WorldWideScience

Sample records for linear fuzzy gene

  1. Special set linear algebra and special set fuzzy linear algebra

    OpenAIRE

    Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.

    2009-01-01

    The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...

  2. Uzawa method for fuzzy linear system

    OpenAIRE

    Ke Wang

    2013-01-01

    An Uzawa method is presented for solving fuzzy linear systems whose coefficient matrix is crisp and the right-hand side column is arbitrary fuzzy number vector. The explicit iterative scheme is given. The convergence is analyzed with convergence theorems and the optimal parameter is obtained. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.

  3. New approach to solve symmetric fully fuzzy linear systems

    Indian Academy of Sciences (India)

    concepts of fuzzy set theory and then define a fully fuzzy linear system of equations. .... To represent the above problem as fully fuzzy linear system, we represent x .... Fully fuzzy linear systems can be solved by Linear programming approach, ...

  4. Fuzzy Multi-objective Linear Programming Approach

    Directory of Open Access Journals (Sweden)

    Amna Rehmat

    2007-07-01

    Full Text Available Traveling salesman problem (TSP is one of the challenging real-life problems, attracting researchers of many fields including Artificial Intelligence, Operations Research, and Algorithm Design and Analysis. The problem has been well studied till now under different headings and has been solved with different approaches including genetic algorithms and linear programming. Conventional linear programming is designed to deal with crisp parameters, but information about real life systems is often available in the form of vague descriptions. Fuzzy methods are designed to handle vague terms, and are most suited to finding optimal solutions to problems with vague parameters. Fuzzy multi-objective linear programming, an amalgamation of fuzzy logic and multi-objective linear programming, deals with flexible aspiration levels or goals and fuzzy constraints with acceptable deviations. In this paper, a methodology, for solving a TSP with imprecise parameters, is deployed using fuzzy multi-objective linear programming. An example of TSP with multiple objectives and vague parameters is discussed.

  5. Implementing fuzzy polynomial interpolation (FPI and fuzzy linear regression (LFR

    Directory of Open Access Journals (Sweden)

    Maria Cristina Floreno

    1996-05-01

    Full Text Available This paper presents some preliminary results arising within a general framework concerning the development of software tools for fuzzy arithmetic. The program is in a preliminary stage. What has been already implemented consists of a set of routines for elementary operations, optimized functions evaluation, interpolation and regression. Some of these have been applied to real problems.This paper describes a prototype of a library in C++ for polynomial interpolation of fuzzifying functions, a set of routines in FORTRAN for fuzzy linear regression and a program with graphical user interface allowing the use of such routines.

  6. Portfolio optimization using fuzzy linear programming

    Science.gov (United States)

    Pandit, Purnima K.

    2013-09-01

    Portfolio Optimization (PO) is a problem in Finance, in which investor tries to maximize return and minimize risk by carefully choosing different assets. Expected return and risk are the most important parameters with regard to optimal portfolios. In the simple form PO can be modeled as quadratic programming problem which can be put into equivalent linear form. PO problems with the fuzzy parameters can be solved as multi-objective fuzzy linear programming problem. In this paper we give the solution to such problems with an illustrative example.

  7. Solving Fully Fuzzy Linear System of Equations in General Form

    Directory of Open Access Journals (Sweden)

    A. Yousefzadeh

    2012-06-01

    Full Text Available In this work, we propose an approach for computing the positive solution of a fully fuzzy linear system where the coefficient matrix is a fuzzy $nimes n$ matrix. To do this, we use arithmetic operations on fuzzy numbers that introduced by Kaffman in and convert the fully fuzzy linear system into two $nimes n$ and $2nimes 2n$ crisp linear systems. If the solutions of these linear systems don't satisfy in positive fuzzy solution condition, we introduce the constrained least squares problem to obtain optimal fuzzy vector solution by applying the ranking function in given fully fuzzy linear system. Using our proposed method, the fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.

  8. Minimal solution of linear formed fuzzy matrix equations

    Directory of Open Access Journals (Sweden)

    Maryam Mosleh

    2012-10-01

    Full Text Available In this paper according to the structured element method, the $mimes n$ inconsistent fuzzy matrix equation $Ailde{X}=ilde{B},$ which are linear formed by fuzzy structured element, is investigated. The necessary and sufficient condition for the existence of a fuzzy solution is also discussed. some examples are presented to illustrate the proposed method.

  9. A METHOD FOR SOLVING LINEAR PROGRAMMING PROBLEMS WITH FUZZY PARAMETERS BASED ON MULTIOBJECTIVE LINEAR PROGRAMMING TECHNIQUE

    OpenAIRE

    M. ZANGIABADI; H. R. MALEKI

    2007-01-01

    In the real-world optimization problems, coefficients of the objective function are not known precisely and can be interpreted as fuzzy numbers. In this paper we define the concepts of optimality for linear programming problems with fuzzy parameters based on those for multiobjective linear programming problems. Then by using the concept of comparison of fuzzy numbers, we transform a linear programming problem with fuzzy parameters to a multiobjective linear programming problem. To this end, w...

  10. A Proposed Method for Solving Fuzzy System of Linear Equations

    Directory of Open Access Journals (Sweden)

    Reza Kargar

    2014-01-01

    Full Text Available This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval right hand side. Some conditions for the existence of a fuzzy or interval solution of m×n linear system are derived and also a practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the proposed method is illustrated by some numerical examples.

  11. Minimal solution of general dual fuzzy linear systems

    International Nuclear Information System (INIS)

    Abbasbandy, S.; Otadi, M.; Mosleh, M.

    2008-01-01

    Fuzzy linear systems of equations, play a major role in several applications in various area such as engineering, physics and economics. In this paper, we investigate the existence of a minimal solution of general dual fuzzy linear equation systems. Two necessary and sufficient conditions for the minimal solution existence are given. Also, some examples in engineering and economic are considered

  12. A Fuzzy Linear Programming Approach for Aggregate Production Planning

    DEFF Research Database (Denmark)

    Iris, Cagatay; Cevikcan, Emre

    2014-01-01

    a mathematical programming framework for aggregate production planning problem under imprecise data environment. After providing background information about APP problem, together with fuzzy linear programming, the fuzzy linear programming model of APP is solved on an illustrative example for different a...

  13. Solution of the fully fuzzy linear systems using iterative techniques

    International Nuclear Information System (INIS)

    Dehghan, Mehdi; Hashemi, Behnam; Ghatee, Mehdi

    2007-01-01

    This paper mainly intends to discuss the iterative solution of fully fuzzy linear systems which we call FFLS. We employ Dubois and Prade's approximate arithmetic operators on LR fuzzy numbers for finding a positive fuzzy vector x-tilde which satisfies A-tildex-tilde=b, where A-tilde and b-tilde are a fuzzy matrix and a fuzzy vector, respectively. Please note that the positivity assumption is not so restrictive in applied problems. We transform FFLS and propose iterative techniques such as Richardson, Jacobi, Jacobi overrelaxation (JOR), Gauss-Seidel, successive overrelaxation (SOR), accelerated overrelaxation (AOR), symmetric and unsymmetric SOR (SSOR and USSOR) and extrapolated modified Aitken (EMA) for solving FFLS. In addition, the methods of Newton, quasi-Newton and conjugate gradient are proposed from nonlinear programming for solving a fully fuzzy linear system. Various numerical examples are also given to show the efficiency of the proposed schemes

  14. Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution

    Energy Technology Data Exchange (ETDEWEB)

    Hamadameen, Abdulqader Othman [Optimization, Department of Mathematical Sciences, Faculty of Science, UTM (Malaysia); Zainuddin, Zaitul Marlizawati [Department of Mathematical Sciences, Faculty of Science, UTM (Malaysia)

    2014-06-19

    This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.

  15. Fuzzy multiple linear regression: A computational approach

    Science.gov (United States)

    Juang, C. H.; Huang, X. H.; Fleming, J. W.

    1992-01-01

    This paper presents a new computational approach for performing fuzzy regression. In contrast to Bardossy's approach, the new approach, while dealing with fuzzy variables, closely follows the conventional regression technique. In this approach, treatment of fuzzy input is more 'computational' than 'symbolic.' The following sections first outline the formulation of the new approach, then deal with the implementation and computational scheme, and this is followed by examples to illustrate the new procedure.

  16. New approach to solve fully fuzzy system of linear equations using ...

    Indian Academy of Sciences (India)

    Known example problems are solved to illustrate the efficacy and ... The concept of fuzzy set and fuzzy number were first introduced by Zadeh .... (iii) Fully fuzzy linear systems can be solved by linear programming approach, Gauss elim-.

  17. Train Repathing in Emergencies Based on Fuzzy Linear Programming

    Directory of Open Access Journals (Sweden)

    Xuelei Meng

    2014-01-01

    Full Text Available Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm.

  18. Train repathing in emergencies based on fuzzy linear programming.

    Science.gov (United States)

    Meng, Xuelei; Cui, Bingmou

    2014-01-01

    Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model) to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm.

  19. General guidelines solution for linear programming with fuzzy coefficients

    Directory of Open Access Journals (Sweden)

    Sergio Gerardo de los Cobos Silva

    2013-08-01

    Full Text Available This work introduce to the Possibilistic Programming and the Fuzzy Programming as paradigms that allow to resolve problems of linear programming when the coefficients of the model or the restrictions on the same are presented as fuzzy numbers, rather than exact numbers (crisp. This work presents some examples based on [1].

  20. On macroeconomic values investigation using fuzzy linear regression analysis

    Directory of Open Access Journals (Sweden)

    Richard Pospíšil

    2017-06-01

    Full Text Available The theoretical background for abstract formalization of the vague phenomenon of complex systems is the fuzzy set theory. In the paper, vague data is defined as specialized fuzzy sets - fuzzy numbers and there is described a fuzzy linear regression model as a fuzzy function with fuzzy numbers as vague parameters. To identify the fuzzy coefficients of the model, the genetic algorithm is used. The linear approximation of the vague function together with its possibility area is analytically and graphically expressed. A suitable application is performed in the tasks of the time series fuzzy regression analysis. The time-trend and seasonal cycles including their possibility areas are calculated and expressed. The examples are presented from the economy field, namely the time-development of unemployment, agricultural production and construction respectively between 2009 and 2011 in the Czech Republic. The results are shown in the form of the fuzzy regression models of variables of time series. For the period 2009-2011, the analysis assumptions about seasonal behaviour of variables and the relationship between them were confirmed; in 2010, the system behaved fuzzier and the relationships between the variables were vaguer, that has a lot of causes, from the different elasticity of demand, through state interventions to globalization and transnational impacts.

  1. Approximate Method for Solving the Linear Fuzzy Delay Differential Equations

    Directory of Open Access Journals (Sweden)

    S. Narayanamoorthy

    2015-01-01

    Full Text Available We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.

  2. The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.

    Science.gov (United States)

    Narayanamoorthy, S; Kalyani, S

    2015-01-01

    An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.

  3. The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem

    Directory of Open Access Journals (Sweden)

    S. Narayanamoorthy

    2015-01-01

    Full Text Available An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.

  4. Fuzzy linear programming approach for solving transportation ...

    Indian Academy of Sciences (India)

    ALI EBRAHIMNEJAD

    Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran e-mail: ..... est grade of membership at x are μ ˜AL (x) and μ ˜AU (x), respectively. ..... trapezoidal fuzzy numbers transportation problem (12) are.

  5. Mehar Methods for Fuzzy Optimal Solution and Sensitivity Analysis of Fuzzy Linear Programming with Symmetric Trapezoidal Fuzzy Numbers

    Directory of Open Access Journals (Sweden)

    Sukhpreet Kaur Sidhu

    2014-01-01

    Full Text Available The drawbacks of the existing methods to obtain the fuzzy optimal solution of such linear programming problems, in which coefficients of the constraints are represented by real numbers and all the other parameters as well as variables are represented by symmetric trapezoidal fuzzy numbers, are pointed out, and to resolve these drawbacks, a new method (named as Mehar method is proposed for the same linear programming problems. Also, with the help of proposed Mehar method, a new method, much easy as compared to the existing methods, is proposed to deal with the sensitivity analysis of the same type of linear programming problems.

  6. New approach to solve fully fuzzy system of linear equations using ...

    Indian Academy of Sciences (India)

    This paper proposes two new methods to solve fully fuzzy system of linear equations. The fuzzy system has been converted to a crisp system of linear equations by using single and double parametric form of fuzzy numbers to obtain the non-negative solution. Double parametric form of fuzzy numbers is defined and applied ...

  7. Fuzzy attitude control of solar sail via linear matrix inequalities

    Science.gov (United States)

    Baculi, Joshua; Ayoubi, Mohammad A.

    2017-09-01

    This study presents a fuzzy tracking controller based on the Takagi-Sugeno (T-S) fuzzy model of the solar sail. First, the T-S fuzzy model is constructed by linearizing the existing nonlinear equations of motion of the solar sail. Then, the T-S fuzzy model is used to derive the state feedback controller gains for the Twin Parallel Distributed Compensation (TPDC) technique. The TPDC tracks and stabilizes the attitude of the solar sail to any desired state in the presence of parameter uncertainties and external disturbances while satisfying actuator constraints. The performance of the TPDC is compared to a PID controller that is tuned using the Ziegler-Nichols method. Numerical simulation shows the TPDC outperforms the PID controller when stabilizing the solar sail to a desired state.

  8. Interior Point Method for Solving Fuzzy Number Linear Programming Problems Using Linear Ranking Function

    Directory of Open Access Journals (Sweden)

    Yi-hua Zhong

    2013-01-01

    Full Text Available Recently, various methods have been developed for solving linear programming problems with fuzzy number, such as simplex method and dual simplex method. But their computational complexities are exponential, which is not satisfactory for solving large-scale fuzzy linear programming problems, especially in the engineering field. A new method which can solve large-scale fuzzy number linear programming problems is presented in this paper, which is named a revised interior point method. Its idea is similar to that of interior point method used for solving linear programming problems in crisp environment before, but its feasible direction and step size are chosen by using trapezoidal fuzzy numbers, linear ranking function, fuzzy vector, and their operations, and its end condition is involved in linear ranking function. Their correctness and rationality are proved. Moreover, choice of the initial interior point and some factors influencing the results of this method are also discussed and analyzed. The result of algorithm analysis and example study that shows proper safety factor parameter, accuracy parameter, and initial interior point of this method may reduce iterations and they can be selected easily according to the actual needs. Finally, the method proposed in this paper is an alternative method for solving fuzzy number linear programming problems.

  9. New approach to solve symmetric fully fuzzy linear systems

    Indian Academy of Sciences (India)

    In this paper, we present a method to solve fully fuzzy linear systems with symmetric coefficient matrix. The symmetric coefficient matrix is decomposed into two systems of equations by using Cholesky method and then a solution can be obtained. Numerical examples are given to illustrate our method.

  10. Non-linear sigma model on the fuzzy supersphere

    International Nuclear Information System (INIS)

    Kurkcuoglu, Seckin

    2004-01-01

    In this note we develop fuzzy versions of the supersymmetric non-linear sigma model on the supersphere S (2,2) . In hep-th/0212133 Bott projectors have been used to obtain the fuzzy C P 1 model. Our approach utilizes the use of supersymmetric extensions of these projectors. Here we obtain these (super)-projectors and quantize them in a fashion similar to the one given in hep-th/0212133. We discuss the interpretation of the resulting model as a finite dimensional matrix model. (author)

  11. Linear Matrix Inequality Based Fuzzy Synchronization for Fractional Order Chaos

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-01-01

    Full Text Available This paper investigates fuzzy synchronization for fractional order chaos via linear matrix inequality. Based on generalized Takagi-Sugeno fuzzy model, one efficient stability condition for fractional order chaos synchronization or antisynchronization is given. The fractional order stability condition is transformed into a set of linear matrix inequalities and the rigorous proof details are presented. Furthermore, through fractional order linear time-invariant (LTI interval theory, the approach is developed for fractional order chaos synchronization regardless of the system with uncertain parameters. Three typical examples, including synchronization between an integer order three-dimensional (3D chaos and a fractional order 3D chaos, anti-synchronization of two fractional order hyperchaos, and the synchronization between an integer order 3D chaos and a fractional order 4D chaos, are employed to verify the theoretical results.

  12. Numerical method for solving linear Fredholm fuzzy integral equations of the second kind

    Energy Technology Data Exchange (ETDEWEB)

    Abbasbandy, S. [Department of Mathematics, Imam Khomeini International University, P.O. Box 288, Ghazvin 34194 (Iran, Islamic Republic of)]. E-mail: saeid@abbasbandy.com; Babolian, E. [Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, Tehran 15618 (Iran, Islamic Republic of); Alavi, M. [Department of Mathematics, Arak Branch, Islamic Azad University, Arak 38135 (Iran, Islamic Republic of)

    2007-01-15

    In this paper we use parametric form of fuzzy number and convert a linear fuzzy Fredholm integral equation to two linear system of integral equation of the second kind in crisp case. We can use one of the numerical method such as Nystrom and find the approximation solution of the system and hence obtain an approximation for fuzzy solution of the linear fuzzy Fredholm integral equations of the second kind. The proposed method is illustrated by solving some numerical examples.

  13. Fuzzy linear programming approach for solving transportation

    Indian Academy of Sciences (India)

    Transportation problem (TP) is an important network structured linear programming problem that arises in several contexts and has deservedly received a great deal of attention in the literature. The central concept in this problem is to find the least total transportation cost of a commodity in order to satisfy demands at ...

  14. Optimal selection for shielding materials by fuzzy linear programming

    International Nuclear Information System (INIS)

    Kanai, Y.; Miura, N.; Sugasawa, S.

    1996-01-01

    An application of fuzzy linear programming methods to optimization of a radiation shield is presented. The main purpose of the present study is the choice of materials and the search of the ratio of mixture-component as the first stage of the methodology on optimum shielding design according to individual requirements of nuclear reactor, reprocessing facility, shipping cask installing spent fuel, ect. The characteristic values for the shield optimization may be considered their cost, spatial space, weight and some shielding qualities such as activation rate and total dose rate for neutron and gamma ray (includes secondary gamma ray). This new approach can reduce huge combination calculations for conventional two-valued logic approaches to representative single shielding calculation by group-wised optimization parameters determined in advance. Using the fuzzy linear programming method, possibilities for reducing radiation effects attainable in optimal compositions hydrated, lead- and boron-contained materials are investigated

  15. CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM

    Directory of Open Access Journals (Sweden)

    S.H. Nasseri

    2011-07-01

    Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.

  16. CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM

    Directory of Open Access Journals (Sweden)

    S.H. Nasseri

    2009-10-01

    Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.

  17. FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.

    Science.gov (United States)

    Li, Pu; Chen, Bing

    2011-04-01

    Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Fuzzy optimization of primal-dual pair using piecewise linear membership functions

    Directory of Open Access Journals (Sweden)

    Pandey D.

    2012-01-01

    Full Text Available Present paper improves the model of Bector and Chandra [Fuzzy Sets and Systems, 125 (2002 317-325] on duality in fuzzy linear programming by using non-linear membership functions. Numerical problem discussed by these authors has also been worked out through our non-linear model to demonstrate improved optimality of the results.

  19. Solution of a System of Linear Equations with Fuzzy Numbers

    Czech Academy of Sciences Publication Activity Database

    Horčík, Rostislav

    2008-01-01

    Roč. 159, č. 14 (2008), s. 1788-1810 ISSN 0165-0114 R&D Projects: GA AV ČR KJB100300502 Institutional research plan: CEZ:AV0Z10300504 Keywords : fuzzy number * fuzzy interval * interval analysis * fuzzy arithmetic * fuzzy class theory * united solution set Subject RIV: BA - General Mathematics Impact factor: 1.833, year: 2008

  20. An introduction to fuzzy linear programming problems theory, methods and applications

    CERN Document Server

    Kaur, Jagdeep

    2016-01-01

    The book presents a snapshot of the state of the art in the field of fully fuzzy linear programming. The main focus is on showing current methods for finding the fuzzy optimal solution of fully fuzzy linear programming problems in which all the parameters and decision variables are represented by non-negative fuzzy numbers. It presents new methods developed by the authors, as well as existing methods developed by others, and their application to real-world problems, including fuzzy transportation problems. Moreover, it compares the outcomes of the different methods and discusses their advantages/disadvantages. As the first work to collect at one place the most important methods for solving fuzzy linear programming problems, the book represents a useful reference guide for students and researchers, providing them with the necessary theoretical and practical knowledge to deal with linear programming problems under uncertainty.

  1. A new methodological development for solving linear bilevel integer programming problems in hybrid fuzzy environment

    Directory of Open Access Journals (Sweden)

    Animesh Biswas

    2016-04-01

    Full Text Available This paper deals with fuzzy goal programming approach to solve fuzzy linear bilevel integer programming problems with fuzzy probabilistic constraints following Pareto distribution and Frechet distribution. In the proposed approach a new chance constrained programming methodology is developed from the view point of managing those probabilistic constraints in a hybrid fuzzy environment. A method of defuzzification of fuzzy numbers using ?-cut has been adopted to reduce the problem into a linear bilevel integer programming problem. The individual optimal value of the objective of each DM is found in isolation to construct the fuzzy membership goals. Finally, fuzzy goal programming approach is used to achieve maximum degree of each of the membership goals by minimizing under deviational variables in the decision making environment. To demonstrate the efficiency of the proposed approach, a numerical example is provided.

