the surfaces and on asperity contracting, melting, and pinching off by magnetic forces. The arc is thought to be initiated inductively when the molten metallic asperity contact is pinched off, and the electrode damage is similar to that produced by the arcing of opening contacts. Arcing could not be produced for exceptionally smooth surfaces, or, for rough surfaces when the open-circuit potential was below the melting voltages of the electrode metals. In order to prevent damage to contact surfaces by melting or arcing, it is suggested that test potentials be limited to below the melting voltages, that the current be limited, the test circuits be designed to prevent inductively generated high voltage transients, and the contact surfaces be very smooth. In order to facilitate arc initiation in arc welding applications, it is suggested that the surfaces of electrodes and work pieces be roughened. (U.S.)

  7. End Effects on the Linear Induction MHD Generator Calculated by Two-Sided Laplace Transform

    Energy Technology Data Exchange (ETDEWEB)

    Engeln, F.; Peschka, W. [Deutsche Versuchsanstalt fuer Luft- und Raumfahrt e.V., Institut fuer Energiewandlung und Elektrische Antriebe, Stuttgart, Federal Republic of Germany (Germany)

    1966-11-15

    In induction MHD systems special problems occur where the flow enters or leaves the magnetic field. These problems are generally described as end effects. Large gradients of the magnetic field are present at the inlet and also at the outlet of an MHD induction engine, these generating electric current systems in the fluid which may spoil the performance characteristics of the generator due to the interaction with the primary field of the engine. The two-dimensional induction MHD generator of finite length, using a polyphase winding system to obtain a travelling magnetic field, is treated as a boundary value problem by two-sided Laplace transform. For simplicity incompressibility is assumed. The two- dimensional boundary value problem of the induction engine is solved for - {infinity} Less-Than-Over-Equal-To x Less-Than-Over-Equal-To {infinity}. x is parallel to the flow direction of the linear MHD generator. In the region 0 Less-Than-Over-Equal-To x Less-Than-Over-Equal-To L the magnetic travelling wave is sinusoidal with a cyclical frequency {omega} and a phase-velocity v{sub s}. At x = 0 the conducting incompressible working fluid enters the field region and leaves it at the point-x = L. Two mathematical methods can be used to solve the boundary value problem, the Fourier transform or the two-sided Laplace transform. The latter offers the advantage of representing a complex analytical function in the image space. Moreover, it is possible to obtain the characteristics of the generator in the image space (e. g. field configuration, power flow function, etc.). That implies a large simplification of mathematical treatment. The solution in the original space then is given by asymptotic expansion of the known image function. (author)

  8. Design, in-sodium testing and performance evaluation of annular linear induction pump for a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Nashine, B.K.; Rao, B.P.C.

    2014-01-01

    Highlights: • Derivation of applicable design equations. • Design of an annular induction pump based on these equations. • Testing of the designed pump in a sodium test facility. • Performance evaluation of the designed pump. - Abstract: Annular linear induction pumps (ALIPs) are used for pumping electrically conducting liquid metals. These pumps find wide application in fast reactors since the coolant in fast reactors is liquid sodium which a good conductor of electricity. The design of these pumps is usually done using equivalent circuit approach in combination with numerical simulation models. The equivalent circuit of ALIP is similar to that of an induction motor. This paper presents the derivation of equivalent circuit parameters using first principle approach. Sodium testing of designed ALIP using the equivalent circuit approach is also described and experimental results of the testing are presented. Comparison between experimental and analytical calculations has also been carried out. Some of the reasons for variation have also been listed in this paper

  9. Axial electric wake field inside the induction gap exited by the intense electron beam

    International Nuclear Information System (INIS)

    Zhang Kaizhi; Zhang Huang; Long Jidong; Yang Guojun; He Xiaozhong; Wang Huacen

    2008-01-01

    While an intense electron beam passes through the accelerating gaps of a linear induction accelerator, a strong wake field will be excited. In this paper a relatively simple model is established based on the interaction between the transverse magnetic wake field and the electron beam, and the numerical calculation in succession generates a magnetic wake field distribution along the accelerator and along the beam pulse as well. The axial electric wake field is derived based on the relation between field components of a resonant mode. According to some principles in existence, the influence of this field on the high voltage properties of the induction gap is analyzed. The Dragon-I accelerator is taken as an example, and its maximum electric wake field is about 17 kV/cm, which means the effect of the wake field is noticeable. (authors)

  10. The current-voltage characteristic and potential oscillations of a double layer in a triple plasma device

    International Nuclear Information System (INIS)

    Carpenter, R.T.; Torven, S.

    1986-07-01

    The properties of a strong double layer in a current circuit with a capacitance and an inductance are investigated in a triple plasma device. The double layer gives rise to a region of negative differential resistance in the current-voltage characteristic of the device, and this gives non-linear oscillations in the current and the potential drop over the double layer (PhiDL). For a sufficiently large circuit inductance PhiDL reaches an amplitude given by the induced voltage (-LdI/dt) which is much larger than the circuit EMF due to the rapid current decrease when PhiDL increases. A variable potential minimum exists in the plasma on the low potential side of the double layer, and the depth of the minimum increases when PhiDL increases. An increasing fraction of the electrons incident at the double layer are then reflected, and this is found to be the main process giving rise to the negative differential resistance. A qualitative model for the variation of the minimum potential with PhiDL is also proposed. It is based on the condition that the minimum potential must adjust itself self-consistentely so that quasi-neutrality is maintained in the plasma region where the minimum is assumed. (authors)

  11. Particle Swarm Based Approach of a Real-Time Discrete Neural Identifier for Linear Induction Motors

    Directory of Open Access Journals (Sweden)

    Alma Y. Alanis

    2013-01-01

    Full Text Available This paper focusses on a discrete-time neural identifier applied to a linear induction motor (LIM model, whose model is assumed to be unknown. This neural identifier is robust in presence of external and internal uncertainties. The proposed scheme is based on a discrete-time recurrent high-order neural network (RHONN trained with a novel algorithm based on extended Kalman filter (EKF and particle swarm optimization (PSO, using an online series-parallel con…figuration. Real-time results are included in order to illustrate the applicability of the proposed scheme.

  12. Coordinated Voltage Control Scheme for SEIG-Based Wind Park Utilizing Substation STATCOM and ULTC Transformer

    DEFF Research Database (Denmark)

    S. El Moursi, Mohamed; Bak-Jensen, Birgitte; Abdel-Rahman, Mansour Hassan

    2011-01-01

    and optimal tracking secondary voltage control for wind parks based on self-excited induction generators which comprise STATCOM and under-load tap changer (ULTC) substation transformers. The voltage controllers for the STATCOM and ULTC transformer are coordinated and ensure the voltage support. In steady...

  13. Induction of divalent cation permeability by heterologous expression of a voltage sensor domain.

    Science.gov (United States)

    Arima, Hiroki; Tsutsui, Hidekazu; Sakamoto, Ayako; Yoshida, Manabu; Okamura, Yasushi

    2018-01-06

    The voltage sensor domain (VSD) is a protein domain that confers sensitivity to membrane potential in voltage-gated ion channels as well as the voltage-sensing phosphatase. Although VSDs have long been considered to function as regulatory units acting on adjacent effectors, recent studies have revealed the existence of direct ion permeation paths in some mutated VSDs and in the voltage-gated proton channel. In this study, we show that calcium currents are evoked upon membrane hyperpolarization in cells expressing a VSD derived from an ascidian voltage-gated ion channel superfamily. Unlike the previously reported omega-pore in the Shaker K + channel and rNav1.4, mutations are not required. From electrophysiological experiments in heterologous expression systems, we found that the conductance is directly mediated by the VSD itself and is carried by both monovalent and divalent cations. This is the first report of divalent cation permeation through a VSD-like structure. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. High-voltage nanosecond Marx generator with quasi-rectangular pulses

    International Nuclear Information System (INIS)

    Bulan, V.V.; Grabovskij, E.V.; Gribov, A.N.; Luzhnov, V.G.

    1999-01-01

    The automated high-voltage nanosecond generator, forming single pulses of any polarity on the load of 17 Ohm with polarity voltage from 100 up to 300 kV at the semiheight of 80 ns and the front of 7 ns is described. The generator is assembled on the basis of low-inductive capacitors, which by discharge form the pulse, close by form to rectangular one [ru

  15. Analysis on voltage stability of PFN in modulator using De-Qing network

    International Nuclear Information System (INIS)

    Wang Dong; Zhang Yongming; Zhu Fuquan

    1987-01-01

    Using the numerical simulation of PFN charging circuit and De-Qing network, a study of voltage stability of BEPC 80 MW klystron pulse modulator has been carried out. The results presented in the paper indicate the quantitative correlation between leakage inductance and voltage stability

  16. Distributed Monitoring of Voltage Collapse Sensitivity Indices

    OpenAIRE

    Simpson-Porco, John W.; Bullo, Francesco

    2016-01-01

    The assessment of voltage stability margins is a promising direction for wide-area monitoring systems. Accurate monitoring architectures for long-term voltage instability are typically centralized and lack scalability, while completely decentralized approaches relying on local measurements tend towards inaccuracy. Here we present distributed linear algorithms for the online computation of voltage collapse sensitivity indices. The computations are collectively performed by processors embedded ...

  17. Rail Brake System Using a Linear Induction Motor for Dynamic Braking

    Science.gov (United States)

    Sakamoto, Yasuaki; Kashiwagi, Takayuki; Tanaka, Minoru; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo

    One type of braking system for railway vehicles is the eddy current brake. Because this type of brake has the problem of rail heating, it has not been used for practical applications in Japan. Therefore, we proposed the use of a linear induction motor (LIM) for dynamic braking in eddy current brake systems. The LIM reduces rail heating and uses an inverter for self excitation. In this paper, we estimated the performance of an LIM from experimental results of a fundamental test machine and confirmed that the LIM generates an approximately constant braking force under constant current excitation. At relatively low frequencies, this braking force remains unaffected by frequency changes. The reduction ratio of rail heating is also approximately proportional to the frequency. We also confirmed that dynamic braking resulting in no electrical output can be used for drive control of the LIM. These characteristics are convenient for the realization of the LIM rail brake system.

  18. Linear Modeling of the Three-Phase Diode Front-Ends with Reduced Capacitance Considering the Continuous Conduction Mode

    DEFF Research Database (Denmark)

    Máthé, Lászlo; Yang, Feng; Wang, Dong

    2016-01-01

    for the entire drive systems have to be designed. A linearization and simplification to single phase model can be performed; however, when inductance is present at the grid side its performance is not satisfactory. The problem is mainly caused by neglecting the continuous conduction mode of the rectifier......Reducing the DC-link capacitance considerably is a new trend in many applications, such as: motor drives, electrolysers etc.. A straight forward method for modelling the diode front-end is to build a non-linear diode based model. This non-linear model gives difficulties when the controllers...... in the simplified model. This article proposes a simplified linear model where the continuous conduction mode is also considered. The DC-link voltage and current waveforms obtained through the proposed simplified model matches very well the waveforms obtained with the three phase diode based model and also...

  19. Critical system issues and modeling requirements - the problem of beam energy sweep in an electron linear induction accelerator

    International Nuclear Information System (INIS)

    Turner, W.C.; Barrett, D.M.; Sampayan, S.E.

    1991-01-01

    In this paper the authors attempt to motivate the development of modeling tools for linear induction accelerator components by giving examples of performance limitations related to energy sweep. The most pressing issues is the development of an accurate model of the switching behavior of large magnetic cores at high dB/dt in the accelerator and magnetic compression modulators. Ideally one would like to have a model with as few parameters as possible that allows the user to choose the core geometry and magnetic material and perhaps a few parameters characterizing the switch model. Beyond this, the critical modeling tasks are: simulation of a magnetic compression modulator, modeling the reset dynamics of a magnetic compression modulator, modeling the loading characteristics of a linear induction accelerator cell, and modeling the electron injector current including the dynamics of feedback modulation and beam loading in an accelerator cell. Of course in the development of these models care should be given to benchmarking them against data from experimental systems. Beyond that one should aim for tools that have predictive power so that they can be used as design tools and not merely to replicate existing data

  20. Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique

    Science.gov (United States)

    Mozer, A. J.; Sariciftci, N. S.; Lutsen, L.; Vanderzande, D.; Österbacka, R.; Westerling, M.; Juška, G.

    2005-03-01

    Charge carrier mobility and recombination in a bulk heterojunction solar cell based on the mixture of poly[2-methoxy-5-(3,7-dimethyloctyloxy)-phenylene vinylene] (MDMO-PPV) and 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)-C61 (PCBM) has been studied using the novel technique of photoinduced charge carrier extraction in a linearly increasing voltage (Photo-CELIV). In this technique, charge carriers are photogenerated by a short laser flash, and extracted under a reverse bias voltage ramp after an adjustable delay time (tdel). The Photo-CELIV mobility at room temperature is found to be μ =2×10-4cm2V-1s-1, which is almost independent on charge carrier density, but slightly dependent on tdel. Furthermore, determination of charge carrier lifetime and demonstration of an electric field dependent mobility is presented.

  1. DEVELOPMENT OF CONTROLLED RECTIFIERS BASED ON THE BIPOLAR WITH STATIC INDUCTION TRANSISTORS (BSIT

    Directory of Open Access Journals (Sweden)

    F. I. Bukashev

    2016-01-01

    Full Text Available Aim. The aim of this study is to develop one of the most perspective semiconductor device suitable for creation and improvement of controlled rectifiers, bipolar static induction transistor.Methods. Considered are the structural and schematic circuit controlled rectifier based on bipolar static induction transistor (BSIT, and the criterion of effectiveness controlled rectifiers - equivalent to the voltage drop.Results. Presented are the study results of controlled rectifier layout on BSIT KT698I. It sets the layout operation at an input voltage of 2.0 V at a frequency up to 750 kHz. The efficiency of the studied layouts at moderate current densities as high as 90 % .Offered is optimization of technological route microelectronic controlled rectifier manufacturing including BSIT and integrated bipolar elements of the scheme management.Conclusion. It is proved that the most efficient use of the bipolar static induction transistor occurs at the low voltage controlled rectifiers 350-400 kHz, at frequencies in conjunction with a low-voltage control circuit.It is proved that the increase of the functional characteristics of the converters is connected to the expansion of the input voltage and output current ranges

  2. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    Science.gov (United States)

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  3. AIRGAP MAGNETIC INDUCTION DISTRIBUTION IN A COAXIALLY-LINEAR SYNCHRONOUS MOTOR WITH AXIAL AND RADIAL DIRECTION OF THE RUNNER PERMANENT MAGNETS MAGNETIZATION

    Directory of Open Access Journals (Sweden)

    Abbasian Mohsen

    2013-02-01

    Full Text Available Results of theoretical and experimental research on magnetic induction distribution in the air gap of a coaxially-linear synchronous motor with reciprocal motion within the pole pitch and axial and radial direction of the permanent magnets magnetization are presented.

  4. Simulation of magnetic induction distribution in a coaxial linear motor with axial and radial direction of permanent magnets magnetization

    Directory of Open Access Journals (Sweden)

    G.M. Golenkov

    2014-03-01

    Full Text Available The paper presents results of computer simulation and experimental study of magnetic induction distribution in a coaxial linear motor air gap throughout the length of the runner active part at different heights of the air gap between the runner and the inductor magnetic core for motors with axial and radial direction of the permanent magnets magnetization.

  5. A compact 100 kV high voltage glycol capacitor.

    Science.gov (United States)

    Wang, Langning; Liu, Jinliang; Feng, Jiahuai

    2015-01-01

    A high voltage capacitor is described in this paper. The capacitor uses glycerol as energy storage medium, has a large capacitance close to 1 nF, can hold off voltages of up to 100 kV for μs charging time. Allowing for low inductance, the capacitor electrode is designed as coaxial structure, which is different from the common structure of the ceramic capacitor. With a steady capacitance at different frequencies and a high hold-off voltage of up to 100 kV, the glycol capacitor design provides a potential substitute for the ceramic capacitors in pulse-forming network modulator to generate high voltage pulses with a width longer than 100 ns.

  6. The effect of the novel internal-type linear inductive antenna for large area magnetized inductive plasma source

    Science.gov (United States)

    Lee, S. H.; Shulika, Olga.; Kim, K. N.; Yeom, G. Y.; Lee, J. K.

    2004-09-01

    As the technology of plasma processing progresses, there is a continuing demand for higher plasma density, uniformity over large areas and greater control over plasma parameters to optimize the processes of etching, deposition and surface treatment. Traditionally, the external planar ICP sources with low pressure high density plasma have limited scale-up capabilities due to its high impedance accompanied by the large antenna size. Also due to the cost and thickness of their dielectric material in order to generate uniform plasma. In this study the novel internal-type linear inductive antenna system (1,020mm¡¿830mm¡¿437mm) with permanent magnet arrays are investigated to improve both the plasma density and the uniformity of LAPS (Large Area Plasma Source) for FPD processing. Generally plasma discharges are enhanced because the inductance of the novel antenna (termed as the double comb antenna) is lower than that of the serpentine-type antenna and also the magnetic confinement of electron increases the power absorption efficiency. The uniformity is improved by reducing the standing wave effect. The total length of antenna is comparable to the driving rf wavelength to cause the plasma nonuniformity. To describe the discharge phenomenon we have developed a magnetized two-dimensional fluid simulation. This work was supported by National Research Laboratory (NRL) Program of the Korea Ministry of Science and Technology. [References] 1. J.K.Lee, Lin Meng, Y.K.Shin, H,J,Lee and T.H.Chung, ¡°Modeling and Simulation of a Large-Area Plasma Source¡±, Jpn. J. Appl. Phys. Vol.36(1997) pp. 5714-5723 2. S.E.Park, B.U.Cho, Y.J.Lee*, and G.Y.Yeom*, and J.K.Lee, ¡°The Characteristics of Large Area Processing Plasmas¡±, IEEE Trans. Plasma Sci., Vol.31 ,No.4(2003) pp. 628-637

  7. Loss of Excitation Detection in Doubly Fed Induction Generator by Voltage and Reactive Power Rate

    Directory of Open Access Journals (Sweden)

    M. J. Abbasi

    2016-12-01

    Full Text Available The doubly fed induction generator (DFIG is one of the most popular technologies used in wind power systems. With the growing use of DFIGs and increasing power system dependence on them in recent years, protecting of these generators against internal faults is more considered. Loss of excitation (LOE event is among the most frequent failures in electric generators. However, LOE detection studies heretofore were usually confined to synchronous generators. Common LOE detection methods are based on impedance trajectory which makes the system slow and also prone to interpret a stable power swing (SPS as a LOE fault. This paper suggests a new method to detect the LOE based on the measured variables from the DFIG terminal. In this combined method for LOE detection, the rate of change of both the terminal voltage and the output reactive power are utilized and for SPS detection, the fast Fourier transform (FFT analysis of the output instantaneous active power has been used. The performance of the proposed method was evaluated using Matlab/Simulink interface for various power capacities and operating conditions. The results proved the method's quickness, simplicity and security.

  8. Test Stand for Linear Induction Accelerator Optimization

    International Nuclear Information System (INIS)

    Ong, M; DeHope, B; Griffin, K; Goerz, D; Kihara, R; Vogtlin, G; Zentler, J M; Scarpetti, R

    2003-01-01

    Lawrence Livermore National Laboratory has designed and constructed a test stand to improve the voltage regulation in our Flash X-Ray (FXR) accelerator cell. The goal is to create a more mono-energetic electron beam that will create an x-ray source with a smaller spot size. Studying the interaction of the beam and pulse-power system with the accelerator cell will improve the design of high-current accelerators at Livermore and elsewhere. On the test stand, a standard FXR cell is driven by a flexible pulse-power system and the beam current is simulated with a switched center conductor. The test stand is fully instrumented with high-speed digitizers to document the effect of impedance mismatches when the cell is operated under various full-voltage conditions. A time-domain reflectometry technique was also developed to characterize the beam and cell interactions by measuring the impedance of the accelerator and pulse-power component. Computer models are being developed in parallel with the testing program to validate the measurements and evaluate different design changes. Both 3D transient electromagnetic and circuit models are being used

  9. High-voltage nanosecond pulse shaper

    International Nuclear Information System (INIS)

    Kapishnikov, N.K.; Muratov, V.M.; Shatanov, A.A.

    1987-01-01

    A high-voltage pulse shaper with an output of up to 250 kV, a base duration of ∼ 10 nsec, and a repetition frequency of 50 pulses/sec is described. The described high-voltage nanosecond pulse shaper is designed for one-orbit extraction of an electron beam from a betatron. A diagram of the pulse shaper, which employs a single-stage generator is shown. The shaping element is a low-inductance capacitor bank of series-parallel KVI-3 (2200 pF at 10 kV) or K15-10 (4700 pF at 31.5 kV) disk ceramic capacitors. Four capacitors are connected in parallel and up to 25 are connected in series

  10. An interleaved structure for a high-voltage planar transformer for a Travelling-wave Tube

    DEFF Research Database (Denmark)

    Zhao, Bin; Wang, Gang; Hurley, William G.

    2016-01-01

    Fully interleaved structure can significantly reduce leakage inductance in transformers, However, it is hard to apply them into high-voltage applications due to the electric insulation. In this paper, a partially interleaved structure that is suitable for high-voltage high frequency applications...... is proposed to reduce leakage inductance and the insulation’s thickness is adjusted to optimize the electric isolation. In addition, the resistance and parasitic capacitance are investigated. With this method, a planar transformer used for a Travelling-Wave Tube Amplifier (TWTA) is designed. Calculations...

  11. A model of annular linear induction pumps

    Energy Technology Data Exchange (ETDEWEB)

    Momozaki, Yoichi [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-27

    The present work explains how the magnetic field and the induced current are obtained when the distributed coils are powered by a 3 phase power supply.  From the magnetic field and the induced current, the thrust and the induction losses in the pump can be calculated to estimate the pump performance.

  12. Manipulating the voltage dependence of tunneling spin torques

    KAUST Repository

    Manchon, Aurelien

    2012-01-01

    Voltage-driven spin transfer torques in magnetic tunnel junctions provide an outstanding tool to design advanced spin-based devices for memory and reprogrammable logic applications. The non-linear voltage dependence of the torque has a direct impact

  13. A novel transient rotor current control scheme of a doubly-fed induction generator equipped with superconducting magnetic energy storage for voltage and frequency support

    Science.gov (United States)

    Shen, Yang-Wu; Ke, De-Ping; Sun, Yuan-Zhang; Daniel, Kirschen; Wang, Yi-Shen; Hu, Yuan-Chao

    2015-07-01

    A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator (DFIG) equipped with a superconducting magnetic energy storage (SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter (GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter (RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive (priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method. Project supported by the National Natural Science Foundation of China (Grant No. 51307124) and the Major Program of the National Natural Science Foundation of China (Grant No. 51190105).

  14. Fast switching thyristor applied in nanosecond-pulse high-voltage generator with closed transformer core.

    Science.gov (United States)

    Li, Lee; Bao, Chaobing; Feng, Xibo; Liu, Yunlong; Fochan, Lin

    2013-02-01

    For a compact and reliable nanosecond-pulse high-voltage generator (NPHVG), the specification parameter selection and potential usage of fast controllable state-solid switches have an important bearing on the optimal design. The NPHVG with closed transformer core and fast switching thyristor (FST) was studied in this paper. According to the analysis of T-type circuit, the expressions for the voltages and currents of the primary and secondary windings on the transformer core of NPHVG were deduced, and the theoretical maximum analysis was performed. For NPHVG, the rise-rate of turn-on current (di/dt) across a FST may exceed its transient rating. Both mean and maximum values of di/dt were determined by the leakage inductances of the transformer, and the difference is 1.57 times. The optimum winding ratio is helpful to getting higher voltage output with lower specification FST, especially when the primary and secondary capacitances have been established. The oscillation period analysis can be effectively used to estimate the equivalent leakage inductance. When the core saturation effect was considered, the maximum di/dt estimated from the oscillating period of the primary current is more accurate than one from the oscillating period of the secondary voltage. Although increasing the leakage inductance of NPHVG can decrease di/dt across FST, it may reduce the output peak voltage of the NPHVG.

