WorldWideScience

Sample records for linear geologic units

  1. Identification of different geologic units using fuzzy constrained resistivity tomography

    Science.gov (United States)

    Singh, Anand; Sharma, S. P.

    2018-01-01

    Different geophysical inversion strategies are utilized as a component of an interpretation process that tries to separate geologic units based on the resistivity distribution. In the present study, we present the results of separating different geologic units using fuzzy constrained resistivity tomography. This was accomplished using fuzzy c means, a clustering procedure to improve the 2D resistivity image and geologic separation within the iterative minimization through inversion. First, we developed a Matlab-based inversion technique to obtain a reliable resistivity image using different geophysical data sets (electrical resistivity and electromagnetic data). Following this, the recovered resistivity model was converted into a fuzzy constrained resistivity model by assigning the highest probability value of each model cell to the cluster utilizing fuzzy c means clustering procedure during the iterative process. The efficacy of the algorithm is demonstrated using three synthetic plane wave electromagnetic data sets and one electrical resistivity field dataset. The presented approach shows improvement on the conventional inversion approach to differentiate between different geologic units if the correct number of geologic units will be identified. Further, fuzzy constrained resistivity tomography was performed to examine the augmentation of uranium mineralization in the Beldih open cast mine as a case study. We also compared geologic units identified by fuzzy constrained resistivity tomography with geologic units interpreted from the borehole information.

  2. A Lithology Based Map Unit Schema For Onegeology Regional Geologic Map Integration

    Science.gov (United States)

    Moosdorf, N.; Richard, S. M.

    2012-12-01

    A system of lithogenetic categories for a global lithological map (GLiM, http://www.ifbm.zmaw.de/index.php?id=6460&L=3) has been compiled based on analysis of lithology/genesis categories for regional geologic maps for the entire globe. The scheme is presented for discussion and comment. Analysis of units on a variety of regional geologic maps indicates that units are defined based on assemblages of rock types, as well as their genetic type. In this compilation of continental geology, outcropping surface materials are dominantly sediment/sedimentary rock; major subdivisions of the sedimentary category include clastic sediment, carbonate sedimentary rocks, clastic sedimentary rocks, mixed carbonate and clastic sedimentary rock, colluvium and residuum. Significant areas of mixed igneous and metamorphic rock are also present. A system of global categories to characterize the lithology of regional geologic units is important for Earth System models of matter fluxes to soils, ecosystems, rivers and oceans, and for regional analysis of Earth surface processes at global scale. Because different applications of the classification scheme will focus on different lithologic constituents in mixed units, an ontology-type representation of the scheme that assigns properties to the units in an analyzable manner will be pursued. The OneGeology project is promoting deployment of geologic map services at million scale for all nations. Although initial efforts are commonly simple scanned map WMS services, the intention is to move towards data-based map services that categorize map units with standard vocabularies to allow use of a common map legend for better visual integration of the maps (e.g. see OneGeology Europe, http://onegeology-europe.brgm.fr/ geoportal/ viewer.jsp). Current categorization of regional units with a single lithology from the CGI SimpleLithology (http://resource.geosciml.org/201202/ Vocab2012html/ SimpleLithology201012.html) vocabulary poorly captures the

  3. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States

    Science.gov (United States)

    Horton, John D.; San Juan, Carma A.; Stoeser, Douglas B.

    2017-06-30

    The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (https://doi. org/10.5066/F7WH2N65) represents a seamless, spatial database of 48 State geologic maps that range from 1:50,000 to 1:1,000,000 scale. A national digital geologic map database is essential in interpreting other datasets that support numerous types of national-scale studies and assessments, such as those that provide geochemistry, remote sensing, or geophysical data. The SGMC is a compilation of the individual U.S. Geological Survey releases of the Preliminary Integrated Geologic Map Databases for the United States. The SGMC geodatabase also contains updated data for seven States and seven entirely new State geologic maps that have been added since the preliminary databases were published. Numerous errors have been corrected and enhancements added to the preliminary datasets using thorough quality assurance/quality control procedures. The SGMC is not a truly integrated geologic map database because geologic units have not been reconciled across State boundaries. However, the geologic data contained in each State geologic map have been standardized to allow spatial analyses of lithology, age, and stratigraphy at a national scale.

  4. Environmental aspects of engineering geological mapping in the United States

    Science.gov (United States)

    Radbruch-Hall, Dorothy H.

    1979-01-01

    Many engineering geological maps at different scales have been prepared for various engineering and environmental purposes in regions of diverse geological conditions in the United States. They include maps of individual geological hazards and maps showing the effect of land development on the environment. An approach to assessing the environmental impact of land development that is used increasingly in the United States is the study of a single area by scientists from several disciplines, including geology. A study of this type has been made for the National Petroleum Reserve in northern Alaska. In the San Francisco Bay area, a technique has been worked out for evaluating the cost of different types of construction and land development in terms of the cost of a number of kinds of earth science factors. ?? 1979 International Association of Engineering Geology.

  5. Environmental geology in the United States: Present practice and future training needs

    Science.gov (United States)

    Lundgren, Lawrence

    Environmental geology as practiced in the United States confronts issues in three large areas: Threats to human society from geologic phenomena (geologic hazards); impacts of human activities on natural systems (environmental impact), and natural-resource management. This paper illustrates present U.S. practice in environmental geology by sampling the work of 7 of the 50 state geological surveys and of the United States Geological Survey as well. Study of the work of these agencies provides a basis for identifying avenues for the training of those who will deal with environmental issues in the future. This training must deal not only with the subdisciplines of geology but with education to cope with the ethical, interdisciplinary, and public-communication aspects of the work of the environmental geologist.

  6. The British Geological Survey's Lexicon of Named Rock Units as Online and Linked Data

    Science.gov (United States)

    McCormick, T.

    2012-12-01

    The British Geological Survey's Lexicon of Named Rock Units provides freely accessible definitions and supplementary information about geological units of Great Britain, Northern Ireland, and their associated continental shelf. It is an online database that can be searched at www.bgs.ac.uk/Lexicon/. It has existed since 1990 (under different names) but the database and user interface have recently been completely redesigned to improve their semantic capabilities and suitability for describing different styles of geology. The data are also now freely available as linked data from data.bgs.ac.uk/. The Lexicon of Named Rock Units serves two purposes. First, it is a dictionary, defining and constraining the geological units that are referenced in the Survey's data sets, workflows, products and services. These can include printed and digital geological maps at a variety of scales, reports, books and memoirs, and 3- and 4-dimensional geological models. All geological units referenced in any of these must first be present and defined, at least to a basic level of completeness, in the Lexicon database. Only then do they become available for use. The second purpose of the Lexicon is as a repository of knowledge about the geology of the UK and its continental shelf, providing authoritative descriptions written and checked by BGS geoscientists. Geological units are assigned to one of four themes: bedrock, superficial, mass movement and artificial. They are further assigned to one of nine classes: lithostratigraphical, lithodemic intrusive, lithodemic tectono-metamorphic, lithodemic mixed, litho-morpho-genetic, man-made, age-based, composite, and miscellaneous. The combination of theme and class controls the fields that are available to describe each geological unit, so that appropriate fields are offered for each, whether it is a Precambrian tectono-metamorphic complex, a Devonian sandstone formation, or a Devensian river terrace deposit. Information that may be recorded

  7. The United States Geological Survey: 1879-1989

    Science.gov (United States)

    Rabbitt, Mary C.

    1989-01-01

    The United States Geological Survey was established on March 3, 1879, just a few hours before the mandatory close of the final session of the 45th Congress, when President Rutherford B. Hayes signed the bill appropriating money for sundry civil expenses of the Federal Government for the fiscal year beginning July 1, 1879. The sundry civil expenses bill included a brief section establishing a new agency, the United States Geological Survey, placing it in the Department of the Interior, and charging it with a unique combination of responsibilities: 'classification of the public lands, and examination of the geological structure, mineral resources, and products of the national domain.' The legislation stemmed from a report of the National Academy of Sciences, which in June 1878 had been asked by Congress to provide a plan for surveying the Territories of the United States that would secure the best possible results at the least possible cost. Its roots, however, went far back into the Nation's history. The first duty enjoined upon the Geological Survey by the Congress, the classification of the public lands, originated in the Land Ordinance of 1785. The original public lands were the lands west of the Allegheny Mountains claimed by some of the colonies, which became a source of contention in writing the Articles of Confederation until 1781 when the States agreed to cede their western lands to Congress. The extent of the public lands was enormously increased by the Louisiana Purchase in 1803 and later territorial acquisitions. At the beginning of Confederation, the decision was made not to hold the public lands as a capital asset, but to dispose of them for revenue and to encourage settlement. The Land Ordinance of 1785 provided the method of surveying and a plan for disposal of the lands, but also reserved 'one-third part of all gold, silver, lead, and copper mines to be sold or otherwise disposed of, as Congress shall thereafter direct,' thus implicitly requiring

  8. Validity of purchasing power parity for selected Latin American countries: Linear and non-linear unit root tests

    Directory of Open Access Journals (Sweden)

    Claudio Roberto Fóffano Vasconcelos

    2016-01-01

    Full Text Available The aim of this study is to examine empirically the validity of PPP in the context of unit root tests based on linear and non-linear models of the real effective exchange rate of Argentina, Brazil, Chile, Colombia, Mexico, Peru and Venezuela. For this purpose, we apply the Harvey et al. (2008 linearity test and the non-linear unit root test (Kruse, 2011. The results show that the series with linear characteristics are Argentina, Brazil, Chile, Colombia and Peru and those with non-linear characteristics are Mexico and Venezuela. The linear unit root tests indicate that the real effective exchange rate is stationary for Chile and Peru, and the non-linear unit root tests evidence that Mexico is stationary. In the period analyzed, the results show support for the validity of PPP in only three of the seven countries.

  9. Non-linear Loudspeaker Unit Modelling

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Agerkvist, Finn T.

    2008-01-01

    Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of thr...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....

  10. Homogenity of geological units with respect to the radon risk in the Walloon region of Belgium.

    Science.gov (United States)

    Tondeur, François; Cinelli, Giorgia; Dehandschutter, Boris

    2014-10-01

    In the process of mapping indoor radon risk, an important step is to define geological units well-correlated with indoor radon. The present paper examines this question for the Walloon region of Belgium, using a database of more than 18,000 indoor radon measurements. With a few exceptions like the Carboniferous (to be divided into Tournaisian, Visean and Namurian-Westphalian) and the Tertiary (in which all Series may be treated together), the Series/Epoch stratigraphic level is found to be the most appropriate geological unit to classify the radon risk. A further division according to the geological massif or region is necessary to define units with a reasonable uniformity of the radon risk. In particular, Paleozoic series from Cambrian to Devonian show strong differences between different massifs. Local hot-spots are also observed in the Brabant massif. Finally, 35 geological units are defined according to their radon risk, 6 of which still present a clear weak homogeneity. In the case of 4 of these units (Jurassic, Middle Devonian of Condroz and of Fagne-Famenne, Ordovician of the Stavelot massif) homogeneity is moderate, but the data are strongly inhomogeneous for Visean in Condroz and in the Brabant massif. The 35 geological units are used in an ANOVA analysis, to evaluate the part of indoor radon variability which can be attributed to geology. The result (15.4-17.7%) agrees with the values observed in the UK. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Mapping variation in radon potential both between and within geological units

    International Nuclear Information System (INIS)

    Miles, J C H; Appleton, J D

    2005-01-01

    Previously, the potential for high radon levels in UK houses has been mapped either on the basis of grouping the results of radon measurements in houses by grid squares or by geological units. In both cases, lognormal modelling of the distribution of radon concentrations was applied to allow the estimated proportion of houses above the UK radon Action Level (AL, 200 Bq m -3 ) to be mapped. This paper describes a method of combining the grid square and geological mapping methods to give more accurate maps than either method can provide separately. The land area is first divided up using a combination of bedrock and superficial geological characteristics derived from digital geological map data. Each different combination of geological characteristics may appear at the land surface in many discontinuous locations across the country. HPA has a database of over 430 000 houses in which long-term measurements of radon concentration have been made, and whose locations are accurately known. Each of these measurements is allocated to the appropriate bedrock-superficial geological combination underlying it. Taking each geological combination in turn, the spatial variation of radon potential is mapped, treating the combination as if it were continuous over the land area. All of the maps of radon potential within different geological combinations are then combined to produce a map of variation in radon potential over the whole land surface

  12. Material Units, Structures/Landforms, and Stratigraphy for the Global Geologic Map of Ganymede (1:15M)

    Science.gov (United States)

    Patterson, G. Wesley; Head, James W.; Collins, Geoffrey C.; Pappalardo, Robert T.; Prockter, Louis M.; Lucchitta, Baerbel K.

    2008-01-01

    In the coming year a global geological map of Ganymede will be completed that represents the most recent understanding of the satellite on the basis of Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. Material units have been defined, structural landforms have been identified, and an approximate stratigraphy has been determined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS. This mosaic incorporates the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. This map has given us a more complete understanding of: 1) the major geological processes operating on Ganymede, 2) the characteristics of the geological units making up its surface, 3) the stratigraphic relationships of geological units and structures, and 4) the geological history inferred from these relationships. A summary of these efforts is provided here.

  13. Investigation of background radiation levels and geologic unit profiles in Durango, Colorado

    International Nuclear Information System (INIS)

    Triplett, G.H.; Foutz, W.L.; Lesperance, L.R.

    1989-11-01

    As part of the Uranium Mill Tailings Remedial Action (UMTRA) Project, Oak Ridge National Laboratory (ORNL) has performed radiological surveys on 435 vicinity properties (VPs) in the Durango area. This study was undertaken to establish the background radiation levels and geologic unit profiles in the Durango VP area. During the months of May through June, 1986, extensive radiometric measurements and surface soil samples were collected in the Durango VP area by personnel from ORNL's Grand Junction Office. A majority of the Durango VP surveys were conducted at sites underlain by Quaternary alluvium, older Quaternary gravels, and Cretaceous Lewis and Mancos shales. These four geologic units were selected to be evaluated. The data indicated no formation anomalies and established regional background radiation levels. Durango background radionuclide concentrations in surface soil were determined to be 20.3 ± 3.4 pCi/g for 40 K, 1.6 ± 0.5 pCi/g for 226 Ra, and 1.2 ± 0.3 pCi/g for 232 Th. The Durango background gamma exposure rate was found to be 16.5 ± 1.3 μR/h. Average gamma spectral count rate measurements for 40 K, 226 Ra and 232 Th were determined to be 553, 150, and 98 counts per minute (cpm), respectively. Geologic unit profiles and Durango background radiation measurements are presented and compared with other areas. 19 refs., 15 figs., 5 tabs

  14. Geologic mapping using LANDSAT data

    Science.gov (United States)

    Siegal, B. S.; Abrams, M. J.

    1976-01-01

    The feasibility of automated classification for lithologic mapping with LANDSAT digital data was evaluated using three classification algorithms. The two supervised algorithms analyzed, a linear discriminant analysis algorithm and a hybrid algorithm which incorporated the Parallelepiped algorithm and the Bayesian maximum likelihood function, were comparable in terms of accuracy; however, classification was only 50 per cent accurate. The linear discriminant analysis algorithm was three times as efficient as the hybrid approach. The unsupervised classification technique, which incorporated the CLUS algorithm, delineated the major lithologic boundaries and, in general, correctly classified the most prominent geologic units. The unsupervised algorithm was not as efficient nor as accurate as the supervised algorithms. Analysis of spectral data for the lithologic units in the 0.4 to 2.5 microns region indicated that a greater separability of the spectral signatures could be obtained using wavelength bands outside the region sensed by LANDSAT.

  15. United States Geological Survey discharge data from five example gages on intermittent streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data are mean daily discharge data at United States Geological Survey gages. Once column provides the date (mm/dd/yyyy) and the other column provides the mean...

  16. Quaternary Geologic Map of the Lake Superior 4° x 6° Quadrangle, United States and Canada

    Data.gov (United States)

    Department of the Interior — The Quaternary Geologic Map of the Lake Superior 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as...

  17. Quaternary geologic map of the Austin 4° x 6° quadrangle, United States

    Science.gov (United States)

    State compilations by Moore, David W.; Wermund, E.G.; edited and integrated by Moore, David W.; Richmond, Gerald Martin; Christiansen, Ann Coe; Bush, Charles A.

    1993-01-01

    This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1993. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Austin 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.

  18. Quaternary Geologic Map of the Lake Nipigon 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    Science.gov (United States)

    Sado, Edward V.; Fullerton, David S.; Farrand, William R.; Edited and Integrated by Fullerton, David S.

    1994-01-01

    The Quaternary Geologic Map of the Lake Nipigon 4 degree x 6 degree Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is a product of collaboration of the Ontario Geological Survey, the University of Michigan, and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, separate maps and map explanations were prepared by the compilers. Second, the maps were combined, integrated, and supplemented by the editor. Map unit symbols were revised to a uniform system of classification and the map unit descriptions were prepared by the editor from information received from the compilers and from additional sources listed under Sources of Information. Diagrams accompanying the map were prepared by the editor. For scientific purposes, the map differentiates Quaternary surficial deposits on the basis of lithology or composition, texture or particle size, structure, genesis, stratigraphic relationships, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the map unit descriptions. Deposits of some constructional landforms, such as kame moraine deposits, are distinguished as map units. Deposits of

  19. Quaternary Geologic Map of the Lake of the Woods 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    Science.gov (United States)

    Sado, Edward V.; Fullerton, David S.; Goebel, Joseph E.; Ringrose, Susan M.; Edited and Integrated by Fullerton, David S.

    1995-01-01

    The Quaternary Geologic Map of the Lake of the Woods 4 deg x 6 deg Quadrangle, United States and Canada, was mapped as part of the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series (Miscellaneous Investigations Series I-1420, NM-15). The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is a product of collaboration of the Ontario Geological Survey, the Minnesota Geological Survey, the Manitoba Department of Energy and Mines, and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, separate maps and map explanations were prepared by the compilers. Second, the maps were combined, integrated, and supplemented by the editor. Map unit symbols were revised to a uniform system of classification and the map unit descriptions were prepared by the editor from information received from the compilers and from additional sources listed under Sources of Information. Diagrams accompanying the map were prepared by the editor. For scientific purposes, the map differentiates Quaternary surficial deposits on the basis of lithology or composition, texture or particle size, structure, genesis, stratigraphic relationships, engineering geologic properties, and relative age, as shown on the correlation diagram and

  20. Geologic occurrences of erionite in the United States: an emerging national public health concern for respiratory disease

    Science.gov (United States)

    Van Gosen, Bradley S.; Blitz, Thomas A.; Plumlee, Geoffrey S.; Meeker, Gregory P.; Pierson, M. Patrick

    2013-01-01

    Erionite, a mineral series within the zeolite group, is classified as a Group 1 known respiratory carcinogen. This designation resulted from extremely high incidences of mesothelioma discovered in three small villages from the Cappadocia region of Turkey, where the disease was linked to environmental exposures to fibrous forms of erionite. Natural deposits of erionite, including fibrous forms, have been identified in the past in the western United States. Until recently, these occurrences have generally been overlooked as a potential hazard. In the last several years, concerns have emerged regarding the potential for environmental and occupational exposures to erionite in the United States, such as erionite-bearing gravels in western North Dakota mined and used to surface unpaved roads. As a result, there has been much interest in identifying locations and geologic environments across the United States where erionite occurs naturally. A 1996 U.S. Geological Survey report describing erionite occurrences in the United States has been widely cited as a compilation of all US erionite deposits; however, this compilation only focused on one of several geologic environments in which erionite can form. Also, new occurrences of erionite have been identified in recent years. Using a detailed literature survey, this paper updates and expands the erionite occurrences database, provided in a supplemental file (US_erionite.xls). Epidemiology, public health, and natural hazard studies can incorporate this information on known erionite occurrences and their characteristics. By recognizing that only specific geologic settings and formations are hosts to erionite, this knowledge can be used in developing management plans designed to protect the public.

  1. Geologic assessment of undiscovered oil and gas resources in Aptian carbonates, onshore northern Gulf of Mexico Basin, United States

    Science.gov (United States)

    Hackley, Paul C.; Karlsen, Alexander W.

    2014-01-01

    Carbonate lithofacies of the Lower Cretaceous Sligo Formation and James Limestone were regionally evaluated using established U.S. Geological Survey (USGS) assessment methodology for undiscovered conventional hydrocarbon resources. The assessed area is within the Upper Jurassic–Cretaceous–Tertiary Composite total petroleum system, which was defined for the assessment. Hydrocarbons reservoired in carbonate platform Sligo-James oil and gas accumulations are interpreted to originate primarily from the Jurassic Smackover Formation. Emplacement of hydrocarbons occurred via vertical migration along fault systems; long-range lateral migration also may have occurred in some locations. Primary reservoir facies include porous patch reefs developed over paleostructural salt highs, carbonate shoals, and stacked linear reefs at the carbonate shelf margin. Hydrocarbon traps dominantly are combination structural-stratigraphic. Sealing lithologies include micrite, calcareous shale, and argillaceous lime mudstone. A geologic model, supported by discovery history analysis of petroleum geology data, was used to define a single regional assessment unit (AU) for conventional reservoirs in carbonate facies of the Sligo Formation and James Limestone. The AU is formally entitled Sligo-James Carbonate Platform Oil and Gas (50490121). A fully risked mean undiscovered technically recoverable resource in the AU of 50 million barrels of oil (MMBO), 791 billion cubic feet of natural gas (BCFG), and 26 million barrels of natural gas liquids was estimated. Substantial new development through horizontal drilling has occurred since the time of this assessment (2010), resulting in cumulative production of >200 BCFG and >1 MMBO.

  2. Motivation, Classroom Environment, and Learning in Introductory Geology: A Hierarchical Linear Model

    Science.gov (United States)

    Gilbert, L. A.; Hilpert, J. C.; Van Der Hoeven Kraft, K.; Budd, D.; Jones, M. H.; Matheney, R.; Mcconnell, D. A.; Perkins, D.; Stempien, J. A.; Wirth, K. R.

    2013-12-01

    Prior research has indicated that highly motivated students perform better and that learning increases in innovative, reformed classrooms, but untangling the student effects from the instructor effects is essential to understanding how to best support student learning. Using a hierarchical linear model, we examine these effects separately and jointly. We use data from nearly 2,000 undergraduate students surveyed by the NSF-funded GARNET (Geoscience Affective Research NETwork) project in 65 different introductory geology classes at research universities, public masters-granting universities, liberal arts colleges and community colleges across the US. Student level effects were measured as increases in expectancy and self-regulation using the Motivated Strategies for Learning Questionnaire (MSLQ; Pintrich et al., 1991). Instructor level effects were measured using the Reformed Teaching Observation Protocol, (RTOP; Sawada et al., 2000), with higher RTOP scores indicating a more reformed, student-centered classroom environment. Learning was measured by learning gains on a Geology Concept Inventory (GCI; Libarkin and Anderson, 2005) and normalized final course grade. The hierarchical linear model yielded significant results at several levels. At the student level, increases in expectancy and self-regulation are significantly and positively related to higher grades regardless of instructor; the higher the increase, the higher the grade. At the instructor level, RTOP scores are positively related to normalized average GCI learning gains. The higher the RTOP score, the higher the average class GCI learning gains. Across both levels, average class GCI learning gains are significantly and positively related to student grades; the higher the GCI learning gain, the higher the grade. Further, the RTOP scores are significantly and negatively related to the relationship between expectancy and course grade. The lower the RTOP score, the higher the correlation between change in

  3. The First USGS Global Geologic Map of Europa

    Science.gov (United States)

    Leonard, E. J.; Patthoff, D. A.; Senske, D.; Collins, G. C.

    2017-12-01

    Understanding the global scale geology of Europa is paramount to gaining insight into the potential habitability of this icy world. To this end, work is ongoing to complete a global geological map at the scale of 1:15 million that incorporates data at all resolutions collected by the Voyager and Galileo missions. The results of this work will aid the Europa Clipper mission, now in formulation, by providing a framework for collaborative and synergistic science investigations. To understand global geologic and tectonic relations, a total of 10 geologic units have been defined. These include: Low Albedo Ridge Material (lam)—low albedo material that irregularly surrounds large (>20 km) ridge structures; Ridged plains (pr)—distributed over all latitudes and characterized by subparallel to cross-cutting ridges and troughs visible at high resolution (material (b)—linear to curvilinear zones with a distinct, abrupt albedo change from the surrounding region; Crater material (c), Continuous Crater Ejecta (ce) and Discontinuous Crater Ejecta (dce)—features associated with impact craters including the site of the impact, crater material, and the fall-out debris respectively; Low Albedo Chaos (chl), Mottled Albedo Chaos (chm) and High Albedo Chaos (chh)—disrupted terrain with a relatively uniform low albedo, patchy/variegated albedo, and uniform high albedo appearance respectively; Knobby Chaos (chk) - disrupted terrain with rough and blocky texture occurring in the high latitudes. In addition to the geologic units, our mapping also includes structural features—Ridges, Cycloids, Undifferentiated Linea, Crater Rims, Depression Margins, Dome Margins and Troughs. We also introduce a point feature (at the global scale), Microchaos, to denote small (material. The completed map will constrain the distribution of different Europa terrains and provide a general stratigraphic framework to assess the geologic history of Europa from the regional to the global scale. Here, we

  4. Efficient Market Hypothesis in South Africa: Evidence from Linear and Nonlinear Unit Root Tests

    Directory of Open Access Journals (Sweden)

    Andrew Phiri

    2015-12-01

    Full Text Available This study investigates the weak form efficient market hypothesis (EMH for five generalized stock indices in the Johannesburg Stock Exchange (JSE using weekly data collected from 31st January 2000 to 16th December 2014. In particular, we test for weak form market efficiency using a battery of linear and nonlinear unit root testing procedures comprising of the classical augmented Dickey-Fuller (ADF tests, the two-regime threshold autoregressive (TAR unit root tests described in Enders and Granger (1998 as well as the three-regime unit root tests described in Bec, Salem, and Carrasco (2004. Based on our empirical analysis, we are able to demonstrate that whilst the linear unit root tests advocate for unit roots within the time series, the nonlinear unit root tests suggest that most stock indices are threshold stationary processes. These results bridge two opposing contentions obtained from previous studies by concluding that under a linear framework the JSE stock indices offer support in favour of weak form market efficiency whereas when nonlinearity is accounted for, a majority of the indices violate the weak form EMH.

  5. Mapping watershed potential to contribute phosphorus from geologic materials to receiving streams, southeastern United States

    Science.gov (United States)

    Terziotti, Silvia; Hoos, Anne B.; Harned, Douglas; Garcia, Ana Maria

    2010-01-01

    As part of the southeastern United States SPARROW (SPAtially Referenced Regressions On Watershed attributes) water-quality model implementation, the U.S. Geological Survey created a dataset to characterize the contribution of phosphorus to streams from weathering and erosion of surficial geologic materials. SPARROW provides estimates of total nitrogen and phosphorus loads in surface waters from point and nonpoint sources. The characterization of the contribution of phosphorus from geologic materials is important to help separate the effects of natural or background sources of phosphorus from anthropogenic sources of phosphorus, such as municipal wastewater or agricultural practices. The potential of a watershed to contribute phosphorus from naturally occurring geologic materials to streams was characterized by using geochemical data from bed-sediment samples collected from first-order streams in relatively undisturbed watersheds as part of the multiyear U.S. Geological Survey National Geochemical Survey. The spatial pattern of bed-sediment phosphorus concentration is offered as a tool to represent the best available information at the regional scale. One issue may weaken the use of bed-sediment phosphorus concentration as a surrogate for the potential for geologic materials in the watershed to contribute to instream levels of phosphorus-an unknown part of the variability in bed-sediment phosphorus concentration may be due to the rates of net deposition and processing of phosphorus in the streambed rather than to variability in the potential of the watershed's geologic materials to contribute phosphorus to the stream. Two additional datasets were created to represent the potential of a watershed to contribute phosphorus from geologic materials disturbed by mining activities from active mines and inactive mines.

  6. Geodesy- and geology-based slip-rate models for the Western United States (excluding California) national seismic hazard maps

    Science.gov (United States)

    Petersen, Mark D.; Zeng, Yuehua; Haller, Kathleen M.; McCaffrey, Robert; Hammond, William C.; Bird, Peter; Moschetti, Morgan; Shen, Zhengkang; Bormann, Jayne; Thatcher, Wayne

    2014-01-01

    The 2014 National Seismic Hazard Maps for the conterminous United States incorporate additional uncertainty in fault slip-rate parameter that controls the earthquake-activity rates than was applied in previous versions of the hazard maps. This additional uncertainty is accounted for by new geodesy- and geology-based slip-rate models for the Western United States. Models that were considered include an updated geologic model based on expert opinion and four combined inversion models informed by both geologic and geodetic input. The two block models considered indicate significantly higher slip rates than the expert opinion and the two fault-based combined inversion models. For the hazard maps, we apply 20 percent weight with equal weighting for the two fault-based models. Off-fault geodetic-based models were not considered in this version of the maps. Resulting changes to the hazard maps are generally less than 0.05 g (acceleration of gravity). Future research will improve the maps and interpret differences between the new models.

  7. Regional groundwater characteristics and hydraulic conductivity based on geological units in Korean peninsula

    Science.gov (United States)

    Kim, Y.; Suk, H.

    2011-12-01

    In this study, about 2,000 deep observation wells, stream and/or river distribution, and river's density were analyzed to identify regional groundwater flow trend, based on the regional groundwater survey of four major river watersheds including Geum river, Han river, Youngsan-Seomjin river, and Nakdong river in Korea. Hydrogeologial data were collected to analyze regional groundwater flow characteristics according to geological units. Additionally, hydrological soil type data were collected to estimate direct runoff through SCS-CN method. Temperature and precipitation data were used to quantify infiltration rate. The temperature and precipitation data were also used to quantify evaporation by Thornthwaite method and to evaluate groundwater recharge, respectively. Understanding the regional groundwater characteristics requires the database of groundwater flow parameters, but most hydrogeological data include limited information such as groundwater level and well configuration. In this study, therefore, groundwater flow parameters such as hydraulic conductivities or transmissivities were estimated using observed groundwater level by inverse model, namely PEST (Non-linear Parameter ESTimation). Since groundwater modeling studies have some uncertainties in data collection, conceptualization, and model results, model calibration should be performed. The calibration may be manually performed by changing parameters step by step, or various parameters are simultaneously changed by automatic procedure using PEST program. In this study, both manual and automatic procedures were employed to calibrate and estimate hydraulic parameter distributions. In summary, regional groundwater survey data obtained from four major river watersheds and various data of hydrology, meteorology, geology, soil, and topography in Korea were used to estimate hydraulic conductivities using PEST program. Especially, in order to estimate hydraulic conductivity effectively, it is important to perform

  8. Soil Patterns Associated with the Major Geological Units of the Kruger National Park

    Directory of Open Access Journals (Sweden)

    F.J. Venter

    1986-11-01

    Full Text Available The dominant soil types of the Kruger National Park and their interrelationships with parent material, topography and climate are discussed. The geogenetic and topogenetic nature of the soils are manifested in the strong correlations between recurrent soil patterns, major geological units and terrain morphology. The soils are categorised into seven major classes on the basis of the parent material from which they developed. General soil patterns within the major classes are discussed.

  9. Geological mapping of lunar highland crater Lalande: Topographic configuration, morphology and cratering process

    Science.gov (United States)

    Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Liu, ChangQing; Bi, Xiangyu

    2018-02-01

    Highland crater Lalande (4.45°S, 8.63°W; D = 23.4 km) is located on the PKT area of the lunar near side, southeast of the Mare Insularum. It is a complex crater in Copernican era and has three distinguishing features: high silicic anomaly, the highest Th abundance and special landforms on its floor. There are some low-relief bulges on the left of Lalande's floor with regular circle or ellipse shapes. They are ∼250-680 m wide and ∼30-91 m high with maximum flank slopes >20°. There are two possible scenarios for the formation of these low-relief bulges which are impact melt products or young silicic volcanic eruptions. We estimated the absolute model ages of the ejecta deposits, several melt ponds and the hummocky floor and determined the ratio of diameter and depth of the crater Lalande. In addition, we found some similar bugle features within other Copernican-aged craters and there were no volcanic source vents on Lalande's floor. Thus, we hypothesized that these low-relief bulges were most consistent with an origin of impact melts during the crater formation instead of small and young volcanic activities occurring on the floor. Based on Kaguya Terrain Camera (TC) ortho-mosaic and Digital Terrain Model (DTM) data produced by TC imagery in stereo, geological units and some linear features on the floor and wall of Lalande have been mapped. Eight geological units are organized by crater floor units: hummocky floor, central peak and low-relief bulges; and crater wall units: terraced walls, channeled and veneered walls, interior walls, mass wasting areas, blocky areas, and melt ponds. These geological units and linear features provided us a chance to understand some details of the cratering process and elevation differences on the floor. We proposed that subsidence due to melt cooling, late-stage wall collapse and rocks uplifted from beneath the surface could be the possible causes of the observed elevation differences on Lalande's floor.

  10. Quaternary Geologic Map of the Regina 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    Science.gov (United States)

    Fullerton, David S.; Christiansen, Earl A.; Schreiner, Bryan T.; Colton, Roger B.; Clayton, Lee; Bush, Charles A.; Fullerton, David S.

    2007-01-01

    For scientific purposes, the map differentiates Quaternary surficial deposits and materials on the basis of clast lithology or composition, matrix texture or particle size, structure, genesis, stratigraphic relations, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the 'Description of Map Units'. Deposits of some constructional landforms, such as end moraines, are distinguished as map units. Deposits of erosional landforms, such as outwash terraces, are not distinguished, although glaciofluvial, ice-contact, fluvial, and lacustrine deposits that are mapped may be terraced. Differentiation of sequences of fluvial and glaciofluvial deposits at this scale is not possible. For practical purposes, the map is a surficial materials map. Materials are distinguished on the basis of lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized and classified in pedology or agronomy. Rather, it is a generalized map of soils as recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. As a materials map, it serves as a base from which a variety of maps for use in planning engineering, land-use planning, or land-management projects can be derived and from which a variety of maps relating to earth surface processes and Quaternary geologic history can be derived.

  11. Geological Factors Affecting Flow Spatial Continuity in Water Injection of Units Operating in the LGITJ–0102 Ore Body

    Directory of Open Access Journals (Sweden)

    Ilver M. Soto-Loaiza

    2016-05-01

    Full Text Available The objective of the investigation was to identify the geological factors affecting the spatial continuity of the flow during the process of flank water injection in the units operating in the Lower Lagunilla Hydrocarbon Ore Body. This included the evaluation of the recovery factor, the petro-physic properties such as porosity, permeability, water saturation and rock type and quality in each flow unit. it was observed that the rock type of the geologic structure in the ore body is variable. The lowest values for the petro-physic properties were found in the southern area while a high variability of these parameters was observed in the northern and central areas. It was concluded that the northern area has a great potential for the development of new injection projects for petroleum recovery.

  12. Bedrock Geologic Map of Vermont - Units

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  13. Significance of geological units of the Bohemian Massif, Czech Republic, as seen by ambient noise interferometry

    Czech Academy of Sciences Publication Activity Database

    Růžek, Bohuslav; Valentová, L.; Gallovič, F.

    2016-01-01

    Roč. 173, č. 5 (2016), s. 1663-1682 ISSN 0033-4553 R&D Projects: GA ČR GAP210/12/2336; GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : ambient noise * geological units * Bohemian Massif * velocity model Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.591, year: 2016

  14. Proposals of geological sites for L/ILW and HLW repositories. Geological background. Text volume

    International Nuclear Information System (INIS)

    2008-01-01

    /ILW repository, for which the time period considered for long-term safety is 100,000 years, there are no large-scale geotectonic units that, as a whole, would be unsuitable from the viewpoint of long-term geological stability and would have to be excluded. Regionally and locally, however, critical zones will have to be avoided when locating the disposal chambers in order to ensure long-term stability. The space required for the L/ILW repository is comparatively small and there is considerable flexibility in arranging the individual disposal chambers. This means that none of the large-scale units need to be deferred because of spatial conditions, although there are significant differences among the units with respect to tectonic dissection and the resulting spatial situation. For the HLW repository, with a time period of 1 million years being considered for long-term safety, the Alps have to be excluded if long-term stability (including uplift and erosion during the period being considered) is to be assured. There are also reservations regarding the long-term geological stability of the Folded Jura, the western Tabular Jura and the western sub-Jurassic zone. Because of strong tectonic dissection and the resulting insufficient spatial conditions, these three units are excluded for a HLW repository; D) The fourth step involves selecting the preferred host rock formations within the large geotectonic units still under consideration. Proposed for the L/ILW repository are the Opalinus Clay with its confining units, the clay stone sequence 'Brauner Dogger' with its confining units, the Effingen Beds and the marl formations of the Helveticum. For the HLW repository, the Opalinus Clay with its confining units is the preferred host formation. Although the crystalline bedrock and the clay-rich formations of the Lower and Upper Freshwater Molasse fulfil the minimum requirements for a host rock, test options have been deferred because of the large variability of rock properties and the

  15. Aniakchak National Monument and Preserve: Geologic resources inventory report

    Science.gov (United States)

    Hults, Chad P.; Neal, Christina

    2015-01-01

    This GRI report is a companion document to previously completed GRI digital geologic map data. It was written for resource managers to support science-informed decision making. It may also be useful for interpretation. The report was prepared using available geologic information, and the NPS Geologic Resources Division conducted no new fieldwork in association with its preparation. Sections of the report discuss distinctive geologic features and processes within the park, highlight geologic issues facing resource managers, describe the geologic history leading to the present-day landscape, and provide information about the GRI geologic map data. A poster illustrates these data. The Map Unit Properties Table summarizes report content for each geologic map unit.

  16. Economic MPC for a linear stochastic system of energy units

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Sokoler, Leo Emil; Standardi, Laura

    2016-01-01

    This paper summarizes comprehensively the work in four recent PhD theses from the Technical University of Denmark related to Economic MPC of future power systems. Future power systems will consist of a large number of decentralized power producers and a large number of controllable power consumers...... in addition to stochastic power producers such as wind turbines and solar power plants. Control of such large scale systems requires new control algorithms. In this paper, we formulate the control of such a system as an Economic Model Predictive Control (MPC) problem. When the power producers and controllable...... power consumers have linear dynamics, the Economic MPC may be expressed as a linear program. We provide linear models for a number of energy units in an energy system, formulate an Economic MPC for coordination of such a system. We indicate how advances in computational MPC makes the solutions...

  17. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    Science.gov (United States)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.

  18. The First Global Geological Map of Mercury

    Science.gov (United States)

    Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.

    2015-12-01

    Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).

  19. Activities of the United States Geological Survey in Pennsylvania

    Science.gov (United States)

    Wood, Charles R.

    1997-01-01

    Since the late 1800's, when the U.S. Geological Survey first established a presence in Pennsylvania, the focus of our work has changed from general hydrologic and geologic appraisals to issue-oriented investigations; from predominantly data collection to a balanced program of data collection, interpretation, and research; and from traditional, hand-drawn mapping to digitally produced coverages with specialized themes. Yet our basic mission has not changed. It is as relevant to the resource issues of today as it was when our geologists first arrived in western Pennsylvania in 1884. Continuing in this proud heritage and tradition, the U.S. Geological Survey is moving confidently toward the next century, evolving organizationally and technologically to better meet the needs of our many constituencies. One major organizational change is the recent accession of employees from the former National Biological Service, who now form the Survey's fourth program division, the Biological Resources Division. These employees join forces with colleagues in our other three divisions: Water Resources, Geologic, and National Mapping. More than any other change in decades, the addition of this biological expertise creates new and exciting opportunities for scientific research and public service. This report provides an overview of recent activities in Pennsylvania conducted by the four program divisions and is intended to inform those interested in U.S. Geological Survey products and services. Additional information is available on our home page (at http://wwwpah2o.er.usgs.gov/). Together with numerous Federal, State, and local agencies and organizations who are our customers and partners, we at the U.S. Geological Survey look forward to providing continued scientific contributions and public service to Pennsylvania and the Nation.

  20. On Linear Combinations of Two Orthogonal Polynomial Sequences on the Unit Circle

    Directory of Open Access Journals (Sweden)

    Suárez C

    2010-01-01

    Full Text Available Let be a monic orthogonal polynomial sequence on the unit circle. We define recursively a new sequence of polynomials by the following linear combination: , , . In this paper, we give necessary and sufficient conditions in order to make be an orthogonal polynomial sequence too. Moreover, we obtain an explicit representation for the Verblunsky coefficients and in terms of and . Finally, we show the relation between their corresponding Carathéodory functions and their associated linear functionals.

  1. One perspective on spatial variability in geologic mapping

    Science.gov (United States)

    Markewich, H.W.; Cooper, S.C.

    1991-01-01

    This paper discusses some of the differences between geologic mapping and soil mapping, and how the resultant maps are interpreted. The role of spatial variability in geologic mapping is addressed only indirectly because in geologic mapping there have been few attempts at quantification of spatial differences. This is largely because geologic maps deal with temporal as well as spatial variability and consider time, age, and origin, as well as composition and geometry. Both soil scientists and geologists use spatial variability to delineate mappable units; however, the classification systems from which these mappable units are defined differ greatly. Mappable soil units are derived from systematic, well-defined, highly structured sets of taxonomic criteria; whereas mappable geologic units are based on a more arbitrary heirarchy of categories that integrate many features without strict values or definitions. Soil taxonomy is a sorting tool used to reduce heterogeneity between soil units. Thus at the series level, soils in any one series are relatively homogeneous because their range of properties is small and well-defined. Soil maps show the distribution of soils on the land surface. Within a map area, soils, which are often less than 2 m thick, show a direct correlation to topography and to active surface processes as well as to parent material.

  2. Shallow subsurface geology and Vs characteristics of sedimentary units throughout Rasht City, Iran

    Directory of Open Access Journals (Sweden)

    Behzad Mehrabi

    2009-06-01

    Full Text Available The Manjil-Rudbar earthquake of June 1990 caused widespread damage to buildings in the city of Rasht located
    60 km from the epicenter. Seismic surveys, including refraction P-wave, S-wave and downhole tests, were
    carried out to study subsurface geology and classify materials in the city of Rasht. Rasht is built on Quaternary
    sediments consisting of old marine (Q1m, deltaic (Q2d, undivided deltaic sediments with gravel (Qdg and
    young marine (Q2m deposits. We used the variations of Vp in different materials to separate sedimentary
    boundaries. The National Earthquake Hazard Reduction Program (NEHRP scheme was used for site classification.
    Average S-wave velocity to a depth of 30 m was used to develop site categories, based on measured Vs values
    in 35 refraction seismic profiles and 4 downhole tests. For each geological unit histograms of S-wave velocity
    were calculated. This study reveals that the Vs(30 of most of the city falls into categories D and C of NEHRP
    site classification. Average horizontal spectral amplification (AHSA in Rasht was calculated using Vs(30 . The
    AHSA map clearly indicates that the amplification factor east and north of the city are higher than those of south
    and central parts. The results show that the lateral changes and heterogeneities in Q1m sediments are significant
    and most damaged buildings in 1990 Manjil earthquake were located in this unit.

  3. Geological Map of the Fredegonde (V-57) Quadrangle, Venus

    Science.gov (United States)

    Ivanov, M. A.; Head, J. W.

    2009-01-01

    The area of V-57, the Fredegonde quadrangle (50-75degS, 60-120degE, Fig.1), is located within the eastern portion of Lada Terra within the topographic province of midlands (0-2 km above MPR [1,2]). Midlands form the most abundant portion of the surface of Venus and are characterized by diverse sets of units and structures [3-11]. The area of the Fredegonde quadrangle is in contact with the elevated portion of Lada Terra to the W and with the lowland of Aino Planitia to the NE. The transitions of the mid-lands to the lowlands and highlands are, thus, one of the main themes of the geology within the V-57 quadrangle. The character of the transitions and distribution and sequence of units/structures in the midlands are crucially important in understanding the time and modes of formation of this topographic province. The most prominent features in the map area are linear deformational zones consisting of swarms of grooves and graben and large coronae. The zones characterize the central and NW portions of the map area and represent regionally important, broad (up to 100s km wide) ridges that are 100s m high. Relatively small (100s km across, 100s m deep) equidimensional basins occur between the corona-groove-chains in the west and border the central chain from the east. Here we describe units that make up the surface within the V-57 quadrangle and present a summary of our geological map that shows the areal distribution of the major groups of units.

  4. A speed estimation unit for induction motors based on adaptive linear combiner

    International Nuclear Information System (INIS)

    Marei, Mostafa I.; Shaaban, Mostafa F.; El-Sattar, Ahmed A.

    2009-01-01

    This paper presents a new induction motor speed estimation technique, which can estimate the rotor resistance as well, from the measured voltage and current signals. Moreover, the paper utilizes a novel adaptive linear combiner (ADALINE) structure for speed and rotor resistance estimations. This structure can deal with the multi-output systems and it is called MO-ADALINE. The model of the induction motor is arranged in a linear form, in the stationary reference frame, to cope with the proposed speed estimator. There are many advantages of the proposed unit such as wide speed range capability, immunity against harmonics of measured waveforms, and precise estimation of the speed and the rotor resistance at different dynamic changes. Different types of induction motor drive systems are used to evaluate the dynamic performance and to examine the accuracy of the proposed unit for speed and rotor resistance estimation.

  5. Evaluating Geologic Sources of Arsenic in Well Water in Virginia (USA

    Directory of Open Access Journals (Sweden)

    Tiffany VanDerwerker

    2018-04-01

    Full Text Available We investigated if geologic factors are linked to elevated arsenic (As concentrations above 5 μg/L in well water in the state of Virginia, USA. Using geologic unit data mapped within GIS and two datasets of measured As concentrations in well water (one from public wells, the other from private wells, we evaluated occurrences of elevated As (above 5 μg/L based on geologic unit. We also constructed a logistic regression model to examine statistical relationships between elevated As and geologic units. Two geologic units, including Triassic-aged sedimentary rocks and Triassic-Jurassic intrusives of the Culpeper Basin in north-central Virginia, had higher occurrences of elevated As in well water than other geologic units in Virginia. Model results support these patterns, showing a higher probability for As occurrence above 5 μg/L in well water in these two units. Due to the lack of observations (<5% having elevated As concentrations in our data set, our model cannot be used to predict As concentrations in other parts of the state. However, our results are useful for identifying areas of Virginia, defined by underlying geology, that are more likely to have elevated As concentrations in well water. Due to the ease of obtaining publicly available data and the accessibility of GIS, this study approach can be applied to other areas with existing datasets of As concentrations in well water and accessible data on geology.

  6. The use of U.S. Geological Survey CD-ROM-based petroleum assessments in undergraduate geology laboratories

    Science.gov (United States)

    Eves, R.L.; Davis, L.E.; Dyman, T.S.; Takahashi, K.I.

    2002-01-01

    Domestic oil production is declining and United States reliance on imported oil is increasing. America will be faced with difficult decisions that address the strategic, economic, and political consequences of its energy resources shortage. The geologically literate under-graduate student needs to be aware of current and future United States energy issues. The U.S. Geological Survey periodically provides energy assessment data via digitally-formatted CD-ROM publications. These publications are free to the public, and are well suited for use in undergraduate geology curricula. The U.S. Geological Survey (USGS) 1995 National Assessment of United States Oil and Gas Resources (Digital Data Series or DDS-30) (Gautier and others, 1996) is an excellent resource for introducing students to the strategies of hydrocarbon exploration and for developing skills in problem-solving and evaluating real data. This paper introduces the reader to DDS-30, summarizes the essential terminology and methodology of hydrocarbon assessment, and offers examples of exercises or questions that might be used in the introductory classroom. The USGS contact point for obtaining DDS-30 and other digital assessment volumes is also provided. Completing the sample exercises in this report requires a copy of DDS-30.

  7. Iowa Bedrock Geology

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The bedrock geologic map portrays the current interpretation of the distribution of various bedrock stratigraphic units present at the bedrock surface. The bedrock...

  8. Stratigraphy and geologic history of Mercury

    International Nuclear Information System (INIS)

    Spudis, P.D.; Guest, J.E.

    1988-01-01

    The geologic evolution of Mercury based on the Mariner-10 mission data is discussed. As reconstructed through photogeological analysis of global geologic relations of rock-stratigraphic units, Mercury's geologic history is shown to involve intensive early impact bombardment and widespread resurfacing by volcanic lavas. Evidence is presented to indicate that this volcanic activity essentially ended as much as 3 Gyr ago, with most of the major geologic events being completed within the first 1 to 1.5 Gyr of Mercurian history

  9. Stratigraphy and geologic history of Mercury

    Science.gov (United States)

    Spudis, Paul D.; Guest, John E.

    1988-01-01

    The geologic evolution of Mercury based on the Mariner-10 mission data is discussed. As reconstructed through photogeological analysis of global geologic relations of rock-stratigraphic units, Mercury's geologic history is shown to involve intensive early impact bombardment and widespread resurfacing by volcanic lavas. Evidence is presented to indicate that this volcanic activity essentially ended as much as 3 Gyr ago, with most of the major geologic events being completed within the first 1 to 1.5 Gyr of Mercurian history.

  10. Coupling and decoupling of the accelerating units for pulsed synchronous linear accelerator

    Science.gov (United States)

    Shen, Yi; Liu, Yi; Ye, Mao; Zhang, Huang; Wang, Wei; Xia, Liansheng; Wang, Zhiwen; Yang, Chao; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2017-12-01

    A pulsed synchronous linear accelerator (PSLA), based on the solid-state pulse forming line, photoconductive semiconductor switch, and high gradient insulator technologies, is a novel linear accelerator. During the prototype PSLA commissioning, the energy gain of proton beams was found to be much lower than expected. In this paper, the degradation of the energy gain is explained by the circuit and cavity coupling effect of the accelerating units. The coupling effects of accelerating units are studied, and the circuit topologies of these two kinds of coupling effects are presented. Two methods utilizing inductance and membrane isolations, respectively, are proposed to reduce the circuit coupling effects. The effectiveness of the membrane isolation method is also supported by simulations. The decoupling efficiency of the metal drift tube is also researched. We carried out the experiments on circuit decoupling of the multiple accelerating cavity. The result shows that both circuit decoupling methods could increase the normalized voltage.

  11. Novel methods for Solving Economic Dispatch of Security-Constrained Unit Commitment Based on Linear Programming

    Science.gov (United States)

    Guo, Sangang

    2017-09-01

    There are two stages in solving security-constrained unit commitment problems (SCUC) within Lagrangian framework: one is to obtain feasible units’ states (UC), the other is power economic dispatch (ED) for each unit. The accurate solution of ED is more important for enhancing the efficiency of the solution to SCUC for the fixed feasible units’ statues. Two novel methods named after Convex Combinatorial Coefficient Method and Power Increment Method respectively based on linear programming problem for solving ED are proposed by the piecewise linear approximation to the nonlinear convex fuel cost functions. Numerical testing results show that the methods are effective and efficient.

  12. Mapping urban geology of the city of Girona, Catalonia

    Science.gov (United States)

    Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona

    2016-04-01

    A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour

  13. Characterizing the natural radiation levels throughout the main geological units of Sabkhat al Jabboul area, northern Syria.

    Science.gov (United States)

    Al-Hilal, Mohamed; Aissa, Mosa

    2015-02-01

    The concentrations of equivalent eU, eTh, and K% were determined together with soil gas radon values and carborne gamma-ray survey in order to define the natural radioactivity levels throughout main geological units of Sabkhat al Jabboul region. Forty five soil and rock samples were collected from various lithofacies in each geological unit, and analyzed by γ-ray spectrometric technique for determining the concentration values of major radioelements. Such radiometric data could be used to differentiate between various lithologies of the investigated rocks. Although no distinct radioactive anomalies were found in the area, the radiometric profiles showed some minor variations with slightly higher values than the normal level. Despite the low radioactivity and the lack of rocks diversity in the surveyed area, it was possible to classify some certain rock types based on their radiometric response. The relationships between eU, eTh and their ratios were discussed for the Quaternary, Neogene and Paleogene formations, in order to evaluate the degree of uranium distribution and remobilization. The overall results of this radiometric survey were generally low, and lying within the range of the normal background levels in Syrian. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Geologic Interpretation of Data Sets Collected by Planetary Analog Geology Traverses and by Standard Geologic Field Mapping. Part 1; A Comparison Study

    Science.gov (United States)

    Eppler, Dean B.; Bleacher, Jacob F.; Evans, Cynthia A.; Feng, Wanda; Gruener, John; Hurwitz, Debra M.; Skinner, J. A., Jr.; Whitson, Peggy; Janoiko, Barbara

    2013-01-01

    Geologic maps integrate the distributions, contacts, and compositions of rock and sediment bodies as a means to interpret local to regional formative histories. Applying terrestrial mapping techniques to other planets is challenging because data is collected primarily by orbiting instruments, with infrequent, spatiallylimited in situ human and robotic exploration. Although geologic maps developed using remote data sets and limited "Apollo-style" field access likely contain inaccuracies, the magnitude, type, and occurrence of these are only marginally understood. This project evaluates the interpretative and cartographic accuracy of both field- and remote-based mapping approaches by comparing two 1:24,000 scale geologic maps of the San Francisco Volcanic Field (SFVF), north-central Arizona. The first map is based on traditional field mapping techniques, while the second is based on remote data sets, augmented with limited field observations collected during NASA Desert Research & Technology Studies (RATS) 2010 exercises. The RATS mission used Apollo-style methods not only for pre-mission traverse planning but also to conduct geologic sampling as part of science operation tests. Cross-comparison demonstrates that the Apollo-style map identifies many of the same rock units and determines a similar broad history as the field-based map. However, field mapping techniques allow markedly improved discrimination of map units, particularly unconsolidated surficial deposits, and recognize a more complex eruptive history than was possible using Apollo-style data. Further, the distribution of unconsolidated surface units was more obvious in the remote sensing data to the field team after conducting the fieldwork. The study raises questions about the most effective approach to balancing mission costs with the rate of knowledge capture, suggesting that there is an inflection point in the "knowledge capture curve" beyond which additional resource investment yields progressively

  15. Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon

    Science.gov (United States)

    O'Connor, Jim E.; Sarna-Wojcicki, Andrei M.; Wozniak, Karl C.; Polette, Danial J.; Fleck, Robert J.

    2001-01-01

    Stratigraphic and chronologic information collected for Quaternary deposits in the Willamette Valley, Oregon, provides a revised stratigraphic framework that serves as a basis for a 1:250,000-scale map, as well as for thickness estimates of widespread Quaternary geologic units. We have mapped 11 separate Quaternary units that are differentiated on the basis of stratigraphic, topographic, pedogenic, and hydrogeologic properties. In summation, these units reflect four distinct episodes in the Quaternary geologic development of the Willamette Valley: 1) Fluvial sands and gravels that underlie terraces flanking lowland margins and tributary valleys were probably deposited between 2.5 and 0.5 million years ago. They are the oldest widespread surficial Quaternary deposits in the valley. Their present positions and preservation are undoubtedly due to postdepositional tectonic deformation - either by direct tectonic uplift of valley margins, or by regional tectonic controls on local base level. 2) Tertiary and Quaternary excavation or tectonic lowering of the Willamette Valley accommodated as much as 500 m (meters) of lacustrine and fluvial fill. Beneath the lowland floor, much of the upper 10 to 50 m of fill is Quaternary sand and gravel deposited by braided channel systems in subhorizontal sheets 2 to 10 m thick. These deposits grade to gravel fans 40 to 100 m thick where major Cascade Range rivers enter the valley and are traced farther upstream as much thinner valley trains of coarse gravel. The sand and gravel deposits have ages that range from greater than 420,000 to about 12,000 years old. A widely distributed layer of sand and gravel deposited at about 12 ka (kiloannum, thousands of years before the present) is looser and probably more permeable than older sand and gravel. Stratigraphic exposures and drillers' logs indicate that this late Pleistocene unit is mostly between 5 and 20 m thick where it has not been subsequently eroded by the Willamette River and its

  16. Spatial Analysis of Linear Structures in the Exploration of Groundwater

    Directory of Open Access Journals (Sweden)

    Abdramane Dembele

    2017-11-01

    Full Text Available The analysis of linear structures on major geological formations plays a crucial role in resource exploration in the Inner Niger Delta. Highlighting and mapping of the large lithological units were carried out using image fusion, spectral bands (RGB coding, Principal Component Analysis (PCA, and band ratio methods. The automatic extraction method of linear structures has permitted the obtaining of a structural map with 82,659 linear structures, distributed on different stratigraphic stages. The intensity study shows an accentuation in density over 12.52% of the total area, containing 22.02% of the linear structures. The density and nodes (intersections of fractures formed by the linear structures on the different lithologies allowed to observe the behavior of the region’s aquifers in the exploration of subsoil resources. The central density, in relation to the hydrographic network of the lowlands, shows the conditioning of the flow and retention of groundwater in the region, and in-depth fluids. The node areas and high-density linear structures, have shown an ability to have rejections in deep (pores that favor the formation of structural traps for oil resources.

  17. Semantic Web-based digital, field and virtual geological

    Science.gov (United States)

    Babaie, H. A.

    2012-12-01

    Digital, field and virtual Semantic Web-based education (SWBE) of geological mapping requires the construction of a set of searchable, reusable, and interoperable digital learning objects (LO) for learners, teachers, and authors. These self-contained units of learning may be text, image, or audio, describing, for example, how to calculate the true dip of a layer from two structural contours or find the apparent dip along a line of section. A collection of multi-media LOs can be integrated, through domain and task ontologies, with mapping-related learning activities and Web services, for example, to search for the description of lithostratigraphic units in an area, or plotting orientation data on stereonet. Domain ontologies (e.g., GeologicStructure, Lithostratigraphy, Rock) represent knowledge in formal languages (RDF, OWL) by explicitly specifying concepts, relations, and theories involved in geological mapping. These ontologies are used by task ontologies that formalize the semantics of computational tasks (e.g., measuring the true thickness of a formation) and activities (e.g., construction of cross section) for all actors to solve specific problems (making map, instruction, learning support, authoring). A SWBE system for geological mapping should also involve ontologies to formalize teaching strategy (pedagogical styles), learner model (e.g., for student performance, personalization of learning), interface (entry points for activities of all actors), communication (exchange of messages among different components and actors), and educational Web services (for interoperability). In this ontology-based environment, actors interact with the LOs through educational servers, that manage (reuse, edit, delete, store) ontologies, and through tools which communicate with Web services to collect resources and links to other tools. Digital geological mapping involves a location-based, spatial organization of geological elements in a set of GIS thematic layers. Each layer

  18. Geologic Setting and Hydrogeologic Units of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    Science.gov (United States)

    Kahle, Sue C.; Olsen, Theresa D.; Morgan, David S.

    2009-01-01

    geologic mapping and well information and to develop a digital, three-dimensional hydrogeologic model that could be used as the basis of a groundwater-flow model. This report describes the principal geologic and hydrogeologic units of the CPRAS and geologic map and well data that were compiled as part of the study. The report also describes simplified regional hydrogeologic sections and unit extent maps that were used to conceptualize the framework prior to development of the digital 3-dimensional framework model.

  19. Evaluation of radon occurrence in groundwater from 16 geologic units in Pennsylvania, 1986–2015, with application to potential radon exposure from groundwater and indoor air

    Science.gov (United States)

    Gross, Eliza L.

    2017-05-11

    Results from 1,041 groundwater samples collected during 1986‒2015 from 16 geologic units in Pennsylvania, associated with 25 or more groundwater samples with concentrations of radon-222, were evaluated in an effort to identify variations in radon-222 activities or concentrations and to classify potential radon-222 exposure from groundwater and indoor air. Radon-222 is hereafter referred to as “radon.” Radon concentrations in groundwater greater than or equal to the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) for public-water supply systems of 300 picocuries per liter (pCi/L) were present in about 87 percent of the water samples, whereas concentrations greater than or equal to the proposed alternative MCL (AMCL) for public water-supply systems of 4,000 pCi/L were present in 14 percent. The highest radon concentrations were measured in groundwater from the schists, gneisses, and quartzites of the Piedmont Physiographic Province.In this study, conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Health and the Pennsylvania Department of Environmental Protection, groundwater samples were aggregated among 16 geologic units in Pennsylvania to identify units with high median radon concentrations in groundwater. Graphical plots and statistical tests were used to determine variations in radon concentrations in groundwater and indoor air. Median radon concentrations in groundwater samples and median radon concentrations in indoor air samples within the 16 geologic units were classified according to proposed and recommended regulatory limits to explore potential radon exposure from groundwater and indoor air. All of the geologic units, except for the Allegheny (Pa) and Glenshaw (Pcg) Formations in the Appalachian Plateaus Physiographic Province, had median radon concentrations greater than the proposed EPA MCL of 300 pCi/L, and the Peters Creek Schist (Xpc), which is in the Piedmont

  20. Innervation zones of fasciculating motor units: observations by a linear electrode array.

    Science.gov (United States)

    Jahanmiri-Nezhad, Faezeh; Barkhaus, Paul E; Rymer, William Z; Zhou, Ping

    2015-01-01

    This study examines the innervation zone (IZ) in the biceps brachii muscle in healthy subjects and those with amyotrophic lateral sclerosis (ALS) using a 20-channel linear electromyogram (EMG) electrode array. Raster plots of individual waveform potentials were studied to estimate the motor unit IZ. While this work mainly focused on fasciculation potentials (FPs), a limited number of motor unit potentials (MUPs) from voluntary activity of 12 healthy and seven ALS subjects were also examined. Abnormal propagation of MUPs and scattered IZs were observed in fasciculating units, compared with voluntarily activated MUPs in healthy and ALS subjects. These findings can be related to muscle fiber reinnervation following motor neuron degeneration in ALS and the different origin sites of FPs compared with voluntary MUPs.

  1. Apatite fission track analysis: geological thermal history analysis based on a three-dimensional random process of linear radiation damage

    International Nuclear Information System (INIS)

    Galbraith, R.F.; Laslett, G.M.; Green, P.F.; Duddy, I.R.