  2. Solving the Fully Fuzzy Bilevel Linear Programming Problem through Deviation Degree Measures and a Ranking Function Method

    OpenAIRE

    Aihong Ren

    2016-01-01

    This paper is concerned with a class of fully fuzzy bilevel linear programming problems where all the coefficients and decision variables of both objective functions and the constraints are fuzzy numbers. A new approach based on deviation degree measures and a ranking function method is proposed to solve these problems. We first introduce concepts of the feasible region and the fuzzy optimal solution of a fully fuzzy bilevel linear programming problem. In order to obtain a fuzzy optimal solut...

  3. Method for solving fully fuzzy linear programming problems using deviation degree measure

    Institute of Scientific and Technical Information of China (English)

    Haifang Cheng; Weilai Huang; Jianhu Cai

    2013-01-01

    A new ful y fuzzy linear programming (FFLP) prob-lem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crispδ-parametric linear programming (LP) problem. Giving the value of deviation degree in each constraint, the δ-fuzzy optimal so-lution of the FFLP problem can be obtained by solving this LP problem. An algorithm is also proposed to find a balance-fuzzy optimal solution between two goals in conflict: to improve the va-lues of the objective function and to decrease the values of the deviation degrees. A numerical example is solved to il ustrate the proposed method.

  4. Fuzzy chance constrained linear programming model for scrap charge optimization in steel production

    DEFF Research Database (Denmark)

    Rong, Aiying; Lahdelma, Risto

    2008-01-01

    the uncertainty based on fuzzy set theory and constrain the failure risk based on a possibility measure. Consequently, the scrap charge optimization problem is modeled as a fuzzy chance constrained linear programming problem. Since the constraints of the model mainly address the specification of the product...

  5. On the solution of a class of fuzzy system of linear equations

    Indian Academy of Sciences (India)

    J. Mathematics and Comput. Sci. 1: 1–5. Salkuyeh D K 2011 On the solution of the fuzzy Sylvester matrix equation. Soft Computing 15: 953–961. Senthilkumar P and Rajendran G 2011 New approach to solve symmetric fully fuzzy linear systems. S¯adhan¯a 36: 933–940. Wang K and Zheng B 2007 Block iterative methods ...

  6. Incremental Adaptive Fuzzy Control for Sensorless Stroke Control of A Halbach-type Linear Oscillatory Motor

    Science.gov (United States)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.

  7. A fuzzy Bi-linear management model in reverse logistic chains

    Directory of Open Access Journals (Sweden)

    Tadić Danijela

    2016-01-01

    Full Text Available The management of the electrical and electronic waste (WEEE problem in the uncertain environment has a critical effect on the economy and environmental protection of each region. The considered problem can be stated as a fuzzy non-convex optimization problem with linear objective function and a set of linear and non-linear constraints. The original problem is reformulated by using linear relaxation into a fuzzy linear programming problem. The fuzzy rating of collecting point capacities and fix costs of recycling centers are modeled by triangular fuzzy numbers. The optimal solution of the reformulation model is found by using optimality concept. The proposed model is verified through an illustrative example with real-life data. The obtained results represent an input for future research which should include a good benchmark base for tested reverse logistic chains and their continuous improvement. [Projekat Ministarstva nauke Republike Srbije, br. 035033: Sustainable development technology and equipment for the recycling of motor vehicles

  8. A Compensatory Approach to Multiobjective Linear Transportation Problem with Fuzzy Cost Coefficients

    Directory of Open Access Journals (Sweden)

    Hale Gonce Kocken

    2011-01-01

    Full Text Available This paper deals with the Multiobjective Linear Transportation Problem that has fuzzy cost coefficients. In the solution procedure, many objectives may conflict with each other; therefore decision-making process becomes complicated. And also due to the fuzziness in the costs, this problem has a nonlinear structure. In this paper, fuzziness in the objective functions is handled with a fuzzy programming technique in the sense of multiobjective approach. And then we present a compensatory approach to solve Multiobjective Linear Transportation Problem with fuzzy cost coefficients by using Werner's and operator. Our approach generates compromise solutions which are both compensatory and Pareto optimal. A numerical example has been provided to illustrate the problem.

  9. Fuzzy Multi Objective Linear Programming Problem with Imprecise Aspiration Level and Parameters

    Directory of Open Access Journals (Sweden)

    Zahra Shahraki

    2015-07-01

    Full Text Available This paper considers the multi-objective linear programming problems with fuzzygoal for each of the objective functions and constraints. Most existing works deal withlinear membership functions for fuzzy goals. In this paper, exponential membershipfunction is used.

  10. Yager’s ranking method for solving the trapezoidal fuzzy number linear programming

    Science.gov (United States)

    Karyati; Wutsqa, D. U.; Insani, N.

    2018-03-01

    In the previous research, the authors have studied the fuzzy simplex method for trapezoidal fuzzy number linear programming based on the Maleki’s ranking function. We have found some theories related to the term conditions for the optimum solution of fuzzy simplex method, the fuzzy Big-M method, the fuzzy two-phase method, and the sensitivity analysis. In this research, we study about the fuzzy simplex method based on the other ranking function. It is called Yager's ranking function. In this case, we investigate the optimum term conditions. Based on the result of research, it is found that Yager’s ranking function is not like Maleki’s ranking function. Using the Yager’s function, the simplex method cannot work as well as when using the Maleki’s function. By using the Yager’s function, the value of the subtraction of two equal fuzzy numbers is not equal to zero. This condition makes the optimum table of the fuzzy simplex table is undetected. As a result, the simplified fuzzy simplex table becomes stopped and does not reach the optimum solution.

  11. APPLYING ROBUST RANKING METHOD IN TWO PHASE FUZZY OPTIMIZATION LINEAR PROGRAMMING PROBLEMS (FOLPP

    Directory of Open Access Journals (Sweden)

    Monalisha Pattnaik

    2014-12-01

    Full Text Available Background: This paper explores the solutions to the fuzzy optimization linear program problems (FOLPP where some parameters are fuzzy numbers. In practice, there are many problems in which all decision parameters are fuzzy numbers, and such problems are usually solved by either probabilistic programming or multi-objective programming methods. Methods: In this paper, using the concept of comparison of fuzzy numbers, a very effective method is introduced for solving these problems. This paper extends linear programming based problem in fuzzy environment. With the problem assumptions, the optimal solution can still be theoretically solved using the two phase simplex based method in fuzzy environment. To handle the fuzzy decision variables can be initially generated and then solved and improved sequentially using the fuzzy decision approach by introducing robust ranking technique. Results and conclusions: The model is illustrated with an application and a post optimal analysis approach is obtained. The proposed procedure was programmed with MATLAB (R2009a version software for plotting the four dimensional slice diagram to the application. Finally, numerical example is presented to illustrate the effectiveness of the theoretical results, and to gain additional managerial insights. 

  12. Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept.

    Science.gov (United States)

    Mazandarani, Mehran; Pariz, Naser

    2018-05-01

    This paper deals with sub-optimal control of a fuzzy linear dynamical system. The aim is to keep the state variables of the fuzzy linear dynamical system close to zero in an optimal manner. In the fuzzy dynamical system, the fuzzy derivative is considered as the granular derivative; and all the coefficients and initial conditions can be uncertain. The criterion for assessing the optimality is regarded as a granular integral whose integrand is a quadratic function of the state variables and control inputs. Using the relative-distance-measure (RDM) fuzzy interval arithmetic and calculus of variations, the optimal control law is presented as the fuzzy state variables feedback. Since the optimal feedback gains are obtained as fuzzy functions, they need to be defuzzified. This will result in the sub-optimal control law. This paper also sheds light on the restrictions imposed by the approaches which are based on fuzzy standard interval arithmetic (FSIA), and use strongly generalized Hukuhara and generalized Hukuhara differentiability concepts for obtaining the optimal control law. The granular eigenvalues notion is also defined. Using an RLC circuit mathematical model, it is shown that, due to their unnatural behavior in the modeling phenomenon, the FSIA-based approaches may obtain some eigenvalues sets that might be different from the inherent eigenvalues set of the fuzzy dynamical system. This is, however, not the case with the approach proposed in this study. The notions of granular controllability and granular stabilizability of the fuzzy linear dynamical system are also presented in this paper. Moreover, a sub-optimal control for regulating a Boeing 747 in longitudinal direction with uncertain initial conditions and parameters is gained. In addition, an uncertain suspension system of one of the four wheels of a bus is regulated using the sub-optimal control introduced in this paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Possibility/Necessity-Based Probabilistic Expectation Models for Linear Programming Problems with Discrete Fuzzy Random Variables

    Directory of Open Access Journals (Sweden)

    Hideki Katagiri

    2017-10-01

    Full Text Available This paper considers linear programming problems (LPPs where the objective functions involve discrete fuzzy random variables (fuzzy set-valued discrete random variables. New decision making models, which are useful in fuzzy stochastic environments, are proposed based on both possibility theory and probability theory. In multi-objective cases, Pareto optimal solutions of the proposed models are newly defined. Computational algorithms for obtaining the Pareto optimal solutions of the proposed models are provided. It is shown that problems involving discrete fuzzy random variables can be transformed into deterministic nonlinear mathematical programming problems which can be solved through a conventional mathematical programming solver under practically reasonable assumptions. A numerical example of agriculture production problems is given to demonstrate the applicability of the proposed models to real-world problems in fuzzy stochastic environments.

  14. Linear programming models and methods of matrix games with payoffs of triangular fuzzy numbers

    CERN Document Server

    Li, Deng-Feng

    2016-01-01

    This book addresses two-person zero-sum finite games in which the payoffs in any situation are expressed with fuzzy numbers. The purpose of this book is to develop a suite of effective and efficient linear programming models and methods for solving matrix games with payoffs in fuzzy numbers. Divided into six chapters, it discusses the concepts of solutions of matrix games with payoffs of intervals, along with their linear programming models and methods. Furthermore, it is directly relevant to the research field of matrix games under uncertain economic management. The book offers a valuable resource for readers involved in theoretical research and practical applications from a range of different fields including game theory, operational research, management science, fuzzy mathematical programming, fuzzy mathematics, industrial engineering, business and social economics. .

  15. Solution of second order linear fuzzy difference equation by Lagrange's multiplier method

    Directory of Open Access Journals (Sweden)

    Sankar Prasad Mondal

    2016-06-01

    Full Text Available In this paper we execute the solution procedure for second order linear fuzzy difference equation by Lagrange's multiplier method. In crisp sense the difference equation are easy to solve, but when we take in fuzzy sense it forms a system of difference equation which is not so easy to solve. By the help of Lagrange's multiplier we can solved it easily. The results are illustrated by two different numerical examples and followed by two applications.

  16. Positive solution of non-square fully Fuzzy linear system of equation in general form using least square method

    Directory of Open Access Journals (Sweden)

    Reza Ezzati

    2014-08-01

    Full Text Available In this paper, we propose the least square method for computing the positive solution of a non-square fully fuzzy linear system. To this end, we use Kaffman' arithmetic operations on fuzzy numbers \\cite{17}. Here, considered existence of exact solution using pseudoinverse, if they are not satisfy in positive solution condition, we will compute fuzzy vector core and then we will obtain right and left spreads of positive fuzzy vector by introducing constrained least squares problem. Using our proposed method, non-square fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.

  17. Fuzzy linear programming based optimal fuel scheduling incorporating blending/transloading facilities

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.; Babic, B.; Milosevic, B. [Electrical Engineering Inst. Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D.J. [EPRI, Palo Alto, CA (United States). Power System Control; Pao, Y.H. [Case Western Reserve Univ., Cleveland, OH (United States)]|[AI WARE, Inc., Cleveland, OH (United States)

    1996-05-01

    In this paper the blending/transloading facilities are modeled using an interactive fuzzy linear programming (FLP), in order to allow the decision-maker to solve the problem of uncertainty of input information within the fuel scheduling optimization. An interactive decision-making process is formulated in which decision-maker can learn to recognize good solutions by considering all possibilities of fuzziness. The application of the fuzzy formulation is accompanied by a careful examination of the definition of fuzziness, appropriateness of the membership function and interpretation of results. The proposed concept provides a decision support system with integration-oriented features, whereby the decision-maker can learn to recognize the relative importance of factors in the specific domain of optimal fuel scheduling (OFS) problem. The formulation of a fuzzy linear programming problem to obtain a reasonable nonfuzzy solution under consideration of the ambiguity of parameters, represented by fuzzy numbers, is introduced. An additional advantage of the FLP formulation is its ability to deal with multi-objective problems.

  18. Fuzzy linear model for production optimization of mining systems with multiple entities

    Science.gov (United States)

    Vujic, Slobodan; Benovic, Tomo; Miljanovic, Igor; Hudej, Marjan; Milutinovic, Aleksandar; Pavlovic, Petar

    2011-12-01

    Planning and production optimization within multiple mines or several work sites (entities) mining systems by using fuzzy linear programming (LP) was studied. LP is the most commonly used operations research methods in mining engineering. After the introductory review of properties and limitations of applying LP, short reviews of the general settings of deterministic and fuzzy LP models are presented. With the purpose of comparative analysis, the application of both LP models is presented using the example of the Bauxite Basin Niksic with five mines. After the assessment, LP is an efficient mathematical modeling tool in production planning and solving many other single-criteria optimization problems of mining engineering. After the comparison of advantages and deficiencies of both deterministic and fuzzy LP models, the conclusion presents benefits of the fuzzy LP model but is also stating that seeking the optimal plan of production means to accomplish the overall analysis that will encompass the LP model approaches.

  19. Multi-Objective Fuzzy Linear Programming In Agricultural Production Planning

    Directory of Open Access Journals (Sweden)

    H.M.I.U. Herath

    2015-08-01

    Full Text Available Abstract Modern agriculture is characterized by a series of conflicting optimization criteria that obstruct the decision-making process in the planning of agricultural production. Such criteria are usually net profit total cost total production etc. At the same time the decision making process in the agricultural production planning is often conducted with data that accidentally occur in nature or that are fuzzy not deterministic. Such data are the yields of various crops the prices of products and raw materials demand for the product the available quantities of production factors such as water labor etc. In this paper a fuzzy multi-criteria mathematical programming model is presented. This model is applied in a region of 10 districts in Sri Lanka where paddy is cultivated under irrigated and rain fed water in the two main seasons called Yala and Maha and the optimal production plan is achieved. This study was undertaken to find out the optimal allocation of land for paddy to get a better yield while satisfying the two conflicting objectives profit maximizing and cost minimizing subjected to the utilizing of water constraint and the demand constraint. Only the availability of land constraint is considered as a crisp in nature while objectives and other constraints are treated as fuzzy. It is observed that the MOFLP is an effective method to handle more than a single objective occurs in an uncertain vague environment.

  20. Stability margin of linear systems with parameters described by fuzzy numbers.

    Science.gov (United States)

    Husek, Petr

    2011-10-01

    This paper deals with the linear systems with uncertain parameters described by fuzzy numbers. The problem of determining the stability margin of those systems with linear affine dependence of the coefficients of a characteristic polynomial on system parameters is studied. Fuzzy numbers describing the system parameters are allowed to be characterized by arbitrary nonsymmetric membership functions. An elegant solution, graphical in nature, based on generalization of the Tsypkin-Polyak plot is presented. The advantage of the presented approach over the classical robust concept is demonstrated on a control of the Fiat Dedra engine model and a control of the quarter car suspension model.

  1. A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield

    Science.gov (United States)

    Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan

    2018-04-01

    In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.

  2. Quantitative modeling of gene networks of biological systems using fuzzy Petri nets and fuzzy sets

    Directory of Open Access Journals (Sweden)

    Raed I. Hamed

    2018-01-01

    Full Text Available Quantitative demonstrating of organic frameworks has turned into an essential computational methodology in the configuration of novel and investigation of existing natural frameworks. Be that as it may, active information that portrays the framework's elements should be known keeping in mind the end goal to get pertinent results with the routine displaying strategies. This information is frequently robust or even difficult to get. Here, we exhibit a model of quantitative fuzzy rational demonstrating approach that can adapt to obscure motor information and hence deliver applicable results despite the fact that dynamic information is fragmented or just dubiously characterized. Besides, the methodology can be utilized as a part of the blend with the current cutting edge quantitative demonstrating strategies just in specific parts of the framework, i.e., where the data are absent. The contextual analysis of the methodology suggested in this paper is performed on the model of nine-quality genes. We propose a kind of FPN model in light of fuzzy sets to manage the quantitative modeling of biological systems. The tests of our model appear that the model is practical and entirely powerful for information impersonation and thinking of fuzzy expert frameworks.

  3. Solving the Fully Fuzzy Bilevel Linear Programming Problem through Deviation Degree Measures and a Ranking Function Method

    Directory of Open Access Journals (Sweden)

    Aihong Ren

    2016-01-01

    Full Text Available This paper is concerned with a class of fully fuzzy bilevel linear programming problems where all the coefficients and decision variables of both objective functions and the constraints are fuzzy numbers. A new approach based on deviation degree measures and a ranking function method is proposed to solve these problems. We first introduce concepts of the feasible region and the fuzzy optimal solution of a fully fuzzy bilevel linear programming problem. In order to obtain a fuzzy optimal solution of the problem, we apply deviation degree measures to deal with the fuzzy constraints and use a ranking function method of fuzzy numbers to rank the upper and lower level fuzzy objective functions. Then the fully fuzzy bilevel linear programming problem can be transformed into a deterministic bilevel programming problem. Considering the overall balance between improving objective function values and decreasing allowed deviation degrees, the computational procedure for finding a fuzzy optimal solution is proposed. Finally, a numerical example is provided to illustrate the proposed approach. The results indicate that the proposed approach gives a better optimal solution in comparison with the existing method.

  4. Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings

    International Nuclear Information System (INIS)

    Chung, William

    2012-01-01

    Highlights: ► Fuzzy linear regression method is used for developing benchmarking systems. ► The systems can be used to benchmark energy efficiency of commercial buildings. ► The resulting benchmarking model can be used by public users. ► The resulting benchmarking model can capture the fuzzy nature of input–output data. -- Abstract: Benchmarking systems from a sample of reference buildings need to be developed to conduct benchmarking processes for the energy efficiency of commercial buildings. However, not all benchmarking systems can be adopted by public users (i.e., other non-reference building owners) because of the different methods in developing such systems. An approach for benchmarking the energy efficiency of commercial buildings using statistical regression analysis to normalize other factors, such as management performance, was developed in a previous work. However, the field data given by experts can be regarded as a distribution of possibility. Thus, the previous work may not be adequate to handle such fuzzy input–output data. Consequently, a number of fuzzy structures cannot be fully captured by statistical regression analysis. This present paper proposes the use of fuzzy linear regression analysis to develop a benchmarking process, the resulting model of which can be used by public users. An illustrative example is given as well.

  5. Fuzzy Linear Regression for the Time Series Data which is Fuzzified with SMRGT Method

    Directory of Open Access Journals (Sweden)

    Seçil YALAZ

    2016-10-01

    Full Text Available Our work on regression and classification provides a new contribution to the analysis of time series used in many areas for years. Owing to the fact that convergence could not obtained with the methods used in autocorrelation fixing process faced with time series regression application, success is not met or fall into obligation of changing the models’ degree. Changing the models’ degree may not be desirable in every situation. In our study, recommended for these situations, time series data was fuzzified by using the simple membership function and fuzzy rule generation technique (SMRGT and to estimate future an equation has created by applying fuzzy least square regression (FLSR method which is a simple linear regression method to this data. Although SMRGT has success in determining the flow discharge in open channels and can be used confidently for flow discharge modeling in open canals, as well as in pipe flow with some modifications, there is no clue about that this technique is successful in fuzzy linear regression modeling. Therefore, in order to address the luck of such a modeling, a new hybrid model has been described within this study. In conclusion, to demonstrate our methods’ efficiency, classical linear regression for time series data and linear regression for fuzzy time series data were applied to two different data sets, and these two approaches performances were compared by using different measures.

  6. Performance of Globally Linearized Controller and Two Region Fuzzy Logic Controller on a Nonlinear Process

    Directory of Open Access Journals (Sweden)

    N. Jaya

    2008-10-01

    Full Text Available In this work, a design and implementation of a Conventional PI controller, single region fuzzy logic controller, two region fuzzy logic controller and Globally Linearized Controller (GLC for a two capacity interacting nonlinear process is carried out. The performance of this process using single region FLC, two region FLC and GLC are compared with the performance of conventional PI controller about an operating point of 50 %. It has been observed that GLC and two region FLC provides better performance. Further, this procedure is also validated by real time experimentation using dSPACE.

  7. Linear programming model for solution of matrix game with payoffs trapezoidal intuitionistic fuzzy number

    Directory of Open Access Journals (Sweden)

    Darunee Hunwisai

    2017-01-01

    Full Text Available In this work, we considered two-person zero-sum games with fuzzy payoffs and matrix games with payoffs of trapezoidal intuitionistic fuzzy numbers (TrIFNs. The concepts of TrIFNs and their arithmetic operations were used. The cut-set based method for matrix game with payoffs of TrIFNs was also considered. Compute the interval-type value of any alfa-constrategies by simplex method for linear programming. The proposed method is illustrated with a numerical example.