  15. An Inexpensive Source of High Voltage

    Science.gov (United States)

    Saraiva, Carlos

    2012-01-01

    As a physics teacher I like recycling old apparatus and using them for demonstrations in my classes. In physics laboratories in schools, sources of high voltage include induction coils or electronic systems that can be bought from companies that sell lab equipment. But these sources can be very expensive. In this article, I will explain how you…

  16. Co-wound voltage sensor R ampersand D for TPX magnets

    International Nuclear Information System (INIS)

    Chaplin, M.R.; Martovetsky, N.N.; Zbasnik, J.

    1995-01-01

    The Tokamak Physics Experiment (TPX) will be the first tokamak to use superconducting cable-in-conduit-conductors (CICC) in all Poloidal Field (PF) ampersand Toroidal Field (TF) magnets. Conventional quench detection, the measurement of small resistive normal-zone voltages ( 4 kV). In the quench detection design for TPX, we have considered several different locations for internal co-wound voltage sensors in the cable cross-section as the primary mechanism to cancel this inductive noise. The Noise Rejection Experiment (NRE) at LLNL and the Noise Injection Experiment (NIE) at MIT have been designed to evaluate which internal locations will produce the best inductive-noise cancellation, and provide us with experimental data to calibrate analysis codes. The details of the experiments and resulting data are presented

  17. The light ion pulsed power induction accelerator for ETF

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Olson, R.E.; Olson, C.L.; Smith, D.L.; Bennett, L.F.

    1994-01-01

    Our Engineering Test Facility (ETF) driver concept is based on HERMES III and RHEPP technologies. Actually, it is a scaled-down version of the LMF design incorporating repetition rate capabilities of up to 10 Hz CW. The preconceptual design presented here provides 200-TW peak power to the ETF target during 10 ns, equal to 2-MJ total ion beam energy. Linear inductive voltage addition driving a self-magnetically insulated transmission line (MITL) is utilized to generate the 36-MV peak voltage needed for lithium ion beams. The ∼ 3-MA ion current is achieved by utilizing many accelerating modules in parallel. Since the current per module is relatively modest (∼300 kA), two-stage or one-stage extraction diodes can be utilized for the generation of singly charged lithium ions. The accelerating modules are arranged symmetrically around the fusion chamber in order to provide uniform irradiation onto the ETF target. In addition, the modules are fired in a programmed sequence in order to generate the optimum power pulse shape onto the target. This design utilizes RHEPP accelerator modules as the principal power source

  18. Characteristics of a large vacuum wave precursor on the SABRE voltage adder MITL and extraction ion diode

    International Nuclear Information System (INIS)

    Cuneo, M.E.; Hanson, D.L.; Menge, P.R.; Poukey, J.W.; Savage, M.E.

    1994-01-01

    SABRE (Sandia Accelerator and Beam Research Experiment) is a ten-cavity linear induction magnetically insulated voltage adder (6 MV, 300 kA) operated in positive polarity to investigate issues relevant to ion beam production and propagation for inertial confinement fusion. The voltage adder section is coupled to an applied-B extraction ion diode via a long coaxial output transmission line. Observations indicate that the power propagates in a vacuum wave prior to electron emission. After the electron emission threshold is reached, power propagates in a magnetically insulated wave. The precursor is observed to have a dominant impact on he turn-on, impedance history, and beam characteristics of applied-B ion diodes since the precursor voltage is large enough to cause electron emission at the diode from both the cathode feed and cathode tips. The amplitude of the precursor at the load (3--4.5 MV) is a significant fraction of the maximum load voltage (5--6 MV) because (1) the transmission line gaps ( ∼ 9 cm at output) and therefore impedances are relatively large, and hence the electric field threshold for electron emission (200 to 300 kV/cm) is not reached until well into the power pulse rise time; and (2) the rapidly falling forward wave and diode impedance reduces the ratio of main pulse voltage to precursor voltage. Experimental voltage and current data from the transmission line and the ion diode will be presented and compared with TWOQUICK (2-D electromagnetic PIC code) simulations and analytic models

  19. Enhancing Linearity of Voltage Controlled Oscillator Thermistor Signal Conditioning Circuit Using Linear Search

    Science.gov (United States)

    Rana, K. P. S.; Kumar, Vineet; Prasad, Tapan

    2018-02-01

    Temperature to Frequency Converters (TFCs) are potential signal conditioning circuits (SCCs) usually employed in temperature measurements using thermistors. A NE/SE-566 based SCC has been recently used in several reported works as TFC. Application of NE/SE-566 based SCC requires a mechanism for finding the optimal values of SCC parameters yielding the optimal linearity and desired sensitivity performances. Two classical methods, namely, inflection point and three point have been employed for this task. In this work, the application of these two methods, on NE/SE-566 based SCC in TFC, is investigated in detail and the conditions for its effective usage are developed. Further, since these classical methods offer an approximate linearization of temperature and frequency relationship an application of a linear search based technique is proposed to further enhance the linearity. The implemented linear search method used results obtained from the above mentioned classical methods. The presented simulation studies, for three different industrial grade thermistors, revealed that the linearity enhancements of 21.7, 18.3 and 17.8% can be achieved over the inflection point method and 4.9, 4.7 and 4.7% over the three point method, for an input temperature range of 0-100 °C.

  20. OPTIMAL CONTROL OF A NONLINEAR COUPLED ELECTROMAGNETIC INDUCTION HEATING SYSTEM WITH POINTWISE STATE CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    Irwin Yousept

    2010-07-01

    Full Text Available An optimal control problem arising in the context of 3D electromagnetic induction heating is investigated. The state equation is given by a quasilinear stationary heat equation coupled with a semilinear time harmonic eddy current equation. The temperature-dependent electrical conductivity and the presence of pointwise inequality state-constraints represent the main challenge of the paper. In the first part of the paper, the existence and regularity of the state are addressed. The second part of the paper deals with the analysis of the corresponding linearized equation. Some suffcient conditions are presented which guarantee thesolvability of the linearized system. The final part of the paper is concerned with the optimal control. The aim of the optimization is to find the optimal voltage such that a desired temperature can be achieved optimally. The corresponding first-order necessary optimality condition is presented.

  1. Phase Method of Invariant Measurement of Active-Inductive Measuring Two-Pole Parameters

    Directory of Open Access Journals (Sweden)

    Boris MAMIKONYAN

    2017-04-01

    Full Text Available There has been given the solution of the technical problem of separate measurement of parameters of inductance coils and inductive primary converters on alternating current without application of potential-current signals. As a measuring circuit the scheme of voltage divider with active-inductive two-pole is used, and as an output signal there has been used the angle of phase shift between two output voltages of the measuring circuit. For forming the output signal temporal separation of measurement channel is used. The advantages of phase method are mostly due to capacity of using microcontrollers. In the technical solutions under consideration the microcontroller regulates the measuring process and develops the measurement results.

  2. Mechanism of Occurring Over-Voltage Phenomena in Distributed Power System on Energization of Transformers

    Science.gov (United States)

    Nakachi, Yoshiki; Ueda, Fukashi; Kajikawa, Takuya; Amau, Tooru; Kameyama, Hirokazu; Ito, Hisanori

    This paper verifies the mechanism of occurring over voltage phenomena in the distributed power system on energizing the transformer. This over-voltage, which is observed at the actual distributed power system, with heavy inrush current is found to occur at about 0.1-0.2sec after the energizing and continue for a duration of more than 0.1[sec]. There is a concern that this over-voltage may operate the protection relay and deteriorate the insulation of apparatus. It is basically caused by the resonance between the shunt capacitors and saturated/unsaturated magnetizing inductance of transformer, system inductance. By using analytical formulation of a simple equivalent circuit, its mechanism has been verified through simulations carried out by using EMTP. Moreover, the sympathetic interaction between transformers is prolonged the duration of the over-voltage by the field test data is discussed in this paper.

  3. Flux modeling and analysis of a linear induction motor for steel mill non-contacting conveyance system application

    International Nuclear Information System (INIS)

    Liu, C.-T.; Lin, S.-Y.; Yang, Y.-Y.

    2005-01-01

    A detailed mathematical approach for analyzing static/dynamic characteristics of a linear induction motor for steel mill non-contacting conveyance system application will be provided. The dependent reluctances among the motor secondary steel plate and primary poles have been systematically formulated; hence, the operational performance of the system can be derived conveniently. Results showed that not only the motor structure is suitable for the design objective, but also the proposed magnetic equivalent circuit can provide appropriate and convenient modeling for relative analytical investigations

  4. The effect of fault ride-through requirements on voltage dips and post-fault voltage recovery in a Dutch distribution network

    NARCIS (Netherlands)

    Karaliolios, P.; Coster, E.J.; Slootweg, J.G.; Kling, W.L.

    2010-01-01

    In this paper the possibility to use Decentralized Generation (DG) units for voltage support in Distribution Networks during and after a Short Circuit (S/C) event is discussed. Two types of DG units will be examined, Combined Heat-Power (CHP) plants and Doubly-Fed Induction Generators (DFIG).

  5. High-Efficiency Isolated Boost DCDC Converter for High-Power Low-Voltage Fuel-Cell Applications

    DEFF Research Database (Denmark)

    Nymand, Morten; Andersen, Michael A. E.

    2010-01-01

    high winding losses. The analysis of transformer leakage inductance reveals that extremely low leakage inductance can be achieved, allowing stored energy to be dissipated. Power MOSFETs fully rated for repetitive avalanches allow primary-side voltage clamp circuits to be eliminated. The oversizing...

  6. Circuit models and three-dimensional electromagnetic simulations of a 1-MA linear transformer driver stage

    Directory of Open Access Journals (Sweden)

    D. V. Rose

    2010-09-01

    Full Text Available A 3D fully electromagnetic (EM model of the principal pulsed-power components of a high-current linear transformer driver (LTD has been developed. LTD systems are a relatively new modular and compact pulsed-power technology based on high-energy density capacitors and low-inductance switches located within a linear-induction cavity. We model 1-MA, 100-kV, 100-ns rise-time LTD cavities [A. A. Kim et al., Phys. Rev. ST Accel. Beams 12, 050402 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050402] which can be used to drive z-pinch and material dynamics experiments. The model simulates the generation and propagation of electromagnetic power from individual capacitors and triggered gas switches to a radially symmetric output line. Multiple cavities, combined to provide voltage addition, drive a water-filled coaxial transmission line. A 3D fully EM model of a single 1-MA 100-kV LTD cavity driving a simple resistive load is presented and compared to electrical measurements. A new model of the current loss through the ferromagnetic cores is developed for use both in circuit representations of an LTD cavity and in the 3D EM simulations. Good agreement between the measured core current, a simple circuit model, and the 3D simulation model is obtained. A 3D EM model of an idealized ten-cavity LTD accelerator is also developed. The model results demonstrate efficient voltage addition when driving a matched impedance load, in good agreement with an idealized circuit model.

  7. Resistorless Electronically Tunable Grounded Inductance Simulator Design

    OpenAIRE

    Herencsár, Norbert; Kartci, Aslihan

    2017-01-01

    A new realization of grounded lossless positive inductance simulator (PIS) using simple inverting voltage buffer and unity-gain current follower/inverter (CF±) is reported. Considering the input intrinsic resistance of CF± as useful active parameter, the proposed PIS can be considered as resistorless circuit and it only employs in total 16 Metal-Oxide-Semiconductor (MOS) transistors and a grounded capacitor. The resulting equivalent inductance value of the proposed simulator can be adjusted v...

  8. A New High Frequency Injection Method Based on Duty Cycle Shifting without Maximum Voltage Magnitude Loss

    DEFF Research Database (Denmark)

    Wang, Dong; Lu, Kaiyuan; Rasmussen, Peter Omand

    2015-01-01

    The conventional high frequency signal injection method is to superimpose a high frequency voltage signal to the commanded stator voltage before space vector modulation. Therefore, the magnitude of the voltage used for machine torque production is limited. In this paper, a new high frequency...... amplitude. This may be utilized to develop new position estimation algorithm without involving the inductance in the medium to high speed range. As an application example, a developed inductance independent position estimation algorithm using the proposed high frequency injection method is applied to drive...... injection method, in which high frequency signal is generated by shifting the duty cycle between two neighboring switching periods, is proposed. This method allows injecting a high frequency signal at half of the switching frequency without the necessity to sacrifice the machine fundamental voltage...

  9. Indigenous development of 20 Cu. M/hr flat linear induction pump (Paper No. 047)

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, R; Prakash, V; Sundarasekaran, S

    1987-01-01

    A distinctive physical property of sodium metal which is used as a coolant in fast reactors, is its high electrical conductivity. This together with its ability to wet stainless steel permits fluid pumping techniques using electromagnetic devices. Electromagnetic pumps are analogous to the electric motor, in which a force is produced by the interaction of magnetic field and current flowing in a conductor. Flat linear induction pump (FLIP) whose operating principle is similar to that of an induction motor is one of the types of electromagnetic pumps in wide use in auxilary circuits of fast reactors. As part of efforts to develop fast reactor components indigenously, work on the design and construction of a prototype FLIP rated for 20Cu.M/hr and 5Kg/sq.cm at 550degC was initiated. Under Board of Research in Nuclear Sciences scheme, the design was carried out by the Electrical Engineering Department of IIT, Madras. Pump was constructed at Engineering Development Division, Indira Gandhi Centre for Atomic Research, Kalpakkam. This paper presents in detail the work carried out for the fabrication of flow channel and for the stator assembly. Results obtained from dry electrical tests are also reported. Appendix summarises the design data. (author).

  10. Design of a low parasitic inductance SiC power module with double-sided cooling

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fei [The University of Tennessee, Knoxville; Liang, Zhenxian [Cree Inc.; Wang, Fei [ORNL; Wang, Zhiqiang [ORNL

    2017-03-01

    In this paper, a low-parasitic inductance SiC power module with double-sided cooling is designed and compared with a baseline double-sided cooled module. With the unique 3D layout utilizing vertical interconnection, the power loop inductance is effectively reduced without sacrificing the thermal performance. Both simulations and experiments are carried out to validate the design. Q3D simulation results show a power loop inductance of 1.63 nH, verified by the experiment, indicating more than 60% reduction of power loop inductance compared with the baseline module. With 0Ω external gate resistance turn-off at 600V, the voltage overshoot is less than 9% of the bus voltage at a load of 44.6A.

  11. Direct Torque Control with Full Order Stator Flux Observer for Dual-Three Phase Induction Motor Drives

    Science.gov (United States)

    Farina, Francesco; Bojoi, Radu; Tenconi, Alberto; Profumo, Francesco

    A Direct Torque Control (DTC) strategy for dual-three phase induction motor drives is discussed in this paper. The induction machine has two sets of stator three-phase windings spatially shifted by 30 electrical degrees with isolated neutral points. The proposed control strategy is based on Proportional Integral (PI) regulators implemented in the stator flux synchronous reference frame. To improve the flux estimation, an Adaptive Stator Flux Observer (ASFO) has been used. Doing so, besides a better flux estimation in contrast to open-loop flux estimators, it is possible to use the observed currents to compensate the inverter non-linear behavior (such as dead-time effects), improving the drive performance at low speed. This is particularly important for low voltage/high current applications, as the drive considered in this paper. The advantages of the discussed control strategy are: constant inverter switching frequency, good transient and steady-state performance and less distorted machine currents in contrast to DTC schemes with variable switching frequency. Experimental results are presented for a 10kW dual three-phase induction motor drive prototype.

  12. Study on the plasma generation characteristics of an induction-triggered coaxial pulsed plasma thruster

    Science.gov (United States)

    Weisheng, CUI; Wenzheng, LIU; Jia, TIAN; Xiuyang, CHEN

    2018-02-01

    At present, spark plugs are used to trigger discharge in pulsed plasma thrusters (PPT), which are known to be life-limiting components due to plasma corrosion and carbon deposition. A strong electric field could be formed in a cathode triple junction (CTJ) to achieve a trigger function under vacuum conditions. We propose an induction-triggered electrode structure on the basis of the CTJ trigger principle. The induction-triggered electrode structure could increase the electric field strength of the CTJ without changing the voltage between electrodes, contributing to a reduction in the electrode breakdown voltage. Additionally, it can maintain the plasma generation effect when the breakdown voltage is reduced in the discharge experiments. The induction-triggered electrode structure could ensure an effective trigger when the ablation distance of Teflon increases, and the magnetic field produced by the discharge current could further improve the plasma density and propagation velocity. The induction-triggered coaxial PPT we propose has a simplified trigger structure, and it is an effective attempt to optimize the micro-satellite thruster.

  13. Direct measurement of the image displacement instability in a linear induction accelerator

    Science.gov (United States)

    Burris-Mog, T. J.; Ekdahl, C. A.; Moir, D. C.

    2017-06-01

    The image displacement instability (IDI) has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU) instability. Although the BBU instability was not found to influence the IDI, it appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. This becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.

  14. Analysis and measure of novel stereo-garage driven by linear induction motor

    Directory of Open Access Journals (Sweden)

    Lu Qinfen

    2015-12-01

    Full Text Available The car access time is a key parameter, especially in a huge stereo-garage, where this one should be decreased as much as possible. This paper proposes a novel stereo-garage. Adopting the linear induction motors (LIMs, the system has a simple structure and rapid response capability. In the stereo-garage, several LIMs are installed below the crossbeam on a lifting platform, and several LIMs are fixed on the top of a moving frame. During the operation of LIMs, the moving frame moves forward and backward to reach the required parking place, whereas the crossbeam moves horizontally in order to take or store the vehicle rapidly. All these LIMs are the same and should be designed at a low frequency. The influences of key structure parameters and dynamic performances are investigated, based on FEM. The predicted results are validated by a prototype. Finally, the designed LIMs are successfully applied in two 8-layer stereo-garages.

  15. Inductive Loops for Sensing Position as Signature Signals

    International Nuclear Information System (INIS)

    Larbani, Sofiane; Malik, Noreha Abdul; Nordin, Anis Norashikin; Khan, Sheroz; Shobaki, Mohammad

    2013-01-01

    In this paper, an inductive sensing technique made of a special shaped inductive loop is proposed. The inductive loop has an inner turn fitted within an outer turn, making a total inductance value 100μH. This loop is made to be shown with balanced response using three capacitance values of 0.068μF each when a sinusoidal voltage source of 5V peak-to-peak is applied. The variation of the relative permeability of the inductance of the inductive loop (AL) results in a variation of the overall inductance value (L+AL), that causes the output signal to change in term of shape and amplitude for variation of total inductance sweep over a given period of time. As a result of change in inductance value (lμH) there is a correspondence increase of 300mV. Theoretical derivations have showed in close agreement with the simulation plots obtained using Multisim software

  16. Inductive Loops for Sensing Position as Signature Signals

    Science.gov (United States)

    Larbani, Sofiane; Malik, Noreha Abdul; Norashikin Nordin, Anis; Khan, Sheroz; Shobaki, Mohammad

    2013-12-01

    In this paper, an inductive sensing technique made of a special shaped inductive loop is proposed. The inductive loop has an inner turn fitted within an outer turn, making a total inductance value 100μH. This loop is made to be shown with balanced response using three capacitance values of 0.068μF each when a sinusoidal voltage source of 5V peak-to-peak is applied. The variation of the relative permeability of the inductance of the inductive loop (AL) results in a variation of the overall inductance value (L+AL), that causes the output signal to change in term of shape and amplitude for variation of total inductance sweep over a given period of time. As a result of change in inductance value (lμH) there is a correspondence increase of 300mV. Theoretical derivations have showed in close agreement with the simulation plots obtained using Multisim software.

  17. Effect of accelerating gap geometry on the beam breakup instability in linear induction accelerators

    International Nuclear Information System (INIS)

    Miller, R.B.; Marder, B.M.; Coleman, P.D.; Clark, R.E.

    1988-01-01

    The electron beam in a linear induction accelerator is generally susceptible to growth of the transverse beam breakup instability. In this paper we analyze a new technique for reducing the transverse coupling between the beam and the accelerating cavities, thereby reducing beam breakup growth. The basic idea is that the most worrisome cavity modes can be cutoff by a short section of coaxial transmission line inserted between the cavity structure and the accelerating gap region. We have used the three-dimensional simulation code SOS to analyze this problem. In brief, we find that the technique works, provided that the lowest TE mode cutoff frequency in the coaxial line is greater than the frequency of the most worrisome TM mode of the accelerating cavity

  18. Plasma internal inductance dynamics in a tokamak

    International Nuclear Information System (INIS)

    Romero, J.A.

    2010-01-01

    A lumped parameter model for tokamak plasma current and inductance time evolution as a function of plasma resistance, non-inductive current drive sources and boundary voltage or poloidal field coil current drive is presented. The model includes a novel formulation leading to exact equations for internal inductance and plasma current dynamics. Having in mind its application in a tokamak inductive control system, the model is expressed in state space form, the preferred choice for the design of control systems using modern control systems theory. The choice of system states allows many interesting physical quantities such as plasma current, inductance, magnetic energy, and resistive and inductive fluxes be made available as output equations. The model is derived from energy conservation theorem, and flux balance theorems, together with a first order approximation for flux diffusion dynamics. The validity of this approximation has been checked using experimental data from JET showing an excellent agreement.

  19. Preliminary Modeling of Permanent Magnet Probe Flowmeter for Voltage Signal Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Uiju; Kim, Sung Joong [Hanyang Univ., Seoul (Korea, Republic of); Jeong, Ji Young; Kim, Tae Joon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    An experimental study on performance analysis of the flowmeter has been performed. The study shows that sodium flow rate is linearly proportional to the induced voltage signal from the flowmeter under the turbulent flow condition. The experimental results support its availability in the PDRC system. But, the flowmeter should be able to measure sodium flow at low Reynolds number as well. That is because the PDRC system uses sodium natural convection for its operation. Thus, calibration of the flowmeter should be done at very low sodium flow rates. However, Von Weissenfluh et al. showed that the relationship between flow rate and measured voltage signal from the flowmeter may become non-linear at very low flow rates. The nonlinearity restricts the utilization of level sensor which provide reference flow rate in the calibration experiment. The primary objective of this study is to predict the sodium flow rate range where the induced voltage signals are linearly proportional to flow rates by estimating the induced voltage signals against sodium flow rates for a wide range of flows numerically. A commercial code FLUENT is adopted for the analysis of flow field. And MAXWELL which is an electromagnetic analysis software using a finite volume method has been used to analyze the magnetic field generated by permanent magnet of the flowmeter. The induced voltage signals have been estimated by coupling the sodium flow field and the magnetic field using FLUENT MHD module. It is expected that the PMPF voltage signals are linearly proportional to flow rates range of 0.0059 to 1.96 lps. This suggests that simple calibration technique using the linearity between flow rate and the voltage signal can be adopted in calibration of the PMPF.