    1990-01-01

    Spontaneous fission of uranium atoms over geological time creates a random process of linearly shaped features (fission tracks) inside an apatite crystal. The theoretical distributions associated with this process are governed by the elapsed time and temperature history, but other factors are also reflected in empirical measurements as consequences of sampling by plane section and chemical etching. These include geometrical biases leading to over-representation of long tracks, the shape and orientation of host features when sampling totally confined tracks, and 'gaps' in heavily annealed tracks. We study the estimation of geological parameters in the presence of these factors using measurements on both confined tracks and projected semi-tracks. Of particular interest is a history of sedimentation, uplift and erosion giving rise to a two-component mixture of tracks in which the parameters reflect the current temperature, the maximum temperature and the timing of uplift. A full likelihood analysis based on all measured densities, lengths and orientations is feasible, but because some geometrical biases and measurement limitations are only partly understood it seems preferable to use conditional likelihoods given numbers and orientations of confined tracks. (author)

  2. Regional and site geological frameworks : proposed Deep Geologic Repository, Bruce County, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Raven, K.; Sterling, S.; Gaines, S.; Wigston, A. [Intera Engineering Ltd., Ottawa, ON (Canada); Frizzell, R. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2009-07-01

    The Nuclear Waste Management Organization is conducting geoscientific studies on behalf of Ontario Power Generation into the proposed development of a Deep Geologic Repository (DGR) for low and intermediate level radioactive waste (L and ILW) at the Bruce site, near Tiverton, Ontario. This paper presented a regional geological framework for the site that was based on a review of regional drilling; structural geology; paleozoic stratigraphy and sedimentology; a 3D geological framework model; a DGR geological site characterization model; bedrock stratigraphy and marker beds; natural fracture frequency data; and formation predictability. The studies have shown that the depth, thickness, orientation and rock quality of the 34 rock formations, members or units that comprise the 840 m thick Paleozoic bedrock sequence at the Bruce site are very uniform and predictable over distances of several kilometres. The proposed DGR will be constructed as an engineered facility comprising a series of underground emplacement rooms at a depth of 680 metres below ground within argillaceous limestones. The geoscientific studies are meant to provide a basis for the development of descriptive geological, hydrogeological and geomechanical models of the DGR site that will facilitate environmental and safety assessments. 11 refs., 3 tabs., 9 figs.

  3. Geologic map of the Montoso Peak quadrangle, Santa Fe and Sandoval Counties, New Mexico

    Science.gov (United States)

    Thompson, Ren A.; Hudson, Mark R.; Shroba, Ralph R.; Minor, Scott A.; Sawyer, David A.

    2011-01-01

    -horizontal contacts. Those faults characterized as "certain" either have distinct offset of map units or had slip planes that were directly observed in the field. Faults classed as "inferred" were traced based on linear alignments of geologic, topographic and aerial photo features such as vents, lava flow edges, and drainages inferred to preferentially develop on fractured rock. Lineaments defined from magnetic anomalies form an additional constraint on potential fault locations.

  4. Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply

    Science.gov (United States)

    Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    SummaryMineral commodities are vital for economic growth, improving the quality of life, providing for national defense, and the overall functioning of modern society. Minerals are being used in larger quantities than ever before and in an increasingly diverse range of applications. With the increasing demand for a considerably more diverse suite of mineral commodities has come renewed recognition that competition and conflict over mineral resources can pose significant risks to the manufacturing industries that depend on them. In addition, production of many mineral commodities has become concentrated in relatively few countries (for example, tungsten, rare-earth elements, and antimony in China; niobium in Brazil; and platinum-group elements in South Africa and Russia), thus increasing the risk for supply disruption owing to political, social, or other factors. At the same time, an increasing awareness of and sensitivity to potential environmental and health issues caused by the mining and processing of many mineral commodities may place additional restrictions on mineral supplies. These factors have led a number of Governments, including the Government of the United States, to attempt to identify those mineral commodities that are viewed as most “critical” to the national economy and (or) security if supplies should be curtailed.This book presents resource and geologic information on the following 23 mineral commodities currently among those viewed as important to the national economy and national security of the United States: antimony (Sb), barite (barium, Ba), beryllium (Be), cobalt (Co), fluorite or fluorspar (fluorine, F), gallium (Ga), germanium (Ge), graphite (carbon, C), hafnium (Hf), indium (In), lithium (Li), manganese (Mn), niobium (Nb), platinum-group elements (PGE), rare-earth elements (REE), rhenium (Re), selenium (Se), tantalum (Ta), tellurium (Te), tin (Sn), titanium (Ti), vanadium (V), and zirconium (Zr). For a number of these commodities

  5. Mercury compositional units inferred by MDIS. A comparison with the geology in support to the BepiColombo mission

    Science.gov (United States)

    Zambon, Francesca; Carli, Cristian; Galluzzi, Valentina; Capaccioni, Fabrizio; Filacchione, Gianrico; Giacomini, Lorenza; Massirioni, Matteo; Palumbo, Pasquale

    2016-04-01

    distributed distinct spectral units. Therefore, integrating the spectral variability to a well defined morpho-stratigraphic (photo-interpreted) map will permit to improve the geologic map itself, defining sub-units, and associating spectral properties to analogue deposits. We are working to produce quadrangles color mosaics and high resolution color mosaics of smaller areas to define color products (common planetary geologic map) and obtain an "advanced" geologic map. The mapping process permits integration of different geological surface information to better understand the planet crust formation and evolution. Merging data from different instruments provides additional information about lithological composition, contributing to the construction of a more complete geological map (e.g., Giacomini et al., 2012). These work has been done in support of the BepiColombo Mission, which has an innovative Spectrometer and Imagers Integrated Observatory SYStem (SIMBIO-SYS). SIMBIO-SYS is composed by three instruments, the visible-near-infrared imaging spectrometer (VIHI), the high-resolution imager (HRIC) and the stereo imaging system (STC) which will be albe to improve the knowledge of Mercury surface form the geological and compositional point of view. This research was supported by the Italian Space Agency (ASI) within the SIMBIOSYS project (ASI-INAF agreement no. I/022/10/0)

  6. DIGITAL GEOLOGIC MAP OF SHERMAN QUADRANGLE, NORTH CENTRAL TEXAS (CD-ROM)

    Science.gov (United States)

    This compact disc contains digital data sets of the surficial geology and geologic faults for the 1:250,000-scale Sherman quadrangle, North Central Texas, and can be used to make geologic maps, and determine approximate areas and locations of various geologic units. The source d...

  7. Old Geology and New Geology

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 28 May 2003Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. United States Geological Survey, programs in Nevada

    Science.gov (United States)

    ,

    1995-01-01

    The U.S. Geological Survey (USGS) has been collecting and interpreting natural-resources data in Nevada for more than 100 years. This long-term commitment enables planners to manage better the resources of a State noted for paradoxes. Although Nevada is one of the most sparsely populated States in the Nation, it has the fastest growing population (fig. 1). Although 90 percent of the land is rural, it is the fourth most urban State. Nevada is the most arid State and relies heavily on water resources. Historically, mining and agriculture have formed the basis of the economy; now tourism and urban development also have become important. The USGS works with more than 40 local, State, and other Federal agencies in Nevada to provide natural-resources information for immediate and long-term decisions.Subjects included in this fact sheet:Low-Level Radioactive-Waste DisposalMining and Water in the Humboldt BasinAquifer Systems in the Great BasinWater Allocation in Truckee and Carson BasinsNational Water-Quality Assessment ProgramMinerals Assessment for Land ManagementIrrigation DrainageGround-Water Movement at Nevada Test SiteOil and Gas ResourcesNational Mapping ProgramDigital Mapping and Aerial PhotographyCollection of Hydrologlc DataGeologic MappingEarthquake HazardsAssessing Mineral Resources of the SubsurfaceEarth Observation DataCooperative Programs

  9. Minding the gap: Children's difficulty conceptualizing spatial intervals as linear measurement units.

    Science.gov (United States)

    Solomon, Tracy L; Vasilyeva, Marina; Huttenlocher, Janellen; Levine, Susan C

    2015-11-01

    Understanding measurement units is critical to mathematics and science learning, but it is a topic that American students find difficult. In 3 studies, we investigated the challenges underlying this difficulty in kindergarten and second grade by comparing performance on different versions of a linear measurement task. Children measured crayons that were either aligned or shifted relative to the left edge of either a continuous ruler or a row of discrete units. The alignment (aligned, shifted) and the measuring tool (ruler, discrete units) were crossed to form 4 types of problems. Study 1 showed good performance in both grades on both types of aligned problems as well as on the shifted problems with discrete units. In contrast, performance was at chance on the shifted ruler problems. Study 2 showed that performance on shifted discrete unit problems declined when numbers were placed on the units, particularly for kindergarteners, suggesting that on the shifted ruler problems, the presence of numbers may have contributed to children's difficulty. However, Study 3 showed that the difficulty on the shifted ruler problems persisted even when the numbers were removed from the ruler. Taken together, these findings suggest that there are multiple challenges to understanding measurement, but that a key challenge is conceptualizing the ruler as a set of countable spatial interval units. (c) 2015 APA, all rights reserved).

  10. Geology of the North Sea and Skagerrak

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, O. [ed.

    1995-12-31

    The Marine Geology Unit of the Department of Earth Sciences organized the second Marine Geology symposium at Aarhus University, 7-8 October 1993. The intention was to bring together people working especially with the geology of the North Sea and Skagerrak. Approximately 60 people from different Danish and Norwegian institutions attended the symposium. 28 oral presentations were given and 2 posters presented. A large range of geological topics was covered, embracing biostratigraphy, sequence stratigraphy, sedimentology and structural geology. The majority of the presentations dealt with Quaternary geology and Cenozoic sequence stratigraphy, but also Jurassic and Lower Cretaceous stratigraphy was treated. Studies from the major part of the Danish sector were presented, spanning from Bornholm to the central North Sea, and further into the Norwegian North Sea sector. (au)

  11. Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts

    Science.gov (United States)

    van der Bogert, C. H.; Hiesinger, H.; Dundas, C. M.; Krüger, T.; McEwen, A. S.; Zanetti, M.; Robinson, M. S.

    2017-12-01

    Recent work on dating Copernican-aged craters, using Lunar Reconnaissance Orbiter (LRO) Camera data, re-encountered a curious discrepancy in crater size-frequency distribution (CSFD) measurements that was observed, but not understood, during the Apollo era. For example, at Tycho, Copernicus, and Aristarchus craters, CSFDs of impact melt deposits give significantly younger relative and absolute model ages (AMAs) than impact ejecta blankets, although these two units formed during one impact event, and would ideally yield coeval ages at the resolution of the CSFD technique. We investigated the effects of contrasting target properties on CSFDs and their resultant relative and absolute model ages for coeval lunar impact melt and ejecta units. We counted craters with diameters through the transition from strength- to gravity-scaling on two large impact melt deposits at Tycho and King craters, and we used pi-group scaling calculations to model the effects of differing target properties on final crater diameters for five different theoretical lunar targets. The new CSFD for the large King Crater melt pond bridges the gap between the discrepant CSFDs within a single geologic unit. Thus, the observed trends in the impact melt CSFDs support the occurrence of target property effects, rather than self-secondary and/or field secondary contamination. The CSFDs generated from the pi-group scaling calculations show that targets with higher density and effective strength yield smaller crater diameters than weaker targets, such that the relative ages of the former are lower relative to the latter. Consequently, coeval impact melt and ejecta units will have discrepant apparent ages. Target property differences also affect the resulting slope of the CSFD, with stronger targets exhibiting shallower slopes, so that the final crater diameters may differ more greatly at smaller diameters. Besides their application to age dating, the CSFDs may provide additional information about the

  12. Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units.

    Science.gov (United States)

    Qi, Ruxi; Botello-Smith, Wesley M; Luo, Ray

    2017-07-11

    Electrostatic interactions play crucial roles in biophysical processes such as protein folding and molecular recognition. Poisson-Boltzmann equation (PBE)-based models have emerged as widely used in modeling these important processes. Though great efforts have been put into developing efficient PBE numerical models, challenges still remain due to the high dimensionality of typical biomolecular systems. In this study, we implemented and analyzed commonly used linear PBE solvers for the ever-improving graphics processing units (GPU) for biomolecular simulations, including both standard and preconditioned conjugate gradient (CG) solvers with several alternative preconditioners. Our implementation utilizes the standard Nvidia CUDA libraries cuSPARSE, cuBLAS, and CUSP. Extensive tests show that good numerical accuracy can be achieved given that the single precision is often used for numerical applications on GPU platforms. The optimal GPU performance was observed with the Jacobi-preconditioned CG solver, with a significant speedup over standard CG solver on CPU in our diversified test cases. Our analysis further shows that different matrix storage formats also considerably affect the efficiency of different linear PBE solvers on GPU, with the diagonal format best suited for our standard finite-difference linear systems. Further efficiency may be possible with matrix-free operations and integrated grid stencil setup specifically tailored for the banded matrices in PBE-specific linear systems.

  13. Geologic quadrangle maps of the United States: geology of the Casa Diablo Mountain quadrangle, California

    Science.gov (United States)

    Rinehart, C. Dean; Ross, Donald Clarence

    1957-01-01

    The Casa Diablo Mountain quadrangle was mapped in the summers of 1952 and 1953 by the U.S. Geological Survey in cooperation with the California State Division of Mines as part of a study of potential tungsten-bearing areas.

  14. Preliminary geologic map of the Fontana 7.5' quadrangle, Riverside and San Bernardino Counties, California

    Science.gov (United States)

    Morton, Douglas M.; Digital preparation by Bovard, Kelly R.

    2003-01-01

    Open-File Report 03-418 is a digital geologic data set that maps and describes the geology of the Fontana 7.5’ quadrangle, Riverside and San Bernardino Counties, California. The Fontana quadrangle database is one of several 7.5’ quadrangle databases that are being produced by the Southern California Areal Mapping Project (SCAMP). These maps and databases are, in turn, part of the nation-wide digital geologic map coverage being developed by the National Cooperative Geologic Map Program of the U.S. Geological Survey (USGS). General Open-File Report 03-418 contains a digital geologic map database of the Fontana 7.5’ quadrangle, Riverside and San Bernardino Counties, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file (fon_map.ps) to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. An Encapsulated PostScript (EPS) file (fon_grey.eps) created in Adobe Illustrator 10.0 to plot the geologic map on a grey topographic base, and containing a Correlation of Map Units (CMU), a Description of Map Units (DMU), and an index map. 4. Portable Document Format (.pdf) files of: a. the Readme file; includes in Appendix I, data contained in fon_met.txt b. The same graphics as plotted in 2 and 3 above.Test plots have not produced precise 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following

  15. Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Neal, Christina A.; Lockwood, John P.

    2003-01-01

    This report consists of a large map sheet and a pamphlet. The map shows the geology, some photographs, description of map units, and correlation of map units. The pamphlet gives the full text about the geologic map. The area covered by this map includes parts of four U.S. Geological Survey 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water; the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones.

  16. Creating Geologically Based Radon Potential Maps for Kentucky

    Science.gov (United States)

    Overfield, B.; Hahn, E.; Wiggins, A.; Andrews, W. M., Jr.

    2017-12-01

    Radon potential in the United States, Kentucky in particular, has historically been communicated using a single hazard level for each county; however, physical phenomena are not controlled by administrative boundaries, so single-value county maps do not reflect the significant variations in radon potential in each county. A more accurate approach uses bedrock geology as a predictive tool. A team of nurses, health educators, statisticians, and geologists partnered to create 120 county maps showing spatial variations in radon potential by intersecting residential radon test kit results (N = 60,000) with a statewide 1:24,000-scale bedrock geology coverage to determine statistically valid radon-potential estimates for each geologic unit. Maps using geology as a predictive tool for radon potential are inherently more detailed than single-value county maps. This mapping project revealed that areas in central and south-central Kentucky with the highest radon potential are underlain by shales and karstic limestones.

  17. Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data

    Science.gov (United States)

    Knepper, D. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Most of the geologic information in ERTS-1 imagery can be extracted from bulk processed black and white transparencies by a skilled interpreter using standard photogeologic techniques. In central and western Colorado, the detectability of lithologic contacts on ERTS-1 imagery is closely related to the time of year the imagery was acquired. Geologic structures are the most readily extractable type of geologic information contained in ERTS images. Major tectonic features and associated minor structures can be rapidly mapped, allowing the geologic setting of a large region to be quickly accessed. Trends of geologic structures in younger sedimentary appear to strongly parallel linear trends in older metamorphic and igneous basement terrain. Linears and color anomalies mapped from ERTS imagery are closely related to loci of known mineralization in the Colorado mineral belt.

  18. Assessment of effectiveness of geologic isolation systems. Geologic-simulation model for a hypothetical site in the Columbia Plateau. Volume 2: results

    International Nuclear Information System (INIS)

    Foley, M.G.; Petrie, G.M.; Baldwin, A.J.; Craig, R.G.

    1982-06-01

    This report contains the input data and computer results for the Geologic Simulation Model. This model is described in detail in the following report: Petrie, G.M., et. al. 1981. Geologic Simulation Model for a Hypothetical Site in the Columbia Plateau, Pacific Northwest Laboratory, Richland, Washington. The Geologic Simulation Model is a quasi-deterministic process-response model which simulates, for a million years into the future, the development of the geologic and hydrologic systems of the ground-water basin containing the Pasco Basin. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactions of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach

  19. Assessment of effectiveness of geologic isolation systems. Geologic-simulation model for a hypothetical site in the Columbia Plateau. Volume 2: results

    Energy Technology Data Exchange (ETDEWEB)

    Foley, M.G.; Petrie, G.M.; Baldwin, A.J.; Craig, R.G.

    1982-06-01

    This report contains the input data and computer results for the Geologic Simulation Model. This model is described in detail in the following report: Petrie, G.M., et. al. 1981. Geologic Simulation Model for a Hypothetical Site in the Columbia Plateau, Pacific Northwest Laboratory, Richland, Washington. The Geologic Simulation Model is a quasi-deterministic process-response model which simulates, for a million years into the future, the development of the geologic and hydrologic systems of the ground-water basin containing the Pasco Basin. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactions of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach.

  20. Destination: Geology?

    Science.gov (United States)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  1. Contributions to micromechanical model of the non linear behavior of the Callovo-Oxfordian argillite

    International Nuclear Information System (INIS)

    Abou-Chakra Guery, A.

    2007-12-01

    This work is performed in the general context of the project of underground disposal of radioactive waste, undertaken by the French National Radioactive Waste Management Agency (ANDRA). Due to its strong density and weak permeability, the formation of Callovo-Oxfordian argillite is chosen as one of possible geological barriers to radionuclides. The objective of the study to develop and validate a non linear homogenization approach of the mechanical behavior of Callovo-Oxfordian argillites. The material is modelled as a composite constituted of an elasto(visco)plastic clay matrix and of linear elastic or elastic damage inclusions. The macroscopic constitutive law is obtained by adapting the incremental method proposed by Hill. The derived model is first compared to Finite Element calculations on unit cell. It is then validated and applied for the prediction of the macroscopic stress-strain responses of the argillite at different geological depths. Finally, the micromechanical model is implemented in a commercial finite element code (Abaqus) for the simulation of a vertical shaft of the underground laboratory. This allows predicting the distribution of damage state and plastic strains and characterizing the excavation damage zone (EDZ). (author)

  2. Integrated inversion of airborne geophysics over a structural geological unit: A case study for delineation of a porphyry copper zone in Iran

    Science.gov (United States)

    Abedi, Maysam; Fournier, Dominique; Devriese, Sarah G. R.; Oldenburg, Douglas W.

    2018-05-01

    This work presents the application of an integrated geophysical survey of magnetometry and frequency-domain electromagetic data (FDEM) to image a geological unit located in the Kalat-e-Reshm prospect area in Iran which has good potential for ore mineralization. The aim of this study is to concentrate on a 3D arc-shaped andesite unit, where it has been concealed by a sedimentary cover. This unit consists of two segments; the top one is a porphyritic andesite having potential for ore mineralization, especially copper, whereas the lower segment corresponds to an unaltered andesite rock. Airborne electromagnetic data were used to delineate the top segment as a resistive unit embedded in a sediment column of alluvial fan, while the lower andesite unit was detected by magnetic field data. In our research, the FDEM data were first inverted by a laterally-constrained 1D program to provide three pieces of information that facilitate full 3D inversion of EM data: (1) noise levels associated with the FDEM observations, (2) an estimate of the general conductivity structure in the prospect area, and (3) the location of the sought target. Then EM data inversion was extended to 3D using a parallelized OcTree-based code to better determine the boundaries of the porphyry unit, where a transition exists from surface sediment to the upper segment. Moreover, a mixed-norm inversion approach was taken into account for magnetic data to construct a compact and sharp susceptible andesite unit at depth, beneath the top resistive and non-susceptible segment. The blind geological unit was eventually interpreted based on a combined model of conductivity and magnetic susceptibility acquired from individually inverting these geophysical surveys, which were collected simultaneously.

  3. Semantics-informed cartography: the case of Piemonte Geological Map

    Science.gov (United States)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Giardino, Marco; Fubelli, Giandomenico

    2016-04-01

    In modern digital geological maps, namely those supported by a large geo-database and devoted to dynamical, interactive representation on WMS-WebGIS services, there is the need to provide, in an explicit form, the geological assumptions used for the design and compilation of the database of the Map, and to get a definition and/or adoption of semantic representation and taxonomies, in order to achieve a formal and interoperable representation of the geologic knowledge. These approaches are fundamental for the integration and harmonisation of geological information and services across cultural (e.g. different scientific disciplines) and/or physical barriers (e.g. administrative boundaries). Initiatives such as GeoScience Markup Language (last version is GeoSciML 4.0, 2015, http://www.geosciml.org) and the INSPIRE "Data Specification on Geology" http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0rc3.pdf (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG) have been promoting information exchange of the geologic knowledge. Grounded on these standard vocabularies, schemas and data models, we provide a shared semantic classification of geological data referring to the study case of the synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap", developed by the CNR Institute of Geosciences and Earth Resources, Torino (CNR IGG TO) and hosted as a dynamical interactive map on the geoportal of ARPA Piemonte Environmental Agency. The Piemonte Geological Map is grounded on a regional-scale geo-database consisting of some hundreds of GeologicUnits whose thousands instances (Mapped Features, polygons geometry) widely occur in Piemonte region, and each one is bounded by GeologicStructures (Mapped Features, line geometry). GeologicUnits and GeologicStructures have been spatially

  4. Are fluctuations in oil consumption permanent or transitory? Evidence from linear and nonlinear unit root tests

    International Nuclear Information System (INIS)

    Solarin, Sakiru Adebola; Lean, Hooi Hooi

    2016-01-01

    This paper examines the integration properties of the total oil consumption in 57 countries for the period of 1965–2012. A combination of new and powerful linear and nonlinear stationarity tests are employed to achieve the objectives of the study. We find that the oil consumption series in 21 countries follow a nonlinearity path while those in the other countries are linear in nature. Evidence of the presence of a unit root is found for the total oil consumption series in 38 countries while the series is stationary in the remaining 19 countries. An important insight is that the blueprints that were designed to reduce oil consumption are likely to have a permanent effect in most of the countries. - Highlights: • We examine the integration properties of total oil consumption in 57 countries. • We apply new and powerful linear and nonlinear stationarity tests. • Unit root is found in two third of the countries. • Blueprints designed to reduce oil consumption are likely to have permanent effect.

  5. Geological Effects on Lightning Strike Distributions

    KAUST Repository

    Berdahl, J. Scott

    2016-05-16

    Recent advances in lightning detection networks allow for detailed mapping of lightning flash locations. Longstanding rumors of geological influence on cloud-to-ground (CG) lightning distribution and recent commercial claims based on such influence can now be tested empirically. If present, such influence could represent a new, cheap and efficient geophysical tool with applications in mineral, hydrothermal and oil exploration, regional geological mapping, and infrastructure planning. This project applies statistical analysis to lightning data collected by the United States National Lightning Detection Network from 2006 through 2015 in order to assess whether the huge range in electrical conductivities of geological materials plays a role in the spatial distribution of CG lightning. CG flash densities are mapped for twelve areas in the contiguous United States and compared to elevation and geology, as well as to the locations of faults, railroads and tall towers including wind turbines. Overall spatial randomness is assessed, along with spatial correlation of attributes. Negative and positive polarity lightning are considered separately and together. Topography and tower locations show a strong influence on CG distribution patterns. Geology, faults and railroads do not. This suggests that ground conductivity is not an important factor in determining lightning strike location on scales larger than current flash location accuracies, which are generally several hundred meters. Once a lightning channel is established, however, ground properties at the contact point may play a role in determining properties of the subsequent stroke.

  6. Geological Features Mapping Using PALSAR-2 Data in Kelantan River Basin, Peninsular Malaysia

    Science.gov (United States)

    Pour, A. B.; Hashim, M.

    2016-09-01

    In this study, the recently launched Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), remote sensing data were used to map geologic structural and topographical features in the Kelantan river basin for identification of high potential risk and susceptible zones for landslides and flooding areas. A ScanSAR and two fine mode dual polarization level 3.1 images cover Kelantan state were processed for comprehensive analysis of major geological structures and detailed characterizations of lineaments, drainage patterns and lithology at both regional and district scales. Red-Green-Blue (RGB) colour-composite was applied to different polarization channels of PALSAR-2 data to extract variety of geological information. Directional convolution filters were applied to the data for identifying linear features in particular directions and edge enhancement in the spatial domain. Results derived from ScanSAR image indicate that lineament occurrence at regional scale was mainly linked to the N-S trending of the Bentong-Raub Suture Zone (BRSZ) in the west and Lebir Fault Zone in the east of the Kelantan state. Combination of different polarization channels produced image maps contain important information related to water bodies, wetlands and lithological units for the Kelantan state using fine mode observation data. The N-S, NE-SW and NNE-SSW lineament trends were identified in the study area using directional filtering. Dendritic, sub-dendritic and rectangular drainage patterns were detected in the Kelantan river basin. The analysis of field investigations data indicate that many of flooded areas were associated with high potential risk zones for hydro-geological hazards such as wetlands, urban areas, floodplain scroll, meander bend, dendritic and sub-dendritic drainage patterns, which are located in flat topograghy regions. Numerous landslide points were located in rectangular drainage system that associated

  7. GEOLOGICAL FEATURES MAPPING USING PALSAR-2 DATA IN KELANTAN RIVER BASIN, PENINSULAR MALAYSIA

    Directory of Open Access Journals (Sweden)

    A. B. Pour

    2016-09-01

    Full Text Available In this study, the recently launched Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2 onboard the Advanced Land Observing Satellite-2 (ALOS-2, remote sensing data were used to map geologic structural and topographical features in the Kelantan river basin for identification of high potential risk and susceptible zones for landslides and flooding areas. A ScanSAR and two fine mode dual polarization level 3.1 images cover Kelantan state were processed for comprehensive analysis of major geological structures and detailed characterizations of lineaments, drainage patterns and lithology at both regional and district scales. Red-Green-Blue (RGB colour-composite was applied to different polarization channels of PALSAR-2 data to extract variety of geological information. Directional convolution filters were applied to the data for identifying linear features in particular directions and edge enhancement in the spatial domain. Results derived from ScanSAR image indicate that lineament occurrence at regional scale was mainly linked to the N-S trending of the Bentong-Raub Suture Zone (BRSZ in the west and Lebir Fault Zone in the east of the Kelantan state. Combination of different polarization channels produced image maps contain important information related to water bodies, wetlands and lithological units for the Kelantan state using fine mode observation data. The N-S, NE-SW and NNE-SSW lineament trends were identified in the study area using directional filtering. Dendritic, sub-dendritic and rectangular drainage patterns were detected in the Kelantan river basin. The analysis of field investigations data indicate that many of flooded areas were associated with high potential risk zones for hydro-geological hazards such as wetlands, urban areas, floodplain scroll, meander bend, dendritic and sub-dendritic drainage patterns, which are located in flat topograghy regions. Numerous landslide points were located in rectangular drainage system

  8. Twenty-Sixth Annual Report of the Director of the United States Geological Survey, 1904-1905

    Science.gov (United States)

    Walcott, Charles D.

    1905-01-01

    IntroductionRemarks on the work of the yearBranches of workThe United States Geological Survey was created in 1879 for the purpose—as its name implies—of examining and reporting on the geologic structure and mineral resources and products of the national domain. To the adequate description of geologic formations and structure cartography is essential, and Congress early recognized this fact by making appropriations for the preparation of a geologic map of the United States. The topographic base map, in order to show with sufficient precision the relations of the geologic formations and the intricacies of the structure, must have a rather large scale and present considerable detail. No such map of this country existed in 1879, and its preparation was immediately begun. The waters of the country are of vast importance, and in a broad sense may be regarded as one of its greatest mineral resources. Hence, in the evolution of the work of the Survey, and especially in view of the great importance of the subject to the irrigation interests, Congress early began making appropriations for ascertaining the amount and quality of the surface and underground waters and when, in 1902, the service for the reclamation of arid lands was organized, that work naturally was placed in the hands of the Secretary of the Interior and by him intrusted to the Director of the Survey.The three great branches of work carried on by the Geological Survey are, therefore, the geologic, the topographic, and the hydrographic, and with these, more especially the latter, is conjoined the Reclamation Service ; publication and administration constitute necessary auxiliary branches. Along these great lines the work of the Survey has progressed without essential variation for many years. The changes made have been due to normal expansion rather than to radical departure in object or plan.State cooperationDuring the last fiscal year, State cooperation, as explained in previous reports, continued

  9. Assessment of effectiveness of Geologic Isolation Systems. The development and application of a geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.; Petrie, G.M.

    1982-03-01

    The Geologic Simulation Model (GSM) developed under the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) project at the Pacific Northwest Laboratory for the Department of Energy is a quasi-deterministic process-response model which simulates the development of the geologic and hydrologic systems of a ground-water basin for a million years into the future. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactions of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach. The completed AEGIS GSM was used to generate 500 Monte Carlo simulations of the behavior of the geologic/hydrologic system affecting a hypothetical repository in the Pasco Basin over the next million years. These simulations used data which were not subjected to a review adequate to the needs of a real site performance assessment. However, the general care used in generating the data, and the overall behavior of the GSM suggest that the results are plausible at this time

  10. Development of the geologic waste disposal programme in the United States of America

    International Nuclear Information System (INIS)

    Coffman, F.E.; Ballard, W.W.; Carbiener, W.A.

    1983-01-01

    Although alternative concepts are being studied as future options, over at least the next few decades the United States of America is committed to the disposal of commercially generated high-level and transuranic nuclear waste (HLW and TRU) in mined geologic repositories. A 10,000-year minimum isolation period is sought. Responsibility for the management and disposal of United States nuclear waste, in accordance with standards and regulations established, respectively, by the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC), resides with the Department of Energy (DOE). The DOE National Waste Terminal Storage (NWTS) Program has been implemented to provide the facilities and develop the requisite technology for the disposal of HLW and TRU. The NWTS Program is highly structured, adequately funded, and realistically scheduled. The timely realization of its objectives is basic to the furtherance of the new national energy policy being defined by President Reagan and the United States Congress. The first NWTS repository is scheduled to be operational as early as 1998. The host-rock formation, selected on the basis of the results of at-depth investigations via exploratory shafts to be sunk in 1983-1985 at three potential sites previously extensively characterized by surface techniques, will be either basalt, volcanic tuff, or domed or bedded salt. Selection of one site in these formations will not necessarily disqualify others. Also, screening studies of granitic formations in the United States for the siting of later, regionally located repositories are currently being conducted. Each NWTS repository will be licensed by the NRC. The first application for a construction authorization will probably be submitted in 1988. The application will be submitted for a site to be selected in 1987

  11. Characteristics of a dedicated linear accelerator-based stereotactic radiosurgery-radiotherapy unit

    International Nuclear Information System (INIS)

    Das, Indra J.; Downes, M. Beverly; Corn, Benjamin W.; Curran, Walter J.; Werner-Wasik, M.; Andrews, David W.

    1996-01-01

    A stereotactic radiosurgery and radiotherapy (SRS/SRT) system on a dedicated Varian Clinac-600SR linear accelerator with Brown-Roberts-Wells and Gill-Thomas-Cosman relocatable frames along with the Radionics (RSA) planning system is evaluated. The Clinac-600SR has a single 6-MV beam with the same beam characteristics as that of the mother unit, the Clinac-600C. The primary collimator is a fixed cone projecting to a 10-cm diameter at isocenter. The secondary collimator is a heavily shielded cylindrical collimator attached to the face plate of the primary collimator. The tertiary collimation consists of the actual treatment cones. The cone sizes vary from 12.5 to 40.0 mm diameter. The mechanical stability of the entire system was verified. The variations in isocenter position with table, gantry, and collimator rotation were found to be <0.5 mm with a compounded accuracy of ≤ 1.0 mm. The radiation leakage under the cones was < 1% measured at a depth of 5 cm in a phantom. The beam profiles of all cones in the x and y directions were within ±0.5 mm and match with the physical size of the cone. The dosimetric data such as tissue maximum ratio, off-axis ratio, and cone factor were taken using film, diamond detector, and ion chambers. The mechanical and dosimetric characteristics including dose linearity of this unit are presented and found to be suitable for SRS/SRT. The difficulty in absolute dose measurement for small cone is discussed

  12. Status Report on the Geology of the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Hatcher, R.D., Jr.

    1992-01-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. A detailed reported on hydrogeology is being produced in parallel to this one. An important element of this work is the construction of a modern detailed geologic map of the ORR containing subdivisions of all mappable rock units and displaying mesoscopic structural data. Understanding the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. This interim report is the result of cooperation between geologists in two Oak Ridge National Laboratory (ORNL) divisions, Environmental Sciences and Energy, and is a major part of one doctoral dissertation in the Department of Geological Sciences at The University of Tennessee--Knoxville. Major long-term goals of geologic investigations in the ORR are to determine what interrelationships exist between fractures systems in individual rock or tectonic units and the fluid flow regimes, to understand how regional and local geology can be used to help predict groundwater movement, and to formulate a structural-hydrologic model that for the first time would enable prediction of the movement of groundwater and other subsurface fluids in the ORR. Understanding the stratigraphic and structural framework and how it controls fluid flow at depth should be the first step in developing a model for groundwater movement. Development of a state-of-the-art geologic and geophysical framework for the ORR is therefore essential for formulating an integrated structural-hydrologic model. This report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the data that establish the need for additional geologic mapping and geohydrologic studies. An additional intended

  13. Geographic Information System (GIS) representation of historical seagrass coverage in Perdido Bay from United States Geological Survey/National Wetlands Research Center (USGS/NWRC), 1979 (NODC Accession 0000605)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical seagrass coverage in Perdido Bay 1979 from United States Geological Survey/National Wetlands Research Center (USGS/NWRC).

  14. Predictive Modeling of Terrestrial Radiation Exposure from Geologic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Malchow, Russell L. [National Security Technologies, LLC; Haber, Daniel University of Nevada, Las Vegas; Burnley, Pamela [University of Nevada, Las Vegas; Marsac, Kara [University of Nevada, Las Vegas; Hausrath, Elisabeth [University of Nevada, Las Vegas; Adcock, Christopher [University of Nevada, Las Vegas

    2015-01-01

    Aerial gamma ray surveys are important for those working in nuclear security and industry for determining locations of both anthropogenic radiological sources and natural occurrences of radionuclides. During an aerial gamma ray survey, a low flying aircraft, such as a helicopter, flies in a linear pattern across the survey area while measuring the gamma emissions with a sodium iodide (NaI) detector. Currently, if a gamma ray survey is being flown in an area, the only way to correct for geologic sources of gamma rays is to have flown the area previously. This is prohibitively expensive and would require complete national coverage. This project’s goal is to model the geologic contribution to radiological backgrounds using published geochemical data, GIS software, remote sensing, calculations, and modeling software. K, U and Th are the three major gamma emitters in geologic material. U and Th are assumed to be in secular equilibrium with their daughter isotopes. If K, U, and Th abundance values are known for a given geologic unit the expected gamma ray exposure rate can be calculated using the Grasty equation or by modeling software. Monte Carlo N-Particle Transport software (MCNP), developed by Los Alamos National Laboratory, is modeling software designed to simulate particles and their interactions with matter. Using this software, models have been created that represent various lithologies. These simulations randomly generate gamma ray photons at energy levels expected from natural radiologic sources. The photons take a random path through the simulated geologic media and deposit their energy at the end of their track. A series of nested spheres have been created and filled with simulated atmosphere to record energy deposition. Energies deposited are binned in the same manner as the NaI detectors used during an aerial survey. These models are used in place of the simplistic Grasty equation as they take into account absorption properties of the lithology which the

  15. Geologic Map of the Thaumasia Region, Mars

    Science.gov (United States)

    Dohm, Janes M.; Tanaka, Kenneth L.; Hare, Trent M.

    2001-01-01

    objective is to determine the distribution and ages of valleys. In our study, we incorporated detailed photogeologic mapping, comprehensive crater statistics (table 1), and geologic, paleotectonic, and paleoerosional Geographic Information System (GIS) databases. Sheets 1–3 show geologic units, faults and other significant structures, and valleys, respectively. To help unravel the complex geologic history of the Thaumasia region, we transferred the highly detailed geologic unit, paleotectonic, and paleoerosional information of sheets 1–3 into a multilayered GIS database for comparative analysis. The geologic information was transferred from hard copy into a digital format by scanning at 25 micron resolution on a drum scanner. The 2-bit scanned image was then converted to an x,y coordinate system using ARC/INFO's vectorization routine. The geologic unit, structural, and erosional data were transformed into the original map projection, Lambert Conformal. The average transformation root mean square error was 0.25 km (acceptable for the Thaumasia map base at 1:5,000,000 scale). After transformation, the features were properly attributed and tediously checked. Once digitized, the map data can be transformed into any map projection depending on the type of data analysis. For example, the equal-area sinusoidal projection was used for determining the precise area of geologic units (table 1). In addition to the geologic map and its attendant stratigraphic section, correlation chart, and description of map units, we include text sections that clarify the histories and temporal, spatial, and causal relations of the various geologic units and landforms of the Thaumasia region. The geologic summary section defines the sequence of major geologic events.

  16. Ontological Encoding of GeoSciML and INSPIRE geological standard vocabularies and schemas: application to geological mapping

    Science.gov (United States)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario; Fubelli, Giandomenico; Giardino, Marco

    2016-04-01

    Encoding of geologic knowledge in formal languages is an ambitious task, aiming at the interoperability and organic representation of geological data, and semantic characterization of geologic maps. Initiatives such as GeoScience Markup Language (last version is GeoSciML 4, 2015[1]) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013[2]), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG[3]) have been promoting information exchange of the geologic knowledge. There have also been limited attempts to encode the knowledge in a machine-readable format, especially in the lithology domain (see e.g. the CGI_Lithology ontology[4]), but a comprehensive ontological model that connect the several knowledge sources is still lacking. This presentation concerns the "OntoGeonous" initiative, which aims at encoding the geologic knowledge, as expressed through the standard vocabularies, schemas and data models mentioned above, through a number of interlinked computational ontologies, based on the languages of the Semantic Web and the paradigm of Linked Open Data. The initiative proceeds in parallel with a concrete case study, concerning the setting up of a synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap" (developed by the CNR Institute of Geosciences and Earth Resources, CNR IGG, Torino), where the description and classification of GeologicUnits has been supported by the modeling and implementation of the ontologies. We have devised a tripartite ontological model called OntoGeonous that consists of: 1) an ontology of the geologic features (in particular, GeologicUnit, GeomorphologicFeature, and GeologicStructure[5], modeled from the definitions and UML schemata of CGI vocabularies[6], GeoScienceML and INSPIRE, and aligned with the Planetary realm of NASA SWEET ontology[7]), 2) an ontology of the Earth materials (as defined by the

  17. Dose linearity and monitor unit stability of a G4 type cyberknife robotic stereotactic radiosurgery system

    International Nuclear Information System (INIS)

    Sudahar, H.; Kurup, P.G.G.; Murali, V.; Velmurugan, J.

    2012-01-01

    Dose linearity studies on conventional linear accelerators show a linearity error at low monitor units (MUs). The purpose of this study was to establish the dose linearity and MU stability characteristics of a cyberknife (Accuracy Inc., USA) stereotactic radiosurgery system. Measurements were done at a depth of 5 cm in a stereotactic dose verification phantom with a source to surface distance of 75 cm in a Generation 4 (G4) type cyberknife system. All the 12 fixed-type collimators starting from 5 to 60 mm were used for the dose linearity study. The dose linearity was examined in small (1-10), medium (15-100) and large (125-1000) MU ranges. The MU stability test was performed with 60 mm collimator for 10 MU and 20 MU with different combinations. The maximum dose linearity error of -38.8% was observed for 1 MU with 5 mm collimator. Dose linearity error in the small MU range was considerably higher than in the medium and large MU ranges. The maximum error in the medium range was -2.4%. In the large MU range, the linearity error varied between -0.7% and 1.2%. The maximum deviation in the MU stability was -3.03%. (author)

  18. Geographical and geological data from caves and mines infected with white-nose syndrome (WNS) before September 2009 in the eastern United States

    Science.gov (United States)

    Swezey, Christopher S.; Garrity, Christopher P.

    2011-01-01

    Since 2006, a white fungus named Geomyces destructans has been observed on the muzzles, noses, ears, and (or) wings of bats in the eastern United States, and bat colonies that are infected with this fungus have experienced dramatic incidences of mortality. Although it is not exactly certain how and why these bats are dying, this condition has been named white-nose syndrome (WNS). WNS appears to have spread from an initial infection site at a cave that is connected to a commercial cave in New York, and by the end of August 2009 was identified in at least 74 other sites in the eastern United States. Although detailed geographical and geological data are limited, a review of the available data shows that sites infected with WNS before September 2009 include both natural caves and mines. These infected sites extend from New Hampshire to Virginia, and known site elevations range from 84 to 2693 feet above sea level. In terms of geological setting, the infected sites include sedimentary, metamorphic, and igneous rocks of ages ranging from Precambrian to Jurassic. However, by the end of August 2009, no infected sites had been identified in strata of Mississippian, Cretaceous, or Triassic age. Meteorological data are sparse, but most of the recorded air temperatures in the known WNS-infected caves and mines range from 0 to 13.9 degrees C, and humidity measurements range from 68 to 100 percent. Although it is not certain which environmental parameters are important for WNS, it is hoped that the geographical and geological information presented in this paper will inform and clarify some of the debate about WNS, lead to greater understanding of the environmental parameters associated with WNS, and highlight the paucity of scientific data from caves in the eastern United States.

  19. Improved predictive mapping of indoor radon concentrations using ensemble regression trees based on automatic clustering of geological units

    International Nuclear Information System (INIS)

    Kropat, Georg; Bochud, Francois; Jaboyedoff, Michel; Laedermann, Jean-Pascal; Murith, Christophe; Palacios, Martha; Baechler, Sébastien

    2015-01-01

    Purpose: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. Method: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). Results: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. Conclusion: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables

  20. Geologic map of the Nepenthes Planum Region, Mars

    Science.gov (United States)

    Skinner, James A.; Tanaka, Kenneth L.

    2018-03-26

    This map product contains a map sheet at 1:1,506,000 scale that shows the geology of the Nepenthes Planum region of Mars, which is located between the cratered highlands that dominate the southern hemisphere and the less-cratered sedimentary plains that dominate the northern hemisphere.  The map region contains cone- and mound-shaped landforms as well as lobate materials that are morphologically similar to terrestrial igneous or mud vents and flows. This map is part of an informal series of small-scale (large-area) maps aimed at refining current understanding of the geologic units and structures that make up the highland-to-lowland transition zone. The map base consists of a controlled Thermal Emission Imaging System (THEMIS) daytime infrared image mosaic (100 meters per pixel resolution) supplemented by a Mars Orbiter Laser Altimeter (MOLA) digital elevation model (463 meters per pixel resolution). The map includes a Description of Map Units and a Correlation of Map Units that describes and correlates units identified across the entire map region. The geologic map was assembled using ArcGIS software by Environmental Systems Research Institute (http://www.esri.com). The ArcGIS project, geodatabase, base map, and all map components are included online as supplemental data.

  1. How semantics can inform the geological mapping process and support intelligent queries

    Science.gov (United States)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario

    2017-04-01

    The geologic mapping process requires the organization of data according to the general knowledge about the objects, namely the geologic units, and to the objectives of a graphic representation of such objects in a map, following an established model of geotectonic evolution. Semantics can greatly help such a process in two concerns: the provision of a terminological base to name and classify the objects of the map; on the other, the implementation of a machine-readable encoding of the geologic knowledge base supports the application of reasoning mechanisms and the derivation of novel properties and relations about the objects of the map. The OntoGeonous initiative has built a terminological base of geological knowledge in a machine-readable format, following the Semantic Web tenets and the Linked Data paradigm. The major knowledge sources of the OntoGeonous initiative are GeoScience Markup Language schemata and vocabularies (through its last version, GeoSciML 4, 2015, published by the IUGS CGI Commission) and the INSPIRE "Data Specification on Geology" directives (an operative simplification of GeoSciML, published by INSPIRE Thematic Working Group Geology of the European Commission). The Linked Data paradigm has been exploited by linking (without replicating, to avoid inconsistencies) the already existing machine-readable encoding for some specific domains, such as the lithology domain (vocabulary Simple Lithology) and the geochronologic time scale (ontology "gts"). Finally, for the upper level knowledge, shared across several geologic domains, we have resorted to NASA SWEET ontology. The OntoGeonous initiative has also produced a wiki that explains how the geologic knowledge has been encoded from shared geoscience vocabularies (https://www.di.unito.it/wikigeo/). In particular, the sections dedicated to axiomatization will support the construction of an appropriate data base schema that can be then filled with the objects of the map. This contribution will discuss

  2. Geological, geochemical, and geophysical studies by the U.S. Geological Survey in Big Bend National Park, Texas

    Science.gov (United States)

    Page, W.R.; Turner, K.J.; Bohannon, R.G.; Berry, M.E.; Williams, V.S.; Miggins, D.P.; Ren, M.; Anthony, E.Y.; Morgan, L.A.; Shanks, P.W.C.; Gray, J. E.; Theodorakos, P.M.; Krabbenhoft, D. P.; Manning, A.H.; Gemery-Hill, P. A.; Hellgren, E.C.; Stricker, C.A.; Onorato, D.P.; Finn, C.A.; Anderson, E.; Gray, J. E.; Page, W.R.

    2008-01-01

    Big Bend National Park (BBNP), Tex., covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mile (190-km) stretch of the Rio Grande at the United States-Mexico border. The park is in the Chihuahuan Desert, an ecosystem with high mountain ranges and basin environments containing a wide variety of native plants and animals, including more than 1,200 species of plants, more than 450 species of birds, 56 species of reptiles, and 75 species of mammals. In addition, the geology of BBNP, which varies widely from high mountains to broad open lowland basins, also enhances the beauty of the park. For example, the park contains the Chisos Mountains, which are dominantly composed of thick outcrops of Tertiary extrusive and intrusive igneous rocks that reach an altitude of 7,832 ft (2,387 m) and are considered the southernmost mountain range in the United States. Geologic features in BBNP provide opportunities to study the formation of mineral deposits and their environmental effects; the origin and formation of sedimentary and igneous rocks; Paleozoic, Mesozoic, and Cenozoic fossils; and surface and ground water resources. Mineral deposits in and around BBNP contain commodities such as mercury (Hg), uranium (U), and fluorine (F), but of these, the only significant mining has been for Hg. Because of the biological and geological diversity of BBNP, more than 350,000 tourists visit the park each year. The U.S. Geological Survey (USGS) has been investigating a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP to provide fundamental information needed by the National Park Service (NPS) to address resource management goals in this park. Scientists from the USGS Mineral Resources and National Cooperative Geologic Mapping Programs have been working cooperatively with the NPS and several universities on several research studies within BBNP

  3. Comparing Geologic Data Sets Collected by Planetary Analog Traverses and by Standard Geologic Field Mapping: Desert Rats Data Analysis

    Science.gov (United States)

    Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean

    2014-01-01

    Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.

  4. Economic Screening of Geologic Sequestration Options in the United States with a Carbon Management Geographic Information System

    Energy Technology Data Exchange (ETDEWEB)

    Dahowski, Robert T.(BATTELLE (PACIFIC NW LAB)); Dooley, James J.(BATTELLE (PACIFIC NW LAB)); Brown, Daryl R.(BATTELLE (PACIFIC NW LAB)); Stephan, Alex J.(BATTELLE (PACIFIC NW LAB)); Badie I. Morsi

    2001-10-19

    Developing a carbon management strategy is a formidable task for nations as well as individual companies. It is often difficult to understand what options are available, let alone determine which may be optimal. In response to the need for a better understanding of complex carbon management options, Battelle has developed a state-of-the-art Geographic Information System (GIS) model with economic screening capability focused on carbon capture and geologic sequestration opportunities in the United States. This paper describes the development of this GIS-based economic screening model and demonstrates its use for carbon management analysis.

  5. Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus

    Science.gov (United States)

    Kumar, P. Senthil; Head, James W., III

    2009-01-01

    Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationship) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.

  6. Report on geologic remote sensing of the Columbia Plateau

    International Nuclear Information System (INIS)

    Sandness, G.A.; Kimball, C.S.; Schmierer, K.E.; Lindberg, J.W.

    1982-05-01

    The purpose of this remote sensing study is to identify faults or other geologic features which may have a significant bearing on the structural and tectonic character of the Hanford Site and the surrounding region. Landsat imagery, Skylab photographs, and U-2 photographs were analyzed to identify and map geologic photolineaments in the Columbia Plateau. The Landsat and Skylab imagery provided a regional perspective and allowed the identification of large-scale linear features. The U-2 photography provided much greater spatial resolution as well as a stereoscopic viewing capability. This allowed identification of smaller structural or geologic features and the identification of many cultural and nongeologic lineaments detected in the Landsat and Skylab imagery. The area studied totals, approximately 85,000 square miles, and encompasses virtually all exposures of Columbia River Basalt in the states of Washington, Oregon, and Idaho. It also includes an area bordering the Columbia River Basalt outcrop. This border area was studied in order to identify significant structures that may extend into the plateau. Included are a description of the procedures used for image analysis, 20 lineament maps at a scale of 1:250,000, geological summaries for the areas covered by the lineament maps, and discussions of many of the lineaments shown on the maps. Comparisons of the lineament maps with available geologic maps showed that the number of detected lineaments was much greater than the number of known faults and other linear features. Approximately 70% of the faults shown on the geologic maps were detected and are characterized as lineaments. Lineament trends in the northwest-southeast and northeast-southwest directions were found to predominate throughout the study area

  7. Geologic map of the Lada Terra quadrangle (V-56), Venus

    Science.gov (United States)

    Kumar, P. Senthil; Head, James W.

    2013-01-01

    This publication provides a geological map of Lada Terra quadrangle (V–56), a portion of the southern hemisphere of Venus that extends from lat 50° S. to 70° S. and from long 0° E. to 60° E. V–56 is bordered by Kaiwan Fluctus (V–44) and Agnesi (V–45) quadrangles in the north and by Mylitta Fluctus (V–61), Fredegonde (V–57), and Hurston (V–62) quadrangles in the west, east, and south, respectively. The geological map of V–56 quadrangle reveals evidence for tectonic, volcanic, and impact processes in Lada Terra in the form of tesserae, regional extensional belts, coronae, and volcanic plains. In addition, the map also shows relative age relations such as overlapping or cross-cutting relations between the mapped geologic units. The geology observed within this quadrangle addresses (1) how coronae evolved in association with regional extensional belts and (2) how tesserae, regional plains, and impact craters, which are also significant geological units observed in Lada Terra quadrangle, were formed.

  8. Geographic Information System (GIS) characterization of historical seagrass coverage in Perdido Bay from United States Geological Survey/National Wetlands Research Center (USGS/NWRC), 1987 (NODC Accession 0000606)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Graphical representation of historical seagrass coverage in Perdido Bay in 1987 from United States Geological Survey/National Wetlands Research Center (USGS/NWRC).

  9. Spatial Digital Database for the Geologic Map of Oregon

    Science.gov (United States)

    Walker, George W.; MacLeod, Norman S.; Miller, Robert J.; Raines, Gary L.; Connors, Katherine A.

    2003-01-01

    Introduction This report describes and makes available a geologic digital spatial database (orgeo) representing the geologic map of Oregon (Walker and MacLeod, 1991). The original paper publication was printed as a single map sheet at a scale of 1:500,000, accompanied by a second sheet containing map unit descriptions and ancillary data. A digital version of the Walker and MacLeod (1991) map was included in Raines and others (1996). The dataset provided by this open-file report supersedes the earlier published digital version (Raines and others, 1996). This digital spatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information for use in spatial analysis in a geographic information system (GIS). This database can be queried in many ways to produce a variety of geologic maps. This database is not meant to be used or displayed at any scale larger than 1:500,000 (for example, 1:100,000). This report describes the methods used to convert the geologic map data into a digital format, describes the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. Scanned images of the printed map (Walker and MacLeod, 1991), their correlation of map units, and their explanation of map symbols are also available for download.

  10. Standardization of mapping practices in the British Geological Survey

    Science.gov (United States)

    Allen, Peter M.

    1997-07-01

    Because the British Geological Survey (BGS) has had, since its foundation in 1835, a mandate to produce geological maps for the whole of Great Britain, there is a long history of introducing standard practices in the way rocks and rock units have been named, classified and illustrated on maps. The reasons for the failure of some of these practices are examined and assessed in relation to the needs of computerized systems for holding and disseminating geological information.

  11. Geology of photo linear elements, Great Divide Basin, Wyoming

    Science.gov (United States)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Ground examination of photo linear elements in the Great Divide Basin, Wyoming indicates little if any tectonic control. Aeolian aspects are more widespread and pervasive than previously considered.

  12. Para-mixed linear spaces

    Directory of Open Access Journals (Sweden)

    Crasmareanu Mircea

    2017-12-01

    Full Text Available We consider the paracomplex version of the notion of mixed linear spaces introduced by M. Jurchescu in [4] by replacing the complex unit i with the paracomplex unit j, j2 = 1. The linear algebra of these spaces is studied with a special view towards their morphisms.

  13. Scale determinants of fiscal investment in geological exploration: evidence from China.

    Science.gov (United States)

    Lu, Linna; Lei, Yalin

    2013-01-01

    With the continued growth in demand for mineral resources and China's efforts in increasing investment in geological prospecting, fiscal investment in geological exploration becomes a research hotspot. This paper examines the yearly relationship among fiscal investment in geological exploration of the current term, that of the last term and prices of mining rights over the period 1999-2009. Hines and Catephores' investment acceleration model is applied to describe the scale determinants of fiscal investment in geological exploration which are value-added of mining rights, value of mining rights and fiscal investment in the last term. The results indicate that when value-added of mining rights, value of mining rights or fiscal investment in the last term moves at 1 unit, fiscal investment in the current term will move 0.381, 1.094 or 0.907 units respectively. In order to determine the scale of fiscal investment in geological exploration for the current year, the Chinese government should take fiscal investment in geological exploration for the last year and the capital stock of the previous investments into account. In practice, combination of government fiscal investment in geological exploration with its performance evaluation can create a virtuous circle of capital management mechanism.

  14. Digital Geologic Map Database of Medicine Lake Volcano, Northern California

    Science.gov (United States)

    Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

    2010-12-01

    Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the

  15. U.S. Geological Survey Cooperative Fish and Wildlife Research Units Program—2016–2017 Research Abstracts

    Science.gov (United States)

    Dennerline, Donald E.; Childs, Dawn E.

    2017-04-20

    The U.S. Geological Survey (USGS) has several strategic goals that focus its efforts on serving the American people. The USGS Ecosystems Mission Area has responsibility for the following objectives under the strategic goal of “Science to Manage and Sustain Resources for Thriving Economies and Healthy Ecosystems”:Understand, model, and predict change in natural systemsConserve and protect wildlife and fish species and their habitatsReduce or eliminate the threat of invasive species and wildlife diseaseThis report provides abstracts of the majority of ongoing research investigations of the USGS Cooperative Fish and Wildlife Research Units program and is intended to complement the 2016 Cooperative Research Units Program Year in Review Circular 1424 (https://doi.org/10.3133/cir1424). The report is organized by the following major science themes that contribute to the objectives of the USGS:Advanced TechnologiesClimate ScienceDecision ScienceEcological FlowsEcosystem ServicesEndangered Species Conservation, Recovery, and Proactive StrategiesEnergyHuman DimensionsInvasive SpeciesLandscape EcologySpecies of Greatest Conservation NeedSpecies Population, Habitat, and Harvest ManagementWildlife Health and Disease

  16. United States of America activities relative to the International Atomic Energy Agency (IAEA) initiative: Records management for deep geologic repositories

    Energy Technology Data Exchange (ETDEWEB)

    Warner, P.J.

    1997-03-01

    The International Atomic Energy Agency (IAEA) has conducted consultant and advisory meetings to prepare a Technical Document which is intended to provide guidance to all IAEA Member States (otherwise known as countries) that are currently planning, designing, constructing or operating a deep or near surface geological repository for the storage and protection of vitrified high-level radioactive waste, spent fuel waste and TRU-waste (transuranic). Eleven countries of the international community are presently in various stages of siting, designing, or constructing deep geologic repositories. Member States of the IAEA have determined that the principle safety of such completed and operation sites must not rely solely on long term institutional arrangements for the retention of information. It is believed that repository siting, design, operation and postoperation information should be gathered, managed and retained in a manner that will provide information to future societies over a very long period of time. The radionuclide life is 10,000 years thus the retention of information must outlive current societies, languages, and be continually migrated to new technology to assure retrieval. This presentation will provide an overview of the status of consideration and implementation of these issues within the United States efforts relative to deep geologic repository projects.

  17. United States of America activities relative to the International Atomic Energy Agency (IAEA) initiative: Records management for deep geologic repositories

    International Nuclear Information System (INIS)

    Warner, P.J.

    1997-01-01

    The International Atomic Energy Agency (IAEA) has conducted consultant and advisory meetings to prepare a Technical Document which is intended to provide guidance to all IAEA Member States (otherwise known as countries) that are currently planning, designing, constructing or operating a deep or near surface geological repository for the storage and protection of vitrified high-level radioactive waste, spent fuel waste and TRU-waste (transuranic). Eleven countries of the international community are presently in various stages of siting, designing, or constructing deep geologic repositories. Member States of the IAEA have determined that the principle safety of such completed and operation sites must not rely solely on long term institutional arrangements for the retention of information. It is believed that repository siting, design, operation and postoperation information should be gathered, managed and retained in a manner that will provide information to future societies over a very long period of time. The radionuclide life is 10,000 years thus the retention of information must outlive current societies, languages, and be continually migrated to new technology to assure retrieval. This presentation will provide an overview of the status of consideration and implementation of these issues within the United States efforts relative to deep geologic repository projects

  18. Uniting geology and craftsmanship to find the optimal soapstone for restoration of the Nidaros soapstone Cathedral in Norway

    Science.gov (United States)

    Aslaksen Aasly, Kari; Meyer, Gurli Birgitte; Kløve Keiding, Jakob; Langås, Rune; Lund, Vegard

    2017-04-01

    The Nidaros Cathedral situated in Trondheim, Norway is a restored cathedral resting on the remnants of an original medieval church sanctified St Olav. The cathedral became one of the most important sanctuary for pilgrimage during the Middle Ages and still is today. In a European context the cathedral, along with a certain group of other churches and monasteries in Norway, is unique by being build from soapstone (steatite). This talc and chlorite dominated metamorphic rock is relatively soft, heat resistant and dense making the material ideal for cooking pots, stoves and all kinds of utensils. Soapstone has therefore been appreciated, used and quarried since the Stone Age in Norway. At the onset of Christianity the choice of soapstone from harder rock types was not difficult for the building owners combining the vision of stone churches in Norway with the skills of wood carving traditions of local handicraftsmen. The best example is the Nidaros Cathedral built in the 11th to 14th century. In 1869, the Nidaros Cathedral Restoration Workshop (NDR) was founded with the purpose of restoring the cathedral using original craftsman's techniques and authentic materials. The restoration was originally completed in 1969, but is still ongoing due to weathering of certain used soapstone types. A major challenge remains to find soapstone resources of the right quality. Core issues relate to avoid rocks with cracks and cleavage, a demand for homogeneity, maintaining esthetic authenticity, resistance to weathering (disintegration) and last but not least the ultimatum of workability. Thus locating new soapstone resources depends strongly on geological understanding, quarry experience and stone carver's knowledge. The present work is based on close cooperation between stone carvers and geologists in a common goal of uniting knowledge and experience in defining qualities of soapstone for various purposes of restoration. Cooperate observations of geology and carving properties in the

  19. Geologic map of the greater Denver area, Front Range urban corridor, Colorado

    Science.gov (United States)

    Trimble, Donald E.; Machette, Michael N.

    1979-01-01

    This digital map shows the areal extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette from 1973 to 1977 and published in 1979 under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999) was digitized under the USGS Front Range Infrastructure Resources Project. In general, the mountainous areas in the western part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle comprises eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and a few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.

  20. Encoding of Geological knowledge in the GeoPiemonte Map Data Base

    Science.gov (United States)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Barale, Luca; Irace, Andrea; Mulazzano, Elia

    2017-04-01

    In modern digital geological maps and geo-database, namely those devoted to interactive WebGIS services, there is the need to make explicit the geological assumptions in the process of the design and compilation of the Map Geodatabase. The Geodatabase of the Piemonte Geological Map, which consists of several thousands of Geologic Units and Geologic Structures, was designed in a way suitable for linking the knowledge of the geological domain at hand to more general levels of knowledge, represented in existing Earth Sciences ontologies and in a domain ontology (OntoGeonous), specifically designed for the project, though with a wide applicability in mind. The Geologic Units and Geologic Structures of the GeoPiemonte Map have been spatially correlated through the whole region, referring to a non-formal hierarchical scheme, which gives the parental relations between several orders of Geologic Units, putting them in relations with some main Geologic Events. The scheme reports the subdivisions we did on the Alps-Apennines orogenic belt (which constitutes the Piemonte geological framework) on which the architecture of the GeoDB relied. This contribution describes how the two different knowledge levels (specific domain vs. general knowledge) are assimilated within the GeoPiemonte informative system, providing relations between the contents of the geodatabase and the encoded concepts of the reference ontologies. Initiatives such as GeoScience Markup Language (GeoSciML 4.01, 2016 (1) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0, 2013) (2), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG), provided us the authoritative standard geological source for knowledge encoding. Consistency and interoperability of geological data were thus sought, by classifying geologic features in an ontology-driven Data Model, while objects were described using GeoSciML controlled

  1. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 2: Crater Size-frequency Distribution Curves and Geomorphic Unit Ages

    Science.gov (United States)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    In assessing the relative ages of the geomorphic/geologic units, crater counts of the entire unit or nearly the entire unit were made and summed in order to get a more accurate value than obtainable by counts of isolated sections of each unit. Cumulative size-frequency counts show some interesting relationships. Most of the units show two distinct crater populations with a flattening out of the distribution curve at and below 10 km diameter craters. Above this crater size the curves for the different units diverge most notably. In general, the variance may reflect the relative ages of these units. At times, however, in the larger crater size range, these curves can overlap and cross on another. Also the error bars at these larger sizes are broader (and thus more suspect), since counts of larger craters show more scatter, whereas the unit areas remain constant. Occasional clusters of relatively large craters within a given unit, particularly one of limited areal extent, can affect the curve so that the unit might seem to be older than units which it overlies or cuts.

  2. Digital Geological Model (DGM): a 3D raster model of the subsurface of the Netherlands

    NARCIS (Netherlands)

    Gunnink, J.L.; Maljers, D.; Gessel, S.F. van; Menkovic, A.; Hummelman, H.J.