  8. A goal programming procedure for solving fuzzy multiobjective fractional linear programming problems

    Directory of Open Access Journals (Sweden)

    Tunjo Perić

    2014-12-01

    Full Text Available This paper presents a modification of Pal, Moitra and Maulik's goal programming procedure for fuzzy multiobjective linear fractional programming problem solving. The proposed modification of the method allows simpler solving of economic multiple objective fractional linear programming (MOFLP problems, enabling the obtained solutions to express the preferences of the decision maker defined by the objective function weights. The proposed method is tested on the production planning example.

  9. Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays

    International Nuclear Information System (INIS)

    Balasubramaniam, P.; Kalpana, M.; Rakkiyappan, R.

    2012-01-01

    Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov—Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method. (interdisciplinary physics and related areas of science and technology)

  10. Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.

    Science.gov (United States)

    Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko

    2016-03-01

    In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Feedback Linearization Control of a Shunt Active Power Filter Using a Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Tianhua Li

    2013-09-01

    Full Text Available In this paper, a novel feedback linearization based sliding mode controlled parallel active power filter using a fuzzy controller is presented in a three-phase three-wire grid. A feedback linearization control with fuzzy parameter self-tuning is used to implement the DC side voltage regulation while a novel integral sliding mode controller is applied to reduce the total harmonic distortion of the supply current. Since traditional unit synchronous sinusoidal signal calculation methods are not applicable when the supply voltage contains harmonics, a novel unit synchronous sinusoidal signal computing method based on synchronous frame transforming theory is presented to overcome this disadvantage. The simulation results verify that the DC side voltage is very stable for the given value and responds quickly to the external disturbance. A comparison is also made to show the advantages of the novel unit sinusoidal signal calculating method and the super harmonic treatment property of the designed active power filter.

  12. Dynamic Optimization for IPS2 Resource Allocation Based on Improved Fuzzy Multiple Linear Regression

    Directory of Open Access Journals (Sweden)

    Maokuan Zheng

    2017-01-01

    Full Text Available The study mainly focuses on resource allocation optimization for industrial product-service systems (IPS2. The development of IPS2 leads to sustainable economy by introducing cooperative mechanisms apart from commodity transaction. The randomness and fluctuation of service requests from customers lead to the volatility of IPS2 resource utilization ratio. Three basic rules for resource allocation optimization are put forward to improve system operation efficiency and cut unnecessary costs. An approach based on fuzzy multiple linear regression (FMLR is developed, which integrates the strength and concision of multiple linear regression in data fitting and factor analysis and the merit of fuzzy theory in dealing with uncertain or vague problems, which helps reduce those costs caused by unnecessary resource transfer. The iteration mechanism is introduced in the FMLR algorithm to improve forecasting accuracy. A case study of human resource allocation optimization in construction machinery industry is implemented to test and verify the proposed model.

  13. Disturbance attenuation of nonlinear control systems using an observer-based fuzzy feedback linearization control

    International Nuclear Information System (INIS)

    Chen, C.-C.; Hsu, C.-H.; Chen, Y.-J.; Lin, Y.-F.

    2007-01-01

    The almost disturbance decoupling and trajectory tracking of nonlinear control systems using an observer-based fuzzy feedback linearization control (FLC) is developed. Because not all of the state variables of the nonlinear dynamic equations are available, a nonlinear state observer is employed to estimate the state variables. The feedback linearization control guarantees the almost disturbance decoupling performance and the uniform ultimate bounded stability of the tracking error system. Once the tracking errors are driven to touch the global final attractor with the desired radius, the fuzzy logic control is immediately applied via human expert's knowledge to improve the convergence rate. One example, which cannot be solved by the first paper on the almost disturbance decoupling problem, is proposed in this paper to exploit the fact that the tracking and the almost disturbance decoupling performances are easily achieved by our proposed approach. In order to demonstrate the practical applicability, the study has investigated a pendulum control system

  14. Fuzzy solution of the linear programming problem with interval coefficients in the constraints

    OpenAIRE

    Dorota Kuchta

    2005-01-01

    A fuzzy concept of solving the linear programming problem with interval coefficients is proposed. For each optimism level of the decision maker (where the optimism concerns the certainty that no errors have been committed in the estimation of the interval coefficients and the belief that optimistic realisations of the interval coefficients will occur) another interval solution of the problem will be generated and the decision maker will be able to choose the final solution having a complete v...

  15. A SOCIOLOGICAL ANALYSIS OF THE CHILDBEARING COEFFICIENT IN THE ALTAI REGION BASED ON METHOD OF FUZZY LINEAR REGRESSION

    Directory of Open Access Journals (Sweden)

    Sergei Vladimirovich Varaksin

    2017-06-01

    Full Text Available Purpose. Construction of a mathematical model of the dynamics of childbearing change in the Altai region in 2000–2016, analysis of the dynamics of changes in birth rates for multiple age categories of women of childbearing age. Methodology. A auxiliary analysis element is the construction of linear mathematical models of the dynamics of childbearing by using fuzzy linear regression method based on fuzzy numbers. Fuzzy linear regression is considered as an alternative to standard statistical linear regression for short time series and unknown distribution law. The parameters of fuzzy linear and standard statistical regressions for childbearing time series were defined with using the built in language MatLab algorithm. Method of fuzzy linear regression is not used in sociological researches yet. Results. There are made the conclusions about the socio-demographic changes in society, the high efficiency of the demographic policy of the leadership of the region and the country, and the applicability of the method of fuzzy linear regression for sociological analysis.

  16. Energy supply planning in Iran by using fuzzy linear programming approach (regarding uncertainties of investment costs)

    International Nuclear Information System (INIS)

    Sadeghi, Mehdi; Mirshojaeian Hosseini, Hossein

    2006-01-01

    For many years, energy models have been used in developed or developing countries to satisfy different needs in energy planning. One of major problems against energy planning and consequently energy models is uncertainty, spread in different economic, political and legal dimensions of energy planning. Confronting uncertainty, energy planners have often used two well-known strategies. The first strategy is stochastic programming, in which energy system planners define different scenarios and apply an explicit probability of occurrence to each scenario. The second strategy is Minimax Regret strategy that minimizes regrets of different decisions made in energy planning. Although these strategies have been used extensively, they could not flexibly and effectively deal with the uncertainties caused by fuzziness. 'Fuzzy Linear Programming (FLP)' is a strategy that can take fuzziness into account. This paper tries to demonstrate the method of application of FLP for optimization of supply energy system in Iran, as a case study. The used FLP model comprises fuzzy coefficients for investment costs. Following the mentioned purpose, it is realized that FLP is an easy and flexible approach that can be a serious competitor for other confronting uncertainties approaches, i.e. stochastic and Minimax Regret strategies. (author)

  17. Application of Dynamic Systems Family for Synthesis of Fuzzy Control with Account of Non-linearities

    Directory of Open Access Journals (Sweden)

    Andriy Lozynskyy

    2016-01-01

    Full Text Available Dynamic system with nonlinearities has been considered. This system has been divided into a set of linear subsystems. A fuzzy controller of the considered system has been synthesized. It takes into account nonlinearities of the system and provides smooth switching between controllers of the linear subsystems. An unstable subsystem has been utilized, which provides better dynamic characteristics of the considered system. Comparison with traditional controller has been conducted. Corresponding qualitative and quantitative estimates have been provided. They testify the expediency of the proposed approach.

  18. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    Science.gov (United States)

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.

  19. Nonlinear aeroacoustic characterization of Helmholtz resonators with a local-linear neuro-fuzzy network model

    Science.gov (United States)

    Förner, K.; Polifke, W.

    2017-10-01

    The nonlinear acoustic behavior of Helmholtz resonators is characterized by a data-based reduced-order model, which is obtained by a combination of high-resolution CFD simulation and system identification. It is shown that even in the nonlinear regime, a linear model is capable of describing the reflection behavior at a particular amplitude with quantitative accuracy. This observation motivates to choose a local-linear model structure for this study, which consists of a network of parallel linear submodels. A so-called fuzzy-neuron layer distributes the input signal over the linear submodels, depending on the root mean square of the particle velocity at the resonator surface. The resulting model structure is referred to as an local-linear neuro-fuzzy network. System identification techniques are used to estimate the free parameters of this model from training data. The training data are generated by CFD simulations of the resonator, with persistent acoustic excitation over a wide range of frequencies and sound pressure levels. The estimated nonlinear, reduced-order models show good agreement with CFD and experimental data over a wide range of amplitudes for several test cases.

  20. A Fuzzy Approach Using Generalized Dinkelbach’s Algorithm for Multiobjective Linear Fractional Transportation Problem

    Directory of Open Access Journals (Sweden)

    Nurdan Cetin

    2014-01-01

    Full Text Available We consider a multiobjective linear fractional transportation problem (MLFTP with several fractional criteria, such as, the maximization of the transport profitability like profit/cost or profit/time, and its two properties are source and destination. Our aim is to introduce MLFTP which has not been studied in literature before and to provide a fuzzy approach which obtain a compromise Pareto-optimal solution for this problem. To do this, first, we present a theorem which shows that MLFTP is always solvable. And then, reducing MLFTP to the Zimmermann’s “min” operator model which is the max-min problem, we construct Generalized Dinkelbach’s Algorithm for solving the obtained problem. Furthermore, we provide an illustrative numerical example to explain this fuzzy approach.

  1. Block level energy planning for domestic lighting - a multi-objective fuzzy linear programming approach

    Energy Technology Data Exchange (ETDEWEB)

    Jana, C. [Indian Inst. of Social Welfare and Business Management, Kolkata (India); Chattopadhyay, R.N. [Indian Inst. of Technology, Kharagpur (India). Rural Development Centre

    2004-09-01

    Creating provisions for domestic lighting is important for rural development. Its significance in rural economy is unquestionable since some activities, like literacy, education and manufacture of craft items and other cottage products are largely dependent on domestic lighting facilities for their progress and prosperity. Thus, in rural energy planning, domestic lighting remains a key sector for allocation of investments. For rational allocation, decision makers need alternative strategies for identifying adequate and proper investment structure corresponding to appropriate sources and precise devices. The present study aims at designing a model of energy utilisation by developing a decision support frame for an optimised solution to the problem, taking into consideration four sources and six devices suitable for the study area, namely Narayangarh Block of Midnapore District in India. Since the data available from rural and unorganised sectors are often ill-defined and subjective in nature, many coefficients are fuzzy numbers, and hence several constraints appear to be fuzzy expressions. In this study, the energy allocation model is initiated with three separate objectives for optimisation, namely minimising the total cost, minimising the use of non-local sources of energy and maximising the overall efficiency of the system. Since each of the above objective-based solutions has relevance to the needs of the society and economy, it is necessary to build a model that makes a compromise among the three individual solutions. This multi-objective fuzzy linear programming (MOFLP) model, solved in a compromising decision support frame, seems to be a more rational alternative than single objective linear programming model in rural energy planning. (author)

  2. Waste management under multiple complexities: Inexact piecewise-linearization-based fuzzy flexible programming

    International Nuclear Information System (INIS)

    Sun Wei; Huang, Guo H.; Lv Ying; Li Gongchen

    2012-01-01

    Highlights: ► Inexact piecewise-linearization-based fuzzy flexible programming is proposed. ► It’s the first application to waste management under multiple complexities. ► It tackles nonlinear economies-of-scale effects in interval-parameter constraints. ► It estimates costs more accurately than the linear-regression-based model. ► Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP’s advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP’s solutions demonstrate

  3. Mamdani-Fuzzy Modeling Approach for Quality Prediction of Non-Linear Laser Lathing Process

    Science.gov (United States)

    Sivaraos; Khalim, A. Z.; Salleh, M. S.; Sivakumar, D.; Kadirgama, K.

    2018-03-01

    Lathing is a process to fashioning stock materials into desired cylindrical shapes which usually performed by traditional lathe machine. But, the recent rapid advancements in engineering materials and precision demand gives a great challenge to the traditional method. The main drawback of conventional lathe is its mechanical contact which brings to the undesirable tool wear, heat affected zone, finishing, and dimensional accuracy especially taper quality in machining of stock with high length to diameter ratio. Therefore, a novel approach has been devised to investigate in transforming a 2D flatbed CO2 laser cutting machine into 3D laser lathing capability as an alternative solution. Three significant design parameters were selected for this experiment, namely cutting speed, spinning speed, and depth of cut. Total of 24 experiments were performed with eight (8) sequential runs where they were then replicated three (3) times. The experimental results were then used to establish Mamdani - Fuzzy predictive model where it yields the accuracy of more than 95%. Thus, the proposed Mamdani - Fuzzy modelling approach is found very much suitable and practical for quality prediction of non-linear laser lathing process for cylindrical stocks of 10mm diameter.

  4. Decision-making methodology of optimal shielding materials by using fuzzy linear programming

    International Nuclear Information System (INIS)

    Kanai, Y.; Miura, T.; Hirao, Y.

    2000-01-01

    The main purpose of our studies are to select materials and determine the ratio of constituent materials as the first stage of optimum shielding design to suit the individual requirements of nuclear reactors, reprocessing facilities, casks for shipping spent fuel, etc. The parameters of the shield optimization are cost, space, weight and some shielding properties such as activation rates or individual irradiation and cooling time, and total dose rate for neutrons (including secondary gamma ray) and for primary gamma ray. Using conventional two-valued logic (i.e. crisp) approaches, huge combination calculations are needed to identify suitable materials for optimum shielding design. Also, re-computation is required for minor changes, as the approach does not react sensitively to the computation result. Present approach using a fuzzy linear programming method is much of the decision-making toward the satisfying solution might take place in fuzzy environment. And it can quickly and easily provide a guiding principle of optimal selection of shielding materials under the above-mentioned conditions. The possibility or reducing radiation effects by optimizing the ratio of constituent materials is investigated. (author)

  5. Construction of admissible linear orders for interval-valued Atanassov intuitionistic fuzzy sets with an application to decision making

    Czech Academy of Sciences Publication Activity Database

    De Miguel, L.; Bustince, H.; Fernandez, J.; Indurain, E.; Kolesárová, A.; Mesiar, Radko

    2016-01-01

    Roč. 27, č. 1 (2016), s. 189-197 ISSN 1566-2535 Institutional support: RVO:67985556 Keywords : Mulit-expert decision making * Interval-valued Atanassov intuitionistic fuzzy set * Interval linear order Subject RIV: BA - General Mathematics Impact factor: 5.667, year: 2016 http://library.utia.cas.cz/separaty/2016/E/mesiar-0462471.pdf

  6. Stability of multi-objective bi-level linear programming problems under fuzziness

    Directory of Open Access Journals (Sweden)

    Abo-Sinna Mahmoud A.

    2013-01-01

    Full Text Available This paper deals with multi-objective bi-level linear programming problems under fuzzy environment. In the proposed method, tentative solutions are obtained and evaluated by using the partial information on preference of the decision-makers at each level. The existing results concerning the qualitative analysis of some basic notions in parametric linear programming problems are reformulated to study the stability of multi-objective bi-level linear programming problems. An algorithm for obtaining any subset of the parametric space, which has the same corresponding Pareto optimal solution, is presented. Also, this paper established the model for the supply-demand interaction in the age of electronic commerce (EC. First of all, the study uses the individual objectives of both parties as the foundation of the supply-demand interaction. Subsequently, it divides the interaction, in the age of electronic commerce, into the following two classifications: (i Market transactions, with the primary focus on the supply demand relationship in the marketplace; and (ii Information service, with the primary focus on the provider and the user of information service. By applying the bi-level programming technique of interaction process, the study will develop an analytical process to explain how supply-demand interaction achieves a compromise or why the process fails. Finally, a numerical example of information service is provided for the sake of illustration.

  7. A duality approach for solving bounded linear programming problems with fuzzy variables based on ranking functions and its application in bounded transportation problems

    Science.gov (United States)

    Ebrahimnejad, Ali

    2015-08-01

    There are several methods, in the literature, for solving fuzzy variable linear programming problems (fuzzy linear programming in which the right-hand-side vectors and decision variables are represented by trapezoidal fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings a new method based on the bounded dual simplex method is proposed to determine the fuzzy optimal solution of that kind of fuzzy variable linear programming problems in which some or all variables are restricted to lie within lower and upper bounds. To illustrate the proposed method, an application example is solved and the obtained results are given. The advantages of the proposed method over existing methods are discussed. Also, one application of this algorithm in solving bounded transportation problems with fuzzy supplies and demands is dealt with. The proposed method is easy to understand and to apply for determining the fuzzy optimal solution of bounded fuzzy variable linear programming problems occurring in real-life situations.

  8. Optimal Decision-Making in Fuzzy Economic Order Quantity (EOQ Model under Restricted Space: A Non-Linear Programming Approach

    Directory of Open Access Journals (Sweden)

    M. Pattnaik

    2013-08-01

    Full Text Available In this paper the concept of fuzzy Non-Linear Programming Technique is applied to solve an economic order quantity (EOQ model under restricted space. Since various types of uncertainties and imprecision are inherent in real inventory problems they are classically modeled using the approaches from the probability theory. However, there are uncertainties that cannot be appropriately treated by usual probabilistic models. The questions how to define inventory optimization tasks in such environment how to interpret optimal solutions arise. This paper allows the modification of the Single item EOQ model in presence of fuzzy decision making process where demand is related to the unit price and the setup cost varies with the quantity produced/Purchased. This paper considers the modification of objective function and storage area in the presence of imprecisely estimated parameters. The model is developed for the problem by employing different modeling approaches over an infinite planning horizon. It incorporates all concepts of a fuzzy arithmetic approach, the quantity ordered and the demand per unit compares both fuzzy non linear and other models. Investigation of the properties of an optimal solution allows developing an algorithm whose validity is illustrated through an example problem and ugh MATLAB (R2009a version software, the two and three dimensional diagrams are represented to the application. Sensitivity analysis of the optimal solution is also studied with respect to changes in different parameter values and to draw managerial insights of the decision problem.

  9. A generalized fuzzy credibility-constrained linear fractional programming approach for optimal irrigation water allocation under uncertainty

    Science.gov (United States)

    Zhang, Chenglong; Guo, Ping

    2017-10-01

    The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.

  10. Portfolio selection problem: a comparison of fuzzy goal programming and linear physical programming

    Directory of Open Access Journals (Sweden)

    Fusun Kucukbay

    2016-04-01

    Full Text Available Investors have limited budget and they try to maximize their return with minimum risk. Therefore this study aims to deal with the portfolio selection problem. In the study two criteria are considered which are expected return, and risk. In this respect, linear physical programming (LPP technique is applied on Bist 100 stocks to be able to find out the optimum portfolio. The analysis covers the period April 2009- March 2015. This period is divided into two; April 2009-March 2014 and April 2014 – March 2015. April 2009-March 2014 period is used as data to find an optimal solution. April 2014-March 2015 period is used to test the real performance of portfolios. The performance of the obtained portfolio is compared with that obtained from fuzzy goal programming (FGP. Then the performances of both method, LPP and FGP are compared with BIST 100 in terms of their Sharpe Indexes. The findings reveal that LPP for portfolio selection problem is a good alternative to FGP.

  11. State of the Art of Fuzzy Methods for Gene Regulatory Networks Inference

    Directory of Open Access Journals (Sweden)

    Tuqyah Abdullah Al Qazlan

    2015-01-01

    Full Text Available To address one of the most challenging issues at the cellular level, this paper surveys the fuzzy methods used in gene regulatory networks (GRNs inference. GRNs represent causal relationships between genes that have a direct influence, trough protein production, on the life and the development of living organisms and provide a useful contribution to the understanding of the cellular functions as well as the mechanisms of diseases. Fuzzy systems are based on handling imprecise knowledge, such as biological information. They provide viable computational tools for inferring GRNs from gene expression data, thus contributing to the discovery of gene interactions responsible for specific diseases and/or ad hoc correcting therapies. Increasing computational power and high throughput technologies have provided powerful means to manage these challenging digital ecosystems at different levels from cell to society globally. The main aim of this paper is to report, present, and discuss the main contributions of this multidisciplinary field in a coherent and structured framework.

  12. An Interval-Parameter Fuzzy Linear Programming with Stochastic Vertices Model for Water Resources Management under Uncertainty

    Directory of Open Access Journals (Sweden)

    Yan Han

    2013-01-01

    Full Text Available An interval-parameter fuzzy linear programming with stochastic vertices (IFLPSV method is developed for water resources management under uncertainty by coupling interval-parameter fuzzy linear programming (IFLP with stochastic programming (SP. As an extension of existing interval parameter fuzzy linear programming, the developed IFLPSV approach has advantages in dealing with dual uncertainty optimization problems, which uncertainty presents as interval parameter with stochastic vertices in both of the objective functions and constraints. The developed IFLPSV method improves upon the IFLP method by allowing dual uncertainty parameters to be incorporated into the optimization processes. A hybrid intelligent algorithm based on genetic algorithm and artificial neural network is used to solve the developed model. The developed method is then applied to water resources allocation in Beijing city of China in 2020, where water resources shortage is a challenging issue. The results indicate that reasonable solutions have been obtained, which are helpful and useful for decision makers. Although the amount of water supply from Guanting and Miyun reservoirs is declining with rainfall reduction, water supply from the South-to-North Water Transfer project will have important impact on water supply structure of Beijing city, particularly in dry year and extraordinary dry year.