  20. Voltage stability issues for a benchmark grid model including large scale wind power

    DEFF Research Database (Denmark)

    Eek, J.; Lund, T.; Marzio, G. Di

    2006-01-01

    The objective of the paper is to investigate how the voltage stability of a relatively weak network after a grid fault is affected by the connection of a large wind park. A theoretical discussion of the stationary and dynamic characteristics of the Short Circuit Induction Generator and the Doubly...... Fed Induction Generator is given. Further, a case study of a wind park connected to the transmission system through an existing regional 132 kV regional distribution line is presented. For the SCIG it is concluded that a stationary torque curve calculated under consideration of the impedance...... of the network and saturation of the external reactive power compensation units provides a good basis for evaluation of the voltage stability. For the DFIG it is concluded that the speed stability limit is mainly determined by the voltage limitation of the rotor converter...

  1. Serially-Connected Compensator for Eliminating the Unbalanced Three-Phase Voltage Impact on Wind Turbine Generators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Hsu, P.; Muljadi, E.; Gao, W.

    2015-04-06

    Untransposed transmission lines, unbalanced tap changer operations, and unbalanced loading in weak distribution lines can cause unbalanced-voltage conditions. The resulting unbalanced voltage at the point of interconnection affects proper gird integration and reduces the lifetime of wind turbines due to power oscillations, torque pulsations, mechanical stresses, energy losses, and uneven and overheating of the generator stator winding. This work investigates the dynamic impact of unbalanced voltage on the mechanical and electrical components of integrated Fatigue, Aerodynamics, Structures, and Turbulence (FAST) wind turbine generation systems (WTGs) of Type 1 (squirrel-cage induction generator) and Type 3 (doubly-fed induction generator). To alleviate this impact, a serially-connected compensator for a three-phase power line is proposed to balance the wind turbine-side voltage. Dynamic simulation studies are conducted in MATLAB/Simulink to compare the responses of these two types of wind turbine models under normal and unbalanced-voltage operation conditions and demonstrate the effectiveness of the proposed compensator.

  2. Induction accelerators for the phase rotator system

    International Nuclear Information System (INIS)

    Reginato, Lou; Yu, Simon; Vanecek, Dave

    2001-01-01

    The principle of magnetic induction has been applied to the acceleration of high current beams in betatrons and a variety of induction accelerators. The linear induction accelerator (LIA) consists of a simple nonresonant structure where the drive voltage is applied to an axially symmetric gap that encloses a toroidal ferromagnetic material. The change in flux in the magnetic core induces an axial electric field that provides particle acceleration. This simple nonresonant (low Q) structure acts as a single turn transformer that can accelerate from hundreds of amperes to tens of kiloamperes, basically only limited by the drive impedance. The LIA is typically a low gradient structure that can provide acceleration fields of varying shapes and time durations from tens of nanoseconds to several microseconds. The efficiency of the LIA depends on the beam current and can exceed 50% if the beam current exceeds the magnetization current required by the ferromagnetic material. The acceleration voltage available is simply given by the expression V=A dB/dt. Hence, for a given cross section of material, the beam pulse duration influences the energy gain. Furthermore, a premium is put on minimizing the diameter, which impacts the total weight or cost of the magnetic material. The diameter doubly impacts the cost of the LIA since the power (cost) to drive the cores is proportional to the volume as well. The waveform requirements during the beam pulse makes it necessary to make provisions in the pulsing system to maintain the desired dB/dt during the useful part of the acceleration cycle. This is typically done two ways, by using the final stage of the pulse forming network (PFN) and by the pulse compensation network usually in close proximity of the acceleration cell. The choice of magnetic materials will be made by testing various materials both ferromagnetic and ferrimagnetic. These materials will include the nickel-iron, silicon steel amorphous and various types of ferrites not

  3. Smart Demand for Improving Short-term Voltage Control on Distribution Networks

    DEFF Research Database (Denmark)

    Garcia-Valle, Rodrigo; P. Da Silva, Luiz C.; Xu, Zhao

    2009-01-01

    customer integration to aid power system performance is almost inevitable. This study introduces a new type of smart demand side technology, denoted demand as voltage controlled reserve (DVR), to improve short-term voltage control, where customers are expected to play a more dynamic role to improve voltage...... control. The technology can be provided by thermostatically controlled loads as well as other types of load. This technology is proven to be effective in case of distribution systems with a large composition of induction motors, where the voltage presents a slow recovery characteristic due to deceleration...... of the motors during faults. This study presents detailed models, discussion and simulation tests to demonstrate the technical viability and effectiveness of the DVR technology for short-term voltage control....

  4. Numerical simulation on beam breakup unstability of linear induction accelerator

    International Nuclear Information System (INIS)

    Zhang Kaizhi; Wang Huacen; Lin Yuzheng

    2003-01-01

    A code is written to simulate BBU in induction linac according to theoretical analysis. The general form of evolution of BBU in induction linac is investigated at first, then the effect of related parameters on BBU is analyzed, for example, the alignment error, oscillation frequency of beam centroid, beam pulse shape and acceleration gradient. At last measures are put forward to damp beam breakup unstability (BBU)

  5. High-output microwave detector using voltage-induced ferromagnetic resonance

    International Nuclear Information System (INIS)

    Shiota, Yoichi; Suzuki, Yoshishige; Miwa, Shinji; Tamaru, Shingo; Nozaki, Takayuki; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji

    2014-01-01

    We investigated the voltage-induced ferromagnetic resonance (FMR) with various DC bias voltage and input RF power in magnetic tunnel junctions. We found that the DC bias monotonically increases the homodyne detection voltage due to the nonlinear FMR originating in an asymmetric magnetization-potential in the free layer. In addition, the linear increase of an output voltage to the input RF power in the voltage-induced FMR is more robust than that in spin-torque FMR. These characteristics enable us to obtain an output voltage more than ten times than that of microwave detectors using spin-transfer torque

  6. Induction generator models in dynamic simulation tools

    DEFF Research Database (Denmark)

    Knudsen, Hans; Akhmatov, Vladislav

    1999-01-01

    For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained...

  7. A New Approach to High Efficincy in Isolated Boost Converters for High-Power Low-Voltage Fuel Cell Apllications

    DEFF Research Database (Denmark)

    Nymand, Morten; Andersen, Michael A. E.

    2008-01-01

    A new low-leakage-inductance low-resistance design approach to low-voltage high-power isolated boost converters is presented. Very low levels of parasitic circuit inductances are achieved by optimizing transformer design and circuit lay-out. Primary side voltage clamp circuits can be eliminated...... by the use of power MOSFETs fully rated for repetitive avalanche. Voltage rating of primary switches can now be reduced, significantly reducing switch on-state losses. Finally, silicon carbide rectifying diodes allow fast diode turn-off, further reducing losses. Test results from a 1.5 kW full-bridge boost...... converter verify theoretical analysis and demonstrate very high efficiency. Worst case efficiency, at minimum input voltage maximum power, is 96.8 percent and maximum efficiency reaches 98 percent....

  8. The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Ward, Kevin S.; Long, Finis W.; Sinebryukhov, Vadim A.; Kim, Alexandre A.; Wakeland, Peter Eric; McKee, G. Randall; Woodworth, Joseph Ray; McDaniel, Dillon Heirman; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John Larry Jr.; Struve, Kenneth William; Stygar, William A.; LeChien, Keith R.; Matzen, Maurice Keith

    2010-01-01

    Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory.

  9. Local tuning of the order parameter in superconducting weak links: A zero-inductance nanodevice

    Science.gov (United States)

    Winik, Roni; Holzman, Itamar; Dalla Torre, Emanuele G.; Buks, Eyal; Ivry, Yachin

    2018-03-01

    Controlling both the amplitude and the phase of the superconducting quantum order parameter (" separators="|ψ ) in nanostructures is important for next-generation information and communication technologies. The lack of electric resistance in superconductors, which may be advantageous for some technologies, hinders convenient voltage-bias tuning and hence limits the tunability of ψ at the microscopic scale. Here, we demonstrate the local tunability of the phase and amplitude of ψ, obtained by patterning with a single lithography step a Nb nano-superconducting quantum interference device (nano-SQUID) that is biased at its nanobridges. We accompany our experimental results by a semi-classical linearized model that is valid for generic nano-SQUIDs with multiple ports and helps simplify the modelling of non-linear couplings among the Josephson junctions. Our design helped us reveal unusual electric characteristics with effective zero inductance, which is promising for nanoscale magnetic sensing and quantum technologies.

  10. Low Voltage Electrolytic Capacitor Pulse Forming Inductive Network for Electric Weapons

    National Research Council Canada - National Science Library

    Mays, Thomas A

    2006-01-01

    .... Pulsed alternators potentially have the same maintenance issues as other motor-generator sets, so a solid-state system would be desirable, but high voltage capacitor systems are not robust enough for the field...

  11. Magnetic field cycling effect on the non-linear current-voltage characteristics and magnetic field induced negative differential resistance in α-Fe{sub 1.64}Ga{sub 0.36}O{sub 3} oxide

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, R. N., E-mail: rnbhowmik.phy@pondiuni.edu.in; Vijayasri, G. [Department of Physics, Pondicherry University, R.Venkataraman Nagar, Kalapet, Puducherry - 605 014 (India)

    2015-06-15

    We have studied current-voltage (I-V) characteristics of α-Fe{sub 1.64}Ga{sub 0.36}O{sub 3}, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔV{sub P}) 0.345(± 0.001) V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%), magnetoresistance (70-135 %) and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.

  12. Influence of magnetic saturation effects on the fault detection of induction motors

    Directory of Open Access Journals (Sweden)

    Drozdowski Piotr

    2014-09-01

    Full Text Available In this paper, the influence of impact damage to the induction motors on the zero-sequence voltage and its spectrum is presented. The signals detecting the damages result from a detailed analysis of the formula describing this voltage component which is induced in the stator windings due to core magnetic saturation and the discrete displacement of windings. Its course is affected by the operation of both the stator and the rotor. Other fault detection methods, are known and widely applied by analysing the spectrum of stator currents. The presented method may be a complement to other methods because of the ease of measurements of the zero voltage for star connected motors. Additionally, for converter fed motors the zero sequence voltage eliminates higher time harmonics displaced by 120 degrees. The results of the method application are presented through measurements and explained by the use of a mathematical model of the slip-ring induction motor

  13. Sigma-Delta Voltage to Frequency Converter With Phase Modulation Possibility

    OpenAIRE

    STORK, Milan

    2014-01-01

    Voltage to frequency converter (VFC) is an oscillator whose frequency is linearly proportional to control voltage. There are two common VFC architectures: the current steering multivibrator and the charge-balance VFC. For higher linearity, the charge-balancing method is preferred. The charge balanced VFC may be made in asynchronous or synchronous (clocked) forms. The synchronous charge balanced VFC or "sigma delta" (S-D) VFC is used when output pulses are synchroni...

  14. Suppressing beam-centroid motion in a long-pulse linear induction accelerator

    Directory of Open Access Journals (Sweden)

    Carl Ekdahl

    2011-12-01

    Full Text Available The second axis of the dual-axis radiography of hydrodynamic testing (DARHT facility produces up to four radiographs within an interval of 1.6  μs. It does this by slicing four micropulses out of a 2-μs long electron beam pulse and focusing them onto a bremsstrahlung converter target. The 1.8-kA beam pulse is created by a dispenser cathode diode and accelerated to more than 16 MeV by the unique DARHT Axis-II linear induction accelerator (LIA. Beam motion in the accelerator would be a problem for multipulse flash radiography. High-frequency motion, such as from beam-breakup (BBU instability, would blur the individual spots. Low-frequency motion, such as produced by pulsed-power variation, would produce spot-to-spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it. Using the methods discussed, we have reduced beam motion at the accelerator exit to less than 2% of the beam envelope radius for the high-frequency BBU, and less than 1/3 of the envelope radius for the low-frequency sweep.

  15. Linear induction accelerators at the Los Alamos National Laboratory DARHT facility

    International Nuclear Information System (INIS)

    Nath, Subrata

    2010-01-01

    The Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) at Los Alamos National Laboratory consists of two linear induction accelerators at right angles to each other. The First Axis, operating since 1999, produces a nominal 20-MeV, 2-kA single beam-pulse with 60-nsec width. In contrast, the DARHT Second Axis, operating since 2008, produces up to four pulses in a variable pulse format by slicing micro-pulses out of a longer ∼1.6-microseconds (flat-top) pulse of nominal beam-energy and -current of 17 MeV and 2 kA respectively. Bremsstrahlung x-rays, shining on a hydro-dynamical experimental device, are produced by focusing the electron beam-pulses onto a high-Z target. Variable pulse-formats allow for adjustment of the pulse-to-pulse doses to record a time sequence of x-ray images of the explosively driven imploding mock device. Herein, we present a sampling of the numerous physics and engineering aspects along with the current status of the fully operational dual axes capability. First successful simultaneous use of both the axes for a hydrodynamic experiment was achieved in 2009.

  16. Discussion - a high voltage DC generator

    International Nuclear Information System (INIS)

    Bhagwat, P.V.; Singh, Jagir; Hattangadi, V.A.

    1993-01-01

    One of the requirements for a high power ion source is a high voltage, high current DC generator. The high voltage, high current generator, DISCATRON, presently under development in our laboratory is a rotating disc type electrostatic generator similar in design to the one reported by A. Isoya et al. (1985). It is compact and rugged electrostatic DC generator based on the principle of induction charging by pellet chains used in the pelletron accelerator. It is, basically, a constant-current device with little stored energy, so that, in case of a breakdown, damage to the equipment connected to the output terminals is minimal. Since the present generator is only a proto-type, meant for a study of the practical difficulties that would be encountered in its manufacture, the output voltage and current specified has been kept quite modest viz., 300 kV at 500 μA, maximum. Some results of the preliminary tests carried out with this generator are described. (author). 4 figs

  17. Numerical identifiability of the parameters of induction machines

    Energy Technology Data Exchange (ETDEWEB)

    Corcoles, F.; Pedra, J.; Salichs, M. [Dep. d' Eng. Electrica ETSEIB. UPC, Barcelona (Spain)

    2000-08-01

    This paper analyses the numerical identifiability of the electrical parameters of induction machines. Relations between parameters and the impossibility to estimate all of them - when only external measures are used: voltage, current, speed and torque - are shown. Formulations of the single and double-cage induction machine, with and without core losses in both models, are developed. The proposed solution is the formulation of machine equations by using the minimum number of parameters (which are identifiable parameters). As an application example, the parameters of a double-cage induction machine are identified using steady-state measurements corresponding to different angular speeds. (orig.)

  18. Influence analysis of structural parameters on electromagnetic properties of HTS linear induction motor

    International Nuclear Information System (INIS)

    Zhao, J.; Zheng, T.Q.; Zhang, W.; Fang, J.; Liu, Y.M.

    2011-01-01

    A new type high temperature superconductor linear induction motor is designed and analyzed as a prototype to ensure applicability aimed at industrial motors. Made of Bi-2223/Ag, primary windings are distributed with the double-layer concentrated structure. The motor is analyzed by 2D electromagnetic Finite Element Method to get magnetic field distribution, thrust force, vertical force and so on. The critical current of motor and the electromagnetic force are mostly decided by the leakage flux density of primary slot and by the main magnetic flux and eddy current respectively. The structural parameters of motor have a great influence on the distribution of magnetic field. Under constant currents, the properties of motor are analyzed with different slot widths, slot heights and winding turns. The properties of motor, such as the maximum slot leakage flux density, motor thrust and motor vertical force, are analyzed with different structural parameters.

  19. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    International Nuclear Information System (INIS)

    Ekdahl, Carl A.; Abeyta, Epifanio O.; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A.; Garnett, Robert; Harrison, James F.; Johnson, Jeffrey B.; Jacquez, Edward B.; Mccuistian, Brian T.; Montoya, Nicholas A.; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M.; Seitz, Gerald; Schulze, Martin; Bender, Howard A.; Broste, William B.; Carlson, Carl A.; Frayer, Daniel K.; Johnson, Douglas E.; Tom, C.Y.; Williams, John; Hughes, Thomas; Anaya, Richard; Caporaso, George; Chambers, Frank; Chen, Yu-Jiuan; Falabella, Steve; Guethlein, Gary; Raymond, Brett; Richardson, Roger; Trainham, C.; Watson, Jim; Weir, John; Genoni, Thomas; Toma, Carsten

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 (micro)s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  20. Integrated Three-Voltage-Booster DC-DC Converter to Achieve High Voltage Gain with Leakage-Energy Recycling for PV or Fuel-Cell Power Systems

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2015-09-01

    Full Text Available In this paper, an integrated three-voltage-booster DC-DC (direct current to direct current converter is proposed to achieve high voltage gain for renewable-energy generation systems. The proposed converter integrates three voltage-boosters into one power stage, which is composed of an active switch, a coupled-inductor, five diodes, and five capacitors. As compared with conventional high step-up converters, it has a lower component count. In addition, the features of leakage-energy recycling and switching loss reduction can be accomplished for conversion efficiency improvement. While the active switch is turned off, the converter can inherently clamp the voltage across power switch and suppress voltage spikes. Moreover, the reverse-recovery currents of all diodes can be alleviated by leakage inductance. A 200 W prototype operating at 100 kHz switching frequency with 36 V input and 400 V output is implemented to verify the theoretical analysis and to demonstrate the feasibility of the proposed high step-up DC-DC converter.

  1. Inexpensive system protects megawatt resistance-heating furnace against high-voltage surges

    Science.gov (United States)

    Stearns, E. J.

    1971-01-01

    Coolant gas extinguishes arcing across the break in a heater element. Air-gap shunt which bypasses high voltage impressed across the circuit prevents damage if the resistance elements break and open the inductive circuit.

  2. A two-layer linear piezoelectric micromotor.

    Science.gov (United States)

    Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang

    2015-03-01

    A first bending (B1) mode two-layer piezoelectric ultrasonic linear micromotor has been developed for microoptics driving applications. The piezo-vibrator of the micromotor was composed of two small Pb(Zr,Ti)O3 (PZT-5) plates, with overall dimensions and mass of only 2.0 × 2.0 × 5.0 mm(3) and 0.2 g, respectively. The proposed micromotor could operate either in single-phase voltage (standing wave) mode or two-phase voltage (traveling wave) mode to drive a slider via friction force to provide bidirectional linear motion. A large thrust of up to 0.30 N, which corresponds to a high unit volume direct driving force of 15 mN/mm(3), and a linear movement velocity of up to 230 mm/s were obtained under an applied voltage of 80 Vpp at the B1 mode resonance frequency of 174 kHz.

  3. Electric Machine with Boosted Inductance to Stabilize Current Control

    Science.gov (United States)

    Abel, Steve

    2013-01-01

    High-powered motors typically have very low resistance and inductance (R and L) in their windings. This makes the pulse-width modulated (PWM) control of the current very difficult, especially when the bus voltage (V) is high. These R and L values are dictated by the motor size, torque (Kt), and back-emf (Kb) constants. These constants are in turn set by the voltage and the actuation torque-speed requirements. This problem is often addressed by placing inductive chokes within the controller. This approach is undesirable in that space is taken and heat is added to the controller. By keeping the same motor frame, reducing the wire size, and placing a correspondingly larger number of turns in each slot, the resistance, inductance, torque constant, and back-emf constant are all increased. The increased inductance aids the current control but ruins the Kt and Kb selections. If, however, a fraction of the turns is moved from their "correct slot" to an "incorrect slot," the increased R and L values are retained, but the Kt and Kb values are restored to the desired values. This approach assumes that increased resistance is acceptable to a degree. In effect, the heat allocated to the added inductance has been moved from the controller to the motor body, which in some cases is preferred.

  4. Thyristor current-pulse generator for betatron electromagnet with independent low-voltage supply

    International Nuclear Information System (INIS)

    Baginskii, B.A.; Makarevich, V.N.; Shtein, M.M.

    1989-01-01

    A thyristor generator is described that produces unipolar current pulses in the winding of a betatron electromagnet. The voltage on the electro-magnet is increased and the shape of the current pulses is improved by use of an intermediate inductive storage device. The current pulses have a duration of 11 msec, an amplitude of 190 A, and a repetition frequency of 50 Hz. The maximum magnetic-field energy is 450 J, the voltage on the electromagnet winding is 1.5 kV, and the supply voltage is 27 V

  5. Operation of LIA-30 linear induction accelerator in the mode of generation of two bremsstrahlung pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bossamykin, V S; Gerasimov, A I; Gordeev, V S; Grishin, A V; Gritsina, V P; Tarasov, A D; Fedotkin, A S; Lazarev, S A; Averchenkov, A Ya [All-Russian Scientific Research Institute of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    The operating mode was studied of the LIA-30 linear induction accelerator ({approx} 40 MeV, {approx} 100 kA, {approx} 30 ns) with the generation of two bremsstrahlung pulses separated by a specified time interval from 0 to 5 {mu}s. In the accelerating channel an additional tube cathode was installed, and a synchronization system for two accelerating module groups triggering the formation and acceleration, at different initial times, of two annular electron beams with different outer diameters was changed. The energy limit of each beam electron acceleration can be controlled, and the energy sum limit is {<=} 540 MeV. (author). 2 tabs., 2 figs.

  6. Transmission congestion and voltage profile management coordination in competitive electricity markets

    International Nuclear Information System (INIS)

    Yamin, H.Y.; Shahidehpour, S.M.

    2003-01-01

    This paper describes a generalized active/reactive iterative coordination process between GENCOs and the Independent System Operator (ISO) for active (transmission congestion) and reactive (voltage profile) management in the day-ahead market. GENCOs apply priced-based unit commitment without transmission and voltage security constraints, schedule their units and submit their initial bids to the ISO. The ISO executes congestion and voltage profile management for eliminating transmission and voltage profile violations. If violations are not eliminated, the ISO minimizes the transmission and voltage profile violations and sends a signal via the Internet to GENCOs. GENCOs reschedule their units taking into account the ISO signals and submit modified bids to the ISO. The voltage problem is addressed and a linear model is formulated and used in the proposed method. The voltage problem is formulated as a linear programming with a block-angular structure and Dantzig-Wolfe decomposition is applied to generate several smaller problems for a faster and easier solution of large-scale power systems. Two 36 unit GENCOs are used to demonstrate the performance of the proposed generalized active/reactive coordination algorithm. (author)

  7. Low cost photomultiplier high-voltage readout system

    International Nuclear Information System (INIS)

    Oxoby, G.J.; Kunz, P.F.

    1976-10-01

    The Large Aperture Solenoid Spectrometer (LASS) at Stanford Linear Accelerator Center (SLAC) requires monitoring over 300 voltages. This data is recorded on magnetic tapes along with the event data. It must also be displayed so that operators can easily monitor and adjust the voltages. A low-cost high-voltage readout system has been implemented to offer stand-alone digital readout capability as well as fast data transfer to a host computer. The system is flexible enough to permit use of a DVM or ADC and commercially available analogue multiplexers

  8. Control of DFIG-WT under unbalanced grid voltage conditions

    DEFF Research Database (Denmark)

    Luna, Alvaro; Lina, Kleber; Corcoles, Felipe

    2009-01-01

    The voltage oriented control in the synchronous reference frame (VOC-SRF) have been extensively used for controlling wind turbines based on doubly fed induction generators (DFIG-WTs) through the rotor side converter of a back to back power processor. Although its performance is fast and accurate ...

  9. Symmetric low-voltage powering system for relativistic electronic devices

    International Nuclear Information System (INIS)

    Agafonov, A.V.; Lebedev, A.N.; Krastelev, E.G.