    2013-01-01

    A 3D geological raster model has been constructed of the onshore of the Netherlands. The model displays geological units for the upper 500 m in 3D in an internally consistent way. The units are based on the lithostratigraphical classification of the Netherlands. This classification is used to

  3. Geomorphology in North American Geology Departments, 1971

    Science.gov (United States)

    White, Sidney E.; Malcolm, Marshall D.

    1972-01-01

    Presents results of a 1970-71 survey of 350 geomorphologists and geology departments to determine what sort of geomorphology is being taught in the colleges and universities of the United States and Canada. (PR)

  4. Regolith-geology mapping with support vector machine: A case study over weathered Ni-bearing peridotites, New Caledonia

    Science.gov (United States)

    De Boissieu, Florian; Sevin, Brice; Cudahy, Thomas; Mangeas, Morgan; Chevrel, Stéphane; Ong, Cindy; Rodger, Andrew; Maurizot, Pierre; Laukamp, Carsten; Lau, Ian; Touraivane, Touraivane; Cluzel, Dominique; Despinoy, Marc

    2018-02-01

    Accurate maps of Earth's geology, especially its regolith, are required for managing the sustainable exploration and development of mineral resources. This paper shows how airborne imaging hyperspectral data collected over weathered peridotite rocks in vegetated, mountainous terrane in New Caledonia were processed using a combination of methods to generate a regolith-geology map that could be used for more efficiently targeting Ni exploration. The image processing combined two usual methods, which are spectral feature extraction and support vector machine (SVM). This rationale being the spectral features extraction can rapidly reduce data complexity by both targeting only the diagnostic mineral absorptions and masking those pixels complicated by vegetation, cloud and deep shade. SVM is a supervised classification method able to generate an optimal non-linear classifier with these features that generalises well even with limited training data. Key minerals targeted are serpentine, which is considered as an indicator for hydrolysed peridotitic rock, and iron oxy-hydroxides (hematite and goethite), which are considered as diagnostic of laterite development. The final classified regolith map was assessed against interpreted regolith field sites, which yielded approximately 70% similarity for all unit types, as well as against a regolith-geology map interpreted using traditional datasets (not hyperspectral imagery). Importantly, the hyperspectral derived mineral map provided much greater detail enabling a more precise understanding of the regolith-geological architecture where there are exposed soils and rocks.

  5. Remote methods in geological studies. Distantsionnyye metody v geologicheskikh issldovaniyakh

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The article cover the use of aerial and space photographic, scanner, radar and thermal photographs in geomorphological and geological study of platform and folded regions, specialized processing of lineaments of a photo image, predicting the quality of images of linear objects, photogrammetry of scanner images and questions of photogrametric processing of aerial photographic materials. The collection is designed for a broad circle of specialists using materials of remote photographs in geological studies and investgation of natural resources.

  6. Geology and prospecting in the Carpatians conference excursion guide

    Directory of Open Access Journals (Sweden)

    Jacko Stanislav

    2000-06-01

    Full Text Available We would like to welcome you to the excursions finalizing the Geology and prospecting in the Carpathians Conference, Her¾any –2000. The aim of the excursions is to provide you an overview of these Western Carpathian lithostructural units – and their mineralization respectively, research progress of which has been (at that time closely connected with personal investigation enthusiasm of our Professors - the founders of our Faculty. The current state of geological development knowledge of principal structural units of the Western Carpathians is outlined in papers included in special issue of Mineralia Slovaca magazine you have received at the begining of the Conference. For this reason the content of this Excursion quide is exclusively concentrated to description of routes localities. Broader geological relationships of particular outcrops is possible to find in attached Geological map of the Slovak Republic 1:100 000. The organizers of the excursions gratefully acknowledge the efforts of all colleagues who contributed to this quide. We also like to express our thanks for the financial support to Slovak VEGA grant Agency (Grant No:1/7389/2 and to the following organizations: Association of Metallurgy, Minig Industry and Geology of Slovak Republic, Slovak Geological Society, Management of TU Košice, SAPTU Foundation of TU Košice, Geological Survey of the Slovak Republic Betox JSC. Košice, SMW JSC. Jelšava, Uranpress Ltd. Spišská Nová Ves, TESCO Košice, ŽELBA-Siderite JSC. Nižná Slaná and ŽELBA –JSC. Spišská Nová Ves.

  7. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  8. Onshore/ Offshore Geologic Assessment for Carbon Storage in the Southeastern United States

    Science.gov (United States)

    Knapp, C. C.; Knapp, J. H.; Brantley, D.; Lakshmi, V.; Almutairi, K.; Almayahi, D.; Akintunde, O. M.; Ollmann, J.

    2017-12-01

    Eighty percent of the world's energy relies on fossil fuels and under increasingly stricter national and international regulations on greenhouse gas emissions storage of CO2 in geologic repositories seems to be not only a feasible, but also and vital solution for near/ mid-term reduction of carbon emissions. We have evaluated the feasibility of CO2 storage in saline formations of the Eastern North American Margin (ENAM) including (1) the Jurassic/Triassic (J/TR) sandstones of the buried South Georgia Rift (SGR) basin, and (2) the Mesozoic and Cenozoic geologic formations along the Mid- and South Atlantic seaboard. These analyses have included integration of subsurface geophysical data (2- and 3-D seismic surveys) with core samples, well logs as well as uses of geological databases and geospatial analysis leading to CO2 injection simulation models. ENAM is a complex and regionally extensive mature Mesozoic passive margin rift system encompassing: (1) a large volume and regional extent of related magmatism known as the Central Atlantic Magmatic Province (CAMP), (2) a complete stratigraphic column that records the post-rift evolution in several basins, (3) preserved lithospheric-scale pre-rift structures including Paleozoic sutures, and (4) a wide range of geological, geochemical, and geophysical studies both onshore and offshore. While the target reservoirs onshore show heterogeneity and a highly complex geologic evolution they also show promising conditions for significant safe CO2 storage away from the underground acquifers. Our offshore study (the Southeast Offshore Storage Resource Assessment - SOSRA) is focused on the outer continental shelf from North Carolina to the southern tip of Florida. Three old exploration wells are available to provide additional constraints on the seismic reflection profiles. Two of these wells (TRANSCO 1005-1 and COST GE-1) penetrate the pre-rift Paleozoic sedimentary formations while the EXXON 564-1 well penetrates the post

  9. Three-Dimensional Geological Model of Quaternary Sediments in Walworth County, Wisconsin, USA

    Directory of Open Access Journals (Sweden)

    Jodi Lau

    2016-07-01

    Full Text Available A three-dimensional (3D geologic model was developed for Quaternary deposits in southern Walworth County, WI using Petrel, a software package primarily designed for use in the energy industry. The purpose of this research was to better delineate and characterize the shallow glacial deposits, which include multiple shallow sand and gravel aquifers. The 3D model of Walworth County was constructed using datasets such as the U.S. Geological Survey 30 m digital elevation model (DEM of land surface, published maps of the regional surficial geology and bedrock topography, and a database of water-well records. Using 3D visualization and interpretation tools, more than 1400 lithostratigraphic picks were efficiently interpreted amongst 725 well records. The final 3D geologic model consisted of six Quaternary lithostratigraphic units and a bedrock horizon as the model base. The Quaternary units include in stratigraphic order from youngest to oldest: the New Berlin Member of the Holy Hill Formation, the Tiskilwa Member of the Zenda Formation, a Sub-Tiskilwa Sand/Gravel unit, the Walworth Formation, a Sub-Walworth Sand/Gravel unit, and a Pre-Illinoisan unit. Compared to previous studies, the results of this study indicate a more detailed distribution, thickness, and interconnectivity between shallow sand and gravel aquifers and their connectivity to shallow bedrock aquifers. This study can also help understand uncertainty within previous local groundwater-flow modeling studies and improve future studies.

  10. The U.S. Geological Survey's TRIGA® reactor

    Science.gov (United States)

    DeBey, Timothy M.; Roy, Brycen R.; Brady, Sally R.

    2012-01-01

    The U.S. Geological Survey (USGS) operates a low-enriched uranium-fueled, pool-type reactor located at the Federal Center in Denver, Colorado. The mission of the Geological Survey TRIGA® Reactor (GSTR) is to support USGS science by providing information on geologic, plant, and animal specimens to advance methods and techniques unique to nuclear reactors. The reactor facility is supported by programs across the USGS and is organizationally under the Associate Director for Energy and Minerals, and Environmental Health. The GSTR is the only facility in the United States capable of performing automated delayed neutron analyses for detecting fissile and fissionable isotopes. Samples from around the world are submitted to the USGS for analysis using the reactor facility. Qualitative and quantitative elemental analyses, spatial elemental analyses, and geochronology are performed. Few research reactor facilities in the United States are equipped to handle the large number of samples processed at the GSTR. Historically, more than 450,000 sample irradiations have been performed at the USGS facility. Providing impartial scientific information to resource managers, planners, and other interested parties throughout the world is an integral part of the research effort of the USGS.

  11. Digital geologic map and Landsat image map of parts of Loralai, Sibi, Quetta, and Khuzar Divisions, Balochistan Province, west-central Pakistan

    Science.gov (United States)

    Maldonado, Florian; Menga, Jan Mohammad; Khan, Shabid Hasan; Thomas, Jean-Claude

    2011-01-01

    This generalized digital geologic map of west-central Pakistan is a product of the Balochistan Coal-Basin Synthesis Study, which was part of a cooperative program of the Geological Survey of Pakistan and the United States Geological Survey. The original nondigital map was published by Maldonado and others (1998). Funding was provided by the Government of Pakistan and the United States Agency for International Development. The sources of geologic map data are primarily 1:253,440-scale geologic maps obtained from Hunting Survey Corporation (1961) and the geologic map of the Muslim Bagh Ophiolite Complex and Bagh Complex area. The geology was modified based on reconnaissance field work and photo interpretation of 1:250,000-scale Landsat Thematic Mapper photo image. The descriptions and thicknesses of map units were based on published and unpublished reports and converted to U.S. Geological Survey format. In the nomenclature of the Geological Survey of Pakistan, there is both an Urak Group and an Urak Formation.

  12. United States geological survey's reserve-growth models and their implementation

    Science.gov (United States)

    Klett, T.R.

    2005-01-01

    The USGS has developed several mathematical models to forecast reserve growth of fields both in the United States (U.S.) and the world. The models are based on historical reserve growth patterns of fields in the U.S. The patterns of past reserve growth are extrapolated to forecast future reserve growth. Changes of individual field sizes through time are extremely variable, therefore, the reserve growth models take on a statistical approach whereby volumetric changes for populations of fields are used in the models. Field age serves as a measure of the field-development effort that is applied to promote reserve growth. At the time of the USGS World Petroleum Assessment 2000, a reserve growth model for discovered fields of the world was not available. Reserve growth forecasts, therefore, were made based on a model of historical reserve growth of fields of the U.S. To test the feasibility of such an application, reserve growth forecasts were made of 186 giant oil fields of the world (excluding the U.S. and Canada). In addition, forecasts were made for these giant oil fields subdivided into those located in and outside of Organization of Petroleum Exporting Countries (OPEC). The model provided a reserve-growth forecast that closely matched the actual reserve growth that occurred from 1981 through 1996 for the 186 fields as a whole, as well as for both OPEC and non-OPEC subdivisions, despite the differences in reserves definition among the fields of the U.S. and the rest of the world. ?? 2005 International Association for Mathematical Geology.

  13. 3D Geological modelling of the Monfrague synform: a value added to the geologic heritage of the National Park

    International Nuclear Information System (INIS)

    Gumiel, P.; Arias, M.; Monteserin, V.; Segura, M.

    2010-01-01

    3D geological modelling of a tectonic structure called the Monfrague synform has been carried out to obtain a better insight into the geometry of this folding structure. It is a kilometric variscan WNW-ESE trending fold verging towards north and made up by a Palaeozoic sequence (Ordovician-Silurian).This structure with its lithology make up the morphology and the relief of the Park. The Monfrague synform is an asymmetrical folding structure showing southern limb dipping steeply to the south (reverse limb) what is well observed in the Armorican Quartzite at the Salto del Gitano. However, northern limb dips gently (less than 40 degree centigrade) to the south (normal limb). 3D geological modelling has been built on the basis of the geological knowledge and the structural interpretation, using 3D GeoModeller. (www.geomodeller.com). In this software, lithological units are described by a stratigraphic pile. A major original feature of this software is that the 3D description of the geological space is achieved through a potential field formulation in which geological boundaries are isopotential surfaces, and their dips are represented by gradients of the potential. Finally, it is emphasized the idea that a 3D geologic model of these characteristics, with its three-dimensional representation, together with suitable geological sections that clarify the structure in depth, represents a value added to the Geologic Heritage of the National Park and besides it supposes an interesting academic exercise which have a great didactic value. (Author)

  14. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  15. Titan's methane cycle and its effect on surface geology

    Science.gov (United States)

    Lopes, R. M.; Peckyno, R. S.; Le Gall, A. A.; Wye, L.; Stofan, E. R.; Radebaugh, J.; Hayes, A. G.; Aharonson, O.; Wall, S. D.; Janssen, M. A.; Cassini RADAR Team

    2010-12-01

    Titan’s surface geology reflects surface-atmospheric interaction in ways similar to Earth’s. The methane cycle on Titan is a major contributor to the formation of surface features such as lakes, seas, rivers, and dunes. We used data from Cassini RADAR to map the distribution and relative ages of terrains that allow us to determine the geological processes that have shaped Titan’s surface. These SAR swaths (up to Titan flyby T64) cover about ~45% percent of the surface, at a spatial resolution ranging from 350 m to about >2 km. The data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution and significance of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth. In this paper, we update the geologic unit map that used flybys up to T30 (Lopes et al., 2010, Icarus, 205, 540-558), representing ~20% of the surface. We find that the overall correlations found previously still hold given more than double the areal coverage. In terms of global areal distribution, both dunes and mountainous terrains (including Xanadu) cover more area (respectively 9.2% and 14.6% of the observed area) than other identified geologic units. In terms of latitudinal distribution, dunes and hummocky, mountainous terrains are located mostly at low latitudes (less than 30 degrees), with no dunes being present above 60 degrees. Channels formed by fluvial activity are present at all latitudes, but lakes filled with liquid are found at high latitudes only (above 60 degrees). Impact structures are mostly located at low latitudes, with no confidently identified craters above 60 degrees latitude, possibly indicating that more resurfacing has occurred at higher latitudes. Putative cryovolcanic features, consisting mostly of flows, are not ubiquitous and are mostly located in the areas surrounding Xanadu. We examine temporal relationships between

  16. Earth-Base: testing the temporal congruency of paleontological collections and geologic maps of North America

    Science.gov (United States)

    Heim, N. A.; Kishor, P.; McClennen, M.; Peters, S. E.

    2012-12-01

    Free and open source software and data facilitate novel research by allowing geoscientists to quickly and easily bring together disparate data that have been independently collected for many different purposes. The Earth-Base project brings together several datasets using a common space-time framework that is managed and analyzed using open source software. Earth-Base currently draws on stratigraphic, paleontologic, tectonic, geodynamic, seismic, botanical, hydrologic and cartographic data. Furthermore, Earth-Base is powered by RESTful data services operating on top of PostgreSQL and MySQL databases and the R programming environment, making much of the functionality accessible to third-parties even though the detailed data schemas are unknown to them. We demonstrate the scientific potential of Earth-Base and other FOSS by comparing the stated age of fossil collections to the age of the bedrock upon which they are geolocated. This analysis makes use of web services for the Paleobiology Database (PaleoDB), Macrostrat, the 2005 Geologic Map of North America (Garrity et al. 2009) and geologic maps of the conterminous United States. This analysis is a way to quickly assess the accuracy of temporal and spatial congruence of the paleontologic and geologic map datasets. We find that 56.1% of the 52,593 PaleoDB collections have temporally consistent ages with the bedrock upon which they are located based on the Geologic Map of North America. Surprisingly, fossil collections within the conterminous United States are more consistently located on bedrock with congruent geological ages, even though the USA maps are spatially and temporally more precise. Approximately 57% of the 37,344 PaleoDB collections in the USA are located on similarly aged geologic map units. Increased accuracy is attributed to the lumping of Pliocene and Quaternary geologic map units along the Atlantic and Gulf coastal plains in the Geologic Map of North America. The abundant Pliocene fossil collections

  17. OneGeology-Europe: architecture, portal and web services to provide a European geological map

    Science.gov (United States)

    Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John

    2010-05-01

    OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and

  18. Geological mapping of the vertical southeast face of El Capitan, Yosemite Valley, California (Invited)

    Science.gov (United States)

    Stock, G. M.; Glazner, A. F.; Ratajeski, K.; Law, B.

    2010-12-01

    El Capitan in Yosemite Valley, California, is one of the world’s most accessible large granitic rock faces. At nearly 1 km tall, the vertical southeast face of El Capitan provides unique insight into igneous processes contributing to the assembly of the Sierra Nevada batholith ~103 million years ago. Although the base and summit dome of El Capitan have been mapped in detail, the vertical face has so far eluded comprehensive attempts at geologic mapping. We have combined field mapping by technical rock climbing with high-resolution gigapixel photography to develop the first detailed digital geologic map of the southeast face (North America Wall). Geologic units exposed on the face include the El Capitan and Taft Granites, at least two phases of dioritic intrusions, hybridized rocks, and late-stage aplite/pegmatite dikes and pods. We map these units on a high resolution far-range base image derived from a high-resolution panoramic photograph, and verify contact relationships with close-range field photographs and visual observations from anchor points along major climbing routes. Mapping of contact relationships between these units reveals the sequence of intrusion of the various units, as well as the relationship of the mafic intrusions with the more voluminous granites. Geologic mapping of the southeast face also informs geologic hazards by constraining the source area for lithologically distinct rock falls; for example, geologic mapping confirms that a 2.2 x 106 m3 rock avalanche that occurred circa 3,600 years ago originated from near the summit of El Capitan, within an area dominated by Taft Granite. In addition to expanding mapping to the southwest face, future mapping efforts will focus on integrating the high resolution base map with airborne and terrestrial LiDAR data to produce a three-dimensional geologic map of one of the most iconic rock formations in the world.

  19. Predictive modeling of terrestrial radiation exposure from geologic materials

    Science.gov (United States)

    Haber, Daniel A.

    Aerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials in an area by creating a model using geologic data, images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data, and pre-existing low spatial resolution aerial surveys from the National Uranium Resource Evaluation (NURE) Survey. Using these data, geospatial areas, referred to as background radiation units, homogenous in terms of K, U, and Th are defined and the gamma ray exposure rate is predicted. The prediction is compared to data collected via detailed aerial survey by our partner National Security Technologies, LLC (NSTec), allowing for the refinement of the technique. High resolution radiation exposure rate models have been developed for two study areas in Southern Nevada that include the alluvium on the western shore of Lake Mohave, and Government Wash north of Lake Mead; both of these areas are arid with little soil moisture and vegetation. We determined that by using geologic units to define radiation background units of exposed bedrock and ASTER visualizations to subdivide radiation background units of alluvium, regions of homogeneous geochemistry can be defined allowing for the exposure rate to be predicted. Soil and rock samples have been collected at Government Wash and Lake Mohave as well as a third site near Cameron, Arizona. K, U, and Th concentrations of these samples have been determined using inductively coupled mass spectrometry (ICP-MS) and laboratory counting using radiation detection equipment. In addition, many sample locations also have

  20. Landscape, Geology and Wines in the Jurançon vineyard

    Science.gov (United States)

    Fasentieux, Bertrand; Burgio, Marion; Delfaud, Jean

    2015-04-01

    Located on the Pyrenean Northern Piedmont, in Bearn, the PDO vineyards of Jurançon are undergoing great development, which requires a study of soils. The landscape constitutes the main approach exploiting physical parameters - climatological, morphological and geological. Man has realized the cadastral map for agricultural land in which vineyards develop. The geological substratum falls into three units: the Cretaceous flysch to the South, the Cenozoic calcareous pudding stone of Jurançon to the North-East and the oligo-Miocene molasse of Monein to the North-West.The soils resulting from these units are varied, with different pHs, permeabilities and clay minerals. Each of these three ' terroirs ' produces dry or sweet wines with different characteristics well highlighted by winemakers. Thus, geology, associated with climatology, determines distinctive types. Their expression, the landscape, becomes a communication tool, with a view to develop wine tourism.

  1. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B.; Bergman, Torbjoern (Geological Survey of Sweden, Uppsala (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden)); Petersson, Jesper (SwedPower AB, Stockholm (Sweden))

    2008-12-15

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  2. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Bergman, Torbjoern; Isaksson, Hans; Petersson, Jesper

    2008-12-01

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  3. Structural geologic study of southeastern Missouri

    International Nuclear Information System (INIS)

    Satterfield, I.R.; Ward, R.A.

    1978-01-01

    A geologic map at 1:62,500 scale was prepared of the Cretaceous (Mesozoic) and Tertiary (cenozoic) sediments and seven major units were recognized with emphasis on faulting. Faulted sediments of Pliocene age (possibly Pleistocene) were observed and younger units are suspected to be involved. Data from hand-augered holes plus water well data were logged and plotted. The feasibility of using physical data (size analysis and pH) as a correlation tool for determining structural disturbance in loess deposits was established

  4. Geology of the Terra Cimmeria-Utopia Planitia Highland Lowland Transitional Zone: Final Technical Approach and Scientific Results

    Science.gov (United States)

    Skinner, J. A., Jr.; Tanaka, K. L.

    2010-01-01

    The southern Utopia highland-lowland transitional zone extends from northern Terra Cimmeria to southern Utopia Planitia and contains broad, bench-like platforms with depressions, pitted cones, tholi, and lobate flows. The locally occurring geologic units and landforms contrast other transitional regions and record a spatially partitioned geologic history. We systematically delineated and described the geologic units and landforms of the southern Utopia-Cimmeria highland-lowland transitional zone for the production of a 1:1,000,000-scale geologic map (MTMs 10237, 15237, 20237, 10242, 15242, 20242, 10247, 15247, and 20247). Herein, we present technical and scientific results of this mapping project.

  5. A state geological survey commitment to environmental geology - the Texas Bureau of Economic Geology

    International Nuclear Information System (INIS)

    Wermund, E.G.

    1990-01-01

    In several Texas environmental laws, the Bureau of Economic Geology is designated as a planning participant and review agency in the process of fulfilling environmental laws. Two examples are legislation on reclamation of surface mines and regulation of processing low level radioactive wastes. Also, the Bureau is the principal geological reviewer of all Environmental Assessments and Environmental Impact Statements which the Office of the Governor circulates for state review on all major developmental activities in Texas. The BEG continues its strong interest in environmental geology. In February 1988, it recommitted its Land Resources Laboratory, initiated in 1974, toward fulfilling needs of state, county, and city governments for consultation and research on environmental geologic problems. An editorial from another state geological survey would resemble the about description of texas work in environmental geology. State geological surveys have led federal agencies into many developments of environmental geology, complemented federal efforts in their evolution, and continued a strong commitment to the maintenance of a quality environment through innovative geologic studies

  6. To the question the unity of composition of fluids of heterogeneous geological objects.

    Science.gov (United States)

    Galant, Yuri

    2017-04-01

    Creation of Unit Theory Oil Generation based on a number of the provisions, one of which is the unity of the hydrocarbon composition in various geological objects. Studies conducted in various geological conditions and tectonic - magmatic environment. In studying the hydrocarbon composition of various geological objects, untraditional for petroleum geology (igneous rocks, metamorphic rocks, mineral deposits, etc.) progressively manifested that hydrocarbons are also distributed and have the following features. Studies have shown: 1. The composition of the hydrocarbon components presented by, light hydrocarbons, heavy hydrocarbons up to including hexane, normal forms, isoforms, saturated and unsaturated hydrocarbons. 2. Hydrocarbon composition and the ratio of methane to heavy hydrocarbons corresponds to the composition of gases gas fields. 3. The composition and the ratio of hydrocarbons do not depend on genetic types of heterogeneous geological objects. 4. Gas saturation meets the prevailing structure of rocks - pores or fractures. The foregoing allows us to speak of a single source of generating and delivering hydrocarbons in the Earth's Crust, regardless of the geological situation. I.e. the presence of hydrocarbons in the Earth's Crust is UNITED! 5. From a practical point of view - virtually unconventional for hydrocarbons rock can serve as unconventional hydrocarbon resources.

  7. Research of the impact of coupling between unit cells on performance of linear-to-circular polarization conversion metamaterial with half transmission and half reflection

    Science.gov (United States)

    Guo, Mengchao; Zhou, Kan; Wang, Xiaokun; Zhuang, Haiyan; Tang, Dongming; Zhang, Baoshan; Yang, Yi

    2018-04-01

    In this paper, the impact of coupling between unit cells on the performance of linear-to-circular polarization conversion metamaterial with half transmission and half reflection is analyzed by changing the distance between the unit cells. An equivalent electrical circuit model is then built to explain it based on the analysis. The simulated results show that, when the distance between the unit cells is 23 mm, this metamaterial converts half of the incident linearly-polarized wave into reflected left-hand circularly-polarized wave and converts the other half of it into transmitted left-hand circularly-polarized wave at 4.4 GHz; when the distance is 28 mm, this metamaterial reflects all of the incident linearly-polarized wave at 4.4 GHz; and when the distance is 32 mm, this metamaterial converts half of the incident linearly-polarized wave into reflected right-hand circularly-polarized wave and converts the other half of it into transmitted right-hand circularly-polarized wave at 4.4 GHz. The tunability is realized successfully. The analysis shows that the changes of coupling between unit cells lead to the changes of performance of this metamaterial. The coupling between the unit cells is then considered when building the equivalent electrical circuit model. The built equivalent electrical circuit model can be used to perfectly explain the simulated results, which confirms the validity of it. It can also give help to the design of tunable polarization conversion metamaterials.

  8. Geologic map of the Bateman Spring Quadrangle, Lander County, Nevada

    Science.gov (United States)

    Ramelli, Alan R.; Wrucke, Chester T.; House, P. Kyle

    2017-01-01

    This 1:24,000-scale geologic map of the Bateman Spring 7.5-minute quadrangle in Lander County, Nevada contains descriptions of 24 geologic units and one cross section. Accompanying text includes full unit descriptions and references. This quadrangle includes lower Paleozoic siliciclastic sedimentary rocks of the Roberts Mountain allochthon, Miocene intrusive dikes, alluvial deposits of the northern Shoshone Range piedmont, and riverine deposits of the Reese and Humboldt rivers.Significant findings include: refined age estimates for the Ordovician-Cambrian Valmy Formation and Devonian Slaven Chert, based on new fossil information; and detailed mapping of late Quaternary fault traces along the Shoshone Range fault system.

  9. Geology along topographic profile for near-surface test facility

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-01-01

    The U.S. Department of Energy, through the Basalt Waste Isolation Program within Rockwell Hanford Operations, is investigating the feasibility of terminal storage of radioactive waste in deep caverns constructed in the Columbia River Basalt. A portion of the geological work conducted in support of the Engineering Design Unit to evaluate the west end of Gable Mountain as a site for in situ testing of the thermomechanical behavior of basalt is reported. The surficial geology of the west end of Gable Mountain was mapped in a reconnaissance fashion at a scale of 1:62,500 to identify geologic features which could affect siting of the proposed facilities. A detailed study of the geological conditions was conducted along a traverse across the most probable site for the proposed project

  10. Application of PALSAR-2 remote sensing data for structural geology and topographic mapping in Kelantan river basin, Malaysia

    Science.gov (United States)

    Beiranvand Pour, Amin; Hashim, Mazlan

    2016-06-01

    Natural hazards of geological origin are one of major problem during heavy monsoons rainfall in Kelantan state, peninsular Malaysia. Several landslides occur in this region are obviously connected to geological and topographical features, every year. Satellite synthetic aperture radar (SAR) data are particularly applicable for detection of geological structural and topographical features in tropical conditions. In this study, Phased Array type L-band Synthetic Aperture Radar (PALSAR-2), remote sensing data were used to identify high potential risk and susceptible zones for landslide in the Kelantan river basin. Adaptive Local Sigma filter was selected and applied to accomplish speckle reduction and preserving both edges and features in PALSAR-2 fine mode observation images. Different polarization images were integrated to enhance geological structures. Additionally, directional filters were applied to the PALSAR-2 Local Sigma resultant image for edge enhancement and detailed identification of linear features. Several faults, drainage patterns and lithological contact layers were identified at regional scale. In order to assess the results, fieldwork and GPS survey were conducted in the landslide affected zones in the Kelantan river basin. Results demonstrate the most of the landslides were associated with N-S, NNW-SSE and NE-SW trending faults, angulate drainage pattern and metamorphic and Quaternary units. Consequently, geologic structural map were produced for Kelantan river basin using recent PALSAR-2 data, which could be broadly applicable for landslide hazard assessment and delineation of high potential risk and susceptible areas. Landslide mitigation programmes could be conducted in the landslide recurrence regions for reducing catastrophes leading to economic losses and death.

  11. GIS Data Modeling of a Regional Geological Structure by Integrating Geometric and Semantic Expressions

    Directory of Open Access Journals (Sweden)

    HE Handong

    2017-08-01

    Full Text Available Using GIS, data models of geology via geometric descriptions and expressions are being developed. However, the role played by these data models in terms of the description and expression of geological structure phenomenon is limited. To improve the semantic information in geological GIS data models, this study adopts an object-oriented method that describes and expresses the geometric and semantic features of the geological structure phenomenon using geological objects and designs a data model of regional geological structures by integrating geometry and semantics. Moreover, the study designs a semantic "vocabulary-explanation-graph" method for describing the geological phenomenon of structures. Based on the semantic features of regional geological structures and a linear classification method, it divides the regional geological structure phenomenon into 3 divisions, 10 groups, 33 classes and defines the element set and element class. Moreover, it builds the basic geometric network for geological elements based on the geometric and semantic relations among geological objects. Using the ArcGIS Diagrammer Geodatabase, it considers the regional geological structure of the Ning-Zhen Mountains to verify the data model, and the results indicate a high practicability.

  12. Association between mapped vegetation and Quaternary geology on Santa Rosa Island, California

    Science.gov (United States)

    Cronkite-Ratcliff, C.; Corbett, S.; Schmidt, K. M.

    2017-12-01

    Vegetation and surficial geology are closely connected through the interface generally referred to as the critical zone. Not only do they influence each other, but they also provide clues into the effects of climate, topography, and hydrology on the earth's surface. This presentation describes quantitative analyses of the association between the recently compiled, independently generated vegetation and geologic map units on Santa Rosa Island, part of the Channel Islands National Park in Southern California. Santa Rosa Island was heavily grazed by sheep and cattle ranching for over one hundred years prior to its acquisition by the National Park Service. During this period, the island experienced significant erosion and spatial reduction and diversity of native plant species. Understanding the relationship between geology and vegetation is necessary for monitoring the recovery of native plant species, enhancing the viability of restoration sites, and understanding hydrologic conditions favorable for plant growth. Differences in grain size distribution and soil depth between geologic units support different plant communities through their influence on soil moisture, while differences in unit age reflect different degrees of pedogenic maturity. We find that unsupervised machine learning methods provide more informative insight into vegetation-geology associations than traditional measures such as Cramer's V and Goodman and Kruskal's lambda. Correspondence analysis shows that unique vegetation-geology patterns associated with beach/dune, grassland, hillslope/colluvial, and fluvial/wetland environments can be discerned from the data. By combining geology and vegetation with topographic variables, mixture models can be used to partition the landscape into multiple representative types, which then be compared with conceptual models of plant growth and succession over different landforms. Using this collection of methods, we show various ways that that Quaternary geology

  13. Environmental geology of Nampo, Puyo, Sochon, Hamyol

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Young; Han, Dae Suk; Kim, Yoon Jong; Yu, Il Hyun; Lee, Bong Joo; Jeong, Gyo Cheol; Kim, Kyeong Su [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    An environmental geology map at a scale of 1:100,000 was produced to provide information on land use potential within the area of over 1,300 km{sup 2} consisting of Nampo, Puyo , Sochon and Hamyol. Land use potentiality was quantitatively assigned in accordance with the environmental geologic index(EI) derived from such factors as landslide frequency, engineering geological unit, topography and density of lineament length, being classified into 4 units. Also produced was a landslide susceptibility map at the same scale as the above map, showing five different grades of susceptibility based on hazard index(HI). Besides the above mentioned mapping, an investigation on the soils, rocks and natural aggregates throughout the study area was undertaken to assess their utilization potential as construction materials. Also carried out were the analysis of erosion and sedimentation in/around the Keum river, a geotechnical engineering investigation on the reclaimed tidal zone south of the Taechon beach, and the stability analysis of the cut slopes along the national roads. All the results of the investigations and analyses are presented in the paper. It is expected that the maps and accompanying information could be utilized in formulating regional land-use planning for variable projects. (author). 51 refs., 60 figs., 62 tabs., 3 maps.

  14. Three-dimensional geologic model of the southeastern Espanola Basin, Santa Fe County, New Mexico

    Science.gov (United States)

    Pantea, Michael P.; Hudson, Mark R.; Grauch, V.J.S.; Minor, Scott A.

    2011-01-01

    This multimedia model and report show and describe digital three-dimensional faulted surfaces and volumes of lithologic units that confine and constrain the basin-fill aquifers within the Espanola Basin of north-central New Mexico. These aquifers are the primary groundwater resource for the cities of Santa Fe and Espanola, six Pueblo nations, and the surrounding areas. The model presented in this report is a synthesis of geologic information that includes (1) aeromagnetic and gravity data and seismic cross sections; (2) lithologic descriptions, interpretations, and geophysical logs from selected drill holes; (3) geologic maps, geologic cross sections, and interpretations; and (4) mapped faults and interpreted faults from geophysical data. Modeled faults individually or collectively affect the continuity of the rocks that contain the basin aquifers; they also help define the form of this rift basin. Structure, trend, and dip data not previously published were added; these structures are derived from interpretations of geophysical information and recent field observations. Where possible, data were compared and validated and reflect the complex relations of structures in this part of the Rio Grande rift. This interactive geologic framework model can be used as a tool to visually explore and study geologic structures within the Espanola Basin, to show the connectivity of geologic units of high and low permeability between and across faults, and to show approximate dips of the lithologic units. The viewing software can be used to display other data and information, such as drill-hole data, within this geologic framework model in three-dimensional space.

  15. Preliminary Bedrock Geologic Map of the Old Lyme Quadrangle, New London and Middlesex Counties, Connecticut

    Science.gov (United States)

    Walsh, Gregory J.; Scott, Robert B.; Aleinikoff, John N.; Armstrong, Thomas R.

    2006-01-01

    This report presents a preliminary map of the bedrock geology of the Old Lyme quadrangle, New London and Middlesex Counties, Connecticut. The map depicts contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The map was published as part of a study of fractured bedrock aquifers and regional tectonics.

  16. Analyzing the effects of geological and parameter uncertainty on prediction of groundwater head and travel time

    DEFF Research Database (Denmark)

    He, X.; Sonneborg, T.O.; Jørgensen, F.

    2013-01-01

    in three scenarios involving simulation of groundwater head distribution and travel time. The first scenario implied 100 stochastic geological models all assigning the same hydraulic parameters for the same geological units. In the second scenario the same 100 geological models were subjected to model...

  17. Status report on the geology of the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L. (Tennessee Univ., Knoxville, TN (United States). Dept. of Geological Sciences); Dreier, R.B.; Ketelle, R.H.; Lee, R.R.; Lee, Suk Young (Oak Ridge National Lab., TN (United States)); Lietzke, D.A. (Lietzke (David A.), Rutledge, TN (United States)); McMaster, W.M. (McMaster (William M.), Heiskell, TN (United States))

    1992-10-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth.

  18. Status report on the geology of the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L.; Lietzke, D.A.; McMaster, W.M.

    1992-10-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth

  19. To evaluate ERTS-1 data for usefulness as a geological sensor in the diverse geological terraines of New York State

    Science.gov (United States)

    Isachsen, Y. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Linear anomalies dominate the new geological information derived from ERTS-1 imagery, total lengths now exceeding 6000 kms. Experimentation with a variety of viewing techniques suggests that conventional photogeologic analyses of band 7 results in the location of more than 97 percent of all linears found. Bedrock lithologic types are distinguishable only where they are topographically expressed or govern land use signatures. The maxima on rose diagrams for ERTS-1 anomalies correspond well with those for mapped faults and topographic lineaments, despite a difference in relative magnitudes of maxima thought due to solar illumination direction. A multiscale analysis of linears showed that single topographic linears at 1:2,500,000 became dashed jugate linears at 1:500,000, and shorter linears lacking any conspicuous zonal alignment at 1:250,000. Most circular features found were explained away by U-2 airphoto analysis but several remain as anomalies. Visible glacial features include individual drumlins, best seen in winter imagery, drumlinoids, eskers, ice-marginal drainage channels, glacial lake shorelines and sand plains, and end moraines.

  20. Geologic framework for the national assessment of carbon dioxide storage resources—Southern Rocky Mountain Basins: Chapter M in Geologic framework for the national assessment of carbon dioxide storage resources

    Science.gov (United States)

    Merrill, Matthew D.; Drake, Ronald M.; Buursink, Marc L.; Craddock, William H.; East, Joseph A.; Slucher, Ernie R.; Warwick, Peter D.; Brennan, Sean T.; Blondes, Madalyn S.; Freeman, Philip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2016-06-02

    The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resources in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report, chapter M, is the geologic framework document for the Uinta and Piceance, San Juan, Paradox, Raton, Eastern Great, and Black Mesa Basins, and subbasins therein of Arizona, Colorado, Idaho, Nevada, New Mexico, and Utah. In addition to a summary of the geology and petroleum resources of studied basins, the individual storage assessment units (SAUs) within the basins are described and explanations for their selection are presented. Although appendixes in the national assessment publications include the input values used to calculate the available storage resource, this framework document provides only the context and source of the input values selected by the assessment geologists. Spatial-data files of the boundaries for the SAUs, and the well-penetration density of known well bores that penetrate the SAU seal, are available for download with the release of this report.

  1. Discussion on the 3D visualizing of 1:200 000 geological map

    Science.gov (United States)

    Wang, Xiaopeng

    2018-01-01

    Using United States National Aeronautics and Space Administration Shuttle Radar Topography Mission (SRTM) terrain data as digital elevation model (DEM), overlap scanned 1:200 000 scale geological map, program using Direct 3D of Microsoft with C# computer language, the author realized the three-dimensional visualization of the standard division geological map. User can inspect the regional geology content with arbitrary angle, rotating, roaming, and can examining the strata synthetical histogram, map section and legend at any moment. This will provide an intuitionistic analyzing tool for the geological practitioner to do structural analysis with the assistant of landform, dispose field exploration route etc.

  2. Geologic coal assessment: The interface with economics

    Science.gov (United States)

    Attanasi, E.D.

    2001-01-01

    Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.

  3. Should the U.S. proceed to consider licensing deep geological disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Curtiss, J.R.

    1993-01-01

    The United States, as well as other countries facing the question of how to handle high-level nuclear waste, has decided that the most appropriate means of disposal is in a deep geologic repository. In recent years, the Radioactive Waste Management Committee of the Nuclear Energy Agency has developed several position papers on the technical achievability of deep geologic disposal, thus demonstrating the serious consideration of deep geologic disposal in the international community. The Committee has not, as yet, formally endorsed disposal in a deep geologic repository as the preferred method of handling high-level nuclear waste. The United States, on the other hand, has studied the various methods of disposing of high-level nuclear waste, and has determined that deep geologic disposal is the method that should be developed. The purpose of this paper is to present a review of the United States' decision on selecting deep geologic disposal as the preferred method of addressing the high-level waste problem. It presents a short history of the steps taken by the U.S. in determining what method to use, discusses the NRC's waste Confidence Decision, and provides information on other issues in the U.S. program such as reconsideration of the final disposal standard and the growing inventory of spent fuel in storage

  4. Regional geologic framework off northeastern United States

    Science.gov (United States)

    Schlee, J.; Behrendt, John C.; Grow, J.A.; Robb, James M.; Mattick, R.; Taylor, P.T.; Lawson, B.J.

    1976-01-01

    Six multichannel seismic-reflection profiles taken across the Atlantic continental margin Previous HitoffTop the northeastern United States show an excess of 14 km of presumed Mesozoic and younger sedimentary rocks in the Baltimore Canyon trough and 8 km in the Georges Bank basin. Beneath the continental rise, the sedimentary prism thickness exceeds 7 km south of New Jersey and Maryland, and it is 4.5 km thick south of Georges Bank. Stratigraphically, the continental slope--outer edge of the continental shelf is a transition zone of high-velocity sedimentary rock, probably carbonate, that covers deeply subsided basement. Acoustically, the sedimentary sequence beneath the shelf is divided into three units which are correlated speculatively with the Cenozoic, the Cretaceous, and the Jurassic-Triassic sections. These units thicken offshore, and some have increased seismic velocities farther offshore. The uppermost unit thickens from a fraction of a kilometer to slightly more than a kilometer in a seaward direction, and velocity values range from 1.7 to 2.2 km/sec. The middle unit thickens from a fraction of a kilometer to as much as 5 km (northern Baltimore Canyon trough), and seismic velocity ranges from 2.2 to 5.4 km/sec. The lowest unit thickens to a maximum of 9 km (northern Baltimore Canyon), and velocities span the 3.9 to 5.9-km/sec interval. The spatial separation of magnetic and gravity anomalies on line 2 (New Jersey) suggests that in the Baltimore Canyon region the magnetic-slope anomaly is due to edge effects and that the previously reported free-air and isostatic gravity anomalies over the outer shelf may be due in part to a lateral increase in sediment density (velocity) near the shelf edge. The East Coast magnetic anomaly and the free-air gravity high both coincide over the outer shelf edge on line 1 (Georges Bank) but are offset by 20 km from the ridge on the reflection profile. Because the magnetic-slope-anomaly wavelength is nearly 50 km across, a

  5. Constructing a large-scale 3D Geologic Model for Analysis of the Non-Proliferation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J; Myers, S

    2008-04-09

    We have constructed a regional 3D geologic model of the southern Great Basin, in support of a seismic wave propagation investigation of the 1993 Nonproliferation Experiment (NPE) at the Nevada Test Site (NTS). The model is centered on the NPE and spans longitude -119.5{sup o} to -112.6{sup o} and latitude 34.5{sup o} to 39.8{sup o}; the depth ranges from the topographic surface to 150 km below sea level. The model includes the southern half of Nevada, as well as parts of eastern California, western Utah, and a portion of northwestern Arizona. The upper crust is constrained by both geologic and geophysical studies, while the lower crust and upper mantle are constrained by geophysical studies. The mapped upper crustal geologic units are Quaternary basin fill, Tertiary deposits, pre-Tertiary deposits, intrusive rocks of all ages, and calderas. The lower crust and upper mantle are parameterized with 5 layers, including the Moho. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geology at the NTS. Digital geologic outcrop data were available for both Nevada and Arizona, whereas geologic maps for California and Utah were scanned and hand-digitized. Published gravity data (2km spacing) were used to determine the thickness of the Cenozoic deposits and thus estimate the depth of the basins. The free surface is based on a 10m lateral resolution DEM at the NTS and a 90m lateral resolution DEM elsewhere. Variations in crustal thickness are based on receiver function analysis and a framework compilation of reflection/refraction studies. We used Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. For seismic studies, the geologic units are mapped to specific seismic velocities. The gross geophysical structure of the crust and upper mantle is taken from regional surface

  6. Beowulf Distributed Processing and the United States Geological Survey

    Science.gov (United States)

    Maddox, Brian G.

    2002-01-01

    Introduction In recent years, the United States Geological Survey's (USGS) National Mapping Discipline (NMD) has expanded its scientific and research activities. Work is being conducted in areas such as emergency response research, scientific visualization, urban prediction, and other simulation activities. Custom-produced digital data have become essential for these types of activities. High-resolution, remotely sensed datasets are also seeing increased use. Unfortunately, the NMD is also finding that it lacks the resources required to perform some of these activities. Many of these projects require large amounts of computer processing resources. Complex urban-prediction simulations, for example, involve large amounts of processor-intensive calculations on large amounts of input data. This project was undertaken to learn and understand the concepts of distributed processing. Experience was needed in developing these types of applications. The idea was that this type of technology could significantly aid the needs of the NMD scientific and research programs. Porting a numerically intensive application currently being used by an NMD science program to run in a distributed fashion would demonstrate the usefulness of this technology. There are several benefits that this type of technology can bring to the USGS's research programs. Projects can be performed that were previously impossible due to a lack of computing resources. Other projects can be performed on a larger scale than previously possible. For example, distributed processing can enable urban dynamics research to perform simulations on larger areas without making huge sacrifices in resolution. The processing can also be done in a more reasonable amount of time than with traditional single-threaded methods (a scaled version of Chester County, Pennsylvania, took about fifty days to finish its first calibration phase with a single-threaded program). This paper has several goals regarding distributed processing

  7. Geological-genetic classification for uranium deposits

    International Nuclear Information System (INIS)

    Terentiev, V.M.; Naumov, S.S.

    1997-01-01

    The paper describes a system for classification uranium deposits based on geological and genetic characteristics. The system is based on the interrelation and interdependence of uranium ore formation processes and other geological phenomena including sedimentation, magmatism and tectonics, as well as the evolution of geotectonic structures. Using these aspects, deposits are classified in three categories: endogenic - predominately hydrothermal and hydrothermal-metasomatic; exogenic - sedimentary diagenetic, biogenic sorption, and infiltrational; and polygenetic or composite types. The latter complex types includes: sedimentary/metamorphic and metamorphic and sedimentary/hydrothermal, where different ore generating processes have prevailed over a rock unit at different times. The 3 page classification is given in both the English and Russian languages. (author). 3 tabs

  8. Integration of non linearities in the economic refining model. Case of the hydro-desulfurization unit; Prise en compte de non-linearites dans la modelisation economique du raffinage. Cas de l`unite d`hydrodesulfuration

    Energy Technology Data Exchange (ETDEWEB)

    Baudouin, C.

    1998-12-08

    In recent years, the modifications in oil products demand and the increased quality requirements of European specifications have driven the oil industry towards more and more complex refining schemes. This situation should become even more pronounced in the future. Under these conditions, a technical analysis of the units operation must be carried out and combined with an economic approach. The research undertaken is divided into two parts. The first part is dedicated to the study of the European refining industry and its representation by the classic linear programming model. In these models, the units` operation is represented by typical running. The technical parameters are not explicitly taken into account. Therefore, in order to meet future requirements and to represent this activity in the best way, the current model must be improved. The second part relates to an analysis with forecasts future developments in the European refining sector up to 2010 and how linear programming models themselves will be adapted. Thus, the straight run gas oil hydro-desulfurization unit is completely redefined. The operating conditions and the design parameters of this unit are introduced into the model. Depending on the feed, they determine the performances and the material balance of the unit. Some of these operating conditions are new variables and appear in non linear equations. Therefore, we need non linear programming (the augmented Lagrangians method) to solve this detailed model. The results of the second part confirm those determined by the first part. They also provide us with a better representation of the hydro-desulfurization unit (taking the optimisation of the operating conditions into account). Using these models and the analysis described above, we can develop an outline plan of the future European refining industry. This shows that sizeable investments in both conventional and deep conversion capacity will be required to meet the requirements of changes in

  9. Survey on efficient linear solvers for porous media flow models on recent hardware architectures

    International Nuclear Information System (INIS)

    Anciaux-Sedrakian, Ani; Gratien, Jean-Marc; Guignon, Thomas; Gottschling, Peter

    2014-01-01

    In the past few years, High Performance Computing (HPC) technologies led to General Purpose Processing on Graphics Processing Units (GPGPU) and many-core architectures. These emerging technologies offer massive processing units and are interesting for porous media flow simulators may used for CO 2 geological sequestration or Enhanced Oil Recovery (EOR) simulation. However the crucial point is 'are current algorithms and software able to use these new technologies efficiently?' The resolution of large sparse linear systems, almost ill-conditioned, constitutes the most CPU-consuming part of such simulators. This paper proposes a survey on various solver and pre-conditioner algorithms, analyzes their efficiency and performance regarding these distinct architectures. Furthermore it proposes a novel approach based on a hybrid programming model for both GPU and many-core clusters. The proposed optimization techniques are validated through a Krylov subspace solver; BiCGStab and some pre-conditioners like ILU0 on GPU, multi-core and many-core architectures, on various large real study cases in EOR simulation. (authors)

  10. Preliminary digital geologic maps of the Mariposa, Kingman, Trona, and Death Valley Sheets, California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; Faunt, C.C.; Turner, A.K.

    1995-01-01

    Parts of four 1:250,000-scale geologic maps by the California Department of Natural Resources, Division of Mines and Geology have been digitized for use in hydrogeologic characterization. These maps include the area of California between lat. 35 degree N; Long. 115 degree W and lat. 38 degree N, long. 118 degree W of the Kingman Sheet (Jennings, 1961), Trona Sheet (Jennings and others, 1962), Mariposa Sheet (Strand, 1967), and Death Valley Sheet (Streitz and Stinson, 1974). These digital maps are being released by the US Geological Survey in the ARC/INFO Version 6.1 Export format. The digitized data include geologic unit boundaries, fault traces, and identity of geologic units. The procedure outlined in US Geological Survey Circular 1054 (Soller and others, 1990) was sued during the map construction. The procedure involves transferring hard-copy data into digital format by scanning manuscript maps, manipulating the digital map data, and outputting the data. Most of the work was done using Environmental Systems Research Institute's ARC/INFO software. The digital maps are available in ARC/INFO Rev. 6.1 Export format, from the USGS, Yucca Mountain Project, in Denver, Colorado

  11. Geologic Mapping in the Hesperia Planum Region of Mars

    Science.gov (United States)

    Gregg, Tracy K. P.; Crown, David A.

    2010-01-01

    Hesperia Planum, characterized by a high concentration of mare-type wrinkle ridges and ridge rings, encompasses > 2 million square km in the southern highlands of Mars. The most common interpretation is that the plains were emplaced as "flood" lavas with total thicknesses of geologic mapping reveal that the whole of Hesperia Planum is unlikely to be composed of the same materials, emplaced at the same geologic time. To unravel these complexities, we are generating a 1:1.5M-scale geologic map of Hesperia Planum and its surroundings. To date, we have identified 4 distinct plains units within Hesperia Planum and are attempting to determine the nature and relative ages of these materials.

  12. The United States program for the safety assessment of geologic disposal of commercial radioactive wastes

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1977-01-01

    The safe disposal of commercial radioactive wastes in deep geologic formations is the goal of the National Waste Terminal Storage (NWTS) Program. Safety assessment begins with selection of a disposal site; that is, all geologic and hydrologic factors must indicate long-term stability of the formation and prospective isolation of wastes from circulating ground waters for hundreds of thousands of years. The long-term stability of each site under thermal loading must then be demonstrated by sophisticated rock mechanic analyses. Therefore, it can be expected that the sites that are chosen will effectively isolate the waste for a very long period of time. However, to help provide answers on the mechanisms and consequences of an unlikely breach in the integrity of the repository, a Waste Isolation Safety Assessment Program (WISAP) is studied. The overall objective of this program is an assessment of the safety associated with the long-term disposal of high-level radioactive waste in a geologic formation. This objective will be achieved by developing methods and generating data necessary to characterize the safety of generic geological waste disposal concepts, which are to be applied in the assessment of specific sites. It is expected that no one particular model will suffice. Both deterministic and probabilistic approaches will be used, and the entire spectrum of phenomena that could influence geologic isolation will be considered

  13. Three-dimensional geologic model of the Arbuckle-Simpson aquifer, south-central Oklahoma

    Science.gov (United States)

    Faith, Jason R.; Blome, Charles D.; Pantea, Michael P.; Puckette, James O.; Halihan, Todd; Osborn, Noel; Christenson, Scott; Pack, Skip

    2010-01-01

    The Arbuckle-Simpson aquifer of south-central Oklahoma encompasses more than 850 square kilometers and is the principal water resource for south-central Oklahoma. Rock units comprising the aquifer are characterized by limestone, dolomite, and sandstones assigned to two lower Paleozoic units: the Arbuckle and Simpson Groups. Also considered to be part of the aquifer is the underlying Cambrian-age Timbered Hills Group that contains limestone and sandstone. The highly faulted and fractured nature of the Arbuckle-Simpson units and the variable thickness (600 to 2,750 meters) increases the complexity in determining the subsurface geologic framework of this aquifer. A three-dimensional EarthVision (Trademark) geologic framework model was constructed to quantify the geometric relationships of the rock units of the Arbuckle-Simpson aquifer in the Hunton anticline area. This 3-D EarthVision (Trademark) geologic framework model incorporates 54 faults and four modeled units: basement, Arbuckle-Timbered Hills Group, Simpson Group, and post-Simpson. Primary data used to define the model's 54 faults and four modeled surfaces were obtained from geophysical logs, cores, and cuttings from 126 water and petroleum wells. The 3-D framework model both depicts the volumetric extent of the aquifer and provides the stratigraphic layer thickness and elevation data used to construct a MODFLOW version 2000 regional groundwater-flow model.

  14. Geology and potency of Uranium mineralization occurrences in Harau area, West Sumatera

    International Nuclear Information System (INIS)

    Ngadenin

    2013-01-01

    The Background of this study is due to the geological setting of Harau area and its surrounding, West Sumatera, that is identified as a favourable area for uranium accumulation which is indicated by the presence of anomalous radioactivity in the Tertiary sedimentary rocks deposited on the terrestrial environment and the presence of anomalous uranium contents in Pre-Tertiary granites in several places in West Sumatera, and the presence of radioactivity anomalous in the Pre Tertiary metamorphic rocks. The purpose of this study is to determine the potential formation of uranium mineralization in the Harau area, to be used as a basis to conduct more detailed research in order to inventory the potential of uranium resources in Indonesia. The scope of the discussion in this review includes a discussion of geology, geochemistry and radioactivity of the outcrops. The composition of regional stratigraphic from old to young is quartzite unit, phyllite unit, conglomerate unit, sandstone unit, tuff unit and alluvium river. The main fault that developed in the study area are normal faults trending southwest – northeast. The study area is splitted into two sections where the southeastern part relatives fall down of the northwest. Based on geological setting, radioactivity and uranium data then is assumed that Harau is a potential area for the formation of uranium mineralization in sandstone and its vein type. Sandstone type is expected occur in sandstone conglomerate unit of The Brani Formation and vein type is expected occur in the quartzite unit of The Kuantan Formation. (author)

  15. Geologic Map of the Hellas Region of Mars

    Science.gov (United States)

    Leonard, Gregory J.; Tanaka, Kenneth L.

    2001-01-01

    INTRODUCTION This geologic map of the Hellas region focuses on the stratigraphic, structural, and erosional histories associated with the largest well-preserved impact basin on Mars. Along with the uplifted rim and huge, partly infilled inner basin (Hellas Planitia) of the Hellas basin impact structure, the map region includes areas of ancient highland terrain, broad volcanic edifices and deposits, and extensive channels. Geologic activity recorded in the region spans all major epochs of martian chronology, from the early formation of the impact basin to ongoing resurfacing caused by eolian activity. The Hellas region, whose name refers to the classical term for Greece, has been known from telescopic observations as a prominent bright feature on the surface of Mars for more than a century (see Blunck, 1982). More recently, spacecraft imaging has greatly improved our visual perception of Mars and made possible its geologic interpretation. Here, our mapping at 1:5,000,000 scale is based on images obtained by the Viking Orbiters, which produced higher quality images than their predecessor, Mariner 9. Previous geologic maps of the region include those of the 1:5,000,000-scale global series based on Mariner 9 images (Potter, 1976; Peterson, 1977; King, 1978); the 1:15,000,000-scale global series based on Viking images (Greeley and Guest, 1987; Tanaka and Scott, 1987); and detailed 1:500,000-scale maps of Tyrrhena Patera (Gregg and others, 1998), Dao, Harmakhis, and Reull Valles (Price, 1998; Mest and Crown, in press), Hadriaca Patera (D.A. Crown and R. Greeley, map in preparation), and western Hellas Planitia (J.M. Moore and D.E. Wilhelms, map in preparation). We incorporated some of the previous work, but our map differs markedly in the identification and organization of map units. For example, we divide the Hellas assemblage of Greeley and Guest (1987) into the Hellas Planitia and Hellas rim assemblages and change the way units within these groupings are identified

  16. Design of a linear detector array unit for high energy x-ray helical computed tomography and linear scanner

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Tae; Park, Jong Hwan; Kim, Gi Yoon [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of); Kim, Dong Geun [Medical Imaging Department, ASTEL Inc., Seongnam (Korea, Republic of); Park, Shin Woong; Yi, Yun [Dept. of Electronics and Information Eng, Korea University, Seoul (Korea, Republic of); Kim, Hyun Duk [Research Center, Luvantix ADM Co., Ltd., Daejeon (Korea, Republic of)

    2016-11-15

    A linear detector array unit (LdAu) was proposed and designed for the high energy X-ray 2-d and 3-d imaging systems for industrial non-destructive test. Specially for 3-d imaging, a helical CT with a 15 MeV linear accelerator and a curved detector is proposed. the arc-shape detector can be formed by many LdAus all of which are arranged to face the focal spot when the source-to-detector distance is fixed depending on the application. An LdAu is composed of 10 modules and each module has 48 channels of CdWO{sub 4} (CWO) blocks and Si PIn photodiodes with 0.4 mm pitch. this modular design was made for easy manufacturing and maintenance. through the Monte carlo simulation, the CWO detector thickness of 17 mm was optimally determined. the silicon PIn photodiodes were designed as 48 channel arrays and fabricated with NTD (neutron transmutation doping) wafers of high resistivity and showed excellent leakage current properties below 1 nA at 10 V reverse bias. to minimize the low-voltage breakdown, the edges of the active layer and the guard ring were designed as a curved shape. the data acquisition system was also designed and fabricated as three independent functional boards; a sensor board, a capture board and a communication board to a Pc. this paper describes the design of the detectors (CWO blocks and Si PIn photodiodes) and the 3-board data acquisition system with their simulation results.

  17. Enhancement of loss detection capability using a combination of the Kalman Filter/Linear Smoother and controllable unit accounting approach

    International Nuclear Information System (INIS)

    Pike, D.H.; Morrison, G.W.

    1979-01-01

    An approach to loss detection is presented which combines the optimal loss detection capability of state estimation techniques with a controllable unit accounting approach. The state estimation theory makes use of a linear system model which is capable of modeling the interaction of various controllable unit areas within a given facility. An example is presented which illustrates the increase in loss detection probability which is realizable with state estimation techniques. Comparisons are made with a Shewhart Control Chart and the CUSUM statistic

  18. Principles for determining the economic competence of production units

    Energy Technology Data Exchange (ETDEWEB)

    Gubanova, O D; Makhlina, M I

    1980-01-01

    In the general plan for controlling the sector ''Geology and Exploration of the Depths'', a reduction is stipulated in the number of independent organizations and their inclusion as production units in the production geological associations. Distribution of rights and duties between the association and the production units is very important. Presentation to rights of the leaders to the lowest level to independently solve operational questions allows the leadership of the association to focus attention on solving major problems. The production units are given qualitative fulfillment of geological and production assignments, guarantee of improved efficiency of work, labor productivity and decrease in cost of the work; introduction of the latest achievements of science and technology; observation of the regime for conservation and efficient use of monetary resources, material and labor resources. There are natural interrelationships between specialization of production, centralization of the control functions and a change in the volume of authority of the production units. The legal status of the production unit is presented in two documents: statutes on the production geological association and statutes on the given production unit approved by the general director of the association. Principles are revealed for centralizing the rights needed to fulfill the functions following from national economic responsibility of the production geological association. This is long-term planning and forecasting, control of scientific-technical progress, scientific research, etc., control of the property, establishment of unified conditions for organization of labor and wages, construction, etc.

  19. Airborne radiometric data - A tool for reconnaissance geological mapping using a GIS

    International Nuclear Information System (INIS)

    Graham, D.F.; Bonham-Carter, G.F.

    1993-01-01

    A clustering technique is applied to radioelement data, and the resulting cluster map is compared with a digitized geological map within a GIS software package. The cross tabulation clearly identifies those geological units that have a distinctive radioelement response. By reclassifying the map overlay and imposing a color coding scheme that enhances bedrock geology classes, the relationship between the bedrock geology and radioelement response is enhanced. The degree of correlation between the two cartographic images is site dependent, rather than global. Areas where the two maps differ indicate zones of possible interest for field verification of published field maps for the purposes of mineral exploration. 13 refs

  20. Subsurface geologic features of the 2011 central Virginia earthquakes revealed by airborne geophysics

    Science.gov (United States)

    Shah, Anjana K.; Horton, J. Wright; Burton, William C.; Spears, David B; Gilmer, Amy K

    2014-01-01

    Characterizing geologic features associated with major earthquakes provides insights into mechanisms contributing to fault slip and assists evaluation of seismic hazard. We use high-resolution airborne geophysical data combined with ground sample measurements to image subsurface geologic features associated with the 2011 moment magnitude (Mw) 5.8 central Virginia (USA) intraplate earthquake and its aftershocks. Geologic mapping and magnetic data analyses suggest that the earthquake occurred near a complex juncture of geologic contacts. These contacts also intersect a >60-km-long linear gravity gradient. Distal aftershocks occurred in tight, ~1-km-wide clusters near other obliquely oriented contacts that intersect gravity gradients, in contrast to more linearly distributed seismicity observed at other seismic zones. These data and corresponding models suggest that local density contrasts (manifested as gravity gradients) modified the nearby stress regime in a manner favoring failure. However, along those gradients seismic activity is localized near structural complexities, suggesting a significant contribution from variations in associated rock characteristics such as rheological weakness and/or rock permeability, which may be enhanced in those areas. Regional magnetic data show a broader bend in geologic structures within the Central Virginia seismic zone, suggesting that seismic activity may also be enhanced in other nearby areas with locally increased rheological weaknesses and/or rock permeability. In contrast, away from the Mw5.8 epicenter, geophysical lineaments are nearly continuous for tens of kilometers, especially toward the northeast. Continuity of associated geologic structures probably contributed to efficient propagation of seismic energy in that direction, consistent with moderate to high levels of damage from Louisa County to Washington, D.C., and neighboring communities.