  13. a fuzzy logic approach to non-linearity problem of load frequency

    African Journals Online (AJOL)

    user

    2016-07-03

    Jul 3, 2016 ... reduction in settling time, percent overshoot and steady state error. Keywords: fuzzy logic ... power system to regain a state of operating equilibrium given ... power system depends basically on the active (real) power balance ...

  14. Optimality Conditions for Fuzzy Number Quadratic Programming with Fuzzy Coefficients

    Directory of Open Access Journals (Sweden)

    Xue-Gang Zhou

    2014-01-01

    Full Text Available The purpose of the present paper is to investigate optimality conditions and duality theory in fuzzy number quadratic programming (FNQP in which the objective function is fuzzy quadratic function with fuzzy number coefficients and the constraint set is fuzzy linear functions with fuzzy number coefficients. Firstly, the equivalent quadratic programming of FNQP is presented by utilizing a linear ranking function and the dual of fuzzy number quadratic programming primal problems is introduced. Secondly, we present optimality conditions for fuzzy number quadratic programming. We then prove several duality results for fuzzy number quadratic programming problems with fuzzy coefficients.

  15. Modeling the thermal behavior of fluid flow inside channels using an artificial locally linear neuro-fuzzy approach

    Directory of Open Access Journals (Sweden)

    Azadeh Hashemian

    2008-06-01

    Full Text Available Enhanced surface heat exchangers are commonly used all worldwide. If applicable, due to their complicated geometry, simulating corrugated plate heat exchangers is a time-consuming process. In the present study, first we simulate the heat transfer in a sharp V-shape corrugation cell with constant temperature walls; then, we use a Locally Linear Neuro-Fuzzy method based on a radial basis function (RBFs to model the temperature field in the whole channel. New approach is developed to deal with fast computational and low memory resources that can be used with the largest available data sets. The purpose of the research is to reveal the advantages of proposed Neuro-Fuzzy model as a powerful modeling system designed for predicting and to make a fair comparison between it and the successful FLUENT simulated approaches in its best structures.

  16. Intuitionistic Fuzzy Goal Programming Technique for Solving Non-Linear Multi-objective Structural Problem

    Directory of Open Access Journals (Sweden)

    Samir Dey

    2015-07-01

    Full Text Available This paper proposes a new multi-objective intuitionistic fuzzy goal programming approach to solve a multi-objective nonlinear programming problem in context of a structural design. Here we describe some basic properties of intuitionistic fuzzy optimization. We have considered a multi-objective structural optimization problem with several mutually conflicting objectives. The design objective is to minimize weight of the structure and minimize the vertical deflection at loading point of a statistically loaded three-bar planar truss subjected to stress constraints on each of the truss members. This approach is used to solve the above structural optimization model based on arithmetic mean and compare with the solution by intuitionistic fuzzy goal programming approach. A numerical solution is given to illustrate our approach.

  17. Speed control of permanent magnet excitation transverse flux linear motor by using adaptive neuro-fuzzy controller

    Energy Technology Data Exchange (ETDEWEB)

    Hasanien, Hany M., E-mail: Hanyhasanien@ieee.or [Dept. of Elec. Power and Machines, Faculty of Eng., Ain-shams Univ. Cairo (Egypt); Muyeen, S.M. [Department of Electrical Engineering, Petroleum Institute, Abu Dhabi (United Arab Emirates); Tamura, Junji [Department of EEE, Kitami Institute of Technology, 165 Koen Cho, Kitami 090-8507, Hokkaido (Japan)

    2010-12-15

    This paper presents a novel adaptive neuro-fuzzy controller applies on transverse flux linear motor for controlling its speed. The proposed controller presents fuzzy logic controller with self tuning scaling factors based on artificial neural network structure. It has two input variables and one control output variable. Firstly the fuzzy logic control rules are described then NN architecture is represented to self tune the output scaling factors of the controller. The application of this control technique represents the novelty of work, where this algorithm has so far not been stated before for this type of drives. This methodology solves the problem of nonlinearities and load changes of TFLM drives. The dynamic response of the motor is studied under the rated load condition as well as load disturbances. The proposed controller ensures fast and accurate dynamic response with an excellent steady state performance. The dynamic response of the motor with the proposed controller is compared with PI and adaptive NN controllers. It is found that the proposed controller gives better and faster response from the viewpoint of overshoot and settling time. Matlab/Simulink tool is used for this dynamic simulation study.

  18. Linear control theory for gene network modeling.

    Science.gov (United States)

    Shin, Yong-Jun; Bleris, Leonidas

    2010-09-16

    Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.

  19. Fuzzy parametric uncertainty analysis of linear dynamical systems: A surrogate modeling approach

    Science.gov (United States)

    Chowdhury, R.; Adhikari, S.

    2012-10-01

    Uncertainty propagation engineering systems possess significant computational challenges. This paper explores the possibility of using correlated function expansion based metamodelling approach when uncertain system parameters are modeled using Fuzzy variables. In particular, the application of High-Dimensional Model Representation (HDMR) is proposed for fuzzy finite element analysis of dynamical systems. The HDMR expansion is a set of quantitative model assessment and analysis tools for capturing high-dimensional input-output system behavior based on a hierarchy of functions of increasing dimensions. The input variables may be either finite-dimensional (i.e., a vector of parameters chosen from the Euclidean space RM) or may be infinite-dimensional as in the function space CM[0,1]. The computational effort to determine the expansion functions using the alpha cut method scales polynomially with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is integrated with a commercial Finite Element software. Modal analysis of a simplified aircraft wing with Fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations.

  20. Decoupling Linear and Nonlinear Associations of Gene Expression

    KAUST Repository

    Itakura, Alan

    2013-01-01

    The FANTOM consortium has generated a large gene expression dataset of different cell lines and tissue cultures using the single-molecule sequencing technology of HeliscopeCAGE. This provides a unique opportunity to investigate novel associations between gene expression over time and different cell types. Here, we create a MatLab wrapper for a powerful and computationally intensive set of statistics known as Maximal Information Coefficient, and then calculate this statistic for a large, comprehensive dataset containing gene expression of a variety of differentiating tissues. We then distinguish between linear and nonlinear associations, and then create gene association networks. Following this analysis, we are then able to identify clusters of linear gene associations that then associate nonlinearly with other clusters of linearity, providing insight to much more complex connections between gene expression patterns than previously anticipated.

  1. Decoupling Linear and Nonlinear Associations of Gene Expression

    KAUST Repository

    Itakura, Alan

    2013-05-01

    The FANTOM consortium has generated a large gene expression dataset of different cell lines and tissue cultures using the single-molecule sequencing technology of HeliscopeCAGE. This provides a unique opportunity to investigate novel associations between gene expression over time and different cell types. Here, we create a MatLab wrapper for a powerful and computationally intensive set of statistics known as Maximal Information Coefficient, and then calculate this statistic for a large, comprehensive dataset containing gene expression of a variety of differentiating tissues. We then distinguish between linear and nonlinear associations, and then create gene association networks. Following this analysis, we are then able to identify clusters of linear gene associations that then associate nonlinearly with other clusters of linearity, providing insight to much more complex connections between gene expression patterns than previously anticipated.

  2. Linear control theory for gene network modeling.

    Directory of Open Access Journals (Sweden)

    Yong-Jun Shin

    Full Text Available Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain and linear state-space (time domain can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.

  3. Forecasting the EMU inflation rate: Linear econometric vs. non-linear computational models using genetic neural fuzzy systems

    DEFF Research Database (Denmark)

    Kooths, Stefan; Mitze, Timo Friedel; Ringhut, Eric

    2004-01-01

    This paper compares the predictive power of linear econometric and non-linear computational models for forecasting the inflation rate in the European Monetary Union (EMU). Various models of both types are developed using different monetary and real activity indicators. They are compared according...

  4. An Improved Fuzzy Based Missing Value Estimation in DNA Microarray Validated by Gene Ranking

    Directory of Open Access Journals (Sweden)

    Sujay Saha

    2016-01-01

    Full Text Available Most of the gene expression data analysis algorithms require the entire gene expression matrix without any missing values. Hence, it is necessary to devise methods which would impute missing data values accurately. There exist a number of imputation algorithms to estimate those missing values. This work starts with a microarray dataset containing multiple missing values. We first apply the modified version of the fuzzy theory based existing method LRFDVImpute to impute multiple missing values of time series gene expression data and then validate the result of imputation by genetic algorithm (GA based gene ranking methodology along with some regular statistical validation techniques, like RMSE method. Gene ranking, as far as our knowledge, has not been used yet to validate the result of missing value estimation. Firstly, the proposed method has been tested on the very popular Spellman dataset and results show that error margins have been drastically reduced compared to some previous works, which indirectly validates the statistical significance of the proposed method. Then it has been applied on four other 2-class benchmark datasets, like Colorectal Cancer tumours dataset (GDS4382, Breast Cancer dataset (GSE349-350, Prostate Cancer dataset, and DLBCL-FL (Leukaemia for both missing value estimation and ranking the genes, and the results show that the proposed method can reach 100% classification accuracy with very few dominant genes, which indirectly validates the biological significance of the proposed method.

  5. Stochastic Optimal Estimation with Fuzzy Random Variables and Fuzzy Kalman Filtering

    Institute of Scientific and Technical Information of China (English)

    FENG Yu-hu

    2005-01-01

    By constructing a mean-square performance index in the case of fuzzy random variable, the optimal estimation theorem for unknown fuzzy state using the fuzzy observation data are given. The state and output of linear discrete-time dynamic fuzzy system with Gaussian noise are Gaussian fuzzy random variable sequences. An approach to fuzzy Kalman filtering is discussed. Fuzzy Kalman filtering contains two parts: a real-valued non-random recurrence equation and the standard Kalman filtering.

  6. Foundations Of Fuzzy Control

    DEFF Research Database (Denmark)

    Jantzen, Jan

    The objective of this textbook is to acquire an understanding of the behaviour of fuzzy logic controllers. Under certain conditions a fuzzy controller is equivalent to a proportional-integral-derivative (PID) controller. Using that equivalence as a link, the book applies analysis methods from...... linear and nonlinear control theory. In the linear domain, PID tuning methods and stability analyses are transferred to linear fuzzy controllers. The Nyquist plot shows the robustness of different settings of the fuzzy gain parameters. As a result, a fuzzy controller is guaranteed to perform as well...... as any PID controller. In the nonlinear domain, the stability of four standard control surfaces is analysed by means of describing functions and Nyquist plots. The self-organizing controller (SOC) is shown to be a model reference adaptive controller. There is a possibility that a nonlinear fuzzy PID...

  7. Fuzzy risk explicit interval linear programming model for end-of-life vehicle recycling planning in the EU.

    Science.gov (United States)

    Simic, Vladimir

    2015-01-01

    End-of-life vehicles (ELVs) are vehicles that have reached the end of their useful lives and are no longer registered or licensed for use. The ELV recycling problem has become very serious in the last decade and more and more efforts are made in order to reduce the impact of ELVs on the environment. This paper proposes the fuzzy risk explicit interval linear programming model for ELV recycling planning in the EU. It has advantages in reflecting uncertainties presented in terms of intervals in the ELV recycling systems and fuzziness in decision makers' preferences. The formulated model has been applied to a numerical study in which different decision maker types and several ELV types under two EU ELV Directive legislative cases were examined. This study is conducted in order to examine the influences of the decision maker type, the α-cut level, the EU ELV Directive and the ELV type on decisions about vehicle hulks procuring, storing unprocessed hulks, sorting generated material fractions, allocating sorted waste flows and allocating sorted metals. Decision maker type can influence quantity of vehicle hulks kept in storages. The EU ELV Directive and decision maker type have no influence on which vehicle hulk type is kept in the storage. Vehicle hulk type, the EU ELV Directive and decision maker type do not influence the creation of metal allocation plans, since each isolated metal has its regular destination. The valid EU ELV Directive eco-efficiency quotas can be reached even when advanced thermal treatment plants are excluded from the ELV recycling process. The introduction of the stringent eco-efficiency quotas will significantly reduce the quantities of land-filled waste fractions regardless of the type of decision makers who will manage vehicle recycling system. In order to reach these stringent quotas, significant quantities of sorted waste need to be processed in advanced thermal treatment plants. Proposed model can serve as the support for the European

  8. Frechet differentiation of nonlinear operators between fuzzy normed spaces

    International Nuclear Information System (INIS)

    Yilmaz, Yilmaz

    2009-01-01

    By the rapid advances in linear theory of fuzzy normed spaces and fuzzy bounded linear operators it is natural idea to set and improve its nonlinear peer. We aimed in this work to realize this idea by introducing fuzzy Frechet derivative based on the fuzzy norm definition in Bag and Samanta [Bag T, Samanta SK. Finite dimensional fuzzy normed linear spaces. J Fuzzy Math 2003;11(3):687-705]. The definition is divided into two part as strong and weak fuzzy Frechet derivative so that it is compatible with strong and weak fuzzy continuity of operators. Also we restate fuzzy compact operator definition of Lael and Nouroizi [Lael F, Nouroizi K. Fuzzy compact linear operators. Chaos, Solitons and Fractals 2007;34(5):1584-89] as strongly and weakly fuzzy compact by taking into account the compatibility. We prove also that weak Frechet derivative of a nonlinear weakly fuzzy compact operator is also weakly fuzzy compact.

  9. A Fuzzy Linear Programming Model for Improving Productivity of Electrical Energy in Potable Water Supply Facilities (Case study: Sistan Water Supply Project

    Directory of Open Access Journals (Sweden)

    Vahid Baradaran

    2018-03-01

    Full Text Available One of the most important operational issues in urban drinking water production and distribution systems is to assign a plan for running hours of water supplying electric pumps. The cost of consuming electricity in these pumps allocates most of water and wastewater companies operational costs to itself which is dependent to their running hours. In this paper, meanwhile having a field study in Sistan rural water and wastewater company, the constraints for specifying electric pumps operational time in water supplying resources such as restrictions in fulfilling demand, supply potable water with suitable quality and uselessness of electric pumps have been identified. Due to uncertainty and fuzziness of the constraints, a linear programming model with fuzzy restrictions for determining electric pumps running hours per day is submitted with the aim to minimize electricity consumption and cost. After collecting and using required data for model, it proved that using the proposed model could reduce the costs of electrical energy and increase productivity up to 23 percent per month. The proposed mathematical fuzzy programming is able to specify electric pumps scheduling plan for water supply resources with the aim to reduce the costs of consuming energy.

  10. Supply chain management under fuzziness recent developments and techniques

    CERN Document Server

    Öztayşi, Başar

    2014-01-01

    Supply Chain Management Under Fuzziness presents recently developed fuzzy models and techniques for supply chain management. These include: fuzzy PROMETHEE, fuzzy AHP, fuzzy ANP, fuzzy VIKOR, fuzzy DEMATEL, fuzzy clustering, fuzzy linear programming, and fuzzy inference systems. The book covers both practical applications and new developments concerning these methods. This book offers an excellent resource for researchers and practitioners in supply chain management and logistics, and will provide them with new suggestions and directions for future research. Moreover, it will support graduate students in their university courses, such as specialized courses on supply chains and logistics, as well as related courses in the fields of industrial engineering, engineering management and business administration.

  11. Fuzzy commutative algebra and its application in mechanical engineering

    International Nuclear Information System (INIS)

    Han, J.; Song, H.

    1996-01-01

    Based on literature data, this paper discusses the whole mathematical structure about point-fuzzy number set F(R). By introducing some new operations about addition, subtraction, multiplication, division and scalar multiplication, we prove that F(R) can form fuzzy linear space, fuzzy commutative ring, fuzzy commutative algebra in order. Furthermore, we get that A is fuzzy commutative algebra for any fuzzy subset. At last, we give an application of point-fuzzy number to mechanical engineering

  12. An intuitionistic fuzzy multi-objective non-linear programming model for sustainable irrigation water allocation under the combination of dry and wet conditions

    Science.gov (United States)

    Li, Mo; Fu, Qiang; Singh, Vijay P.; Ma, Mingwei; Liu, Xiao

    2017-12-01

    Water scarcity causes conflicts among natural resources, society and economy and reinforces the need for optimal allocation of irrigation water resources in a sustainable way. Uncertainties caused by natural conditions and human activities make optimal allocation more complex. An intuitionistic fuzzy multi-objective non-linear programming (IFMONLP) model for irrigation water allocation under the combination of dry and wet conditions is developed to help decision makers mitigate water scarcity. The model is capable of quantitatively solving multiple problems including crop yield increase, blue water saving, and water supply cost reduction to obtain a balanced water allocation scheme using a multi-objective non-linear programming technique. Moreover, it can deal with uncertainty as well as hesitation based on the introduction of intuitionistic fuzzy numbers. Consideration of the combination of dry and wet conditions for water availability and precipitation makes it possible to gain insights into the various irrigation water allocations, and joint probabilities based on copula functions provide decision makers an average standard for irrigation. A case study on optimally allocating both surface water and groundwater to different growth periods of rice in different subareas in Heping irrigation area, Qing'an County, northeast China shows the potential and applicability of the developed model. Results show that the crop yield increase target especially in tillering and elongation stages is a prevailing concern when more water is available, and trading schemes can mitigate water supply cost and save water with an increased grain output. Results also reveal that the water allocation schemes are sensitive to the variation of water availability and precipitation with uncertain characteristics. The IFMONLP model is applicable for most irrigation areas with limited water supplies to determine irrigation water strategies under a fuzzy environment.

  13. Full-order Luenberger observer based on fuzzy-logic control for sensorless field-oriented control of a single-sided linear induction motor.

    Science.gov (United States)

    Holakooie, Mohammad Hosein; Ojaghi, Mansour; Taheri, Asghar

    2016-01-01

    This paper investigates sensorless indirect field oriented control (IFOC) of SLIM with full-order Luenberger observer. The dynamic equations of SLIM are first elaborated to draw full-order Luenberger observer with some simplifying assumption. The observer gain matrix is derived from conventional procedure so that observer poles are proportional to SLIM poles to ensure the stability of system for wide range of linear speed. The operation of observer is significantly impressed by adaptive scheme. A fuzzy logic control (FLC) is proposed as adaptive scheme to estimate linear speed using speed tuning signal. The parameters of FLC are tuned using an off-line method through chaotic optimization algorithm (COA). The performance of the proposed observer is verified by both numerical simulation and real-time hardware-in-the-loop (HIL) implementation. Moreover, a detailed comparative study among proposed and other speed observers is obtained under different operation conditions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Unsupervised Bayesian linear unmixing of gene expression microarrays.

    Science.gov (United States)

    Bazot, Cécile; Dobigeon, Nicolas; Tourneret, Jean-Yves; Zaas, Aimee K; Ginsburg, Geoffrey S; Hero, Alfred O

    2013-03-19

    This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores

  15. Designing a Fuzzy Adaptive Controller for a Rigid joint Two Link Non-Linear Manipulator with Uncertainty

    Directory of Open Access Journals (Sweden)

    Maryam Montazeri

    2013-01-01

    Full Text Available This paper presents a control approach to the fuzzy-adaptive control scheme for rigid manipulators with unknown parameters. Lagrange’s method is employed for computing robot motion dynamics. Stability analysis guaranteed through Lyapunov’s theory using some suitable adaptive rules that make sure all signals in the closed-loop system are bounded and tracking error ones asymptotically reaches to zero. Compared with other controllers, there are some numerical simulations that verify effectiveness of the proposed method. Also, simulation results verify that the proposed controller can deal with uncertainties in the system.

  16. Resolution of an uncertain closed-loop logistics model: an application to fuzzy linear programs with risk analysis.

    Science.gov (United States)

    Wang, Hsiao-Fan; Hsu, Hsin-Wei

    2010-11-01

    With the urgency of global warming, green supply chain management, logistics in particular, has drawn the attention of researchers. Although there are closed-loop green logistics models in the literature, most of them do not consider the uncertain environment in general terms. In this study, a generalized model is proposed where the uncertainty is expressed by fuzzy numbers. An interval programming model is proposed by the defined means and mean square imprecision index obtained from the integrated information of all the level cuts of fuzzy numbers. The resolution for interval programming is based on the decision maker (DM)'s preference. The resulting solution provides useful information on the expected solutions under a confidence level containing a degree of risk. The results suggest that the more optimistic the DM is, the better is the resulting solution. However, a higher risk of violation of the resource constraints is also present. By defining this probable risk, a solution procedure was developed with numerical illustrations. This provides a DM trade-off mechanism between logistic cost and the risk. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Assessment of health risk due to PM 10 using fuzzy linear membership kriging with particle swarm optimization

    International Nuclear Information System (INIS)

    Singh, Jeetendra B.; Reddy, Vijay S.; Jana, Soumya; De, Swades

    2013-01-01

    Air quality is an important determinant of individual as well as broader well-being. Major pollutants include gasses as well as assorted suspended particulate matter (PM). In this paper, we focus on PM10, which are a collection of particles with median aerodynamic diameter less than 10 μm that remains suspended in the air for long periods. PM10, usually consist of smoke, dirt and dust particles, as well as spores and pollen, could easily be inhaled deep into lung. As a result, high outdoor PM10 concentration poses significant health hazard, and accurate modeling and prediction of health risk due to PM10 assume importance in pollution and public health management. In this backdrop, we propose an improved health risk assessment technique, and demonstrate its efficacy using widely used California PM10 database. At the heart of the proposed method lies indicator kriging, a well-known risk estimation technique. However, improved assessment of subjective health risk is achieved by posing the problem in a fuzzy setting, and optimizing the associated membership functions. In particular, we employ particle swarm optimization (PSO) algorithm, which has been motivated by natural behavior of organisms such as fish-schooling and bird flocking, and proven effective in various optimization contexts. We apply the fuzzy PSO membership grade kriging technique to predict the PM10 spatial distribution over the entire California state. (orig.)