    2005-01-01

    A special driver for double-sided powering of relativistic magnetrons and several methods of localized electron flow forming in the interaction region of relativistic magnetrons are proposed and discussed. Two experimental installations are presented and discussed. One of them is designed for laboratory research and demonstration experiments at a rather low voltage. The other one is a prototype of a full-scale installation for an experimental research at relativistic levels of voltages on the microwave generation in the new integrated system consisting of a relativistic magnetron and symmetrical induction driver

  10. Induction linear accelerator technology for SDIO applications

    International Nuclear Information System (INIS)

    Birx, D.; Reginato, L.; Rogers, D.; Trimble, D.

    1986-11-01

    The research effort reported concentrated primarily on three major activities. The first was aimed at improvements in the accelerator drive system of an induction linac to meet the high repetition rate requirements of SDI applications. The second activity centered on a redesign of the accelerator cells to eliminate the beam breakup instabilities, resulting in optimized beam transport. The third activity sought to improve the source of electrons to achieve a higher quality beam to satisfy the requirement of the free electron laser

  11. Direct measurement of the image displacement instability in a linear induction accelerator

    Directory of Open Access Journals (Sweden)

    T. J. Burris-Mog

    2017-06-01

    Full Text Available The image displacement instability (IDI has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU instability. Although the BBU instability was not found to influence the IDI, it appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. This becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.

  12. Coupling and decoupling of the accelerating units for pulsed synchronous linear accelerator

    Science.gov (United States)

    Shen, Yi; Liu, Yi; Ye, Mao; Zhang, Huang; Wang, Wei; Xia, Liansheng; Wang, Zhiwen; Yang, Chao; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2017-12-01

    A pulsed synchronous linear accelerator (PSLA), based on the solid-state pulse forming line, photoconductive semiconductor switch, and high gradient insulator technologies, is a novel linear accelerator. During the prototype PSLA commissioning, the energy gain of proton beams was found to be much lower than expected. In this paper, the degradation of the energy gain is explained by the circuit and cavity coupling effect of the accelerating units. The coupling effects of accelerating units are studied, and the circuit topologies of these two kinds of coupling effects are presented. Two methods utilizing inductance and membrane isolations, respectively, are proposed to reduce the circuit coupling effects. The effectiveness of the membrane isolation method is also supported by simulations. The decoupling efficiency of the metal drift tube is also researched. We carried out the experiments on circuit decoupling of the multiple accelerating cavity. The result shows that both circuit decoupling methods could increase the normalized voltage.

  13. A novel control strategy for enhancing the LVRT and voltage support capabilities of DFIG

    Science.gov (United States)

    Shen, Yangwu; Zhang, Bin; Liang, Liqing; Cui, Ting

    2018-02-01

    A novel integrated control strategy is proposed in this paper to enhance the low voltage ride through capacity for the double-fed induction generator by equipping an energy storage system. The energy storage system is installed into the DC-link capacitor of the DFIG and used to control the DC-link voltage during normal or transient operations. The energy storage device will absorb or compensate the power difference between the captured wind power and the power injected to the grid during the normal and transient period, and the grid side converter can be free from maintaining the voltage stability of the DC-link capacitor. Thus, the grid-side converter is changed to reactive power support while the rotor-side converter is used to control the maximum power production during normal operation. The grid-side converter and rotor-side converter will act as reactive power sources to further enhance the voltage support capability of double-fed induction generator during the transient period. Numerical Simulation are performed to validate the effectiveness of the proposed control designs.

  14. Josephson tunneling current in the presence of a time-dependent voltage

    International Nuclear Information System (INIS)

    Harris, R.E.

    1975-01-01

    The expression for the current through a small Josephson tunnel junction in the presence of a time-dependent voltage is presented. Four terms appear: the usual sine, cosine, and quasiparticle terms, and a reactive part of the quasiparticle current. The latter is displayed graphically as a function of both energy and temperature. It is shown that in the limit of zero dc voltage and small ac voltage, the Josephson device behaves linearly. Interpretation of the in- and out-of-phase components of the current in this linear limit is given to provide physical insight into some of the details of the general expression. Finally, the tunneling current in the linear limit is shown for thin tunneling barriers to be proportional to the current in a single superconductor in the presence of an electromagnetic field

  15. Transistorized PWM inverter-induction motor drive system

    Science.gov (United States)

    Peak, S. C.; Plunkett, A. B.

    1982-01-01

    This paper describes the development of a transistorized PWM inverter-induction motor traction drive system. A vehicle performance analysis was performed to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of inverter and motor specifications. The inverter was a transistorized three-phase bridge using General Electric power Darlington transistors. The description of the design and development of this inverter is the principal object of this paper. The high-speed induction motor is a design which is optimized for use with an inverter power source. The primary feedback control is a torque angle control with voltage and torque outer loop controls. A current-controlled PWM technique is used to control the motor voltage. The drive has a constant torque output with PWM operation to base motor speed and a constant horsepower output with square wave operation to maximum speed. The drive system was dynamometer tested and the results are presented.

  16. Capacitive VAr requirements for wind driven self-excited induction generators

    International Nuclear Information System (INIS)

    Singaravelu, S.; Velusami, S.

    2007-01-01

    This paper presents the capacitive VAr requirements of a three phase pole changing self-excited induction generator and a single phase self-excited induction generator, used as isolated power sources by a constant speed or a variable speed prime mover, to obtain the desired voltage regulation at various values of load and speed. Different performance criteria such as constant terminal voltage or constant air gap flux have been considered. The developed mathematical model using nodal analysis based on graph theory is quite general in nature and can be used for any combination of the unknown variables such as magnetizing reactance (X M ) and frequency (F) or capacitive reactance (X C ) and frequency (F) or capacitive reactance (X C ) and speed (υ). The proposed model completely avoids the tedious and erroneous manual work of segregating the real and imaginary components of the complex impedance of the machine for deriving the specific model for each operating modes. Moreover, any element, like the core loss component, can be included or excluded from the model if required. Next, to obtain the capacitive VAr requirements of a three phase pole changing self-excited induction generator and a single phase self-excited induction generator, a fuzzy logic approach is used for the first time to find the unknown variables using the above model. The results are presented in a normalized form so that they are valid for a wide range of machines and would be useful for the design of voltage regulators for such generators

  17. The LMF triaxial MITL voltage adder system

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Bennett, L.F.; Lockner, T.R.; Olson, R.E.; Poukey, J.W.

    1992-01-01

    The light-ion microfusion driver design consists of multiple accelerating modules fired in coincidence and sequentially in order to provide the desired ion energy, power pulse shape and energy deposition uniformity on an Inertial Confinement Fusion (ICF) target. The basic energy source is a number of Marx generators which, through the appropriate pulse power conditioning, provide the necessary voltage pulse wave form to the accelerating gaps or feeds of each module. The cavity gaps are inductively isolated, and the voltage addition occurs in the center conductor of the voltage adder which is the positive electrode while the electrons of the sheath flow closer to the outer cylinder which is the magnetically insulated cathode electrode. Each module powers a separate two-stage extraction diode which provides a low divergence ion beam. In order to provide the two separate voltage pulses required by the diode, a triaxial adder system is designed for each module. The voltage addition occurs in two separate MITLs. The center hollow cylinder (anode) of the second MITL also serves as the outer cathode electrode for the extension of the first voltage adder MITL. The voltage of the second stage is about twice that of the first stage. The cavities are connected in series to form the outer cylinder of each module. The accelerating modules are positioned radially in a symmetrical way around the fusion chamber. A preliminary conceptual design of the LMF modules with emphasis on the voltage adders and extension MITLs will be presented and discussed

  18. Streamer model for high voltage water switches

    International Nuclear Information System (INIS)

    Sazama, F.J.; Kenyon, V.L. III

    1979-01-01

    An electrical switch model for high voltage water switches has been developed which predicts streamer-switching effects that correlate well with water-switch data from Casino over the past four years and with switch data from recent Aurora/AMP experiments. Preclosure rounding and postclosure resistive damping of pulseforming line voltage waveforms are explained in terms of spatially-extensive, capacitive-coupling of the conducting streamers as they propagate across the gap and in terms of time-dependent streamer resistance and inductance. The arc resistance of the Casino water switch and of a gas switch under test on Casino was determined by computer fit to be 0.5 +- 0.1 ohms and 0.3 +- 0.06 ohms respectively, during the time of peak current in the power pulse. Energy lost in the water switch during the first pulse is 18% of that stored in the pulseforming line while similar energy lost in the gas switch is 11%. The model is described, computer transient analyses are compared with observed water and gas switch data and the results - switch resistance, inductance and energy loss during the primary power pulse - are presented

  19. Advanced Model of Squirrel Cage Induction Machine for Broken Rotor Bars Fault Using Multi Indicators

    Directory of Open Access Journals (Sweden)

    Ilias Ouachtouk

    2016-01-01

    Full Text Available Squirrel cage induction machine are the most commonly used electrical drives, but like any other machine, they are vulnerable to faults. Among the widespread failures of the induction machine there are rotor faults. This paper focuses on the detection of broken rotor bars fault using multi-indicator. However, diagnostics of asynchronous machine rotor faults can be accomplished by analysing the anomalies of machine local variable such as torque, magnetic flux, stator current and neutral voltage signature analysis. The aim of this research is to summarize the existing models and to develop new models of squirrel cage induction motors with consideration of the neutral voltage and to study the effect of broken rotor bars on the different electrical quantities such as the park currents, torque, stator currents and neutral voltage. The performance of the model was assessed by comparing the simulation and experimental results. The obtained results show the effectiveness of the model, and allow detection and diagnosis of these defects.

  20. Sizing of the Series Dynamic Breaking Resistor in a Doubly Fed Induction Generator Wind Turbine

    DEFF Research Database (Denmark)

    Soliman, Hammam; Wang, Huai; Zhou, Dao

    2014-01-01

    This paper investigates the effect of Series Dynamic Breaking Resistor (SDBR) sizing on a Doubly Fed Induction Generator (DFIG) based wind power conversion system. The boundary of the SDBR value is firstly derived by taking into account the controllability of the rotor side converter and the maxi......This paper investigates the effect of Series Dynamic Breaking Resistor (SDBR) sizing on a Doubly Fed Induction Generator (DFIG) based wind power conversion system. The boundary of the SDBR value is firstly derived by taking into account the controllability of the rotor side converter...... and the maximum allowable voltage of the stator. Then the impact of the SDBR value on the rotor current, stator voltage, DC-link voltage, reactive power capability and introduced power loss during voltage sag operation is evaluated by simulation. The presented study enables a trade-off sizing of the SDBR among...

  1. Application of SMES in wind farm to improve voltage stability

    International Nuclear Information System (INIS)

    Shi, J.; Tang, Y.J.; Ren, L.; Li, J.D.; Chen, S.J.

    2008-01-01

    For the wind farms introducing doubly fed induction generators (DFIGs), voltage stability is an essential issue which influences their widely integration into the power grid. This paper proposes the application of superconducting magnetic energy storage (SMES) in the power system integrated with wind farms. SMES can control the active and reactive power flow, realizing the operation in four quadrants independently. The introducing of SMES can smooth the output power flow of the wind farms, and supply dynamic voltage support. Using MATLAB/SIMULINK, the models of the DFIG, the power grid connected and the SMES are created. Simulation results show that the voltage stability of the power system integrated with wind farms can be improved considerably

  2. Enhanced dielectric-wall linear accelerator

    Science.gov (United States)

    Sampayan, Stephen E.; Caporaso, George J.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  3. Application of Multipoint DC Voltage Control in VSC-MTDC System

    Directory of Open Access Journals (Sweden)

    Yang Xi

    2013-01-01

    Full Text Available The voltage-source-converter- (VSC- based multiterminal VSC-HVDC power transmission system (VSC-MTDC is an ideal approach to connect wind farm with power grid. Analyzing the characteristics of doubly fed induction generators as well as the basic principle and the control strategy of VSC-MTDC, a multiterminal DC voltage control strategy suitable for wind farm connected with VSC-MTDC is proposed. By use of PSCAD/EMTDC, the proposed control strategy is simulated, and simulation results show that using the proposed control strategy the conversion between constant power control mode and constant DC voltage control mode can be automatically implemented; thus the DC voltage stability control and reliable power output of wind farm can be ensured after the fault-caused outage of converter station controlled by constant DC voltage and under other faults. The simulation result shows that the model can fulfill multiterminal power transmission and fast response control.

  4. Operation of grid-connected DFIG under unbalanced grid voltage condition

    NARCIS (Netherlands)

    Zhou, Y.; Bauer, P.; Ferreira, J.A.; Pierik, J.

    2009-01-01

    Doubly fed induction generator (DFIG) still shares a large part in today's wind power market. It provides the benefits of variable speed operation cost-effectively, and can control its active and reactive power independently. Crowbar protection is often adopted to protect the rotor-side voltage

  5. Analysis of Planar E+I and ER+I Transformers for Low-Voltage High-Current DC/DC Converters with Focus on Winding Losses and Leakage Inductance

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Ouyang, Ziwei

    2012-01-01

    on winding resistance and leakage inductances which represent the main concerns related to low-voltage high-current applications. The PCB winding design has a one to one turn ratio with no interleaving between primary and secondary windings. The main goal was to determine if ER planar core could provide...... a significant advantage in terms of winding losses compared to planar E cores. Results from finite element analysis highlight that low frequency winding resistance is lower for the ER core since it is dominated by the lower mean turn length however, as the AC-resistance becomes dominating the winding eddy...... more realistic results when computing the winding AC-resistance....

  6. High voltage investigations for ITER coils

    International Nuclear Information System (INIS)

    Fink, S.; Fietz, W.H.

    2006-01-01

    The superconducting ITER magnets will be excited with high voltage during operation and fast discharge. Because the coils are complex systems the internal voltage distribution can differ to a large extent from the ideal linear voltage distribution. In case of fast excitations internal voltages between conductor and radial plate of a TF coil can be even higher than the terminal voltage of 3.5 kV to ground which appears during a fast discharge without a fault. Hence the determination of the transient voltage distribution is important for a proper insulation co-ordination and will provide a necessary basis for the verification of the individual insulation design and the choice of test voltages and waveforms. Especially the extent of internal overvoltages in case of failures, e. g. malfunction of discharge units and / or arcing is of special interest. Transient calculations for the ITER TF coil system have been performed for fast discharge and fault scenarios to define test voltages for ITER TF. The conductor and radial plate insulation of the ITER TF Model Coil were exposed at room temperature to test voltages derived from the results from these calculations. Breakdown appeared during the highest AC voltage step. A fault scenario for the TF fast discharge system is presented where one fault triggers a second fault, leading to considerable voltage stress. In addition a FEM model of Poloidal Field Coil 3 for the determination of the parameters of a detailed network model is presented in order to prepare detailed investigations of the transient voltage behaviour of the PF coils. (author)

  7. High voltage pulsed cable design: a practical example

    International Nuclear Information System (INIS)

    Kewish, R.W. Jr.; Boicourt, G.P.

    1979-01-01

    The design of optimum high voltage pulse cable is difficult because very little emperical data are available on performance in pulsed applications. This paper follows the design and testing of one high voltage pulse cable, 40/100 trigger cable. The design was based on an unproven theory and the impressive outcome lends support to the theory. The theory is outlined and it is shown that there exists an inductance which gives a cable of minimum size for a given maximum stress. Test results on cable manufactured according to the design are presented and compared with the test results on the cable that 40/100 replaces

  8. High voltage pulsed cable design: a practical example

    Energy Technology Data Exchange (ETDEWEB)

    Kewish, R.W. Jr.; Boicourt, G.P.

    1979-01-01

    The design of optimum high voltage pulse cable is difficult because very little emperical data are available on performance in pulsed applications. This paper follows the design and testing of one high voltage pulse cable, 40/100 trigger cable. The design was based on an unproven theory and the impressive outcome lends support to the theory. The theory is outlined and it is shown that there exists an inductance which gives a cable of minimum size for a given maximum stress. Test results on cable manufactured according to the design are presented and compared with the test results on the cable that 40/100 replaces.

  9. Site Selection Strategy of Single-Frequency Tuned R-APF for Background Harmonic Voltage Damping in Power Systems

    DEFF Research Database (Denmark)

    Sun, Xiaofeng; Zeng, Jian; Chen, Zhe

    2013-01-01

    , and analyze the harmonic voltage propagation caused by the background harmonic voltage in power systems. Then, a new strategy is proposed for the site selection of resistive active power filter to damp the background harmonic voltage in power systems. Experiments have been performed to verify the theoretical......Series resonance between capacitance and line inductance may magnify background harmonic voltage and worsen the harmonic voltage distortion in power systems. To solve this problem, in this paper, the transmission line theory is used to set up the distributed parameter model of power system feeders...

  10. Low-inductance switch and capacitor energy storage modules made of packages of industrial condensers IK50-3

    International Nuclear Information System (INIS)

    Bykov, Yu A; Krastelev, E G; Sedin, A A; Feduschak, V F

    2017-01-01

    A low-inductance module of a high-current capacitive energy storage with an operating voltage of 40 kV is developed. The design of the module is based on the application of capacitive sections of the industrial condenser IK50-3. The module includes two capacitors of 0.35 μF each, one common low-jitter triggered gas switch and 2 groups of output cables of 4 from each capacitor. A bus bars topology developed for the switch and cables connections provides a small total inductance of the discharge circuit, for the module with the output cables KVIM of 0.5 m long, it is lower than 40 nH. The set of 10 modules is now used for driving the 20 stages linear transformer for a fast charging of the pulse forming line of the high-current nanosecond accelerator. A design of the module and the results of tests of a single module and a set of 10 are presented. (paper)

  11. Proposed torque optimized behavior for digital speed control of induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, H.M.B.; El-Shewy, H.M.; El-Kholy, M.M. [Zagazig Univ., Dept. of Electrical Engineering, Zagazig (Egypt); Abdel-Kader, F.E. [Menoufyia Univ., Dept. of Electrical Engineering, Menoufyia (Egypt)

    2002-09-01

    In this paper, a control strategy for speed control of induction motors with field orientation is proposed. The proposed method adjusts the output voltage and frequency of the converter to operate the motor at the desired speed with maximum torque per ampere at all load torques keeping the torque angle equal to 90 deg. A comparison between the performance characteristics of a 2 hp induction motor using three methods of speed control is presented. These methods are the proposed method, the direct torque control method and the constant V/f method. The comparison showed that better performance characteristics are obtained using the proposed speed control strategy. A computer program, based on this method, is developed. Starting from the motor parameters, the program calculates a data set for the stator voltage and frequency required to obtain maximum torque per ampere at any motor speed and load torque. This data set can be used by the digital speed control system of induction motors. (Author)

  12. High voltage high brightness electron accelerator with MITL voltage adder coupled to foilless diode

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poulkey, J.W.; Rovang, D.

    1995-01-01

    The design and analysis of a high brightness electron beam experiment under construction at Sandia National Laboratory is presented. The beam energy is 12 MeV, the current 35-40 kA, the rms radius 0.5 mm, and the pulse duration FWHM 40 ns. The accelerator is SABRE a pulsed inductive voltage adder, and the electron source is a magnetically immersed foilless diode. This experiment has as its goal to stretch the technology to the edge and produce the highest possible electron current in a submillimeter radius beam

  13. Induction linacs for heavy ion fusion research

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Avery, R.T.; Brady, V.; Bisognano, J.; Celata, C.; Chupp, W.W.; Faltens, A.; Hartwig, E.C.; Judd, D.L.; Keefe, D.; Kim, C.H.; Laslett, L.J.; Lee, E.P.; Rosenblum, S.S.; Smith, L.; Warwick, A.

    1984-01-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams. (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to proportional70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units. (orig.)

  14. Induction linacs for heavy ion fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, T.J.

    1984-05-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  15. Multiphysics Modeling of an Annular Linear Induction Pump With Applications to Space Nuclear Power Systems

    Science.gov (United States)

    Kilbane, J.; Polzin, K. A.

    2014-01-01

    An annular linear induction pump (ALIP) that could be used for circulating liquid-metal coolant in a fission surface power reactor system is modeled in the present work using the computational COMSOL Multiphysics package. The pump is modeled using a two-dimensional, axisymmetric geometry and solved under conditions similar to those used during experimental pump testing. Real, nonlinear, temperature-dependent material properties can be incorporated into the model for both the electrically-conducting working fluid in the pump (NaK-78) and structural components of the pump. The intricate three-phase coil configuration of the pump is implemented in the model to produce an axially-traveling magnetic wave that is qualitatively similar to the measured magnetic wave. The model qualitatively captures the expected feature of a peak in efficiency as a function of flow rate.

  16. Proposed inductive voltage adder based accelerator concepts for the second axis of DARHT

    International Nuclear Information System (INIS)

    Smith, D.L.; Johnson, D.L.; Boyes, J.D.

    1997-01-01

    As participants in the Technology Options Study for the second axis of the Dual Axis Radiographic HydroTest (DARHT) facility located at Los Alamos National Laboratories, the authors have considered several accelerator concepts based on the Inductive Voltage Adder (IVA) technology that is being used successfully at Sandia on the SABRE and HERMES-III facilities. The challenging accelerator design requirements for the IVA approach include: ≥12-MeV beam energy; ∼60-ns electrical pulse width; ≤40-kA electron beam current; ∼1-mm diameter e-beam; four pulses on the same axis or as close as possible to that axis; and an architecture that fits within the existing building envelope. To satisfy these requirements the IVA concepts take a modular approach. The basic idea is built upon a conservative design for eight ferromagnetically isolated 2-MV cavities that are driven by two 3 to 4-Ω water dielectric pulse forming lines (PFLs) synchronized with laser triggered gas switches. The 100-Ω vacuum magnetically insulated transmission line (MITL) would taper to a needle cathode that produces the electron beam(s). After considering many concepts the authors narrowed their study to the following options: (A) Four independent single pulse drivers powering four single pulse diodes; (B) Four series adders with interleaved cavities feeding a common MITL and diode; (C) Four stages of series PFLs, isolated from each other by triggered spark gap switches, with single-point feeds to a common adder, MITL, and diode; and (D) Isolated PFLs with multiple-feeds to a common adder using spark gap switches in combination with saturable magnetic cores to isolate the non-energized lines. The authors will discuss these options in greater detail identifying the challenges and risks associated with each

  17. A Simple Sensorless Scheme for Induction Motor Drives Fed by a Matrix Converter Using Constant Air-Gap Flux and PQR Transformation

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Lee, Kyo Beum

    2007-01-01

    This paper presents a new and simple method for sensorless operation of matrix converter drives using a constant air-gap flux and the imaginary power flowing to the motor. To improve low-speed sensorless performance, the non-linearities of a matrix converter drive such as commutation delays, turn......-on and turn-off times of switching devices, and on-state switching device voltage drop are modeled using PQR transformation and compensated using a reference current control scheme. The proposed compensation method is applied for high performance induction motor drives using a 3 kW matrix converter system...