  1. A fault‐based model for crustal deformation in the western United States based on a combined inversion of GPS and geologic inputs

    Science.gov (United States)

    Zeng, Yuehua; Shen, Zheng-Kang

    2017-01-01

    We develop a crustal deformation model to determine fault‐slip rates for the western United States (WUS) using the Zeng and Shen (2014) method that is based on a combined inversion of Global Positioning System (GPS) velocities and geological slip‐rate constraints. The model consists of six blocks with boundaries aligned along major faults in California and the Cascadia subduction zone, which are represented as buried dislocations in the Earth. Faults distributed within blocks have their geometrical structure and locking depths specified by the Uniform California Earthquake Rupture Forecast, version 3 (UCERF3) and the 2008 U.S. Geological Survey National Seismic Hazard Map Project model. Faults slip beneath a predefined locking depth, except for a few segments where shallow creep is allowed. The slip rates are estimated using a least‐squares inversion. The model resolution analysis shows that the resulting model is influenced heavily by geologic input, which fits the UCERF3 geologic bounds on California B faults and ±one‐half of the geologic slip rates for most other WUS faults. The modeled slip rates for the WUS faults are consistent with the observed GPS velocity field. Our fit to these velocities is measured in terms of a normalized chi‐square, which is 6.5. This updated model fits the data better than most other geodetic‐based inversion models. Major discrepancies between well‐resolved GPS inversion rates and geologic‐consensus rates occur along some of the northern California A faults, the Mojave to San Bernardino segments of the San Andreas fault, the western Garlock fault, the southern segment of the Wasatch fault, and other faults. Off‐fault strain‐rate distributions are consistent with regional tectonics, with a total off‐fault moment rate of 7.2×1018">7.2×1018 and 8.5×1018  N·m/year">8.5×1018  N⋅m/year for California and the WUS outside California, respectively.

  2. Correlation Between Fracture Network Properties and Stress Variability in Geological Media

    Science.gov (United States)

    Lei, Qinghua; Gao, Ke

    2018-05-01

    We quantitatively investigate the stress variability in fractured geological media under tectonic stresses. The fracture systems studied include synthetic fracture networks following power law length scaling and natural fracture patterns based on outcrop mapping. The stress field is derived from a finite-discrete element model, and its variability is analyzed using a set of mathematical formulations that honor the tensorial nature of stress data. We show that local stress perturbation, quantified by the Euclidean distance of a local stress tensor to the mean stress tensor, has a positive, linear correlation with local fracture intensity, defined as the total fracture length per unit area within a local sampling window. We also evaluate the stress dispersion of the entire stress field using the effective variance, that is, a scalar-valued measure of the overall stress variability. The results show that a well-connected fracture system under a critically stressed state exhibits strong local and global stress variabilities.

  3. Linear units improve articulation between social and physical constructs: An example from caregiver parameterization for children supported by complex medical technologies

    Science.gov (United States)

    Bezruczko, N.; Stanley, T.; Battle, M.; Latty, C.

    2016-11-01

    Despite broad sweeping pronouncements by international research organizations that social sciences are being integrated into global research programs, little attention has been directed toward obstacles blocking productive collaborations. In particular, social sciences routinely implement nonlinear, ordinal measures, which fundamentally inhibit integration with overarching scientific paradigms. The widely promoted general linear model in contemporary social science methods is largely based on untransformed scores and ratings, which are neither objective nor linear. This issue has historically separated physical and social sciences, which this report now asserts is unnecessary. In this research, nonlinear, subjective caregiver ratings of confidence to care for children supported by complex, medical technologies were transformed to an objective scale defined by logits (N=70). Transparent linear units from this transformation provided foundational insights into measurement properties of a social- humanistic caregiving construct, which clarified physical and social caregiver implications. Parameterized items and ratings were also subjected to multivariate hierarchical analysis, then decomposed to demonstrate theoretical coherence (R2 >.50), which provided further support for convergence of mathematical parameterization, physical expectations, and a social-humanistic construct. These results present substantial support for improving integration of social sciences with contemporary scientific research programs by emphasizing construction of common variables with objective, linear units.

  4. Magnetic anomalies over the Andaman Islands and their geological ...

    Indian Academy of Sciences (India)

    plate boundary zone (e.g., Gahalaut et al. 2008; ... Himalayan arc/collision system in the north and the Indonesian arc system .... prominent linear ridges, (b) geological map of the Andaman Islands (after Pal et al. 2003a) ... ophiolite rocks occur in N–S to NE–SW trending bodies. ... described above gave rise to three areas of.

  5. Rectified-Linear-Unit-Based Deep Learning for Biomedical Multi-label Data.

    Science.gov (United States)

    Wang, Pu; Ge, Ruiquan; Xiao, Xuan; Cai, Yunpeng; Wang, Guoqing; Zhou, Fengfeng

    2017-09-01

    Disease diagnosis is one of the major data mining questions by the clinicians. The current diagnosis models usually have a strong assumption that one patient has only one disease, i.e. a single-label data mining problem. But the patients, especially when at the late stages, may have more than one disease and require a multi-label diagnosis. The multi-label data mining is much more difficult than a single-label one, and very few algorithms have been developed for this situation. Deep learning is a data mining algorithm with highly dense inner structure and has achieved many successful applications in the other areas. We propose a hypothesis that rectified-linear-unit-based deep learning algorithm may also be good at the clinical questions, by revising the last layer as a multi-label output. The proof-of-concept experimental data support the hypothesis, and the community may be interested in trying more applications.

  6. Geological map of Uruguay Esc 1,100,000. Cuchilla del Ombu. Sheet H-12

    International Nuclear Information System (INIS)

    Montana, J.

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Cuchilla del Ombu) and the explanatory memoranda which describes the geological, lithological and sedimentological characteristics soils. In crystalline rocks have been recognized four basic units: porphyritic granite, Cunapiru granite, Cunapiru subvolcanic microgranite and metamorfites

  7. Study on geological environment in the Tono area. An approach to surface-based investigation

    International Nuclear Information System (INIS)

    2002-12-01

    Mizunami Underground Research (MIU) Project has aimed at preparation of basis of investigation, analysis and evaluation of geology of deep underground and basis of engineering technologies of ultra deep underground. This report stated an approach and information of surface-based investigation for ground water flow system and MIU Project by the following contents, 1) objects and preconditions, 2) information of geological environment for analysis of material transition and design of borehole, 3) modeling, 4) tests and investigations and 5) concept of investigation. The reference data consists of results of studies such as the geological construction model, topography, geologic map, structural map, linear structure and estimated fault, permeability, underground stream characteristics, the quality of underground water and rock mechanics. (S.Y.)

  8. Field Reconnaissance Geologic Mapping of the Columbia Hills, Mars: Results from MER Spirit and MRO HiRISE Observations

    Science.gov (United States)

    Crumpler, L.S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R.V.; Bell, J.F.; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N.A.; Haldemann, A.; Lewis, Kevin W.; Wang, A.E.; Schroder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, Ralf; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhofer, G.; McEwen, A.; Rice, J. W.; Rice, M.; deSouza, P.; Hurowitz, J.

    2011-01-01

    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity.

  9. Geologic map of Big Bend National Park, Texas

    Science.gov (United States)

    Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.

    2011-01-01

    The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and

  10. The geologic history of Margaritifer basin, Mars

    Science.gov (United States)

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  11. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  12. Preliminary geologic map of the Lathrop Wells volcanic center

    International Nuclear Information System (INIS)

    Crowe, B.; Harrington, C.; McFadden, L.; Perry, F.; Wells, S.; Turrin, B.; Champion, D.

    1988-12-01

    A preliminary geologic map has been compiled for the bedrock geology of the Lathrop Wells volcanic center. The map was completed through use of a combination of stereo photographic interpretation and field mapping on color aerial photographs. These photographs (scale 1:4000) were obtained from American Aerial Surveys, Inc. They were flown on August 18, 1987, at the request of the Yucca Mountain Project (then Nevada Nuclear Waste Storage Investigations). The photographs are the Lathrop Wells VC-Area 25 series, numbers 1--32. The original negatives for these photographs are on file with American Aerial Surveys, Inc. Copies of the negatives have been archived at the Los Alamos National Laboratory, Group N-5. The preliminary geologic map is a bedrock geologic map. It does not show alluvial deposits, eolian sands, or scoria fall deposits from the youngest eruptive events. The units will be compiled on separate maps when the geomorphic and soils studies are more advanced

  13. Surficial geology and land classification, Mackenzie Valley Transportation Corridor

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, O L; Pilon, J; Veilette, J

    1974-01-01

    The objective of this project, continued from 1971 and 1972 is to provide an inventory of surficial geology and permafrost distribution data pertinent to pipeline construction, road building, and other land use activities that might take place in the Mackenzie Valley Transportation Corridor. Hughes together with N.W. Rutter devoted one month to reconnaissance examination of the area encompassed by this project and Project 710047 (see this report). A primary objective was to insure uniform usage of map-units throughout the 2 areas. Construction on the Mackenzie Highway was examined in order to evaluate terrain performance of various map-units crossed by the highway. Limited geological studies, including shallow borings and measurement of sections, were conducted to supplement field work of 1971 and 1972. J. Veillette conducted diamond drilling in permanently frozen surficial deposits during the period mid-March to mid-April.

  14. SIMULATION FRAMEWORK FOR REGIONAL GEOLOGIC CO{sub 2} STORAGE ALONG ARCHES PROVINCE OF MIDWESTERN UNITED STATES

    Energy Technology Data Exchange (ETDEWEB)

    Sminchak, Joel

    2012-09-30

    This report presents final technical results for the project Simulation Framework for Regional Geologic CO{sub 2} Storage Infrastructure along Arches Province of the Midwest United States. The Arches Simulation project was a three year effort designed to develop a simulation framework for regional geologic carbon dioxide (CO{sub 2}) storage infrastructure along the Arches Province through development of a geologic model and advanced reservoir simulations of large-scale CO{sub 2} storage. The project included five major technical tasks: (1) compilation of geologic, hydraulic and injection data on Mount Simon, (2) development of model framework and parameters, (3) preliminary variable density flow simulations, (4) multi-phase model runs of regional storage scenarios, and (5) implications for regional storage feasibility. The Arches Province is an informal region in northeastern Indiana, northern Kentucky, western Ohio, and southern Michigan where sedimentary rock formations form broad arch and platform structures. In the province, the Mount Simon sandstone is an appealing deep saline formation for CO{sub 2} storage because of the intersection of reservoir thickness and permeability. Many CO{sub 2} sources are located in proximity to the Arches Province, and the area is adjacent to coal fired power plants along the Ohio River Valley corridor. Geophysical well logs, rock samples, drilling logs, and geotechnical tests were evaluated for a 500,000 km{sup 2} study area centered on the Arches Province. Hydraulic parameters and historical operational information was also compiled from Mount Simon wastewater injection wells in the region. This information was integrated into a geocellular model that depicts the parameters and conditions in a numerical array. The geologic and hydraulic data were integrated into a three-dimensional grid of porosity and permeability, which are key parameters regarding fluid flow and pressure buildup due to CO{sub 2} injection. Permeability data

  15. Geologic literature on North America, 1785-1918; Part I, Bibliography

    Science.gov (United States)

    Nickles, John M.

    1923-01-01

    The bibliography forming Part I of this compilation includes papers relating to the geology paleontology, petrology, and mineralogy of North America-specifically, the United States, the Dominion of Canada and Newfoundland, the Arctic regions north of the continent, Greenland, Mexico Central America, Panama, and the West Indies including Trinidad-and also the Hawaiian Islands. Geographic and descriptive writings and accounts of travels with incidental mention of geologic facts are not included. Textbooks published in America and work general in character by American authors are given but general papers by foreign writers are excluded unless they have appeared in American publications. Papers by American writers on the geology of other parts of the world are not listed.

  16. Geology of the Integrated Disposal Facility Trench

    International Nuclear Information System (INIS)

    Reidel, Steve P.; Fecht, Karl R.

    2005-01-01

    This report describes the geology of the integrated Disposal Facility (IDF) Trench. The stratigraphy consists of some of the youngest sediments of the Missoula floods (younger than 770 ka). The lithology is dominated sands with minor silts and gravels that are largely unconsolidated. The stratigraphy can be subdivided into five geologic units that can be mapped throughout the trench. Four of the units were deposited by the Missoula floods and the youngest consists of windblown sand and silt. The sediment has little moisture and is consistent with that observed in the characterization boreholes. The sedimentary layers are flat lying and there are no faults or folds present. Two clastic dikes were encountered, one along the west wall and one that can be traced from the north to the southwall. The north-south clastic dike nearly bifurcates the trench but the west wall clastic dike can not be traced very far east into the trench. The classic dikes consist mainly of sand with clay-lined walls. The sediment in the dikes is compacted to partly cemented and are more resistant than the layered sediments

  17. Dose linearity and uniformity of Siemens ONCOR impression plus linear accelerator designed for step-and-shoot intensity-modulated radiation therapy

    Directory of Open Access Journals (Sweden)

    Bhangle Janhavi

    2007-01-01

    Full Text Available For step-and-shoot type delivery of intensity-modulated radiation therapy (IMRT, beam stability characteristics during the first few monitor units need to be investigated to ensure the planned dose delivery. This paper presents the study done for Siemens ONCOR impression plus linear accelerator before commissioning it for IMRT treatment. The beam stability for 6 and 15 MV in terms of dose monitor linearity, monitor unit stability and beam uniformity is investigated in this work. Monitor unit linearity is studied using FC65G chamber for the range 1-100 MU. The dose per MU is found to be linear for small monitor units down to 1 MU for both 6 and 15 MV beams. The monitor unit linearity is also studied with portal imaging device for the range 1-20 MU for 6 MV beam. The pixel values are within ±1σ confidence level up to 2 MU; for 1 MU, the values are within ±2σ confidence level. The flatness and symmetry analysis is done for both energies in the range of 1-10 MU with Kodak diagnostic films. The flatness and symmetry are found to be within ±3% up to 2 MU for 6 MV and up to 3 MU for 15 MV.

  18. Dose linearity and uniformity of Siemens ONCOR impression plus linear accelerator designed for step-and-shoot intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Bhangle, Janhavi R.; Sathiya Narayanan, V.K.; Deshpande, Shrikant A.

    2007-01-01

    For step-and-shoot type delivery of intensity-modulated radiation therapy (IMRT), beam stability characteristics during the first few monitor units need to be investigated to ensure the planned dose delivery. This paper presents the study done for Siemens ONCOR impression plus linear accelerator before commissioning it for IMRT treatment. The beam stability for 6 and 15 MV in terms of dose monitor linearity, monitor unit stability and beam uniformity is investigated in this work. Monitor unit linearity is studied using FC65G chamber for the range 1-100 MU. The dose per MU is found to be linear for small monitor units down to 1 MU for both 6 and 15 MV beams. The monitor unit linearity is also studied with portal imaging device for the range 1-20 MU for 6 MV beam. The pixel values are within ±1σ confidence level up to 2 MU; for 1 MU, the values are within ±2σ confidence level. The flatness and symmetry analysis is done for both energies in the range of 1-10 MU with Kodak diagnostic films. The flatness and symmetry are found to be within ±3% up to 2 MU for 6 MV and up to 3 MU for 15 MV. (author)

  19. GeoSciML version 3: A GML application for geologic information

    Science.gov (United States)

    International Union of Geological Sciences., I. C.; Richard, S. M.

    2011-12-01

    After 2 years of testing and development, XML schema for GeoSciML version 3 are now ready for application deployment. GeoSciML draws from many geoscience data modelling efforts to establish a common suite of feature types to represent information associated with geologic maps (materials, structures, and geologic units) and observations including structure data, samples, and chemical analyses. After extensive testing and use case analysis, in December 2008 the CGI Interoperability Working Group (IWG) released GeoSciML 2.0 as an application schema for basic geological information. GeoSciML 2.0 is in use to deliver geologic data by the OneGeology Europe portal, the Geological Survey of Canada Groundwater Information Network (wet GIN), and the Auscope Mineral Resources portal. GeoSciML to version 3.0 is updated to OGC Geography Markup Language v3.2, re-engineered patterns for association of element values with controlled vocabulary concepts, incorporation of ISO19156 Observation and Measurement constructs for representing numeric and categorical values and for representing analytical data, incorporation of EarthResourceML to represent mineral occurrences and mines, incorporation of the GeoTime model to represent GSSP and stratigraphic time scale, and refactoring of the GeoSciML namespace to follow emerging ISO practices for decoupling of dependencies between standardized namespaces. These changes will make it easier for data providers to link to standard vocabulary and registry services. The depth and breadth of GeoSciML remains largely unchanged, covering the representation of geologic units, earth materials and geologic structures. ISO19156 elements and patterns are used to represent sampling features such as boreholes and rock samples, as well as geochemical and geochronologic measurements. Geologic structures include shear displacement structures (brittle faults and ductile shears), contacts, folds, foliations, lineations and structures with no preferred

  20. Linear Motor With Air Slide

    Science.gov (United States)

    Johnson, Bruce G.; Gerver, Michael J.; Hawkey, Timothy J.; Fenn, Ralph C.

    1993-01-01

    Improved linear actuator comprises air slide and linear electric motor. Unit exhibits low friction, low backlash, and more nearly even acceleration. Used in machinery in which positions, velocities, and accelerations must be carefully controlled and/or vibrations must be suppressed.

  1. Global Geological Map of Venus

    Science.gov (United States)

    Ivanov, M. A.

    2008-09-01

    Introduction: The Magellan SAR images provide sufficient data to compile a geological map of nearly the entire surface of Venus. Such a global and selfconsistent map serves as the base to address the key questions of the geologic history of Venus. 1) What is the spectrum of units and structures that makes up the surface of Venus [1-3]? 2) What volcanic/tectonic processes do they characterize [4-7]? 3) Did these processes operated locally, regionally, or globally [8- 11]? 4) What are the relationships of relative time among the units [8]? 5) At which length-scale these relationships appear to be consistent [8-10]? 6) What is the absolute timing of formation of the units [12-14]? 7) What are the histories of volcanism, tectonics and the long-wavelength topography on Venus? 7) What model(s) of heat loss and lithospheric evolution [15-21] do these histories correspond to? The ongoing USGS program of Venus mapping has already resulted in a series of published maps at the scale 1:5M [e.g. 22-30]. These maps have a patch-like distribution, however, and are compiled by authors with different mapping philosophy. This situation not always results in perfect agreement between the neighboring areas and, thus, does not permit testing geological hypotheses that could be addressed with a self-consistent map. Here the results of global geological mapping of Venus at the scale 1:10M is presented. The map represents a contiguous area extending from 82.5oN to 82.5oS and comprises ~99% of the planet. Mapping procedure: The map was compiled on C2- MIDR sheets, the resolution of which permits identifying the basic characteristics of previously defined units. The higher resolution images were used during the mapping to clarify geologic relationships. When the map was completed, its quality was checked using published USGS maps [e.g., 22-30] and the catalogue of impact craters [31]. The results suggest that the mapping on the C2-base provided a highquality map product. Units and

  2. Identifikasi Lapisan Geologi Bawah Permukaan Berdasarkan Data Geomagnetik di Sungai Logawa Banyumas

    Directory of Open Access Journals (Sweden)

    Sukmaji Anom Raharjo

    2014-02-01

    Full Text Available Identification of geological resources can be done either using surface mapping and cross sectional stratigraphy measurement or geophysical approximation beneath the earth surface. Geomagnetic exploration related to the existing of gold mineral begins with the total magnetic field intensity measurements at 173 locations was scattered in 109.196970 - 109.207580E and 7.448830 - 7.454110S. Interpretation from processing of data obtained four anomalous object, which is defined as fine-medium sandstone (χ= 0.0015 cgs units, coarse sandstone and compact (χ= 0.0035 cgs units, igneous basalt-andesite old Slamet (χ= 0.0085 cgs units, and the complex bedrock (χ= 0.0145 cgs units. The presence of gold mineralization in the rock throughout geomagnetic surveys used to identification of subsurface geological which is interpreted from the processing data that indicated the presence of gold in association with sedimentary (sandstone is often referred to as sediment-hosted.

  3. Geologic studies in Alaska by the U.S. Geological Survey, 1992

    Science.gov (United States)

    Dusel-Bacon, Cynthia; Till, Alison B.

    1993-01-01

    This collection of 19 papers continues the annual series of U.S. Geological Survey reports on the geology of Alaska. The contributions, which include full-length Articles and shorter Geologic Notes, cover a broad range of topics including dune formation, stratigraphy, paleontology, isotopic dating, mineral resources, and tectonics. Articles, grouped under four regional headings, span nearly the entire State from the North Slope to southwestern, south-central, and southeastern Alaska (fig. 1).In the section on northern Alaska, Galloway and Carter use new data on dune morphology and radiocarbon ages from the western Arctic Coastal Plain to develop a late Holocene chronology of multiple episodes of dune stabilization and reactivation for the region. Their study has important implications for climatic changes in northern Alaska during the past 4,000 years. In two papers, Dumoulin and her coauthors describe lithofacies and conodont faunas of Carboniferous strata in the western Brooks Range, discuss depositional environments, and propose possible correlations and source areas for some of the strata. Schenk and Bird propose a preliminary division of the Lower Cretaceous stratigraphic section in the central part of the North Slope into depositional sequences. Aleinikoff and others present new U-Pb data for zircons from metaigneous rocks from the central Brooks Range. Karl and Mull, reacting to a proposal regarding terrane nomenclature for northern Alaska that was published in last year's Alaskan Studies Bulletin, provide a historical perspective of the evolution of terminology for tectonic units in the Brooks Range and present their own recommendations.

  4. Some concepts of favorability for world-class-type uranium deposits in the northeastern United States

    International Nuclear Information System (INIS)

    Adler, H.H.

    1981-03-01

    An account is given of concepts of favorability of geologic environments in the eastern United States for uranium deposits of several major types existing elsewhere in the world. The purpose is to convey some initial ideas about the interrelationships of the geology of the eastern United States and the geologic settings of certain of these world-class deposits. The study and report include consideration of uranium deposits other than those generally manifesting the geologic, geochemical and genetic characteristics associated with the conventional sandstone-type ores of the western United States

  5. Some concepts of favorability for world-class-type uranium deposits in the northeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Adler, H.H.

    1981-03-01

    An account is given of concepts of favorability of geologic environments in the eastern United States for uranium deposits of several major types existing elsewhere in the world. The purpose is to convey some initial ideas about the interrelationships of the geology of the eastern United States and the geologic settings of certain of these world-class deposits. The study and report include consideration of uranium deposits other than those generally manifesting the geologic, geochemical and genetic characteristics associated with the conventional sandstone-type ores of the western United States.

  6. Lidar-enhanced geologic mapping, examples from the Medford and Hood River areas, Oregon

    Science.gov (United States)

    Wiley, T. J.; McClaughry, J. D.

    2012-12-01

    Lidar-based 3-foot digital elevation models (DEMs) and derivatives (slopeshade, hillshade, contours) were used to help map geology across 1700 km2 (650 mi2) near Hood River and Medford, Oregon. Techniques classically applied to interpret coarse DEMs and small-scale topographic maps were adapted to take advantage of lidar's high resolution. Penetration and discrimination of plant cover by the laser system allowed recognition of fine patterns and textures related to underlying geologic units and associated soils. Surficial geologic maps were improved by the ability to examine tiny variations in elevation and slope. Recognition of low-relief features of all sizes was enhanced where pixel elevation ranges of centimeters to meters, established by knowledge of the site or by trial, were displayed using thousands of sequential colors. Features can also be depicted relative to stream level by preparing a DEM that compensates for gradient. Near Medford, lidar-derived contour maps with 1- to 3-foot intervals revealed incised bajada with young, distal lobes defined by concentric contour lines. Bedrock geologic maps were improved by recognizing geologic features associated with surface textures and patterns or topographic anomalies. In sedimentary and volcanic terrain, structure was revealed by outcrops or horizons lying at one stratigraphic level. Creating a triangulated irregular network (TIN) facet from positions of three or more such points gives strike and dip. Each map area benefited from hundreds of these measurements. A more extensive DEM in the plane of the TIN facet can be subtracted from surface elevation (lidar DEM) to make a DEM with elevation zero where the stratigraphic horizon lies at the surface. The distribution of higher and lower stratigraphic horizons can be shown by highlighting areas similarly higher or lower on the same DEM. Poor fit of contacts or faults projected between field traverses suggest the nature and amount of intervening geologic structure

  7. The geological map of Canelones Department scale 1:1000.000

    International Nuclear Information System (INIS)

    Spoturno, J.; Oyhantcabal, P.; Goso, C.; Aubet, N.; Cazaux; S; Huelmo, S.; Morales, E.; Loureiro, J.

    2004-01-01

    The geological map of Canelones Department (Uruguay), scale 1:100.000 is presented. This map shows the distribution of the proterozoic, mesozoic and cenozoic lithological units. A stratigraphic division of this region is included [es

  8. The geological map of Montevideo Department scale 1:50.000

    International Nuclear Information System (INIS)

    Spoturno, J.; Oyhantcabal, P.; Goso, C.; Aubet, N.; Cazaux; S; Huelmo, S.; Morales, E.; Loureiro, J.

    2004-01-01

    The geological map of Montevideo Department (Uruguay), scale 1:50.000 is presented. This map shows the distribution of the proterozoic, mesozoic and cenozoic lithological units. A stratigraphic division of this region is included [es

  9. Two concepts of uranium geology in the United States of America that may be useful in Latin American uranium exploration

    International Nuclear Information System (INIS)

    Curry, D.L.

    1981-01-01

    Two concepts of the origin and deposition of uranium are described that are somewhat different from the conventional sandstone deposits of the United States of America. The first concept relates to granites as source and host rocks. Work done in the Granite Mountains of Wyoming provides considerable support for a granitic source. Calculations indicate that between 50 and 75% of the uranium has been leached from the granite to depths of nearly 400 m, and could have been source rocks for deposits in the Tertiary sandstones in adjacent basins. Areas of intense fracturing are also hosts for redeposition and concentration of uranium in granites of the Granite Mountains. The second concept describes resurgent cauldrons as source and host rocks. The development of resurgent cauldrons provides a variety of geological settings favourable for both intra-caldera deposits and deposits forming in adjacent basins. A collapsed caldera may contain a lake into which sediments from ejected material carrying uranium could be carried and into which direct contributions of uranium could come from the underlying magma. Weathering of uranium-bearing material deposited outside the caldera could provide uranium to be redeposited in conventional deposits such as roll fronts. Geological investigations carried out in the Great Basins of Utah and Nevada are cited. (author)

  10. The potential impact of geological environment on health status of residents of the Slovak Republic.

    Science.gov (United States)

    Rapant, S; Cvečková, V; Dietzová, Z; Fajčíková, K; Hiller, E; Finkelman, R B; Škultétyová, S

    2014-06-01

    In order to assess the potential impact of the geological environment on the health of the population of the Slovak Republic, the geological environment was divided into eight major units: Paleozoic, Crystalline, Carbonatic Mesozoic and basal Paleogene, Carbonatic-silicate Mesozoic and Paleogene, Paleogene Flysch, Neovolcanics, Neogene and Quaternary sediments. Based on these geological units, the databases of environmental indicators (chemical elements/parameters in groundwater and soils) and health indicators (concerning health status and demographic development of the population) were compiled. The geological environment of the Neogene volcanics (andesites and basalts) has been clearly documented as having the least favourable impact on the health of Slovak population, while Paleogene Flysch geological environment (sandstones, shales, claystones) has the most favourable impact. The most significant differences between these two geological environments were observed, especially for the following health indicators: SMRI6364 (cerebral infarction and strokes) more than 70 %, SMRK (digestive system) 55 %, REI (circulatory system) and REE (endocrine and metabolic system) almost 40 % and REC (malignant neoplasms) more than 30 %. These results can likely be associated with deficit contents of Ca and Mg in groundwater from the Neogene volcanics that are only about half the level of Ca and Mg in groundwater of the Paleogene sediments.

  11. The 16th International Geological Congress, Washington, 1933

    Science.gov (United States)

    Nelson, C.M.

    2009-01-01

    In 1933, the International Geological Congress (IGC) returned to the United States of America (USA) for its sixteenth meeting, forty-two years after the 5th IGC convened in Washington. The Geological Society of America and the U.S. Geological Survey (USGS) supplied the major part of the required extra-registration funding after the effects of the Great Depression influenced the 72th U.S. Congress not to do so. A reported 1, 182 persons or organizations, representing fifty-four countries, registered for the 16 th IGC and thirty-four countries sent 141 official delegates. Of the total number of registrants, 665 actually attended the meeting; 500 came from the USA; and fifteen had participated in the 5th IGC. The 16 th Meeting convened in the U.S. Chamber of Commerce Building from 22 to 29 July. The eighteen half-day scientific sections-orogenesis (four), major divisions of the Paleozoic (three), miscellaneous (three), batholiths and related intrusives (two), arid-region geomorphic processes and products (one), fossil man and contemporary faunas (one), geology of copper and other ore deposits (one), geology of petroleum (one), measuring geologic time (one), and zonal relations of metalliferous deposits (one)-included 166 papers, of which fifty (including several of the key contributions) appeared only by title. The Geological Society of Washington, the National Academy of Sciences, and the U.S. Bureau of Mines hosted or contributed to evening presentations or receptions. Twenty-eight of the 16th IGC's thirty new guidebooks and one new USGS Bulletin aided eight pre-meeting, seven during-meeting, and four post-meeting field trips of local, regional, or national scope. The remaining two new guidebooks outlined the USA's structural geology and its stratigraphic nomenclature. The 16th IGC published a two-volume monograph on the world's copper resources (1935) and a two-volume report of its proceedings (1936).

  12. Overview of geology and tectonic evolution of the Baikal-Tuva area.

    Science.gov (United States)

    Gladkochub, Dmitry; Donskaya, Tatiana

    2009-01-01

    This chapter provides the results of geological investigations of the main tectonic units of the Baikal-Tuva region (southwestern part of Siberia) during the last decades: the ancient Siberian craton and adjacent areas of the Central Asian Orogenic belt. In the framework of these main units we describe small-scale blocks (terranes) with focus on details of their inner structure and evolution through time. As well as describing the geology and tectonics of the area studied, we give an overview of underwater sediments, neotectonics, and some phenomena of history and development of the Baikal, Khubsugul, Chargytai, and Tore-Chol Lakes basins of the Baikal-Tuva region. It is suggested that these lakes' evolution was controlled by neotectonic processes, modern seismic activity, and global climate changes.

  13. Synthetic geology - Exploring the "what if?" in geology

    Science.gov (United States)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  14. Geological site selection studies in Precambrian crystalline rocks in Finland

    International Nuclear Information System (INIS)

    Vuorela, P.

    1988-01-01

    In general geological investigations made since 1977 the Finnish crystalline bedrock has been determined to be suitable for the final disposal of the spent nuclear fuel. Regional investigations have been mainly based on already existing geological studies. Special attention has been paid on the international geological Finland as the Baltic Shield is stiff and stable and situated far outside the zones of volcanic and seismic activity. The present day crustal movements in Finland are related to landuplift process. Movements and possible faults in the bedrock follow fracture zones which devide the bedrock into mosaiclike blocks. As compared to small scale geological maps the bedrock blocks are often indicated as large granite rock formations which are less broken than the surrounding rocks, though the age of granite formations is at least 1500 millions of years. The large bedrock blocks (20-300 km 2 ) are divided to smaller units by different magnitudes of fractures and these smaller bedrock units (5-20 km 2 ) have been selected for further site selection investigations. At the first stage of investigations 327 suitable regional bedrock blocks have been identified on the basis of Landsat-1 winter and summer mosaics of Finland. After two years of investigations 134 investigation areas were selected inside 61 bedrock blocks and classified to four priority classes, the three first of which were redommended for further investigations. Geological criteries used in classification indicated clear differences between the classes one and three, however all classified areas are situated in large rather homogenous bedrock blocks and more exact three dimensional suitability errors may not be observed until deep bore holes have been made

  15. Geologic Map of the Shenandoah National Park Region, Virginia

    Science.gov (United States)

    Southworth, Scott; Aleinikoff, John N.; Bailey, Christopher M.; Burton, William C.; Crider, E.A.; Hackley, Paul C.; Smoot, Joseph P.; Tollo, Richard P.

    2009-01-01

    The geology of the Shenandoah National Park region of Virginia was studied from 1995 to 2008. The focus of the study was the park and surrounding areas to provide the National Park Service with modern geologic data for resource management. Additional geologic data of the adjacent areas are included to provide regional context. The geologic map can be used to support activities such as ecosystem delineation, land-use planning, soil mapping, groundwater availability and quality studies, aggregate resources assessment, and engineering and environmental studies. The study area is centered on the Shenandoah National Park, which is mostly situated in the western part of the Blue Ridge province. The map covers the central section and western limb of the Blue Ridge-South Mountain anticlinorium. The Skyline Drive and Appalachian National Scenic Trail straddle the drainage divide of the Blue Ridge highlands. Water drains northwestward to the South Fork of the Shenandoah River and southeastward to the James and Rappahannock Rivers. East of the park, the Blue Ridge is an area of low relief similar to the physiography of the Piedmont province. The Great Valley section of the Valley and Ridge province is west of Blue Ridge and consists of Page Valley and Massanutten Mountain. The distribution and types of surficial deposits and landforms closely correspond to the different physiographic provinces and their respective bedrock. The Shenandoah National Park is underlain by three general groups of rock units: (1) Mesoproterozoic granitic gneisses and granitoids, (2) Neoproterozoic metasedimentary rocks of the Swift Run Formation and metabasalt of the Catoctin Formation, and (3) siliciclastic rocks of the Lower Cambrian Chilhowee Group. The gneisses and granitoids mostly underlie the lowlands east of Blue Ridge but also rugged peaks like Old Rag Mountain (996 meter). Metabasalt underlies much of the highlands, like Stony Man (1,200 meters). The siliciclastic rocks underlie linear

  16. Risk Assessment and Management for Long-Term Storage of CO2 in Geologic Formations — United States Department of Energy R&D

    Directory of Open Access Journals (Sweden)

    Dawn Deel

    2007-02-01

    Full Text Available Concern about increasing atmospheric concentrations of carbon dioxide (CO2 and other greenhouse gases (GHG and their impact on the earth's climate has grown significantly over the last decade. Many countries, including the United States, wrestle with balancing economic development and meeting critical near-term environmental goals while minimizing long-term environmental risks. One promising solution to the buildup of GHGs in the atmosphere, being pursued by the U.S. Department of Energy's (DOE National Energy Technology Laboratory (NETL and its industrial and academic partners, is carbon sequestration—a process of permanent storage of CO2 emissions in underground geologic formations, thus avoiding CO2 release to the atmosphere. This option looks particularly attractive for point source emissions of GHGs, such as fossil fuel fired power plants. CO2 would be captured, transported to a sequestration site, and injected into an appropriate geologic formation. However, sequestration in geologic formations cannot achieve a significant role in reducing GHG emissions unless it is acceptable to stakeholders, regulators, and the general public, i.e., unless the risks involved are judged to be acceptable. One tool that can be used to achieve acceptance of geologic sequestration of CO2 is risk assessment, which is a proven method to objectively manage hazards in facilities such as oil and natural gas fields, pipelines, refineries, and chemical plants. Although probabilistic risk assessment (PRA has been applied in many areas, its application to geologic CO2 sequestration is still in its infancy. The most significant risk from geologic carbon sequestration is leakage of CO2. Two types of CO2 releases are possible—atmospheric and subsurface. High concentrations of CO2 caused by a release to the atmosphere would pose health risks to humans and animals, and any leakage of CO2 back into the atmosphere negates the effort expended to sequester the CO2

  17. Peak thrust operation of linear induction machines from parameter identification

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Eastham, T.R.; Dawson, G.E. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Electrical and Computer Engineering

    1995-12-31

    Various control strategies are being used to achieve high performance operation of linear drives. To maintain minimum volume and weight of the power supply unit on board the transportation vehicle, peak thrust per unit current operation is a desirable objective. True peak thrust per unit current through slip control is difficult to achieve because the parameters of linear induction machines vary during normal operation. This paper first develops a peak thrust per unit current control law based on the per-phase equivalent circuit for linear induction machines. The algorithm for identification of the variable parameters in induction machines is then presented. Application to an operational linear induction machine (LIM) demonstrates the utility of this algorithm. The control strategy is then simulated, based on an operational transit LIM, to show the capability of achieving true peak thrust operation for linear induction machines.

  18. Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations

    Science.gov (United States)

    Crumpler, L.S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R.V.; Bell, J.F.; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N.A.; Haldemann, A.; Lewis, K.W.; Wang, A.E.; Schroder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, Ralf; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhfer, G.; McEwen, A.; Rice, J.W.; Rice, M.; deSouza, P.; Hurowitz, J.

    2011-01-01

    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity

  19. An overview on the national strategy to implement a deep geological repository in Romania

    International Nuclear Information System (INIS)

    Negut, G.; Ghitescu, P.; Dupleac, D.; Prisecaru, I.

    2010-01-01

    Since 1996 in Romania was started operation Candu 700 MW Unit 1 Cernavoda Nuclear Power Station and in 2007 begun operation of the Candu 700 MW Unit 2. The energy produced by nuclear units is accompanied by radioactive waste production. According with European Union requirements in Romania was created National Agency for Radioactive Waste (ANDRAD) in 2003. ANDRAD business is radioactive waste management. ANDRAD, together with the stakeholders, worked the law of great radioactive waste generators contribution for radioactive waste management, which was approved by Governmental Ordinance in September 2007. ANDRAD is responsible manager of this fund. ANDRAD is responsible, also, with the National Strategy for radioactive waste management. Romania's National Strategy for Energy approved in 2007 by Government Ordinance says that a deep geological repository for spent fuel (SF) and High Level Waste (HLW) is to be put in operation around 2055. IAEA supported ANDRAD in a Technical Cooperation Project for a concept of a geological repository of radioactive waste. A strategy to implement o geological repository in Romania was drafted. There are problems with potential rocks and sites to host a geological repository. There are problems for funding this project and also sensitive and serious problems connected with social and political issues. Paper presents this strategy and all the problems arisen by implantation of this strategy. (authors)

  20. Site investigation SFR. Rock type coding, overview geological mapping and identification of rock units and possible deformation zones in drill cores from the construction of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Jesper (Vattenfall Power Consultant AB, Stockholm (Sweden)); Curtis, Philip; Bockgaard, Niclas (Golder Associates AB (Sweden)); Mattsson, Haakan (GeoVista AB, Luleaa (Sweden))

    2011-01-15

    This report presents the rock type coding, overview lithological mapping and identification of rock units and possible deformation zones in drill cores from 32 boreholes associated with the construction of SFR. This work can be seen as complementary to single-hole interpretations of other older SFR boreholes earlier reported in /Petersson and Andersson 2010/: KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C. Due to deficiencies in the available material, the necessary activities have deviated somewhat from the established methodologies used during the recent Forsmark site investigations for the final repository for spent nuclear fuel. The aim of the current work has been, wherever possible, to allow the incorporation of all relevant material from older boreholes in the ongoing SFR geological modelling work in spite of the deficiencies. The activities include: - Rock type coding of the original geological mapping according to the nomenclature used during the preceding Forsmark site investigation. As part of the Forsmark site investigation such rock type coding has already been performed on most of the old SFR boreholes if the original geological mapping results were available. This earlier work has been complemented by rock type coding on two further boreholes: KFR01 and KFR02. - Lithological overview mapping, including documentation of (1) rock types, (2) ductile and brittle-ductile deformation and (3) alteration for drill cores from eleven of the boreholes for which no original geological borehole mapping was available (KFR31, KFR32, KFR34, KFR37,KFR38, KFR51, KFR69, KFR70, KFR71, KFR72 and KFR89). - Identification of possible deformation zones and merging of similar rock types into rock units. This follows SKB's established criteria and methodology of the geological Single-hole interpretation (SHI) process wherever possible. Deviations from the standard SHI process are associated with the lack of data, for example BIPS images

  1. Site investigation SFR. Rock type coding, overview geological mapping and identification of rock units and possible deformation zones in drill cores from the construction of SFR

    International Nuclear Information System (INIS)

    Petersson, Jesper; Curtis, Philip; Bockgaard, Niclas; Mattsson, Haakan

    2011-01-01

    This report presents the rock type coding, overview lithological mapping and identification of rock units and possible deformation zones in drill cores from 32 boreholes associated with the construction of SFR. This work can be seen as complementary to single-hole interpretations of other older SFR boreholes earlier reported in /Petersson and Andersson 2010/: KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C. Due to deficiencies in the available material, the necessary activities have deviated somewhat from the established methodologies used during the recent Forsmark site investigations for the final repository for spent nuclear fuel. The aim of the current work has been, wherever possible, to allow the incorporation of all relevant material from older boreholes in the ongoing SFR geological modelling work in spite of the deficiencies. The activities include: - Rock type coding of the original geological mapping according to the nomenclature used during the preceding Forsmark site investigation. As part of the Forsmark site investigation such rock type coding has already been performed on most of the old SFR boreholes if the original geological mapping results were available. This earlier work has been complemented by rock type coding on two further boreholes: KFR01 and KFR02. - Lithological overview mapping, including documentation of (1) rock types, (2) ductile and brittle-ductile deformation and (3) alteration for drill cores from eleven of the boreholes for which no original geological borehole mapping was available (KFR31, KFR32, KFR34, KFR37,KFR38, KFR51, KFR69, KFR70, KFR71, KFR72 and KFR89). - Identification of possible deformation zones and merging of similar rock types into rock units. This follows SKB's established criteria and methodology of the geological Single-hole interpretation (SHI) process wherever possible. Deviations from the standard SHI process are associated with the lack of data, for example BIPS images, or a

  2. Insights from the correlation of the preliminary Geologic and Mineralogic maps of Vesta from the Dawn mission data

    Science.gov (United States)

    Frigeri, A.; De Sanctis, M. C.; Ammannito, E.; Yingst, R. A.; Mest, S.; Garry, B.; Magni, G.; Palomba, E.; Petro, N.; Tosi, F.; Williams, D.; Zambon, F.; Jaumann, R.; Pieters, C. M.; Raymond, C. A.; Russell, C. T.

    2012-04-01

    The Dawn mission to Vesta has greatly improved the quality and resolution of data available to explore the asteroid. Prior to the Dawn mission the best data available was the one from Hubble Space Telescope with a maximum resolution of 50 km per pixel. The survey phase of the mission has pushed spatial resolution up to about 100 meters per pixel by the Framing Camera on-board Dawn, and 700 meters per pixel for the VIR spectrometer, spanning the spectral range from the visible to infrared at 0.25-1 μm and 1-5 μm. The frames of the FC and VIR have been processed and mosaicked. A preliminary Geologic map has been produced by mapping units and structures over the FC mosaic and the DTM derived from stereo processing of visible imagery. We will present some examples of correlation between the preliminary geologic and VIR-derived mineralogic maps. The Dawn mission team is using Geographic Information System tools for locating frames and for data exchange among the team. The use of GIS tools and data formats significantly improves our ability to create and interpret geologic maps, and also improves the interoperability of high level data products among the instruments' team. VIR data have been synthesized into a series of spectral indicators that give indications on the mineralogical composition and the physical state of the surface. We ingested in GIS the the preliminary geologic map as units and structures and we projected the mosaics of spectral indicators in a common coordinate reference system. The first spectral indicators we started to look at were the Band Depth computed on pyroxene Band II and the Band Center also computed on Band II. The comparison of the preliminary geologic map and the mosaics of spectral indicators extracted from VIR data show promising aspects on both the geologic and mineralogic aspects. Geologic units are made up of bodies of rock that are interpreted to have been formed by a particular process or set of related processes over a discrete

  3. Subsurface geology off Bombay with paleoclimatic inferences interpreted from shallow seismic profiles

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.; Almeida, F.; Vora, K.H.; Siddiquie, H.N.

    High resolution seismic reflection profiles nearshore areas off Bombay provide information on subsurface geology and permit certain paleoclimatic inferences. Three sedimentary units overlie the acoustic basement: late Pleistocene consolidated...

  4. Mineral resources, geologic structure, and landform surveys

    Science.gov (United States)

    Lattman, L. H.

    1973-01-01

    The use of ERTS-1 imagery for mineral resources, geologic structure, and landform surveys is discussed. Four categories of ERTS imagery application are defined and explained. The types of information obtained by the various multispectral band scanners are analyzed. Samples of land use maps and tectoning and metallogenic models are developed. It is stated that the most striking features visible on ERTS imagery are regional lineaments, or linear patterns in the topography, which reflect major fracture zones extending upward from the basement of the earth.

  5. Selected data for hydrothermal-convection systems in the United States with estimated temperatures greater than or equal to 90/sup 0/C: back-up data for US Geological Survey Circular 790

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, R.H.; Brook, C.A.; Swanson, J.R.; Mabey, D.R.

    1978-12-01

    A compilation of data used in determining the accessible resource base for identified hydrothermal convection systems greater than or equal to 90/sup 0/C in the United States are presented. Geographic, geologic, chemical, isotopic, volumetric, and bibliographic data and calculated thermal energy contents are listed for all vapor-dominated and hot-water systems with estimated reservoir temperatures greater than or equal to 90/sup 0/C and reservoir depths less than 3 km known to the authors in mid 1978. Data presented here is stored in the US Geological Survey's geothermal computer file GEOTHERM. Data for individual hydrothermal convection systems in each state are arranged geographically from north to south and west to east without regard to the type or temperature of the system. Locations of the systems and corresponding reference numbers are shown on map 1 accompanying US Geological Survey Circular 790.

  6. Geology and geomorphology of the Carolina Sandhills, Chesterfield County, South Carolina

    Science.gov (United States)

    Swezey, Christopher; Fitzwater, Bradley A.; Whittecar, G. Richard

    2016-01-01

    This two-day field trip focuses on the geology and geomorphology of the Carolina Sandhills in Chesterfield County, South Carolina. This area is located in the updip portion of the U.S. Atlantic Coastal Plain province, supports an ecosystem of longleaf pine (Pinus palustris) and wiregrass (Aristida stricta), and contains three major geologic map units: (1) An ~60–120-m-thick unit of weakly consolidated sand, sandstone, mud, and gravel is mapped as the Upper Cretaceous Middendorf Formation and is interpreted as a fluvial deposit. This unit is capped by an unconformity, and displays reticulate mottling, plinthite, and other paleosol features at the unconformity. The Middendorf Formation is the largest aquifer in South Carolina. (2) A 0.3–10-m-thick unit of unconsolidated sand is mapped as the Quaternary Pinehurst Formation and is interpreted as deposits of eolian sand sheets and dunes derived via remobilization of sand from the underlying Cretaceous strata. This unit displays argillic horizons and abundant evidence of bioturbation by vegetation. (3) A geomorphologic feature in the study area is a north-trending escarpment (incised by headwater streams) that forms a markedly asymmetric drainage divide. This drainage divide, as well as the Quaternary terraces deposits, are interpreted as evidence of landscape disequilibrium (possibly geomorphic responses to Quaternary climate changes).

  7. SIMULATION FRAMEWORK FOR REGIONAL GEOLOGIC CO{sub 2} STORAGE ALONG ARCHES PROVINCE OF MIDWESTERN UNITED STATES

    Energy Technology Data Exchange (ETDEWEB)

    Sminchak, Joel

    2012-09-30

    This report presents final technical results for the project Simulation Framework for Regional Geologic CO{sub 2} Storage Infrastructure along Arches Province of the Midwest United States. The Arches Simulation project was a three year effort designed to develop a simulation framework for regional geologic carbon dioxide (CO{sub 2}) storage infrastructure along the Arches Province through development of a geologic model and advanced reservoir simulations of large-scale CO{sub 2} storage. The project included five major technical tasks: (1) compilation of geologic, hydraulic and injection data on Mount Simon, (2) development of model framework and parameters, (3) preliminary variable density flow simulations, (4) multi-phase model runs of regional storage scenarios, and (5) implications for regional storage feasibility. The Arches Province is an informal region in northeastern Indiana, northern Kentucky, western Ohio, and southern Michigan where sedimentary rock formations form broad arch and platform structures. In the province, the Mount Simon sandstone is an appealing deep saline formation for CO{sub 2} storage because of the intersection of reservoir thickness and permeability. Many CO{sub 2} sources are located in proximity to the Arches Province, and the area is adjacent to coal fired power plants along the Ohio River Valley corridor. Geophysical well logs, rock samples, drilling logs, and geotechnical tests were evaluated for a 500,000 km{sup 2} study area centered on the Arches Province. Hydraulic parameters and historical operational information was also compiled from Mount Simon wastewater injection wells in the region. This information was integrated into a geocellular model that depicts the parameters and conditions in a numerical array. The geologic and hydraulic data were integrated into a three-dimensional grid of porosity and permeability, which are key parameters regarding fluid flow and pressure buildup due to CO{sub 2} injection. Permeability data

  8. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    International Nuclear Information System (INIS)

    J.S. Stuckless; D. O'Leary

    2006-01-01

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain

  9. The Role of Geologic Mapping in NASA PDSI Planning

    Science.gov (United States)

    Williams, D. A.; Skinner, J. A.; Radebaugh, J.

    2017-12-01

    Geologic mapping is an investigative process designed to derive the geologic history of planetary objects at local, regional, hemispheric or global scales. Geologic maps are critical products that aid future exploration by robotic spacecraft or human missions, support resource exploration, and provide context for and help guide scientific discovery. Creation of these tools, however, can be challenging in that, relative to their terrestrial counterparts, non-terrestrial planetary geologic maps lack expansive field-based observations. They rely, instead, on integrating diverse data types wth a range of spatial scales and areal coverage. These facilitate establishment of geomorphic and geologic context but are generally limited with respect to identifying outcrop-scale textural details and resolving temporal and spatial changes in depositional environments. As a result, planetary maps should be prepared with clearly defined contact and unit descriptions as well as a range of potential interpretations. Today geologic maps can be made from images obtained during the traverses of the Mars rovers, and for every new planetary object visited by NASA orbital or flyby spacecraft (e.g., Vesta, Ceres, Titan, Enceladus, Pluto). As Solar System Exploration develops and as NASA prepares to send astronauts back to the Moon and on to Mars, the importance of geologic mapping will increase. In this presentation, we will discuss the past role of geologic mapping in NASA's planetary science activities and our thoughts on the role geologic mapping will have in exploration in the coming decades. Challenges that planetary mapping must address include, among others: 1) determine the geologic framework of all Solar System bodies through the systematic development of geologic maps at appropriate scales, 2) develop digital Geographic Information Systems (GIS)-based mapping techniques and standards to assist with communicating map information to the scientific community and public, 3) develop

  10. United States program for the safety assessment of geologic disposal of commercial radioactive wastes

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1977-01-01

    The safe disposal of commercial radioactive wastes in deep geologic formations is the goal of the National Waste Terminal Storage (NWTS) Program. A comprehensive safety assessment program has been established which will proceed on a schedule consistent with the start-up of two waste repositories in late 1985. Safety assessment begins with selection of a disposal site; that is, all geologic and hydrologic factors must indicate long-term stability of the formation and prospective isolation of wastes from circulating around waters for hundreds of thousands of years. The long-term stability of each site must be demonstrated by sophisticated rock mechanics analyses. To help provide answers on the mechanism and consequences of an unlikely breach in the integrity of the repository, a Waste Isolation Safety Assessment Program (WISAP) is being sponsored at the Battelle Pacific Northwest Laboratories. Methods and data necessary to characterize the safety of generic geological waste disposal concepts, which are to be applied in the assessment of specific sties, will be developed. Other long-term safety-related studies that complement WISAP are in progress, for example, borehole plugging, salt dissolutioning, and salt transport in vertical boreholes. Requirements for licensing are in the process of being formulated by the NRC

  11. Preliminary report on the geology of the Lakeview uranium area, Lake County, Oregon

    International Nuclear Information System (INIS)

    Walker, G.W.

    1980-01-01

    This study was directed partly toward determining uranium resources, but, more specifically toward establishing the geochemical relations of uranium and other metals with rhyolite bodies in the Lakeview uranium area and to compare these bodies with similar rhyolitic bodies outside the area. The ultimate goal of this work was to determine, if possible, the uranium resource potential of these kinds of rocks over an area of several thousand square kilometers and to apply knowledge gained from this resource assessment to similar terranes within the Northern Basin and Range Province. The regional evaluation is still in progress, and its results will be reported at some appropriate time in the future. To these ends a review was made of previous geologic studies of the area and of the uranium deposits themselves, and some regional geologic mapping was done at a scale of 1:24,000. A geologic map was prepared of an area covering about 450 km 2 (approx. 170 mi 2 ), more or less centered on the White King and Lucky Lass mines and on the major cluster of uranium-bearing rhyolites, and some geologic reconnaissance and attendant sampling of rhyolite intrusives and extrusives well outside the Lakeview uranium area were completed. Isotopic dates were obtained on some units and magnetic polarity characteristics were determined on many units in order to more firmly establish age and stratigraphic relations of the diverse volcanic and volcaniclastic units of the region. Major oxide chemistry and selected trace-element chemistry were obtained on those rhyolitic units suitable for analysis in order to establish distribution patterns for uranium, as well as several other metals, in the rhyolitic rocks of the Lakeview uranium area and to make regional correlations with other analyzed rhyolitic rocks

  12. Feature level fusion for enhanced geological mapping of ophiolile complex using ASTER and Landsat TM data

    International Nuclear Information System (INIS)

    Pournamdari, M; Hashim, M

    2014-01-01

    Chromite ore deposit occurrence is related to ophiolite complexes as a part of the oceanic crust and provides a good opportunity for lithological mapping using remote sensing data. The main contribution of this paper is a novel approaches to discriminate different rock units associated with ophiolite complex using the Feature Level Fusion technique on ASTER and Landsat TM satellite data at regional scale. In addition this study has applied spectral transform approaches, consisting of Spectral Angle Mapper (SAM) to distinguish the concentration of high-potential areas of chromite and also for determining the boundary between different rock units. Results indicated both approaches show superior outputs compared to other methods and can produce a geological map for ophiolite complex rock units in the arid and the semi-arid region. The novel technique including feature level fusion and Spectral Angle Mapper (SAM) discriminated ophiolitic rock units and produced detailed geological maps of the study area. As a case study, Sikhoran ophiolite complex located in SE, Iran has been selected for image processing techniques. In conclusion, a suitable approach for lithological mapping of ophiolite complexes is demonstrated, this technique contributes meaningfully towards economic geology in terms of identifying new prospects

  13. Complementary-relationship-based 30 year normals (1981-2010) of monthly latent heat fluxes across the contiguous United States

    Science.gov (United States)

    Szilagyi, Jozsef

    2015-11-01

    Thirty year normal (1981-2010) monthly latent heat fluxes (ET) over the conterminous United States were estimated by a modified Advection-Aridity model from North American Regional Reanalysis (NARR) radiation and wind as well as Parameter-Elevation Regressions on Independent Slopes Model (PRISM) air and dew-point temperature data. Mean annual ET values were calibrated with PRISM precipitation (P) and validated against United States Geological Survey runoff (Q) data. At the six-digit Hydrologic Unit Code level (sample size of 334) the estimated 30 year normal runoff (P - ET) had a bias of 18 mm yr-1, a root-mean-square error of 96 mm yr-1, and a linear correlation coefficient value of 0.95, making the estimates on par with the latest Land Surface Model results but without the need for soil and vegetation information or any soil moisture budgeting.

  14. Impact of advanced fuel cycles on uncertainty associated with geologic repositories

    International Nuclear Information System (INIS)

    Rechard, Rob P.; Lee, Joon; Sutton, Mark; Greenberg, Harris R.; Robinson, Bruce A.; Nutt, W. Mark

    2013-01-01

    This paper provides a qualitative evaluation of the impact of advanced fuel cycles, particularly partition and transmutation of actinides, on the uncertainty associated with geologic disposal. Based on the discussion, advanced fuel cycles, will not materially alter (1) the repository performance (2) the spread in dose results around the mean (3) the modeling effort to include significant features, events, and processes in the performance assessment, or (4) the characterization of uncertainty associated with a geologic disposal system in the regulatory environment of the United States. (authors)

  15. The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt

    Science.gov (United States)

    Schaber, G.G.; McCauley, J.F.; Breed, C.S.

    1997-01-01

    Bir Safsaf, within the hyperarid 'core' of the Sahara in the Western Desert of Egypt, was recognized following the SIR-A and SIR-B missions in the 1980s as one of the key localities in northeast Africa, where penetration of dry sand by radar signals delineates previously unknown, sand-buried paleodrainage valleys ('radar-rivers') of middle Tertiary to Quaternary age. The Bir Safsaf area was targeted as a focal point for further research in sand penetration and geologic mapping using the multifrequency and polarimetric SIR-C/X-SAR sensors. Analysis of the SIR-C/X-SAR data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and structures mostly hidden from view on the ground and on Landsat TM images by a relatively thin, but extensive blanket of blow sand. Basement rock units (granitoids and gneisses) and the fractures associated with them at Bir Safsaf are shown here for the first time to be clearly delineated using C- and L-band SAR images. The detectability of most geologic features is dependent primarily on radar frequency, as shown for wind erosion patterns in bedrock at X-band (3 cm wavelength), and for geologic units and sand and clay-filled fractures in weathered crystal-line basement rocks at C-band (6 cm) and L-band (24 cm). By contrast, Quaternary paleodrainage channels are detectable at all three radar frequencies owing, among other things, to an usually thin cover of blow sand. The SIR-C/X-SAR data investigated to date enable us to make specific recommendations about the utility of certain radar sensor configurations for geologic and paleoenvironmental reconnaissance in desert regions.Analysis of the shuttle imaging radar-C/X-synthetic aperture radar (SIR-C/X-SAR) data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and

  16. A spatial database of bedding attitudes to accompany Geologic map of the greater Denver area, Front Range Urban Corridor, Colorado

    Science.gov (United States)

    Trimble, Donald E.; Machette, Michael N.; Brandt, Theodore R.; Moore, David W.; Murray, Kyle E.

    2003-01-01

    This digital map shows bedding attitude symbols display over the geographic extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette 1973-1977 and published in 1979 (U.S. Geological Survey Map I-856-H) under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999), was digitized under the USGS Front Range Infrastructure Resources Project (see cross-reference). In general, the mountainous areas in the west part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle is comprised of eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.

  17. U.S. Geological Survey: A synopsis of Three-dimensional Modeling

    Science.gov (United States)

    Jacobsen, Linda J.; Glynn, Pierre D.; Phelps, Geoff A.; Orndorff, Randall C.; Bawden, Gerald W.; Grauch, V.J.S.

    2011-01-01

    The U.S. Geological Survey (USGS) is a multidisciplinary agency that provides assessments of natural resources (geological, hydrological, biological), the disturbances that affect those resources, and the disturbances that affect the built environment, natural landscapes, and human society. Until now, USGS map products have been generated and distributed primarily as 2-D maps, occasionally providing cross sections or overlays, but rarely allowing the ability to characterize and understand 3-D systems, how they change over time (4-D), and how they interact. And yet, technological advances in monitoring natural resources and the environment, the ever-increasing diversity of information needed for holistic assessments, and the intrinsic 3-D/4-D nature of the information obtained increases our need to generate, verify, analyze, interpret, confirm, store, and distribute its scientific information and products using 3-D/4-D visualization, analysis, modeling tools, and information frameworks. Today, USGS scientists use 3-D/4-D tools to (1) visualize and interpret geological information, (2) verify the data, and (3) verify their interpretations and models. 3-D/4-D visualization can be a powerful quality control tool in the analysis of large, multidimensional data sets. USGS scientists use 3-D/4-D technology for 3-D surface (i.e., 2.5-D) visualization as well as for 3-D volumetric analyses. Examples of geological mapping in 3-D include characterization of the subsurface for resource assessments, such as aquifer characterization in the central United States, and for input into process models, such as seismic hazards in the western United States.

  18. Conversion factors: SI metric and U.S. customary units

    Science.gov (United States)

    ,

    1977-01-01

    The policy of the U.S. Geological Survey is to foster use of the International System of Units (SI) which was defined by the 11th General Conference of Weights and Measures in 1960. This modernized metric system constitutes an international "language" by means of which communications throughout the world's scientific and economic communities may be improved. This publication is designed to familiarize the reader with the SI units of measurement that correspond to the common units frequently used in programs of the Geological Survey. In the near future, SI units will be used exclusively in most publications of the Survey; the conversion factors provided herein will help readers to obtain a "feel" for each unit and to "think metric."

  19. The geological attitude

    International Nuclear Information System (INIS)

    Fuller, J.G.C.M.

    1992-01-01

    This paper discusses geological activity which takes place mainly in response to industrial and social pressures. Past geological reaction to these pressures profoundly altered popular conceptions of time, the Church, man, and the balance of nature. The present-day circumstances of geology are not essentially different from those of the past. Petroleum geology in North American illustrates the role of technology in determining the style and scope of geological work. Peaks of activity cluster obviously on the introduction from time to time of new instrumental capabilities (geophysical apparatus, for example), although not infrequently such activity is testing concepts or relationships perceived long before. Organic metamorphism and continental drift provide two examples. The petroleum industry now faces the dilemma of satisfying predicted demands for fuel, without doing irreparable injury to its environment of operation. Awareness of man's place in nature, which is a fundamental perception of geology, governs the geological attitude

  20. Three-dimensional geologic mapping of the Cenozoic basin fill, Amargosa Desert basin, Nevada and California

    Science.gov (United States)

    Taylor, Emily M.; Sweetkind, Donald S.

    2014-01-01

    Understanding the subsurface geologic framework of the Cenozoic basin fill that underlies the Amargosa Desert in southern Nevada and southeastern California has been improved by using borehole data to construct three-dimensional lithologic and interpreted facies models. Lithologic data from 210 boreholes from a 20-kilometer (km) by 90-km area were reduced to a limited suite of descriptors based on geologic knowledge of the basin and distributed in three-dimensional space using interpolation methods. The resulting lithologic model of the Amargosa Desert basin portrays a complex system of interfingered coarse- to fine-grained alluvium, playa and palustrine deposits, eolian sands, and interbedded volcanic units. Lithologic units could not be represented in the model as a stacked stratigraphic sequence due to the complex interfingering of lithologic units and the absence of available time-stratigraphic markers. Instead, lithologic units were grouped into interpreted genetic classes, such as playa or alluvial fan, to create a three-dimensional model of the interpreted facies data. Three-dimensional facies models computed from these data portray the alluvial infilling of a tectonically formed basin with intermittent internal drainage and localized regional groundwater discharge. The lithologic and interpreted facies models compare favorably to resistivity, aeromagnetic, and geologic map data, lending confidence to the interpretation.

  1. Quantitative geological modeling based on probabilistic integration of geological and geophysical data

    DEFF Research Database (Denmark)

    Gulbrandsen, Mats Lundh

    In order to obtain an adequate geological model of any kind, proper integration of geophysical data, borehole logs and geological expert knowledge is important. Geophysical data provide indirect information about geology, borehole logs provide sparse point wise direct information about geology...... entitled Smart Interpretation is developed. This semi-automatic method learns the relation between a set of data attributes extracted from deterministically inverted airborne electromagnetic data and a set of interpretations of a geological layer that is manually picked by a geological expert...