  18. Assessment of health risk due to PM 10 using fuzzy linear membership kriging with particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jeetendra B.; Reddy, Vijay S.; Jana, Soumya [Indian Institute of Technology, Hyderabad (India). Dept. of Electrical Engineering; De, Swades [Indian Institute of Technology, Delhi (India). Dept. of Electrical Engineering

    2013-07-01

    Air quality is an important determinant of individual as well as broader well-being. Major pollutants include gasses as well as assorted suspended particulate matter (PM). In this paper, we focus on PM10, which are a collection of particles with median aerodynamic diameter less than 10 {mu}m that remains suspended in the air for long periods. PM10, usually consist of smoke, dirt and dust particles, as well as spores and pollen, could easily be inhaled deep into lung. As a result, high outdoor PM10 concentration poses significant health hazard, and accurate modeling and prediction of health risk due to PM10 assume importance in pollution and public health management. In this backdrop, we propose an improved health risk assessment technique, and demonstrate its efficacy using widely used California PM10 database. At the heart of the proposed method lies indicator kriging, a well-known risk estimation technique. However, improved assessment of subjective health risk is achieved by posing the problem in a fuzzy setting, and optimizing the associated membership functions. In particular, we employ particle swarm optimization (PSO) algorithm, which has been motivated by natural behavior of organisms such as fish-schooling and bird flocking, and proven effective in various optimization contexts. We apply the fuzzy PSO membership grade kriging technique to predict the PM10 spatial distribution over the entire California state. (orig.)

  19. Automated Detection of Cancer Associated Genes Using a Combined Fuzzy-Rough-Set-Based F-Information and Water Swirl Algorithm of Human Gene Expression Data.

    Directory of Open Access Journals (Sweden)

    Pugalendhi Ganesh Kumar

    Full Text Available This study describes a novel approach to reducing the challenges of highly nonlinear multiclass gene expression values for cancer diagnosis. To build a fruitful system for cancer diagnosis, in this study, we introduced two levels of gene selection such as filtering and embedding for selection of potential genes and the most relevant genes associated with cancer, respectively. The filter procedure was implemented by developing a fuzzy rough set (FR-based method for redefining the criterion function of f-information (FI to identify the potential genes without discretizing the continuous gene expression values. The embedded procedure is implemented by means of a water swirl algorithm (WSA, which attempts to optimize the rule set and membership function required to classify samples using a fuzzy-rule-based multiclassification system (FRBMS. Two novel update equations are proposed in WSA, which have better exploration and exploitation abilities while designing a self-learning FRBMS. The efficiency of our new approach was evaluated on 13 multicategory and 9 binary datasets of cancer gene expression. Additionally, the performance of the proposed FRFI-WSA method in designing an FRBMS was compared with existing methods for gene selection and optimization such as genetic algorithm (GA, particle swarm optimization (PSO, and artificial bee colony algorithm (ABC on all the datasets. In the global cancer map with repeated measurements (GCM_RM dataset, the FRFI-WSA showed the smallest number of 16 most relevant genes associated with cancer using a minimal number of 26 compact rules with the highest classification accuracy (96.45%. In addition, the statistical validation used in this study revealed that the biological relevance of the most relevant genes associated with cancer and their linguistics detected by the proposed FRFI-WSA approach are better than those in the other methods. The simple interpretable rules with most relevant genes and effectively

  20. FFLP problem with symmetric trapezoidal fuzzy numbers

    Directory of Open Access Journals (Sweden)

    Reza Daneshrad

    2015-04-01

    Full Text Available The most popular approach for solving fully fuzzy linear programming (FFLP problems is to convert them into the corresponding deterministic linear programs. Khan et al. (2013 [Khan, I. U., Ahmad, T., & Maan, N. (2013. A simplified novel technique for solving fully fuzzy linear programming problems. Journal of Optimization Theory and Applications, 159(2, 536-546.] claimed that there had been no method in the literature to find the fuzzy optimal solution of a FFLP problem without converting it into crisp linear programming problem, and proposed a technique for the same. Others showed that the fuzzy arithmetic operation used by Khan et al. (2013 had some problems in subtraction and division operations, which could lead to misleading results. Recently, Ezzati et al. (2014 [Ezzati, R., Khorram, E., & Enayati, R. (2014. A particular simplex algorithm to solve fuzzy lexicographic multi-objective linear programming problems and their sensitivity analysis on the priority of the fuzzy objective functions. Journal of Intelligent and Fuzzy Systems, 26(5, 2333-2358.] defined a new operation on symmetric trapezoidal fuzzy numbers and proposed a new algorithm to find directly a lexicographic/preemptive fuzzy optimal solution of a fuzzy lexicographic multi-objective linear programming problem by using new fuzzy arithmetic operations, but their model was not fully fuzzy optimization. In this paper, a new method, by using Ezzati et al. (2014’s fuzzy arithmetic operation and a fuzzy version of simplex algorithm, is proposed for solving FFLP problem whose parameters are represented by symmetric trapezoidal fuzzy number without converting the given problem into crisp equivalent problem. By using the proposed method, the fuzzy optimal solution of FFLP problem can be easily obtained. A numerical example is provided to illustrate the proposed method.

  1. Forecasting Water Level Fluctuations of Urmieh Lake Using Gene Expression Programming and Adaptive Neuro-Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Sepideh Karimi

    2012-06-01

    Full Text Available Forecasting lake level at various prediction intervals is an essential issue in such industrial applications as navigation, water resource planning and catchment management. In the present study, two data driven techniques, namely Gene Expression Programming and Adaptive Neuro-Fuzzy Inference System, were applied for predicting daily lake levels for three prediction intervals. Daily water-level data from Urmieh Lake in Northwestern Iran were used to train, test and validate the used techniques. Three statistical indexes, coefficient of determination, root mean square error and variance accounted for were used to assess the performance of the used techniques. Technique inter-comparisons demonstrated that the GEP surpassed the ANFIS model at each of the prediction intervals. A traditional auto regressive moving average model was also applied to the same data sets; the obtained results were compared with those of the data driven approaches demonstrating superiority of the data driven models to ARMA.

  2. Implementation of Steiner point of fuzzy set.

    Science.gov (United States)

    Liang, Jiuzhen; Wang, Dejiang

    2014-01-01

    This paper deals with the implementation of Steiner point of fuzzy set. Some definitions and properties of Steiner point are investigated and extended to fuzzy set. This paper focuses on establishing efficient methods to compute Steiner point of fuzzy set. Two strategies of computing Steiner point of fuzzy set are proposed. One is called linear combination of Steiner points computed by a series of crisp α-cut sets of the fuzzy set. The other is an approximate method, which is trying to find the optimal α-cut set approaching the fuzzy set. Stability analysis of Steiner point of fuzzy set is also studied. Some experiments on image processing are given, in which the two methods are applied for implementing Steiner point of fuzzy image, and both strategies show their own advantages in computing Steiner point of fuzzy set.

  3. Stability Analysis of Interconnected Fuzzy Systems Using the Fuzzy Lyapunov Method

    Directory of Open Access Journals (Sweden)

    Ken Yeh

    2010-01-01

    Full Text Available The fuzzy Lyapunov method is investigated for use with a class of interconnected fuzzy systems. The interconnected fuzzy systems consist of J interconnected fuzzy subsystems, and the stability analysis is based on Lyapunov functions. Based on traditional Lyapunov stability theory, we further propose a fuzzy Lyapunov method for the stability analysis of interconnected fuzzy systems. The fuzzy Lyapunov function is defined in fuzzy blending quadratic Lyapunov functions. Some stability conditions are derived through the use of fuzzy Lyapunov functions to ensure that the interconnected fuzzy systems are asymptotically stable. Common solutions can be obtained by solving a set of linear matrix inequalities (LMIs that are numerically feasible. Finally, simulations are performed in order to verify the effectiveness of the proposed stability conditions in this paper.

  4. A Hybrid Model through the Fusion of Type-2 Fuzzy Logic Systems and Sensitivity-Based Linear Learning Method for Modeling PVT Properties of Crude Oil Systems

    Directory of Open Access Journals (Sweden)

    Ali Selamat

    2012-01-01

    Full Text Available Sensitivity-based linear learning method (SBLLM has recently been used as a predictive tool due to its unique characteristics and performance, particularly its high stability and consistency during predictions. However, the generalisation capability of SBLLM is sometimes limited depending on the nature of the dataset, particularly on whether uncertainty is present in the dataset or not. Since it made use of sensitivity analysis in relation to the data sets used, it is surely very prone to being affected by the nature of the dataset. In order to reduce the effects of uncertainties in SBLLM prediction and improve its generalisation ability, this paper proposes a hybrid system through the unique combination of type-2 fuzzy logic systems (type-2 FLSs and SBLLM; thereafter the hybrid system was used to model PVT properties of crude oil systems. Type-2 FLS has been choosen in order to better handle uncertainties existing in datasets beyond the capability of type-1 fuzzy logic systems. In the proposed hybrid, the type-2 FLS is used to handle uncertainties in reservoir data so that the cleaned data from type-2 FLS is then passed to the SBLLM for training and then final prediction using testing dataset follows. Comparative studies have been carried out to compare the performance of the newly proposed T2-SBLLM hybrid system with each of the constituent type-2 FLS and SBLLM. Empirical results from simulation show that the proposed T2-SBLLM hybrid system has greatly improved upon the performance of SBLLM, while also maintaining a better performance above that of the type-2 FLS.

  5. Forecasting Enrollments with Fuzzy Time Series.

    Science.gov (United States)

    Song, Qiang; Chissom, Brad S.

    The concept of fuzzy time series is introduced and used to forecast the enrollment of a university. Fuzzy time series, an aspect of fuzzy set theory, forecasts enrollment using a first-order time-invariant model. To evaluate the model, the conventional linear regression technique is applied and the predicted values obtained are compared to the…

  6. Some fixed point theorems in fuzzy reflexive Banach spaces

    International Nuclear Information System (INIS)

    Sadeqi, I.; Solaty kia, F.

    2009-01-01

    In this paper, we first show that there are some gaps in the fixed point theorems for fuzzy non-expansive mappings which are proved by Bag and Samanta, in [Bag T, Samanta SK. Fixed point theorems on fuzzy normed linear spaces. Inf Sci 2006;176:2910-31; Bag T, Samanta SK. Some fixed point theorems in fuzzy normed linear spaces. Inform Sci 2007;177(3):3271-89]. By introducing the notion of fuzzy and α- fuzzy reflexive Banach spaces, we obtain some results which help us to establish the correct version of fuzzy fixed point theorems. Second, by applying Theorem 3.3 of Sadeqi and Solati kia [Sadeqi I, Solati kia F. Fuzzy normed linear space and it's topological structure. Chaos, Solitons and Fractals, in press] which says that any fuzzy normed linear space is also a topological vector space, we show that all topological version of fixed point theorems do hold in fuzzy normed linear spaces.

  7. Fuzzy relational calculus theory, applications and software

    CERN Document Server

    Peeva, Ketty

    2004-01-01

    This book examines fuzzy relational calculus theory with applications in various engineering subjects. The scope of the text covers unified and exact methods with algorithms for direct and inverse problem resolution in fuzzy relational calculus. Extensive engineering applications of fuzzy relation compositions and fuzzy linear systems (linear, relational and intuitionistic) are discussed. Some examples of such applications include solutions of equivalence, reduction and minimization problems in fuzzy machines, pattern recognition in fuzzy languages, optimization and inference engines in textile and chemical engineering, etc. A comprehensive overview of the authors' original work in fuzzy relational calculus is also provided in each chapter. The attached CD-Rom contains a toolbox with many functions for fuzzy calculations, together with an original algorithm for inverse problem resolution in MATLAB. This book is also suitable for use as a textbook in related courses at advanced undergraduate and graduate level...

  8. Computing the eigenvalues and eigenvectors of a fuzzy matrix

    Directory of Open Access Journals (Sweden)

    A. Kumar

    2012-08-01

    Full Text Available Computation of fuzzy eigenvalues and fuzzy eigenvectors of a fuzzy matrix is a challenging problem. Determining the maximal and minimal symmetric solution can help to find the eigenvalues. So, we try to compute these eigenvalues by determining the maximal and minimal symmetric solution of the fully fuzzy linear system $widetilde{A}widetilde{X}= widetilde{lambda} widetilde{X}.$

  9. On the mathematics of fuzziness

    Energy Technology Data Exchange (ETDEWEB)

    Chulichkov, A.I.; Chulichkova, N.M.; Pyt`ev, Y. P.; Smolnik, L.

    1994-12-31

    The problem of the minimax linear interpretation of stochastic measurements with fuzzy conditions on values of the object`s parameters is considered. The result of a measurement interpretation is the fuzzy element (u, h, alpha, mu(.,.,.)), where u is the object`s parameter estimation, h is the estimation accuracy and alpha is the reliability of interpretation, mu is the characteristic function of a fuzzy element. Reliability is the characteristic of the agreement between fuzzy a priori information and measuring data. The information on the values of the parameters of an object under investigation is interactively submitted to the computer.

  10. A fuzzy multi-objective linear programming approach for integrated sheep farming and wildlife in land management decisions: a case study in the Patagonian rangelands

    Science.gov (United States)

    Metternicht, Graciela; Blanco, Paula; del Valle, Hector; Laterra, Pedro; Hardtke, Leonardo; Bouza, Pablo

    2015-04-01

    Wildlife is part of the Patagonian rangelands sheep farming environment, with the potential of providing extra revenue to livestock owners. As sheep farming became less profitable, farmers and ranchers could focus on sustainable wildlife harvesting. It has been argued that sustainable wildlife harvesting is ecologically one of the most rational forms of land use because of its potential to provide multiple products of high value, while reducing pressure on ecosystems. The guanaco (Lama guanicoe) is the most conspicuous wild ungulate of Patagonia. Guanaco ?bre, meat, pelts and hides are economically valuable and have the potential to be used within the present Patagonian context of production systems. Guanaco populations in South America, including Patagonia, have experienced a sustained decline. Causes for this decline are related to habitat alteration, competition for forage with sheep, and lack of reasonable management plans to develop livelihoods for ranchers. In this study we propose an approach to explicitly determinate optimal stocking rates based on trade-offs between guanaco density and livestock grazing intensity on rangelands. The focus of our research is on finding optimal sheep stocking rates at paddock level, to ensure the highest production outputs while: a) meeting requirements of sustainable conservation of guanacos over their minimum viable population; b) maximizing soil carbon sequestration, and c) minimizing soil erosion. In this way, determination of optimal stocking rate in rangelands becomes a multi-objective optimization problem that can be addressed using a Fuzzy Multi-Objective Linear Programming (MOLP) approach. Basically, this approach converts multi-objective problems into single-objective optimizations, by introducing a set of objective weights. Objectives are represented using fuzzy set theory and fuzzy memberships, enabling each objective function to adopt a value between 0 and 1. Each objective function indicates the satisfaction of

  11. Discovering biomarkers from gene expression data for predicting cancer subgroups using neural networks and relational fuzzy clustering

    Directory of Open Access Journals (Sweden)

    Sharma Animesh

    2007-01-01

    Full Text Available Abstract Background The four heterogeneous childhood cancers, neuroblastoma, non-Hodgkin lymphoma, rhabdomyosarcoma, and Ewing sarcoma present a similar histology of small round blue cell tumor (SRBCT and thus often leads to misdiagnosis. Identification of biomarkers for distinguishing these cancers is a well studied problem. Existing methods typically evaluate each gene separately and do not take into account the nonlinear interaction between genes and the tools that are used to design the diagnostic prediction system. Consequently, more genes are usually identified as necessary for prediction. We propose a general scheme for finding a small set of biomarkers to design a diagnostic system for accurate classification of the cancer subgroups. We use multilayer networks with online gene selection ability and relational fuzzy clustering to identify a small set of biomarkers for accurate classification of the training and blind test cases of a well studied data set. Results Our method discerned just seven biomarkers that precisely categorized the four subgroups of cancer both in training and blind samples. For the same problem, others suggested 19–94 genes. These seven biomarkers include three novel genes (NAB2, LSP1 and EHD1 – not identified by others with distinct class-specific signatures and important role in cancer biology, including cellular proliferation, transendothelial migration and trafficking of MHC class antigens. Interestingly, NAB2 is downregulated in other tumors including Non-Hodgkin lymphoma and Neuroblastoma but we observed moderate to high upregulation in a few cases of Ewing sarcoma and Rabhdomyosarcoma, suggesting that NAB2 might be mutated in these tumors. These genes can discover the subgroups correctly with unsupervised learning, can differentiate non-SRBCT samples and they perform equally well with other machine learning tools including support vector machines. These biomarkers lead to four simple human interpretable

  12. Approximate Solution of LR Fuzzy Sylvester Matrix Equations

    Directory of Open Access Journals (Sweden)

    Xiaobin Guo

    2013-01-01

    Full Text Available The fuzzy Sylvester matrix equation AX~+X~B=C~ in which A,B are m×m and n×n crisp matrices, respectively, and C~ is an m×n LR fuzzy numbers matrix is investigated. Based on the Kronecker product of matrices, we convert the fuzzy Sylvester matrix equation into an LR fuzzy linear system. Then we extend the fuzzy linear system into two systems of linear equations according to the arithmetic operations of LR fuzzy numbers. The fuzzy approximate solution of the original fuzzy matrix equation is obtained by solving the crisp linear systems. The existence condition of the LR fuzzy solution is also discussed. Some examples are given to illustrate the proposed method.

  13. Fuzzy logic

    CERN Document Server

    Smets, P

    1995-01-01

    We start by describing the nature of imperfect data, and giving an overview of the various models that have been proposed. Fuzzy sets theory is shown to be an extension of classical set theory, and as such has a proeminent role or modelling imperfect data. The mathematic of fuzzy sets theory is detailled, in particular the role of the triangular norms. The use of fuzzy sets theory in fuzzy logic and possibility theory,the nature of the generalized modus ponens and of the implication operator for approximate reasoning are analysed. The use of fuzzy logic is detailled for application oriented towards process control and database problems.

  14. Fuzzy Languages

    Science.gov (United States)

    Rahonis, George

    The theory of fuzzy recognizable languages over bounded distributive lattices is presented as a paradigm of recognizable formal power series. Due to the idempotency properties of bounded distributive lattices, the equality of fuzzy recognizable languages is decidable, the determinization of multi-valued automata is effective, and a pumping lemma exists. Fuzzy recognizable languages over finite and infinite words are expressively equivalent to sentences of the multi-valued monadic second-order logic. Fuzzy recognizability over bounded ℓ-monoids and residuated lattices is briefly reported. The chapter concludes with two applications of fuzzy recognizable languages to real world problems in medicine.

  15. Designing PID-Fuzzy Controller for Pendubot System

    Directory of Open Access Journals (Sweden)

    Ho Trong Nguyen

    2017-12-01

    Full Text Available In the paper, authors analize dynamic equation of a pendubot system. Familiar kinds of controller – PID, fuzzy controllers – are concerned. Then, a structure of PID-FUZZY is presented. The comparison of three kinds of controllers – PID, fuzzy and PID-FUZZY shows the better response of system under PID-FUZZY controller. Then, the experiments on the real model also prove the better stabilization of the hybrid controller which is combined between linear and intelligent controller.