  18. Induction linear accelerators with high-Tc bulk superconductor lenses

    International Nuclear Information System (INIS)

    Matsuzawa, Hidenori; Wada, Haruhisa; Mori, Satoshi; Yamamoto, Tadashi

    1991-01-01

    Solenoidal coils in a one-stage induction accelerator were replaced by a high-T c bulk superconductor lens (Supertron). The accelerator postaccelerated injected electron beams to ∼ 400 keV, ∼ 0.35 kA, and ∼ 10 ns of duration time. (author)

  19. Direct Torque Control of Matrix Converter Fed Induction Motor Drive

    Directory of Open Access Journals (Sweden)

    JAGADEESAN Karpagam

    2011-10-01

    Full Text Available This paper presents the Direct TorqueControl (DTC of induction motor drive using matrixconverters. DTC is a high performance motor controlscheme with fast torque and flux responses. However,the main disadvantage of conventional DTC iselectromagnetic torque ripple. In this paper, directtorque control for Induction Motors using MatrixConverters is analysed and points out the problem ofthe electromagnetic torque ripple which is one of themost important drawbacks of the Direct TorqueControl. Besides, the matrix converter is a single-stageac-ac power conversion device without dc-link energystorage elements. Matrix converter (MC may becomea good alternative to voltage-source inverter (VSI.This work combines the advantages of the matrixconverter with those of the DTC technique, generatingthe required voltage vectors under unity input powerfactor operation. Simulation results demonstrates theeffectiveness of the torque control.

  20. Design and Implementation of a High-Voltage Generator with Output Voltage Control for Vehicle ER Shock-Absorber Applications

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2013-01-01

    Full Text Available A self-oscillating high-voltage generator is proposed to supply voltage for a suspension system in order to control the damping force of an electrorheological (ER fluid shock absorber. By controlling the output voltage level of the generator, the damping force in the ER fluid shock absorber can be adjusted immediately. The shock absorber is part of the suspension system. The high-voltage generator drives a power transistor based on self-excited oscillation, which converts dc to ac. A high-frequency transformer with high turns ratio is used to increase the voltage. In addition, the system uses the car battery as dc power supply. By regulating the duty cycle of the main switch in the buck converter, the output voltage of the buck converter can be linearly adjusted so as to obtain a specific high voltage for ER. The driving system is self-excited; that is, no additional external driving circuit is required. Thus, it reduces cost and simplifies system structure. A prototype version of the actual product is studied to measure and evaluate the key waveforms. The feasibility of the proposed system is verified based on experimental results.

  1. Parallel and series 4 switch Z-source converters in induction motor drives

    DEFF Research Database (Denmark)

    Baba, Mircea; Lascu, Cristian; Boldea, Ion

    2014-01-01

    This paper presents a control strategy for four switch three-phase Z-source Inverter with parallel and series Z-source network fed 0.5 kW induction motor drive with V/f control and the algorithm to control the dc boost, split capacitor voltage balance and the ac output voltage. The proposed control...... algorithm is validated through simulation and experiment....

  2. Non-linear leak currents affect mammalian neuron physiology

    Directory of Open Access Journals (Sweden)

    Shiwei eHuang

    2015-11-01

    Full Text Available In their seminal works on squid giant axons, Hodgkin and Huxley approximated the membrane leak current as Ohmic, i.e. linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells.

  3. Low Voltage Ride-Through of Two-Stage Grid-Connected Photovoltaic Systems Through the Inherent Linear Power-Voltage Characteristic

    DEFF Research Database (Denmark)

    Yang, Yongheng; Sangwongwanich, Ariya; Liu, Hongpeng

    2017-01-01

    In this paper, a cost-effective control scheme for two-stage grid-connected PhotoVoltaic (PV) systems in Low Voltage Ride-Through (LVRT) operation is proposed. In the case of LVRT, the active power injection by PV panels should be limited to prevent from inverter over-current and also energy...... aggregation at the dc-link, which will challenge the dc-link capacitor lifetime if remains uncontrolled. At the same time, reactive currents should be injected upon any demand imposed by the system operators. In the proposed scheme, the two objectives can be feasibly achieved. The active power is regulated...... point tracking controller without significant hardware or software modifications. In this way, the PV system will not operate at the maximum power point, whereas the inverter will not face any over-current challenge but can provide reactive power support in response to the grid voltage fault...

  4. Comparative Study of Voltage Recovery Behaviors of Grid-Connected Wind Turbines

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2004-01-01

    on voltage recovery of variable speed wind turbines. The models of two different kinds of variable speed wind turbines, respectively with slip control and with doubly fed induction generator (DFIG), are developed in PSCAD/EMTDC. In both wind power generation systems, control strategies are proposed to re......The fast development of wind power generation brings new requirements for wind turbine integration to the network. After the clearance of an external short-circuit fault, the voltage at the wind turbine terminal should be re-established with minimized power losses. This paper concentrates......-establish the wind turbine terminal voltage after the clearance of an external short-circuit fault, which have been demonstrated by simulation results....

  5. Optimal condition of memristance enhancement circuit using external voltage source

    Directory of Open Access Journals (Sweden)

    Hiroya Tanaka

    2014-05-01

    Full Text Available Memristor provides nonlinear response in the current-voltage characteristic and the memristance is modulated using an external voltage source. We point out by solving nonlinear equations that an optimal condition of the external voltage source exists for maximizing the memristance in such modulation scheme. We introduce a linear function to describe the nonlinear time response and derive an important design guideline; a constant ratio of the frequency to the amplitude of the external voltage source maximizes the memristance. The analysis completely accounts for the memristance behavior.

  6. A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons.

    Science.gov (United States)

    Smith, Ray T; Jjunju, Fred P M; Young, Iain S; Taylor, Stephen; Maher, Simon

    2016-07-01

    A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting's theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond.

  7. Linearity of bulk-controlled inverter ring VCO in weak and strong inversion

    DEFF Research Database (Denmark)

    Wismar, Ulrik Sørensen; Wisland, D.; Andreani, Pietro

    2007-01-01

    In this paper linearity of frequency modulation in voltage controlled inverter ring oscillators for non feedback sigma delta converter applications is studied. The linearity is studied through theoretical models of the oscillator operating at supply voltages above and below the threshold voltage......, process variations and temperature variations have also been simulated to indicate the advantages of having the soft rail bias transistor in the VCO....

  8. Optimization Design of an Inductive Energy Harvesting Device for Wireless Power Supply System Overhead High-Voltage Power Lines

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-03-01

    Full Text Available Overhead high voltage power line (HVPL online monitoring equipment is playing an increasingly important role in smart grids, but the power supply is an obstacle to such systems’ stable and safe operation, so in this work a hybrid wireless power supply system, integrated with inductive energy harvesting and wireless power transmitting, is proposed. The energy harvesting device extracts energy from the HVPL and transfers that from the power line to monitoring equipment on transmission towers by transmitting and receiving coils, which are in a magnetically coupled resonant configuration. In this paper, the optimization design of online energy harvesting devices is analyzed emphatically by taking both HVPL insulation distance and wireless power supply efficiency into account. It is found that essential parameters contributing to more extracted energy include large core inner radius, core radial thickness, core height and small core gap within the threshold constraints. In addition, there is an optimal secondary coil turn that can maximize extracted energy when other parameters remain fixed. A simple and flexible control strategy is then introduced to limit power fluctuations caused by current variations. The optimization methods are finally verified experimentally.

  9. Gain Scheduling Control of an Islanded Microgrid Voltage

    Directory of Open Access Journals (Sweden)

    Haritza Camblong

    2014-07-01

    Full Text Available The aim of this research study has been to design a gain scheduling (GS digital controller in order to control the voltage of an islanded microgrid in the presence of fast varying loads (FVLs, and to compare it to a robust controller. The inverter which feeds the microgrid is connected to it through an inductance-capacitor-inductance (LCL filter. The oscillatory and nonlinear behaviour of the plant is analyzed in the whole operating zone. Afterwards, the design of the controllers which contain two loops in cascade are described. The first loop concerns the current control, while the second is linked to the voltage regulation. Two controllers, one defined as Robust and another one as GS controller, are designed for the two loops, emphasizing in their robustness and their ability to damp the oscillatory plant behaviour. To finish, some simulations are carried out to study and compare the two kinds of controllers in different operating points. The results show that both controllers damp the oscillatory behaviour of the plant in closed loop (CL, and that the GS controller ensures a better rejection of current disturbances from FVLs.

  10. Influence of Crowbar and Chopper Protection on DFIG during Low Voltage Ride Through

    Directory of Open Access Journals (Sweden)

    Rita M. Monteiro Pereira

    2018-04-01

    Full Text Available The energy sector is evolving rapidly, namely due to the increasing importance of renewable energy sources. The connection of large amounts of wind power generation poses new challenges for the dynamic voltage stability analysis of an electric power system, which has to be studied. In this paper, the traditional Doubly-Fed Induction Generator model is employed. Based on this model, a crowbar and chopper circuit is set up to protect the turbine during the short-circuit period. The EUROSTAG software package was used for the simulation studies of the system, and numerical results were obtained. Conclusions are drawn that provide a better understanding of the influence of crowbar and chopper protection on Doubly-Fed Induction Generators (DFIG, during low voltage ride through, in a system with wind power generation.

  11. Fault detection and isolation in processes involving induction machines

    Energy Technology Data Exchange (ETDEWEB)

    Zell, K; Medvedev, A [Control Engineering Group, Luleaa University of Technology, Luleaa (Sweden)

    1998-12-31

    A model-based technique for fault detection and isolation in electro-mechanical systems comprising induction machines is introduced. Two coupled state observers, one for the induction machine and another for the mechanical load, are used to detect and recognize fault-specific behaviors (fault signatures) from the real-time measurements of the rotor angular velocity and terminal voltages and currents. Practical applicability of the method is verified in full-scale experiments with a conveyor belt drive at SSAB, Luleaa Works. (orig.) 3 refs.

  12. Fault detection and isolation in processes involving induction machines

    Energy Technology Data Exchange (ETDEWEB)

    Zell, K.; Medvedev, A. [Control Engineering Group, Luleaa University of Technology, Luleaa (Sweden)

    1997-12-31

    A model-based technique for fault detection and isolation in electro-mechanical systems comprising induction machines is introduced. Two coupled state observers, one for the induction machine and another for the mechanical load, are used to detect and recognize fault-specific behaviors (fault signatures) from the real-time measurements of the rotor angular velocity and terminal voltages and currents. Practical applicability of the method is verified in full-scale experiments with a conveyor belt drive at SSAB, Luleaa Works. (orig.) 3 refs.

  13. High-voltage integrated linear regulator with current sinking capabilities for portable ultrasound scanners

    DEFF Research Database (Denmark)

    Pausas, Guifre Vendrell; Llimos Muntal, Pere; Jørgensen, Ivan Harald Holger

    2017-01-01

    This paper presents a high-voltage integrated regulator capable of sinking current for driving pulse-triggered level shifters in drivers for ultrasound applications. The regulator utilizes a new topology with a feedback loop and a current sinking circuit to satisfy the requirements of the portable....... The proposed design has been implemented in high-voltage 0.18 μm process whithin an area of 0.11 mm2 and it is suitable for system-on-chip integration due to its low component count and the fully integrated design....

  14. The supply voltage apparatus of the CUORE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Arnaboldi, C.; Baú, A.; Carniti, P.; Cassina, L.; Giachero, A.; Gotti, C.; Maino, M.; Passerini, A. [INFN, Sezione di Milano Bicocca - Istituto Nazionale di Fisica Nucleare, Piazza della Scienza 3 Milano (Italy); Università di Milano Bicocca - Dipartimento di Fisica, Piazza della Scienza 3 Milano (Italy); Pessina, G., E-mail: Pessina@mib.infn.it [INFN, Sezione di Milano Bicocca - Istituto Nazionale di Fisica Nucleare, Piazza della Scienza 3 Milano (Italy); Università di Milano Bicocca - Dipartimento di Fisica, Piazza della Scienza 3 Milano (Italy)

    2016-07-11

    The Electronics system of experiments for the study of rare decays, such as the neutrino-less double beta decay, must be very stable over very long expected runs. We introduce our solution for the power supply of such an experiment, CUORE. In this case the power supply chain consists of a series of ACDCs, followed by DCDCs and then Linear Regulators. We emphasize here our approach to the DCDC regulation system that was designed with a complete rejection of the switching noise, across 100 MHz bandwidth. In the experimental layout the DCDC will be located far from the very front-end, with long connecting cables (10 m). We introduced our very simple and safe solution to prevent huge over-voltages, due to the energy stored in the inductance of the cables, generated after the release of accidental short circuits, so avoiding destructive effects. Some micro-controllers are present on every board and take care of the DCDC operation. These micro-controllers are managed from the control room, via CAN BUS protocol coupled via optical fibres. CUORE is an array of 1000 cryogenic detectors that will need 30 of our DCDCs.

  15. The supply voltage apparatus of the CUORE experiment

    Science.gov (United States)

    Arnaboldi, C.; Baú, A.; Carniti, P.; Cassina, L.; Giachero, A.; Gotti, C.; Maino, M.; Passerini, A.; Pessina, G.

    2016-07-01

    The Electronics system of experiments for the study of rare decays, such as the neutrino-less double beta decay, must be very stable over very long expected runs. We introduce our solution for the power supply of such an experiment, CUORE. In this case the power supply chain consists of a series of ACDCs, followed by DCDCs and then Linear Regulators. We emphasize here our approach to the DCDC regulation system that was designed with a complete rejection of the switching noise, across 100 MHz bandwidth. In the experimental layout the DCDC will be located far from the very front-end, with long connecting cables (10 m). We introduced our very simple and safe solution to prevent huge over-voltages, due to the energy stored in the inductance of the cables, generated after the release of accidental short circuits, so avoiding destructive effects. Some micro-controllers are present on every board and take care of the DCDC operation. These micro-controllers are managed from the control room, via CAN BUS protocol coupled via optical fibres. CUORE is an array of 1000 cryogenic detectors that will need 30 of our DCDCs.

  16. The supply voltage apparatus of the CUORE experiment

    International Nuclear Information System (INIS)

    Arnaboldi, C.; Baú, A.; Carniti, P.; Cassina, L.; Giachero, A.; Gotti, C.; Maino, M.; Passerini, A.; Pessina, G.

    2016-01-01

    The Electronics system of experiments for the study of rare decays, such as the neutrino-less double beta decay, must be very stable over very long expected runs. We introduce our solution for the power supply of such an experiment, CUORE. In this case the power supply chain consists of a series of ACDCs, followed by DCDCs and then Linear Regulators. We emphasize here our approach to the DCDC regulation system that was designed with a complete rejection of the switching noise, across 100 MHz bandwidth. In the experimental layout the DCDC will be located far from the very front-end, with long connecting cables (10 m). We introduced our very simple and safe solution to prevent huge over-voltages, due to the energy stored in the inductance of the cables, generated after the release of accidental short circuits, so avoiding destructive effects. Some micro-controllers are present on every board and take care of the DCDC operation. These micro-controllers are managed from the control room, via CAN BUS protocol coupled via optical fibres. CUORE is an array of 1000 cryogenic detectors that will need 30 of our DCDCs.

  17. Electromagnetic Investigation of a CMOS MEMS Inductive Microphone

    Directory of Open Access Journals (Sweden)

    Farès TOUNSI

    2009-09-01

    Full Text Available This paper presents a detailed electromagnetic modeling for a new structure of a monolithic CMOS micromachined inductive microphone. We have shown, that the use of an alternative current (AC in the primary fixed inductor results in a substantially higher induced voltage in the secondary inductor comparing to the case when a direct current (DC is used. The expected increase of the induced voltage can be expressed by a voltage ratio of AC and DC solutions that is in the range of 3 to 6. A prototype fabrication of this microphone has been realized using a combination of standard CMOS 0.6 µm process with a CMOS-compatible post-process consisting in a bulk micromachining technology. The output voltage of the electrodynamic microphone that achieves the µV range can be increased by the use of the symmetric dual-layer spiral inductor structure.

  18. Coordinated control of a DFIG-based wind-power generation system with SGSC under distorted grid voltage conditions

    DEFF Research Database (Denmark)

    Yao, Jun; Li, Qing; Chen, Zhe

    2013-01-01

    in the multiple synchronous rotating reference frames. In order to counteract the adverse effects of the voltage harmonics upon the DFIG, the SGSC generates series compensation control voltages to keep the stator voltage sinusoidal and symmetrical, which allows the use of the conventional vector control strategy......This paper presents a coordinated control method for a doubly-fed induction generator (DFIG)-based wind-power generation system with a series grid-side converter (SGSC) under distorted grid voltage conditions. The detailed mathematical models of the DFIG system with SGSC are developed...

  19. The operation of a single-sided linear induction motor with squirrel-cage and solid-steel reaction rails

    Science.gov (United States)

    Eastham, A. R.; Katz, R. M.

    1980-09-01

    Two test programs have been conducted to evaluate the performance of a single-sided linear induction motor with a squirrel-cage reaction rail and with a solid steel reaction rail. A 1.73-m-long six-pole stator interacted with the rails mounted on the rim of a 7.6-m-diam wheel. A 64-channel data acquisition system allowed tests to be performed over a wide range of operating conditions at speeds up to 20 m/sec. Typical test results which compare and contrast the mechanical, electrical and magnetic behavior of the SLIMs are presented. The test data are being used to assess the SLIM as an integrated suspension/propulsion system and for other transportation applications.

  20. Induction technology optimization code

    International Nuclear Information System (INIS)

    Caporaso, G.J.; Brooks, A.L.; Kirbie, H.C.

    1992-01-01

    A code has been developed to evaluate relative costs of induction accelerator driver systems for relativistic klystrons. The code incorporates beam generation, transport and pulsed power system constraints to provide an integrated design tool. The code generates an injector/accelerator combination which satisfies the top level requirements and all system constraints once a small number of design choices have been specified (rise time of the injector voltage and aspect ratio of the ferrite induction cores, for example). The code calculates dimensions of accelerator mechanical assemblies and values of all electrical components. Cost factors for machined parts, raw materials and components are applied to yield a total system cost. These costs are then plotted as a function of the two design choices to enable selection of an optimum design based on various criteria. (Author) 11 refs., 3 figs

  1. Study on the characters of high voltage charging power supply system for diagnostics neutral beam on HT-7 Tokamak

    International Nuclear Information System (INIS)

    Zhang Jian; Huang Yiyun; Liu Baohua; Guo Wenjun; Shen Xiaoling; Wei Wei

    2011-01-01

    A high voltage power supply system has been developed for the diagnostic neutral beam on the HT-7 experimental Tokamak, and the over-voltage phenomenon of storage capacitor was founded in the experiment. In order to analyse and resolve this problem, the structure and principle of high voltage power supply is described and the primary high voltage charging power supply system is introduced in detail. The phenomenon of over-voltage on the capacitors is also studied with circuit model, and the conclusion is obtained that the leakage inductance is the mA in reason which causes the over-voltage on the capacitors. (authors)

  2. Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps

    Directory of Open Access Journals (Sweden)

    Deep Parikh

    2015-08-01

    Full Text Available This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current motors used in quad-copter UAV (Unmanned Aerial Vehicles. The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM.  Traditionally, quad-copter BLDC motor speed control uses simple linear motor-control map defined by the motor-constant specification. However, practical BLDC motors show non-linear characteristic, particularly when operated across wide operating speed-range as is commonly required in quad-copter UAV flight operations. In this paper, our investigations to compare performance of linear versus non-linear motor-control maps are presented. The investigations cover simulation-based and experimental study of BLDC motor speed control systems for  quad-copter vehicle available. First the non-linear map relating rotor RPM to motor voltage for quad-copter BLDC motor is obtained experimentally using an optical speed encoder. The performance of the linear versus non-linear motor-control-maps for the speed control are studied. The investigations also cover study of time-responses for various standard test input-signals e.g. step, ramp and pulse inputs, applied as the reference speed-commands. Also, simple 2-degree of freedom test-bed is developed in our laboratory to help test the open-loop and closed-loop experimental investigations. The non-linear motor-control map is found to perform better in BLDC motor speed tracking control performance and thereby helping achieve better quad-copter roll-angle attitude control.

  3. Coil geometry models for power loss analysis and hybrid inductive ...

    Indian Academy of Sciences (India)

    CHANDRASEKHARAN NATARAJ

    2018-04-26

    Apr 26, 2018 ... most of the WPT systems, but often suffers from power loss in the near field area of inductively coupled ... applications in the area of Distribution Generation (DG) ... embedded sensors, and buried devices, work at low voltage.

  4. The current-voltage relation of a pore and its asymptotic behavior in a Nernst-Planck model

    Directory of Open Access Journals (Sweden)

    Marius Birlea

    2012-08-01

    Full Text Available A model for current-voltage nonlinearity and asymmetry is a good starting point for explaining the electrical behavior of the nanopores in synthetic or biological membranes. Using a Nernst-Planck model, we found three behaviors for the current density in a membrane's pore as a function of voltage: a quasi-ohmic, slow rising linear current at low voltages, a nonlinear current at intermediate voltages, and a non-ohmic, fast rising linear current at large voltages. The slope of the quasi-ohmic current depends mainly on the height of energy barrier inside the pore, w, through an exponential term, ew. The magnitude of the non-ohmic linear current is controlled by the potential energy gradient at the pore entrance, w/r. The current-voltage relation is asymmetric if the ion's potential energy inside the pore has an asymmetric triangular profile. The model has only two assumed parameters, the energy barrier height, w, and the relative size of the entrance region of the pore, r, which is a useful feature for fitting and interpreting experimental data.

  5. A novel concept of fault current limiter based on saturable core in high voltage DC transmission system

    Science.gov (United States)

    Yuan, Jiaxin; Zhou, Hang; Gan, Pengcheng; Zhong, Yongheng; Gao, Yanhui; Muramatsu, Kazuhiro; Du, Zhiye; Chen, Baichao

    2018-05-01

    To develop mechanical circuit breaker in high voltage direct current (HVDC) system, a fault current limiter is required. Traditional method to limit DC fault current is to use superconducting technology or power electronic devices, which is quite difficult to be brought to practical use under high voltage circumstances. In this paper, a novel concept of high voltage DC transmission system fault current limiter (DCSFCL) based on saturable core was proposed. In the DCSFCL, the permanent magnets (PM) are added on both up and down side of the core to generate reverse magnetic flux that offset the magnetic flux generated by DC current and make the DC winding present a variable inductance to the DC system. In normal state, DCSFCL works as a smoothing reactor and its inductance is within the scope of the design requirements. When a fault occurs, the inductance of DCSFCL rises immediately and limits the steepness of the fault current. Magnetic field simulations were carried out, showing that compared with conventional smoothing reactor, DCSFCL can decrease the high steepness of DC fault current by 17% in less than 10ms, which verifies the feasibility and effectiveness of this method.

  6. Electrostatic induction under the Tanashi test transmission line

    Energy Technology Data Exchange (ETDEWEB)

    Kitani, Y; Yokata, S

    1964-06-01

    Experimental results are given on the electrostatic voltage induced in small and medium-sized motorcars under the Tanashi 800 kV Test Transmission Line, which is of horizontal arrangement, 200 m span, four bundle conductors and average height of 13.52 m. The induced voltage was measured between 1600 and 3000 V under the line voltage of 520 kV. The voltage and current were measured with four kinds of model motorcars in air and water, and results of the measurements are compared with those of actual measurements with good agreements. The values of capacity and leakage resistance, whose parallel circuit was considered to represent an equivalent circuit of the motorcar, were measured with a Maxwell-Wien bridge at frequencies between 30 and 1000 c/s. It was found that the values at 60 c/s were measured to be approximately six or seven times higher than its values at 1000 c/s, and that new tires have higher conductivities than the old ones, reducing the electrostatic induction voltage by a large amount.

  7. Non-linear thermal fluctuations in a diode

    NARCIS (Netherlands)

    Kampen, N.G. van

    As an example of non-linear noise the fluctuations in a circuit consisting of a diode and a condenser C are studied. From the master equation for this system the following results are derived. 1. (i) The equilibrium distribution of the voltage is rigorously Gaussian, the average voltage being

  8. A physical method to incorporate parasitic elements in a circuit simulator based on the partial inductance concept

    NARCIS (Netherlands)

    Evenblij, B.H.; Ferreira, J.A.