  2. Characterization of Near-Surface Geology and Possible Voids Using Resistivity and Electromagnetic Methods at the Gran Quivira Unit of Salinas Pueblo Missions National Monument, Central New Mexico, June 2005

    Science.gov (United States)

    Ball, Lyndsay B.; Lucius, Jeffrey E.; Land, Lewis A.; Teeple, Andrew

    2006-01-01

    At the Gran Quivira Unit of Salinas Pueblo Missions National Monument in central New Mexico, a partially excavated pueblo known as Mound 7 has recently become architecturally unstable. Historical National Park Service records indicate both natural caves and artificial tunnels may be present in the area. Knowledge of the local near-surface geology and possible locations of voids would aid in preservation of the ruins. Time-domain and frequency-domain electromagnetic as well as direct-current resistivity methods were used to characterize the electrical structure of the near-surface geology and to identify discrete electrical features that may be associated with voids. Time-domain electromagnetic soundings indicate three major electrical layers; however, correlation of these layers to geologic units was difficult because of the variability of lithologic data from existing test holes. Although resistivity forward modeling was unable to conclusively determine the presence or absence of voids in most cases, the high-resistivity values (greater than 5,000 ohm-meters) in the direct-current resistivity data indicate that voids may exist in the upper 50 meters. Underneath Mound 7, there is a possibility of large voids below a depth of 20 meters, but there is no indication of substantial voids in the upper 20 meters. Gridded lines and profiled inversions of frequency-domain electromagnetic data showed excellent correlation to resistivity features in the upper 5 meters of the direct-current resistivity data. This technique showed potential as a reconnaissance tool for detecting voids in the very near surface.

  3. GIS-technologies as a mechanism to study geological structures

    Science.gov (United States)

    Sharapatov, Abish

    2014-05-01

    Specialized GIS-technologies allow creating multi-parameter models, completing multi-criteria optimisation tasks, and issues of geological profile forecasts using miscellaneous data. Pictorial and attributive geological and geophysical information collected to create GIS database is supplemented by the ERS (Earth's Remote Sensing) data, air spectrometry, space images, and topographic data. Among the important tasks are as follows: a unification of initial geological, geophysical and other types of information on a tectonic position, rock classification and stratigraphic scale; topographic bases (various projectures, scales); the levels of detail and exhaustibility; colors and symbols of legends; data structures and their correlation; units of measurement of physical quantities, and attribute systems of descriptions. Methods of the geological environment investigation using GIS-technology are based on a principle of the research target analogy with a standard. A similarity ratio is quantitative estimate. A geological forecast model is formed by structuring of geological information based on detailed analysis and aggregation of geological and formal knowledge bases on standard targets. Development of a bank of models of the analyzed geological structures of various range, ore-bearing features described by numerous prospecting indicators is the way to aggregate geological knowledge. The south terrain of the Valerianovskaya structure-facies zone (SFZ) of the Torgai paleo-rift structure covered with thick Mesozoic and Cenozoic rocks up to 2,000m is considered a so-called training ground for the development of GIS-technology. Parameters of known magnetite deposits located in the north of the SFZ (Sarybaiskoye, Sokolovskoye, etc.) are used to create the standard model. A meaning of the job implemented involves the following: - A goal-seeking nature of the research being performed and integration of the geological, geo-physical and other data (in many cases, efforts of the

  4. Disribution and interplay of geologic processes on Titan from Cassini radar data

    Science.gov (United States)

    Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, Giuseppe; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.

    2010-01-01

    The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ~350 m to ~2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30 degrees), with no dunes being present above 60 degrees. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30 degrees and 60 degrees north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial

  5. Distribution and interplay of geologic processes on Titan from Cassini radar data

    Science.gov (United States)

    Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, Giuseppe; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.

    2010-01-01

    The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ???350 m to ???2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30??), with no dunes being present above 60??. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30?? and 60?? north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the

  6. Transfer by anisotropic scattering between subsets of the unit sphere of directions in linear transport theory

    International Nuclear Information System (INIS)

    Trombetti, T.

    1990-01-01

    The exact kernel method is presented for linear transport problems with azimuth-dependent angular fluxes. It is based on the evaluation of average scattering densities (ASD's) that fully describe the neutron (or particle) transfer between subsets of the unit sphere of directions by anisotropic scattering. Reciprocity and other ASD functional properties are proved and combined with the symmetry properties of suitable SN quadrature sets. This greatly reduces the number of independent ASD's to be computed and stored. An approach for performing ASD computations with reciprocity checks is presented. ASD expressions of the scattering source for typical 2D geometries are explicitly given. (author)

  7. Geological and hydrochemical sensitivity of the eastern United States to acid precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G.R.; Galloway, J.N.; Norton, S.A.; Schofield, C.L.; Shaffer, P.W.; Burns, D.A.

    1980-03-01

    A new analysis of bedrock geology maps of the eastern US constitutes a simple model for predicting areas which might be impacted by acid precipitation and it allows much greater resolution for detecting sensitivity than has previously been available for the region. Map accuracy has been verified by examining current alkalinities and pH's of waters in several test states, including Maine, New Hampshire, New York, Virginia and North Carolina. In regions predicted to be highly sensitive, alkalinities in upstream sites were generally low. Many areas of the eastern US are pinpointed in which some of the surface waters, especially upstream reaches, may be sensitive to acidification. Pre-1970 data were compared to post-1975 data, revealing marked declines in both alkalinity and pH of sensitive waters of two states tested, North Carolina, where pH and alkalinity have decreased in 80% of 38 streams and New Hampshire, where pH in 90% of 49 streams and lakes has decreased since 1949. These sites are predicted to be sensitive by the geological map on the basis of their earlier alkalinity values. The map is to be improved by the addition of a soils component.

  8. A geologic guide to Wrangell-Saint Elias National Park and Preserve, Alaska; a tectonic collage of northbound terranes

    Science.gov (United States)

    Winkler, Gary R.; with contributions by MacKevett, E. M.; Plafker, George; Richter, D.H.; Rosenkrans, D.S.; Schmoll, H.R.

    2000-01-01

    Wrangell-Saint Elias National Park and Preserve, the largest unit in the U.S. National Park System, encompasses near 13.2 million acres of geological wonderments. This geologic guide presents history of exploration and Earth-science investigation; describes the complex geologic makeup; characterizes the vast college of accretion geologic terranes in this area of Alaska's continental margin; recapitulates the effects of earthquakes, volcanoes, and glaciers; characterizes the copper and gold resources of the parklands; and describes outstanding locales within the park and preserve area. A glossary of geologic terms and a categorized list of additional sources of information complete this report.

  9. Relational Database for the Geology of the Northern Rocky Mountains - Idaho, Montana, and Washington

    Science.gov (United States)

    Causey, J. Douglas; Zientek, Michael L.; Bookstrom, Arthur A.; Frost, Thomas P.; Evans, Karl V.; Wilson, Anna B.; Van Gosen, Bradley S.; Boleneus, David E.; Pitts, Rebecca A.

    2008-01-01

    A relational database was created to prepare and organize geologic map-unit and lithologic descriptions for input into a spatial database for the geology of the northern Rocky Mountains, a compilation of forty-three geologic maps for parts of Idaho, Montana, and Washington in U.S. Geological Survey Open File Report 2005-1235. Not all of the information was transferred to and incorporated in the spatial database due to physical file limitations. This report releases that part of the relational database that was completed for that earlier product. In addition to descriptive geologic information for the northern Rocky Mountains region, the relational database contains a substantial bibliography of geologic literature for the area. The relational database nrgeo.mdb (linked below) is available in Microsoft Access version 2000, a proprietary database program. The relational database contains data tables and other tables used to define terms, relationships between the data tables, and hierarchical relationships in the data; forms used to enter data; and queries used to extract data.

  10. Geologic assessment of undiscovered conventional oil and gas resources--Middle Eocene Claiborne Group, United States part of the Gulf of Mexico Basin

    Science.gov (United States)

    Hackley, Paul C.

    2012-01-01

    The Middle Eocene Claiborne Group was assessed using established U.S. Geological Survey (USGS) assessment methodology for undiscovered conventional hydrocarbon resources as part of the 2007 USGS assessment of Paleogene-Neogene strata of the United States part of the Gulf of Mexico Basin including onshore and State waters. The assessed area is within the Upper Jurassic-Cretaceous-Tertiary Composite total petroleum system, which was defined as part of the assessment. Source rocks for Claiborne oil accumulations are interpreted to be organic-rich downdip shaley facies of the Wilcox Group and the Sparta Sand of the Claiborne Group; gas accumulations may have originated from multiple sources including the Jurassic Smackover and Haynesville Formations and Bossier Shale, the Cretaceous Eagle Ford and Pearsall(?) Formations, and the Paleogene Wilcox Group and Sparta Sand. Hydrocarbon generation in the basin started prior to deposition of Claiborne sediments and is ongoing at present. Emplacement of hydrocarbons into Claiborne reservoirs has occurred primarily via vertical migration along fault systems; long-range lateral migration also may have occurred in some locations. Primary reservoir sands in the Claiborne Group include, from oldest to youngest, the Queen City Sand, Cook Mountain Formation, Sparta Sand, Yegua Formation, and the laterally equivalent Cockfield Formation. Hydrocarbon traps dominantly are rollover anticlines associated with growth faults; salt structures and stratigraphic traps also are important. Sealing lithologies probably are shaley facies within the Claiborne and in the overlying Jackson Group. A geologic model, supported by spatial analysis of petroleum geology data including discovered reservoir depths, thicknesses, temperatures, porosities, permeabilities, and pressures, was used to divide the Claiborne Group into seven assessment units (AU) with distinctive structural and depositional settings. The AUs include (1) Lower Claiborne Stable Shelf

  11. Geologic map of the Hasty Quadrangle, Boone and Newton Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Murray, Kyle E.

    2004-01-01

    This digital geologic map compilation presents new polygon (for example, geologic map unit contacts), line (for example, fault, fold axis, and structure contour), and point (for example, structural attitude, contact elevations) vector data for the Hasty 7.5-minute quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Hasty quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Hasty quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  12. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J.; Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II

    1998-01-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections of the southwestern Great Basin

  13. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J. [Geological Survey, Denver, CO (US); Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II [Pacific Western Technologies, Inc., Denver, CO (US)

    1998-11-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections o f the southwestern Great Basin.

  14. Geology and sinkhole development of the Hagerstown valley : phase II : [research summary].

    Science.gov (United States)

    2014-06-01

    The objective of this study was to map the western half of the Hagerstown Valley to : determine the distribution of karst features relative to bedrock geologic units using a : global positioning system (GPS).

  15. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    Science.gov (United States)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  16. Contributions to micromechanical model of the non linear behavior of the Callovo-Oxfordian argillite; Contributions a la modelisation micromecanique du comportement non lineaire de l'argilite du callovo-oxfordien

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Chakra Guery, A

    2007-12-15

    This work is performed in the general context of the project of underground disposal of radioactive waste, undertaken by the French National Radioactive Waste Management Agency (ANDRA). Due to its strong density and weak permeability, the formation of Callovo-Oxfordian argillite is chosen as one of possible geological barriers to radionuclides. The objective of the study to develop and validate a non linear homogenization approach of the mechanical behavior of Callovo-Oxfordian argillites. The material is modelled as a composite constituted of an elasto(visco)plastic clay matrix and of linear elastic or elastic damage inclusions. The macroscopic constitutive law is obtained by adapting the incremental method proposed by Hill. The derived model is first compared to Finite Element calculations on unit cell. It is then validated and applied for the prediction of the macroscopic stress-strain responses of the argillite at different geological depths. Finally, the micromechanical model is implemented in a commercial finite element code (Abaqus) for the simulation of a vertical shaft of the underground laboratory. This allows predicting the distribution of damage state and plastic strains and characterizing the excavation damage zone (EDZ). (author)

  17. Health benefits of geologic materials and geologic processes

    Science.gov (United States)

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  18. Lawrence Livermore Laboratory Nuclear Test Effects and Geologic Data Bank

    International Nuclear Information System (INIS)

    Howard, N.W.

    1976-01-01

    Data on the geology of the USERDA Nevada Test Site have been collected for the purpose of evaluating the possibility of release of radioactivity at proposed underground nuclear test sites. These data, including both the rock physical properties and the geologic structure and stratigraphy of a large number of drill-hole sites, are stored in the Lawrence Livermore Laboratory Earth Sciences Division Nuclear Test Effects and Geologic Data Bank. Retrieval programs can quickly provide a geological and geophysical comparison of a particular site with other sites where radioactivity was successfully contained. The data can be automatically sorted, compared, and averaged, and information listed according to site location, drill-hole construction, rock units, depth to key horizons and to the water table, and distance to faults. These programs also make possible ordered listings of geophysical properties (interval bulk density, overburden density, interval velocity, velocity to the surface, grain density, water content, carbonate content, porosity, and saturation of the rocks). The characteristics and capabilities of the data bank are discussed

  19. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica

    Science.gov (United States)

    Pour, Amin Beiranvand; Park, Yongcheol; Park, Tae-Yoon S.; Hong, Jong Kuk; Hashim, Mazlan; Woo, Jusun; Ayoobi, Iman

    2018-06-01

    Satellite remote sensing imagery is especially useful for geological investigations in Antarctica because of its remoteness and extreme environmental conditions that constrain direct geological survey. The highest percentage of exposed rocks and soils in Antarctica occurs in Northern Victoria Land (NVL). Exposed Rocks in NVL were part of the paleo-Pacific margin of East Gondwana during the Paleozoic time. This investigation provides a satellite-based remote sensing approach for regional geological mapping in the NVL, Antarctica. Landsat-8 and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) datasets were used to extract lithological-structural and mineralogical information. Several spectral-band ratio indices were developed using Landsat-8 and ASTER bands and proposed for Antarctic environments to map spectral signatures of snow/ice, iron oxide/hydroxide minerals, Al-OH-bearing and Fe, Mg-OH and CO3 mineral zones, and quartz-rich felsic and mafic-to-ultramafic lithological units. The spectral-band ratio indices were tested and implemented to Level 1 terrain-corrected (L1T) products of Landsat-8 and ASTER datasets covering the NVL. The surface distribution of the mineral assemblages was mapped using the spectral-band ratio indices and verified by geological expeditions and laboratory analysis. Resultant image maps derived from spectral-band ratio indices that developed in this study are fairly accurate and correspond well with existing geological maps of the NVL. The spectral-band ratio indices developed in this study are especially useful for geological investigations in inaccessible locations and poorly exposed lithological units in Antarctica environments.

  20. Geologic Map of the State of Hawai`i

    Science.gov (United States)

    Sherrod, David R.; Sinton, John M.; Watkins, Sarah E.; Brunt, Kelly M.

    2007-01-01

    About This Map The State's geology is presented on eight full-color map sheets, one for each of the major islands. These map sheets, the illustrative meat of the publication, can be downloaded in pdf format, ready to print. Map scale is 1:100,000 for most of the islands, so that each map is about 27 inches by 36 inches. The Island of Hawai`i, largest of the islands, is depicted at a smaller scale, 1:250,000, so that it, too, can be shown on 36-inch-wide paper. The new publication isn't limited strictly to its map depictions. Twenty years have passed since David Clague and Brent Dalrymple published a comprehensive report that summarized the geology of all the islands, and it has been even longer since the last edition of Gordon Macdonald's book, Islands in the Sea, was revised. Therefore the new statewide geologic map includes an 83-page explanatory pamphlet that revisits many of the concepts that have evolved in our geologic understanding of the eight main islands. The pamphlet includes simplified page-size geologic maps for each island, summaries of all the radiometric ages that have been gathered since about 1960, generalized depictions of geochemical analyses for each volcano's eruptive stages, and discussion of some outstanding topics that remain controversial or deserving of additional research. The pamphlet also contains a complete description of map units, which enumerates the characteristics for each of the state's many stratigraphic formations shown on the map sheets. Since the late 1980s, the audience for geologic maps has grown as desktop computers and map-based software have become increasingly powerful. Those who prefer the convenience and access offered by Geographic Information Systems (GIS) can also feast on this publication. An electronic database, suitable for most GIS software applications, is available for downloading. The GIS database is in an Earth projection widely employed throughout the State of Hawai`i, using the North American datum of

  1. Hydrogeologic framework and geologic structure of the Floridan aquifer system and intermediate confining unit in the Lake Okeechobee area, Florida

    Science.gov (United States)

    Reese, Ronald S.

    2014-01-01

    The successful implementation of aquifer storage and recovery (ASR) as a water-management tool requires detailed information on the hydrologic and hydraulic properties of the potential water storage zones. This report presents stratigraphic and hydrogeologic sections of the upper part of the Floridan aquifer system and the overlying confining unit or aquifer system in the Lake Okeechobee area, and contour maps of the upper contacts of the Ocala Limestone and the Arcadia Formation, which are represented in the sections. The sections and maps illustrate hydrogeologic factors such as confinement of potential storage zones, the distribution of permeability within the zones, and geologic features that may control the efficiency of injection, storage, and recovery of water, and thus may influence decisions on ASR activities in areas of interest to the Comprehensive Everglades Restoration Plan.

  2. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Stuckless; D. O' Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  3. Assessment of radon exposure in Austria based on geology and settlement

    International Nuclear Information System (INIS)

    Gruber, Valeria; Seidel, Claudia

    2008-01-01

    In Austria a fundamental radon indoor data net (about 40 000 measurements) exists. These radon indoor data are standardized and provide averaged political communities' values. This data net should be enhanced by soil gas measurements with regard to geological conditions, to avoid averaging and influences by political boundaries. Different geological units (characterized by geology, geochemical conditions, mineralogy, geophysics) will be surveyed regarding radon concentration by soil gas measurements and estimated to their potential radon hazard. To assess the radon exposure of the population geological units are selected which are either existing settlement areas or potential ones. So this survey can also provide a basis for land use planning. In this paper results of first studies for this purpose are shown. 160 soil gas measurements were carried out in different soil and sediment deposits originating from different ice age glacier movements in the Alps. These deposits are popular settlement areas, and indoor radon levels of some 1000 Bq/l were detected. 50 % of the results of soil gas radon measurements were above 60 kBq/m 3 , 18 % above 120 kBq/m 3 , which is likely to exceed the indoor radon standard of 400 Bq/l according to the Austrian standard ONORM S 5280-2. Higher radon activity concentrations were found in older ice ages, because of further progressed weathering. The radon soil gas measurements were carried out in different seasons to verify seasonal variations, and other parameters like Ra-226, Ra-228 activity concentration in soils, radon emanation factor, soil permeability and soil moisture were determined and related to the radon activity concentration. According to the example of this study, further soil gas measurements will be carried out in selected geological units. Additional research on the impact of actual dwelling and inhabitation situation on public exposure due to radon in Austria is being done currently. The soil gas radon measurement data

  4. Simulation of Anisotropic Rock Damage for Geologic Fracturing

    Science.gov (United States)

    Busetti, S.; Xu, H.; Arson, C. F.

    2014-12-01

    A continuum damage model for differential stress-induced anisotropic crack formation and stiffness degradation is used to study geologic fracturing in rocks. The finite element-based model solves for deformation in the quasi-linear elastic domain and determines the six component damage tensor at each deformation increment. The model permits an isotropic or anisotropic intact or pre-damaged reference state, and the elasticity tensor evolves depending on the stress path. The damage variable, similar to Oda's fabric tensor, grows when the surface energy dissipated by three-dimensional opened cracks exceeds a threshold defined at the appropriate scale of the representative elementary volume (REV). At the laboratory or wellbore scale (1000m) scales the damaged REV reflects early natural fracturing (background or tectonic fracturing) or shear strain localization (fault process zone, fault-tip damage, etc.). The numerical model was recently benchmarked against triaxial stress-strain data from laboratory rock mechanics tests. However, the utility of the model to predict geologic fabric such as natural fracturing in hydrocarbon reservoirs was not fully explored. To test the ability of the model to predict geological fracturing, finite element simulations (Abaqus) of common geologic scenarios with known fracture patterns (borehole pressurization, folding, faulting) are simulated and the modeled damage tensor is compared against physical fracture observations. Simulated damage anisotropy is similar to that derived using fractured rock-mass upscaling techniques for pre-determined fracture patterns. This suggests that if model parameters are constrained with local data (e.g., lab, wellbore, or reservoir domain), forward modeling could be used to predict mechanical fabric at the relevant REV scale. This reference fabric also can be used as the starting material property to pre-condition subsequent deformation or fluid flow. Continuing efforts are to expand the present damage

  5. Spent fuel performance in geologic repository environments

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1985-10-01

    The performance assessment of the waste package is a current area of study in the United States program to develop a geologic repository for nuclear waste isolation. The waste package is presently envisioned as the waste form and its surrounding containers and possibly a packing material composed of crushed host rock or mixtures of that rock with clays. This waste package is tied to performance criteria set forth in recent legislation. It is the goal of the Civilian Radioactive Waste Management Program to obtain the necessary information on the waste package, in several geologic environments, to show that the waste package provides reasonable assurance of meeting established performance criteria. This paper discusses the United States program directed toward managing high-level radioactive waste, with emphasis on the current effort to define the behavior of irradiated spent fuel in repository groundwaters. Current studies are directed toward understanding the rate and nature (such as valence state, colloid form if any, solid phase controlling solubility) of radionuclide release from the spent fuel. Due to the strong interactive effect of radiation, thermal fields, and waste package components on this release, current spent fuel studies are being conducted primarily in the presence of waste package components over a wide range of potential environments

  6. Contributions to micromechanical model of the non linear behavior of the Callovo-Oxfordian argillite; Contributions a la modelisation micromecanique du comportement non lineaire de l'argilite du callovo-oxfordien

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Chakra Guery, A

    2007-12-15

    This work is performed in the general context of the project of underground disposal of radioactive waste, undertaken by the French National Radioactive Waste Management Agency (ANDRA). Due to its strong density and weak permeability, the formation of Callovo-Oxfordian argillite is chosen as one of possible geological barriers to radionuclides. The objective of the study to develop and validate a non linear homogenization approach of the mechanical behavior of Callovo-Oxfordian argillites. The material is modelled as a composite constituted of an elasto(visco)plastic clay matrix and of linear elastic or elastic damage inclusions. The macroscopic constitutive law is obtained by adapting the incremental method proposed by Hill. The derived model is first compared to Finite Element calculations on unit cell. It is then validated and applied for the prediction of the macroscopic stress-strain responses of the argillite at different geological depths. Finally, the micromechanical model is implemented in a commercial finite element code (Abaqus) for the simulation of a vertical shaft of the underground laboratory. This allows predicting the distribution of damage state and plastic strains and characterizing the excavation damage zone (EDZ). (author)

  7. Geologic map of outcrop areas of sedimentary units in the eastern part of the Hailey 1 degree x 2 degrees quadrangle and part of the southern part of the Challis 1 degree x 2 degrees quadrangle, south-central Idaho

    Science.gov (United States)

    Link, P.K.; Mahoney, J.B.; Bruner, D.J.; Batatian, L.D.; Wilson, Eric; Williams, F.J.C.

    1995-01-01

    The paper version of the Geologic map of outcrop areas of sedimentary units in the eastern part of the Hailey 1x2 Quadrangle and part of the southern part of the Challis 1x2 Quadrangle, south-central Idaho was compiled by Paul Link and others in 1995. The plate was compiled on a 1:100,000 scale topographic base map. TechniGraphic System, Inc. of Fort Collins Colorado digitized this map under contract for N.Shock. G.Green edited and prepared the digital version for publication as a GIS database. The digital geologic map database can be queried in many ways to produce a variety of geologic maps.

  8. Dose linearity and uniformity of a linear accelerator designed for implementation of multileaf collimation system-based intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Saw, Cheng B.; Li Sicong; Ayyangar, Komanduri M.; Yoe-Sein, Maung; Pillai, Susha; Enke, Charles A.; Celi, Juan C.

    2003-01-01

    The dose linearity and uniformity of a linear accelerator designed for multileaf collimation system- (MLC) based IMRT was studied as a part of commissioning and also in response to recently published data. The linear accelerator is equipped with a PRIMEVIEW, a graphical interface and a SIMTEC IM-MAXX, which is an enhanced autofield sequencer. The SIMTEC IM-MAXX sequencer permits the radiation beam to be 'ON' continuously while delivering intensity modulated radiation therapy subfields at a defined gantry angle. The dose delivery is inhibited when the electron beam in the linear accelerator is forced out of phase with the microwave power while the MLC configures the field shape of a subfield. This beam switching mechanism reduces the overhead time and hence shortens the patient treatment time. The dose linearity, reproducibility, and uniformity were assessed for this type of dose delivery mechanism. The subfields with monitor units ranged from 1 MU to 100 MU were delivered using 6 MV and 23 MV photon beams. The doses were computed and converted to dose per monitor unit. The dose linearity was found to vary within 2% for both 6 MV and 23 MV photon beam using high dose rate setting (300 MU/min) except below 2 MU. The dose uniformity was assessed by delivering 4 subfields to a Kodak X-OMAT TL film using identical low monitor units. The optical density was converted to dose and found to show small variation within 3%. Our results indicate that this linear accelerator with SIMTEC IM-MAXX sequencer has better dose linearity, reproducibility, and uniformity than had been reported

  9. Lithospheric expression of geological units in central and eastern North America from full waveform tomography

    Science.gov (United States)

    Yuan, Huaiyu; French, Scott; Cupillard, Paul; Romanowicz, Barbara

    2014-09-01

    The EarthScope TA deployment has provided dense array coverage throughout the continental US and with it, the opportunity for high resolution 3D seismic velocity imaging of both lithosphere and asthenosphere in the continent. Building upon our previous long-period waveform tomographic modeling in North America, we present a higher resolution 3D isotropic and radially anisotropic shear wave velocity model of the North American lithospheric mantle, constructed tomographically using the spectral element method for wavefield computations and waveform data down to 40 s period. The new model exhibits pronounced spatial correlation between lateral variations in seismic velocity and anisotropy and major tectonic units as defined from surface geology. In the center of the continent, the North American craton exhibits uniformly thick lithosphere down to 200-250 km, while major tectonic sutures of Proterozoic age visible in the surface geology extend down to 100-150 km as relatively narrow zones of distinct radial anisotropy, with Vsv >Vsh. Notably, the upper mantle low velocity zone is present everywhere under the craton between 200 and 300 km depth. East of the continental rift margin, the lithosphere is broken up into a series of large, somewhat thinner (150 km) high velocity blocks, which extend laterally 200-300 km offshore into the Atlantic Ocean. Between the craton and these deep-rooted blocks, we find a prominent narrow band of low velocities that roughly follows the southern and eastern Laurentia rift margin and extends into New England. We suggest that the lithosphere along this band of low velocities may be thinned due to the combined effects of repeated rifting processes and northward extension of the hotspot related Bermuda low-velocity channel across the New England region. We propose that the deep rooted high velocity blocks east of the Laurentia margin represent the Proterozoic Gondwanian terranes of pan-African affinity, which were captured during the Rodinia

  10. Linear trend and climate response of five-needle pines in the western United States related to treeline proximity

    Energy Technology Data Exchange (ETDEWEB)

    Kipfmueller, K.F. [Minnesota Univ., Minneapolis, MN (United States). Dept. of Geography; Salzer, M.W. [Arizona Univ., Tucson, AZ (United States). Laboratory of Tree-Ring Research

    2010-01-15

    This study investigated sixty-six 5-needle pine growth chronologies from 1896 to their end years in order to identify potential patterns related to linear trends in ring width. Individual chronology responses to climate were also evaluated by comparing the chronologies with seasonal temperature and precipitation data from 1896 to the present date. Chronologies exhibiting similar patterns of climate response were grouped in order to examine the role of treeline proximity on climate-growth relationships. Ring width measurements for pine sites located in the western United States were obtained from the International Tree Ring Data Bank. Growth indices were compared among all sites in order to assess the relative strength of common signals with increasing distance. Pearson correlations were used to calculate linear trends for each chronology. A cluster analysis of climate response patterns indicated that most chronologies positively associated with temperatures were located near upper treeline and contained significant positive linear trends. The study suggested that 5-needle pine treeline chronologies may be used as predictors in temperature reconstructions. However, care must be taken to determine that collection sites have not been impacted by disturbances such as fire or insect outbreaks. 35 refs., 2 tabs., 5 figs.

  11. Chapter 8: US geological survey Circum-Arctic Resource Appraisal (CARA): Introduction and summary of organization and methods

    Science.gov (United States)

    Charpentier, R.R.; Gautier, D.L.

    2011-01-01

    The USGS has assessed undiscovered petroleum resources in the Arctic through geological mapping, basin analysis and quantitative assessment. The new map compilation provided the base from which geologists subdivided the Arctic for burial history modelling and quantitative assessment. The CARA was a probabilistic, geologically based study that used existing USGS methodology, modified somewhat for the circumstances of the Arctic. The assessment relied heavily on analogue modelling, with numerical input as lognormal distributions of sizes and numbers of undiscovered accumulations. Probabilistic results for individual assessment units were statistically aggregated taking geological dependencies into account. Fourteen papers in this Geological Society volume present summaries of various aspects of the CARA. ?? 2011 The Geological Society of London.

  12. Geology and bedrock engineering

    International Nuclear Information System (INIS)

    1985-11-01

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  13. Power calculation of linear and angular incremental encoders

    Science.gov (United States)

    Prokofev, Aleksandr V.; Timofeev, Aleksandr N.; Mednikov, Sergey V.; Sycheva, Elena A.

    2016-04-01

    Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and transmit the measured values back to the control unit. The capabilities of these systems are undergoing continual development in terms of their resolution, accuracy and reliability, their measuring ranges, and maximum speeds. This article discusses the method of power calculation of linear and angular incremental photoelectric encoders, to find the optimum parameters for its components, such as light emitters, photo-detectors, linear and angular scales, optical components etc. It analyzes methods and devices that permit high resolutions in the order of 0.001 mm or 0.001°, as well as large measuring lengths of over 100 mm. In linear and angular incremental photoelectric encoders optical beam is usually formulated by a condenser lens passes through the measuring unit changes its value depending on the movement of a scanning head or measuring raster. Past light beam is converting into an electrical signal by the photo-detecter's block for processing in the electrical block. Therefore, for calculating the energy source is a value of the desired value of the optical signal at the input of the photo-detecter's block, which reliably recorded and processed in the electronic unit of linear and angular incremental optoelectronic encoders. Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and

  14. Preliminary peak stage and streamflow data at selected U.S. Geological Survey streamgages for flooding in the central and southeastern United States during December 2015 and January 2016

    Science.gov (United States)

    Holmes, Robert R.; Watson, Kara M.; Harris, Thomas E.

    2016-06-16

    Flooding occurred in the central and southeastern United States during December 2015 and January 2016. The flooding was the result of more than 20 inches of rain falling in a 19 day period from December 12 to December 31, 2015. U.S. Geological Survey streamgages recorded 23 peaks of record during the subsequent flooding, with a total of 172 streamgages recording peaks that ranked in the top 5 all time for the period of record.

  15. The U.S. Geological Survey Geologic Collections Management System (GCMS)—A master catalog and collections management plan for U.S. Geological Survey geologic samples and sample collections

    Science.gov (United States)

    ,

    2015-01-01

    The U.S. Geological Survey (USGS) is widely recognized in the earth science community as possessing extensive collections of earth materials collected by research personnel over the course of its history. In 2006, a Geologic Collections Inventory was conducted within the USGS Geology Discipline to determine the extent and nature of its sample collections, and in 2008, a working group was convened by the USGS National Geologic and Geophysical Data Preservation Program to examine ways in which these collections could be coordinated, cataloged, and made available to researchers both inside and outside the USGS. The charge to this working group was to evaluate the proposition of creating a Geologic Collections Management System (GCMS), a centralized database that would (1) identify all existing USGS geologic collections, regardless of size, (2) create a virtual link among the collections, and (3) provide a way for scientists and other researchers to obtain access to the samples and data in which they are interested. Additionally, the group was instructed to develop criteria for evaluating current collections and to establish an operating plan and set of standard practices for handling, identifying, and managing future sample collections. Policies and procedures promoted by the GCMS would be based on extant best practices established by the National Science Foundation and the Smithsonian Institution. The resulting report—USGS Circular 1410, “The U.S. Geological Survey Geologic Collections Management System (GCMS): A Master Catalog and Collections Management Plan for U.S. Geological Survey Geologic Samples and Sample Collections”—has been developed for sample repositories to be a guide to establishing common practices in the collection, retention, and disposal of geologic research materials throughout the USGS.

  16. Offshore geology and geomorphology from Point Piedras Blancas to Pismo Beach, San Luis Obispo County, California

    Science.gov (United States)

    Watt, Janet Tilden; Johnson, Samuel Y.; Hartwell, Stephen R.; Roberts, Michelle

    2015-01-01

    Marine geology and geomorphology were mapped along the continental shelf and upper slope between Point Piedras Blancas and Pismo Beach, California. The map area is divided into the following three (smaller) map areas, listed from north to south: San Simeon, Morro Bay, and Point San Luis. Each smaller map area consists of a geologic map and the corresponding geophysical data that support the geologic mapping. Each geophysical data sheet includes shaded-relief multibeam bathymetry, seismic-reflection-survey tracklines, and residual magnetic anomalies, as well as a smaller version of the geologic map for reference. Offshore geologic units were delineated on the basis of integrated analysis of adjacent onshore geology, seafloor-sediment and rock samples, multibeam bathymetry and backscatter imagery, magnetic data, and high-resolution seismic-reflection profiles. Although the geologic maps are presented here at 1:35,000 scale, map interpretation was conducted at scales of between 1:6,000 and 1:12,000.

  17. Linear geologic structure and magic rock discrimination as determined from infrared data

    Science.gov (United States)

    Offield, T. W.; Rowan, L. C.; Watson, R. D.

    1970-01-01

    Color infrared photographs of the Beartooth Mountains, Montana show the distribution of mafic dikes and amphibolite bodies. Lineaments that cross grassy plateaus can be identified as dikes by the marked constrast between the dark rocks and the red vegetation. Some amphibolite bodies in granitic terrain can also be detected by infrared photography and their contacts can be accurately drawn due to enchanced contrast of the two types of rock in the near infrared. Reflectance measurements made in the field for amphibolite and granite show that the granite is 25% to 50% more reflective in the near infrared than in the visible region. Further enhancement is due to less atmospheric scattering than in the visible region. Thermal infrared images of the Mill Creek, Oklahoma test site provided information on geologic faults and fracture systems not obtainable from photographs. Subtle stripes that cross outcrop and intervening soil areas and which probably record water distribution are also shown on infrared photographs.

  18. POTENTIAL GEOLOGICAL SIGNIFICATIONS OF CRISIUM BASIN REVEALED BY CE-2 CELMS DATA

    Directory of Open Access Journals (Sweden)

    Z. Meng

    2018-04-01

    Full Text Available Mare Crisium is one of the most prominent multi-ring basins on the nearside of the Moon. In this study, the regolith thermophysical features of Mare Crisium are studied with the CELMS data from CE-2 satellite. Several important results are as follows. Firstly, the current geological interpretation only by optical data is not enough, and a new geological perspective is provided. Secondly, the analysis of the low TB anomaly combined with the (FeO+TiO2 abundance and Rock abundance suggests a special unknown material in shallow layer of the Moon surface. At last, a new basaltic volcanism is presented for Crisium Basin. The study hints the potential significance of the CELMS data in understanding the geological units over the Moon surface.

  19. Improvement of Storm Forecasts Using Gridded Bayesian Linear Regression for Northeast United States

    Science.gov (United States)

    Yang, J.; Astitha, M.; Schwartz, C. S.

    2017-12-01

    Bayesian linear regression (BLR) is a post-processing technique in which regression coefficients are derived and used to correct raw forecasts based on pairs of observation-model values. This study presents the development and application of a gridded Bayesian linear regression (GBLR) as a new post-processing technique to improve numerical weather prediction (NWP) of rain and wind storm forecasts over northeast United States. Ten controlled variables produced from ten ensemble members of the National Center for Atmospheric Research (NCAR) real-time prediction system are used for a GBLR model. In the GBLR framework, leave-one-storm-out cross-validation is utilized to study the performances of the post-processing technique in a database composed of 92 storms. To estimate the regression coefficients of the GBLR, optimization procedures that minimize the systematic and random error of predicted atmospheric variables (wind speed, precipitation, etc.) are implemented for the modeled-observed pairs of training storms. The regression coefficients calculated for meteorological stations of the National Weather Service are interpolated back to the model domain. An analysis of forecast improvements based on error reductions during the storms will demonstrate the value of GBLR approach. This presentation will also illustrate how the variances are optimized for the training partition in GBLR and discuss the verification strategy for grid points where no observations are available. The new post-processing technique is successful in improving wind speed and precipitation storm forecasts using past event-based data and has the potential to be implemented in real-time.

  20. Measurement of the dosimetric parameters for low monitor units in step-and-shoot IMRT delivered by Siemens Artiste linear accelerators; Medida de los parametros dosimetricos para bajo numero de unidades monitor en IMRT segmentada estatica administrada por aceleradores lineales Siemens Artiste

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Rodriguez, C.; Lopez Fernandez, A.; Saez Beltran, M.; Martin Martin, G.; Alonso Iracheta, L.

    2012-07-01

    Absorbed dose linearity and beam stability, both for low monitor units, are important factors for ensuring planned dose delivery in step-and-shoot IMRT. For Siemens Artiste linear accelerators, under IMRT stable irradiation conditions and for a single segment of 20 cm x 20 cm field size, the linearity of the absorbed dose with the monitor units, field flatness and symmetry have been measured for the range between 1 and 10 monitor units. We have found that absorbed dose linearity with monitor units is within 2% down to 2 monitor units and it is about 9% for 1 monitor unit. Flatness and symmetry values show variations within 1% down to 2 monitor units and increase by 9% for lower values. Using our monitor unit distribution per segment in IMRT we estimate that the uncertainty in absorbed dose for a whole treatment due to these factors is less than 1% (k= 3). (Author) 13 refs.

  1. Geological and production characteristics of strandplain/barrier island reservoirs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.L.; Fowler, M.; Jackson, S.; Madden, M.P.; Reeves, T.K.; Salamy, S.P.; Young, M.A.

    1994-12-01

    The Department of Energy`s (DOE`s) primary mission in the oil research program is to maximize the economically and environmentally sound recovery of oil from domestic reservoirs and to preserve access to this resource. The Oil Recovery Field Demonstration Program supports DOE`s mission through cost-shared demonstrations of improved Oil Recovery (IOR) processes and reservoir characterization methods. In the past 3 years, the DOE has issued Program Opportunity Notices (PONs) seeking cost-shared proposals for the three highest priority, geologically defined reservoir classes. The classes have been prioritized based on resource size and risk of abandonment. This document defines the geologic, reservoir, and production characteristics of the fourth reservoir class, strandplain/barrier islands. Knowledge of the geological factors and processes that control formation and preservation of reservoir deposits, external and internal reservoir heterogeneities, reservoir characterization methodology, and IOR process application can be used to increase production of the remaining oil-in-place (IOR) in Class 4 reservoirs. Knowledge of heterogeneities that inhibit or block fluid flow is particularly critical. Using the TORIS database of 330 of the largest strandplain/barrier island reservoirs and its predictive and economic models, the recovery potential which could result from future application of IOR technologies to Class 4 reservoirs was estimated to be between 1.0 and 4.3 billion barrels, depending on oil price and the level of technology advancement. The analysis indicated that this potential could be realized through (1) infill drilling alone and in combination with polymer flooding and profile modification, (2) chemical flooding (sufactant), and (3) thermal processes. Most of this future potential is in Texas, Oklahoma, and the Rocky Mountain region. Approximately two-thirds of the potentially recoverable resource is at risk of abandonment by the year 2000.

  2. Geologic field trip guide to Mount Mazama and Crater Lake Caldera, Oregon

    Science.gov (United States)

    Bacon, Charles R.; Wright, Heather M.

    2017-08-08

    Crater Lake partly fills one of the most spectacular calderas of the world—an 8 by 10 kilometer (km) basin more than 1 km deep formed by collapse of the Mount Mazama volcano during a rapid series of explosive eruptions ~7,700 years ago. Having a maximum depth of 594 meters (m), Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 square kilometers (km2) of pristine forested and alpine terrain, including the lake itself, and virtually all of Mount Mazama. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama’s climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest United States, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. In addition, many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama provide information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive processes revealed by

  3. Study on geology and geological structure based on literature studies

    International Nuclear Information System (INIS)

    Funaki, Hironori; Ishii, Eiichi; Yasue, Ken-ichi; Takahashi, Kazuharu

    2005-03-01

    Japan Nuclear Cycle Development Institute (JNC) is proceeding with underground research laboratory (URL) project for the sedimentary rock in Horonobe, Hokkaido. This project is an investigation project which is planned over 20 years. Surface-based investigations (Phase 1) have been conducted for the present. The purposes of the Phase 1 are to construct the geological environment model (geological-structural, hydrogeological, and hydrochemical models) and to confirm the applicability of investigation technologies for the geological environment. The geological-structural model comprises the base for the hydrogeological and hydrochemical models. We constructed the geological-structural model by mainly using data obtained from literature studies. Particulars regarding which data the model is based on and who has performed the interpretation are also saved for traceability. As a result, we explain the understanding of degree and the need of information on stratigraphy and discontinuous structure. (author)

  4. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won [Korea Atomic Energy Institue, Daejeon (Korea, Republic of)

    2012-09-15

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  5. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  6. To meet new tasks of scientific research on uranium geology in new century

    International Nuclear Information System (INIS)

    Chen Zuyi

    2000-01-01

    The author analyses the new situation that the scientific research on uranium geology is facing in the coming new century, and proposes that the guiding idea of the scientific research on uranium geology is to coordinate the general policy of Bureau of Geology--to give the first priority to in-situ leachable sandstone-type uranium deposits. The specific tasks for the scientific research on uranium geology are: to implement regional evaluation and target area selection of in-situ leachable sandstone-type uranium deposits; to develop new techniques and methods of detecting buried in-situ leachable sandstone-type uranium deposits; to turn the genetic model of uranium deposit and deposit model to prospecting model; to strengthen the research on economic geology and the dynamic assessment system of uranium resources and to build up and improve the data base of Meso-Cenozoic basins and sandstone-type uranium deposits. In order to guarantee the successful implementation of the above tasks it is necessary for the Beijing Research Institute of Uranium Geology--the leading unit in scientific research on uranium geology to accelerate bringing up large numbers of young outstanding researchers; to have clear consciousness of market economy and product quality; to given play to advantages of qualified personnel, advanced equipment and modern technology

  7. Model metadata report for the Somerset Levels 3D geological model

    OpenAIRE

    Gow, H.; Cripps, C.; Thorpe, S.; Horabin, C.; Lee, J.R.

    2014-01-01

    This report summarises the data, information and methodology used in a 3D geological model of the Somerset Levels. The model was constructed using the GSI3D software package and comprises superficial deposits at 1:50,000 scale and lower resolution bedrock units.

  8. Geologic map of the Ponca quadrangle, Newton, Boone, and Carroll Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Murray, Kyle E.

    2003-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Ponca 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Ponca quadrangle is located in Newton, Boone, and Carroll Counties about 20 km southwest of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Ponca quadrangle map provides new geologic information for better understanding groundwater flow paths and development of karst features in and adjacent to the Buffalo River watershed.

  9. Preliminary report on the environmnetal geology of the Islamabad-Rawalpindi area, Pakistan

    International Nuclear Information System (INIS)

    Williams, V.S.; Sheikh, I.; Pasha, M.K.; Khan, K.S.A.; Reza, Q.

    1994-01-01

    Islamabad, the capital of Pakistan, is a planned city constructed since about 1960 at the foot of the Margala hills just north of the old city of Rawalpindi. Since then, rapid growth of both Islamabad and Rawalpindi to a combined population of about 1.3 million has caused ever increasing demands for natural resources and adverse effects on the environment. To maintain the quality of the capital, municipal authorities need information on the physical environment to guide future development. Environment concerns include (1) availability of building materials, (2) environmental degradation from extraction and processing of building materials, (3) availability of surface and ground water (4) pollution of water by waste disposal, (5) geological hazards, and (6) engineering characteristics of soil ad rock. This preliminary report summarizes information on the environmental geology of the Islamabad-Rawalpindi area. The information has been collected by a cooperative project of the geological Survey of Pakistan and the U.S. Geological Survey, supported by the United States Agency for International Development. (author)

  10. Kansas Energy Sources: A Geological Review

    Science.gov (United States)

    Merriam, D.F.; Brady, L.L.; Newell, K.D.

    2012-01-01

    Kansas produces both conventional energy (oil, gas, and coal) and nonconventional (coalbed gas, wind, hydropower, nuclear, geothermal, solar, and biofuels) and ranks the 22nd in state energy production in the U. S. Nonrenewable conventional petroleum is the most important energy source with nonrenewable, nonconventional coalbed methane gas becoming increasingly important. Many stratigraphic units produce oil and/or gas somewhere in the state with the exception of the Salina Basin in north-central Kansas. Coalbed methane is produced from shallow wells drilled into the thin coal units in southeastern Kansas. At present, only two surface coal mines are active in southeastern Kansas. Although Kansas has been a major exporter of energy in the past (it ranked first in oil production in 1916), now, it is an energy importer. ?? 2011 International Association for Mathematical Geology.

  11. Reservoir architecture modeling: Nonstationary models for quantitative geological characterization. Final report, April 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, D.; Epili, D.; Kelkar, M.; Redner, R.; Reynolds, A.

    1998-12-01

    The study was comprised of four investigations: facies architecture; seismic modeling and interpretation; Markov random field and Boolean models for geologic modeling of facies distribution; and estimation of geological architecture using the Bayesian/maximum entropy approach. This report discusses results from all four investigations. Investigations were performed using data from the E and F units of the Middle Frio Formation, Stratton Field, one of the major reservoir intervals in the Gulf Coast Basin.

  12. Influences of geological parameters to probabilistic assessment of slope stability of embankment

    Science.gov (United States)

    Nguyen, Qui T.; Le, Tuan D.; Konečný, Petr

    2018-04-01

    This article considers influences of geological parameters to slope stability of the embankment in probabilistic analysis using SLOPE/W computational system. Stability of a simple slope is evaluated with and without pore–water pressure on the basis of variation of soil properties. Normal distributions of unit weight, cohesion and internal friction angle are assumed. Monte Carlo simulation technique is employed to perform analysis of critical slip surface. Sensitivity analysis is performed to observe the variation of the geological parameters and their effects on safety factors of the slope stability.

  13. Geologic mapping of the Hi’iaka and Shamshu regions of Io

    Science.gov (United States)

    Bunte, Melissa K.; Williams, David A.; Greeley, Ronald; Jaeger, Windy L.

    2010-06-01

    We produced regional geologic maps of the Hi'iaka and Shamshu regions of Io's antijovian hemisphere using Galileo mission data to assess the geologic processes that are involved in the formation of Io's mountains and volcanic centers. Observations reveal that these regions are characterized by several types of volcanic activity and features whose orientation and texture indicate tectonic activity. Among the volcanic features are multiple hotspots and volcanic vents detected by Galileo, one at each of the major paterae: Hi'iaka, Shamshu, and Tawhaki. We mapped four primary types of geologic units: flows, paterae floors, plains, and mountains. The flows and patera floors are similar, but are subdivided based upon emplacement environments and mechanisms. The floors of Hi'iaka and Shamshu Paterae have been partially resurfaced by dark lava flows, although portions of the paterae floors appear bright and unchanged during the Galileo mission; this suggests that the floors did not undergo complete resurfacing as flooding lava lakes. However, the paterae do contain compound lava flow fields and show the greatest activity near the paterae walls, a characteristic of Pele type lava lakes. Mountain materials are tilted crustal blocks that exhibit varied degrees of degradation. Lineated mountains have characteristic en echelon grooves that likely formed as a result of gravitational sliding. Undivided mountains are partially grooved but exhibit evidence of slumping and are generally lower elevation than the lineated units. Debris lobes and aprons are representative of mottled mountain materials. We have explored the possibility that north and south Hi'iaka Mons were originally one structure. We propose that strike-slip faulting and subsequent rifting separated the mountain units and created a depression which, by further extension during the rifting event, became Hi'iaka Patera. This type of rifting and depression formation is similar to the mechanism of formation of terrestrial

  14. Database for the geologic map of upper Eocene to Holocene volcanic and related rocks in the Cascade Range, Washington

    Science.gov (United States)

    Barron, Andrew D.; Ramsey, David W.; Smith, James G.

    2014-01-01

    This geospatial database for a geologic map of the Cascades Range in Washington state is one of a series of maps that shows Cascade Range geology by fitting published and unpublished mapping into a province-wide scheme of lithostratigraphic units. Geologic maps of the Eocene to Holocene Cascade Range in California and Oregon complete the series, providing a comprehensive geologic map of the entire Cascade Range that incorporates modern field studies and that has a unified and internally consistent explanantion. The complete series will be useful for regional studies of volcanic hazards, volcanology, and tectonics.

  15. [Stanford Linear Accelerator Center] annual environmental monitoring report, January--December 1989

    International Nuclear Information System (INIS)

    1990-05-01

    This progress report discusses environmental monitoring activities at the Stanford Linear Accelerator Center for 1989. Topics include climate, site geology, site water usage, land use, demography, unusual events or releases, radioactive and nonradioactive releases, compliance summary, environmental nonradiological program information, environmental radiological program information, groundwater protection monitoring ad quality assurance. 5 figs., 7 tabs

  16. Geologic distributions of US oil and gas

    International Nuclear Information System (INIS)

    1992-01-01

    This publication presents nonproprietary field size distributions that encompass most domestic oil and gas fields at year-end 1989. These data are organized by geologic provinces as defined by the American Association of Petroleum Geologists' Committee on Statistics of Drilling (AAPG/CSD), by regional geographic aggregates of the AAPG/CSD provinces, and Nationally. The report also provides partial volumetric distributions of petroleum liquid and natural gas ultimate recoveries for three macro-geologic variables: principal lithology of the reservoir rock, principal trapping condition and geologic age of the reservoir rock, The former two variables are presented Nationally and by geographic region, in more detail than has heretofore been available. The latter variable is provided Nationally at the same level of detail previously available. Eighteen tables and 66 figures present original data on domestic oil and gas occurrence. Unfortunately, volumetric data inadequacy dictated exclusion of Appalachian region oil and gas fields from the study. All other areas of the United States known to be productive of crude oil or natural gas through year-end 1989, onshore and offshore, were included. It should be noted that none of the results and conclusions would be expected to substantively differ had data for the Appalachian region been available for inclusion in the study

  17. Field Geology/Processes

    Science.gov (United States)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  18. Merging of the USGS Atlas of Mercury 1:5,000,000 Geologic Series

    Science.gov (United States)

    Frigeri, A.; Federico, C.; Pauselli, C.; Coradini, A.

    2008-01-01

    After 30 years, the planet Mercury is going to give us new information. The NASA MESSENGER [1] already made its first successful flyby on December 2007 while the European Space Agency and the Japanese Space Agency ISAS/JAXA are preparing the upcoming mission BepiColombo [2]. In order to contribute to current and future analyses on the geology of Mercury, we have started to work on the production of a single digital geologic map of Mercury derived from the merging process of the geologic maps of the Atlas of Mercury, produced by the United States Geological Survey, based on Mariner 10 data. The aim of this work is to merge the nine maps so that the final product reflects as much as possible the original work. Herein we describe the data we used, the working environment and the steps made for producing the final map.

  19. Geologic report for the Weldon Spring Raffinate Pits Site

    International Nuclear Information System (INIS)

    1984-10-01

    A preliminary geologic site characterization study was conducted at the Weldon Spring Raffinate Pits Site, which is part of the Weldon Spring Site, in St. Charles County, Missouri. The Raffinate Pits Site is under the custody of the Department of Energy (DOE). Surrounding properties, including the Weldon Spring chemical plant, are under the control of the Department of the Army. The study determined the following parameters: site stratigraphy, lithology and general conditions of each stratigraphic unit, and groundwater characteristics and their relation to the geology. These parameters were used to evaluate the potential of the site to adequately store low-level radioactive wastes. The site investigation included trenching, geophysical surveying, borehole drilling and sampling, and installing observation wells and piezometers to monitor groundwater and pore pressures

  20. Shahejie-Shahejie/Guantao/Wumishan and Carboniferous/Permian Coal-Paleozoic Total Petroleum Systems in the Bohaiwan Basin, China (based on geologic studies for the 2000 World Energy Assessment Project of the U.S. Geological Survey)

    Science.gov (United States)

    Ryder, Robert T.; Qiang, Jin; McCabe, Peter J.; Nuccio, Vito F.; Persits, Felix

    2012-01-01

    This report discusses the geologic framework and petroleum geology used to assess undiscovered petroleum resources in the Bohaiwan basin province for the 2000 World Energy Assessment Project of the U.S. Geological Survey. The Bohaiwan basin in northeastern China is the largest petroleum-producing region in China. Two total petroleum systems have been identified in the basin. The first, the Shahejie&ndashShahejie/Guantao/Wumishan Total Petroleum System, involves oil and gas generated from mature pods of lacustrine source rock that are associated with six major rift-controlled subbasins. Two assessment units are defined in this total petroleum system: (1) a Tertiary lacustrine assessment unit consisting of sandstone reservoirs interbedded with lacustrine shale source rocks, and (2) a pre-Tertiary buried hills assessment unit consisting of carbonate reservoirs that are overlain unconformably by Tertiary lacustrine shale source rocks. The second total petroleum system identified in the Bohaiwan basin is the Carboniferous/Permian Coal–Paleozoic Total Petroleum System, a hypothetical total petroleum system involving natural gas generated from multiple pods of thermally mature coal beds. Low-permeability Permian sandstones and possibly Carboniferous coal beds are the reservoir rocks. Most of the natural gas is inferred to be trapped in continuous accumulations near the center of the subbasins. This total petroleum system is largely unexplored and has good potential for undiscovered gas accumulations. One assessment unit, coal-sourced gas, is defined in this total petroleum system.

  1. Digital geologic map of the Thirsty Canyon NW quadrangle, Nye County, Nevada

    Science.gov (United States)

    Minor, S.A.; Orkild, P.P.; Sargent, K.A.; Warren, R.G.; Sawyer, D.A.; Workman, J.B.

    1998-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, dike, and caldera wall), and point (i.e., structural attitude) vector data for the Thirsty Canyon NW 7 1/2' quadrangle in southern Nevada. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic and tectonic interest. The Thirsty Canyon NW quadrangle is located in southern Nye County about 20 km west of the Nevada Test Site (NTS) and 30 km north of the town of Beatty. The map area is underlain by extensive layers of Neogene (about 14 to 4.5 million years old [Ma]) mafic and silicic volcanic rocks that are temporally and spatially associated with transtensional tectonic deformation. Mapped volcanic features include part of a late Miocene (about 9.2 Ma) collapse caldera, a Pliocene (about 4.5 Ma) shield volcano, and two Pleistocene (about 0.3 Ma) cinder cones. Also documented are numerous normal, oblique-slip, and strike-slip faults that reflect regional transtensional deformation along the southern part of the Walker Lane belt. The Thirsty Canyon NW map provides new geologic information for modeling groundwater flow paths that may enter the map area from underground nuclear testing areas located in the NTS about 25 km to the east. The geologic map database comprises six component ArcINFO map coverages that can be accessed after decompressing and unbundling the data archive file (tcnw.tar.gz). These six coverages (tcnwpoly, tcnwflt, tcnwfold, tcnwdike, tcnwcald, and tcnwatt) are formatted here in ArcINFO EXPORT format. Bundled with this database are two PDF files for readily viewing and printing the map, accessory graphics, and a description of map units and compilation methods.

  2. Global Journal of Geological Sciences

    African Journals Online (AJOL)

    Global Journal of Geological Sciences is aimed at promoting research in all areas of Geological Sciences including geochemistry, geophysics, engineering geology, hydrogeology, petrology, mineralogy, geochronology, tectonics, mining, structural geology, marine geology, space science etc. Visit the Global Journal Series ...

  3. Comparative investigation of partial least squares discriminant analysis and support vector machines for geological cuttings identification using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye; Wang, Zhennan [Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao, Shandong 266100 (China); Han, Xiaoshuang [Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao, Shandong 266100 (China); College of Electronic Information Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Hou, Huaming [Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao, Shandong 266100 (China); Zheng, Ronger, E-mail: rzheng@ouc.edu.cn [Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao, Shandong 266100 (China)

    2014-12-01

    With the hope of applying laser-induced breakdown spectroscopy (LIBS) to the geological logging field, a series of cutting samples were classified using LIBS coupled with chemometric methods. In this paper, we focused on a comparative investigation of the linear PLS-DA method and non-linear SVM method. Both the optimal PLS-DA model and SVM model were built by the leave-one-out cross-validation (LOOCV) approach with the calibration LIBS spectra, and then tested by validation spectra. We show that the performance of SVM is significantly better than PLS-DA because of its ability to address the non-linear relationships in LIBS spectra, with a correct classification rate of 91.67% instead of 68.34%, and an unclassification rate of 3.33% instead of 28.33%. To further improve the classification accuracy, we then designed a new classification approach by the joint analysis of PLS-DA and SVM models. With this method, 95% of the validation spectra are correctly classified and no unclassified spectra are observed. This work demonstrated that the coupling of LIBS with the non-linear SVM method has great potential to be used for on-line classification of geological cutting samples, and the combination of PLS-DA and SVM enables the cuttings identification with an excellent performance. - Highlights: • The geological cuttings were classified using LIBS coupled with chemometric methods. • The non-linear SVM showed significantly better performance than PLS-DA. • The joint analysis of PLS-DA and SVMs provided an excellent accuracy of 95%.

  4. Comparative investigation of partial least squares discriminant analysis and support vector machines for geological cuttings identification using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Tian, Ye; Wang, Zhennan; Han, Xiaoshuang; Hou, Huaming; Zheng, Ronger

    2014-01-01

    With the hope of applying laser-induced breakdown spectroscopy (LIBS) to the geological logging field, a series of cutting samples were classified using LIBS coupled with chemometric methods. In this paper, we focused on a comparative investigation of the linear PLS-DA method and non-linear SVM method. Both the optimal PLS-DA model and SVM model were built by the leave-one-out cross-validation (LOOCV) approach with the calibration LIBS spectra, and then tested by validation spectra. We show that the performance of SVM is significantly better than PLS-DA because of its ability to address the non-linear relationships in LIBS spectra, with a correct classification rate of 91.67% instead of 68.34%, and an unclassification rate of 3.33% instead of 28.33%. To further improve the classification accuracy, we then designed a new classification approach by the joint analysis of PLS-DA and SVM models. With this method, 95% of the validation spectra are correctly classified and no unclassified spectra are observed. This work demonstrated that the coupling of LIBS with the non-linear SVM method has great potential to be used for on-line classification of geological cutting samples, and the combination of PLS-DA and SVM enables the cuttings identification with an excellent performance. - Highlights: • The geological cuttings were classified using LIBS coupled with chemometric methods. • The non-linear SVM showed significantly better performance than PLS-DA. • The joint analysis of PLS-DA and SVMs provided an excellent accuracy of 95%

  5. Instrument for track linear element recognition

    International Nuclear Information System (INIS)

    Krupnov, V.E.; Fedotov, O.P.

    1977-01-01

    Described is the construction of instrument for recognizing linear elements of tracks. For designing this instrument use has been made of the algorithm for conversion of the point data into a set of linear elements. The flowsheet of the instrument shows its major units such as data converter, data representation register unit, local computers, interface with the central computer. The data representation register unit comprises sixteen registers and is capable of presenting data from sixteen lines when raster scanning of a picture taken from a track chamber. The maximum capacity of the code of the coordinate of a point recorded on a picture is up to 16 digits. The time of the inner operating cycle of the instrument is 1.3 μs. The average time required for processing data containing sixteen scanning lines is 250 μs

  6. Research on geological disposal: R and D concept on geological disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The objective on geological disposal of high-level radioactive wastes are to ensure the long term radiological protection of the human and his environment in accordance with current internationally agreed radiation protection principles. The principle of geological disposal is to settle the high-level wastes in deep underground so as to isolate them from the human and his environment considering the existence of groundwater. Japan is currently in the stage of assessing technical feasibility of geological disposal to the extent practicable. In accordance with the AEC (Atomic Energy Commission) policy in 1989, PNC (Power Reactor and Nuclear Fuel Development Corporation) has conducted the research and development on geological disposal in three areas: 1) studies of geological environment, 2) research and development of disposal technology, and 3) performance assessment study. (author)

  7. Introductory Geology From the Liberal Arts Approach: A Geology-Sociology Linked Course

    Science.gov (United States)

    Walsh, E. O.; Davis, E.

    2008-12-01

    Geology can be a hard sell to college students, especially to college students attending small, liberal arts institutions in localities that lack exaggerated topography. At these schools, Geology departments that wish to grow must work diligently to attract students to the major; professors must be able to convince a wider audience of students that geology is relevant to their everyday lives. Toward this end, a Physical Geology course was linked with an introductory Sociology course through the common theme of Consumption. The same students took the two courses in sequence, beginning with the Sociology course and ending with Physical Geology; thus, students began by discussing the role of consumption in society and ended by learning about the geological processes and implications of consumption. Students were able to ascertain the importance of geology in their daily lives by connecting Earth processes to specific products they consume, such as cell phones and bottled water. Students were also able to see the connection between seemingly disparate fields of study, which is a major goal of the liberal arts. As a theme, Consumption worked well to grab the attention of students interested in diverse issues, such as environmental science or social justice. A one-hour lecture illustrating the link between sociology and geology was developed for presentation to incoming freshmen and their parents to advertise the course. Initial response has been positive, showing an increase in awareness of geological processes among students with a wide range of interests.

  8. Simplified conversions between specific conductance and salinity units for use with data from monitoring stations

    Science.gov (United States)

    Schemel, Laurence E.

    2001-01-01

    The U.S. Geological Survey, Bureau of Reclamation, and the California Department of Water Resources maintain a large number of monitoring stations that record specific conductance, often referred to as “electrical conductivity,” in San Francisco Bay Estuary and the Sacramento-San Joaquin Delta. Specific conductance units that have been normalized to a standard temperature are useful in fresh waters, but conversion to salinity units has some considerable advantages in brackish waters of the estuary and Delta. For example, salinity is linearly related to the mixing ratio of freshwater and seawater, which is not the case for specific conductance, even when values are normalized to a standard temperature. The Practical Salinity Scale 1978 is based on specific conductance, temperature, and pressure measurements of seawater and freshwater mixtures (Lewis 1980 and references therein). Equations and data that define the scale make possible conversions between specific conductance and salinity values.

  9. Preliminary hydrogeological evaluation of geological units from the Mesa de los Santos, Santander

    International Nuclear Information System (INIS)

    Diaz, Eliana Jimena; Contreras, Nathalia Maria; Pinto, Jorge Eduardo; Velandia, Francisco; Morales, Carlos Julio; Hincapie, Gloria

    2009-01-01

    This paper present a preliminary hydrogeological evaluation of La Mesa de Los Santos' lithostratigraphic formations, based on the geological mapping, stratigraphy and inventory of water points. All this is supplemented with the analysis of primary porosity by means of the petrographic study and the secondary porosity related statistically with the quantity of fractures of each formation, as well as opening, interconnection and dip. It is made an approach to hydrogeological potential of the geologic outcropping formations in La Mesa de Los Santos, Department of Santander, from the stratigraphic and petrographic analysis and the structural features of these formations. The Upper Member of Los Santos Formation presents the highest potential because of rock's fracturing, continued by the Lower Member with low primary porosity and half fracturing. Silgara Formation, Granito de Pescadero, Jordan Formation and some sections of the sandy levels of the Rosablanca Formation presents a lowest potential due to its low porosity and low grade of fracturing. Low permeability is presented in the Middle Member of the Los Santos Formation, Paja and Tablazo formations, as well as in sectors of the fore mentioned formations and in the Quaternary deposits.