  16. A study of fuzzy control in nuclear scale system

    International Nuclear Information System (INIS)

    Wang Yu; Zhang Yongming; Wu Ruisheng; Du Xianbin; Liu Shixing

    2001-01-01

    The new development of the nuclear scale system which uses fuzzy control strategy is presented. Good results have been obtained in using fuzzy control to solve the problems, such as un-linearities, instabilities, time delays, which are difficultly described by formula, etc. The fuzzy variance, membership function and fuzzy rules are given, and the noise disturbances of fuzzy control and PID control are also given

  17. Gene selection for the reconstruction of stem cell differentiation trees: a linear programming approach.

    Science.gov (United States)

    Ghadie, Mohamed A; Japkowicz, Nathalie; Perkins, Theodore J

    2015-08-15

    Stem cell differentiation is largely guided by master transcriptional regulators, but it also depends on the expression of other types of genes, such as cell cycle genes, signaling genes, metabolic genes, trafficking genes, etc. Traditional approaches to understanding gene expression patterns across multiple conditions, such as principal components analysis or K-means clustering, can group cell types based on gene expression, but they do so without knowledge of the differentiation hierarchy. Hierarchical clustering can organize cell types into a tree, but in general this tree is different from the differentiation hierarchy itself. Given the differentiation hierarchy and gene expression data at each node, we construct a weighted Euclidean distance metric such that the minimum spanning tree with respect to that metric is precisely the given differentiation hierarchy. We provide a set of linear constraints that are provably sufficient for the desired construction and a linear programming approach to identify sparse sets of weights, effectively identifying genes that are most relevant for discriminating different parts of the tree. We apply our method to microarray gene expression data describing 38 cell types in the hematopoiesis hierarchy, constructing a weighted Euclidean metric that uses just 175 genes. However, we find that there are many alternative sets of weights that satisfy the linear constraints. Thus, in the style of random-forest training, we also construct metrics based on random subsets of the genes and compare them to the metric of 175 genes. We then report on the selected genes and their biological functions. Our approach offers a new way to identify genes that may have important roles in stem cell differentiation. tperkins@ohri.ca Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Transportation optimization with fuzzy trapezoidal numbers based on possibility theory.

    Science.gov (United States)

    He, Dayi; Li, Ran; Huang, Qi; Lei, Ping

    2014-01-01

    In this paper, a parametric method is introduced to solve fuzzy transportation problem. Considering that parameters of transportation problem have uncertainties, this paper develops a generalized fuzzy transportation problem with fuzzy supply, demand and cost. For simplicity, these parameters are assumed to be fuzzy trapezoidal numbers. Based on possibility theory and consistent with decision-makers' subjectiveness and practical requirements, the fuzzy transportation problem is transformed to a crisp linear transportation problem by defuzzifying fuzzy constraints and objectives with application of fractile and modality approach. Finally, a numerical example is provided to exemplify the application of fuzzy transportation programming and to verify the validity of the proposed methods.

  19. Consolidity analysis for fully fuzzy functions, matrices, probability and statistics

    Directory of Open Access Journals (Sweden)

    Walaa Ibrahim Gabr

    2015-03-01

    Full Text Available The paper presents a comprehensive review of the know-how for developing the systems consolidity theory for modeling, analysis, optimization and design in fully fuzzy environment. The solving of systems consolidity theory included its development for handling new functions of different dimensionalities, fuzzy analytic geometry, fuzzy vector analysis, functions of fuzzy complex variables, ordinary differentiation of fuzzy functions and partial fraction of fuzzy polynomials. On the other hand, the handling of fuzzy matrices covered determinants of fuzzy matrices, the eigenvalues of fuzzy matrices, and solving least-squares fuzzy linear equations. The approach demonstrated to be also applicable in a systematic way in handling new fuzzy probabilistic and statistical problems. This included extending the conventional probabilistic and statistical analysis for handling fuzzy random data. Application also covered the consolidity of fuzzy optimization problems. Various numerical examples solved have demonstrated that the new consolidity concept is highly effective in solving in a compact form the propagation of fuzziness in linear, nonlinear, multivariable and dynamic problems with different types of complexities. Finally, it is demonstrated that the implementation of the suggested fuzzy mathematics can be easily embedded within normal mathematics through building special fuzzy functions library inside the computational Matlab Toolbox or using other similar software languages.

  20. Relational Demonic Fuzzy Refinement

    Directory of Open Access Journals (Sweden)

    Fairouz Tchier

    2014-01-01

    Full Text Available We use relational algebra to define a refinement fuzzy order called demonic fuzzy refinement and also the associated fuzzy operators which are fuzzy demonic join (⊔fuz, fuzzy demonic meet (⊓fuz, and fuzzy demonic composition (□fuz. Our definitions and properties are illustrated by some examples using mathematica software (fuzzy logic.

  1. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification.

    Science.gov (United States)

    Xu, Jiucheng; Mu, Huiyu; Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC 2 ), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible.

  2. On the Fuzzy Convergence

    Directory of Open Access Journals (Sweden)

    Abdul Hameed Q. A. Al-Tai

    2011-01-01

    Full Text Available The aim of this paper is to introduce and study the fuzzy neighborhood, the limit fuzzy number, the convergent fuzzy sequence, the bounded fuzzy sequence, and the Cauchy fuzzy sequence on the base which is adopted by Abdul Hameed (every real number r is replaced by a fuzzy number r¯ (either triangular fuzzy number or singleton fuzzy set (fuzzy point. And then, we will consider that some results respect effect of the upper sequence on the convergent fuzzy sequence, the bounded fuzzy sequence, and the Cauchy fuzzy sequence.

  3. Fuzzy Commitment

    Science.gov (United States)

    Juels, Ari

    The purpose of this chapter is to introduce fuzzy commitment, one of the earliest and simplest constructions geared toward cryptography over noisy data. The chapter also explores applications of fuzzy commitment to two problems in data security: (1) secure management of biometrics, with a focus on iriscodes, and (2) use of knowledge-based authentication (i.e., personal questions) for password recovery.

  4. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.

    Science.gov (United States)

    Lyubetsky, Vassily; Gershgorin, Roman; Gorbunov, Konstantin

    2017-12-06

    Chromosome structure is a very limited model of the genome including the information about its chromosomes such as their linear or circular organization, the order of genes on them, and the DNA strand encoding a gene. Gene lengths, nucleotide composition, and intergenic regions are ignored. Although highly incomplete, such structure can be used in many cases, e.g., to reconstruct phylogeny and evolutionary events, to identify gene synteny, regulatory elements and promoters (considering highly conserved elements), etc. Three problems are considered; all assume unequal gene content and the presence of gene paralogs. The distance problem is to determine the minimum number of operations required to transform one chromosome structure into another and the corresponding transformation itself including the identification of paralogs in two structures. We use the DCJ model which is one of the most studied combinatorial rearrangement models. Double-, sesqui-, and single-operations as well as deletion and insertion of a chromosome region are considered in the model; the single ones comprise cut and join. In the reconstruction problem, a phylogenetic tree with chromosome structures in the leaves is given. It is necessary to assign the structures to inner nodes of the tree to minimize the sum of distances between terminal structures of each edge and to identify the mutual paralogs in a fairly large set of structures. A linear algorithm is known for the distance problem without paralogs, while the presence of paralogs makes it NP-hard. If paralogs are allowed but the insertion and deletion operations are missing (and special constraints are imposed), the reduction of the distance problem to integer linear programming is known. Apparently, the reconstruction problem is NP-hard even in the absence of paralogs. The problem of contigs is to find the optimal arrangements for each given set of contigs, which also includes the mutual identification of paralogs. We proved that these

  5. Weighted functional linear regression models for gene-based association analysis.

    Science.gov (United States)

    Belonogova, Nadezhda M; Svishcheva, Gulnara R; Wilson, James F; Campbell, Harry; Axenovich, Tatiana I

    2018-01-01

    Functional linear regression models are effectively used in gene-based association analysis of complex traits. These models combine information about individual genetic variants, taking into account their positions and reducing the influence of noise and/or observation errors. To increase the power of methods, where several differently informative components are combined, weights are introduced to give the advantage to more informative components. Allele-specific weights have been introduced to collapsing and kernel-based approaches to gene-based association analysis. Here we have for the first time introduced weights to functional linear regression models adapted for both independent and family samples. Using data simulated on the basis of GAW17 genotypes and weights defined by allele frequencies via the beta distribution, we demonstrated that type I errors correspond to declared values and that increasing the weights of causal variants allows the power of functional linear models to be increased. We applied the new method to real data on blood pressure from the ORCADES sample. Five of the six known genes with P models. Moreover, we found an association between diastolic blood pressure and the VMP1 gene (P = 8.18×10-6), when we used a weighted functional model. For this gene, the unweighted functional and weighted kernel-based models had P = 0.004 and 0.006, respectively. The new method has been implemented in the program package FREGAT, which is freely available at https://cran.r-project.org/web/packages/FREGAT/index.html.

  6. Operator’s Fuzzy Norm and Some Properties

    OpenAIRE

    Bag, T.; Samanta, S.K.

    2015-01-01

    In this paper, a concept of operator’s fuzzy norm is introduced for the first time in general t-norm setting. Ideas of fuzzy continuous operators, fuzzy bounded linear operators are given with some properties of such operators studied in this general setting.

  7. Fuzzy promises

    DEFF Research Database (Denmark)

    Anker, Thomas Boysen; Kappel, Klemens; Eadie, Douglas

    2012-01-01

    as narrative material to communicate self-identity. Finally, (c) we propose that brands deliver fuzzy experiential promises through effectively motivating consumers to adopt and play a social role implicitly suggested and facilitated by the brand. A promise is an inherently ethical concept and the article...... concludes with an in-depth discussion of fuzzy brand promises as two-way ethical commitments that put requirements on both brands and consumers....

  8. Decision and game theory in management with intuitionistic fuzzy sets

    CERN Document Server

    Li, Deng-Feng

    2014-01-01

    The focus of this book is on establishing theories and methods of both decision and game analysis in management using intuitionistic fuzzy sets. It proposes a series of innovative theories, models and methods such as the representation theorem and extension principle of intuitionistic fuzzy sets, ranking methods of intuitionistic fuzzy numbers, non-linear and linear programming methods for intuitionistic fuzzy multi-attribute decision making and (interval-valued) intuitionistic fuzzy matrix games. These theories and methods form the theory system of intuitionistic fuzzy decision making and games, which is not only remarkably different from those of the traditional, Bayes and/or fuzzy decision theory but can also provide an effective and efficient tool for solving complex management problems. Since there is a certain degree of inherent hesitancy in real-life management, which cannot always be described by the traditional mathematical methods and/or fuzzy set theory, this book offers an effective approach to us...

  9. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    Science.gov (United States)

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the

  10. An integer optimization algorithm for robust identification of non-linear gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Chemmangattuvalappil Nishanth

    2012-09-01

    Full Text Available Abstract Background Reverse engineering gene networks and identifying regulatory interactions are integral to understanding cellular decision making processes. Advancement in high throughput experimental techniques has initiated innovative data driven analysis of gene regulatory networks. However, inherent noise associated with biological systems requires numerous experimental replicates for reliable conclusions. Furthermore, evidence of robust algorithms directly exploiting basic biological traits are few. Such algorithms are expected to be efficient in their performance and robust in their prediction. Results We have developed a network identification algorithm to accurately infer both the topology and strength of regulatory interactions from time series gene expression data in the presence of significant experimental noise and non-linear behavior. In this novel formulism, we have addressed data variability in biological systems by integrating network identification with the bootstrap resampling technique, hence predicting robust interactions from limited experimental replicates subjected to noise. Furthermore, we have incorporated non-linearity in gene dynamics using the S-system formulation. The basic network identification formulation exploits the trait of sparsity of biological interactions. Towards that, the identification algorithm is formulated as an integer-programming problem by introducing binary variables for each network component. The objective function is targeted to minimize the network connections subjected to the constraint of maximal agreement between the experimental and predicted gene dynamics. The developed algorithm is validated using both in silico and experimental data-sets. These studies show that the algorithm can accurately predict the topology and connection strength of the in silico networks, as quantified by high precision and recall, and small discrepancy between the actual and predicted kinetic parameters

  11. Fuzziness and randomness in an optimization framework

    International Nuclear Information System (INIS)

    Luhandjula, M.K.

    1994-03-01

    This paper presents a semi-infinite approach for linear programming in the presence of fuzzy random variable coefficients. As a byproduct a way for dealing with optimization problems including both fuzzy and random data is obtained. Numerical examples are provided for the sake of illustration. (author). 13 refs

  12. Fuzzy systems for process identification and control

    International Nuclear Information System (INIS)

    Gorrini, V.; Bersini, H.

    1994-01-01

    Various issues related to the automatic construction and on-line adaptation of fuzzy controllers are addressed. A Direct Adaptive Fuzzy Control (this is an adaptive control methodology requiring a minimal knowledge of the processes to be coupled with) derived in a way reminiscent of neurocontrol methods, is presented. A classical fuzzy controller and a fuzzy realization of a PID controller is discussed. These systems implement a highly non-linear control law, and provide to be quite robust, even in the case of noisy inputs. In order to identify dynamic processes of order superior to one, we introduce a more complex architecture, called Recurrent Fuzzy System, that use some fuzzy internal variables to perform an inferential chaining.I

  13. A new fuzzy Monte Carlo method for solving SLAE with ergodic fuzzy Markov chains

    Directory of Open Access Journals (Sweden)

    Maryam Gharehdaghi

    2015-05-01

    Full Text Available In this paper we introduce a new fuzzy Monte Carlo method for solving system of linear algebraic equations (SLAE over the possibility theory and max-min algebra. To solve the SLAE, we first define a fuzzy estimator and prove that this is an unbiased estimator of the solution. To prove unbiasedness, we apply the ergodic fuzzy Markov chains. This new approach works even for cases with coefficients matrix with a norm greater than one.

  14. An Efficient Test for Gene-Environment Interaction in Generalized Linear Mixed Models with Family Data.

    Science.gov (United States)

    Mazo Lopera, Mauricio A; Coombes, Brandon J; de Andrade, Mariza

    2017-09-27

    Gene-environment (GE) interaction has important implications in the etiology of complex diseases that are caused by a combination of genetic factors and environment variables. Several authors have developed GE analysis in the context of independent subjects or longitudinal data using a gene-set. In this paper, we propose to analyze GE interaction for discrete and continuous phenotypes in family studies by incorporating the relatedness among the relatives for each family into a generalized linear mixed model (GLMM) and by using a gene-based variance component test. In addition, we deal with collinearity problems arising from linkage disequilibrium among single nucleotide polymorphisms (SNPs) by considering their coefficients as random effects under the null model estimation. We show that the best linear unbiased predictor (BLUP) of such random effects in the GLMM is equivalent to the ridge regression estimator. This equivalence provides a simple method to estimate the ridge penalty parameter in comparison to other computationally-demanding estimation approaches based on cross-validation schemes. We evaluated the proposed test using simulation studies and applied it to real data from the Baependi Heart Study consisting of 76 families. Using our approach, we identified an interaction between BMI and the Peroxisome Proliferator Activated Receptor Gamma ( PPARG ) gene associated with diabetes.

  15. Fitness Effects of Network Non-Linearity Induced by Gene Expression Noise

    Science.gov (United States)

    Ray, Christian; Cooper, Tim; Balazsi, Gabor

    2012-02-01

    In the non-equilibrium dynamics of growing microbial cells, metabolic enzymes can create non-linearities in metabolite concentration because of non-linear degradation (utilization): an enzyme can saturate in the process of metabolite utilization. Increasing metabolite production past the saturation point then results in an ultrasensitive metabolite response. If the production rate of a metabolite depends on a second enzyme or other protein-mediated process, uncorrelated gene expression noise can thus cause transient metabolite concentration bursts. Such bursts are physiologically unnecessary and may represent a source of selection against the ultrasensitive switch, especially if the fluctuating metabolic intermediate is toxic. Selection may therefore favor correlated gene expression fluctuations for enzymes in the same pathway, such as by same-operon membership in bacteria. Using a modified experimental lac operon system, we are undertaking a combined theoretical-experimental approach to demonstrate that (i) the lac operon has an implicit ultrasensitive switch that we predict is avoided by gene expression correlations induced by same-operon membership; (ii) bacterial growth rates are sensitive to crossing the ultrasensitive threshold. Our results suggest that correlations in intrinsic gene expression noise are exploited by evolution to ameliorate the detrimental effects of nonlinearities in metabolite concentrations.

  16. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan

    2000-01-01

    A symptom is a condition indicating the presence of a disease, especially, when regarded as an aid in diagnosis.Symptoms are the smallest units indicating the existence of a disease. A syndrome on the other hand is an aggregate, set or cluster of concurrent symptoms which together indicate...... and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c......-mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...

  17. Diamond Fuzzy Number

    Directory of Open Access Journals (Sweden)

    T. Pathinathan

    2015-01-01

    Full Text Available In this paper we define diamond fuzzy number with the help of triangular fuzzy number. We include basic arithmetic operations like addition, subtraction of diamond fuzzy numbers with examples. We define diamond fuzzy matrix with some matrix properties. We have defined Nested diamond fuzzy number and Linked diamond fuzzy number. We have further classified Right Linked Diamond Fuzzy number and Left Linked Diamond Fuzzy number. Finally we have verified the arithmetic operations for the above mentioned types of Diamond Fuzzy Numbers.

  18. Location Discovery Based on Fuzzy Geometry in Passive Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2011-01-01

    Full Text Available Location discovery with uncertainty using passive sensor networks in the nation's power grid is known to be challenging, due to the massive scale and inherent complexity. For bearings-only target localization in passive sensor networks, the approach of fuzzy geometry is introduced to investigate the fuzzy measurability for a moving target in R2 space. The fuzzy analytical bias expressions and the geometrical constraints are derived for bearings-only target localization. The interplay between fuzzy geometry of target localization and the fuzzy estimation bias for the case of fuzzy linear observer trajectory is analyzed in detail in sensor networks, which can realize the 3-dimensional localization including fuzzy estimate position and velocity of the target by measuring the fuzzy azimuth angles at intervals of fixed time. Simulation results show that the resulting estimate position outperforms the traditional least squares approach for localization with uncertainty.

  19. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...

  20. Fuzzy control of small servo motors

    Science.gov (United States)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  1. "Fuzzy stuff"

    DEFF Research Database (Denmark)

    Christensen, Line Hjorth

    "Fuzzy stuff". Exploring the displacement of the design sketch. What kind of knowledge can historical sketches reveal when they have outplayed their primary instrumental function in the design process and are moved into a museum collection? What are the rational benefits of ‘archival displacement...

  2. Fuzzy logic of Aristotelian forms

    Energy Technology Data Exchange (ETDEWEB)

    Perlovsky, L.I. [Nichols Research Corp., Lexington, MA (United States)

    1996-12-31

    Model-based approaches to pattern recognition and machine vision have been proposed to overcome the exorbitant training requirements of earlier computational paradigms. However, uncertainties in data were found to lead to a combinatorial explosion of the computational complexity. This issue is related here to the roles of a priori knowledge vs. adaptive learning. What is the a-priori knowledge representation that supports learning? I introduce Modeling Field Theory (MFT), a model-based neural network whose adaptive learning is based on a priori models. These models combine deterministic, fuzzy, and statistical aspects to account for a priori knowledge, its fuzzy nature, and data uncertainties. In the process of learning, a priori fuzzy concepts converge to crisp or probabilistic concepts. The MFT is a convergent dynamical system of only linear computational complexity. Fuzzy logic turns out to be essential for reducing the combinatorial complexity to linear one. I will discuss the relationship of the new computational paradigm to two theories due to Aristotle: theory of Forms and logic. While theory of Forms argued that the mind cannot be based on ready-made a priori concepts, Aristotelian logic operated with just such concepts. I discuss an interpretation of MFT suggesting that its fuzzy logic, combining a-priority and adaptivity, implements Aristotelian theory of Forms (theory of mind). Thus, 2300 years after Aristotle, a logic is developed suitable for his theory of mind.

  3. Fuzzy stochastic damage mechanics (FSDM based on fuzzy auto-adaptive control theory

    Directory of Open Access Journals (Sweden)

    Ya-jun Wang

    2012-06-01

    Full Text Available In order to fully interpret and describe damage mechanics, the origin and development of fuzzy stochastic damage mechanics were introduced based on the analysis of the harmony of damage, probability, and fuzzy membership in the interval of [0,1]. In a complete normed linear space, it was proven that a generalized damage field can be simulated through β probability distribution. Three kinds of fuzzy behaviors of damage variables were formulated and explained through analysis of the generalized uncertainty of damage variables and the establishment of a fuzzy functional expression. Corresponding fuzzy mapping distributions, namely, the half-depressed distribution, swing distribution, and combined swing distribution, which can simulate varying fuzzy evolution in diverse stochastic damage situations, were set up. Furthermore, through demonstration of the generalized probabilistic characteristics of damage variables, the cumulative distribution function and probability density function of fuzzy stochastic damage variables, which show β probability distribution, were modified according to the expansion principle. The three-dimensional fuzzy stochastic damage mechanical behaviors of the Longtan rolled-concrete dam were examined with the self-developed fuzzy stochastic damage finite element program. The statistical correlation and non-normality of random field parameters were considered comprehensively in the fuzzy stochastic damage model described in this paper. The results show that an initial damage field based on the comprehensive statistical evaluation helps to avoid many difficulties in the establishment of experiments and numerical algorithms for damage mechanics analysis.

  4. Relational Demonic Fuzzy Refinement

    OpenAIRE

    Tchier, Fairouz

    2014-01-01

    We use relational algebra to define a refinement fuzzy order called demonic fuzzy refinement and also the associated fuzzy operators which are fuzzy demonic join $({\\bigsqcup }_{\\mathrm{\\text{f}}\\mathrm{\\text{u}}\\mathrm{\\text{z}}})$ , fuzzy demonic meet $({\\sqcap }_{\\mathrm{\\text{f}}\\mathrm{\\text{u}}\\mathrm{\\text{z}}})$ , and fuzzy demonic composition $({\\square }_{\\mathrm{\\text{f}}\\mathrm{\\text{u}}\\mathrm{\\text{z}}})$ . Our definitions and properties are illustrated by some examples using ma...