    2001-01-01

    In switching Power Electronics circuits inductive parasitics of wiring and components contribute substantially to the current and voltage waveforms. This article addresses the theoretical basis as well as the implementation and validation of the incorporation of these inductances in a computerised

  9. Adaptive Voltage Control Strategy for Variable-Speed Wind Turbine Connected to a Weak Network

    DEFF Research Database (Denmark)

    Abulanwar, Elsayed; Hu, Weihao; Chen, Zhe

    2016-01-01

    and smoothness at the point of connection (POC) in order to maximise the wind power penetration into such networks. Intensive simulation case studies under different network topology and wind speed ranges reveal the effectiveness of the AVC scheme to effectively suppress the POC voltage variations particularly......Significant voltage fluctuations and power quality issues pose considerable constraints on the efficient integration of remotely located wind turbines into weak networks. Besides, 3p oscillations arising from the wind shear and tower shadow effects induce further voltage perturbations during...... continuous operation. This study investigates and analyses the repercussions raised by integrating a doubly-fed induction generator wind turbine into an ac network of different parameters and very weak conditions. An adaptive voltage control (AVC) strategy is proposed to retain voltage constancy...

  10. H∞ Robust Current Control for DFIG Based Wind Turbine subject to Grid Voltage Distortions

    DEFF Research Database (Denmark)

    Wang, Yun; Wu, Qiuwei; Gong, Wenming

    2016-01-01

    This paper proposes an H∞ robust current controller for doubly fed induction generator (DFIG) based wind turbines (WTs) subject to grid voltage distortions. The controller is to mitigate the impact of the grid voltage distortions on rotor currents with DFIG parameter perturbation. The grid voltage...... distortions considered include asymmetric voltage dips and grid background harmonics. An uncertain DFIG model is developed with uncertain factors originating from distorted stator voltage, and changed generator parameters due to the flux saturation effect, the skin effect, etc. Weighting functions...... are designed to efficiently track the unbalanced current components and the 5th and 7th background harmonics. The robust stability (RS) and robust performance (RP) of the proposed controller are verified by the structured singular value µ. The performance of the H∞ robust current controller was demonstrated...

  11. Autonomous Voltage Oscillations in a Direct Methanol Fuel Cell

    International Nuclear Information System (INIS)

    Nogueira, Jéssica A.; Peña Arias, Ivonne K.; Hanke-Rauschenbach, Richard; Vidakovic-Koch, Tanja; Varela, Hamilton; Sundmacher, Kai

    2016-01-01

    Proton exchange membrane fuel cells fed with H_2/CO mixtures at the anode have a considerably lower performance than fuel cells fed with pure hydrogen. However, when operated in an autonomous oscillatory regime, the overall voltage loss decreases due to a self-cleaning mechanism. Another molecule, also widely used as feed in the fuel cell and susceptible to kinetic instabilities, is methanol. To the best of our knowledge, there are no reports on autonomous voltage oscillations in the direct methanol fuel cell (DMFC). The purpose of this work was to explore if such instabilities also occur in the DMFC system. Initially, half-cell experiments with a gas diffusion electrode were performed. Then, a DMFC was operated under current control and studied by means of electrochemical impedance spectroscopy. The half-cell measurements revealed that the induction period for oscillations depends on the mass transfer conditions, where on stagnant electrode the induction time was shorter than in the case of forced convection. The DMFC showed also autonomous voltage oscillations above a certain threshold current. The results obtained by electrochemical impedance spectroscopy give evidence of a negative differential resistance in the fuel cell, hitherto not described in the literature, which can be related to the appearance of oscillations during galvanostatic methanol electro-oxidation. These results open the possibility to evaluate the performance of low-temperature fuel cells fed with carbon-containing fuels under oscillatory operating conditions.

  12. Fast Coordinated Control of DFIG Wind Turbine Generators for Low and High Voltage Ride-Through

    DEFF Research Database (Denmark)

    Wang, Yun; Wu, Qiuwei; Xu, Honghua

    2014-01-01

    This paper presents a fast coordinated control scheme of the rotor side converter (RSC), the DC chopper and the grid side converter (GSC) of doubly fed induction generator (DFIG) wind turbine generators (WTGs) which is to improve the low voltage ride through (LVRT) and high voltage ride through...... were proposed considering the characteristics of the DFIG WTGs during voltage changes. The fast coordinated control of RSC and GSC were developed based on the characteristic analysis in order to realize efficient LVRT and HVRT of the DFIG WTGs. The proposed fast coordinated control schemes were...

  13. Modular high-voltage bias generator powered by dual-looped self-adaptive wireless power transmission.

    Science.gov (United States)

    Xie, Kai; Huang, An-Feng; Li, Xiao-Ping; Guo, Shi-Zhong; Zhang, Han-Lu

    2015-04-01

    We proposed a modular high-voltage (HV) bias generator powered by a novel transmitter-sharing inductive coupled wireless power transmission technology, aimed to extend the generator's flexibility and configurability. To solve the problems caused through an uncertain number of modules, a dual-looped self-adaptive control method is proposed that is capable of tracking resonance frequency while maintaining a relatively stable induction voltage for each HV module. The method combines a phase-locked loop and a current feedback loop, which ensures an accurate resonance state and a relatively constant boost ratio for each module, simplifying the architecture of the boost stage and improving the total efficiency. The prototype was built and tested. The input voltage drop of each module is less than 14% if the module number varies from 3 to 10; resonance tracking is completed within 60 ms. The efficiency of the coupling structure reaches up to 95%, whereas the total efficiency approaches 73% for a rated output. Furthermore, this technology can be used in various multi-load wireless power supply applications.

  14. detection of static eccentricity fault in saturated induction motors

    African Journals Online (AJOL)

    2013-06-30

    Jun 30, 2013 ... The air gap magnetic field contains full information of the stator condition and ... voltage asymmetry [21] wound rotor phase disconnection [22], ... TSFE analysis of induction motor based circuit-coupled method ... The last term represents current induced in conducting material when flux changes with time.

  15. Power supply and stabilization of the supply system on board using decentralized voltage rectifiers

    Energy Technology Data Exchange (ETDEWEB)

    Grueb, W; Wegerer, K

    1987-04-01

    The functionally redundant power supply system of the Transrapid 06 II maglev train is described; it comprises four independent, battery-buffered networks and 30 linear generators per train section. Voltage rectifiers adapt the velocity- and load-dependent linear generator voltage to the 440 V d.c. networks and assure dynamic stabilisation as well as buffer battery loading. The result is a high-reliability power supply system on board with optimum utilisation of the power supplied by the linear generators while the train is running.

  16. Piezoelectric self sensing actuators for high voltage excitation

    International Nuclear Information System (INIS)

    Grasso, E; Totaro, N; Janocha, H; Naso, D

    2013-01-01

    Self sensing techniques allow the use of a piezoelectric transducer simultaneously as an actuator and as a sensor. Such techniques are based on knowledge of the transducer behaviour and on measurements of electrical quantities, in particular voltage and charge. Past research work has mainly considered the linear behaviour of piezoelectric transducers, consequently restricting the operating driving voltages to low values. In this work a new self sensing technique is proposed which is able to perform self sensing reconstruction both at low and at high driving voltages. This technique, in fact, makes use of a hysteretic model to describe the nonlinear piezoelectric capacitance necessary for self sensing reconstruction. The capacitance can be measured and identified at the antiresonances of a vibrating structure with a good approximation. After providing a mathematical background to deal with the main aspects of self sensing, this technique is compared theoretically and experimentally to a typical linear one by using an aluminum plate with one bonded self sensing transducer and a positive position feedback (PPF) controller to verify the performance in self sensing based vibration control. (paper)

  17. Linear induction accelerator approach for advanced radiography

    International Nuclear Information System (INIS)

    Caporaso, G.J.

    1997-05-01

    Recent advances in induction accelerator technology make it possible to envision a single accelerator that can serve as an intense, precision multiple pulse x-ray source for advanced radiography. Through the use of solid-state modulator technology repetition rates on the order of 1 MHz can be achieved with beam pulse lengths ranging from 200 ns to 2 microsecs. By using fast kickers, these pulses may be sectioned into pieces which are directed to different beam lines so as to interrogate the object under study from multiple lines of sight. The ultimate aim is to do a time dependent tomographic reconstruction of a dynamic object. The technology to accomplish these objectives along with a brief discussion of the experimental plans to verify it will be presented

  18. Effects of Leakage Inductances on Magnetically Coupled Y-Source Network

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede

    2014-01-01

    inductances must be small. This is often difficult to achieve in practice especially at high switching frequencies. It is therefore necessary to understand the effects that leakage inductances have on the performance of these converters. In this letter, we address these issues for the latest Y-source network......, showing in particular that voltage spikes will appear across its switching devices in some, but not all, cases. Experimental results verifying the findings have been obtained and presented at the end of this letter....

  19. Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System

    Science.gov (United States)

    Agarwal, Ruchi; Singh, Sanjeev

    2017-12-01

    The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.

  20. Insulation Resistance and Leakage Currents in Low-Voltage Ceramic Capacitors with Cracks

    Science.gov (United States)

    Teverovsky, Alexander A.

    2016-01-01

    Measurement of insulation resistance (IR) in multilayer ceramic capacitors (MLCCs) is considered a screening technique that ensures the dielectric is defect-free. This work analyzes the effectiveness of this technique for revealing cracks in ceramic capacitors. It is shown that absorption currents prevail over the intrinsic leakage currents during standard IR measurements at room temperature. Absorption currents, and consequently IR, have a weak temperature dependence, increase linearly with voltage (before saturation), and are not sensitive to the presence of mechanical defects. In contrary, intrinsic leakage currents increase super-linearly with voltage and exponentially with temperature (activation energy is in the range from 0.6 eV to 1.1 eV). Leakage currents associated with the presence of cracks have a weaker dependence on temperature and voltage compared to the intrinsic leakage currents. For this reason, intrinsic leakage currents prevail at high temperatures and voltages, thus masking the presence of defects.

  1. Welding quality evaluation of resistance spot welding using the time-varying inductive reactance signal

    Science.gov (United States)

    Zhang, Hongjie; Hou, Yanyan; Yang, Tao; Zhang, Qian; Zhao, Jian

    2018-05-01

    In the spot welding process, a high alternating current is applied, resulting in a time-varying electromagnetic field surrounding the welder. When measuring the welding voltage signal, the impedance of the measuring circuit consists of two parts: dynamic resistance relating to weld nugget nucleation event and inductive reactance caused by mutual inductance. The aim of this study is to develop a method to acquire the dynamic reactance signal and to discuss the possibility of using this signal to evaluate the weld quality. For this purpose, a series of experiments were carried out. The reactance signals under different welding conditions were compared and the results showed that the morphological feature of the reactance signal was closely related to the welding current and it was also significantly influenced by some abnormal welding conditions. Some features were extracted from the reactance signal and combined to construct weld nugget strength and diameter prediction models based on the radial basis function (RBF) neural network. In addition, several features were also used to monitor the expulsion in the welding process by using Fisher linear discriminant analysis. The results indicated that using the dynamic reactance signal to evaluate weld quality is possible and feasible.

  2. Comparison of linear synchronous and induction motors

    Science.gov (United States)

    2004-06-01

    A propulsion prade study was conducted as part of the Colorado Maglev Project of FTA's Urban Maglev Technology Development Program to identify and evaluate prospective linear motor designs that could potentially meet the system performance requiremen...

  3. The Design and Characterization of a Prototype Wideband Voltage Sensor Based on a Resistive Divider.

    Science.gov (United States)

    Garnacho, Fernando; Khamlichi, Abderrahim; Rovira, Jorge

    2017-11-17

    The most important advantage of voltage dividers over traditional voltage transformers is that voltage dividers do not have an iron core with non-linear hysteresis characteristics. The voltage dividers have a linear behavior with respect to over-voltages and a flat frequency response larger frequency range. The weak point of a voltage divider is the influence of external high-voltage (HV) and earth parts in its vicinity. Electrical fields arising from high voltages in neighboring phases and from ground conductors and structures are one of their main sources for systematic measurement errors. This paper describes a shielding voltage divider for a 24 kV medium voltage network insulated in SF6 composed of two resistive-capacitive dividers, one integrated within the other, achieving a flat frequency response up to 10 kHz for ratio error and up to 5 kHz for phase displacement error. The metal shielding improves its immunity against electric and magnetic fields. The characterization performed on the built-in voltage sensor shows an accuracy class of 0.2 for a frequency range from 20 Hz to 5 kHz and a class of 0.5 for 1 Hz up to 20 Hz. A low temperature effect is also achieved for operation conditions of MV power grids.

  4. Optical triggering of 4H-SiC thyristors (18 kV class) to high currents in purely inductive load circuit

    International Nuclear Information System (INIS)

    Rumyantsev, S L; Levinshtein, M E; Saxena, T; Shur, M S; Cheng, L; Palmour, J W; Agarwal, A

    2014-01-01

    Optical switch-on of a very high voltage (18 kV class) 4H-SiC thyristor with an amplification step (pilot thyristor) to the current I max  = 1225 A is demonstrated using a purely inductive load and a calibrated air transformer. Increasing the inductance of the transformer primary winding slows down the turn on process. However, the inductance has little effect during the initial stage of the switch-on process when the voltage drop on the thyristor and its internal resistance is high. The results show that a further switch-on current increase can be only achieved by introducing additional amplification steps in the pilot thyristor. (paper)

  5. A Voltage Modulated DPC Approach for Three-Phase PWM Rectifier

    DEFF Research Database (Denmark)

    Gui, Yonghao; Li, Mingshen; Lu, Jinghang

    2018-01-01

    In this paper, a voltage modulated direct power control for three-phase pulse-width modulated rectifier is proposed. With the suggested method, the differential equations describing the rectifier dynamics are changing from a linear time-varying system into a linear time-invariant one. In this way...

  6. Nonlinear Control of Induction Motors: A Performance Study

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1998-01-01

    A novel approach to control of induction motors based on nonlinear state feedback has previously been presented by the authors. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the...... for the field amplitude and the motor torque. The method is compared with the traditional Rotor Field Oriented Control method as regards variations in rotor resistance an magnetizing inductance......A novel approach to control of induction motors based on nonlinear state feedback has previously been presented by the authors. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers...

  7. Research into the Effect of Supercapacitor Terminal Voltage on Regenerative Suspension Energy-Regeneration and Dynamic Performance

    Directory of Open Access Journals (Sweden)

    Ruochen Wang

    2017-01-01

    Full Text Available To study the effect of supercapacitor initial terminal voltage on the regenerative and semiactive suspension energy-regeneration and dynamic performance, firstly, the relationship between supercapacitor terminal voltage and linear motor electromagnetic damping force and that between supercapacitor terminal voltage and recycled energy by the supercapacitor in one single switching period were both analyzed. The result shows that the linear motor electromagnetic damping force is irrelevant to the supercapacitor terminal voltage, and the recycled energy by the supercapacitor reaches the maximum when initial terminal voltage of the supercapacitor equals output terminal voltage of the linear motor. Then, performances of system dynamics and energy-regeneration were studied as the supercapacitor initial terminal voltage varied in situations of B level and C level road. The result showed that recycled energy by the supercapacitor increased at first and then decreased while the dynamic performance had no obvious change. On the basis of previous study, a mode-switching control strategy of supercapacitor for the regenerative and semiactive suspension system was proposed, and the mode-switching rule was built. According to simulation and experiment results, the system energy-regeneration efficiency can be increased by utilizing the control strategy without influencing suspension dynamic performance, which is highly valuable to practical engineering.

  8. Robust Parameter and Signal Estimation in Induction Motors

    DEFF Research Database (Denmark)

    Børsting, H.

    This thesis deals with theories and methods for robust parameter and signal estimation in induction motors. The project originates in industrial interests concerning sensor-less control of electrical drives. During the work, some general problems concerning estimation of signals and parameters...... in nonlinear systems, have been exposed. The main objectives of this project are: - analysis and application of theories and methods for robust estimation of parameters in a model structure, obtained from knowledge of the physics of the induction motor. - analysis and application of theories and methods...... for robust estimation of the rotor speed and driving torque of the induction motor based only on measurements of stator voltages and currents. Only contimuous-time models have been used, which means that physical related signals and parameters are estimated directly and not indirectly by some discrete...

  9. Influence of parameters detuning on induction motor NFO shaft-sensorless scheme

    Directory of Open Access Journals (Sweden)

    KULIC, F.

    2010-11-01

    Full Text Available In this paper, the parameter sensitivity analysis of shaft-sensorless induction motor drive with natural field orientation (NFO scheme is performed. NFO scheme calculates rotor flux position using the rotor flux vector reference only, does not require significant processor power and therefore it is suitable for low cost shaft sensorless drives. This concept also eliminates the need for sensitive stator voltage vector integration and it is usable in low rotor speed range. However, low speeds are coupled with low stator voltage amplitudes, which inflate the NFO scheme sensitivity to an error in stator resistance parameter. Similar problems can also take place if mutual inductance parameter is detuned, but this time in whole speed range. This paper investigates the influence of each parameter error on the NFO control steady state characteristics and dynamic performance.

  10. Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET

    International Nuclear Information System (INIS)

    Jia Yunpeng; Su Hongyuan; Hu Dongqing; Wu Yu; Jin Rui

    2016-01-01

    The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. (paper)

  11. Field-oriented control of five-phase induction motor with open-end stator winding

    Directory of Open Access Journals (Sweden)

    Listwan Jacek

    2016-09-01

    Full Text Available The mathematical model of the five-phase squirrel-cage induction motor and the system of the dual five-phase voltage source inverter have been presented. The control methods and control systems of the field-oriented control of the five-phase induction motor with an open-end stator winding are described. The structures of the direct fieldoriented control system (DFOC and the Indirect Field-oriented control system (IFOC with PI controllers in outer and inner control loops are analyzed. A method of space vector modulation used to control the system of the dual five-phase voltage source inverter has been discussed. The results of simulation studies of the field-oriented control methods are presented. Comparative analysis of the simulation results was carried out.

  12. Mitigation of Grid Current Distortion for LCL-Filtered Voltage Source Inverter with Inverter Current Feedback Control

    DEFF Research Database (Denmark)

    Xin, Zhen; Mattavelli, Paolo; Yao, WenLi

    2018-01-01

    LCL filters feature low inductance; thus, the injected grid current from an LCL-filtered Voltage Source Inverter (VSI) can be easily distorted by grid voltage harmonics. This problem is especially tough for the control system with Inverter-side Current Feedback (ICF), since the grid current...... harmonics can freely flow into the filter capacitor. In this case, because of the loss of harmonic information, traditional harmonic controllers fail to mitigate the grid current distortion. Although this problem may be avoided using the grid voltage feedforward scheme, the required differentiators may...

  13. Artificial intelligence techniques for voltage control

    Energy Technology Data Exchange (ETDEWEB)

    Ekwue, A.; Cheng, D.T.Y.; Macqueen, J.F.

    1997-12-31

    In electric power systems, the advantages of reactive power dispatching or optimisation include improved utilisation of reactive power sources and hence reduction in reactive power flows and real losses of the system; unloading of the system and equipment as a result of reactive flow reduction; the power factors of generation are improved and system security is enhanced; reduced voltage gradients and somewhat higher voltages which result across the system from improved operation; deferred capital investment is new reactive power sources as a result of improved utilisation of existing equipment; and for the National Grid Company plc (NGC), the main advantage is reduced out-of-merit operation. The problem of reactive power control has been studied and widely reported in the literature. Non-linear programming methods as well as linear programming techniques for constraint dispatch have been described. Static optimisation of reactive power sources by the use of sensitivity analysis was described by Kishore and Hill. Long range optimum var planning has been considered and the optimum amount and location of network reactive compensation so as to maintain the system voltage within the desired limits, while operating under normal and various insecurity states, have also been studied using several methods. The objective of this chapter is therefore to review conventional methods as well as AI techniques for reactive power control. (Author)

  14. Protector in a nuclear fusion device

    International Nuclear Information System (INIS)

    Furukawa, Masayuki; Yamane, Katsumi; Niwa, Sadahiko; Ogata, Fumio; Masuda, Jun-ichi.

    1975-01-01

    Object: To block an abnormal voltage, which shifts from plasma to coil or power supply by means of action of mutual induction, by a circuit utilizing non-linear impedance elements. Structure: The nuclear fusion device includes a current transformer coil, a vertical field coil and a plasma circuit, with a non-linear impedance element disposed in parallel with at least the current transformer coil, said impedance element being disposed in parallel with a short-circuiting switch, relative to the abnormal voltage moving from the plasma by means of action of mutual induction. (Kamimura, M.)

  15. Model of inductive plasma production assisted by radio-frequency wave in tokamaks

    International Nuclear Information System (INIS)

    Hasegawa, Makoto; Hanada, Kazuaki; Sato, Kohnosuke

    2007-01-01

    For initial plasma production, an induction electric field generated by applying voltage to a poloidal field (PF) coil system is used to produce a Townsend avalanche breakdown. When the avalanche margins are small, as for the International Thermonuclear Experimental Reactor (ITER) in which the induction electric field is about 0.3 V/m, the assistance of radio-frequency waves (RF) is provided to reduce the induction electric field required for reliable breakdown. However, the conditions of RF-assisted breakdown are not clear. Here, the effects of both RF and induction electric field on the RF-assisted breakdown are evaluated considering the electron loss. When traveling loss is the dominant loss, a simple model of an extended Townsend avalanche is proposed. In this model, the induction electric field required for RF-assisted breakdown can be decreased to half that required for induction breakdown. (author)

  16. The study, design and simulation of a free piston Stirling engine linear alternatorThe study, design and simulation of a free piston Stirling engine linear alternator

    Directory of Open Access Journals (Sweden)

    Teodora Susana Oros

    2014-12-01

    Full Text Available This paper presents a study, design and simulation of a Free Piston Stirling Engine Linear Alternator. There are presented the main steps of the magnetic and electric calculations for a permanent magnet linear alternator of fixed coil and moving magnets type. Finally, a detailed thermal, mechanical and electrical model for a Stirling engine linear alternator have been made in SIMULINK simulation program. The linear alternator simulation model uses a controllable DC voltage which simulates the linear alternator combined with a rectifier, a variable load and a DC-DC converter, which compensates for the variable nature of Stirling engine operation, and ensures a constant voltage output regardless of the load.

  17. Estimation of the Plant Time Constant of Current-Controlled Voltage Source Converters

    DEFF Research Database (Denmark)

    Vidal, Ana; Yepes, Alejandro G.; Malvar, Jano

    2014-01-01

    Precise knowledge of the plant time constant is essential to perform a thorough analysis of the current control loop in voltage source converters (VSCs). As the loop behavior can be significantly influenced by the VSC working conditions, the effects associated to converter losses should be included...... in the model, through an equivalent series resistance. In a recent work, an algorithm to identify this parameter was developed, considering the inductance value as known and practically constant. Nevertheless, the plant inductance can also present important uncertainties with respect to the inductance...... of the VSC interface filter measured at rated conditions. This paper extends that method so that both parameters of the plant time constant (resistance and inductance) are estimated. Such enhancement is achieved through the evaluation of the closed-loop transient responses of both axes of the synchronous...

  18. An improved low-voltage ride-through performance of DFIG based wind plant using stator dynamic composite fault current limiter.