  10. Geologic Map of Quadrangles 3060 and 2960, Qala-I-Fath (608), Malek-Sayh-Koh (613), and Gozar-E-Sah (614) Quadrangles, Afghanistan

    Science.gov (United States)

    O'Leary, Dennis W.; Whitney, John W.; Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  11. 'Kozloduy' NPP geological environment as a barrier against radionuclide migration

    International Nuclear Information System (INIS)

    Antonov, D.

    2000-01-01

    The aim of this report is to present an analysis of the geological settings along Kozloduy NPP area from the viewpoint of a natural, protective barrier against unacceptable radionuclides migration in the environment. Possible sources of such migration could be an eventual accident in an active nuclear plant; radioactive releases from decommissioned Power Units or from temporary or permanent radioactive waste repositories. The report is directed mainly to the last case, and especially to the site selection for near surface short lived low and intermediate level (LILW) radioactive repository. The main conclusion of the geological settings assessment and of the many years monitoring is that the Kozloduy NPP area offers good possibilities for site selection of LILW repository. (author)

  12. Safeguards for geological repositories

    International Nuclear Information System (INIS)

    Fattah, A.

    2000-01-01

    Direct disposal of spent nuclear fuel in geological repositories is a recognised option for closing nuclear fuel cycles. Geological repositories are at present in stages of development in a number of countries and are expected to be built and operated early next century. A State usually has an obligation to safely store any nuclear material, which is considered unsuitable to re-enter the nuclear fuel cycle, isolated from the biosphere. In conjunction with this, physical protection has to be accounted for to prevent inadvertent access to such material. In addition to these two criteria - which are fully under the State's jurisdiction - a third criterion reflecting international non-proliferation commitments needs to be addressed. Under comprehensive safeguards agreements a State concedes verification of nuclear material for safeguards purposes to the IAEA. The Agency can thus provide assurance to the international community that such nuclear material has been used for peaceful purposes only as declared by the State. It must be emphasised that all three criteria mentioned constitute a 'unit'. None can be sacrificed for the sake of the other, but compromises may have to be sought in order to make their combination as effective as possible. Based on comprehensive safeguards agreements signed and ratified by the State, safeguards can be terminated only when the material has been consumed or diluted in such a way that it can no longer be utilised for any nuclear activities or has become practicably irrecoverable. As such safeguards for nuclear material in geological repositories have to be continued even after the repository has been back-filled and sealed. The effective application of safeguards must assure continuity-of-knowledge that the nuclear material in the repository has not been diverted for an unknown purpose. The nuclear material disposed in a geological repository may eventually have a higher and long term proliferation risk because the inventory is

  13. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 3: Valley Types and Distribution

    Science.gov (United States)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Three major valley tapes were identified in the SW Margaritefer Sinus and Argyre regions. Two are restricted to specific geologic units while the third is independent of the geology. The first type (the small valley networks) are found within the channeled and subdued plains unit in the eastern half of the map, in the grooved and channeled plains unit north of Nirgal Vallis, and in scattered instances in the cratered plateau unit north of Argyre. The even smaller valleys just inside Argyre's rim and on the inner slopes of many large craters are not directly related to the processes which formed the small valleys but are a result, instead, of post-impact modification of the crater walls. The second type of valley network is represented by Nirgal Vallis and the similar, shorter continuation of it to the west. This type is found only in the smooth plains material west of Uzboi Vallis in the map area. The third type of valley network is that of the Uzbol-Holden-Ladon valles system. This system is related to catastrophic outflow from Argyre Basin and is topographically rather than geologically controlled.

  14. Bedrock geologic Map of the Central Block Area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    W.C. Day; C. Potter; D. Sweetkind; R.P. Dickerson; C.A. San Juan

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. As such, this map focuses on the central block at Yucca Mountain, which contains the potential repository site. The central block is a structural block of Tertiary volcanic rocks bound on the west by the Solitario Canyon Fault, on the east by the Bow Ridge Fault, to the north by the northwest-striking Drill Hole Wash Fault, and on the south by Abandoned Wash. Earlier reconnaissance mapping by Lipman and McKay (1965) provided an overview of the structural setting of Yucca Mountain and formed the foundation for selecting Yucca Mountain as a site for further investigation. They delineated the main block-bounding faults and some of the intrablock faults and outlined the zoned compositional nature of the tuff units that underlie Yucca Mountain. Scott and Bonk (1984) provided a detailed reconnaissance geologic map of favorable area at Yucca Mountain in which to conduct further site-characterization studies. Of their many contributions, they presented a detailed stratigraphy for the volcanic units, defined several other block-bounding faults, and outlined numerous intrablock faults. This study was funded by the U.S. Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bonk (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the

  15. Soil Structure Evaluation Across Geologic Transition Zones Using 2D Electrical Resistivity Imaging Technique

    Directory of Open Access Journals (Sweden)

    Geraldine C Anukwu

    2017-06-01

    Full Text Available This study utilizes the electrical resistivity values obtained using 2-D Electrical resistivity imaging (ERI technique to evaluate the subsurface lithology across different geological units. The primary objective was to determine the effect of subsurface lithology on the integrity of a road pavement, which had developed cracks and potholes at various locations. The dipole-dipole configuration was utilized and a total of nine traverses were established in the study area, whose geology cuts across both the basement and sedimentary complexes. The inverted resistivity section obtained showed significant variation in resistivity along established traverses and also across the different rock units, with the resistivity value ranging from about 4 ohm-m to greater than 7000 ohm- m. The lithology as interpreted from the resistivity section revealed the presence topsoil, clay, sandy clay, sand, sand stones/basement rocks, with varying vertical and horizontal arrangements to a depth of 40m. Results suggest that the geologic sequence and structure might have contributed to the observed pavement failure. The capability of the 2D ERI as an imaging tool is observed, especially across the transition zones as depicted in this study. The study further stressed the ability of this technique if properly designed and implemented, to be capable of providing a wealth of information that could complement other traditional geotechnical and geologic techniques.

  16. The EVEREST project: sensitivity analysis of geological disposal systems

    International Nuclear Information System (INIS)

    Marivoet, Jan; Wemaere, Isabelle; Escalier des Orres, Pierre; Baudoin, Patrick; Certes, Catherine; Levassor, Andre; Prij, Jan; Martens, Karl-Heinz; Roehlig, Klaus

    1997-01-01

    The main objective of the EVEREST project is the evaluation of the sensitivity of the radiological consequences associated with the geological disposal of radioactive waste to the different elements in the performance assessment. Three types of geological host formations are considered: clay, granite and salt. The sensitivity studies that have been carried out can be partitioned into three categories according to the type of uncertainty taken into account: uncertainty in the model parameters, uncertainty in the conceptual models and uncertainty in the considered scenarios. Deterministic as well as stochastic calculational approaches have been applied for the sensitivity analyses. For the analysis of the sensitivity to parameter values, the reference technique, which has been applied in many evaluations, is stochastic and consists of a Monte Carlo simulation followed by a linear regression. For the analysis of conceptual model uncertainty, deterministic and stochastic approaches have been used. For the analysis of uncertainty in the considered scenarios, mainly deterministic approaches have been applied

  17. Geological exploration of Angola from Sumbe to Namibe: A review at the frontier between geology, natural resources and the history of geology

    Science.gov (United States)

    Masse, Pierre; Laurent, Olivier

    2016-01-01

    This paper provides a review of the Geological exploration of the Angola Coast (from Sumbe to Namibe) from pioneer's first geological descriptions and mining inventory to the most recent publications supported by the oil industry. We focus our attention on the following periods: 1875-1890 (Paul Choffat's work, mainly), 1910-1949 (first maps at country scale), 1949-1974 (detailed mapping of the Kwanza-Namibe coastal series), 1975-2000, with the editing of the last version of the Angola geological map at 1:1 million scale and the progressive completion of previous works. Since 2000, there is a renewal in geological fieldwork publications on the area mainly due to the work of university teams. This review paper thus stands at the frontier between geology, natural resources and the history of geology. It shows how geological knowledge has progressed in time, fueled by economic and scientific reasons.

  18. Geo-Seas - a pan-European infrastructure for the management of marine geological and geophysical data.

    Science.gov (United States)

    Glaves, Helen; Graham, Colin

    2010-05-01

    countries. This makes the direct use of primary data in an integrated way very difficult and also hampers use of the data sets in a harmonised way to produce multidisciplinary data products and services. To ensure interoperability with other marine environmental data types Geo-Seas ISO19115 metadata, OGC and GeoSciML standards will be used as the basis for the metadata profiles for the geological and geophysical data. This will be largely achieved by modifying the SeaDataNet metadata standard profile (Common Data Index or CDI), which is itself based upon the ISO19115 standard, to accommodate the requirements of the Geo-Seas project. The overall objective of Geo-Seas project is to build and deploy a unified marine geoscientific data infrastructure within Europe which will in effect provide a data grid for the sharing of marine geological and geophysical data. This will result in a major improvement in the locating, accessing and delivery of federated marine geological and geophysical data and data products from national geological surveys and research institutes across Europe. There is an emphasis on interoperability both with other disciplines as well as with other key framework projects including the European Marine Observation and Data Network (EMODNet) and One Geology - Europe. In addition, a key objective of the Geo-Seas project is to underpin European directives such as INSPIRE as well as recent framework programmes on both the global and European scale, for example Global Earth Observation System of Systems (GEOSS) and Global Monitoring for Environment and Security (GMES), all of which are intended to encourage the exchange of data and information. Geo-Seas consortium partners: NERC-BGS (United Kingdom), NERC-BODC (United Kingdom), NERC-NOCS (United Kingdom), MARIS (Netherlands), IFREMER (France), BRGM (France), TNO (Netherlands), BSH (Germany), IGME (Spain), INETI (Portugal), IGME (Greece), GSI (Ireland), BGR (Germany), OGS (Italy), GEUS (Denmark), NGU (Norway), PGI

  19. Quantifying uncertainty of geological 3D layer models, constructed with a-priori geological expertise

    NARCIS (Netherlands)

    Gunnink, J.J.; Maljers, D.; Hummelman, J.

    2010-01-01

    Uncertainty quantification of geological models that are constructed with additional geological expert-knowledge is not straightforward. To construct sound geological 3D layer models we use a lot of additional knowledge, with an uncertainty that is hard to quantify. Examples of geological expert

  20. Non-metric close range photogrammetric system for mapping geologic structures in mines

    Energy Technology Data Exchange (ETDEWEB)

    Brandow, V D

    1976-01-01

    A stereographic close-range photogrammetric method of obtaining structural data for mine roof stability analyses is described. Stereo pairs were taken with 70 mm and 35 mm non-metric cameras. Photo co-ordinates were measured with a stereo-comparator and reduced by the direct linear transformation method. Field trials demonstrate that the technique is sufficiently accurate for geological work and is a practical method of mapping.

  1. CFORM- LINEAR CONTROL SYSTEM DESIGN AND ANALYSIS: CLOSED FORM SOLUTION AND TRANSIENT RESPONSE OF THE LINEAR DIFFERENTIAL EQUATION

    Science.gov (United States)

    Jamison, J. W.

    1994-01-01

    CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.

  2. Environmental geologic analysis of Rio de las Taguas basin Department of Iglesia San Juan, Argentina

    International Nuclear Information System (INIS)

    Arroqui Langer, A.; Cardus, A.; Sindern, S.; Nozica G

    2007-01-01

    In this work has been stablished a relation betwwen geological units and mineralizations related with the aim to understand the hydrochemistry in this area for future environmental impact projects measurement

  3. Conduction cooling systems for linear accelerator cavities

    Science.gov (United States)

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  4. Suggestions to authors of the reports of the United States Geological Survey

    Science.gov (United States)

    ,

    1958-01-01

    Knowledge acquired by the Geological Survey through programs of research and investigations has no value to the public if it remains in office files or in the minds of the scientists and engineers who did the work. The full discharge of the Survey's responsibilities is attained only by making its acquired knowledge available promptly and effectively to all people who will find it of interest and use. And, to insure effectiveness, reports must be not only accurate but so clearly and simply written that they are easy to read and understand.

  5. Geological heritage of Morocco

    International Nuclear Information System (INIS)

    Elhadi, H.; Tahiri, A.

    2012-01-01

    Full text: The soil and subsoil of Morocco are rich in geological phenomena that bear the imprint of a history that goes back in time more than 2000 million years. Very many sites geologically remarkable exposed in accessible outcrops, with good quality remain unknown to the general public and therefore deserve to be vulgarized. It is a memory to acquaint to the present generations but also to preserve for future generations. In total, a rich geological heritage in many ways: Varied landscapes, international stratotypes, various geological structures, varied rocks, mineral associations, a huge procession of fossiles, remnants of oceanic crust (ophiolites) among oldests ones in the world (800my), etc... For this geological heritage, an approach of an overall inventory is needed, both regionally and nationally, taking into account all the skills of the earth sciences. This will put the item on the natural (geological) potentialities as a lever for sustainable regional development. For this, it is necessary to implement a strategy of ''geoconservation'' for the preservation and assessment of the geological heritage.

  6. New geologic mapping of the northwestern Willamette Valley, Oregon, and its American Viticultural Areas (AVAs)—A foundation for understanding their terroir

    Science.gov (United States)

    Wells, Ray E.; Haugerud, Ralph A.; Niem, Alan; Niem, Wendy; Ma, Lina; Madin, Ian; Evarts, Russell C.

    2018-04-10

    A geologic map of the greater Portland, Oregon, metropolitan area is planned that will document the region’s complex geology (currently in review: “Geologic map of the greater Portland metropolitan area and surrounding region, Oregon and Washington,” by Wells, R.E., Haugerud, R.A., Niem, A., Niem, W., Ma, L., Evarts, R., Madin, I., and others). The map, which is planned to be published as a U.S. Geological Survey Scientific Investigations Map, will consist of 51 7.5′ quadrangles covering more than 2,500 square miles, and it will represent more than 100 person-years of geologic mapping and studies. The region was mapped at the relatively detailed scale of 1:24,000 to improve understanding of its geology and its earthquake hazards. More than 100 geologic map units will record the 50-million-year history of volcanism, sedimentation, folding, and faulting above the Cascadia Subduction Zone. The geology contributes to the varied terroir of four American Viticultural Areas (AVAs) in the northwestern Willamette Valley: the Yamhill-Carlton, Dundee Hills, Chehalem Mountains, and Ribbon Ridge AVAs. Terroir is defined as the environmental conditions, especially climate and soils, that influence the quality and character of a region’s crops—in this case, grapes for wine.On this new poster (“New geologic mapping of the northwestern Willamette Valley, Oregon, and its American Viticultural Areas (AVAs)—A foundation for understanding their terroir”), we present the geologic map at a reduced scale (about 1:175,000) to show the general distribution of geologic map units, and we highlight, discuss, and illustrate six major geologic events that helped shape the region and form its terrior. We also discuss the geologic elements that contribute to the character of each of the four AVAs in the northwestern Willamette Valley.

  7. Automatic contouring of geologic fabric and finite strain data on the unit hyperboloid

    Science.gov (United States)

    Vollmer, Frederick W.

    2018-06-01

    Fabric and finite strain analysis, an integral part of studies of geologic structures and orogenic belts, is commonly done by the analysis of particles whose shapes can be approximated as ellipses. Given a sample of such particles, the mean and confidence intervals of particular parameters can be calculated, however, taking the extra step of plotting and contouring the density distribution can identify asymmetries or modes related to sedimentary fabrics or other factors. A common graphical strain analysis technique is to plot final ellipse ratios, Rf , versus orientations, ϕf on polar Elliott or Rf / ϕ plots to examine the density distribution. The plot may be contoured, however, it is desirable to have a contouring method that is rapid, reproducible, and based on the underlying geometry of the data. The unit hyperboloid, H2 , gives a natural parameter space for two-dimensional strain, and various projections, including equal-area and stereographic, have useful properties for examining density distributions for anisotropy. An index, Ia , is given to quantify the magnitude and direction of anisotropy. Elliott and Rf / ϕ plots can be understood by applying hyperbolic geometry and recognizing them as projections of H2 . These both distort area, however, so the equal-area projection is preferred for examining density distributions. The algorithm presented here gives fast, accurate, and reproducible contours of density distributions calculated directly on H2 . The algorithm back-projects the data onto H2 , where the density calculation is done at regular nodes using a weighting value based on the hyperboloid distribution, which is then contoured. It is implemented as an Octave compatible MATLAB function that plots ellipse data using a variety of projections, and calculates and displays contours of their density distribution on H2 .

  8. Engineering geology model of the Crater Lake outlet, Mt. Ruapehu, New Zealand, to inform rim breakout hazard

    Science.gov (United States)

    Cook, Stefan C. W.; Kennedy, Ben M.; Villeneuve, Marlène C.

    2018-01-01

    Mt. Ruapehu, in the central North Island of New Zealand, hosts a hot acidic Crater Lake over the active volcanic vent with a surface elevation of c. 2530 m.a.s.l. Volcanic activity and other montane processes have previously resulted in catastrophic releases of some or all of the c. 10 Mm3 of water retained in the lake, creating serious hazards downstream. A major lahar in March 2007 exposed a 10 m high face representative of the rock units impounding the lake, providing an opportunity to conduct both field and laboratory analysis to characterise the rock mass conditions at the outlet to assess the stability of the outlet area. This paper presents an engineering geology model of Crater Lake outlet. Our model shows three andesitic geological units at the outlet, each with different geological histories and physical and mechanical properties, which impact its stability. Geotechnical methods used to characterise the outlet include laboratory testing of the strength, stiffness, porosity and unit weight, and field-based rock mass characterisation using the geological strength index (GSI) and rock mass rating (RMR). Field observations, geomorphology mapping, historic and contemporary photographs, and laboratory results are combined to create cross sections that provide key information for establishing the engineering geology model. The units are recognised in what is informally termed the Crater Lake Formation: i) The upper surface layer is a c. 2 m thick sub-horizontal dark grey lava unit (Armoured Lava Ledge) with sub-horizontal cooling joints spaced at 0.2 m to 2.0 m intervals. The intact rock has a porosity range of 15-27%, density range of 1723-2101 kg/m3, GSI range of 45-75, and unconfined compressive strength (UCS) range of 19-48 MPa. ii) Below this, and outcropping down the majority of the outlet waterfall is a poorly sorted breccia unit composed of block and matrix material (Lava Breccia). The blocks range from 0.1 m to 0.8 m in diameter with an average porosity

  9. Geological Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers use computed tomography (CT) scanners at NETL’s Geological Services Laboratory in Morgantown, WV, to peer into geologic core samples to determine how...

  10. Geology of Mars

    International Nuclear Information System (INIS)

    Soderblom, L.A.

    1988-01-01

    The geology of Mars and the results of the Mariner 4, 6/7, and 9 missions and the Viking mission are reviewed. The Mars chronology and geologic modification are examined, including chronological models for the inactive planet, the active planet, and crater flux. The importance of surface materials is discussed and a multispectral map of Mars is presented. Suggestions are given for further studies of the geology of Mars using the Viking data. 5 references

  11. Three-dimensional Subsurface Geological Modeling of the Western Osaka Plane based on Borehole Data

    Science.gov (United States)

    Nonogaki, S.; Masumoto, S.; Nemoto, T.

    2012-12-01

    Three-dimensional (3D) geological model of subsurface structure plays an important role in developing infrastructures. In particular, the 3D geological model in urban area is quite helpful to solve social problems such as underground utilization, environmental preservation, and disaster assessment. Over the past few years, many studies have been made on algorithms for 3D geological modeling. However, most of them have given little attention to objectivity of the model and traceability of modeling procedures. The purpose of this study is to develop an algorithm for constructing a 3D geological model objectively and for maintaining high-traceability of modeling procedures. For the purpose of our work, we proposed a new algorithm for 3D geological modeling using gridded geological boundary surfaces and the "logical model of geologic structure". The geological boundary surface is given by a form of Digital Elevation Model (DEM). The DEM is generated based on geological information such as elevation, strike and dip by using a unique spline-fitting method. The logical model of geological structure is a mathematical model that defines a positional relation between geological boundary surfaces and geological units. The model is objectively given by recurrence formula derived from a sequence of geological events arranged in chronological order. We applied the proposed algorithm into constructing a 3D subsurface geological model of the western Osaka Plane, southwest Japan. The data used for 3D geological modeling is a set of borehole data provided by Osaka City and Kansai Geoinformatics Agency. As a result, we constructed a 3D model consistent with the subjective model reported in other studies. In addition, all information necessary for modeling, such as the used geological information, the parameters of surface fitting, and the logical model, was stored in text files. In conclusion, we can not only construct 3D geological model objectively but also maintain high

  12. United States steps up waste isolation programme

    Energy Technology Data Exchange (ETDEWEB)

    Smedes, H W [Department of Energy, Germantown, MD (USA). Office of Waste Isolation; Carbiener, W A [Battelle Columbus Labs., OH (USA)

    1982-11-01

    A description is given of the United States' waste isolation programme which now involves tests of specific sites. The US Department of Energy plans to build a system of mined geological repositories for the disposal of commercially generated high-level and transuranic radioactive waste. It is hoped that the first repository will be available by 1998. Studies of the geology and hydrology of the proposed sites, the waste packaging and the repository design are reported.

  13. History of geological disposal concept (3). Implementation phase of geological disposal (2000 upward)

    International Nuclear Information System (INIS)

    Masuda, Sumio; Sakuma, Hideki; Umeki, Hiroyuki

    2015-01-01

    Important standards and concept about geological disposal have been arranged as an international common base and are being generalized. The authors overview the concept of geological disposal, and would like this paper to help arouse broad discussions for promoting the implementation plan of geological disposal projects in the future. In recent years, the scientific and technological rationality of geological disposal has been recognized internationally. With the addition of discussions from social viewpoints such as ethics, economy, etc., geological disposal projects are in the stage of starting after establishment of social consensus. As an international common base, the following consolidated and systematized items have been presented as indispensable elements in promoting business projects: (1) step-by-step approach, (2) safety case, (3) reversibility and recovery potential, and (4) trust building and communications. This paper outlines the contents of the following cases, where international common base was reflected on the geological disposal projects in Japan: (1) final disposal method and safety regulations, and (2) impact of the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Station accident on geological disposal plan. (A.O.)

  14. A Reduced Dantzig-Wolfe Decomposition for a Suboptimal Linear MPC

    DEFF Research Database (Denmark)

    Standardi, Laura; Poulsen, Niels Kjølstad; Jørgensen, John Bagterp

    2014-01-01

    Linear Model Predictive Control (MPC) is an efficient control technique that repeatedly solves online constrained linear programs. In this work we propose an economic linear MPC strategy for operation of energy systems consisting of multiple and independent power units. These systems cooperate...

  15. Geology's Impact on Culture

    Science.gov (United States)

    Pizzorusso, Ann

    2017-04-01

    Most people consider geology boring, static and difficult. The fields of astronomy and physics have "rebranded" themselves with exciting programs formatted so as to be readily understandable to the general public. The same thing can be done for geology. My research on geology's influence on other disciplines has resulted in a book, Tweeting da Vinci, in which I was able to show how geology affected Italy's art, architecture, medicine, religion, literature, engineering and just about everything else. The reaction to the book and my lectures by both students and the general public has been very positive, including four gold medals, with reviews and comments indicating that they never knew geology could be so exciting. The book is very user friendly, packed with facts, full-color photos, paintings, sketches and illustrations. Complex aspects of geology are presented in an easily understandable style. Widely diverse topics—such as gemology, folk remedies, grottoes, painting, literature, physics and religion—are stitched together using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. The book can be used in classes such as physics, chemistry, literature, art history, medicine, Classical Studies, Latin, Greek and Italian. By incorporating a "geologic perspective" in these courses, it can be perceived as a more "all encompassing" discipline and encourage more students to study it. The lectures I have given on college campuses have resulted in students seeing their own majors from a different perspective and some have even signed up for introductory geology courses. One college organized summer course to the Bay of Naples based on the book. We followed the geology as well as the culture of the area and the students were profoundly moved. To encourage dialog, the book is linked to Facebook, Twitter and Instagram. This has enabled followers from

  16. Environmental geology and hydrology

    Science.gov (United States)

    Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran

    2017-10-01

    Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.

  17. Original meaning of the notion and term “formation” in geology

    Directory of Open Access Journals (Sweden)

    Grubić Aleksandar

    2014-01-01

    Full Text Available The notion of (geological formation has gradually developed through mostly German terms: from ein Gebirge, which was used by Saxon miners for several centuries (AGRICOLA, then Schichten, Bergart (LEHMANN and serie montana (FUCHSEL to Gebirgsart (WERNER. The term ‘formation’ was introduced by WERNER in 1791 and its meaning was clearly defined around 1800. He included the notion of “formation” into his system of “geognostic structures”: mineral; rock (layer; formation; Earth’s crust. Therefore, it was an equivocal term from the start. It implied a geological body of certain composition, genesis and superposition (i.e. time of origination. After Werner, the term ‘formation’ was used in different ways, mostly as a synonym for a ‘system’, until 1881 when such use was forbidden. The original Wernerian sense of the term ‘formation’ (as a unit in geological levels of organisation: mineral-rock-formation-geosphere-planet with an intentionally equivocal meaning was not restored until the second half of the twentieth century.

  18. Displacement measurement system for linear array detector

    International Nuclear Information System (INIS)

    Zhang Pengchong; Chen Ziyu; Shen Ji

    2011-01-01

    It presents a set of linear displacement measurement system based on encoder. The system includes displacement encoders, optical lens and read out circuit. Displacement read out unit includes linear CCD and its drive circuit, two amplifier circuits, second order Butterworth low-pass filter and the binarization circuit. The coding way is introduced, and various parts of the experimental signal waveforms are given, and finally a linear experimental test results are given. The experimental results are satisfactory. (authors)

  19. Geology and geomorphology of the Lower Deschutes River Canyon, Oregon.

    Science.gov (United States)

    Robin A. Beebee; Jim E. O' Connor; Gordon E. Grant

    2002-01-01

    This field guide is designed for geologists floating the approximately 80 kilometers (50 miles) of the Deschutes River from the Pelton-Round Butte Dam Complex west of Madras to Maupin, Oregon. The first section of the guide is a geologic timeline tracing the formation of the units that compose the canyon walls and the incision of the present canyon. The second section...

  20. Geologic Time.

    Science.gov (United States)

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  1. Geologic evolution of Tucurui region - Para

    International Nuclear Information System (INIS)

    Silva Matta, M.A. da.

    1982-01-01

    The northern part of the Araguaia Belt is exposed in the Tucurui region and their stratigraphic, structural, metamorphic and magmatic features had been studied aiming at contributing for the understanding of the geological evolution of the area. Dating with R-Sr and K-At are also presented, allowing some association for the lythotype of Xingu complex and Araguaia Belt. The oldest stratigraphic unit of the area is represented by the Xingu Complex, composed by gneisses and granites and subordinated schists and anphibolites. Over this unit, during the niddle Proterozoic, the Tucurui group was developed. The bottom of this unit is composed by a sequence of tholeiitic basaltic flows which were here enclosed in the Caripe Formation. The Morrote Formation, is made up of graywackes, and constitutes the upper part of the Tucurui Group. The geossinolinal evolution of the Araguaia Belt took place during the Uruacuano Cycle. This geoteotonic unit is represented in the studied area by the Couto Magalhaes Formation (Tocantins Group) which comprises pelitic and psamitic metasediments. After the metamorphism of the Araguaia Belt, the Couto Magalhaes Formation acted as the place of mafic and ultramafic intrusion and, lately, the Tucurui Fault thrusted the metamorphic rocks of the Tocantins Group over the Tucurui Group lithetypes. (author)

  2. Recent aspects of uranium toxicology in medical geology.

    Science.gov (United States)

    Bjørklund, Geir; Albert Christophersen, Olav; Chirumbolo, Salvatore; Selinus, Olle; Aaseth, Jan

    2017-07-01

    Uranium (U) is a chemo-toxic, radiotoxic and even a carcinogenic element. Due to its radioactivity, the effects of U on humans health have been extensively investigated. Prolonged U exposure may cause kidney disease and cancer. The geological distribution of U radionuclides is still a great concern for human health. Uranium in groundwater, frequently used as drinking water, and general environmental pollution with U raise concerns about the potential public health problem in several areas of Asia. The particular paleo-geological hallmark of India and other Southern Asiatic regions enhances the risk of U pollution in rural and urban communities. This paper highlights different health and environmental aspects of U as well as uptake and intake. It discusses levels of U in soil and water and the related health issues. Also described are different issues of U pollution, such as U and fertilizers, occupational exposure in miners, use and hazards of U in weapons (depleted U), U and plutonium as catalysts in the reaction between DNA and H 2 O 2, and recycling of U from groundwater to surface soils in irrigation. For use in medical geology and U research, large databases and data warehouses are currently available in Europe and the United States. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Folding and Fracturing of Rocks: A milestone publication in Structural Geology research

    Science.gov (United States)

    Lisle, Richard; Bastida, Fernando

    2017-04-01

    In the field of structural geology, the textbook written by John G Ramsay in 1967, reprinted in 2004 and translated into Spanish and Chinese, is the one that has made the greatest research impact. With citations exceeding 4000 (Google Scholar) it far surpasses books by other authors on the subject, with this figure only being approached by his later book Modern Structural Geology (Ramsay and Huber 1983). In this paper we consider the factors that account for the book's success despite the fact that it is a research-level text beyond the comfort zone of most undergraduates. We also take stock of other measures of the book's success; the way it influenced the direction subsequent research effort. We summarize the major advances in structural geology that were prompted by Ramsay's book. Finally we consider the book's legacy. Before the publication of the book in 1967 structural geology had been an activity that had concentrated almost exclusively on geological mapping aimed at establishing the geometrical configuration of rock units. In fact, Ramsay himself has produced beautiful examples of such maps. However, the book made us aware that the geometrical pattern is controlled by the spatial variation of material properties, the boundary conditions, the deformation environment and the temporal variation of stresses. With the arrival of the book Structural Geology came of age as a modern scientific discipline that employed a range of tools such as those of physics, maths and engineering as well as those of geology.

  4. Preliminary geologic map of the late Cenozoic sediments of the western half of the Pasco Basin

    International Nuclear Information System (INIS)

    Lillie, J.T.; Tallman, A.M.; Caggiano, J.A.

    1978-09-01

    The U.S. Department of Energy, through the Basalt Waste Isolation Program within the Rockwell Hanford Operations, is investigating the feasibility of terminal storage of radioactive waste in deep caverns constructed in Columbia River Basalt. This report represents a portion of the geological work conducted during fiscal year 1978 to assess the geological conditions in the Pasco Basin. The surficial geology of the western half of the Pasco Basin was studied and mapped in a reconnaissance fashion at a scale of 1:62,500. The map was produced through a compilation of existing geologic mapping publications and additional field data collected during the spring of 1978. The map was produced primarily to: (1) complement other mapping work currently being conducted in the Pasco Basin and in the region by Rockwell Hanford Operations and its subcontractors; and, (2) to provide a framework for more detailed late Cenozoic studies within the Pasco Basin. A description of procedures used to produce the surficial geologic map and geologic map units is summarized in this report

  5. ENGINEERING GEOLOGICAL CHARACTERISTICS OF THE ROAD SOLIN - KLIS (DALMATIA, CROATIA

    Directory of Open Access Journals (Sweden)

    Slobodan Šestanović

    1993-12-01

    Full Text Available The research, that has been done both on the »intact« terrain and on the opened cuts and discontinuities, and which has been carried on in the basic caves of the object, as well as in the tunnels; has verified the engineering geological and basic tectonic characteristics of Senonian limestones, Eocene flysch, the Promina breccias and breccia-conglomerates, as well as Oligocene poorly sorted breccias, on the route of semi-highway Solin-Klis (Dalmatia, Croatia. The lab analyses, of the great number of the rock samples, have brought out the parametres of their basic physical and mechanical features within a particular engineering geological unit. The results, thus obtained, have been compared to the qualities of the rock structure block as a whole, and had been previously evaluated by applying RMR-classification of the rocks, and the results of the measured velocities of the longitudinal waves. It has been pointed out that similar procedure may be applied in the publication of General Engineering Geological Map of the Republic of Croatia (the paper is published in Croatian.

  6. A linear maglev guide for machine tools

    Energy Technology Data Exchange (ETDEWEB)

    Tieste, K D [Inst. of Mechanics, Univ. of Hannover (Germany); Popp, K [Inst. of Mechanics, Univ. of Hannover (Germany)

    1996-12-31

    Machine tools require linear guides with high slide velocity and very high position accuracy. The three tasks of a linear guide - supporting, guiding and driving - shall be realised by means of active magnetic bearings (AMB). The resulting linear magnetically levitated (maglev) guide has to accomplish the following characteristics: High stiffness, good damping and low noise as well as low heat production. First research on a one degree-of-freedom (DOF) support magnet unit aimed at the development of components and efficient control strategies for the linear maglev guide. The actual research is directed to realise a five DOF linear maglev guide for machine tools without drive to answer the question whether the maglev principle can be used for a linear axis in a machine tool. (orig.)

  7. Geology and potential of the formation of sandstone type uranium mineralization at Hatapang region, North Sumatera

    International Nuclear Information System (INIS)

    Ngadenin

    2013-01-01

    The Study based on geological setting of Hatapang region, North Sumatera, identified as a favourable area to the formation of sandstone type uranium mineralization. This characterized by the occurred of anomalous radioactivity, uranium contents of the upper cretaceous granite intrusions and radioactivity anomalous of tertiary sedimentary rocks deposited in terrestrial environments. The study is objective to find out the potential formation of sandstone type-uranium mineralization within tertiary sedimentary rocks based on data’s studies of geological, geochemical, mineralogy, radioactivity of rocks. Stratigraphy of Hatapang area of the oldest to youngest are quartz units (permian-carboniferous), sandstone units (upper Triassic), granite (upper cretaceous), conglomerate units (Lower –middle Miocene) and tuff units (Pleistocene). Hatapang’s granite is S type granite which is not only potential as source of radioactive minerals, particularly placer type monazite, but also potential as source rocks of sandstone type-uranium mineralization on lighter sedimentary rocks. Sedimentary rock of conglomerate units has potential as host rock, even though uranium did not accumulated in its rocks since the lack number of carbon as precipitant material and dissolved U"+"6 in water did not reduced into U"+"4 caused the uranium mineralization did not deposited. (author)

  8. Geologic mapping of Kentucky; a history and evaluation of the Kentucky Geological Survey--U.S. Geological Survey Mapping Program, 1960-1978

    Science.gov (United States)

    Cressman, Earle Rupert; Noger, Martin C.

    1981-01-01

    In 1960, the U.S. Geological Survey and the Kentucky Geological Survey began a program to map the State geologically at a scale of 1:24,000 and to publish the maps as 707 U.S. Geological Survey Geologic Quadrangle Maps. Fieldwork was completed by the spring of 1977, and all maps were published by December 1978. Geologic mapping of the State was proposed by the Kentucky Society of Professional Engineers in 1959. Wallace W. Hagan, Director and State Geologist of the Kentucky Geological Survey, and Preston McGrain, Assistant State Geologist, promoted support for the proposal among organizations such as Chambers of Commerce, industrial associations, professional societies, and among members of the State government. It was also arranged for the U.S. Geological Survey to supply mapping personnel and to publish the maps; the cost would be shared equally by the two organizations. Members of the U.S. Geological Survey assigned to the program were organized as the Branch of Kentucky Geology. Branch headquarters, including an editorial staff, was at Lexington, Ky., but actual mapping was conducted from 18 field offices distributed throughout the State. The Publications Division of the U.S. Geological Survey established a cartographic office at Lexington to prepare the maps for publication. About 260 people, including more than 200 professionals, were assigned to the Branch of Kentucky Geology by the U.S. Geological Survey at one time or another. The most geologists assigned any one year was 61. To complete the mapping and ancillary studies, 661 professional man-years were required, compared with an original estimate of 600 man-years. A wide variety of field methods were used, but most geologists relied on the surveying altimeter to obtain elevations. Surface data were supplemented by drill-hole records, and several dozen shallow diamond-drill holes were drilled to aid the mapping. Geologists generally scribed their own maps, with a consequent saving of publication costs

  9. Low-level radioactive waste program of the US Geological Survey - in transition

    International Nuclear Information System (INIS)

    Fischer, J.N.

    1983-01-01

    In 1983, the US Geological Survey will publish final reports of geohydrologic investigations at five commercial low-level, radioactive-waste burial sites in the United States. These reports mark the end of the first phase of the US Geological Survey program to improve the understanding of earth-science principles related to the effective disposal of low-level wastes. The second phase, which was initiated in 1981, is being developed to address geohydrologic issues identified as needing greater attention based upon results of the first-phase site studies. Specific program elements include unsaturated-zone hydrology, geochemistry, clay mineralogy, surface geophysical techniques, and model development and testing. The information and expertise developed from these and previous studies will allow the US Geological Survey to provide sound technical assistance to State low-level waste compacts, the Department of Energy, the Nuclear Regulatory Commission, and the Environmental Protection Agency. 11 references

  10. Geologic Framework Model (GFM2000)

    International Nuclear Information System (INIS)

    T. Vogt

    2004-01-01

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M and O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in

  11. Geologic Framework Model (GFM2000)

    Energy Technology Data Exchange (ETDEWEB)

    T. Vogt

    2004-08-26

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the

  12. Development of JNC geological disposal technical information integration system for geological environment field

    International Nuclear Information System (INIS)

    Tsuchiya, Makoto; Ueta, Shinzo; Ohashi, Toyo

    2004-02-01

    Enormous data on geology, geological structure, hydrology, geochemistry and rock properties should be obtained by various investigation/study in the geological disposal study. Therefore, 'JNC Geological Disposal Technical Information Integration System for Geological Environment Field' was developed in order to manage these data systematically and to support/promote the use of these data for the investigators concerned. The system is equipped with data base to store the information of the works and the background information of the assumptions built up in the works on each stage of data flow ('instigative', → 'data sampling' → interpretation' → conceptualization/modeling/simulation' → 'output') in the geological disposal study. In this system the data flow is shown as 'plan' composed of task' and 'work' to be done in the geological disposal study. It is possible to input the data to the database and to refer data from the database by using GUI that shows the data flow as 'plan'. The system was installed to the server computer possessed by JNC and the system utilities were checked on both the server computer and client computer also possessed by JNC. (author)

  13. Geological and geotechnical limitations of radioactive waste retrievability in geologic disposals

    Energy Technology Data Exchange (ETDEWEB)

    Stahlmann, Joachim; Leon-Vargas, Rocio; Mintzlaff, Volker; Treidler, Ann-Kathrin [TU Braunschweig (Germany). Inst. for Soil Mechanics and Foundation Engineering

    2015-07-01

    The capability of retrieving radioactive waste emplaced in deep geological formations is nowadays in discussion in many countries. Based on the storage of high-level radioactive waste (HAW) in deep geological repositories there is a number of possible scenarios for their retrieval. Measurements for an improved retrieving capability may impact on the geotechnical and geological barriers, e.g. keeping open the access drifts for a long period of time can result in a bigger evacuation damage zone (EDZ) in the host rock which implies potential flow paths for ground water. Nevertheless, to limit the possible scenarios associated to the retrieval implementation, it is necessary to take in consideration which criteria will be used for an efficient monitoring program, while clearly determining the performance reliability of the geotechnical barriers. In addition, the integrity of the host rock as geological barrier has to be verified. Therefore, it is important to evaluate different design solutions and the most appropriate measurement methods to improve the retrievability process of wastes from a geological repository. A short presentation of the host rocks is given is this paper.

  14. Rocks and geology in the San Francisco Bay region

    Science.gov (United States)

    Stoffer, Philip W.

    2002-01-01

    The landscape of the San Francisco Bay region is host to a greater variety of rocks than most other regions in the United States. This introductory guide provides illustrated descriptions of 46 common and important varieties of igneous, sedimentary, and metamorphic rock found in the region. Rock types are described in context of their identification qualities, how they form, and where they occur in the region. The guide also provides discussion about of regional geology, plate tectonics, the rock cycle, the significance of the selected rock types in relation to both earth history and the impact of mineral resources on the development in the region. Maps and text also provide information where rocks, fossils, and geologic features can be visited on public lands or in association with public displays in regional museums, park visitor centers, and other public facilities.

  15. 3D geological modelling of the Renard 2 kimberlite pipe, Québec, Canada: from exploration to extraction

    Science.gov (United States)

    Lépine, Isabelle; Farrow, Darrell

    2018-04-01

    The Renard 2 kimberlite pipe is one of nine diamondiferous kimberlite pipes that form a cluster in the south-eastern portion of the Superior Province, Québec, Canada and is presently being extracted at the Renard Mine. It is interpreted as a diatreme-zone kimberlite consisting of two Kimberley-type pyroclastic units and related country rock breccias, all cross-cut by coherent kimberlite dykes and irregular intrusives. Renard 2 has been the subject of numerous diamond drilling campaigns since its discovery in 2001. The first two geological models modelled kimberlite and country rock breccia units separately. A change in modelling philosophy in 2009, which incorporated the emplacement envelope and history, modelled the entire intrusive event and projected the pipe shape to depth allowing for more targeted deep drilling where kimberlite had not yet been discovered. This targeted 2009 drilling resulted in a > 400% increase in the volume of the Indicated Resource. Modelling only the kimberlite units resulted in a significant underestimation of the pipe shape. Current open pit and underground mapping of the pipe shape corresponds well to the final 2015 geological model and contact changes observed are within the expected level of confidence for an Indicated Resource. This study demonstrates that a sound understanding of the geological emplacement is key to developing a reliable 3D geological and resource model that can be used for targeted delineation drilling, feasibility studies and during the initial stages of mining.

  16. How do we know about Earth's history? Constructing the story of Earth's geologic history by collecting and interpreting evidence based scenarios.

    Science.gov (United States)

    Ruthford, Steven; DeBari, Susan; Linneman, Scott; Boriss, Miguel; Chesbrough, John; Holmes, Randall; Thibault, Allison

    2013-04-01

    Beginning in 2003, faculty from Western Washington University, Skagit Valley Community College, local public school teachers, and area tribal college members created an innovative, inquiry based undergraduate geology curriculum. The curriculum, titled "Energy and Matter in Earth's Systems," was supported through various grants and partnerships, including Math and Science Partnership and Noyce Teacher Scholarship grants from the National Science Foundation. During 2011, the authors wrote a geologic time unit for the curriculum. The unit is titled, "How Do We Know About Earth's History?" and has students actively investigate the concepts related to geologic time and methods for determining age. Starting with reflection and assessment of personal misconceptions called "Initial Ideas," students organize a series of events into a timeline. The unit then focuses on the concepts of relative dating, biostratigraphy, and historical attempts at absolute dating, including uniformitarianism, catastrophism, Halley and Joly's Salinity hypothesis, and Kelvin's Heat Loss model. With limited lecture and text, students then dive into current understandings of the age of the Earth, which include radioactive decay rates and radiometric dating. Finally, using their newfound understanding, students investigate a number of real world scenarios and create a timeline of events related to the geologic history of the Earth. The unit concludes with activities that reinforce the Earth's absolute age and direct students to summarize what they have learned by reorganizing the timeline from the "Initial Ideas" and sharing with the class. This presentation will include the lesson materials and findings from one activity titled, "The Earth's Story." The activity is located midway through the unit and begins with reflection on the question, "What are the major events in the Earth's history and when did they happen?" Students are directed to revisit the timeline of events from the "Initial Ideas

  17. A New Finite Continuation Algorithm for Linear Programming

    DEFF Research Database (Denmark)

    Madsen, Kaj; Nielsen, Hans Bruun; Pinar, Mustafa

    1996-01-01

    We describe a new finite continuation algorithm for linear programming. The dual of the linear programming problem with unit lower and upper bounds is formulated as an $\\ell_1$ minimization problem augmented with the addition of a linear term. This nondifferentiable problem is approximated...... by a smooth problem. It is shown that the minimizers of the smooth problem define a family of piecewise-linear paths as a function of a smoothing parameter. Based on this property, a finite algorithm that traces these paths to arrive at an optimal solution of the linear program is developed. The smooth...

  18. The synthesis and properties of linear A-π-D-π-A type organic small molecule containing diketopyrrolopyrrole terminal units

    Science.gov (United States)

    Zhang, Shanshan; Niu, Qingfen; Sun, Tao; Li, Yang; Li, Tianduo; Liu, Haixia

    2017-08-01

    A novel linear A-π-D-π-A-type organic small molecule Ph2(PDPP)2 consisting diketopyrrolopyrrole (DPP) as acceptor unit, biphenylene as donor unit and acetylene unit as π-linkage has been successfully designed and synthesized. Its corresponding thermal, photophysical and electrochemical properties as well as the photoinduced charge-separation process were investigated. Ph2(PDPP)2 exhibits high thermal stability and it can be soluble in common organic solvents such as chloroform and tetrahydrofuran. The photophysical properties show that DPP2Ph2 harvests sunlight over the entire visible spectrum range in the thin-film state (300-800 nm). DPP2Ph2 has lower band gaps and appropriate energy levels to satisfy the requirement of solution-processable organic solar cells. The efficient photoinduced charge separation process was clearly observed between DPP2Ph2 with PC61BM and the Ksv value was found to be as high as 2.13 × 104 M- 1. Therefore, these excellent properties demonstrate that the designed A-π-D-π-A-type small molecule Ph2(PDPP)2 is the prospective candidate as donor material for organic photovoltaic material.

  19. Geologic mapping of the air intake shaft at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Holt, R.M.; Powers, D.W.

    1990-12-01

    The air intake shaft (AS) was geologically mapped from the surface to the Waste Isolation Pilot Plant (WIPP) facility horizon. The entire shaft section including the Mescalero Caliche, Gatuna Formation, Santa Rosa Formation, Dewey Lake Redbeds, Rustler Formation, and Salado Formation was geologically described. The air intake shaft (AS) at the Waste Isolation Pilot Plant (WIPP) site was constructed to provide a pathway for fresh air into the underground repository and maintain the desired pressure balances for proper underground ventilation. It was up-reamed to minimize construction-related damage to the wall rock. The upper portion of the shaft was lined with slip-formed concrete, while the lower part of the shaft, from approximately 903 ft below top of concrete at the surface, was unlined. As part of WIPP site characterization activities, the AS was geologically mapped. The shaft construction method, up-reaming, created a nearly ideal surface for geologic description. Small-scale textures usually best seen on slabbed core were easily distinguished on the shaft wall, while larger scale textures not generally revealed in core were well displayed. During the mapping, newly recognized textures were interpreted in order to refine depositional and post-depositional models of the units mapped. The objectives of the geologic mapping were to: (1) provide confirmation and documentation of strata overlying the WIPP facility horizon; (2) provide detailed information of the geologic conditions in strata critical to repository sealing and operations; (3) provide technical basis for field adjustments and modification of key and aquifer seal design, based upon the observed geology; (4) provide geological data for the selection of instrument borehole locations; (5) and characterize the geology at geomechanical instrument locations to assist in data interpretation. 40 refs., 27 figs., 1 tab

  20. Assessing correlations between geological hazards and health outcomes: Addressing complexity in medical geology.

    Science.gov (United States)

    Wardrop, Nicola Ann; Le Blond, Jennifer Susan

    2015-11-01

    The field of medical geology addresses the relationships between exposure to specific geological characteristics and the development of a range of health problems: for example, long-term exposure to arsenic in drinking water can result in the development of skin conditions and cancers. While these relationships are well characterised for some examples, in others there is a lack of understanding of the specific geological component(s) triggering disease onset, necessitating further research. This paper aims to highlight several important complexities in geological exposures and the development of related diseases that can create difficulties in the linkage of exposure and health outcome data. Several suggested approaches to deal with these complexities are also suggested. Long-term exposure and lengthy latent periods are common characteristics of many diseases related to geological hazards. In combination with long- or short-distance migrations over an individual's life, daily or weekly movement patterns and small-scale spatial heterogeneity in geological characteristics, it becomes problematic to appropriately assign exposure measurements to individuals. The inclusion of supplementary methods, such as questionnaires, movement diaries or Global Positioning System (GPS) trackers can support medical geology studies by providing evidence for the most appropriate exposure measurement locations. The complex and lengthy exposure-response pathways involved, small-distance spatial heterogeneity in environmental components and a range of other issues mean that interdisciplinary approaches to medical geology studies are necessary to provide robust evidence. Copyright © 2015. Published by Elsevier Ltd.

  1. AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.

    1982-01-01

    The Geologic Simulation Model (GSM) is used by the AEGIS (Assessment of Effectiveness of Geologic Isolation Systems) program at the Pacific Northwest Laboratory to simulate the dynamic geology and hydrology of a geologic nuclear waste repository site over a million-year period following repository closure. The GSM helps to organize geologic/hydrologic data; to focus attention on active natural processes by requiring their simulation; and, through interactive simulation and calibration, to reduce subjective evaluations of the geologic system. During each computer run, the GSM produces a million-year geologic history that is possible for the region and the repository site. In addition, the GSM records in permanent history files everything that occurred during that time span. Statistical analyses of data in the history files of several hundred simulations are used to classify typical evolutionary paths, to establish the probabilities associated with deviations from the typical paths, and to determine which types of perturbations of the geologic/hydrologic system, if any, are most likely to occur. These simulations will be evaluated by geologists familiar with the repository region to determine validity of the results. Perturbed systems that are determined to be the most realistic, within whatever probability limits are established, will be used for the analyses that involve radionuclide transport and dose models. The GSM is designed to be continuously refined and updated. Simulation models are site specific, and, although the submodels may have limited general applicability, the input data equirements necessitate detailed characterization of each site before application

  2. A three-dimensional model of the Pyrenees and their foreland basins from geological and gravimetric data

    Science.gov (United States)

    Wehr, H.; Chevrot, S.; Courrioux, G.; Guillen, A.

    2018-06-01

    We construct a three-dimensional geological model of the Pyrenees and their foreland basins with the Geomodeller. This model, which accounts for different sources of geological and geophysical informations, covers the whole Pyrenees, from the Atlantic Ocean to the Mediterranean Sea, and from the Iberian range to the Massif Central, down to 70 km depth. We model the geological structure with a stratigraphic column composed of a superposition of layers representing the mantle, lower, middle, and upper crusts. The sedimentary basins are described by two layers which allow us to make the distinction between Mesozoic and Cenozoic sediments, which are characterized by markedly different densities and seismic velocities. Since the Pyrenees result from the convergence between the Iberian and European plates, we ascribe to each plate its own stratigraphic column in order to be able to model the imbrication of Iberian and European crusts along this fossile plate boundary. We also introduce two additional units which describe the orogenic prism and the water column in the Bay of Biscay and in the Mediterranean Sea. The last ingredient is a unit that represents bodies of shallow exhumed and partly serpentinized lithospheric mantle, which are assumed to produce the positive Bouguer gravity anomalies in the North Pyrenean Zone. A first 3D model is built using only the geological information coming from geological maps, drill-holes, and seismic sections. We use the potential field method implemented in Geomodeller to interpolate these geological data. This model is then refined in order to better explain the observed Bouguer anomalies by adding new constraints on the main crustal interfaces. The final model explains the observed Bouguer anomalies with a standard deviation less than 3.4 mGal, and reveals anomalous deep structures beneath the eastern Pyrenees.

  3. Linearity enigmas in ecology

    Energy Technology Data Exchange (ETDEWEB)

    Patten, B.C.

    1983-04-01

    Two issues concerning linearity or nonlinearity of natural systems are considered. Each is related to one of the two alternative defining properties of linear systems, superposition and decomposition. Superposition exists when a linear combination of inputs to a system results in the same linear combination of outputs that individually correspond to the original inputs. To demonstrate this property it is necessary that all initial states and inputs of the system which impinge on the output in question be included in the linear combination manipulation. As this is difficult or impossible to do with real systems of any complexity, nature appears nonlinear even though it may be linear. A linear system that displays nonlinear behavior for this reason is termed pseudononlinear. The decomposition property exists when the dynamic response of a system can be partitioned into an input-free portion due to state plus a state-free portion due to input. This is a characteristic of all linear systems, but not of nonlinear systems. Without the decomposition property, it is not possible to distinguish which portions of a system's behavior are due to innate characteristics (self) vs. outside conditions (environment), which is an important class of questions in biology and ecology. Some philosophical aspects of these findings are then considered. It is suggested that those ecologists who hold to the view that organisms and their environments are separate entities are in effect embracing a linear view of nature, even though their belief systems and mathematical models tend to be nonlinear. On the other hand, those who consider that organism-environment complex forms a single inseparable unit are implictly involved in non-linear thought, which may be in conflict with the linear modes and models that some of them use. The need to rectify these ambivalences on the part of both groups is indicated.

  4. JET VELOCITY OF LINEAR SHAPED CHARGES

    Directory of Open Access Journals (Sweden)

    Vječislav Bohanek

    2012-12-01

    Full Text Available Shaped explosive charges with one dimension significantly larger than the other are called linear shaped charges. Linear shaped charges are used in various industries and are applied within specific technologies for metal cutting, such as demolition of steel structures, separating spent rocket fuel tanks, demining, cutting holes in the barriers for fire service, etc. According to existing theories and models efficiency of linear shaped charges depends on the kinetic energy of the jet which is proportional to square of jet velocity. The original method for measuring velocity of linear shaped charge jet is applied in the aforementioned research. Measurements were carried out for two different linear materials, and the results are graphically presented, analysed and compared. Measurement results show a discrepancy in the measured velocity of the jet for different materials with the same ratio between linear and explosive mass (M/C per unit of surface, which is not described by presented models (the paper is published in Croatian.

  5. DATA ACQUISITION AND APPLICATIONS OF SIDE-LOOKING AIRBORNE RADAR IN THE U. S. GEOLOGICAL SURVEY.

    Science.gov (United States)

    Jones, John Edwin; Kover, Allan N.

    1985-01-01

    The Side-Looking Airborne Radar (SLAR) program encompasses a multi-discipline effort involving geologists, hydrologists, engineers, geographers, and cartographers of the U. S. Geological Survey (USGS). Since the program began in 1980, more than 520,000 square miles of aerial coverage of SLAR data in the conterminous United States and Alaska have been acquired or contracted for acquisition. The Geological Survey has supported more than 60 research and applications projects addressing the use of this technology in the earth sciences since 1980. These projects have included preparation of lithographic reproductions of SLAR mosaics, research to improve the cartographic uses of SLAR, research for use of SLAR in assessing earth hazards, and studies using SLAR for energy and mineral exploration through improved geologic mapping.

  6. Geologic map of the Murray Quadrangle, Newton County, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2016-07-06

    This map summarizes the geology of the Murray quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area is on the southern flank of the Ozark dome, an uplift that has the oldest rocks exposed at its center, in Missouri. Physiographically, the Murray quadrangle is within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and Little Buffalo River and their tributaries expose an approximately 1,600-ft-thick (488-meter-thick) sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The Buffalo National River, a park that encompasses the Buffalo River and adjacent land that is administered by the National Park Service is present at the northwestern edge of the quadrangle.Mapping for this study was carried out by field inspection of numerous sites and was compiled as a 1:24,000 geographic information system (GIS) database. Locations and elevation of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade relief and slope maps derived from a U.S. Geological Survey 10-meter digital elevation model as well as orthophotographs were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours, constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation, were drawn based on the elevations of field sites on these contacts well as other limiting information for their minimum elevations above hilltops or their maximum elevations below valley bottoms.

  7. Synopsis of in situ testing for mined geologic disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Gnirk, P.F.

    1980-01-01

    The concept of mined geologic disposal of radioactive wastes was proposed about 25 years ago. Until the mid-1970's, research and development activities were directed essentially to the evaluation of the disposal concept fot salt formations. During the past 5 years, the waste disposal technology programs in the USA and other countries have been expanded substantially in effort and scope for evaluation of a broader range of geologic media beyond salt, including basalt, granite, shale, and tuff. From the outset, in situ testing has been an integral part of these programs, and has included activities concerned with rock mass characterization, the phenomenological response of rock to waste or simulated waste emplacement, model development and verification, and repository design. This paper provides a synopsis of in situ tests that have been or are being performed in geologic media in support of the waste disposal programs in the USA, the United Kingdom, Sweden, and the Federal Republic of Germany

  8. Geology Forsmark. Site descriptive modelling Forsmark - stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. [Geological Survey of Sweden, Uppsala (Sweden); Fox, Aaron; La Pointe, Paul [Golder Associates Inc (United States); Simeonov, Assen [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Isaksson, Hans [GeoVista AB, Luleaa (Sweden); Hermanson, Jan; Oehman, Johan [Golder Associates AB, Stockholm (Sweden)

    2007-10-15

    The geological work during stage 2.2 has involved the development of deterministic models for rock domains (RFM) and deformation zones (ZFM), the identification and deterministic modelling of fracture domains (FFM) inside the candidate volume, i.e. the parts of rock domains that are not affected by deformation zones, and the development of statistical models for fractures and minor deformation zones (geological discrete fracture network modelling or geological DFN modelling). The geological DFN model addresses brittle structures at a scale of less than 1 km, which is the lower cut-off in the deterministic modelling of deformation zones. In order to take account of variability in data resolution, deterministic models for rock domains and deformation zones are presented in both regional and local model volumes, while the geological DFN model is valid within specific fracture domains inside the north-western part of the candidate volume, including the target volume. The geological modelling work has evaluated and made use of: A revised bedrock geological map at the ground surface. Geological and geophysical data from 21 cored boreholes and 33 percussion boreholes. Detailed mapping of fractures and rock units along nine excavations or large surface outcrops. Data bearing on the characterisation (including kinematics) of deformation zones. Complementary geochronological and other rock and fracture analytical data. Lineaments identified on the basis of airborne and high-resolution ground magnetic data. A reprocessing of both surface and borehole reflection seismic data. Seismic refraction data. The outputs of the deterministic modelling work are geometric models in RVS format and detailed property tables for rock domains and deformation zones, and a description of fracture domains. The outputs of the geological DFN modelling process are recommended parameters or statistical distributions that describe fracture set orientations, radius sizes, volumetric intensities

  9. Geology Forsmark. Site descriptive modelling Forsmark - stage 2.2

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Fox, Aaron; La Pointe, Paul; Simeonov, Assen; Isaksson, Hans; Hermanson, Jan; Oehman, Johan

    2007-10-01

    The geological work during stage 2.2 has involved the development of deterministic models for rock domains (RFM) and deformation zones (ZFM), the identification and deterministic modelling of fracture domains (FFM) inside the candidate volume, i.e. the parts of rock domains that are not affected by deformation zones, and the development of statistical models for fractures and minor deformation zones (geological discrete fracture network modelling or geological DFN modelling). The geological DFN model addresses brittle structures at a scale of less than 1 km, which is the lower cut-off in the deterministic modelling of deformation zones. In order to take account of variability in data resolution, deterministic models for rock domains and deformation zones are presented in both regional and local model volumes, while the geological DFN model is valid within specific fracture domains inside the north-western part of the candidate volume, including the target volume. The geological modelling work has evaluated and made use of: A revised bedrock geological map at the ground surface. Geological and geophysical data from 21 cored boreholes and 33 percussion boreholes. Detailed mapping of fractures and rock units along nine excavations or large surface outcrops. Data bearing on the characterisation (including kinematics) of deformation zones. Complementary geochronological and other rock and fracture analytical data. Lineaments identified on the basis of airborne and high-resolution ground magnetic data. A reprocessing of both surface and borehole reflection seismic data. Seismic refraction data. The outputs of the deterministic modelling work are geometric models in RVS format and detailed property tables for rock domains and deformation zones, and a description of fracture domains. The outputs of the geological DFN modelling process are recommended parameters or statistical distributions that describe fracture set orientations, radius sizes, volumetric intensities

  10. Global Journal of Geological Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Global Journal of Geological Sciences is aimed at promoting research in all areas of geological Sciences including Petrology, Mineralogy, geophysics, hydrogeology, Engineering geology, Petroleum geology, Palaeontology, environmental geology, Economic geology, etc.

  11. Geologic and edaphic factors influencing susceptibility of forest soils to environmental change

    Science.gov (United States)

    Scott W. Bailey

    2000-01-01

    There is great diversity in the structure and function of the northern forest across the 20-state portion of the United States considered in this book. The interplay of many factors accounts for the mosaic of ecological regimes across the region. In particular, climate, physiography, geology, and soils influence dominance and distribution of vegetation communities...

  12. Considerations of human inturison in U.S. programs for deep geologic disposal of radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Peter N.

    2013-01-01

    Regulations in the United States that govern the permanent disposal of spent nuclear fuel and high-level radioactive waste in deep geologic repositories require the explicit consideration of hypothetical future human intrusions that disrupt the waste. Specific regulatory requirements regarding the consideration of human intrusion differ in the two sets of regulations currently in effect in the United States; one defined by the Environmental Protection Agencys 40 Code of Federal Regulations part 197, applied only to the formerly proposed geologic repository at Yucca Mountain, Nevada, and the other defined by the Environmental Protection Agencys 40 Code of Federal Regulations part 191, applied to the Waste Isolation Pilot Plant in New Mexico and potentially applicable to any repository for spent nuclear fuel and high-level radioactive waste in the United States other than the proposed repository at Yucca Mountain. This report reviews the regulatory requirements relevant to human intrusion and the approaches taken by the Department of Energy to demonstrating compliance with those requirements.

  13. Performance characterization of siemens primus linear accelerator under small monitor unit and small segments for the implementation of step-and-shoot intensitymodulated radiotherapy

    Directory of Open Access Journals (Sweden)

    Reena P

    2006-01-01

    Full Text Available Implementation of step-and-shoot intensity-modulated radiotherapy (IMRT needs careful understanding of the accelerator start-up characteristic to ensure accurate and precise delivery of radiation dose to patient. The dosimetric characteristic of a Siemens Primus linear accelerator (LA which delivers 6 and 18 MV x-rays at the dose rate of 300 and 500 monitor unit (MU per minutes (min respectively was studied under the condition of small MU ranging from 1 to 100. Dose monitor linearity was studied at different dose calibration parameter (D1_C0 by measuring ionization at 10 cm depth in a solid water phantom using a 0.6 cc ionization chamber. Monitor unit stability was studied from different intensity modulated (IM groups comprising various combinations of MU per field and number of fields. Stability of beam flatness and symmetry was investigated under normal and IMRT mode for 20x20 cm2 field under small MU using a 2D Profiler kept isocentrically at 5 cm depth. Inter segment response was investigated form 1 to 10 MU by measuring the dose per MU from various IM groups, each consisting of four segments with inter-segment separation of 2 cm. In the range 1-4 MU, the dose linearity error was more than 5% (max -32% at 1 MU for 6 MV x-rays at factory calibrated D1_C0 value of 6000. The dose linearity error was reduced to -10.95% at 1 MU, within -3% for 2 and 3 MU and ±1% for MU ≥4 when the D1_C0 was subsequently tuned at 4500. For 18 MV x-rays, the dose linearity error at factory calibrated D1_C0 value of 4400 was within ±1% for MU ≥ 3 with maximum of -13.5 observed at 1 MU. For both the beam energies and MU/field ≥ 4, the stability of monitor unit tested for different IM groups was within ±1% of the dose from the normal treatment field. This variation increases to -2.6% for 6 MV and -2.7% for 18 MV x-rays for 2 MU/field. No significant variation was observed in the stability of beam profile measured from normal and IMRT mode. The beam flatness

  14. Heterotic sigma models and non-linear strings

    International Nuclear Information System (INIS)

    Hull, C.M.