  5. Cheap diagnosis using structural modelling and fuzzy-logic based detection

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Blanke, Mogens; Katebi, Serajeddin

    2003-01-01

    relations for linear or non-linear dynamic behaviour, and combine this with fuzzy output observer design to provide an effective diagnostic approach. An adaptive neuro-fuzzy inference method is used. A fuzzy adaptive threshold is employed to cope with practical uncertainty. The methods are demonstrated...... using measurements on a ship propulsion system subject to simulated faults....

  6. Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming

    Science.gov (United States)

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398

  7. Row Reduced Echelon Form for Solving Fully Fuzzy System with Unknown Coefficients

    Directory of Open Access Journals (Sweden)

    Ghassan Malkawi

    2014-08-01

    Full Text Available This study proposes a new method for finding a feasible fuzzy solution in positive Fully Fuzzy Linear System (FFLS, where the coefficients are unknown. The fully fuzzy system is transferred to linear system in order to obtain the solution using row reduced echelon form, thereafter; the crisp solution is restricted in obtaining the positive fuzzy solution. The fuzzy solution of FFLS is included crisp intervals, to assign alternative values of unknown entries of fuzzy numbers. To illustrate the proposed method, numerical examples are solved, where the entries of coefficients are unknown in right or left hand side, to demonstrate the contributions in this study.

  8. The Spike-and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes Detection.

    Science.gov (United States)

    Tang, Zaixiang; Shen, Yueping; Zhang, Xinyan; Yi, Nengjun

    2017-01-01

    Large-scale "omics" data have been increasingly used as an important resource for prognostic prediction of diseases and detection of associated genes. However, there are considerable challenges in analyzing high-dimensional molecular data, including the large number of potential molecular predictors, limited number of samples, and small effect of each predictor. We propose new Bayesian hierarchical generalized linear models, called spike-and-slab lasso GLMs, for prognostic prediction and detection of associated genes using large-scale molecular data. The proposed model employs a spike-and-slab mixture double-exponential prior for coefficients that can induce weak shrinkage on large coefficients, and strong shrinkage on irrelevant coefficients. We have developed a fast and stable algorithm to fit large-scale hierarchal GLMs by incorporating expectation-maximization (EM) steps into the fast cyclic coordinate descent algorithm. The proposed approach integrates nice features of two popular methods, i.e., penalized lasso and Bayesian spike-and-slab variable selection. The performance of the proposed method is assessed via extensive simulation studies. The results show that the proposed approach can provide not only more accurate estimates of the parameters, but also better prediction. We demonstrate the proposed procedure on two cancer data sets: a well-known breast cancer data set consisting of 295 tumors, and expression data of 4919 genes; and the ovarian cancer data set from TCGA with 362 tumors, and expression data of 5336 genes. Our analyses show that the proposed procedure can generate powerful models for predicting outcomes and detecting associated genes. The methods have been implemented in a freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/). Copyright © 2017 by the Genetics Society of America.

  9. Computational intelligence synergies of fuzzy logic, neural networks and evolutionary computing

    CERN Document Server

    Siddique, Nazmul

    2013-01-01

    Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Key features: Covers all the aspect

  10. Comparison of Gene Expression Programming with neuro-fuzzy and neural network computing techniques in estimating daily incoming solar radiation in the Basque Country (Northern Spain)

    International Nuclear Information System (INIS)

    Landeras, Gorka; López, José Javier; Kisi, Ozgur; Shiri, Jalal

    2012-01-01

    Highlights: ► Solar radiation estimation based on Gene Expression Programming is unexplored. ► This approach is evaluated for the first time in this study. ► Other artificial intelligence models (ANN and ANFIS) are also included in the study. ► New alternatives for solar radiation estimation based on temperatures are provided. - Abstract: Surface incoming solar radiation is a key variable for many agricultural, meteorological and solar energy conversion related applications. In absence of the required meteorological sensors for the detection of global solar radiation it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). A comparison was also made among these techniques and traditional temperature based global solar radiation estimation equations. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SS RMSE ), MAE-based skill score (SS MAE ) and r 2 criterion of Nash and Sutcliffe criteria were used to assess the models’ performances. An ANN (a four-input multilayer perceptron with 10 neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m −2 d −1 of RMSE). The ability of GEP approach to model global solar radiation based on daily atmospheric variables was found to be satisfactory.

  11. Monte Carlo simulation of OLS and linear mixed model inference of phenotypic effects on gene expression.

    Science.gov (United States)

    Walker, Jeffrey A

    2016-01-01

    Self-contained tests estimate and test the association between a phenotype and mean expression level in a gene set defined a priori . Many self-contained gene set analysis methods have been developed but the performance of these methods for phenotypes that are continuous rather than discrete and with multiple nuisance covariates has not been well studied. Here, I use Monte Carlo simulation to evaluate the performance of both novel and previously published (and readily available via R) methods for inferring effects of a continuous predictor on mean expression in the presence of nuisance covariates. The motivating data are a high-profile dataset which was used to show opposing effects of hedonic and eudaimonic well-being (or happiness) on the mean expression level of a set of genes that has been correlated with social adversity (the CTRA gene set). The original analysis of these data used a linear model (GLS) of fixed effects with correlated error to infer effects of Hedonia and Eudaimonia on mean CTRA expression. The standardized effects of Hedonia and Eudaimonia on CTRA gene set expression estimated by GLS were compared to estimates using multivariate (OLS) linear models and generalized estimating equation (GEE) models. The OLS estimates were tested using O'Brien's OLS test, Anderson's permutation [Formula: see text]-test, two permutation F -tests (including GlobalAncova), and a rotation z -test (Roast). The GEE estimates were tested using a Wald test with robust standard errors. The performance (Type I, II, S, and M errors) of all tests was investigated using a Monte Carlo simulation of data explicitly modeled on the re-analyzed dataset. GLS estimates are inconsistent between data sets, and, in each dataset, at least one coefficient is large and highly statistically significant. By contrast, effects estimated by OLS or GEE are very small, especially relative to the standard errors. Bootstrap and permutation GLS distributions suggest that the GLS results in

  12. Monte Carlo simulation of OLS and linear mixed model inference of phenotypic effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jeffrey A. Walker

    2016-10-01

    Full Text Available Background Self-contained tests estimate and test the association between a phenotype and mean expression level in a gene set defined a priori. Many self-contained gene set analysis methods have been developed but the performance of these methods for phenotypes that are continuous rather than discrete and with multiple nuisance covariates has not been well studied. Here, I use Monte Carlo simulation to evaluate the performance of both novel and previously published (and readily available via R methods for inferring effects of a continuous predictor on mean expression in the presence of nuisance covariates. The motivating data are a high-profile dataset which was used to show opposing effects of hedonic and eudaimonic well-being (or happiness on the mean expression level of a set of genes that has been correlated with social adversity (the CTRA gene set. The original analysis of these data used a linear model (GLS of fixed effects with correlated error to infer effects of Hedonia and Eudaimonia on mean CTRA expression. Methods The standardized effects of Hedonia and Eudaimonia on CTRA gene set expression estimated by GLS were compared to estimates using multivariate (OLS linear models and generalized estimating equation (GEE models. The OLS estimates were tested using O’Brien’s OLS test, Anderson’s permutation ${r}_{F}^{2}$ r F 2 -test, two permutation F-tests (including GlobalAncova, and a rotation z-test (Roast. The GEE estimates were tested using a Wald test with robust standard errors. The performance (Type I, II, S, and M errors of all tests was investigated using a Monte Carlo simulation of data explicitly modeled on the re-analyzed dataset. Results GLS estimates are inconsistent between data sets, and, in each dataset, at least one coefficient is large and highly statistically significant. By contrast, effects estimated by OLS or GEE are very small, especially relative to the standard errors. Bootstrap and permutation GLS

  13. Introduction to fuzzy systems

    CERN Document Server

    Chen, Guanrong

    2005-01-01

    Introduction to Fuzzy Systems provides students with a self-contained introduction that requires no preliminary knowledge of fuzzy mathematics and fuzzy control systems theory. Simplified and readily accessible, it encourages both classroom and self-directed learners to build a solid foundation in fuzzy systems. After introducing the subject, the authors move directly into presenting real-world applications of fuzzy logic, revealing its practical flavor. This practicality is then followed by basic fuzzy systems theory. The book also offers a tutorial on fuzzy control theory, based mainly on th

  14. Fuzzy stability and synchronization of hyperchaos systems

    International Nuclear Information System (INIS)

    Wang Junwei; Xiong Xiaohua; Zhao Meichun; Zhang Yanbin

    2008-01-01

    This paper studies stability and synchronization of hyperchaos systems via a fuzzy-model-based control design methodology. First, we utilize a Takagi-Sugeno fuzzy model to represent a hyperchaos system. Second, we design fuzzy-model-based controllers for stability and synchronization of the system, based on so-called 'parallel distributed compensation (PDC)'. Third, we reduce a question of stabilizing and synchronizing hyperchaos systems to linear matrix inequalities (LMI) so that convex programming techniques can solve these LMIs efficiently. Finally, the generalized Lorenz hyperchaos system is employed to illustrate the effectiveness of our designing controller

  15. Modelling time course gene expression data with finite mixtures of linear additive models.

    Science.gov (United States)

    Grün, Bettina; Scharl, Theresa; Leisch, Friedrich

    2012-01-15

    A model class of finite mixtures of linear additive models is presented. The component-specific parameters in the regression models are estimated using regularized likelihood methods. The advantages of the regularization are that (i) the pre-specified maximum degrees of freedom for the splines is less crucial than for unregularized estimation and that (ii) for each component individually a suitable degree of freedom is selected in an automatic way. The performance is evaluated in a simulation study with artificial data as well as on a yeast cell cycle dataset of gene expression levels over time. The latest release version of the R package flexmix is available from CRAN (http://cran.r-project.org/).

  16. Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.

    Science.gov (United States)

    Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong

    2015-05-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.

  17. Multi-Model Adaptive Fuzzy Controller for a CSTR Process

    Directory of Open Access Journals (Sweden)

    Shubham Gogoria

    2015-09-01

    Full Text Available Continuous Stirred Tank Reactors are intensively used to control exothermic reactions in chemical industries. It is a very complex multi-variable system with non-linear characteristics. This paper deals with linearization of the mathematical model of a CSTR Process. Multi model adaptive fuzzy controller has been designed to control the reactor concentration and temperature of CSTR process. This method combines the output of multiple Fuzzy controllers, which are operated at various operating points. The proposed solution is a straightforward implementation of Fuzzy controller with gain scheduler to control the linearly inseparable parameters of a highly non-linear process.

  18. Multiple Linear Regression for Reconstruction of Gene Regulatory Networks in Solving Cascade Error Problems

    Directory of Open Access Journals (Sweden)

    Faridah Hani Mohamed Salleh

    2017-01-01

    Full Text Available Gene regulatory network (GRN reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error is defined as the wrong prediction of cascade motifs, where an indirect interaction is misinterpreted as a direct interaction. Despite the active research on various GRN prediction methods, the discussion on specific methods to solve problems related to cascade errors is still lacking. In fact, the experiments conducted by the past studies were not specifically geared towards proving the ability of GRN prediction methods in avoiding the occurrences of cascade errors. Hence, this research aims to propose Multiple Linear Regression (MLR to infer GRN from gene expression data and to avoid wrongly inferring of an indirect interaction (A → B → C as a direct interaction (A → C. Since the number of observations of the real experiment datasets was far less than the number of predictors, some predictors were eliminated by extracting the random subnetworks from global interaction networks via an established extraction method. In addition, the experiment was extended to assess the effectiveness of MLR in dealing with cascade error by using a novel experimental procedure that had been proposed in this work. The experiment revealed that the number of cascade errors had been very minimal. Apart from that, the Belsley collinearity test proved that multicollinearity did affect the datasets used in this experiment greatly. All the tested subnetworks obtained satisfactory results, with AUROC values above 0.5.

  19. Multiple Linear Regression for Reconstruction of Gene Regulatory Networks in Solving Cascade Error Problems.

    Science.gov (United States)

    Salleh, Faridah Hani Mohamed; Zainudin, Suhaila; Arif, Shereena M

    2017-01-01

    Gene regulatory network (GRN) reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error is defined as the wrong prediction of cascade motifs, where an indirect interaction is misinterpreted as a direct interaction. Despite the active research on various GRN prediction methods, the discussion on specific methods to solve problems related to cascade errors is still lacking. In fact, the experiments conducted by the past studies were not specifically geared towards proving the ability of GRN prediction methods in avoiding the occurrences of cascade errors. Hence, this research aims to propose Multiple Linear Regression (MLR) to infer GRN from gene expression data and to avoid wrongly inferring of an indirect interaction (A → B → C) as a direct interaction (A → C). Since the number of observations of the real experiment datasets was far less than the number of predictors, some predictors were eliminated by extracting the random subnetworks from global interaction networks via an established extraction method. In addition, the experiment was extended to assess the effectiveness of MLR in dealing with cascade error by using a novel experimental procedure that had been proposed in this work. The experiment revealed that the number of cascade errors had been very minimal. Apart from that, the Belsley collinearity test proved that multicollinearity did affect the datasets used in this experiment greatly. All the tested subnetworks obtained satisfactory results, with AUROC values above 0.5.

  20. Generalized functional linear models for gene-based case-control association studies.

    Science.gov (United States)

    Fan, Ruzong; Wang, Yifan; Mills, James L; Carter, Tonia C; Lobach, Iryna; Wilson, Alexander F; Bailey-Wilson, Joan E; Weeks, Daniel E; Xiong, Momiao

    2014-11-01

    By using functional data analysis techniques, we developed generalized functional linear models for testing association between a dichotomous trait and multiple genetic variants in a genetic region while adjusting for covariates. Both fixed and mixed effect models are developed and compared. Extensive simulations show that Rao's efficient score tests of the fixed effect models are very conservative since they generate lower type I errors than nominal levels, and global tests of the mixed effect models generate accurate type I errors. Furthermore, we found that the Rao's efficient score test statistics of the fixed effect models have higher power than the sequence kernel association test (SKAT) and its optimal unified version (SKAT-O) in most cases when the causal variants are both rare and common. When the causal variants are all rare (i.e., minor allele frequencies less than 0.03), the Rao's efficient score test statistics and the global tests have similar or slightly lower power than SKAT and SKAT-O. In practice, it is not known whether rare variants or common variants in a gene region are disease related. All we can assume is that a combination of rare and common variants influences disease susceptibility. Thus, the improved performance of our models when the causal variants are both rare and common shows that the proposed models can be very useful in dissecting complex traits. We compare the performance of our methods with SKAT and SKAT-O on real neural tube defects and Hirschsprung's disease datasets. The Rao's efficient score test statistics and the global tests are more sensitive than SKAT and SKAT-O in the real data analysis. Our methods can be used in either gene-disease genome-wide/exome-wide association studies or candidate gene analyses. © 2014 WILEY PERIODICALS, INC.

  1. Intuitionistic fuzzy 2-normed space and some related concepts

    International Nuclear Information System (INIS)

    Mursaleen, M.; Danish Lohani, Q.M.

    2009-01-01

    Motivated by the notion of 2-norm due to Gaehler [Gaehler S. Lineare 2-normietre Raeume. Math Nachr 28;1965:1-43], in this paper we define the concept of intuitionistic fuzzy 2-normed space which is a generalization of the notion of intuitionistic fuzzy normed space due to Saadati and Park [Saadati R, Park JH, On the intuitionistic fuzzy topological spaces. Chaos Solitons and Fractals 2006;27:331-44]. Further we establish some topological results in this new set up.

  2. Contribution of Fuzzy Minimal Cost Flow Problem by Possibility Programming

    OpenAIRE

    S. Fanati Rashidi; A. A. Noora

    2010-01-01

    Using the concept of possibility proposed by zadeh, luhandjula ([4,8]) and buckley ([1]) have proposed the possibility programming. The formulation of buckley results in nonlinear programming problems. Negi [6]re-formulated the approach of Buckley by the use of trapezoidal fuzzy numbers and reduced the problem into fuzzy linear programming problem. Shih and Lee ([7]) used the Negi approach to solve a minimum cost flow problem, whit fuzzy costs and the upper and lower bound. ...

  3. Intuitionistic supra fuzzy topological spaces

    International Nuclear Information System (INIS)

    Abbas, S.E.

    2004-01-01

    In this paper, We introduce an intuitionistic supra fuzzy closure space and investigate the relationship between intuitionistic supra fuzzy topological spaces and intuitionistic supra fuzzy closure spaces. Moreover, we can obtain intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space. We study the relationship between intuitionistic supra fuzzy closure space and the intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space

  4. Hesitant fuzzy sets theory

    CERN Document Server

    Xu, Zeshui

    2014-01-01

    This book provides the readers with a thorough and systematic introduction to hesitant fuzzy theory. It presents the most recent research results and advanced methods in the field. These includes: hesitant fuzzy aggregation techniques, hesitant fuzzy preference relations, hesitant fuzzy measures, hesitant fuzzy clustering algorithms and hesitant fuzzy multi-attribute decision making methods. Since its introduction by Torra and Narukawa in 2009, hesitant fuzzy sets have become more and more popular and have been used for a wide range of applications, from decision-making problems to cluster analysis, from medical diagnosis to personnel appraisal and information retrieval. This book offers a comprehensive report on the state-of-the-art in hesitant fuzzy sets theory and applications, aiming at becoming a reference guide for both researchers and practitioners in the area of fuzzy mathematics and other applied research fields (e.g. operations research, information science, management science and engineering) chara...

  5. Fuzzy logic in management

    CERN Document Server

    Carlsson, Christer; Fullér, Robert

    2004-01-01

    Fuzzy Logic in Management demonstrates that difficult problems and changes in the management environment can be more easily handled by bringing fuzzy logic into the practice of management. This explicit theme is developed through the book as follows: Chapter 1, "Management and Intelligent Support Technologies", is a short survey of management leadership and what can be gained from support technologies. Chapter 2, "Fuzzy Sets and Fuzzy Logic", provides a short introduction to fuzzy sets, fuzzy relations, the extension principle, fuzzy implications and linguistic variables. Chapter 3, "Group Decision Support Systems", deals with group decision making, and discusses methods for supporting the consensus reaching processes. Chapter 4, "Fuzzy Real Options for Strategic Planning", summarizes research where the fuzzy real options theory was implemented as a series of models. These models were thoroughly tested on a number of real life investments, and validated in 2001. Chapter 5, "Soft Computing Methods for Reducing...

  6. Design of supply chain in fuzzy environment

    Science.gov (United States)

    Rao, Kandukuri Narayana; Subbaiah, Kambagowni Venkata; Singh, Ganja Veera Pratap

    2013-05-01

    Nowadays, customer expectations are increasing and organizations are prone to operate in an uncertain environment. Under this uncertain environment, the ultimate success of the firm depends on its ability to integrate business processes among supply chain partners. Supply chain management emphasizes cross-functional links to improve the competitive strategy of organizations. Now, companies are moving from decoupled decision processes towards more integrated design and control of their components to achieve the strategic fit. In this paper, a new approach is developed to design a multi-echelon, multi-facility, and multi-product supply chain in fuzzy environment. In fuzzy environment, mixed integer programming problem is formulated through fuzzy goal programming in strategic level with supply chain cost and volume flexibility as fuzzy goals. These fuzzy goals are aggregated using minimum operator. In tactical level, continuous review policy for controlling raw material inventories in supplier echelon and controlling finished product inventories in plant as well as distribution center echelon is considered as fuzzy goals. A non-linear programming model is formulated through fuzzy goal programming using minimum operator in the tactical level. The proposed approach is illustrated with a numerical example.

  7. Sputtering properties of tungsten 'fuzzy' surfaces

    International Nuclear Information System (INIS)

    Nishijima, D.; Baldwin, M.J.; Doerner, R.P.; Yu, J.H.

    2011-01-01

    Sputtering yields of He-induced W 'fuzzy' surfaces bombarded by Ar have been measured in the linear divertor plasma simulator PISCES-B. It is found that the sputtering yield of a fuzzy surface, Y fuzzy , decreases with increasing fuzzy layer thickness, L, and saturates at ∼10% of that of a smooth surface, Y smooth , at L > 1 μm. The reduction in the sputtering yield is suspected to be due mainly to the porous structure of fuzz, since the ratio, Y fuzzy /Y smooth follows (1 - p fuzz ), where p fuzz is the fuzz porosity. Further, Y fuzzy /Y smooth is observed to increase with incident ion energy, E i . This may be explained by an energy dependent change in the angular distribution of sputtered W atoms, since at lower E i , the angular distribution is observed to become more butterfly-shaped. That is, a larger fraction of sputtered W atoms can line-of-sight deposit/stick onto neighboring fuzz nanostructures for lower E i butterfly distributions, resulting in lower ratio of Y fuzzy /Y smooth .