    Science.gov (United States)

    Gayen, P K; Chatterjee, D; Goswami, S K

    2016-05-01

    In this paper, an enhanced low-voltage ride-through (LVRT) performance of a grid connected doubly fed induction generator (DFIG) has been presented with the usage of stator dynamic composite fault current limiter (SDCFCL). This protection circuit comprises of a suitable series resistor-inductor combination and parallel bidirectional semiconductor switch. The SDCFCL facilitates double benefits such as reduction of rotor induced open circuit voltage due to increased value of stator total inductance and concurrent increase of rotor impedance. Both effects will limit rotor circuit over current and over voltage situation more secured way in comparison to the conventional scheme like the dynamic rotor current limiter (RCL) during any type of fault situation. The proposed concept is validated through the simulation study of the grid integrated 2.0MW DFIG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Free-piston engine linear generator for hybrid vehicles modeling study

    Science.gov (United States)

    Callahan, T. J.; Ingram, S. K.

    1995-05-01

    Development of a free piston engine linear generator was investigated for use as an auxiliary power unit for a hybrid electric vehicle. The main focus of the program was to develop an efficient linear generator concept to convert the piston motion directly into electrical power. Computer modeling techniques were used to evaluate five different designs for linear generators. These designs included permanent magnet generators, reluctance generators, linear DC generators, and two and three-coil induction generators. The efficiency of the linear generator was highly dependent on the design concept. The two-coil induction generator was determined to be the best design, with an efficiency of approximately 90 percent.

  20. A Method for Solving the Voltage and Torque Equations of the Split ...

    African Journals Online (AJOL)

    Single phase induction machines have been the subject of many researches in recent times. The voltage and torque equations which describe the dynamic characteristics of these machines have been quoted in many papers, including the papers that present the simulation results of these model equations. The way and ...

  1. Long-pulse induction acceleration of heavy ions

    International Nuclear Information System (INIS)

    Faltens, A.; Firth, M.; Keefe, D.; Rosenblum, S.S.

    1983-03-01

    A long-pulse induction acceleration unit has been installed in the high-current Cs + beam line at LBL and has accelerated heavy ions. A maximum energy gain of 250 keV for 1.5 μs is possible. The unit comprises 12 independent modules which may be used to synthesize a variety of waveforms by varying the triggering times of the low-voltage trigger generators

  2. Long-pulse induction acceleration of heavy ions

    International Nuclear Information System (INIS)

    Faltons, A.; Firth, M.; Keefe, D.; Rosenblum, S.

    1983-01-01

    A long-pulse induction acceleration unit has been installed in the high-current Cs + beam line at LBL and has accelerated heavy ions. A maximum energy gain of 250 keV for 1.5 μs is possible. The unit comprises 12 independent modules which may be used to synthesize a variety of waveforms by varying the triggering times of the low voltage trigger generators

  3. Long-pulse induction acceleration of heavy-ions

    International Nuclear Information System (INIS)

    Faltens, A.; Firth, M.; Keefe, D.; Rosenblum, S.S.

    1983-01-01

    A long-pulse induction acceleration unit has been installed in the high-current Cs + beam line at LBL and has accelerated heavy ions. A maximum energy gain of 250 keV for 1.5 μs is possible. The unit comprises 12 independent modules which may be used to synthesize a variety of waveforms by varying the triggering times of the low voltage trigger generators

  4. Shunt PWM advanced var compensators based on voltage source inverters for Facts applications

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Pedro G; Misaka, Isamu; Watanabe, Edson H [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1994-12-31

    Increased attention has been given to improving power system operation. This paper presents modeling, analysis and design of reactive shunt power compensators based on PWM-Voltage Source Inverters (Pulse Width Modulation -Voltage Source Inverters). (Pulse Width Modulation - Voltage Source Inverters). The control algorithm is based on new concepts of instantaneous active and reactive power theory. The objective is to show that with a small capacitor in the side of a 3-phase PWM-VSI it is possible to synthesize a variable reactive (capacitive or inductive) device. Design procedures and experimental results are presented. The feasibility of this method was verified by digital simulations and measurements on a small scale model. (author) 9 refs., 12 figs.

  5. Inductance, electrically adjusted by semiconductor structure

    Directory of Open Access Journals (Sweden)

    Semenov А. А.

    2012-08-01

    Full Text Available A theoretical model of a passive flat inductor with electronic control is offered. Design charts of tank inductance and Q factor dependence on the forward bias voltage of n—i—p—i—n-structure, used as a specific core, the characteristics of which are regulated under the influence of an applied electric field, are presented. The comparison of design values with experimental features has shown their good correspondence with each other.

  6. Dual-range linearized transimpedance amplifier system

    Science.gov (United States)

    Wessendorf, Kurt O.

    2010-11-02

    A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

  7. Coupling of electromagnetic and thermal codes. Induction heating; Couplage des codes electromagnetique et thermique. Le chauffage par induction

    Energy Technology Data Exchange (ETDEWEB)

    Colombani, M. [CEDRAT, (France)

    1997-12-31

    The development and adjustment of induction heating systems is quite delicate because two different subjects of physics are involved: magnetism (Foucault currents) and thermal engineering. Moreover, the magnetic and electrical properties depends on the temperature and the dissipated power depends on the magnetic and electrical properties and on the electrical excitation sources (geometry, intensity, frequency). The CEDRAT company has been involved since several years in the development of modeling softwares which allow to analyze these kind of problems. The most used is the FLUX2D software, developed by CEDRAT RECHERCHE in collaboration with the LEG (CNRS-INPG) and EdF, and which is used in several domains of applications (electric motors, actuators, high-voltage devices, magnetic recording, induction heating etc..). This software is based on a finite-element calculation method and, in the case of induction heating, it can perform different types of modeling: magnetic, thermal, temperature-dependant properties, weak and strong coupling, coupling with the electric circuit equations etc.. (J.S.)

  8. Chromatic induction from surrounding stimuli under perceptual suppression.

    Science.gov (United States)

    Horiuchi, Koji; Kuriki, Ichiro; Tokunaga, Rumi; Matsumiya, Kazumichi; Shioiri, Satoshi

    2014-11-01

    The appearance of colors can be affected by their spatiotemporal context. The shift in color appearance according to the surrounding colors is called color induction or chromatic induction; in particular, the shift in opponent color of the surround is called chromatic contrast. To investigate whether chromatic induction occurs even when the chromatic surround is imperceptible, we measured chromatic induction during interocular suppression. A multicolor or uniform color field was presented as the surround stimulus, and a colored continuous flash suppression (CFS) stimulus was presented to the dominant eye of each subject. The subjects were asked to report the appearance of the test field only when the stationary surround stimulus is invisible by interocular suppression with CFS. The resulting shifts in color appearance due to chromatic induction were significant even under the conditions of interocular suppression for all surround stimuli. The magnitude of chromatic induction differed with the surround conditions, and this difference was preserved regardless of the viewing conditions. The chromatic induction effect was reduced by CFS, in proportion to the magnitude of chromatic induction under natural (i.e., no-CFS) viewing conditions. According to an analysis with linear model fitting, we revealed the presence of at least two kinds of subprocesses for chromatic induction that reside at higher and lower levels than the site of interocular suppression. One mechanism yields different degrees of chromatic induction based on the complexity of the surround, which is unaffected by interocular suppression, while the other mechanism changes its output with interocular suppression acting as a gain control. Our results imply that the total chromatic induction effect is achieved via a linear summation of outputs from mechanisms that reside at different levels of visual processing.

  9. Estimation of Transformer Parameters and Loss Analysis for High Voltage Capacitor Charging Application

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Schneider, Henrik; Ouyang, Ziwei

    2013-01-01

    In a bi-directional DC-DC converter for capacitive charging application, the losses associated with the transformer makes it a critical component. In order to calculate the transformer losses, its parameters such as AC resistance, leakage inductance and self capacitance of the high voltage (HV......) winding has to be estimated accurately. This paper analyzes the following losses of bi-directional flyback converter namely switching loss, conduction loss, gate drive loss, transformer core loss, and snubber loss, etc. Iterative analysis of transformer parameters viz., AC resistance, leakage inductance...

  10. Measurements and effects of backstreaming ions produced at bremsstrahlung converter target in Dragon-I linear induction accelerator

    International Nuclear Information System (INIS)

    Yu Haijun; Zhu Jun; Chen Nan; Xie Yutong; Jiang Xiaoguo; Jian Cheng

    2010-01-01

    Positive ions released from x-ray converter target impacted by electron beam of millimeter spot size can be trapped and accelerated in the incident beam's potential well. As the ions move upstream, the beam will be pinched first and then defocused at the target. Four Faraday cups are used to collect backstreaming ions produced at the bremsstrahlung converter target in Dragon-I linear induction accelerator (LIA). Experimental and theoretical results show that the backstreaming positive ions density and velocity are about 10 21 /m 3 and 2-3 mm/μs, respectively. The theoretical and experimental results of electron beam envelope with ions and without ions are also presented. The discussions show that the backstreaming positive ions will not affect the electron beam focusing and envelope radius in Dragon-I LIA.

  11. Co-ordinated voltage control of DFIG wind turbines in uninterrupted operation during grid faults

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Michalke, G.; Sørensen, Poul Ejnar

    2007-01-01

    Emphasis in this article is on the design of a co-ordinated voltage control strategy for doubly fed induction generator (DFIG) wind turbines that enhances their capability to provide grid support during grid faults. In contrast to its very good performance in normal operation, the DFIG wind turbine...... concept is quite sensitive to grid faults and requires special power converter protection. The fault ride-through and grid support capabilities of the DFIG address therefore primarily the design of DFIG wind turbine control with special focus on power converter protection and voltage control issues....... A voltage control strategy is designed and implemented in this article, based on the idea that both converters of the DFIG (i.e. rotor-side converter and grid-side converter) participate in the grid voltage control in a co-ordinated manner. By default the grid voltage is controlled by the rotor...

  12. Voltage effect in PTCR ceramics: Calculation by the method of tilted energy band

    International Nuclear Information System (INIS)

    Fang Chao; Zhou Dongxiang; Gong Shuping

    2010-01-01

    A numerical model for the calculation of the electrical characteristics of donor-doped BaTiO 3 semiconducting ceramics is suggested. This paper established a differential equation about electron level on the base of Poisson equation, and solved the equation with Runge-Kutta method. Under extra electric field, electrical characteristics have been calculated by the method of tilted energy band. We have quantitatively computed the positive temperature coefficient of resistivity (PTCR) behavior of donor-doped BaTiO 3 semiconducting ceramics and its voltage effect, and further obtained non-linear current-voltage characteristics with different grain sizes at different temperature. The results pointed out that the resistance jumping is reduced with increasing electric field applied; current and voltage relation follows Ohm's law below Curie temperature, and exhibits strong non-linear above Curie temperature; the non-linear coefficient shows a maximum value at temperature the resistivity reaches maximum and with grain size closed to depletion region width. The results are compared with experimental data.

  13. Low-induction pulse current generator with a volume bus arrangement

    International Nuclear Information System (INIS)

    Bocharov, Yu.N.; Krivosheev, S.I.; Lapin, N.G.; Shneerson, G.A.

    1993-01-01

    Pulse current generator (PC6) with 38 kj stored energy designed for up to 50 kV charging voltage used to obtain magnetic fields within megagauss range, is described. Space (volume) bus arrangement of its modules is used to reduce eigen inductance of PC6. Current is commutated by solid-body spark gaps. Under 3uH inductive load PC6 provides for formation of up to 2.25 MA current pulse with 3.3x10 12 A/s pulse rise time. Technique to determine low inductances as applied to PC6 elements is described. The described PC6 is used for experiments on generation of super-strong pulse magnetic fields in single-loop solenoid with volume occupied by magnetic field, 5-7 mm. Magnetic field with up to 350 T induction amplitude is obtained in these experiments

  14. Experiments of full non-inductive current drive on HT-7

    International Nuclear Information System (INIS)

    Zhang, X.D.; Wu, Z.W.; Chen, Z.Y.; Gong, X.Z.; Wang, H.; Xu, D.; Huang, Y.; Luo, J.; Gao, X.; Hu, L.; Zhao, J.; Wan, B.N.; Li, J.

    2005-01-01

    Some experimental results of steady-state operation and full non-inductive current drive have been obtained on HT-7. Three types of experiment are used to study long pulse discharge, quasi-steady-state operation and full non-inductive current drive. The experiments show that the plasma current in the full non-inductive drive case is instable due to no adjusting effect of OH heating field, when the waveguide tube discharge lead to the LHW power injecting tokamak plasma decrease. This instability of plasma current will increase the interaction of plasma with limiter and first surface and bring impurity. All discharges of full non-inductive current drive are terminated because of impurity spurting. To adjust the LHW injection power for control the loop voltage during long pulse discharge is the most effective method for steady-state operation on HT-7. (author)

  15. Experimental stand-alone self-excited induction generator driven by a diesel motor

    Directory of Open Access Journals (Sweden)

    Mhamdi Taoufik

    2017-12-01

    Full Text Available This paper presents an experimental work to design and size a diesel generator (DG. The basic system is equipped with a 1.5 kW self-excited induction generator (SEIG, a diesel motor (DM, a static voltage compensator (SVC and controllers. A proportional integral controller is used to meet the requirement of the SEIG frequency regulation. A controlled voltage source is performed by using an SVC with a fuzzy controller, which adjusts voltage by varying the amount of the injected reactive power. An experimental set-up is used to identify the SEIG parameters and select the convenient bank of capacitors that minimize the SEIG starting up time and fix the convenient margin of voltage. The system has been tested by simulation using models implemented by Matlab/Simulink software. The simulation results confirm the efficiency of the proposed strategy of voltage regulation. Keywords: Diesel motor, SEIG, SVC, Voltage regulation, Frequency regulation

  16. Extended Stable Boundary of LCL-Filtered Grid-Connected Inverter Based on An Improved Grid-Voltage Feedforward Control

    DEFF Research Database (Denmark)

    Lu, Minghui; Xin, Zhen; Wang, Xiongfei

    2016-01-01

    should be designed under one-sixth of sampling frequency. However, the low resonance frequency leads to a comparatively large filter inductance or/and capacitance. To extend the stable boundary to the region above fs/6, this paper proposes a novel voltage feedforward scheme for the LCL-filtered inverter....... Theoretical analysis is then provided to validate its feasibility and stability. Compared to other widely used active damping strategies, no extra sensors are needed because the filter capacitor voltage, which is used for voltage feedforward control, is also sampled for phase-locked loop in this paper...

  17. Using ferrite to improve directional sensing for pulse travelling in MV power cables with two inductive sensors

    NARCIS (Netherlands)

    Li, Y.; Wouters, P.A.A.F.; Wagenaars, P.; Wielen, van der P.C.J.M.; Steennis, E.F.

    2013-01-01

    Inductive sensors are widely used for detection of high frequency signal, e.g. from partial discharge (PD) activity. A single inductive sensor, installed in a ring main unit (RMU) in a medium-voltage (MV) system, is not able to judge the direction of the signal origin. A method to determine its

  18. Fast response double series resonant high-voltage DC-DC converter

    International Nuclear Information System (INIS)

    Lee, S S; Iqbal, S; Kamarol, M

    2012-01-01

    In this paper, a novel double series resonant high-voltage dc-dc converter with dual-mode pulse frequency modulation (PFM) control scheme is proposed. The proposed topology consists of two series resonant tanks and hence two resonant currents flow in each switching period. Moreover, it consists of two high-voltage transformer with the leakage inductances are absorbed as resonant inductor in the series resonant tanks. The secondary output of both transformers are rectified and mixed before supplying to load. In the resonant mode operation, the series resonant tanks are energized alternately by controlling two Insulated Gate Bipolar Transistor (IGBT) switches with pulse frequency modulation (PFM). This topology operates in discontinuous conduction mode (DCM) with all IGBT switches operating in zero current switching (ZCS) condition and hence no switching loss occurs. To achieve fast rise in output voltage, a dual-mode PFM control during start-up of the converter is proposed. In this operation, the inverter is started at a high switching frequency and as the output voltage reaches 90% of the target value, the switching frequency is reduced to a value which corresponds to the target output voltage. This can effectively reduce the rise time of the output voltage and prevent overshoot. Experimental results collected from a 100-W laboratory prototype are presented to verify the effectiveness of the proposed system.

  19. Sustainability Aspects of Energy Conversion in Modern High-Speed Trains with Traction Induction Motors

    OpenAIRE

    Marc A. Rosen; Doru A. Nicola; Cornelia A. Bulucea; Daniel C. Cismaru

    2015-01-01

    Some aspects are illustrated of energy conversion processes during the operation of electric railway vehicles with traction induction motors, in order to support transport systems’ sustainability. Increasing efforts are being expended to enhance the sustainability of transportation technologies and systems. Since electric drive systems are used with variable voltage variable frequency (VVVF) inverters and traction induction motors, these machines with appropriate controls can realize both tra...

  20. Charge carrier dynamics investigation of CuInS{sub 2} quantum dots films using injected charge extraction by linearly increasing voltage (i-CELIV): the role of ZnS Shell

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Ke; Sui, Ning; Zhang, Liquan; Wang, Yinghui, E-mail: yinghui-wang@outlook.com; Liu, Qinghui, E-mail: liuqinghui@jlu.edu.cn; Tan, Mingrui [Jilin University, Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics (China); Zhou, Qiang [Jilin University, Key Laboratory of Superhard Materials, College of Physics (China); Zhang, Hanzhuang, E-mail: zhanghz@jlu.edu.cn [Jilin University, Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics (China)

    2016-12-15

    The role of ZnS shell on the photo-physical properties within CuInS{sub 2}/ZnS quantum dots (QDs) is carefully studied in optoelectronic devices. Linearly increasing voltage technique has been employed to investigate the charge carrier dynamics of both CuInS{sub 2} and CuInS{sub 2}/ZnS QDs films. This study shows that charge carriers follow a similar behavior of monomolecular recombination in this film, with their charge transfer rate correlates to the increase of applied voltage. It turns out that the ZnS shell could affect the carrier diffusion process through depressing the trapping states and would build up a potential barrier.

  1. ANALYSIS OF INDUCTION MOTOR WITH BROKEN BARS AND CONSTANT SPEED USING CIRCUIT-FIELD COUPLED METHOD

    Directory of Open Access Journals (Sweden)

    N. Halem

    2015-07-01

    Full Text Available The paper presents the use of the two-dimensional finite element method for modeling the three-phase squirrel-cage induction motor by using circuit coupled method. In order to analyze the machine performances, the voltage source is considered. The Ansys magnetic analysis software is used for calculating the magnetic field of an induction motor having a cage fault. The experimental results prove that the proposed approach constitutes a useful tool for the study and diagnostics of induction motors.

  2. Fuzzy Logic Temperature Control System For The Induction Furnace

    Directory of Open Access Journals (Sweden)

    Lei Lei Hnin

    2015-08-01

    Full Text Available This research paper describes the fuzzy logic temperature control system of the induction furnace. Temperature requirement of the heating system varies during the heating process. In the conventional control schemes the switching losses increase with the change in the load. A closed loop control is required to have a smooth control on the system. In this system pulse width modulation based power control scheme for the induction heating system is developed using the fuzzy logic controller. The induction furnace requires a good voltage regulation to have efficient response. The controller controls the temperature depending upon weight of meat water and time. This control system is implemented in hardware system using microcontroller. Here the fuzzy logic controller is designed and simulated in MATLAB to get the desire condition.

  3. Fast Coordinated Control of DFIG Wind Turbine Generators for Low and High Voltage Ride-Through

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2014-06-01

    Full Text Available This paper presents a fast coordinated control scheme of the rotor side converter (RSC, the Direct Current (DC chopper and the grid side converter (GSC of doubly fed induction generator (DFIG wind turbine generators (WTGs to improve the low voltage ride through (LVRT and high voltage ride through (HVRT capability of the DFIG WTGs. The characteristics of DFIG WTGs under voltage sags and swells were studied focusing on the DFIG WTG stator flux and rotor voltages during the transient periods of grid voltage changes. The protection schemes of the rotor crowbar circuit and the DC chopper circuit were proposed considering the characteristics of the DFIG WTGs during voltage changes. The fast coordinated control of RSC and GSC were developed based on the characteristic analysis in order to realize efficient LVRT and HVRT of the DFIG WTGs. The proposed fast coordinated control schemes were verified by time domain simulations using Matlab-Simulink.

  4. Comparison between voltage by turn measured on different tokamaks operating in hybrid wave current drive regime

    International Nuclear Information System (INIS)

    Briffod, G.; Hoang, G.T.

    1987-06-01

    On a tokamak in a current drive operation with a hybrid wave, the R.F. current is estimated from the voltage drop by plasma turn generated by R.F. power application. This estimated current is not proportional to the injected power. There still exists in the plasma an electric field corresponding to the current part produced by induction. The role evaluation of this parameter on the current drive efficiency is important. In this report the relation voltage-R.F. current is studied on Petula and results on the voltage evolution by turn on different machines are compared [fr

  5. A double B1-mode 4-layer laminated piezoelectric linear motor.

    Science.gov (United States)

    Li, Xiaotian; Chen, Zhijiang; Dong, Shuxiang

    2012-12-01

    We report a miniature piezoelectric ultrasonic linear motor that is made of four Pb(Zr,Ti)O(3) (PZT) piezoelectric ceramic layers for low-voltage work. The 4-layer piezoelectric laminate works in two orthogonal first-bending modes for producing elliptical oscillations, which are then used to drive a contacting slider into continuous linear motion. Experimental results show that the miniature linear motor (size: 4 × 4 × 12 mm, weight: 1.7 g) can generate a large driving force of 0.48 N and a linear motion speed of up to 160 mm/s, using a 40 V(pp)/mm voltage drive at its resonance frequency of 64.5 kHz. The maximum efficiency of the linear motor is 30%.

  6. Modified Direct Torque Control of Three-Phase Induction Motor Drives with Low Ripple in Flux and Torque

    Directory of Open Access Journals (Sweden)

    Vinay KUMAR

    2011-06-01

    Full Text Available This paper proposes an algorithm for direct flux and torque controlled three phase induction motor drive systems. This method is based on control of slip speed and decoupled between amplitude and angle of reference stator flux for determining required stator voltage vector. In this proposes model, integrator unit is not required to generate the reference stator flux angle for calculating required stator voltage vector, hence it eliminates the initial values problems in real time. Within the given sampling time, flux as well as torque errors are controlled by stator voltage vector which is evaluated from reference stator flux. The direct torque control is achieved by reference stator flux angle which is generates from instantaneous slip speed angular frequency and stator flux angular frequency. The amplitude of the reference stator flux is kept constant at rated value. This technique gives better performance in three-phase induction motor than conventional technique. Simulation results for 3hp induction motor drive, for both proposed and conventional techniques, are presented and compared. From the results it is found that the stator current, flux linkage and torque ripples are decreased with proposed technique.

  7. Computation of Steady State Nodal Voltages for Fast Security Assessment in Power Systems

    DEFF Research Database (Denmark)

    Møller, Jakob Glarbo; Jóhannsson, Hjörtur; Østergaard, Jacob

    2014-01-01

    Development of a method for real-time assess-ment of post-contingency nodal voltages is introduced. Linear network theory is applied in an algorithm that utilizes Thevenin equivalent representation of power systems as seen from every voltage-controlled node in a network. The method is evaluated b...