    1986-01-01

    The two-dimensional supersymmetric non-linear sigma models are examined with respect to the heterotic string. The paper was presented at the workshop on :Supersymmetry and its applications', Cambridge, United Kingdom, 1985. The non-linear sigma model with Wess-Zumino-type term, the coupling of the fermionic superfields to the sigma model, super-conformal invariance, and the supersymmetric string, are all discussed. (U.K.)

  15. Universal Linear Scaling of Permeability and Time for Heterogeneous Fracture Dissolution

    Science.gov (United States)

    Wang, L.; Cardenas, M. B.

    2017-12-01

    Fractures are dynamically changing over geological time scale due to mechanical deformation and chemical reactions. However, the latter mechanism remains poorly understood with respect to the expanding fracture, which leads to a positively coupled flow and reactive transport processes, i.e., as a fracture expands, so does its permeability (k) and thus flow and reactive transport processes. To unravel this coupling, we consider a self-enhancing process that leads to fracture expansion caused by acidic fluid, i.e., CO2-saturated brine dissolving calcite fracture. We rigorously derive a theory, for the first time, showing that fracture permeability increases linearly with time [Wang and Cardenas, 2017]. To validate this theory, we resort to the direct simulation that solves the Navier-Stokes and Advection-Diffusion equations with a moving mesh according to the dynamic dissolution process in two-dimensional (2D) fractures. We find that k slowly increases first until the dissolution front breakthrough the outbound when we observe a rapid k increase, i.e., the linear time-dependence of k occurs. The theory agrees well with numerical observations across a broad range of Peclet and Damkohler numbers through homogeneous and heterogeneous 2D fractures. Moreover, the theory of linear scaling relationship between k and time matches well with experimental observations of three-dimensional (3D) fractures' dissolution. To further attest to our theory's universality for 3D heterogeneous fractures across a broad range of roughness and correlation length of aperture field, we develop a depth-averaged model that simulates the process-based reactive transport. The simulation results show that, regardless of a wide variety of dissolution patterns such as the presence of dissolution fingers and preferential dissolution paths, the linear scaling relationship between k and time holds. Our theory sheds light on predicting permeability evolution in many geological settings when the self

  16. Area geological characterization report for the Palo Duro and Dalhart Basins, Texas

    International Nuclear Information System (INIS)

    1983-07-01

    The present state of knowledge of the geology, hydrogeology, and seismology of the Palo Duro and Dalhart basins is summarized as a basis for future siting studies for a high-level nuclear waste repository. Large portions of the Texas Panhandle, and especially the Palo Duro basin, have stable geologic conditions and a favorable evaporite stratigraphy that warrant further study. Five salt-bearing formations containing thick salt units are present within the basin. Salt beds appear to be persistent over wide areas, relatively flat lying and structurally undisturbed. Available hydrogeologic data suggest that favorable conditions for waste isolation are widespread. The level and rate of seismic activity are low throughout the Texas Panhandle. 335 references, 83 figures, 17 tables

  17. A dual computed tomography linear accelerator unit for stereotactic radiation therapy: a new approach without cranially fixated stereotactic frames

    International Nuclear Information System (INIS)

    Uematsu, Minoru; Fukui, Toshiharu; Shioda, Akira; Tokumitsu, Hideyuki; Takai, Kenji; Kojima, Tadaharu; Asai, Yoshiko; Kusano, Shoichi

    1996-01-01

    Purpose: To perform stereotactic radiation therapy (SRT) without cranially fixated stereotactic frames, we developed a dual computed tomography (CT) linear accelerator (linac) treatment unit. Methods and Materials: This unit is composed of a linac, CT, and motorized table. The linac and CT are set up at opposite ends of the table, which is suitable for both machines. The gantry axis of the linac is coaxial with that of the CT scanner. Thus, the center of the target detected with the CT can be matched easily with the gantry axis of the linac by rotating the table. Positioning is confirmed with the CT for each treatment session. Positioning and treatment errors with this unit were examined by phantom studies. Between August and December 1994, 8 patients with 11 lesions of primary or metastatic brain tumors received SRT with this unit. All lesions were treated with 24 Gy in three fractions to 30 Gy in 10 fractions to the 80% isodose line, with or without conventional external beam radiation therapy. Results: Phantom studies revealed that treatment errors with this unit were within 1 mm after careful positioning. The position was easily maintained using two tiny metallic balls as vertical and horizontal marks. Motion of patients was negligible using a conventional heat-flexible head mold and dental impression. The overall time for a multiple noncoplanar arcs treatment for a single isocenter was less than 1 h on the initial treatment day and usually less than 20 min on subsequent days. Treatment was outpatient-based and well tolerated with no acute toxicities. Satisfactory responses have been documented. Conclusion: Using this treatment unit, multiple fractionated SRT is performed easily and precisely without cranially fixated stereotactic frames

  18. Handling high predictor dimensionality in slope-unit-based landslide susceptibility models through LASSO-penalized Generalized Linear Model

    KAUST Repository

    Camilo, Daniela Castro; Lombardo, Luigi; Mai, Paul Martin; Dou, Jie; Huser, Raphaë l

    2017-01-01

    Grid-based landslide susceptibility models at regional scales are computationally demanding when using a fine grid resolution. Conversely, Slope-Unit (SU) based susceptibility models allows to investigate the same areas offering two main advantages: 1) a smaller computational burden and 2) a more geomorphologically-oriented interpretation. In this contribution, we generate SU-based landslide susceptibility for the Sado Island in Japan. This island is characterized by deep-seated landslides which we assume can only limitedly be explained by the first two statistical moments (mean and variance) of a set of predictors within each slope unit. As a consequence, in a nested experiment, we first analyse the distributions of a set of continuous predictors within each slope unit computing the standard deviation and quantiles from 0.05 to 0.95 with a step of 0.05. These are then used as predictors for landslide susceptibility. In addition, we combine shape indices for polygon features and the normalized extent of each class belonging to the outcropping lithology in a given SU. This procedure significantly enlarges the size of the predictor hyperspace, thus producing a high level of slope-unit characterization. In a second step, we adopt a LASSO-penalized Generalized Linear Model to shrink back the predictor set to a sensible and interpretable number, carrying only the most significant covariates in the models. As a result, we are able to document the geomorphic features (e.g., 95% quantile of Elevation and 5% quantile of Plan Curvature) that primarily control the SU-based susceptibility within the test area while producing high predictive performances. The implementation of the statistical analyses are included in a parallelized R script (LUDARA) which is here made available for the community to replicate analogous experiments.

  19. Handling high predictor dimensionality in slope-unit-based landslide susceptibility models through LASSO-penalized Generalized Linear Model

    KAUST Repository

    Camilo, Daniela Castro

    2017-08-30

    Grid-based landslide susceptibility models at regional scales are computationally demanding when using a fine grid resolution. Conversely, Slope-Unit (SU) based susceptibility models allows to investigate the same areas offering two main advantages: 1) a smaller computational burden and 2) a more geomorphologically-oriented interpretation. In this contribution, we generate SU-based landslide susceptibility for the Sado Island in Japan. This island is characterized by deep-seated landslides which we assume can only limitedly be explained by the first two statistical moments (mean and variance) of a set of predictors within each slope unit. As a consequence, in a nested experiment, we first analyse the distributions of a set of continuous predictors within each slope unit computing the standard deviation and quantiles from 0.05 to 0.95 with a step of 0.05. These are then used as predictors for landslide susceptibility. In addition, we combine shape indices for polygon features and the normalized extent of each class belonging to the outcropping lithology in a given SU. This procedure significantly enlarges the size of the predictor hyperspace, thus producing a high level of slope-unit characterization. In a second step, we adopt a LASSO-penalized Generalized Linear Model to shrink back the predictor set to a sensible and interpretable number, carrying only the most significant covariates in the models. As a result, we are able to document the geomorphic features (e.g., 95% quantile of Elevation and 5% quantile of Plan Curvature) that primarily control the SU-based susceptibility within the test area while producing high predictive performances. The implementation of the statistical analyses are included in a parallelized R script (LUDARA) which is here made available for the community to replicate analogous experiments.

  20. Assessment of effectiveness of geologic isolation systems: the AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.; Petrie, G.M.

    1981-02-01

    Assessment of the post-closure performance of a nuclear waste repository has two basic components: the identification and analysis of potentially disruptive sequences and the pattern of geologic events and processes causing each sequence, and the identification and analysis of the environmental consequences of radionuclide transport and interactions subsequent to disruption of a repository. The AEGIS Scenario Analysis Task is charged with identifying and analyzing potenially disruptive sequences of geologic events and processes. The Geologic Simulation Model (GSM) was developed to evaluate the geologic/hydrologic system surrounding an underground repository, and describe the phenomena that alone, or in concert, could perturb the system and possibly cause a loss of repository integrity. The AEGIS approach is described in this report. It uses an integrated series of models for repository performance analysis; the GSM for a low-resolution, long-term, comprehensive evaluation of the geologic/hydrologic system, followed by more detailed hydrogeologic, radionuclide transport, and dose models to more accurately assess the consequences of disruptive sequences selected from the GSM analyses. This approach is felt to be more cost-effective than an integrated one because the GSM can be used to estimate the likelihoods of different potentially disruptive future evolutionary developments within the geologic/hydrologic system. The more costly consequence models can then be focused on a few disruptive sequences chosen for their representativeness and effective probabilities

  1. 1:250,000-scale Hydrologic Units of the United States

    Science.gov (United States)

    Steeves, Peter; Nebert, Douglas

    1994-01-01

    The Geographic Information Retrieval and Analysis System (GIRAS) was developed in the mid 70s to put into digital form a numberof data layers which were of interest to the USGS. One of these data layers was the Hydrologic Units. The map is based on the Hydrologic Unit Maps published by the U.S. Geological Survey Office of Water Data Coordination, together with the list descriptions and name of region, subregion, accounting units, and cataloging unit. The hydrologic units are encoded with an eight-digit number that indicates the hydrologic region (first two digits), hydrologic subregion (second two digits), accounting unit (third two digits), and cataloging unit (fourth two digits). The data produced by GIRAS was originally collected at a scale of 1:250K. Some areas, notably major cities in the west, were recompiled at a scale of 1:100K. In order to join the data together and use the data in a geographic information system (GIS) the data were processed in the ARC/INFO GUS software package. Within the GIS, the data were edgematched and the neatline boundaries between maps were removed to create a single data set for the conterminous

  2. Geological studies in Alaska by the U.S. Geological Survey, 1999

    Science.gov (United States)

    Gough, Larry P.; Wilson, Frederic H.

    2001-01-01

    The collection of nine papers that follow continue the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. The series presents new and sometimes preliminary findings that are of interest to earth scientists in academia, government, and industry; to land and resource managers; and to the general public. Reports presented in Geologic Studies in Alaska cover a broad spectrum of topics from various parts of the State (fig. 1), serving to emphasize the diversity of USGS efforts to meet the Nation's needs for earth-science information in Alaska.

  3. 国有地勘单位分类改革若干问题思考%Pondering on Some Issues in State-owned Geological Units Classified Reform

    Institute of Scientific and Technical Information of China (English)

    田国华; 颜洪鸣

    2013-01-01

    Going through more than 20 years, the state-owned geological exploration units have experienced stages of structural readjustment, unit business transferring and localization, realized diversified economy with one main industry, and diversified industrial structure management mode of enterprise, but are still public institutions. By virtue of "the Central Committee of the CPC, the State Council guidelines on classified institutional reform promotion", the classified reform of state-owned geological exploration units is imperative. Although the internal and external environments of the units have provided with sustainable development conditions, but common problems long-term accumulated still the choke point of the institution-enterprise reform, such as industrial scale small and scattered, long in "wage economy" position; human, financial and material resources limited, difficult to form new economic growth points; the ties of social problems of pension insurance system etc. Thus the units should take the initiative in the reform, to control conditions of classification, positioning with reason. On the basis of investigation and study, the government should consider regional differences promote the classified reform in classification, business segregation, gradation and step by step mode, phased and orderly manner. On the precondition of supporting policies, carry out industrial integration; ensure geological exploration industry sustainable development.%国有地勘单位的改革,历经20余年,先后经历了结构调整,成建制转产,属地化等阶段,实现了一业为主、多种经营、产业结构多元化的企业化管理模式,但仍保持着事业单位的身份.根据《中共中央、国务院关于分类推进事业单位改革的指导意见》,国有地勘单位分类改革势在必行.地勘单位虽然在内外部环境方面都具有可持续发展的条件,但长期积累下来的共性问题仍将成为事企改革的

  4. The U.S. Geological Survey's water resources program in New York

    Science.gov (United States)

    Wiltshire, Denise A.

    1983-01-01

    The U.S. Geological Survey performs hydrologic investigations throughout the United States to appraise the Nation's water resources. The Geological Survey began its water-resources investigations in New York in 1895. To meet the objectives of assessing New York's water resources, the Geological Survey (1) monitors the quantity and quality of surface and ground water, (2) conducts investigations of the occurrence, availability, and chemical quality of water in specific areas of the State, (3) develops methods and techniques of data-collection and interpretation, (4) provides scientific guidance to the research community, to Federal, State, and local governments, and to the public, and (5) disseminates data and results of research through reports, maps, news releases, conferences, and workshops. Many of the joint hydrologic investigations are performed by the Geological Survey in cooperation with State, county, and nonprofit organizations. The data collection network in New York includes nearly 200 gaging stations and 250 observation wells; chemical quality of water is measured at 260 sites. Data collected at these sites are published annually and are filed in the WATSTORE computer system. Some of the interpretive studies performed by the Geological Survey in New York include (1) determining the suitability of ground-water reservoirs for public-water supply in urban areas, (2) assessing geohydrologic impacts of leachate from hazardous waste sites on stream and ground-water quality, (3) evaluating the effects of precipitation quality and basin characteristics on streams and lakes, and (4) developing digital models of the hydrology of aquifers to simulate ground-water flow and the interaction between ground water and streams.

  5. 77 FR 19032 - Geological Survey

    Science.gov (United States)

    2012-03-29

    ... DEPARTMENT OF THE INTERIOR Geological Survey Announcement of National Geospatial Advisory Committee Meeting AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of meeting. SUMMARY: The National.... Geological Survey (703-648-6283, [email protected] ). Registrations are due by April 13, 2012. While the...

  6. Installation of borehole seismometer for earthquake characteristics in deep geological environment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Hee; Choi, Weon Hack; Cho, Sung Il; Chang, Chun Joong [KHNP CRI, Seoul (Korea, Republic of)

    2014-10-15

    Deep geological disposal is currently accepted as the most appropriate method for permanently removing spent nuclear fuel from the living sphere of humans. For implementation of deep geological disposal, we need to understand the geological changes that have taken place over the past 100,000 years, encompassing active faults, volcanic activity, elevation, ubsidence, which as yet have not been considered in assessing the site characteristics for general facilities, as well as to investigate and analyze the geological structures, fracture systems and seismic responses regarding deep geological environment about 500 meters or more underground. In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. Korea Hydro and Nuclear Power Co., Ltd. (KHNP) have installed the deep borehole earthquake observatory at depths of about 300 to 600 meters in order to study the seismic response characteristics in deep geological environment on June, 2014 in Andong area. This paper will show the status of deep borehole earthquake observatory and the results of background noise response characteristics of these deep borehole seismic data as a basic data analysis. We present here the status of deep borehole seismometer installation by KHNP. In order to basic data analysis for the borehole seismic observation data, this study shows the results of the orientation of seismometer and background noise characteristics by using a probability density function. Together with the ground motion data recorded by the borehole seismometers can be utilized as basic data for seismic response characteristics studies with regard to spent nuclear fuel disposal depth and as the input data for seismic hazard assessment that

  7. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  8. Geologic and hydrologic considerations for various concepts of high-level radioactive waste disposal in conterminous United States

    International Nuclear Information System (INIS)

    Ekren, E.B.; Dinwiddie, G.A.; Mytton, J.W.; Thordarson, W.; Weir, J.E. Jr.; Hinrichs, E.N.; Schroder, L.J.

    1974-01-01

    The purpose of this investigation is to evaluate and identify which geohydrologic environments in conterminous United States are best suited for various concepts or methods of underground disposal of high-level radioactive wastes and to establish geologic and hydrologic criteria that are pertinent to high-level waste disposal. The unproven methods of disposal include (1) a very deep drill hole (30,000 to 50,000 ft or 9,140 to 15,240 m), (2) a matrix of (an array of multiple) drill holes (1,000 to 20,000 ft or 305 to 6,100 m), (3) a mined chamber (1,000 to 10,000 ft or 305 to 3,050 m), (4) a cavity with separate manmade structures (1,000 to 10,000 ft or 305 to 3,050 m), and (5) an exploded cavity (2,000 to 20,000 ft or 610 to 6,100 m). Areas considered to be unsuitable for waste disposal are those where seismic risk is high, where possible sea-level rise would inundate potential sites, where high topographic relief coincides with high frequency of faults, where there are unfavorable ground-water conditions, and where no suitable rocks are known to be present to depths of 20,000 feet (6,100 m) or more, and where these strata either contain large volumes of ground water or have high oil and gas potential

  9. Geologic report, Middlesex Municipal Landfill site, Middlesex, New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-01

    This is a report on geologic and hydrologic investigations of the former Municipal Landfill, Middlesex, New Jersey, conducted during 1982 and 1983 by Bechtel National, Inc. for the United States Department of Energy, Oak Ridge Operations Office. The investigations were designed to assess the feasibility of stabilizing the radioactive contamination present on site. The investigations were conducted in two phases: Phase 1 consisted of permeability tests; Phase 2 consisted of tests to ascertain the extent of hydraulic interconnection between various stratigraphic units. The investigations revealed that a complete separation of bedrock and overburden did not exist and that the clay present could not be relied upon to confine vertical migration of contaminants over the long term. 6 references, 27 figures, 6 tables.

  10. Geologic report, Middlesex Municipal Landfill site, Middlesex, New Jersey

    International Nuclear Information System (INIS)

    1984-03-01

    This is a report on geologic and hydrologic investigations of the former Municipal Landfill, Middlesex, New Jersey, conducted during 1982 and 1983 by Bechtel National, Inc. for the United States Department of Energy, Oak Ridge Operations Office. The investigations were designed to assess the feasibility of stabilizing the radioactive contamination present on site. The investigations were conducted in two phases: Phase 1 consisted of permeability tests; Phase 2 consisted of tests to ascertain the extent of hydraulic interconnection between various stratigraphic units. The investigations revealed that a complete separation of bedrock and overburden did not exist and that the clay present could not be relied upon to confine vertical migration of contaminants over the long term. 6 references, 27 figures, 6 tables

  11. The geologic story of Isle Royale National Park

    Science.gov (United States)

    Huber, N. King

    1975-01-01

    Isle Royale is an outstanding example of relatively undisturbed northwoods lake wilderness. But more than simple preservation of such an environment is involved in its inclusion in our National Park System. Its isolation from the mainland provides an almost untouched laboratory for research in the natural sciences, especially those studies whose very nature depends upon such isolation. One excellent example of such research is the intensive study of the predator-prey relationship of the timber wolf and moose, long sponsored by the National Park Service and Purdue University. In probably no other place in North America are the necessary ecological conditions for such a study so admirably fulfilled as on Isle Royale. The development of a natural laboratory with such conditions is ultimately dependent upon geologic processes and events that although not unique in themselves, produced in their interplay a unique result, the island archipelago as we know it today, with its hills and valleys, swamps and bogs the ecological framework of the plant and animal world. Even the most casual visitor can hardly fail to be struck by the fiordlike nature of many of the bays, the chains of fringing islands, the ridge-and-valley topography, and the linear nature of all these features. The distinctive topography of the archipelago is, of course, only the latest manifestation of geologic processes in operation since time immemorial. Fragments of geologic history going back over a billion years can be read from the rocks of the island, and with additional data from other parts of the Lake Superior region, we can fill in some of the story of Isle Royale. After more than a hundred years of study by man, the story is still incomplete. But then, geologic stories are seldom complete, and what we do know allows a deeper appreciation of one of our most naturally preserved parks and whets our curiosity about the missing fragments.

  12. Fundamentals of Structural Geology

    Science.gov (United States)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  13. A SKOS-based multilingual thesaurus of geological time scale for interopability of online geological maps

    NARCIS (Netherlands)

    Ma, X.; Carranza, E.J.M.; Wu, C.; Meer, F.D. van der; Liu, G.

    2011-01-01

    The usefulness of online geological maps is hindered by linguistic barriers. Multilingual geoscience thesauri alleviate linguistic barriers of geological maps. However, the benefits of multilingual geoscience thesauri for online geological maps are less studied. In this regard, we developed a

  14. Assessing inundation hazards to nuclear powerplant sites using geologically extended histories of riverine floods, tsunamis, and storm surges

    Science.gov (United States)

    O'Connor, Jim; Atwater, Brian F.; Cohn, Timothy A.; Cronin, Thomas M.; Keith, Mackenzie K.; Smith, Christopher G.; Mason, Jr., Robert R.

    2014-01-01

    Most nuclear powerplants in the United States are near rivers, large lakes, or oceans. As evident from the Fukushima Daiichi, Japan, disaster of 2011, these water bodies pose inundation threats. Geologic records can extend knowledge of rare hazards from flooding, storm surges, and tsunamis. This knowledge can aid in assessing the safety of critical structures such as dams and energy plants, for which even remotely possible hazards are pertinent. Quantitative analysis of inundation from geologic records perhaps is most developed for and applied to riverine flood hazards, but because of recent natural disasters, geologic investigations also are now used widely for understanding tsunami hazards and coastal storm surges.

  15. Database system of geological information for geological evaluation base of NPP sites(I)

    International Nuclear Information System (INIS)

    Lim, C. B.; Choi, K. R.; Sim, T. M.; No, M. H.; Lee, H. W.; Kim, T. K.; Lim, Y. S.; Hwang, S. K.

    2002-01-01

    This study aims to provide database system for site suitability analyses of geological information and a processing program for domestic NPP site evaluation. This database system program includes MapObject provided by ESRI and Spread 3.5 OCX, and is coded with Visual Basic language. Major functions of the systematic database program includes vector and raster farmat topographic maps, database design and application, geological symbol plot, the database search for the plotted geological symbol, and so on. The program can also be applied in analyzing not only for lineament trends but also for statistic treatment from geologically site and laboratory information and sources in digital form and algorithm, which is usually used internationally

  16. OneGeology Web Services and Portal as a global geological SDI - latest standards and technology

    Science.gov (United States)

    Duffy, Tim; Tellez-Arenas, Agnes

    2014-05-01

    The global coverage of OneGeology Web Services (www.onegeology.org and portal.onegeology.org) achieved since 2007 from the 120 participating geological surveys will be reviewed and issues arising discussed. Recent enhancements to the OneGeology Web Services capabilities will be covered including new up to 5 star service accreditation scheme utilising the ISO/OGC Web Mapping Service standard version 1.3, core ISO 19115 metadata additions and Version 2.0 Web Feature Services (WFS) serving the new IUGS-CGI GeoSciML V3.2 geological web data exchange language standard (http://www.geosciml.org/) with its associated 30+ IUGS-CGI available vocabularies (http://resource.geosciml.org/ and http://srvgeosciml.brgm.fr/eXist2010/brgm/client.html). Use of the CGI simpelithology and timescale dictionaries now allow those who wish to do so to offer data harmonisation to query their GeoSciML 3.2 based Web Feature Services and their GeoSciML_Portrayal V2.0.1 (http://www.geosciml.org/) Web Map Services in the OneGeology portal (http://portal.onegeology.org). Contributing to OneGeology involves offering to serve ideally 1:1000,000 scale geological data (in practice any scale now is warmly welcomed) as an OGC (Open Geospatial Consortium) standard based WMS (Web Mapping Service) service from an available WWW server. This may either be hosted within the Geological Survey or a neighbouring, regional or elsewhere institution that offers to serve that data for them i.e. offers to help technically by providing the web serving IT infrastructure as a 'buddy'. OneGeology is a standards focussed Spatial Data Infrastructure (SDI) and works to ensure that these standards work together and it is now possible for European Geological Surveys to register their INSPIRE web services within the OneGeology SDI (e.g. see http://www.geosciml.org/geosciml/3.2/documentation/cookbook/INSPIRE_GeoSciML_Cookbook%20_1.0.pdf). The Onegeology portal (http://portal.onegeology.org) is the first port of call for anyone

  17. Geology of the Delta, Escalante, Price, Richfield, and Salina 10 x 20 quadrangles, Utah

    International Nuclear Information System (INIS)

    Thayer, P.A.

    1981-11-01

    The National Uranium Resource Evaluation (NURE) program was established to evaluate domestic uranium resources in the continental United States and to identify areas favorable for uranium exploration. The Grand Junction Office of the Department of Energy is responsible for administering the program. The Savannah River Laboratory (SRL) is responsible for hydrogeochemical and stream-sediment reconnaissance (HSSR) of 3.9 million km 2 (1,500,000 mi 2 ) in 37 eastern and western states. This document provides geologic and mineral resources reports for the Delta, Escalante, Price, Richfield, and Salina 1 0 x 2 0 National Topographic Map Series quadrangles, Utah. The purpose of these reports is to provide background geologic and mineral resources information to aid in the interpretation of NURE geochemical reconnaissance data. Except for the Escalante Quadrangle, each report is accompanied by a geologic map and a mineral locality map (Plates 1-8, in pocket). The US Geological Survey previously published a 1 0 x 2 0 geologic map of the Escalante Quadrangle and described the uranium deposits in the area (Hackman and Wyant, 1973). NURE hydrogeochemical and stream-sediment reconnaissance data for these quadrangles have been issued previously in some of the reports included in the references

  18. Stockholm international conference 2003 on geological repositories: Political and technical progress

    International Nuclear Information System (INIS)

    2004-01-01

    The conference reviewed global progress made as well as current perspectives on the activities to develop geologic repositories. The objectives were to review the progress in policy making as well as technical issues and to strengthen international co-operation on waste management and disposal issues. The first day of the conference addressed the policy aspects of geological repositories and the second day featured the more technical issues. Session 1: International progress in performing long-term safety studies and security of geological disposal were discussed and reviewed with examples from OECD/NEA, Belgium, Sweden, USA, Switzerland and Russia. Session 2: Views on stakeholder involvement and decision making process were presented by international organisations and national implementers from Japan, United Kingdom, Belgium and OECD/NEA. Session 3: Views on stakeholder involvement and decision making process were presented by regional and local stakeholders from France, Finland, Korea and Sweden. Session 4: International instruments assisting in the implementation of geological repositories were discussed, for example ICRP and IAEA/NEA safety documents, Joint Convention, Safeguard agreements, Nuclear Liability Conventions, etc. Session 5: The contribution of Research, Development and Demonstration was discussed with overviews of the progress achieved on scientific and technical issues over the past four years. Progress and key issues were presented from Switzerland, USA, Finland, Japan, Sweden and IAEA. Each of the papers and poster presentations have been analysed and indexed separately

  19. Soil science and geology: Connects, disconnects and new opportunities in geoscience education

    Science.gov (United States)

    Landa, E.R.

    2004-01-01

    Despite historical linkages, the fields of geology and soil science have developed along largely divergent paths in the United States during much of the mid- to late- twentieth century. The shift in recent decades within both disciplines to greater emphasis on environmental quality issues and a systems approach has created new opportunities for collaboration and cross-training. Because of the importance of the soil as a dynamic interface between the hydrosphere, biosphere, atmosphere, and lithosphere, introductory and advanced soil science classes are now being taught in a number of earth and environmental science departments. The National Research Council's recent report, Basic Research Opportunities in Earth Science, highlights the soil zone as part of the land surface-to-groundwater "critical zone" requiring additional investigation. To better prepare geology undergraduates to deal with complex environmental problems, their training should include a fundamental understanding of the nature and properties of soils. Those undergraduate geology students with an interest in this area should be encouraged to view soil science as a viable earth science specialty area for graduate study. Summer internships such as those offered by the National Science Foundation-funded Integrative Graduate Education, Research, and Training (IGERT) programs offer geology undergraduates the opportunity to explore research and career opportunities in soil science.

  20. Seismological and geological investigation for earthquake hazard in the Greater Accra Metropolitan Area

    International Nuclear Information System (INIS)

    Doku, M. S.

    2013-07-01

    A seismological and geological investigation for earthquake hazard in the Greater Accra Metropolitan Area was undertaken. The research was aimed at employing a methematical model to estimate the seismic stress for the study area by generating a complete, unified and harmonized earthquake catalogue spanning 1615 to 2012. Seismic events were souced from Leydecker, G. and P. Amponsah, (1986), Ambraseys and Adams, (1986), Amponsah (2008), Geological Survey Department, Accra, Ghana, Amponsah (2002), National Earthquake Information Service, United States Geological Survey, Denver, Colorado 80225, USA, the International Seismological Centre and the National Data Centre of the Ghana Atomic Energy Commission. Events occurring in the study area were used to create and Epicentral Intensity Map and a seismicity map of the study area after interpolation of missing seismic magnitudes. The least square method and the maximum likelihood estimation method were employed to evaluate b-values of 0.6 and 0.9 respectively for the study area. A thematic map of epicentral intensity superimposed on the geology of the study area was also developed to help understand the relationship between the virtually fractured, jointed and sheared geology and the seismic events. The results obtained are indicative of the fact that the stress level of GAMA has a telling effect on its seismicity and also the events are prevalents at fractured, jointed and sheared zones. (au)

  1. Bedrock geologic map of the central block area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; San Juan, C.A.

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. This study was funded by the US Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bon, (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a constituent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described here

  2. Operation environment construction of geological information database for high level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Wang Peng; Gao Min; Huang Shutao; Wang Shuhong; Zhao Yongan

    2014-01-01

    To fulfill the requirements of data storage and management in HLW geological disposal, a targeted construction method for data operation environment was proposed in this paper. The geological information database operation environment constructed by this method has its unique features. And it also will be the important support for HLW geological disposal project and management. (authors)

  3. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  4. Geology and mineral occurences of braquiantidinal do Lontra - GO

    International Nuclear Information System (INIS)

    Macambira, J.B.

    1983-01-01

    This work involved the geological mapping (in the scale 1:60.000) of an area of 800 square kilometers in the nortwestern part of the state of Goias, near and east of the Araguaia river. Based on the stratigraphy, metamorphism, geochronology, magmatism and mineral deposits hypotheses on the geological evolution of the region are discussed. The area studied belongs to the Precambrian Araguaia Fold Belt. The oldest rocks identified are trondhjemitic gneisses and on these rocks was deposited a sedimentary sequence with minor volcanics of a geosynclinal type. The stratigraphic column of Abreu (1978) was adopted with minor modifications. The basement, of transamazonic age (2000 Ma), consists mostly of gneiss, migmatite, granite gneiss and amphibolite. The metasediments belongs to the lower unit (Estrondo Group) of the Supergroup Baixo Araguaia. The Estrondo Group, of brasilian age (600 Ma), consists in the area of the lowermost Morro do Campo Formation, mainly quartzite and amphibolite, which give the high relief of the brachyanticlines of Lontra and Ramal do Lontra.(author)

  5. Geodatabase design and characteristics of geologic information for a geodatabase of selected wells penetrating the Austin Group in central Bexar County, Texas, 2010

    Science.gov (United States)

    Pedraza, Diana E.; Shah, Sachin D.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the San Antonio Water System, developed a geodatabase of geologic and hydrogeologic information for selected wells penetrating the Austin Group in central Bexar County, Texas. The Austin Group functions as an upper confining unit to the Edwards aquifer and is the thickest and most permeable of the Edwards aquifer confining units. The geologic and hydrogeologic information pertains to a 377-square-mile study area that encompasses central Bexar County. Data were compiled primarily from drillers' and borehole geophysical logs from federal, State, and local agencies and published reports. Austin Group characteristics compiled for 523 unique wells are documented (if known), including year drilled, well depth, altitude of top and base of the Austin Group, and thickness of the Austin Group.

  6. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.D.; Yount, J.C. (eds.)

    1988-12-31

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  7. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Yount, J.C.

    1988-01-01

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation's first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey's continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base

  8. Gamma radiation, an aid to geologic mapping on the Arabian shield, Kingdom of Saudi Arabia

    International Nuclear Information System (INIS)

    Flanigan, V.J.

    1972-01-01

    Aerial gamma-radiation measurements in the Jabal Al Qarah quadrangle, Saudi Arabia, correlate with and complement magnetic data in distinguishing common Precambrian rock types. Areas of lower total-count gamma radiation correlate with areas of more intense magnetic patterns, which in turn correlate with areas of mafic rocks, as suggested from the study of the geophysical and geologic data of the Jabal Ishmas and Jabal Yafikh quadrangles adjacent to the north. In contrast, areas that reflect a lower magnetic intensity tend to show considerable variation in the radiation intensity and can be interpreted as being underlain by granitic rocks. On the basis of extrapolation of geophysical-geologic relationships established previously, selected radiation levels may be used to identify mappable rock units. Thus, radioactivity levels of 2,000 to 4,000 cpM suggest mafic rocks, levels of 4,000 to 6,000 cpM represent metavolcanic and metasedimentary rocks, levels of 7,000 to 10,000 cpM are representative of granodiorite gneiss, and levels of more than 11,000 cpM typify granitic rocks. The spectral gamma-radiation data are used to evaluate total-count anomalies and indicators of geologic processes of enrichment, and estimating the amount of isotopes of U, Th, and K within each of the lithologic units. (U.S.)

  9. Estimation of non-linear effective permeability of magnetic materials with fine structure

    International Nuclear Information System (INIS)

    Waki, H.; Igarashi, H.; Honma, T.

    2006-01-01

    This paper describes a homogenization method for magnetic materials with fine structure. In this method, the structures of the magnetic materials are assumed to be periodic, and the unit cell is defined. The effective permeability is determined on the basis of magnetic energy balance in the unit cell. This method can be applied not only for linear problems but also for non-linear ones. In this paper, estimation of the effective permeability of non-linear magnetic materials by using the homogenization method is described in detail, and then the validity for the non-liner problems is tested for two-dimensional problems. It is shown that this homogenization method gives accurate non-linear effective permeability

  10. Preliminary Geologic/spectral Analysis of LANDSAT-4 Thematic Mapper Data, Wind River/bighorn Basin Area, Wyoming

    Science.gov (United States)

    Lang, H. R.; Conel, J. E.; Paylor, E. D.

    1984-01-01

    A LIDQA evaluation for geologic applications of a LANDSAT TM scene covering the Wind River/Bighorn Basin area, Wyoming, is examined. This involves a quantitative assessment of data quality including spatial and spectral characteristics. Analysis is concentrated on the 6 visible, near infrared, and short wavelength infrared bands. Preliminary analysis demonstrates that: (1) principal component images derived from the correlation matrix provide the most useful geologic information. To extract surface spectral reflectance, the TM radiance data must be calibrated. Scatterplots demonstrate that TM data can be calibrated and sensor response is essentially linear. Low instrumental offset and gain settings result in spectral data that do not utilize the full dynamic range of the TM system.

  11. New non-linear model of groundwater recharge: Inclusion of memory, heterogeneity and visco-elasticity

    Directory of Open Access Journals (Sweden)

    Spannenberg Jescica

    2017-09-01

    Full Text Available Fractional differentiation has adequate use for investigating real world scenarios related to geological formations associated with elasticity, heterogeneity, viscoelasticity, and the memory effect. Since groundwater systems exist in these geological formations, modelling groundwater recharge as a real world scenario is a challenging task to do because existing recharge estimation methods are governed by linear equations which make use of constant field parameters. This is inadequate because in reality these parameters are a function of both space and time. This study therefore concentrates on modifying the recharge equation governing the EARTH model, by application of the Eton approach. Accordingly, this paper presents a modified equation which is non-linear, and accounts for parameters in a way that it is a function of both space and time. To be more specific, herein, recharge and drainage resistance which are parameters within the equation, became a function of both space and time. Additionally, the study entailed solving the non-linear equation using an iterative method as well as numerical solutions by means of the Crank-Nicolson scheme. The numerical solutions were used alongside the Riemann-Liouville, Caputo-Fabrizio, and Atangana-Baleanu derivatives, so that account was taken for elasticity, heterogeneity, viscoelasticity, and the memory effect. In essence, this paper presents a more adequate model for recharge estimation.

  12. Preliminary geologic map of the Black Mountain area northeast of Victorville, San Bernardino County, California

    Science.gov (United States)

    Stone, Paul

    2006-01-01

    The Black Mountain area is in the Mojave Desert about 20 km northeast of Victorville, California. The geology of this area is of interest primarily for its excellent exposures of the early Mesozoic Fairview Valley Formation, a sequence of weakly metamorphosed sedimentary rocks including a thick, commercially important unit of limestone conglomerate that has been mined for cement at Black Mountain Quarry for several decades. Recent geochronologic work has shown that the Fairview Valley Formation is probably of Early Jurassic age. This preliminary geologic map of the Black Mountain area depicts the stratigraphic and structural relations of the Fairview Valley Formation and the associated rocks, most notably the overlying Sidewinder Volcanics of Early(?), Middle, and Late(?) Jurassic age. The map is based on new field studies by the author designed to clarify details of the stratigraphy and structure unresolved by previous investigations. The map is considered preliminary because the ages of some geologic units critical for a satisfactory understanding of the stratigraphic and structural framework remain unknown. The map area also includes a segment of the Helendale Fault, one of several faults of known or inferred late Cenozoic right-lateral displacement that make up the Eastern California Shear Zone. The fault is marked by aligned northeast-facing scarps in Pleistocene or older alluvial deposits and the underlying bedrock units. Relations in the map area suggest that right-lateral displacement on the Helendale Fault probably does not exceed 2 km, a conclusion compatible with previous estimates of displacement on this fault based on relations both within and outside the Black Mountain area.

  13. Lagoa Real design - Calculation of geologic reserves from AN-13 anomaly (Fazenda Cachoeira), Lagoa Real/BA, Brazil

    International Nuclear Information System (INIS)

    Marques, J.P.M.

    1982-12-01

    The conventional calculation of Geological Reserves from AN-13 Anomaly, Lagoa Real, with the limit ratio of U sub(3) O sub(8) at 700 ppm by Linear Method is presented. The information of 49 boreholes with chemical analysis and radiometric profile is included, evaluating the reserves to a maximum of 189 m deep. (author)

  14. Engineering geology and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, E M

    1979-01-01

    A classification is made of the anthropogenic processes in the environment into global, local, universally distributed, zonal, regional, and essentially local processes. Engineering geology is defined as the principal science concerned with the study of the geological medium which in turn involves the study of fossil fuel geology. 22 references.

  15. Performance characterization of Siemens primus linear accelerator under small monitor unit and small segments for the implementation of step-and-shoot intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Reena, P.; Pai, Rajeshri; Gupta, Tejpal; Rajeev, S.; Dayananda, S.; Jamema, S.V.; Deepak, D.

    2006-01-01

    Implementation of step-and-shoot intensity-modulated radiotherapy (IMRT) needs careful understanding of the accelerator start-up characteristic to ensure accurate and precise delivery of radiation dose to patient. The dosimetric characteristic of a Siemens Primus linear accelerator (LA) which delivers 6 and 18 MV x-rays at the dose rate of 300 and 500 monitor unit (MU) per minutes (min) respectively was studied under the condition of small MU ranging from 1 to 100. Dose monitor linearity was studied at different dose calibration parameter (D1 C O) by measuring ionization at 10 cm depth in a solid water phantom using a 0.6 cc ionization chamber. Monitor unit stability was studied from different intensity modulated (IM) groups comprising various combinations of MU per field and number of fields. Stability of beam flatness and symmetry was investigated under normal and IMRT mode for 20x20 cm 2 field under small MU using a 2D Profiler kept isocentrically at 5 cm depth. Inter segment response was investigated form 1 to 10 MU by measuring the dose per MU from various IM groups, each consisting of four segments with inter-segment separation of 2 cm. In the range 1-4 MU, the dose linearity error was more than 5% (max -32% at 1 MU) for 6 MV x-rays at factory calibrated D1 C O value of 6000. The dose linearity error was reduced to -10.95% at 1 MU, within -3% for 2 and 3 MU and ± 1% for MU ≥4 when the D1 C O was subsequently tuned at 4500. For 18 MV x-rays, the dose linearity error at factory calibrated D1 C O value of 4400 was within ± 1% for MU ≥3 with maximum of -13.5 observed at 1 MU. For both the beam energies and MU/field ≥4, the stability of monitor unit tested for different IM groups was within ± 1% of the dose from the normal treatment field. This variation increases to -2.6% for 6 MV and -2.7% for 18 MV x-rays for 2 MU/field. No significant variation was observed in the stability of beam profile measured from normal and IMRT mode. The beam flatness was

  16. Connecting Indigenous Stories with Geology: Inquiry-Based Learning in a Middle Years Classroom

    Science.gov (United States)

    Larkin, Damian; King, Donna; Kidman, Gillian

    2012-01-01

    One way to integrate indigenous perspectives in junior science is through links between indigenous stories of the local area and science concepts. Using local indigenous stories about landforms, a teacher of Year 8 students designed a unit on geology that catered for the diverse student population in his class. This paper reports on the…

  17. Illustrating Geology With Customized Video in Introductory Geoscience Courses

    Science.gov (United States)

    Magloughlin, J. F.

    2008-12-01

    For the past several years, I have been creating short videos for use in large-enrollment introductory physical geology classes. The motivation for this project included 1) lack of appropriate depth in existing videos, 2) engagement of non-science students, 3) student indifference to traditional textbooks, 4) a desire to share the visual splendor of geology through virtual field trips, and 5) a desire to meld photography, animation, narration, and videography in self-contained experiences. These (HD) videos are information-intensive but short, allowing a focus on relatively narrow topics from numerous subdisciplines, incorporation into lectures to help create variety while minimally interrupting flow and holding students' attention, and manageable file sizes. Nearly all involve one or more field locations, including sites throughout the western and central continental U.S., as well as Hawaii, Italy, New Zealand, and Scotland. The limited scope of the project and motivations mentioned preclude a comprehensive treatment of geology. Instead, videos address geologic processes, locations, features, and interactions with humans. The videos have been made available via DVD and on-line streaming. Such a project requires an array of video and audio equipment and software, a broad knowledge of geology, very good computing power, adequate time, creativity, a substantial travel budget, liability insurance, elucidation of the separation (or non-separation) between such a project and other responsibilities, and, preferably but not essentially, the support of one's supervisor or academic unit. Involving students in such projects entails risks, but involving necessary technical expertise is virtually unavoidable. In my own courses, some videos are used in class and/or made available on-line as simply another aspect of the educational experience. Student response has been overwhelmingly positive, particularly when expectations of students regarding the content of the videos is made

  18. State space model extraction of thermohydraulic systems – Part II: A linear graph approach applied to a Brayton cycle-based power conversion unit

    International Nuclear Information System (INIS)

    Uren, Kenneth Richard; Schoor, George van

    2013-01-01

    This second paper in a two part series presents the application of a developed state space model extraction methodology applied to a Brayton cycle-based PCU (power conversion unit) of a PBMR (pebble bed modular reactor). The goal is to investigate if the state space extraction methodology can cope with larger and more complex thermohydraulic systems. In Part I the state space model extraction methodology for the purpose of control was described in detail and a state space representation was extracted for a U-tube system to illustrate the concept. In this paper a 25th order nonlinear state space representation in terms of the different energy domains is extracted. This state space representation is solved and the responses of a number of important states are compared with results obtained from a PBMR PCU Flownex ® model. Flownex ® is a validated thermo fluid simulation software package. The results show that the state space model closely resembles the dynamics of the PBMR PCU. This kind of model may be used for nonlinear MIMO (multi-input, multi-output) type of control strategies. However, there is still a need for linear state space models since many control system design and analysis techniques require a linear state space model. This issue is also addressed in this paper by showing how a linear state space model can be derived from the extracted nonlinear state space model. The linearised state space model is also validated by comparing the state space model to an existing linear Simulink ® model of the PBMR PCU system. - Highlights: • State space model extraction of a pebble bed modular reactor PCU (power conversion unit). • A 25th order nonlinear time varying state space model is obtained. • Linearisation of a nonlinear state space model for use in power output control. • Non-minimum phase characteristic that is challenging in terms of control. • Models derived are useful for MIMO control strategies

  19. Identification of mineralized zones in the Zardu area, Kushk SEDEX deposit (Central Iran, based on geological and multifractal modeling

    Directory of Open Access Journals (Sweden)

    Dahooei Ahmad Heidari

    2016-02-01

    Full Text Available The aim of this paper is to delineate the different lead–zinc mineralized zones in the Zardu area of the Kushk zinc–lead stratabound SEDEX deposit, Central Iran, through concentration–volume (C–V modeling of geological and lithogeochemical drillcore data. The geological model demonstrated that the massive sulfide and pyrite+dolomite ore types as main rock types hosting mineralization. The C–V fractal modeling used lead, zinc and iron geochemical data to outline four types of mineralized zones, which were then compared to the mineralized rock types identified in the geological model. ‘Enriched’ mineralized zones contain lead and zinc values higher than 6.93% and 19.95%, respectively, with iron values lower than 12.02%. Areas where lead and zinc values were higher than 1.58% and 5.88%, respectively, and iron grades lower than 22% are labelled “high-grade” mineralized zones, and these zones are linked to massive sulfide and pyrite+dolomite lithologies of the geological model. Weakly mineralized zones, labelled ‘low-grade’ in the C– V model have 0–0.63% lead, 0–3.16% zinc and > 30.19% iron, and are correlated to those lithological units labeled as gangue in the geological model, including shales and dolomites, pyritized dolomites. Finally, a log-ratio matrix was employed to validate the results obtained and check correlations between the geological and fractal modeling. Using this method, a high overall accuracy (OA was confirmed for the correlation between the enriched and high-grade mineralized zones and two lithological units — the massive sulfide and pyrite+dolomite ore types.

  20. Geology Field Trips as Performance Evaluations

    Science.gov (United States)

    Bentley, Callan

    2009-01-01

    One of the most important goals the author has for students in his introductory-level physical geology course is to give them the conceptual skills for solving geologic problems on their own. He wants students to leave his course as individuals who can use their knowledge of geologic processes and logic to figure out the extended geologic history…

  1. Surficial Geologic Map of the Worcester North-Oxford- Wrentham-Attleboro Nine-Quadrangle Area in South- Central Massachusetts

    Science.gov (United States)

    Stone, Byron D.; Stone, Janet R.; DiGiacomo-Cohen, Mary L.

    2008-01-01

    The surficial geologic map layer shows the distribution of nonlithified earth materials at land surface in an area of nine 7.5-minute quadrangles (417 mi2 total) in south-central Massachusetts (fig. 1). Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and in resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, or organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for water resources, construction aggregate resources, earth-surface hazards assessments, and land-use decisions. The mapped distribution of surficial materials that lie between the land surface and the bedrock surface is based on detailed geologic mapping of 7.5-minute topographic quadrangles, produced as part of an earlier (1938-1982) cooperative statewide mapping program between the U.S. Geological Survey and the Massachusetts Department of Public Works (now Massachusetts Highway Department) (Page, 1967; Stone, 1982). Each published geologic map presents a detailed description of local geologic map units, the genesis of the deposits, and age correlations among units. Previously unpublished field compilation maps exist on paper or mylar sheets and these have been digitally rendered for the present map compilation. Regional summaries based on the Massachusetts surficial geologic mapping

  2. 9th International Accelerator School for Linear Colliders

    CERN Document Server

    2015-01-01

    This school is a continuation of the series of schools that began nine years ago: Japan 2006, Italy 2007, United States 2008, China 2009, Switzerland 2010, United States 2011, India 2012 and Turkey 2013. Based on needs from the accelerator community, the Linear Collider Collaboration (LCC) and ICFA Beam Dynamics Panel are organising the Ninth International Accelerator School for Linear Colliders. The school will present instruction in TeV-scale linear colliders including the ILC, CLIC and other advanced accelerators. An important change of this year’s school from previous LC schools is that it will also include the free electron laser (FEL), a natural extension for applications of the ILC/CLIC technology. The school is offered to graduate students, postdoctoral fellows and junior researchers from around the world. We welcome applications from physicists who are considering changing to a career in accelerator physics and technology. This school adopts an in depth approach. A selective course on the FEL has b...

  3. Geology of a Portion of the Martian Highlands: MTMs -20002, -20007, -25002 and -25007

    Science.gov (United States)

    Fortezzo, C. M.; Williams, K. K.

    2009-01-01

    As part of a continuing study to understand the relationship between valleys and highland resurfacing through geologic mapping, we are continuing to map seven MTM quads in portions of the Margaritifer, Arabia, and Noachis Terrae. Results from this mapping will also help constrain the role and extent of past water in the region. The MTMs are grouped in two different areas: a 4-quadrangle area (-20002, -20007, -25002, -25007) and an L-shaped area (-15017, -20017, -20022) within the region [1-5]. This abstract focuses on the geologic units and history from mapping in the 4-quadrangle area, but includes a brief update on the L-shaped map area.

  4. Mercury's Early Geologic History

    Science.gov (United States)

    Denevi, B. W.; Ernst, C. M.; Klima, R. L.; Robinson, M. S.

    2018-05-01

    A combination of geologic mapping, compositional information, and geochemical models are providing a better understanding of Mercury's early geologic history, and allow us to place it in the context of the Moon and the terrestrial planets.

  5. Bedrock and structural geologic maps of eastern Candor Sulci, western Ceti Mensa, and southeastern Ceti Mensa, Candor Chasma, Valles Marineris region of Mars

    Science.gov (United States)

    Okubo, Chris H.; Gaither, Tenielle A.

    2017-05-12

    This map product contains a set of three 1:18,000-scale maps showing the geology and structure of study areas in the western Candor Chasma region of Valles Marineris, Mars. These maps are part of an informal series of large-scale maps and map-based topical studies aimed at refining current understanding of the geologic history of western Candor Chasma. The map bases consist of digital elevation models and orthorectified images derived from High Resolution Imaging Science Experiment (HiRISE) data. These maps are accompanied by geologic cross sections, colorized elevation maps, and cutouts of HiRISE images showing key superposition relations. Also included in this product is a Correlation of Map Units that integrates units across all three map areas, as well as an integrated Description of Map Units and an integrated Explanation of Map Symbols. The maps were assembled using ArcGIS software produced by Environmental Systems Research Institute (http://www.esri.com). The ArcGIS projects and databases associated with each map are included online as supplemental data.

  6. 3D magnetization vector inversion based on fuzzy clustering: inversion algorithm, uncertainty analysis, and application to geology differentiation

    Science.gov (United States)

    Sun, J.; Li, Y.

    2017-12-01

    Magnetic data contain important information about the subsurface rocks that were magnetized in the geological history, which provides an important avenue to the study of the crustal heterogeneities associated with magmatic and hydrothermal activities. Interpretation of magnetic data has been widely used in mineral exploration, basement characterization and large scale crustal studies for several decades. However, interpreting magnetic data has been often complicated by the presence of remanent magnetizations with unknown magnetization directions. Researchers have developed different methods to deal with the challenges posed by remanence. We have developed a new and effective approach to inverting magnetic data for magnetization vector distributions characterized by region-wise consistency in the magnetization directions. This approach combines the classical Tikhonov inversion scheme with fuzzy C-means clustering algorithm, and constrains the estimated magnetization vectors to a specified small number of possible directions while fitting the observed magnetic data to within noise level. Our magnetization vector inversion recovers both the magnitudes and the directions of the magnetizations in the subsurface. Magnetization directions reflect the unique geological or hydrothermal processes applied to each geological unit, and therefore, can potentially be used for the purpose of differentiating various geological units. We have developed a practically convenient and effective way of assessing the uncertainty associated with the inverted magnetization directions (Figure 1), and investigated how geological differentiation results might be affected (Figure 2). The algorithm and procedures we have developed for magnetization vector inversion and uncertainty analysis open up new possibilities of extracting useful information from magnetic data affected by remanence. We will use a field data example from exploration of an iron-oxide-copper-gold (IOCG) deposit in Brazil to

  7. Performance estimation of an oil-free linear compressor unit for a new compact 2K Gifford-McMahon cryocooler

    Science.gov (United States)

    Hiratsuka, Y.; Bao, Q.; Y Xu, M.

    2017-12-01

    Since 2012, a new, compact Gifford-McMahon (GM) cryocooler for cooling superconducting single photon detectors (SSPD) has been developed and reported by Sumitomo Heavy Industries, Ltd. (SHI). Also, it was reported that National Institute of Information and Communications Technology (NICT) developed a multi-channel, conduction-cooled SSPD system. However, the size and power consumption reduction becomes indispensable to apply such a system to the optical communication of AdHoc for a mobile system installed in a vehicle. The objective is to reduce the total height of the expander by 33% relative to the existing RDK-101 GM expander and to reduce the total volume of the compressor unit by 50% relative to the existing CNA-11 compressor. In addition, considering the targeted cooling application, we set the design cooling capacity targets of the first and the second stages 1 W at 60 K and 20 mW at 2.3 K respectively. In 2016, Hiratsuka et al. reported that an oil-free compressor was developed for a 2K GM cryocooler. The cooling performance of a 2K GM expander driven by an experimental unit of the linear compressor was measured. No-load temperature less than 2.1 K and the cooling capacity of 20 mW at 2.3 K were successfully achieved with an electric input power of only 1.1 kW. After that, the compressor capsule and the heat exchanger, etc. were assembled into one enclosure as a compressor unit. The total volume of the compressor unit and electrical box was significantly reduced to about 38 L, which was close to the target of 35 L. Also, the sound noise, vibration characteristics, the effect of the compressor unit inclination and the ambient temperature on the cooling performance, were evaluated. The detailed experimental results are discussed in this paper.

  8. Geology of Uruguay review

    International Nuclear Information System (INIS)

    Gomez Rifas, C.

    2011-01-01

    This work is about the Uruguay geology review.This country has been a devoted to breeding cattle and agriculture.The evolution of geological knowledge begun with Dr. Karl Walther who published 53 papers between 1909 and 1948.

  9. The Geology of the Marcia Quadrangle of Asteroid Vesta: Assessing the Effects of Large, Young Craters

    Science.gov (United States)

    Williams, David A.; Denevi, Brett W.; Mittlefehldt, David W.; Mest, Scott C.; Schenk, Paul M.; Yingst, R. Aileen; Buczowski, Debra L.; Scully, Jennifer E. C.; Garry, W. Brent; McCord, Thomas B.; hide

    2014-01-01

    We used Dawn spacecraft data to identify and delineate geological units and landforms in the Marcia quadrangle of Vesta as a means to assess the role of the large, relatively young impact craters Marcia (approximately 63 kilometers diameter) and Calpurnia (approximately 53 kilometers diameter) and their surrounding ejecta field on the local geology. We also investigated a local topographic high with a dark-rayed crater named Aricia Tholus, and the impact crater Octavia that is surrounded by a distinctive diffuse mantle. Crater counts and stratigraphic relations suggest that Marcia is the youngest large crater on Vesta, in which a putative impact melt on the crater floor ranges in age between approximately 40 and 60 million years (depending upon choice of chronology system), and Marcia's ejecta blanket ranges in age between approximately 120 and 390 million years (depending upon choice of chronology system). We interpret the geologic units in and around Marcia crater to mark a major Vestan time-stratigraphic event, and that the Marcia Formation is one of the geologically youngest formations on Vesta. Marcia crater reveals pristine bright and dark material in its walls and smooth and pitted terrains on its floor. The smooth unit we interpret as evidence of flow of impact melts and (for the pitted terrain) release of volatiles during or after the impact process. The distinctive dark ejecta surrounding craters Marcia and Calpurnia is enriched in OH- or H-bearing phases and has a variable morphology, suggestive of a complex mixture of impact ejecta and impact melts including dark materials possibly derived from carbonaceous chondrite-rich material. Aricia Tholus, which was originally interpreted as a putative Vestan volcanic edifice based on lower resolution observations, appears to be a fragment of an ancient impact basin rim topped by a dark-rayed impact crater. Octavia crater has a cratering model formation age of approximately 280-990 million years based on counts

  10. Multi-objective genetic optimization of linear construction projects

    Directory of Open Access Journals (Sweden)

    Fatma A. Agrama

    2012-08-01

    Full Text Available In the real world, the majority cases of optimization problems, met by engineers, are composed of several conflicting objectives. This paper presents an approach for a multi-objective optimization model for scheduling linear construction projects. Linear construction projects have many identical units wherein activities repeat from one unit to another. Highway, pipeline, and tunnels are good examples that exhibit repetitive characteristics. These projects represent a large portion of the construction industry. The present model enables construction planners to generate optimal/near-optimal construction plans that minimize project duration, total work interruptions, and total number of crews. Each of these plans identifies, from a set of feasible alternatives, optimal crew synchronization for each activity and activity interruptions at each unit. This model satisfies the following aspects: (1 it is based on the line of balance technique; (2 it considers non-serial typical activities networks with finish–start relationship and both lag or overlap time between activities is allowed; (3 it utilizes a multi-objective genetic algorithms approach; (4 it is developed as a spreadsheet template that is easy to use. Details of the model with visual charts are presented. An application example is analyzed to illustrate the use of the model and demonstrate its capabilities in optimizing the scheduling of linear construction projects.

  11. D Geological Framework Models as a Teaching Aid for Geoscience

    Science.gov (United States)

    Kessler, H.; Ward, E.; Geological ModelsTeaching Project Team

    2010-12-01

    3D geological models have great potential as a resource for universities when teaching foundation geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for all students of geology. Today’s earth science students use a variety of skills and processes during their learning experience including the application of schema’s, spatial thinking, image construction, detecting patterns, memorising figures, mental manipulation and interpretation, making predictions and deducing the orientation of themselves and the rocks. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. Learning issues faced by students may also be encountered by experts, policy managers, and stakeholders when dealing with environmental problems. Therefore educational research of student learning in earth science may also improve environmental decision making. 3D geological framework models enhance the learning of Geosciences because they: ● enable a student to observe, manipulate and interpret geology; in particular the models instantly convert two-dimensional geology (maps, boreholes and cross-sections) into three dimensions which is a notoriously difficult geospatial skill to acquire. ● can be orientated to whatever the user finds comfortable and most aids recognition and interpretation. ● can be used either to teach geosciences to complete beginners or add to experienced students body of knowledge (whatever point that may be at). Models could therefore be packaged as a complete educational journey or students and tutor can select certain areas of the model

  12. On Associative Conformal Algebras of Linear Growth

    OpenAIRE

    Retakh, Alexander

    2000-01-01

    Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...

  13. The Suitable Geological Formations for Spent Fuel Disposal in Romania

    International Nuclear Information System (INIS)

    Marunteanu, C.; Ionita, G.; Durdun, I.

    2007-01-01

    Using the experience in the field of advanced countries and formerly Romanian program data, ANDRAD, the agency responsible for the disposal of radioactive wastes, started the program for spent fuel disposal in deep geological formations with a documentary analysis at the national scale. The potential geological formations properly characterized elsewhere in the world: salt, clay, volcanic tuff, granite and crystalline rocks,. are all present in Romania. Using general or specific selection criteria, we presently consider the following two areas for candidate geological formations: 1. Clay formations in two areas in the western part of Romania: (1) The Pannonian basin Socodor - Zarand, where the clay formation is 3000 m thick, with many bentonitic strata and undisturbed structure, and (2) The Eocene Red Clay on the Somes River, extending 1200 m below the surface. They both need a large investigation program in order to establish and select the required homogeneous, dry and undisturbed zones at a suitable depth. 2. Old platform green schist formations, low metamorphosed, quartz and feldspar rich rocks, in the Central Dobrogea structural unit, not far from Cernavoda NPP (30 km average distance), 3000 m thick and including many homogeneous, fine granular, undisturbed, up to 300 m thick layers. (authors)

  14. Uncertainties in geologic disposal of high-level wastes - groundwater transport of radionuclides and radiological consequences

    International Nuclear Information System (INIS)

    Kocher, D.C.; Sjoreen, A.L.; Bard, C.S.

    1983-01-01

    The analysis for radionuclide transport in groundwater considers models and methods for characterizing (1) the present geologic environment and its future evolution due to natural geologic processes and to repository development and waste emplacement, (2) groundwater hydrology, (3) radionuclide geochemistry, and (4) the interactions among these phenomena. The discussion of groundwater transport focuses on the nature of the sources of uncertainty rather than on quantitative estimates of their magnitude, because of the lack of evidence that current models can provide realistic quantitative predictions of radionuclide transport in groundwater for expected repository environments. The analysis for the long-term health risk to man following releases of long-lived radionuclides to the biosphere is more quantitative and involves estimates of uncertainties in (1) radionuclide concentrations in man's exposure environment, (2) radionuclide intake by exposed individuals per unit concentration in the environment, (3) the dose per unit intake, (4) the number of exposed individuals, and (5) the health risk per unit dose. For the important long-lived radionuclides in high-level waste, uncertainties in most of the different components of a calculation of individual and collective dose per unit release appear to be no more than two or three orders of magnitude; these uncertainties are certainly much less than uncertainties in predicting groundwater transport of radionuclides between a repository and the biosphere. Several limitations in current models for predicting the health risk to man per unit release to the biosphere are discussed

  15. Digital Field Mapping with the British Geological Survey

    Science.gov (United States)

    Leslie, Graham; Smith, Nichola; Jordan, Colm

    2014-05-01

    The BGS•SIGMA project was initiated in 2001 in response to a major stakeholder review of onshore mapping within the British Geological Survey (BGS). That review proposed a significant change for BGS with the recommendation that digital methods should be implemented for field mapping and data compilation. The BGS•SIGMA project (System for Integrated Geoscience MApping) is an integrated workflow for geoscientific surveying and visualisation using digital methods for geological data visualisation, recording and interpretation, in both 2D and 3D. The project has defined and documented an underpinning framework of best practice for survey and information management, best practice that has then informed the design brief and specification for a toolkit to support this new methodology. The project has now delivered BGS•SIGMA2012. BGS•SIGMA2012 is a integrated toolkit which enables assembly and interrogation/visualisation of existing geological information; capture of, and integration with, new data and geological interpretations; and delivery of 3D digital products and services. From its early days as a system which used PocketGIS run on Husky Fex21 hardware, to the present day system which runs on ruggedized tablet PCs with integrated GPS units, the system has evolved into a complete digital mapping and compilation system. BGS•SIGMA2012 uses a highly customised version of ESRI's ArcGIS 10 and 10.1 with a fully relational Access 2007/2010 geodatabase. BGS•SIGMA2012 is the third external release of our award-winning digital field mapping toolkit. The first free external release of the award-winning digital field mapping toolkit was in 2009, with the third version (BGS-SIGMAmobile2012 v1.01) released on our website (http://www.bgs.ac.uk/research/sigma/home.html) in 2013. The BGS•SIGMAmobile toolkit formed the major part of the first two releases but this new version integrates the BGS•SIGMAdesktop functionality that BGS routinely uses to transform our field

  16. Geologic mapping procedure: Final draft

    International Nuclear Information System (INIS)

    1987-09-01

    Geologic mapping will provide a baseline record of the subsurface geology in the shafts and drifts of the Exploratory Shaft Facility (ESF). This information will be essential in confirming the specific repository horizon, selecting representative locations for the in situ tests, providing information for construction and decommissioning seal designs, documenting the excavation effects, and in providing information for performance assessment, which relates to the ultimate suitability of the site as a nuclear waste repository. Geologic mapping will be undertaken on the walls and roof, and locally on the floor within the completed At-Depth Facility (ADF) and on the walls of the two access shafts. Periodic mapping of the exposed face may be conducted during construction of the ADF. The mapping will be oriented toward the collection and presentation of geologic information in an engineering format and the portrayal of detailed stratigraphic information which may be useful in confirmation of drillhole data collected as part of the surface-based testing program. Geologic mapping can be considered as a predictive tool as well as a means of checking design assumptions. This document provides a description of the required procedures for geologic mapping for the ESF. Included in this procedure is information that qualified technical personnel can use to collect the required types of geologic descriptions, at the appropriate level of detail. 5 refs., 3 figs., 1 tab

  17. Geologic map and cross sections of the Embudo Fault Zone in the Southern Taos Valley, Taos County, New Mexico

    Science.gov (United States)

    Bauer, Paul W.; Kelson, Keith I.; Grauch, V.J.S.; Drenth, Benjamin J.; Johnson, Peggy S.; Aby, Scott B.; Felix, Brigitte

    2016-01-01

    The southern Taos Valley encompasses the physiographic and geologic transition zone between the Picuris Mountains and the San Luis Basin of the Rio Grande rift. The Embudo fault zone is the rift transfer structure that has accommodated the kinematic disparities between the San Luis Basin and the Española Basin during Neogene rift extension. The eastern terminus of the transfer zone coincides with the intersection of four major fault zones (Embudo, Sangre de Cristo, Los Cordovas, and Picuris-Pecos), resulting in an area of extreme geologic and hydrogeologic complexities in both the basin-fill deposits and the bedrock. Although sections of the Embudo fault zone are locally exposed in the bedrock of the Picuris Mountains and in the late Cenozoic sedimentary units along the top of the Picuris piedmont, the full proportions of the fault zone have remained elusive due to a pervasive cover of Quaternary surficial deposits. We combined insights derived from the latest geologic mapping of the area with deep borehole data and high-resolution aeromagnetic and gravity models to develop a detailed stratigraphic/structural model of the rift basin in the southern Taos Valley area. The four fault systems in the study area overlap in various ways in time and space. Our geologic model states that the Picuris-Pecos fault system exists in the basement rocks (Picuris formation and older units) of the rift, where it is progressively down dropped and offset to the west by each Embudo fault strand between the Picuris Mountains and the Rio Pueblo de Taos. In this model, the Miranda graben exists in the subsurface as a series of offset basement blocks between the Ponce de Leon neighborhood and the Rio Pueblo de Taos. In the study area, the Embudo faults are pervasive structures between the Picuris Mountains and the Rio Pueblo de Taos, affecting all geologic units that are older than the Quaternary surficial deposits. The Los Cordovas faults are thought to represent the late Tertiary to

  18. U.S. Geological Survey Assessment of Undiscovered Petroleum Resources of the Hamra Basin, Libya, 2006

    Science.gov (United States)

    ,

    2007-01-01

    The Hamra Basin Province encompasses approximately 244,100 square kilometers (94,250 square miles) and is entirely within Libya. One composite total petroleum system (TPS) was defined for this assessment; it extends from Libya westward into adjacent parts of Algeria and southern Tunisia. The Hamra Basin part of the TPS was subdivided into four assessment units for the purpose of resource assessment. The assessment units cover only 172,390 square kilometers of the Hamra Basin Province; the remaining area has little potential for undiscovered petroleum resources because of the absence of petroleum source rocks. Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 784 million barrels of crude oil, 4,748 billion cubic feet of natural gas, and 381 million barrels of natural gas liquids in the Hamra Basin of northwestern Libya. Most of the undiscovered crude oil and natural gas are interpreted to be in deeper parts of the Hamra Basin.

  19. Brazil Geologic Basic Survey Program - Barbacena - Sheet SF.23-X-C-III -Minas Gerais State

    International Nuclear Information System (INIS)

    Brandalise, L.A.

    1991-01-01

    The present report refers to the Barbacena sheet (SF.23-X-C-III) systematic geological mapping, on the 1:10,000 scale, related to the Levantamentos Geologicos Basicos do Brasil Program - PLGB, carried out by CPRM for the DNPM. Integrated to geochemical and geophysical surveys, the geological mapping not only yielded geophysical and geochemical maps but a consistent to the 1:100.000 scale Metallogenetic/Provisional one as well. The geological mapping carried out during the Project has really evidenced that samples of distinct stratigraphic units had been employed to define the one and only isochrone. However geochronologic Rb/Sr dating performed during the geological mapping phase evidenced Archean ages for rocks of the Sao Bento dos Torres Metamorphic Suite (2684 ± 110 m.y.) and ages of about 2000 m.y. for the Ressaquinha Complex rocks. An analysis of crustal evolution patterns based on geological mapping, gravimetric survey data, aeromagnetometry and available geochronologic data is given in the Chapter 6, Part II, in the test. Major element oxides, trace-elements and rare-earths elements were analysed to establish parameters for the rocks environment elucidation. Geochemical survey was carried out with base on pan concentrated and stream sediments distributed throughout the sheet. (author)

  20. Geographical distribution patterns of iodine in drinking-water and its associations with geological factors in Shandong Province, China.

    Science.gov (United States)

    Gao, Jie; Zhang, Zhijie; Hu, Yi; Bian, Jianchao; Jiang, Wen; Wang, Xiaoming; Sun, Liqian; Jiang, Qingwu

    2014-05-19

    County-based spatial distribution characteristics and the related geological factors for iodine in drinking-water were studied in Shandong Province (China). Spatial autocorrelation analysis and spatial scan statistic were applied to analyze the spatial characteristics. Generalized linear models (GLMs) and geographically weighted regression (GWR) studies were conducted to explore the relationship between water iodine level and its related geological factors. The spatial distribution of iodine in drinking-water was significantly heterogeneous in Shandong Province (Moran's I = 0.52, Z = 7.4, p water were identified in the south-western and north-western parts of Shandong Province by the purely spatial scan statistic approach. Both GLMs and GWR indicated a significantly global association between iodine in drinking-water and geological factors. Furthermore, GWR showed obviously spatial variability across the study region. Soil type and distance to Yellow River were statistically significant at most areas of Shandong Province, confirming the hypothesis that the Yellow River causes iodine deposits in Shandong Province. Our results suggested that the more effective regional monitoring plan and water improvement strategies should be strengthened targeting at the cluster areas based on the characteristics of geological factors and the spatial variability of local relationships between iodine in drinking-water and geological factors.

  1. 3D Geological modelling of the Monfrague synform: a value added to the geologic heritage of the National Park; Modelo geologico 3D de la estructura en sinforme de Monfrague: un valor anadido al patrimonio geologico del Parque Nacional

    Energy Technology Data Exchange (ETDEWEB)

    Gumiel, P.; Arias, M.; Monteserin, V.; Segura, M.

    2010-07-01

    3D geological modelling of a tectonic structure called the Monfrague synform has been carried out to obtain a better insight into the geometry of this folding structure. It is a kilometric variscan WNW-ESE trending fold verging towards north and made up by a Palaeozoic sequence (Ordovician-Silurian).This structure with its lithology make up the morphology and the relief of the Park. The Monfrague synform is an asymmetrical folding structure showing southern limb dipping steeply to the south (reverse limb) what is well observed in the Armorican Quartzite at the Salto del Gitano. However, northern limb dips gently (less than 40 degree centigrade) to the south (normal limb). 3D geological modelling has been built on the basis of the geological knowledge and the structural interpretation, using 3D GeoModeller. (www.geomodeller.com). In this software, lithological units are described by a stratigraphic pile. A major original feature of this software is that the 3D description of the geological space is achieved through a potential field formulation in which geological boundaries are isopotential surfaces, and their dips are represented by gradients of the potential. Finally, it is emphasized the idea that a 3D geologic model of these characteristics, with its three-dimensional representation, together with suitable geological sections that clarify the structure in depth, represents a value added to the Geologic Heritage of the National Park and besides it supposes an interesting academic exercise which have a great didactic value. (Author)

  2. Free-Piston Diesel-Fueled Linear Alternator for Auxiliary Power Unit Applications

    National Research Council Canada - National Science Library

    Atkinson, Christopher

    1999-01-01

    .... Previous studies of free-piston engine designs have indicated that they would be useful where linear power delivery could be used, such as in fluid power delivery, or in electrical energy applications.

  3. Geological events in submerged areas: attributes and standards in the EMODnet Geology Project

    Science.gov (United States)

    Fiorentino, A.; Battaglini, L.; D'Angelo, S.

    2017-12-01

    EMODnet Geology is a European Project which promotes the collection and harmonization of marine geological data mapped by various national and regional mapping projects and recovered in the literature, in order to make them freely available through a web portal. Among the several features considered within the Project, "Geological events and probabilities" include submarine landslides, earthquakes, volcanic centers, tsunamis, fluid emissions and Quaternary faults in European Seas. Due to the different geological settings of European sea areas it was necessary to elaborate a comprehensive and detailed pattern of Attributes for the different features in order to represent the diverse characteristics of each occurrence. Datasets consist of shapefiles representing each event at 1:250,000 scale. The elaboration of guidelines to compile the shapefiles and attribute tables was aimed at identifying parameters that should be used to characterize events and any additional relevant information. Particular attention has been devoted to the definition of the Attribute table in order to achieve the best degree of harmonization and standardization according to the European INSPIRE Directive. One of the main objectives is the interoperability of data, in order to offer more complete, error-free and reliable information and to facilitate exchange and re-use of data even between non-homogeneous systems. Metadata and available information collected during the Project is displayed on the Portal (http://www.emodnet-geology.eu/) as polygons, lines and points layers according to their geometry. By combining all these data it might be possible to elaborate additional thematic maps which could support further research as well as land planning and management. A possible application is being experimented by the Geological Survey of Italy - ISPRA which, in cooperation with other Italian institutions contributing to EMODnet Geology, is working at the production of an update for submerged areas

  4. Synthesis of nuclear waste monazites, ideal actinide hosts for geologic disposal

    International Nuclear Information System (INIS)

    McCarthy, G.J.; White, W.B.; Pfoertsch, D.E.

    1978-01-01

    Monazite, an orthophosphate mineral of the lanthanides (Ln) and the actinides (An) U and Th, is a model for an ideal synthetic mineral waste form for geologic disposal of long-lived nuclear waste actinides. Natural monazites are known to have survived many of the conditions that might be inflicted on a nuclear waste repository by geological disruptions. High Th and U monazites with compositions typical of nuclear wastes have been synthesized with a routine calcination-pelletization-crystallization procedure. Charge balance for the Th 4+ → Ln 3+ substitution can be provided by either an equimolar Ca 2+ → Ln 3+ or Si 4+ → P 5+ substitution. For U 4+ → Ln 3+ , only the Ca 2+ → Ln 3+ substitution resulted in a phase-pure monazite. Unit cell parameter data were obtained for each nuclear waste monazite phase

  5. Uranium prospecting and geological favour ability in Uruguay

    International Nuclear Information System (INIS)

    Goso, H.

    1981-01-01

    Uranium prospecting carried out in Uruguay since 1976 is described. On the basis of literature available and of an analysis of the large structural units pertinent to Uruguay's geology, the prospecting performed in general in the northeast of the country, and in particular in the districts of Cerro Largo and Las Canas, is described. Some information is presented on uranium favour ability in Uruguay related to sedimentary formations: Devonian (Cerrezuelo Formation) and Gondwana (San Gregorio and Tres Islas Formations), and to the Crystalline formations of the centre and Southwest (1700-2000 m.y.) and of the east and southeast (500-700 m.y.)

  6. Geology

    Data.gov (United States)

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  7. Prospects for next-generation e+e- linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1990-02-01

    The purpose of this paper is to review progress in the US towards a next generation linear collider. During 1988, there were three workshops held on linear colliders: ''Physics of Linear Colliders,'' in Capri, Italy, June 14--18, 1988; Snowmass 88 (Linear Collider subsection) June 27--July 15, 1988; and SLAC International Workshop on Next Generation Linear Colliders, November 28--December 9, 1988. In this paper, I focus on reviewing the issues and progress on a next generation linear collider. The energy range is dictated by physics with a mass reach well beyond LEP, although somewhat short of SSC. The luminosity is that required to obtain 10 3 --10 4 units of R 0 per year. The length is consistent with a site on Stanford land with collision occurring on the SLAC site; the power was determined by economic considerations. Finally, the technology as limited by the desire to have a next generation linear collider by the next century. 37 refs., 3 figs., 6 tabs

  8. Radar, geologic, airborne gamma ray and Landsat TM digital data integration for geological mapping of the Estrela granite complex (Para State)

    International Nuclear Information System (INIS)

    Cunha, Edson Ricardo Soares Pereira da

    2002-01-01

    This work is focused on the geotectonic context of the Carajas Mineral Province, Amazon Craton, which represents the most important Brazilian Mineral Province and hosts iron, cooper, gold, manganese and nickel deposits. At the end of Archean age, during the techno-metamorphic evolution, moderated alkaline granitoids were generated, such as, Estrela Granite Complex (EGC). This work has used digital integration products with the purpose of study the granite suite, its host rock, and the surrounded area. The digital integrated data were gamma-ray and geological data with satellite images (SAR-SAREX e TM-Landsat). The geophysics data, originally in 32 bits and grid format, were interpolated and converted to 8 bits images. The geological data (facies map) was digitalized and converted to a raster format. The remote sensing images were geometrically corrected to guarantee an accuracy on the geological mapping. On the data processing phase, SAR images were digital integrated with gamma-ray data, TM-Landsat image and the raster facies map. The IHS transformation was used as the technique to integrate the multi-source data. On the photogeological interpretation, SAR data were extremely important to permit the extraction of the main tectonic lineaments which occur on the following directions: +/- N45W, +/- N70W, +/- NS, +/- N20E, +/- N45E e +/- N75E. This procedure was done both in analogic and automatic form, being the automatic process more useful to complement information in the extracting process. Among the digital products generated, SAR/GAMA products (uranium, thorium and total count) were the ones that give the most important contribution. The interpretation of the SAR/GAMA's products added to the field campaign have allowed to map the limits of units that occur in the region and four facies of the Estrela Granite Complex were detected. The origin of the granite suite might be related to a magmatic differentiation or to distinct intrusion pulses. The use of the

  9. Practical aspects of geological prediction

    International Nuclear Information System (INIS)

    Mallio, W.J.; Peck, J.H.

    1981-01-01

    Nuclear waste disposal requires that geology be a predictive science. The prediction of future events rests on (1) recognizing the periodicity of geologic events; (2) defining a critical dimension of effect, such as the area of a drainage basin, the length of a fault trace, etc; and (3) using our understanding of active processes the project the frequency and magnitude of future events in the light of geological principles. Of importance to nuclear waste disposal are longer term processes such as continental denudation and removal of materials by glacial erosion. Constant testing of projections will allow the practical limits of predicting geological events to be defined. 11 refs

  10. Geology of the Lachesis Tessera Quadrangle (V-18), Venus

    Science.gov (United States)

    McGowan, Eileen M.; McGill, George G.

    2010-01-01

    The Lachesis Tessera Quadrangle (V-18) lies between 25deg and 50deg north, 300deg and 330deg east. Most of the quadrangle consists of "regional plains" (1) of Sedna and Guinevere Planitiae. A first draft of the geology has been completed, and the tentative number of mapped units by terrain type is: tesserae - 2; plains - 4; ridge belts - 1; fracture belts - 1 (plus embayed fragments of possible additional belts); coronae - 5; central volcanoes - 2; shield flows - 2; paterae - 1; impact craters - 13; undifferentiated flows - 1; bright materials - 1.

  11. OneGeology- A Global Geoscience Data Platform

    Science.gov (United States)

    Harrison, M.; Komac, M.; Duffy, T.; Robida, F.; Allison, M. L.

    2014-12-01

    OneGeology (1G) is an initiative of Geological Survey Organisations (GSOs) around the globe that dates back to 2007. Since then, OneGeology has been a leader in developing geological online map data using GeoSciML- an international interoperability standard for the exchange of geological data. Increased use of this new standard allows geological data to be shared and integrated across the planet among organisations. One of the goals of OneGeology is an exchange of know-how with the developing world, shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making it more transparent, its operation more sustainable and its membership more open where in addition to GSOs, other types of organisations that create and use geoscience data can join and contribute. The next stage of the OneGeology initiative is focused on increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource about the rocks beneath our feet. Authoritative geoscience information will help to mitigate natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale with the aim of 1G to increase awareness of the geosciences and their relevance among professionals and general public- to be part of the solution. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscience data and the OneGeology Portal (portal.onegeology.org) is the place to find them.

  12. Geologic isolation programs in other countries

    International Nuclear Information System (INIS)

    Gera, F.

    1976-01-01

    Several nations other than West Germany and The Netherlands have declared their intention to investigate geological formations as potential radioactive waste repositories. In Belgium, the formations underlying the Mol Center have been cored down to about 570 m. The target formation is a bed of tertiary clay 165 to 265 m below the surface. The plan is to produce a 10,000-m 3 cavity in the middle of this clay and to use it for the disposal of intermediate-level and alpha-bearing wastes. France has a program underway to assess salt and crystalline formations as possible waste-disposal sites. In Italy, the feasibility of high-level-waste disposal in clay formations is being explored. In situ experiments will be performed in the massive clays underlying the Trisaia Center in southern Italy. Spain has begun studies on waste disposal in salt, clay, anhydrite, and crystalline formations. In Sweden, attention is focused on the possibility of disposal in Precambrian crystalline bedrock. In Switzerland, where crystalline rocks are always fractured, large formations of salt are not known, and suitable clay or marl formations have not been identified, anhydrite formations are being studied. The United Kingdom has declared its intention to investigate clays and crystalline rocks. Other countries that have revealed plans to assess geologic disposal within their territories include Austria, Denmark, India, the German Democratic Republic, and the Soviet Union

  13. Alignment and vibration issues in TeV linear collider design

    International Nuclear Information System (INIS)

    Fischer, G.E.

    1989-07-01

    The next generation of linear colliders will require alignment accuracies and stabilities of component placement at least one, perhaps two, orders of magnitude better than can be achieved by the conventional methods and procedures in practice today. The magnitudes of these component-placement tolerances for current designs of various linear collider subsystems are tabulated. In the micron range, long-term ground motion is sufficiently rapid that on-line reference and mechanical correction systems are called for. Some recent experiences with the upgraded SLAC laser alignment systems and examples of some conceivable solutions for the future are described. The so called ''girder'' problem is discussed in the light of ambient and vibratory disturbances. The importance of the quality of the underlying geology is stressed. The necessity and limitations of public-beam-derived placement information are mentioned. 40 refs., 4 figs., 1 tab

  14. Alighment and Vibration Issues in TeV Linear Collider Design

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.E.; /SLAC

    2005-08-12

    The next generation of linear colliders will require alignment accuracies and stabilities of component placement at least one, perhaps two, orders of magnitude better than can be achieved by the conventional methods and procedures in practice today. The magnitudes of these component-placement tolerances for current designs of various linear collider subsystems are tabulated. In the micron range, long-term ground motion is sufficiently rapid that on-line reference and mechanical correction systems are called for. Some recent experiences with the upgraded SLAC laser alignment systems and examples of some conceivable solutions for the future are described. The so called ''girder'' problem is discussed in the light of ambient and vibratory disturbances. The importance of the quality of the underlying geology is stressed. The necessity and limitations of particle-beam-derived placement information are mentioned.

  15. Geological disposal of high-level radioactive waste and geological environment in Japan

    International Nuclear Information System (INIS)

    Shimizu, Kazuhiko; Seo, Toshihiro; Yshida, Hidekazu

    2001-01-01

    The geological environment has two main functions in terms of ensuring the safety of geological disposal of high-level radioactive waste. One relates to the fundamental long-term stability of the site and the other to the properties of the host rock formations and groundwaters which facilitate the emplacement of the engineered barrier system and act as a natural barrier. In this connection, the feasibility of selecting a geological environment in Japan which is appropriate for geological disposal was discussed, based on findings obtained from case studies and field measurements. Considering long-term stability of the site, it is important to understand the effects and spatial distributions of the natural phenomena such as fault movement, volcanic activity, uplift/denudation and climatic/sea-level changes. Fault movement and volcanic activity are relatively localized phenomena, and can be avoided by considering only areas that are sufficiently remote from existing volcanoes and major active faults for these phenomena to have a negligible probability of causing significant effects. Uplift/denudation and climatic/sea-level changes are gradual phenomena and are more ubiquitous. It is, nevertheless, possible to estimate future trends by extrapolating the past changes into the future, and then to identify areas that may not be affected significantly by such phenomena. Considering the properties of the host rocks and groundwaters, it can be understood, from the presently available data, that deep groundwater in Japan generally flows slowly and its chemistry is in a reduced state. The data also suggest that deep rock masses, where the ground temperature is acceptably low and the rock pressure is almost homogeneous, are widely located throughout Japan. Based on the examination of the geological environment in Japan, it is possible to discuss the requirements for the geological environment to be considered and the investigations to be performed during the site selection

  16. Geostatistics: a common link between medical geography, mathematical geology, and medical geology.

    Science.gov (United States)

    Goovaerts, P

    2014-08-01

    Since its development in the mining industry, geostatistics has emerged as the primary tool for spatial data analysis in various fields, ranging from earth and atmospheric sciences to agriculture, soil science, remote sensing, and more recently environmental exposure assessment. In the last few years, these tools have been tailored to the field of medical geography or spatial epidemiology, which is concerned with the study of spatial patterns of disease incidence and mortality and the identification of potential 'causes' of disease, such as environmental exposure, diet and unhealthy behaviours, economic or socio-demographic factors. On the other hand, medical geology is an emerging interdisciplinary scientific field studying the relationship between natural geological factors and their effects on human and animal health. This paper provides an introduction to the field of medical geology with an overview of geostatistical methods available for the analysis of geological and health data. Key concepts are illustrated using the mapping of groundwater arsenic concentration across eleven Michigan counties and the exploration of its relationship to the incidence of prostate cancer at the township level.

  17. Environmental geophysics: Locating and evaluating subsurface geology, geologic hazards, groundwater contamination, etc

    International Nuclear Information System (INIS)

    Benson, A.K.

    1994-01-01

    Geophysical surveys can be used to help delineate and map subsurface geology, including potential geologic hazards, the water table, boundaries of contaminated plumes, etc. The depth to the water table can be determined using seismic and ground penetrating radar (GPR) methods, and hydrogeologic and geologic cross sections of shallow alluvial aquifers can be constructed from these data. Electrical resistivity and GPR data are especially sensitive to the quality of the water and other fluids in a porous medium, and these surveys help to identify the stratigraphy, the approximate boundaries of contaminant plumes, and the source and amount of contamination in the plumes. Seismic, GPR, electromagnetic (VLF), gravity, and magnetic data help identify and delineate shallow, concealed faulting, cavities, and other subsurface hazards. Integration of these geophysical data sets can help pinpoint sources of subsurface contamination, identify potential geological hazards, and optimize the location of borings, monitoring wells, foundations for building, dams, etc. Case studies from a variety of locations will illustrate these points. 20 refs., 17 figs., 6 tabs

  18. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  19. Geologic and Engineering Characterization of East Ford Field, Reeves County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Shirley P.; Flanders, William A.; Guzman, Jose I.; Zirczy, Helena

    1999-08-16

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through geologically based field development. The project focused on reservoir characterization of the East Ford unit, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey Sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit: it contained an estimated 18.4 million barrels (MMbbl) of original oil in place.

  20. Geological history of uranium

    International Nuclear Information System (INIS)

    Niini, Heikki

    1989-01-01

    Uranium is widely distributed in continental geological environments. The order of magnitude of uranium abundance in felsitic igneous rocks is 2-15 ppm, whereas it is less than 1 ppm in mafic rocks. Sedimentary rocks show a large range: from less than 0.1 ppm U in certain evaporites to over 100 ppm in phosphate rocks and organogenic matter. The content of U in seawater varies from 0.0005 to 0.005 ppm. The isotopic ratio U-238/U-235 is presently 137.5+-0.5, having gradually increased during geological time. The third natural isotope is U-234. On the basis of three fundamental economic criteria for ore reserves assessment (geological assurance, technical feasibility, and the grade and quantity of the deposits), the author finally comes to the following conclusions: Although the global uranium ores are not geologically renewable but continuously mined, they still, due to exploration and technical development, will tend to progressively increase for centuries to come

  1. PROJECT MANAGEMENT FOR THE STATE-GOVERNED GEOLOGICAL EXPLORATION OF MINERAL RESOURCES

    Directory of Open Access Journals (Sweden)

    A. M. Lygin

    2018-03-01

    necessity of introducing the project management methods to improve the efficiency of the state management of exploration was proven. The essence of the project-oriented system of the exploration works state management is considered. The model of the geological industry management system with the allocation of sectoral projects was adduced. The organizational structure and the structure of the activities of project participants, including planned and unscheduled activities was also gi-ven. We defined the nature of the management processes divided into five groups, the content of the control units of the sectoral project and the geological exploration management matrix. This was determined in the framework of the sectoral project. The proposed project-oriented control system of hydraulic fracturing, which varies depending on the environment, will allow the most effective implementation of the functions of state regulation in the mineral sector.

  2. The STRATAFORM Project: U.S. Geological Survey geotechnical studies

    Science.gov (United States)

    Minasian, Diane L.; Lee, Homa J.; Locat, Jaques; Orzech, Kevin M.; Martz, Gregory R.; Israel, Kenneth

    2001-01-01

    This report presents physical property logs of core samples from an offshore area near Eureka, CA. The cores were obtained as part of the STRATAFORM Program (Nittrouer and Kravitz, 1995, 1996), a study investigating how present sedimentation and sediment transport processes influence long-term stratigraphic sequences preserved in the geologic record. The core samples were collected during four separate research cruises to the northern California study area, and data shown in the logs of the cores were collected using a multi-sensor whole core logger. The physical properties collected are useful in identifying stratigraphic units, ground-truthing acoustic imagery and sub-bottom profiles, and in understanding mass movement processes. STRATA FORmation on Margins was initiated in 1994 by the Office of Naval Research, Marine Geology and Geophysics Department as a coordinated multi-investigator study of continental-margin sediment transport processes and stratigraphy (Nittrouer and Kravitz, 1996). The program is investigating the stratigraphic signature of the shelf and slope parts of the continental margins, and is designed to provide a better understanding of the sedimentary record and a better prediction of strata. Specifically, the goals of the STRATAFORM Program are to (Nittrouer and Kravitz, 1995): - determine the geological relevance of short-term physical processes that erode, transport, and deposit particles and those processes that subsequently rework the seabed over time scales - improve capabilities for identifying the processes that form the strata observed within the upper ~100 m of the seabed commonly representing 104-106 years of sedimentation. - synthesize this knowledge and bridge the gap between time scales of sedimentary processes and those of sequence stratigraphy. The STRATAFORM Program is divided into studies of the continental shelf and the continental slope; the geotechnical group within the U.S. Geological Survey provides support to both parts

  3. Bedrock geologic map of the Nashua South quadrangle, Hillsborough County, New Hampshire, and Middlesex County, Massachusetts

    Science.gov (United States)

    Walsh, Gregory J.; Jahns, Richard H.; Aleinikoff, John N.

    2013-01-01

    The bedrock geology of the 7.5-minute Nashua South quadrangle consists primarily of deformed Silurian metasedimentary rocks of the Berwick Formation. The metasedimentary rocks are intruded by a Late Silurian to Early Devonian diorite-gabbro suite, Devonian rocks of the Ayer Granodiorite, Devonian granitic rocks of the New Hampshire Plutonic Suite including pegmatite and the Chelmsford Granite, and Jurassic diabase dikes. The bedrock geology was mapped to study the tectonic history of the area and to provide a framework for ongoing hydrogeologic characterization of the fractured bedrock of Massachusetts and New Hampshire. This report presents mapping by G.J. Walsh and R.H. Jahns and zircon U-Pb geochronology by J.N. Aleinikoff. The complete report consists of a map, text pamphlet, and GIS database. The map and text pamphlet are only available as downloadable files (see frame at right). The GIS database is available for download in ESRITM shapefile and Google EarthTM formats, and includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, photographs, and a three-dimensional model.

  4. The geology of the Falkland Islands

    OpenAIRE

    Aldiss, D.T.; Edwards, E.J.

    1999-01-01

    This report is complementary to the 1:250 000 scale geological map of the Falkland Islands compiled in 1998. The report and map are products of the Falkland Islands Geological Mapping Project (1996-1998). Geological observation and research in the Islands date from 1764. The Islands were visited during two pioneering scientific cruises in the 19th century. Subsequently, many scientists visited en route to the Antarctic or Patagonia. Geological affinities to other parts of the sout...

  5. Geologic Map of the Boxley Quadrangle, Newton and Madison Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2007-01-01

    This map summarizes the geology of the Boxley 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the Boxley quadrangle lies within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and its tributaries expose an approximately 1,600-ft-(490-m-)thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. Part of Buffalo National River, a park encompassing the Buffalo River and adjacent land that is administered by the National Park Service, extends through the eastern part of the quadrangle. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevation sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as orthophotos were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours were constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation based on elevations of control points as well as other limiting information on their maximum or minimum elevations.

  6. Regional geologic framework off northeastern United States

    International Nuclear Information System (INIS)

    Schlee, J.; Behrendt, J.C.; Grow, J.A.; Robb, J.M.; Mattick, R.E.; Taylor, P.T.; Lawson, B.J.

    1976-01-01

    Six multichannel seismic-reflection profiles taken across the Atlantic continental margin off the northeastern United States show an excess of 14 km of presumed Mesozoic and younger sedimentary rocks in the Baltimore Canyon trough and 8 km in the Georges Bank basin. Beneath the continental rise, the sedimentary prism thickness exceeds 7 km south of New Jersey and Maryland, and it is 4.5 km thick south of Georges Bank Stratigraphically, the continental slope--outer edge of the continental shelf is a transition zone of high-velocity sedimentary rock, probably carbonate, that covers deeply subsidized basement. The spatial separation of magnetic and gravity anomalies on line 2 (New Jersey) suggests that in the Baltimore Canyon region the magnetic-slope anomaly is due to edge effects and that the previously reported free-air and isostatic gravity anomalies over the outer shelf may be due in part to a lateral increase in sediment density (velocity) near the shelf edge. The East Coast magnetic anomaly and the free-air gravity high both coincide over the outer shelf edge on line 1 (Georges Bank) but are offset by 20 km from the ridge on the reflection profile

  7. Predictability of the evolution of hydrogeological and hydrogeochemical systems; geological disposal of nuclear waste in crystalline rocks

    International Nuclear Information System (INIS)

    Murphy, W.M.; Diodato, D.M.

    2009-01-01

    Confidence in long-term geologic isolation of high-level nuclear waste and spent nuclear fuel requires confidence in predictions of the evolution of hydrogeological and hydrogeochemical systems. Prediction of the evolution of hydrogeological and hydrogeochemical systems is based on scientific understanding of those systems in the present - an understanding that can be tested with data from the past. Crystalline rock settings that have been geologically stable for millions of years and longer offer the potential of predictable, long-term waste isolation. Confidence in predictions of geologic isolation of radioactive waste can measured by evaluating the extent to which those predictions and their underlying analyses are consistent with multiple independent lines of evidence identified in the geologic system being analysed, as well as with evidence identified in analogs to that geologic system. The proposed nuclear waste repository at Yucca Mountain, Nevada, United States, differs in significant ways from potential repository sites being considered by other nations. Nonetheless, observations of hydrogeological and hydrogeochemical systems of Yucca Mountain and Yucca Mountain analogs present multiple independent lines of evidence that can be used in evaluating long-term predictions of the evolution of hydrogeological and hydrogeochemical systems at Yucca Mountain. (authors)

  8. Spent fuel handling system for a geologic storage test at the Nevada Test Site

    International Nuclear Information System (INIS)

    Duncan, J.E.; House, P.A.; Wright, G.W.

    1980-01-01

    The Lawrence Livermore Laboratory is conducting a test of the geologic storage of encapsulated spent commercial reactor fuel assemblies in a granitic rock at the Nevada Test Site. The test, known as the Spent Fuel Test-Climax (SFT-C), is sponsored by the US Department of Energy, Nevada Operations Office. Eleven pressurized-water-reactor spent fuel assemblies are stored retrievably for three to five years in a linear array in the Climax stock at a depth of 420 m

  9. Introduction to the 2002 geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks: Chapter 2 in Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    Science.gov (United States)

    ,

    2013-01-01

    The U.S Geological Survey (USGS) periodically conducts assessments of undiscovered oil and gas resources in the United States. The purpose of the U.S. Geological Survey National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The last major USGS assessment of oil and gas of the most important oil and gas provinces in the United States was in 1995 (Gautier and others, 1996). Since then a number of individual assessment provinces have been reappraised using new methodology. This was done particularly for those provinces where new information has become available, where new methodology was expected to reveal more insight to provide a better estimate, where additional geologic investigation was needed, or where continuous accumulations were deemed important. The San Juan Basin was reevaluated because of industry exploitation of new hydrocarbon accumulations that were not previously assessed and because of a change in application of assessment methodology to potential undiscovered hydrocarbon accumulations. Several changes have been made in this study. The methodology is different from that used in 1995 (Schmoker, 2003; Schmoker and Klett, 2003). In this study the total petroleum system (TPS) approach (Magoon and Dow, 1994) is used rather than the play approach. The Chama Basin is not included. The team of scientists studying the basin is different. The 1995 study focused on conventional accumulations, whereas in this 2002 assessment, it was a priority to assess continuous-type accumulations, including coal-bed gas. Consequently we are presenting here an entirely new study and results for the San Juan Basin Province. The results of this 2002 assessment of undiscovered oil and gas resources in the San Juan Basin Province (5022) are presented in this report within the geologic context of individual TPSs and their assessment units (AU) (table 1). Results

  10. OneGeology - Access to geoscience for all

    Science.gov (United States)

    Komac, Marko; Lee, Kathryn; Robida, Francois

    2014-05-01

    OneGeology is an initiative of Geological Survey Organisations (GSO) around the globe that dates back to Brighton, UK in 2007. Since then OneGeology has been a leader in developing geological online map data using a new international standard - a geological exchange language known as 'GeoSciML'. Increased use of this new language allows geological data to be shared and integrated across the planet with other organisations. One of very important goals of OneGeology was a transfer of valuable know-how to the developing world, hence shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making its structure more official, its operability more flexible and its membership more open where in addition to GSO also to other type of organisations that manage geoscientific data can join and contribute. The next stage of the OneGeology initiative will hence be focused into increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource on the rocks beneath our feet. Authoritative information on hazards and minerals will help to prevent natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale. With this new stage also renewed OneGeology objectives were defined and these are 1) to be the provider of geoscience data globally, 2) to ensure exchange of know-how and skills so all can participate, and 3) to use the global profile of 1G to increase awareness of the geosciences and their relevance among professional and general public. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscientific data and OneGeology Portal (portal.onegeology.org) is the place to find them.

  11. Stability and linearity control of spectrometric channels of the Cherenkov counters using controllable units

    International Nuclear Information System (INIS)

    Kollar, D.; Kollarova, L.; Khorvat, P.

    1976-01-01

    A system is elaborated to control stability and linearity of the Cherenkov counter spectrometric channels in an experiment on a magnetic monopole search. Linearity of a light characteristic of a photoelectric multiplier is checked with the help of the calibrated light-strikings of light emitting diodes with flare intensity adjusted by controlling generator voltage across the mercury body. A program algorithm is presented for checking stability and linearity of the Cherenkov counter spectrometric channels which helps to consider the fatigue effects of the photoelectric multiplier resulting from the considerable loads

  12. Geological investigations for geological model of deep underground geoenvironment at the Mizunami Underground Research Laboratory (MIU)

    International Nuclear Information System (INIS)

    Tsuruta, Tadahiko; Tagami, Masahiko; Amano, Kenji; Matsuoka, Toshiyuki; Kurihara, Arata; Yamada, Yasuhiro; Koike, Katsuaki

    2013-01-01

    Japan Atomic Energy Agency (JAEA) is performing a geoscientific research project, the Mizunami Underground Research Laboratory (MIU) project, in order to establish scientific and technological basis for geological disposal of high-level radioactive wastes. The MIU is located in crystalline rock environment, in Mizunami City, central Japan. Field investigations include geological mapping, reflection seismic surveys, several borehole investigations and geological investigations in the research galleries to identify the distribution and heterogeneity of fractures and faults that are potential major flowpaths for groundwater. The results of these field investigations are synthesized and compiled for the purpose of geological modeling. The field investigations indicate that the Main Shaft at the MIU intersected low permeability NNW oriented faults. A high permeability fracture zone in the granite, a significant water inflow point, was observed in the Ventilation Shaft. Development of the geological model focusing 3D spatial relationships at different scales and evolution of the geoenvironment are underway. This paper describes geological investigations applied in the MIU project, focusing on the evaluation of their effectiveness to understand for deep underground geoenvironment. (author)

  13. Free-piston engine linear generator for hybrid vehicles modeling study

    Science.gov (United States)

    Callahan, T. J.; Ingram, S. K.

    1995-05-01

    Development of a free piston engine linear generator was investigated for use as an auxiliary power unit for a hybrid electric vehicle. The main focus of the program was to develop an efficient linear generator concept to convert the piston motion directly into electrical power. Computer modeling techniques were used to evaluate five different designs for linear generators. These designs included permanent magnet generators, reluctance generators, linear DC generators, and two and three-coil induction generators. The efficiency of the linear generator was highly dependent on the design concept. The two-coil induction generator was determined to be the best design, with an efficiency of approximately 90 percent.

  14. A Geospatial Information Grid Framework for Geological Survey.

    Science.gov (United States)

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.

  15. The Linearity of Optical Tomography: Sensor Model and Experimental Verification

    Directory of Open Access Journals (Sweden)

    Siti Zarina MOHD. MUJI

    2011-09-01

    Full Text Available The aim of this paper is to show the linearization of optical sensor. Linearity of the sensor response is a must in optical tomography application, which affects the tomogram result. Two types of testing are used namely, testing using voltage parameter and testing with time unit parameter. For the former, the testing is by measuring the voltage when the obstacle is placed between transmitter and receiver. The obstacle diameters are between 0.5 until 3 mm. The latter is also the same testing but the obstacle is bigger than the former which is 59.24 mm and the testing purpose is to measure the time unit spend for the ball when it cut the area of sensing circuit. Both results show a linear relation that proves the optical sensors is suitable for process tomography application.

  16. Geologic map of Harrat Hutaymah, with petrologic classification and distribution of ultramafic inclusions, Saudi Arabia

    Science.gov (United States)

    Thornber, Carl R.

    1990-01-01

    This map shows detailed geology of the Quaternary and Tertiary volcanic deposits that comprise Harrat Hutaymah and an updated and generalized compilation of the underlying Proterozoic and Paleozoic basement rocks. Quaternary alluvial cover and details of basement geology (that is, faults, dikes, and other features) are not shown. Volcanic unit descriptions and contact relations are based upon field investigation by the author and on compilation and revision of mapping Kellogg (1984; northern half of area) and Pallister (1984; southern half of area). A single K-Ar date of 1.80 ± 0.05 Ma for an alkali olivine basalt flow transected by the Al Hutaymah tuff ring (Pallister, 1984) provides the basis for an estimated late Tertiary to Quaternary age range for all harrat volcanic units other than unit Qtr (tuff reworked during Quaternary age time). Contact relations and unit descriptions for the basement rocks were compiled from Pallister (1984), Kellogg (1984 and 1985), DuBray (1984), Johnson and Williams (1984), Vaslet and others (1987), Cole and Hedge (1986), and Richter and others (1984). All rock unit names in this report are informal and capitalization follows Saudi Arabian stratigraphic nomenclature (Fitch, 1980). Geographic information was compiled from Pallister (1984), Kellogg (1984), and Fuller (in Johnson and Williams, 1984) and from field investigation by the author in 1986. The pie diagrams on the map show the distribution and petrology of ultramafic xenoliths of Harrat Hutaymah. The pie diagrams are explained by a detailed classification of ultramafic xenoliths that is introduced in this report.

  17. Petroleum systems and geologic assessment of undiscovered oil and gas, Cotton Valley group and Travis Peak-Hosston formations, East Texas basin and Louisiana-Mississippi salt basins provinces of the northern Gulf Coast region. Chapters 1-7.

    Science.gov (United States)

    ,

    2006-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas potential of the Cotton Valley Group and Travis Peak and Hosston Formations in the East Texas Basin and Louisiana-Mississippi Salt Basins Provinces in the Gulf Coast Region (USGS Provinces 5048 and 5049). The Cotton Valley Group and Travis Peak and Hosston Formations are important because of their potential for natural gas resources. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define one total petroleum system and eight assessment units. Seven assessment units were quantitatively assessed for undiscovered oil and gas resources.

  18. INTEGRATION OF PALSAR AND ASTER SATELLITE DATA FOR GEOLOGICAL MAPPING IN TROPICS

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2015-10-01

    Full Text Available This research investigates the integration of the Phased Array type L-band Synthetic Aperture Radar (PALSAR and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER satellite data for geological mapping applications in tropical environments. The eastern part of the central belt of peninsular Malaysia has been investigated to identify structural features and mineral mapping using PALSAR and ASTER data. Adaptive local sigma and directional filters were applied to PALSAR data for detecting geological structure elements in the study area. The vegetation, mineralogic and lithologic indices for ASTER bands were tested in tropical climate. Lineaments (fault and fractures and curvilinear (anticline or syncline were detected using PALSAR fused image of directional filters (N-S, NE-SW, and NW-SE.Vegetation index image map show vegetation cover by fusing ASTER VNIR bands. High concentration of clay minerals zone was detected using fused image map derived from ASTER SWIR bands. Fusion of ASTER TIR bands produced image map of the lithological units. Results indicate that data integration and data fusion from PALSAR and ASTER sources enhanced information extraction for geological mapping in tropical environments.

  19. Fluctuations in isometric muscle force can be described by one linear projection of low-frequency components of motor unit discharge rates.

    Science.gov (United States)

    Negro, Francesco; Holobar, Ales; Farina, Dario

    2009-12-15

    The aim of the study was to investigate the relation between linear transformations of motor unit discharge rates and muscle force. Intramuscular (wire electrodes) and high-density surface EMG (13 x 5 electrode grid) were recorded from the abductor digiti minimi muscle of eight healthy men during 60 s contractions at 5%, 7.5% and 10% of the maximal force. Spike trains of a total of 222 motor units were identified from the EMG recordings with decomposition algorithms. Principal component analysis of the smoothed motor unit discharge rates indicated that one component (first common component, FCC) described 44.2 +/- 7.5% of the total variability of the smoothed discharge rates when computed over the entire contraction interval and 64.3 +/- 10.2% of the variability when computed over 5 s intervals. When the FCC was computed from four or more motor units per contraction, it correlated with the force produced by the muscle (62.7 +/- 10.1%) by a greater degree (P FCC and the force signal increased up to 71.8 +/- 13.1% when the duration and the shape of the smoothing window for discharge rates were similar to the average motor unit twitch force. Moreover, the coefficients of variation (CoV) for the force and for the FCC signal were correlated in all subjects (R(2) range = 0.14-0.56; P measures on the tibialis anterior muscle of an additional eight subjects during contractions at forces up to 20% of the maximal force (e.g. FCC explained 59.8 +/- 11.0% of variability of the smoothed discharge rates). In conclusion, one signal captures most of the underlying variability of the low-frequency components of motor unit discharge rates and explains large part of the fluctuations in the motor output during isometric contractions.

  20. LINEAR2007, Linear-Linear Interpolation of ENDF Format Cross-Sections

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: LINEAR converts evaluated cross sections in the ENDF/B format into a tabular form that is subject to linear-linear interpolation in energy and cross section. The code also thins tables of cross sections already in that form. Codes used subsequently need thus to consider only linear-linear data. IAEA1311/15: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: - Linear VERS. 2007-1 (JAN. 2007): checked against all ENDF/B-VII; increased page size from 60,000 to 600,000 points 2 - Method of solution: Each section of data is considered separately. Each section of File 3, 23, and 27 data consists of a table of cross section versus energy with any of five interpolation laws. LINEAR will replace each section with a new table of energy versus cross section data in which the interpolation law is always linear in energy and cross section. The histogram (constant cross section between two energies) interpolation law is converted to linear-linear by substituting two points for each initial point. The linear-linear is not altered. For the log-linear, linear-log and log- log laws, the cross section data are converted to linear by an interval halving algorithm. Each interval is divided in half until the value at the middle of the interval can be approximated by linear-linear interpolation to within a given accuracy. The LINEAR program uses a multipoint fractional error thinning algorithm to minimize the size of each cross section table

  1. The laboratories of geological studies

    International Nuclear Information System (INIS)

    1994-01-01

    This educational document comprises 4 booklets in a folder devoted to the presentation of the ANDRA's activities in geological research laboratories. The first booklet gives a presentation of the missions of the ANDRA (the French agency for the management of radioactive wastes) in the management of long life radioactive wastes. The second booklet describes the approach of waste disposal facilities implantation. The third booklet gives a brief presentation of the scientific program concerning the underground geologic laboratories. The last booklet is a compilation of questions and answers about long-life radioactive wastes, the research and works carried out in geologic laboratories, the public information and the local socio-economic impact, and the storage of radioactive wastes in deep geological formations. (J.S.)

  2. Geoethics and Forensic Geology

    Science.gov (United States)

    Donnelly, Laurance

    2017-04-01

    The International Union of Geological Sciences (IUGS), Initiative on Forensic Geology (IFG) was set up in 2011 to promote and develop the applications of geology to policing and law enforcement throughout the world. This includes the provision of crime scene examinations, searches to locate graves or items of interest that have been buried beneath the ground surface as part of a criminal act and geological trace analysis and evidence. Forensic geologists may assist the police and law enforcement in a range of ways including for example; homicide, sexual assaults, counter terrorism, kidnapping, humanitarian incidents, environmental crimes, precious minerals theft, fakes and fraudulent crimes. The objective of this paper is to consider the geoethical aspects of forensic geology. This includes both delivery to research and teaching, and contribution to the practical applications of forensic geology in case work. The case examples cited are based on the personal experiences of the authors. Often, the technical and scientific aspect of forensic geology investigation may be the most straightforward, after all, this is what the forensic geologist has been trained to do. The associated geoethical issues can be the most challenging and complex to manage. Generally, forensic geologists are driven to carry-out their research or case work with integrity, honesty and in a manner that is law abiding, professional, socially acceptable and highly responsible. This is necessary in advising law enforcement organisations, society and the scientific community that they represent. As the science of forensic geology begins to advance around the world it is desirable to establish a standard set of principles, values and to provide an agreed ethical a framework. But what are these core values? Who is responsible for producing these? How may these become enforced? What happens when geoethical standards are breached? This paper does not attempt to provide all of the answers, as further work

  3. 49 CFR 801.59 - Geological records.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Geological records. 801.59 Section 801.59... PUBLIC AVAILABILITY OF INFORMATION Exemption From Public Disclosure § 801.59 Geological records. Pursuant to 5 U.S.C. 552(b)(9), records concerning geological wells are exempt from public disclosure. ...

  4. Equilibrium Selection with Risk Dominance in a Multiple-unit Unit Uniform Price Auction

    DEFF Research Database (Denmark)

    Boom, Anette

    This paper uses an adapted version of the linear tracing procedure, suggested by Harsanyi and Selten (1988), in order to discriminate between two types of multiple Nash equilibria. Equilibria of the same type are pay-off equivalent in the analysed multiple-unit unit price auction where two seller...

  5. Geologic Framework Model Analysis Model Report

    Energy Technology Data Exchange (ETDEWEB)

    R. Clayton

    2000-12-19

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the

  6. Geologic Framework Model Analysis Model Report

    International Nuclear Information System (INIS)

    Clayton, R.

    2000-01-01

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M and O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and

  7. Multispectral Thermal Imagery and Its Application to the Geologic Mapping of the Koobi Fora Formation, Northwestern Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Green, Mary K. [Univ. of New Mexico, Albuquerque, NM (United States)

    2005-12-01

    The Koobi Fora Formation in northwestern Kenya has yielded more hominin fossils dated between 2.1 and 1.2 Ma than any other location on Earth. This research was undertaken to discover the spectral signatures of a portion of the Koobi Fora Formation using imagery from the DOE's Multispectral Thermal Imager (MTI) satellite. Creation of a digital geologic map from MTI imagery was a secondary goal of this research. MTI is unique amongst multispectral satellites in that it co-collects data from 15 spectral bands ranging from the visible to the thermal infrared with a ground sample distance of 5 meters per pixel in the visible and 20 meters in the infrared. The map was created in two stages. The first was to correct the base MTI image using spatial accuracy assessment points collected in the field. The second was to mosaic various MTI images together to create the final Koobi Fora map. Absolute spatial accuracy of the final map product is 73 meters. The geologic classification of the Koobi Fora MTI map also took place in two stages. The field work stage involved location of outcrops of different lithologies within the Koobi Fora Formation. Field descriptions of these outcrops were made and their locations recorded. During the second stage, a linear spectral unmixing algorithm was applied to the MTI mosaic. In order to train the linear spectra unmixing algorithm, regions of interest representing four different classes of geologic material (tuff, alluvium, carbonate, and basalt), as well as a vegetation class were defined within the MTI mosaic. The regions of interest were based upon the aforementioned field data as well as overlays of geologic maps from the 1976 Iowa State mapping project. Pure spectra were generated for each class from the regions of interest, and then the unmixing algorithm classified each pixel according to relative percentage of classes found within the pixel based upon the pure spectra values. A total of four unique combinations of geologic

  8. The role of geostatistics in medical geology

    Science.gov (United States)

    Goovaerts, Pierre

    2014-05-01

    Since its development in the mining industry, geostatistics has emerged as the primary tool for spatial data analysis in various fields, ranging from earth and atmospheric sciences, to agriculture, soil science, remote sensing, and more recently environmental exposure assessment. In the last few years, these tools have been tailored to the field of medical geography or spatial epidemiology, which is concerned with the study of spatial patterns of disease incidence and mortality and the identification of potential 'causes' of disease, such as environmental exposure, diet and unhealthy behaviors, economic or socio-demographic factors. On the other hand, medical geology is an emerging interdisciplinary scientific field studying the relationship between natural geological factors and their effects on human and animal health. This paper provides an introduction to the field of medical geology with an overview of geostatistical methods available for the analysis of geological and health data. Key concepts are illustrated using the mapping of groundwater arsenic concentrations across eleven Michigan counties and the exploration of its relationship to the incidence of prostate cancer at the township level. Arsenic in drinking-water is a major problem and has received much attention because of the large human population exposed and the extremely high concentrations (e.g. 600 to 700 μg/L) recorded in many instances. Few studies have however assessed the risks associated with exposure to low levels of arsenic (say water in the United States. In the Michigan thumb region, arsenopyrite (up to 7% As by weight) has been identified in the bedrock of the Marshall Sandstone aquifer, one of the region's most productive aquifers. Epidemiologic studies have suggested a possible associationbetween exposure to inorganic arsenic and prostate cancer mortality, including a study of populations residing in Utah. The information available for the present ecological study (i.e. analysis of

  9. Some problems of geologic relations between the Amazon craton and east margins fold belts

    International Nuclear Information System (INIS)

    Almeida, F.F.M. de

    1986-01-01

    This paper deals with some geologic problems related to the limits between the Amazon craton and the fold belts developed at its margins during the Precambrian. These limits are diversified but clearly recognized. To the north, the Araguaia-Tocantins fold belt, of presumed Middle Proterozoic age, is separated from the cratonic block by a deep marginal fracture zone permeated by mafic and ultramafic rocks. The geologic, magmatic and aeromagnetic characteristics of this zone point out the presence of deep faults, supposed to be of Middle Proterozoic age. The southern Paraguay fold belt constitutes and accurated zone of linear structures supposed to be of Late Proterozoic development. Despite the great increase of knowledge during the last ten years many tectonic, stratigraphic and geochronologic problems remain unsolved. The aim of this paper is to point out some of these problems and suggest specific studies to solve them. (author)

  10. Using Copulas in the Estimation of the Economic Project Value in the Mining Industry, Including Geological Variability

    Science.gov (United States)

    Krysa, Zbigniew; Pactwa, Katarzyna; Wozniak, Justyna; Dudek, Michal

    2017-12-01

    Geological variability is one of the main factors that has an influence on the viability of mining investment projects and on the technical risk of geology projects. In the current scenario, analyses of economic viability of new extraction fields have been performed for the KGHM Polska Miedź S.A. underground copper mine at Fore Sudetic Monocline with the assumption of constant averaged content of useful elements. Research presented in this article is aimed at verifying the value of production from copper and silver ore for the same economic background with the use of variable cash flows resulting from the local variability of useful elements. Furthermore, the ore economic model is investigated for a significant difference in model value estimated with the use of linear correlation between useful elements content and the height of mine face, and the approach in which model parameters correlation is based upon the copula best matched information capacity criterion. The use of copula allows the simulation to take into account the multi variable dependencies at the same time, thereby giving a better reflection of the dependency structure, which linear correlation does not take into account. Calculation results of the economic model used for deposit value estimation indicate that the correlation between copper and silver estimated with the use of copula generates higher variation of possible project value, as compared to modelling correlation based upon linear correlation. Average deposit value remains unchanged.

  11. Geology and mineral resources of the Johnson City, Phenix City, and Rome 10 x 20 NTMS quadrangles

    International Nuclear Information System (INIS)

    Karfunkel, B.S.

    1981-11-01

    This document provides geologic and mineral resources data for the Savannah River Laboratory-National Uranium Resource Evaluation hydrogeochemical and stream-sediment reports for the Johnson City, Phenix City, and Rome 1 0 x 2 0 National Topographic Map Series quadrangles in the southeastern United States

  12. Geological differentiation explains diversity and composition of fish communities in upland streams in the southern Amazon of Colombia

    NARCIS (Netherlands)

    Arbeláez, F.; Duivenvoorden, J.F.; Maldonado-Ocampo, J.A.

    2008-01-01

    Fish biomass, species richness and composition were compared between upland streams draining two contrasting geological units (Pebas and Tsa) in Colombian Amazonia. Because Pebas sediments reportedly show higher levels of base concentrations than Tsa sediments, we expected that the fish communities

  13. United Nations programme for the assistance in Uruguay mining exploration

    International Nuclear Information System (INIS)

    1976-01-01

    The Uruguay government asked for the United Nations for the development of technical assistance programme in geological considerations of the Valentines iron deposits. This agreement was signed as Mining prospect ion assistance in Uruguay.

  14. Digital linear accelerator: The advantages for radiotherapy

    International Nuclear Information System (INIS)

    Andric, S.; Maksimovic, M.; Dekic, M.; Clark, T.

    1998-01-01

    Technical performances of Digital Linear Accelerator were presented to point out its advantages for clinical radiotherapy treatment. The accelerator installation is earned out at Military Medical Academy, Radiotherapy Department, by Medes and Elekta companies. The unit offers many technical advantages with possibility of introduction new conformal treatment techniques as stereotactic radiosurgery, total body and total skin irradiation. In the paper are underlined advantages in relation to running conventional accelerator units at Yugoslav radiotherapy departments, both from technical and medical point of view. (author)

  15. Application of Remote Sensing in Geological Mapping, Case Study al Maghrabah Area - Hajjah Region, Yemen

    Science.gov (United States)

    Al-Nahmi, F.; Saddiqi, O.; Hilali, A.; Rhinane, H.; Baidder, L.; El arabi, H.; Khanbari, K.

    2017-11-01

    Remote sensing technology plays an important role today in the geological survey, mapping, analysis and interpretation, which provides a unique opportunity to investigate the geological characteristics of the remote areas of the earth's surface without the need to gain access to an area on the ground. The aim of this study is achievement a geological map of the study area. The data utilizes is Sentinel-2 imagery, the processes used in this study, the OIF Optimum Index Factor is a statistic value that can be used to select the optimum combination of three bands in a satellite image. It's based on the total variance within bands and correlation coefficient between bands, ICA Independent component analysis (3, 4, 6) is a statistical and computational technique for revealing hidden factors that underlie sets of random variables, measurements, or signals, MNF Minimum Noise Fraction (1, 2, 3) is used to determine the inherent dimensionality of image data to segregate noise in the data and to reduce the computational requirements for subsequent processing, Optimum Index Factor is a good method for choosing the best band for lithological mapping. ICA, MNF, also a practical way to extract the structural geology maps. The results in this paper indicate that, the studied area can be divided into four main geological units: Basement rocks (Meta volcanic, Meta sediments), Sedimentary rocks, Intrusive rocks, volcanic rocks. The method used in this study offers great potential for lithological mapping, by using Sentinel-2 imagery, the results were compared with existing geologic maps and were superior and could be used to update the existing maps.

  16. Intelligent Learning for Knowledge Graph towards Geological Data

    Directory of Open Access Journals (Sweden)

    Yueqin Zhu

    2017-01-01

    Full Text Available Knowledge graph (KG as a popular semantic network has been widely used. It provides an effective way to describe semantic entities and their relationships by extending ontology in the entity level. This article focuses on the application of KG in the traditional geological field and proposes a novel method to construct KG. On the basis of natural language processing (NLP and data mining (DM algorithms, we analyze those key technologies for designing a KG towards geological data, including geological knowledge extraction and semantic association. Through this typical geological ontology extracting on a large number of geological documents and open linked data, the semantic interconnection is achieved, KG framework for geological data is designed, application system of KG towards geological data is constructed, and dynamic updating of the geological information is completed accordingly. Specifically, unsupervised intelligent learning method using linked open data is incorporated into the geological document preprocessing, which generates a geological domain vocabulary ultimately. Furthermore, some application cases in the KG system are provided to show the effectiveness and efficiency of our proposed intelligent learning approach for KG.

  17. Approaches for the accurate definition of geological time boundaries

    Science.gov (United States)

    Schaltegger, Urs; Baresel, Björn; Ovtcharova, Maria; Goudemand, Nicolas; Bucher, Hugo

    2015-04-01

    Which strategies lead to the most precise and accurate date of a given geological boundary? Geological units are usually defined by the occurrence of characteristic taxa and hence boundaries between these geological units correspond to dramatic faunal and/or floral turnovers and they are primarily defined using first or last occurrences of index species, or ideally by the separation interval between two consecutive, characteristic associations of fossil taxa. These boundaries need to be defined in a way that enables their worldwide recognition and correlation across different stratigraphic successions, using tools as different as bio-, magneto-, and chemo-stratigraphy, and astrochronology. Sedimentary sequences can be dated in numerical terms by applying high-precision chemical-abrasion, isotope-dilution, thermal-ionization mass spectrometry (CA-ID-TIMS) U-Pb age determination to zircon (ZrSiO4) in intercalated volcanic ashes. But, though volcanic activity is common in geological history, ashes are not necessarily close to the boundary we would like to date precisely and accurately. In addition, U-Pb zircon data sets may be very complex and difficult to interpret in terms of the age of ash deposition. To overcome these difficulties we use a multi-proxy approach we applied to the precise and accurate dating of the Permo-Triassic and Early-Middle Triassic boundaries in South China. a) Dense sampling of ashes across the critical time interval and a sufficiently large number of analysed zircons per ash sample can guarantee the recognition of all system complexities. Geochronological datasets from U-Pb dating of volcanic zircon may indeed combine effects of i) post-crystallization Pb loss from percolation of hydrothermal fluids (even using chemical abrasion), with ii) age dispersion from prolonged residence of earlier crystallized zircon in the magmatic system. As a result, U-Pb dates of individual zircons are both apparently younger and older than the depositional age

  18. Development of pre-critical excore detector linear subchannel calibration method

    International Nuclear Information System (INIS)

    Choi, Yoo Sun; Goo, Bon Seung; Cha, Kyun Ho; Lee, Chang Seop; Kim, Yong Hee; Ahn, Chul Soo; Kim, Man Soo

    2001-01-01

    The improved pre-critical excore detector linear subchannel calibration method has been developed to improve the applicability of pre-critical calibration method. The existing calibration method does not always guarantee the accuracy of pre-critical calibration because the calibration results of the previous cycle are not reflected into the current cycle calibration. The developed method has a desirable feature that calibration error would not be propagated in the following cycles since the calibration data determined in previous cycle is incorporated in the current cycle calibration. The pre-critical excore detector linear calibration is tested for YGN unit 3 and UCN unit 3 to evaluate its characteristics and accuracy

  19. Mapping magnetized geologic structures from space: The effect of orbital and body parameters

    Science.gov (United States)

    Schnetzler, C. C.; Taylor, P. T.; Langel, R. A.

    1984-01-01

    When comparing previous satellite magnetometer missions (such as MAGSAT) with proposed new programs (for example, Geopotential Research Mission, GRM) it is important to quantify the difference in scientific information obtained. The ability to resolve separate magnetic blocks (simulating geological units) is used as a parameter for evaluating the expected geologic information from each mission. The effect of satellite orbital altitude on the ability to resolve two magnetic blocks with varying separations is evaluated and quantified. A systematic, nonlinear, relationship exists between resolution and distance between magnetic blocks as a function of orbital altitude. The proposed GRM would provide an order-of-magnitude greater anomaly resolution than the earlier MAGSAT mission for widely separated bodies. The resolution achieved at any particular altitude varies depending on the location of the bodies and orientation.

  20. Solar photovoltaic water pumping system using a new linear actuator

    OpenAIRE

    Andrada Gascón, Pedro; Castro, Javier

    2007-01-01

    In this paper a photovoltaic solar pumping system using a new linear actuator is presented. This linear actuator is a double-sided flat two-phase variable-reluctance linear stepper motor that moves a piston-type water pump with the help of a rope, a pulley and a counterweight. The entire actuator pump ensemble is controlled by a simple electronic unit that manages the electric power generated by a photovoltaic array. The proposed system is suitable for rural communities in developing...