  8. Normal zone detectors for a large number of inductively coupled coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1983-01-01

    In order to protect a set of inductively coupled superconducting magnets, it is necessary to locate and measure normal zone voltages that are small compared with the mutual and self-induced voltages. The method described in this paper uses two sets of voltage measurements to locate and measure one or more normal zones in any number of coupled coils. One set of voltages is the outputs of bridges that balance out the self-induced voltages. The other set of voltages can be the voltages across the coils, although alternatives are possible. The two sets of equations form a single combined set of equations. Each normal zone location or combination of normal zones has a set of these combined equations associated with it. It is demonstrated that the normal zone can be located and the correct set chosen, allowing determination of the size of the normal zone. Only a few operations take place in a working detector: multiplication of a constant, addition, and simple decision-making. In many cases the detector for each coil, although weakly linked to the other detectors, can be considered to be independent

  9. Analysis of a No Equilibrium Linear Resistive-Capacitive-Inductance Shunted Junction Model, Dynamics, Synchronization, and Application to Digital Cryptography in Its Fractional-Order Form

    Directory of Open Access Journals (Sweden)

    Sifeu Takougang Kingni

    2017-01-01

    Full Text Available A linear resistive-capacitive-inductance shunted junction (LRCLSJ model obtained by replacing the nonlinear piecewise resistance of a nonlinear resistive-capacitive-inductance shunted junction (NRCLSJ model by a linear resistance is analyzed in this paper. The LRCLSJ model has two or no equilibrium points depending on the dc bias current. For a suitable choice of the parameters, the LRCLSJ model without equilibrium point can exhibit regular and fast spiking, intrinsic and periodic bursting, and periodic and chaotic behaviors. We show that the LRCLSJ model displays similar dynamical behaviors as the NRCLSJ model. Moreover the coexistence between periodic and chaotic attractors is found in the LRCLSJ model for specific parameters. The lowest order of the commensurate form of the no equilibrium LRCLSJ model to exhibit chaotic behavior is found to be 2.934. Moreover, adaptive finite-time synchronization with parameter estimation is applied to achieve synchronization of unidirectional coupled identical fractional-order form of chaotic no equilibrium LRCLSJ models. Finally, a cryptographic encryption scheme with the help of the finite-time synchronization of fractional-order chaotic no equilibrium LRCLSJ models is illustrated through a numerical example, showing that a high level security device can be produced using this system.

  10. Design of a MeV, 4kA linear induction accelerator for flash radiography

    International Nuclear Information System (INIS)

    Kulke, B.; Brier, R.; Chapin, W.

    1981-01-01

    For verifying the hydrodynamics of nuclear weapons design it is useful to have flash x-ray machines that can deliver a maximum dose in a minimum pulse length and with very high reliability. At LLNL, such a requirement was identified some years ago as 500 roentgens at one meter, in a 60 nsec pulse length. In response to this requirement, a linear induction accelerator was proposed to and funded by DOE in 1977. The design of this machine, called FXR, has now been completed and construction has begun. The FXR design extends the parameters of a similar machine that had been built and operated at LBL, Berkeley, some ten years ago. Using a cold cathode injector followed by 48 accelerator modules rated at 400 kV each, the FXR machine will accelerate a 4 kA electron beam pulse to 20 MeV final energy. Key design features are the generation and the stable transport of a low emittance (100 mr-cm) beam from a field emitter diode, the design of reliable, compact energy storage components such as Blumleins, feedlines and accelerator modules, and a computer-assisted control system

  11. Parameters identification of the compound cage rotor induction machine based on linearized Kalman filtering

    Institute of Scientific and Technical Information of China (English)

    王铁成; 李伟力; 孙建伟

    2003-01-01

    A mathematical model has been built up for compound cage rotor induction machine with the rotor re-sistance and leakage inductance in the model identified through Kalman filtering method. Using the identifiedparameters, simulation studies are performed, and simulation results are compared with testing results.

  12. Resistors Improve Ramp Linearity

    Science.gov (United States)

    Kleinberg, L. L.

    1982-01-01

    Simple modification to bootstrap ramp generator gives more linear output over longer sweep times. New circuit adds just two resistors, one of which is adjustable. Modification cancels nonlinearities due to variations in load on charging capacitor and due to changes in charging current as the voltage across capacitor increases.

  13. Design of a linear neutron source

    International Nuclear Information System (INIS)

    Buzarbaruah, N.; Dutta, N.J.; Bhardwaz, J.K.; Mohanty, S.R.

    2015-01-01

    Highlights: • This paper reports the design of a linear neutron source based on inertial electrostatic confinement fusion scheme. • The voltage and current that is to be applied to the grid is computed theoretically. • Neutron production rate is theoretically estimated and found to be of the order of 10 7 –10 8 neutrons/s. • Electric potential distribution and ion trajectories are studied using SIMION code. • Optimized condition for the inner grid transparency has been found out. - Abstract: In this paper, we present the design of a linear neutron source based on the concept of inertial electrostatic confinement fusion. The source mainly comprises of a concentric coaxial cylindrical grid assembly housed inside a double walled cylindrical vacuum chamber, a gas injection system, a high voltage feedthrough and a high voltage negative polarity power supply. The inner grid will be kept at a high negative potential with respect to the outer grid that will be grounded. The effect of grid transparency on electric potential distribution and ion trajectories has been studied using SIMION. A diffuse deuterium plasma will be initially created by making filament discharge and subsequently, on application of high negative voltage to the inner grid, deuterons will be accelerated towards the axis of the device. These deuterons will oscillate in the negative potential and consequently fuse in between the grids to produce neutrons. This source is expected to produce 10 7 –10 8 neutrons/s. The proposed linear neutron source will be operated both in the continuous and pulse modes and it will be utilized for a few near term applications namely fusion reactor material studies and explosive detection

  14. Preliminary Design of an Inductive Adder for CLIC Damping Rings

    CERN Document Server

    Holma, J

    2011-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC damping rings will produce ultra-low emittance beam, with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the damping rings kickers must provide extremely flat, high-voltage, pulses: specifications call for a 160 ns duration flattop of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. A solid-state modulator, the inductive adder, is a very promising approach to meeting the demanding specifications; this topology allows the use of both digital and analogue modulation. To effectively use modulation techniques to achieve such low ripple and droop requires an in-depth knowledge of the behaviour of the solid-state switching components and their gate drivers, as well as a good understanding of the overa...

  15. Characteristics of output voltage and current of integrated nanogenerators

    KAUST Repository

    Yang, Rusen; Qin, Yong; Li, Cheng; Dai, Liming; Wang, Zhong Lin

    2009-01-01

    three criteria: Schottky behavior test, switching-polarity tests, and linear superposition of current and voltage tests. The 11 tests can effectively rule out the system artifacts, whose sign does not change with the switching measurement polarity

  16. Videometrics-based Detection of Vibration Linearity in MEMS Gyroscope

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2011-05-01

    Full Text Available MEMS gyroscope performs as a sort of sensor to detect angular velocity, with diverse applications in engineering including vehicle and intelligent traffic etc. A balanced vibration of driving module excited by electrostatic driving signal is the base MEMS gyroscope's performance. In order to analyze the linear property of vibration in MEMS Gyroscope, a method of computer vision measuring is applied with the help of high-speed vidicon to obtain video of linear vibration of driving module in gyroscope, under the driving voltage signal of inherent frequency and amplitude linearly increasing. By means of image processing, target identifying, and motion parameter extracting from the obtained video, vibration curve with time variation is acquired. And then, linearity of this vibration system can be analyzed by focusing on the amplitude value of vibration responding to the amplitude variation of driving voltage signal.

  17. Heat-pump performance: voltage dip/sag, under-voltage and over-voltage

    Directory of Open Access Journals (Sweden)

    William J.B. Heffernan

    2014-12-01

    Full Text Available Reverse cycle air-source heat-pumps are an increasingly significant load in New Zealand and in many other countries. This has raised concern over the impact wide-spread use of heat-pumps may have on the grid. The characteristics of the loads connected to the power system are changing because of heat-pumps. Their performance during under-voltage events such as voltage dips has the potential to compound the event and possibly cause voltage collapse. In this study, results from testing six heat-pumps are presented to assess their performance at various voltages and hence their impact on voltage stability.

  18. Cavallo's multiplier for in situ generation of high voltage

    Science.gov (United States)

    Clayton, S. M.; Ito, T. M.; Ramsey, J. C.; Wei, W.; Blatnik, M. A.; Filippone, B. W.; Seidel, G. M.

    2018-05-01

    A classic electrostatic induction machine, Cavallo's multiplier, is suggested for in situ production of very high voltage in cryogenic environments. The device is suitable for generating a large electrostatic field under conditions of very small load current. Operation of the Cavallo multiplier is analyzed, with quantitative description in terms of mutual capacitances between electrodes in the system. A demonstration apparatus was constructed, and measured voltages are compared to predictions based on measured capacitances in the system. The simplicity of the Cavallo multiplier makes it amenable to electrostatic analysis using finite element software, and electrode shapes can be optimized to take advantage of a high dielectric strength medium such as liquid helium. A design study is presented for a Cavallo multiplier in a large-scale, cryogenic experiment to measure the neutron electric dipole moment.

  19. Torque control of synchronous and induction generators for variable speed operation of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Ola; Ulen, E. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-01

    The aim of this paper is to investigate variable speed electrical systems. Synchronous generators with diode rectifiers and line-commutated thyristor converters are compared with induction generators with force commutated transistor converters and scalar control. The system characteristics are examined regarding possible speed of response (bandwidth) of the torque control, including the sensitivity to disturbances for the drive train and also the possibility to get damping of the drive train resonance. Analyses, simulations and laboratory tests with a 40 kW machine set-up have been performed. The investigation shows that the system with synchronous generator is well suited for wind power applications. A rapid standard DC-current regulator is included in the torque control and can be used for damping of the resonance. The torque control has a bandwidth up to about 3 Hz and the DC-voltage controller up to about 1 Hz. The system with induction generator with scalar control (no transformations) is more difficult to control. A linear approach is only possible up to about 1.5 Hz. In this region it turns out that the behaviour can be visualized as an added inertia on the generator side that can be rather big. 4 refs, 9 figs

  20. A voltage to frequency converter for astronomical photometry

    Science.gov (United States)

    Dunham, E.; Elliot, J. L.

    1978-01-01

    A voltage to frequency converter (VFC) for general use with photomultipliers is described. For high light levels, when the dead-time corrections for a photon counter would be excessive, the VFC maintains a linear response and allows the recording of data at high time resolution. Results of laboratory tests are given for the signal-to-noise characteristics, linearity, stability, and transient response of the VFC when used in conjunction with EMI 9658 and RCA C31034 photomultipliers.

  1. Detection of arcing ground fault location on a distribution network connected PV system; Hikarihatsuden renkei haidensen ni okeru koko chiryaku kukan no kenshutsuho

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M; Iwaya, K; Morooka, Y [Hachinohe Institute of Technology, Aomori (Japan)

    1996-10-27

    In the near future, it is supposed that a great number of small-scale distributed power sources, such as photovoltaic power generation for general houses, will be interconnected with the ungrounded neutral distribution system in Japan. When ground fault of commercial frequency once occurs, great damage is easily guessed. This paper discusses the effect of the ground fault on the ground phase current using a 6.6 kV high-voltage model system by considering the non-linear self-inductance in the line, and by considering the non-linear relation of arcing ground fault current frequency. In the present method, the remarkable difference of series resonance frequency determined by the inductance and earth capacity between the source side and load side is utilized for the detection of high-voltage arcing ground fault location. In this method, there are some cases in which the non-linear effect obtained by measuring the inductance of sound phase including the secondary winding of transformer can not be neglected. Especially, for the actual high-voltage system, it was shown that the frequency characteristics of transformer inductance for distribution should be theoretically derived in the frequency range between 2 kHz and 6 kHz. 2 refs., 5 figs., 1 tab.

  2. Current-voltage characteristics of C70 solid near Meyer-Neldel temperature

    Science.gov (United States)

    Onishi, Koichi; Sezaimaru, Kouki; Nakashima, Fumihiro; Sun, Yong; Kirimoto, Kenta; Sakaino, Masamichi; Kanemitsu, Shigeru

    2017-06-01

    The current-voltage characteristics of the C70 solid with hexagonal closed-packed structures were measured in the temperature range of 250-450 K. The current-voltage characteristics can be described as a temporary expedient by a cubic polynomial of the voltage, i = a v 3 + b v 2 + c v + d . Moreover, the Meyer-Neldel temperature of the C70 solid was confirmed to be 310 K, at which a linear relationship between the current and voltage was observed. Also, at temperatures below the Meyer-Neldel temperature, the current increases with increasing voltage. On the other hand, at temperatures above the Meyer-Neldel temperature a negative differential conductivity effect was observed at high voltage side. The negative differential conductivity was related to the electric field and temperature effects on the mobility of charge carrier, which involve two variations in the carrier concentration and the activation energy for carrier hopping transport.

  3. Nonlinear Parasitic Capacitance Modelling of High Voltage Power MOSFETs in Partial SOI Process

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    : off-state, sub-threshold region, and on-state in the linear region. A high voltage power MOSFET is designed in a partial Silicon on Insulator (SOI) process, with the bulk as a separate terminal. 3D plots and contour plots of the capacitances versus bias voltages for the transistor summarize...

  4. An improved partially interleaved transformer structure for high-voltage high-frequency multiple-output applications

    DEFF Research Database (Denmark)

    Zhao, Bin; Ouyang, Ziwei; Andersen, Michael A. E.

    2017-01-01

    . The proposed structure features lower leakage inductance, smaller AC capacitance and lower rate of AC-DC resistance, which is suitable for high-frequency high-efficiency applications. A planar transformer with the proposed structure was built and tested in an LCLC resonant converter, where the input voltage...

  5. Detailed Analysis of the Transient Voltage in a JT-60SA PF Coil Circuit

    International Nuclear Information System (INIS)

    Yamauchi, K.; Shimada, K.; Terakado, T.; Matsukawa, M.; Coletti, R.; Lampasi, A.; Gaio, E.; Coletti, A.; Novello, L.

    2013-01-01

    A superconducting coil system is actually complicated by the distributed parameters, e.g. the distributed mutual inductance among turns and the distributed capacitance between adjacent conductors. In this paper, such a complicated system was modeled with a reasonably simplified circuit network with lumped parameters. Then, a detailed circuit analysis was conducted to evaluate the possible voltage transient in the coil circuit. As a result, an appropriate (minimum) snubber capacitance for the Switching Network Unit, which is a fast high voltage generation circuit in JT-60SA, was obtained. (fusion engineering)

  6. Capacitor Current Feedback-Based Active Resonance Damping Strategies for Digitally-Controlled Inductive-Capacitive-Inductive-Filtered Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Lorzadeh, Iman; Askarian Abyaneh, Hossein; Savaghebi, Mehdi

    2016-01-01

    Inductive-capacitive-inductive (LCL)-type line filters are widely used in grid-connected voltage source inverters (VSIs), since they can provide substantially improved attenuation of switching harmonics in currents injected into the grid with lower cost, weight and power losses than their L......-type counterparts. However, the inclusion of third order LCL network complicates the current control design regarding the system stability issues because of an inherent resonance peak which appears in the open-loop transfer function of the inverter control system near the control stability boundary. To avoid...... passive (resistive) resonance damping solutions, due to their additional power losses, active damping (AD) techniques are often applied with proper control algorithms in order to damp the LCL filter resonance and stabilize the system. Among these techniques, the capacitor current feedback (CCF) AD has...

  7. Voltage Quench Dynamics of a Kondo System.

    Science.gov (United States)

    Antipov, Andrey E; Dong, Qiaoyuan; Gull, Emanuel

    2016-01-22

    We examine the dynamics of a correlated quantum dot in the mixed valence regime. We perform numerically exact calculations of the current after a quantum quench from equilibrium by rapidly applying a bias voltage in a wide range of initial temperatures. The current exhibits short equilibration times and saturates upon the decrease of temperature at all times, indicating Kondo behavior both in the transient regime and in the steady state. The time-dependent current saturation temperature connects the equilibrium Kondo temperature to a substantially increased value at voltages outside of the linear response. These signatures are directly observable by experiments in the time domain.

  8. Design of Neutral-Point Voltage Controller of a Three-level NPC Inverter with Small DC-Link Capacitors

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig; Busquets-Monge, S.

    2013-01-01

    A Neutral-Point-Clamped (NPC) three-level inverter with small dc-link capacitors is presented in this paper. The inverter requires zero average neutral-point current for stable neutral-point voltage. The small dc-link capacitors may not maintain capacitor voltage balance, even with zero neutral......-point voltage control on the basis of the continuous model. The design method for optimum performance is discussed. The implementation of the proposed modulation strategy and the controller is very simple. The controller is implemented in a 7.5 kW induction machine based drive with only 14 ìF dc-link capacitors...

  9. Study of hard diamond-like carbon films deposited in an inductively coupled plasma source

    International Nuclear Information System (INIS)

    Yu Shiji; Ma Tengcai

    2003-01-01

    Chemical vapor deposition of the hard diamond-like carbon (DLC) films was achieved using an inductively coupled plasma source (ICPS). The microscopy, microhardness, deposition rate and structure characteristic of the DLC films were analyzed. It is shown that the ICPS is suitable for the hard DLC film deposition at relatively low substrate negative bias voltage, and the substrate negative bias voltage greatly affects chemical vapor deposition of the DLC film and its quality

  10. Ultra Fast, High Rep Rate, High Voltage Spark Gap Pulser

    Science.gov (United States)

    1995-07-01

    current rise time. The spark gap was designed to have a coaxial geometry reducing its inductance. Provisions were made to pass flowing gas between the...ULTRA FAST, HIGH REP RATE, HIGH VOLTAGE SPARK GAP PULSER Robert A. Pastore Jr., Lawrence E. Kingsley, Kevin Fonda, Erik Lenzing Electrophysics and...Modeling Branch AMSRL-PS-EA Tel.: (908)-532-0271 FAX: (908)-542-3348 U.S. Army Research Laboratory Physical Sciences Directorate Ft. Monmouth

  11. An induction Linac approach to phase rotation of a muon bunch in the production region of μ+-μ- colliders

    International Nuclear Information System (INIS)

    Turner, W.C.

    1995-01-01

    The possibility of using an induction linac for phase rotation, or equivalently flattening the head to tail mean energy sweep, of a muon bunch in the production region of a μ + - μ - is examined. Axial spreading of an accelerating bunch is analyzed and the form of appropriate induction cell voltage waveforms is derived. A set of parametric equations for the induction accelerator structure is given and specific solutions are presented which demonstrate the technological feasibility of the induction linac approach to phase rotation

  12. Mitigation of Unbalanced Voltage Sags and Voltage Unbalance in CIGRE Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Any problem with voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM) etc. can be used to mitigate the voltage problems in the distribution system...... to unbalanced faults. The compensation of unbalanced voltage sags and voltage unbalance in the CIGRE distribution network is done by using the four STATCOM compensators already existing in the test grid. The simulations are carried out in DIgSILENT power factory software version 15.0........ The voltage problems dealt with in this paper are to show how to mitigate unbalanced voltage sags and voltage unbalance in the CIGRE Low Voltage (LV) test network and net-works like this. The voltage unbalances, for the tested cases in the CIGRE LV test network are mainly due to single phase loads and due...

  13. Low Voltage Current Mode Switched-Current-Mirror Mixer

    Directory of Open Access Journals (Sweden)

    Chunhua Wang

    2009-09-01

    Full Text Available A new CMOS active mixer topology can operate at 1 V supply voltage by use of SCM (switched currentmirror. Such current-mode mixer requires less voltage headroom with good linearization. Mixing is achieved with four improved current mirrors, which are alternatively activated. For ideal switching, the operation is equivalent to a conventional active mixer. This paper analyzes the performance of the SCM mixer, in comparison with the conventional mixer, demonstrating competitive performance at a lower supply voltage. Moreover, the new mixer’s die, without any passive components, is very small, and the conversion gain is easy to adjust. An experimental prototype was designed and simulated in standard chartered 0.18μm RF CMOS Process with Spectre in Cadence Design Systems. Experimental results show satisfactory mixer performance at 2.4 GHz.

  14. Cooperative Control with Virtual Selective Harmonic Capacitance for Harmonic Voltage Compensation in Islanded MicroGrids

    DEFF Research Database (Denmark)

    Micallef, A.; Apap, M.; Spitero-Stanies, C.

    2012-01-01

    This paper focuses on the islanded operation of microgrids. In this mode of operation, the microsources are required to cooperate autonomously to regulate the local grid voltage and frequency. Droop control is typically used to achieve this autonomous voltage and frequency regulation. Inverters...... having LCL output filters would cause voltage distortion to be present at the PCC of the local load when non-linear current is supplied to the load due to the voltage drop across the grid side inductor. Techniques to reduce the output voltage distortion typically consist of installing either passive...

  15. Development of a prototype solid state fault current limiting and interrupting device for low voltage distribution networks.

    OpenAIRE

    Ahmed, M.; Putrus, G. A.; Ran, L.; Penlington, R.

    2006-01-01

    This paper describes the development of a solid-state Fault Current Limiting and Interrupting Device (FCLID) suitable for low voltage distribution networks. The main components of the FCLID are a bidirectional semiconductor switch that can disrupt the short-circuit current, and a voltage clamping element that helps in controlling the current and absorbing the inductive energy stored in the network during current interruption. Using a hysteresis type control algorithm, the short-circuit curren...

  16. Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET

    Science.gov (United States)

    Yunpeng, Jia; Hongyuan, Su; Rui, Jin; Dongqing, Hu; Yu, Wu

    2016-02-01

    The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. Project supported by the National Natural Science Foundation of China (No. 61176071), the Doctoral Fund of Ministry of Education of China (No. 20111103120016), and the Science and Technology Program of State Grid Corporation of China (No. SGRI-WD-71-13-006).

  17. Justifying threshold voltage definition for undoped body transistors through 'crossover point' concept

    International Nuclear Information System (INIS)

    Baruah, Ratul Kumar; Mahapatra, Santanu

    2009-01-01

    Two different definitions, one is potential based and the other is charge based, are used in the literatures to define the threshold voltage of undoped body symmetric double gate transistors. This paper, by introducing a novel concept of crossover point, proves that the charge based definition is more accurate than the potential based definition. It is shown that for a given channel length the potential based definition predicts anomalous change in threshold voltage with body thickness variation while the charge based definition results in monotonous change. The threshold voltage is then extracted from drain current versus gate voltage characteristics using linear extrapolation, transconductance and match-point methods. In all the three cases it is found that trend of threshold voltage variation support the charge based definition.

  18. Simulation and analysis of transient over voltages due to capacitor banks switching

    International Nuclear Information System (INIS)

    Jadid, Sh.; Yazdanpanah, D.

    2002-01-01

    The switching of any capacitor bank produces over voltages. Transient overvoltage will always occur in the switching device, the switching of shunt capacitor bank has become the most common source of transient voltage on power systems. Transient over voltages due to switching the capacitor bands hurt not only to the capacitor banks, but also to other equipment, such as circuit breakers and transformers. Several methods are available for reducing energising transients. These devices include pre-insertion resistors, pre-insertion inductors,synchronous closing, and MOV arresters. However, not all are practical or economical. The other important problem is existence of capacitor banks in presence of harmonics.Capacitors do not produce harmonics;however,the addition of capacitors to the electrical system will change the frequency response characteristics of the system will change the frequency response characteristics of the system, and in some cases can result in magnification of the voltage and current distortion in the system. In other word in presence of harmonic-producing loads,the capacitors used for power factor correction,may cause parallel resonance with the system inductance, so they increase the total harmonic distortion of voltage and current waveforms

  19. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor

    Science.gov (United States)

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

  20. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor.

    Science.gov (United States)

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.