  8. Conventional control and fuzzy control of a dc-dc converter for machine drive

    Energy Technology Data Exchange (ETDEWEB)

    Radoi, C.; Florescu, A. [Department of Power Electronics `Politecnica` University Bucharest (Romania)

    1997-12-31

    Fuzzy logic or fuzzy set theory is recently getting increasing emphasis in process control applications. The paper describes an application of fuzzy logic in speed control system that uses a dc-dc converter. The fuzzy control is used to linearize the family of external characteristics of the converter in discontinuous-conduction mode occurring at light load and/or high speed. In order to compare the conventional control with the fuzzy logic control, algorithms have been developed in detail and verified by Microsoft Excel simulation. The simulation study indicates that fuzzy control is a good alternative for conventional control methods, being used particularly in non-linear complex systems ill defined or totally unknown. Where the mathematical model exists, it is useful. The applications of fuzzy set theory in power electronics are almost entirely new; fuzzy logic seems to have a lot of premises in the large industrial control field. (orig.) 2 refs.

  9. Why fuzzy controllers should be fuzzy

    International Nuclear Information System (INIS)

    Nowe, A.

    1996-01-01

    Fuzzy controllers are usually looked at as crisp valued mappings especially when artificial intelligence learning techniques are used to build up the controller. By doing so the semantics of a fuzzy conclusion being a fuzzy restriction on the viable control actions is non-existing. In this paper the authors criticise from an approximation point of view using a fuzzy controller to express a crisp mapping does not seem the right way to go. Secondly it is illustrated that interesting information is contained in a fuzzy conclusion when indeed this conclusion is considered as a fuzzy restriction. This information turns out to be very valuable when viability problems are concerned, i.e. problems where the objective is to keep a system within predefined boundaries

  10. Fuzzy Neuroidal Nets and Recurrent Fuzzy Computations

    Czech Academy of Sciences Publication Activity Database

    Wiedermann, Jiří

    2001-01-01

    Roč. 11, č. 6 (2001), s. 675-686 ISSN 1210-0552. [SOFSEM 2001 Workshop on Soft Computing. Piešťany, 29.11.2001-30.11.2001] R&D Projects: GA ČR GA201/00/1489; GA AV ČR KSK1019101 Institutional research plan: AV0Z1030915 Keywords : fuzzy computing * fuzzy neural nets * fuzzy Turing machines * non-uniform computational complexity Subject RIV: BA - General Mathematics

  11. Contribution of Fuzzy Minimal Cost Flow Problem by Possibility Programming

    Directory of Open Access Journals (Sweden)

    S. Fanati Rashidi

    2010-06-01

    Full Text Available Using the concept of possibility proposed by zadeh, luhandjula ([4,8] and buckley ([1] have proposed the possibility programming. The formulation of buckley results in nonlinear programming problems. Negi [6]re-formulated the approach of Buckley by the use of trapezoidal fuzzy numbers and reduced the problem into fuzzy linear programming problem. Shih and Lee ([7] used the Negi approach to solve a minimum cost flow problem, whit fuzzy costs and the upper and lower bound. In this paper we shall consider the general form of this problem where all of the parameters and variables are fuzzy and also a model for solving is proposed

  12. Triangular and Trapezoidal Fuzzy State Estimation with Uncertainty on Measurements

    Directory of Open Access Journals (Sweden)

    Mohammad Sadeghi Sarcheshmah

    2012-01-01

    Full Text Available In this paper, a new method for uncertainty analysis in fuzzy state estimation is proposed. The uncertainty is expressed in measurements. Uncertainties in measurements are modelled with different fuzzy membership functions (triangular and trapezoidal. To find the fuzzy distribution of any state variable, the problem is formulated as a constrained linear programming (LP optimization. The viability of the proposed method would be verified with the ones obtained from the weighted least squares (WLS and the fuzzy state estimation (FSE in the 6-bus system and in the IEEE-14 and 30 bus system.

  13. reactor power control using fuzzy logic

    International Nuclear Information System (INIS)

    Ahmed, A.E.E.

    2001-01-01

    power stabilization is a critical issue in nuclear reactors. convention pd- controller is currently used in egypt second testing research reactor (ETRR-2). two fuzzy controllers are proposed to control the reactor power of ETRR-2 reactor. the design of the first one is based on a set of linguistic rules that were adopted from the human operators experience. after off-line fuzzy computations, the controller is a lookup table, and thus, real time controller is achieved. comparing this f lc response with the pd-controller response, which already exists in the system, through studying the expected transients during the normal operation of ETRR-2 reactor, the simulation results show that, fl s has the better response, the second controller is adaptive fuzzy controller, which is proposed to deal with system non-linearity . The simulation results show that the proposed adaptive fuzzy controller gives a better integral square error (i se) index than the existing conventional od controller

  14. Fuzzy Itand#244; Integral Driven by a Fuzzy Brownian Motion

    Directory of Open Access Journals (Sweden)

    Didier Kumwimba Seya

    2015-11-01

    Full Text Available In this paper we take into account the fuzzy stochastic integral driven by fuzzy Brownian motion. To define the metric between two fuzzy numbers and to take into account the limit of a sequence of fuzzy numbers, we invoke the Hausdorff metric. First this fuzzy stochastic integral is constructed for fuzzy simple stochastic functions, then the construction is done for fuzzy stochastic integrable functions.

  15. Fuzzy preference based interactive fuzzy physical programming and its application in multi-objective optimization

    International Nuclear Information System (INIS)

    Zhang, Xu; Huang, Hong Zhong; Yu, Lanfeng

    2006-01-01

    Interactive Fuzzy Physical Programming (IFPP) developed in this paper is a new efficient multi-objective optimization method, which retains the advantages of physical programming while considering the fuzziness of the designer's preferences. The fuzzy preference function is introduced based on the model of linear physical programming, which is used to guide the search for improved solutions by interactive decision analysis. The example of multi-objective optimization design of the spindle of internal grinder demonstrates that the improved preference conforms to the subjective desires of the designer

  16. FUZZY-GENETIC CONTROL OF QUADROTOR UNMANNED AERIAL VEHICLES

    Directory of Open Access Journals (Sweden)

    Attila Nemes

    2016-03-01

    Full Text Available This article presents a novel fuzzy identification method for dynamic modelling of quadrotor unmanned aerial vehicles. The method is based on a special parameterization of the antecedent part of fuzzy systems that results in fuzzy-partitions for antecedents. This antecedent parameter representation method of fuzzy rules ensures upholding of predefined linguistic value ordering and ensures that fuzzy-partitions remain intact throughout an unconstrained hybrid evolutionary and gradient descent based optimization process. In the equations of motion the first order derivative component is calculated based on Christoffel symbols, the derivatives of fuzzy systems are used for modelling the Coriolis effects, gyroscopic and centrifugal terms. The non-linear parameters are subjected to an initial global evolutionary optimization scheme and fine tuning with gradient descent based local search. Simulation results of the proposed new quadrotor dynamic model identification method are promising.

  17. Design of a stable fuzzy controller for an articulated vehicle.

    Science.gov (United States)

    Tanaka, K; Kosaki, T

    1997-01-01

    This paper presents a backward movement control of an articulated vehicle via a model-based fuzzy control technique. A nonlinear dynamic model of the articulated vehicle is represented by a Takagi-Sugeno fuzzy model. The concept of parallel distributed compensation is employed to design a fuzzy controller from the Takagi-Sugeno fuzzy model of the articulated vehicle. Stability of the designed fuzzy control system is guaranteed via Lyapunov approach. The stability conditions are characterized in terms of linear matrix inequalities since the stability analysis is reduced to a problem of finding a common Lyapunov function for a set of Lyapunov inequalities. Simulation results and experimental results show that the designed fuzzy controller effectively achieves the backward movement control of the articulated vehicle.

  18. Paired fuzzy sets

    DEFF Research Database (Denmark)

    Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel

    2015-01-01

    In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...

  19. Fuzzy measures and integrals

    Czech Academy of Sciences Publication Activity Database

    Mesiar, Radko

    2005-01-01

    Roč. 28, č. 156 (2005), s. 365-370 ISSN 0165-0114 R&D Projects: GA ČR(CZ) GA402/04/1026 Institutional research plan: CEZ:AV0Z10750506 Keywords : fuzzy measures * fuzzy integral * regular fuzzy integral Subject RIV: BA - General Mathematics Impact factor: 1.039, year: 2005

  20. Fuzzy Graph Language Recognizability

    OpenAIRE

    Kalampakas , Antonios; Spartalis , Stefanos; Iliadis , Lazaros

    2012-01-01

    Part 5: Fuzzy Logic; International audience; Fuzzy graph language recognizability is introduced along the lines of the established theory of syntactic graph language recognizability by virtue of the algebraic structure of magmoids. The main closure properties of the corresponding class are investigated and several interesting examples of fuzzy graph languages are examined.

  1. Intuitionistic Fuzzy Subbialgebras and Duality

    Directory of Open Access Journals (Sweden)

    Wenjuan Chen

    2014-01-01

    Full Text Available We investigate connections between bialgebras and Atanassov’s intuitionistic fuzzy sets. Firstly we define an intuitionistic fuzzy subbialgebra of a bialgebra with an intuitionistic fuzzy subalgebra structure and also with an intuitionistic fuzzy subcoalgebra structure. Secondly we investigate the related properties of intuitionistic fuzzy subbialgebras. Finally we prove that the dual of an intuitionistic fuzzy strong subbialgebra is an intuitionistic fuzzy strong subbialgebra.

  2. Probabilistic fuzzy systems as additive fuzzy systems

    NARCIS (Netherlands)

    Almeida, R.J.; Verbeek, N.; Kaymak, U.; Costa Sousa, da J.M.; Laurent, A.; Strauss, O.; Bouchon-Meunier, B.; Yager, R.

    2014-01-01

    Probabilistic fuzzy systems combine a linguistic description of the system behaviour with statistical properties of data. It was originally derived based on Zadeh’s concept of probability of a fuzzy event. Two possible and equivalent additive reasoning schemes were proposed, that lead to the

  3. Countable Fuzzy Topological Space and Countable Fuzzy Topological Vector Space

    Directory of Open Access Journals (Sweden)

    Apu Kumar Saha

    2015-06-01

    Full Text Available This paper deals with countable fuzzy topological spaces, a generalization of the notion of fuzzy topological spaces. A collection of fuzzy sets F on a universe X forms a countable fuzzy topology if in the definition of a fuzzy topology, the condition of arbitrary supremum is relaxed to countable supremum. In this generalized fuzzy structure, the continuity of fuzzy functions and some other related properties are studied. Also the class of countable fuzzy topological vector spaces as a generalization of the class of fuzzy topological vector spaces has been introduced and investigated.

  4. Identification of novel linear megaplasmids carrying a ß-lactamase gene in neurotoxigenic Clostridium butyricum type E strains.

    Directory of Open Access Journals (Sweden)

    Giovanna Franciosa

    Full Text Available Since the first isolation of type E botulinum toxin-producing Clostridium butyricum from two infant botulism cases in Italy in 1984, this peculiar microorganism has been implicated in different forms of botulism worldwide. By applying particular pulsed-field gel electrophoresis run conditions, we were able to show for the first time that ten neurotoxigenic C. butyricum type E strains originated from Italy and China have linear megaplasmids in their genomes. At least four different megaplasmid sizes were identified among the ten neurotoxigenic C. butyricum type E strains. Each isolate displayed a single sized megaplasmid that was shown to possess a linear structure by ATP-dependent exonuclease digestion. Some of the neurotoxigenic C. butyricum type E strains possessed additional smaller circular plasmids. In order to investigate the genetic content of the newly identified megaplasmids, selected gene probes were designed and used in Southern hybridization experiments. Our results revealed that the type E botulinum neurotoxin gene was chromosome-located in all neurotoxigenic C. butyricum type E strains. Similar results were obtained with the 16S rRNA, the tetracycline tet(P and the lincomycin resistance protein lmrB gene probes. A specific mobA gene probe only hybridized to the smaller plasmids of the Italian C. butyricum type E strains. Of note, a ß-lactamase gene probe hybridized to the megaplasmids of eight neurotoxigenic C. butyricum type E strains, of which seven from clinical sources and the remaining one from a food implicated in foodborne botulism, whereas this ß-lactam antibiotic resistance gene was absent form the megaplasmids of the two soil strains examined. The widespread occurrence among C. butyricum type E strains associated to human disease of linear megaplasmids harboring an antibiotic resistance gene strongly suggests that the megaplasmids could have played an important role in the emergence of C. butyricum type E as a human

  5. Recurrent fuzzy ranking methods

    Science.gov (United States)

    Hajjari, Tayebeh

    2012-11-01

    With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.

  6. MASALAH PROGRAMA LINIER FUZZY DENGAN FUNGSI KEANGGOTAAN LINIER

    Directory of Open Access Journals (Sweden)

    Nyoman Sutapa

    2000-01-01

    Full Text Available In practice, the certainess assumption for parameters in linear programming are difficult to pullfiled. The uncertainties are sometimes coming from subjective and intuitive policies. To solve and accommodate these problems, will be approximated by fuzzy set theory. In this article, modeling of linear programming with fuzzy set will be discussed, followed by two cases with membership function are trapezoidal and triangular. Abstract in Bahasa Indonesia : Asumsi kepastian nilai-nilai parameter, dalam pengambilan keputusan yang dimodelkan dengan programa linier, dalam praktek sering sulit dipenuhi. Ketidakpastian yang muncul kadang diakibatkan oleh suatu kebijakan yang intuitif dan subjektif. Untuk memecahkan dan mengakomodasi ketidakpastian seperti tersebut, akan didekati dengan teori himpunan fuzzy. Dalam makalah ini, pemodelan programa linier dengan teori himpunan fuzzy tersebut, akan didiskusikan dengan dua kasus, masing-masing dengan menggunakan fungsi keanggotaan linier, yaitu trapezoida dan triangular. Kata kunci: programa linier, himpunan fuzzy.

  7. Using fuzzy association rule mining in cancer classification

    International Nuclear Information System (INIS)

    Mahmoodian, Hamid; Marhaban, M.H.; Abdulrahim, Raha; Rosli, Rozita; Saripan, Iqbal

    2011-01-01

    Full text: The classification of the cancer tumors based on gene expression profiles has been extensively studied in numbers of studies. A wide variety of cancer datasets have been implemented by the various methods of gene selec tion and classification to identify the behavior of the genes in tumors and find the relationships between them and outcome of diseases. Interpretability of the model, which is developed by fuzzy rules and linguistic variables in this study, has been rarely considered. In addition, creating a fuzzy classifier with high performance in classification that uses a subset of significant genes which have been selected by different types of gene selection methods is another goal of this study. A new algorithm has been developed to identify the fuzzy rules and significant genes based on fuzzy association rule mining. At first, different subset of genes which have been selected by different methods, were used to generate primary fuzzy classifiers separately and then proposed algorithm was implemented to mix the genes which have been associated in the primary classifiers and generate a new classifier. The results show that fuzzy classifier can classify the tumors with high performance while presenting the relationships between the genes by linguistic variables

  8. Fuzzy social choice theory

    CERN Document Server

    B Gibilisco, Michael; E Albert, Karen; N Mordeson, John; J Wierman, Mark; D Clark, Terry

    2014-01-01

    This book offers a comprehensive analysis of the social choice literature and shows, by applying fuzzy sets, how the use of fuzzy preferences, rather than that of strict ones, may affect the social choice theorems. To do this, the book explores the presupposition of rationality within the fuzzy framework and shows that the two conditions for rationality, completeness and transitivity, do exist with fuzzy preferences. Specifically, this book examines: the conditions under which a maximal set exists; the Arrow’s theorem;  the Gibbard-Satterthwaite theorem; and the median voter theorem.  After showing that a non-empty maximal set does exists for fuzzy preference relations, this book goes on to demonstrating the existence of a fuzzy aggregation rule satisfying all five Arrowian conditions, including non-dictatorship. While the Gibbard-Satterthwaite theorem only considers individual fuzzy preferences, this work shows that both individuals and groups can choose alternatives to various degrees, resulting in a so...

  9. A method for unbalanced transportation problems in fuzzy ...

    Indian Academy of Sciences (India)

    Among linear programming problems, the transportation problem is very popular. ... Therefore, Zadeh (1965) introduced the concept of fuzzy numbers. ... While solving unbalanced transportation problems we come across two type of cases.

  10. Fuzzy boundaries: color and gene flow patterns among parapatric lineages of the western shovel-nosed snake and taxonomic implication.

    Directory of Open Access Journals (Sweden)

    Dustin A Wood

    Full Text Available Accurate delineation of lineage diversity is increasingly important, as species distributions are becoming more reduced and threatened. During the last century, the subspecies category was often used to denote phenotypic variation within a species range and to provide a framework for understanding lineage differentiation, often considered incipient speciation. While this category has largely fallen into disuse, previously recognized subspecies often serve as important units for conservation policy and management when other information is lacking. In this study, we evaluated phenotypic subspecies hypotheses within shovel-nosed snakes on the basis of genetic data and considered how evolutionary processes such as gene flow influenced possible incongruence between phenotypic and genetic patterns. We used both traditional phylogenetic and Bayesian clustering analyses to infer range-wide genetic structure and spatially explicit analyses to detect possible boundary locations of lineage contact. Multilocus analyses supported three historically isolated groups with low to moderate levels of contemporary gene exchange. Genetic data did not support phenotypic subspecies as exclusive groups, and we detected patterns of discordance in areas where three subspecies are presumed to be in contact. Based on genetic and phenotypic evidence, we suggested that species-level diversity is underestimated in this group and we proposed that two species be recognized, Chionactis occipitalis and C. annulata. In addition, we recommend retention of two subspecific designations within C. annulata (C. a. annulata and C. a. klauberi that reflect regional shifts in both genetic and phenotypic variation within the species. Our results highlight the difficultly in validating taxonomic boundaries within lineages that are evolving under a time-dependent, continuous process.

  11. Fuzzy boundaries: color and gene flow patterns among parapatric lineages of the western shovel-nosed snake and taxonomic implication.

    Science.gov (United States)

    Wood, Dustin A; Fisher, Robert N; Vandergast, Amy G

    2014-01-01

    Accurate delineation of lineage diversity is increasingly important, as species distributions are becoming more reduced and threatened. During the last century, the subspecies category was often used to denote phenotypic variation within a species range and to provide a framework for understanding lineage differentiation, often considered incipient speciation. While this category has largely fallen into disuse, previously recognized subspecies often serve as important units for conservation policy and management when other information is lacking. In this study, we evaluated phenotypic subspecies hypotheses within shovel-nosed snakes on the basis of genetic data and considered how evolutionary processes such as gene flow influenced possible incongruence between phenotypic and genetic patterns. We used both traditional phylogenetic and Bayesian clustering analyses to infer range-wide genetic structure and spatially explicit analyses to detect possible boundary locations of lineage contact. Multilocus analyses supported three historically isolated groups with low to moderate levels of contemporary gene exchange. Genetic data did not support phenotypic subspecies as exclusive groups, and we detected patterns of discordance in areas where three subspecies are presumed to be in contact. Based on genetic and phenotypic evidence, we suggested that species-level diversity is underestimated in this group and we proposed that two species be recognized, Chionactis occipitalis and C. annulata. In addition, we recommend retention of two subspecific designations within C. annulata (C. a. annulata and C. a. klauberi) that reflect regional shifts in both genetic and phenotypic variation within the species. Our results highlight the difficultly in validating taxonomic boundaries within lineages that are evolving under a time-dependent, continuous process.

  12. Simulation Study of IMC and Fuzzy Controller for HVAC System

    Directory of Open Access Journals (Sweden)

    Umamaheshwari

    2009-06-01

    Full Text Available This paper presents how the fuzzy logic controller is used to solve the control problems of complex and non linear process and show that it is more robust and their performance are less sensitive to parametric variations than conventional controllers. These systems will yield a linear response when compared to ordinary controllers. The main advantage of Fuzzy control over conventional controllers is regulation can be done without over shoot.

  13. New Applications of m-Polar Fuzzy Matroids

    Directory of Open Access Journals (Sweden)

    Musavarah Sarwar

    2017-12-01

    Full Text Available Mathematical modelling is an important aspect in apprehending discrete and continuous physical systems. Multipolar uncertainty in data and information incorporates a significant role in various abstract and applied mathematical modelling and decision analysis. Graphical and algebraic models can be studied more precisely when multiple linguistic properties are dealt with, emphasizing the need for a multi-index, multi-object, multi-agent, multi-attribute and multi-polar mathematical approach. An m-polar fuzzy set is introduced to overcome the limitations entailed in single-valued and two-valued uncertainty. Our aim in this research study is to apply the powerful methodology of m-polar fuzzy sets to generalize the theory of matroids. We introduce the notion of m-polar fuzzy matroids and investigate certain properties of various types of m-polar fuzzy matroids. Moreover, we apply the notion of the m-polar fuzzy matroid to graph theory and linear algebra. We present m-polar fuzzy circuits, closures of m-polar fuzzy matroids and put special emphasis on m-polar fuzzy rank functions. Finally, we also describe certain applications of m-polar fuzzy matroids in decision support systems, ordering of machines and network analysis.

  14. Solving fully fuzzy transportation problem using pentagonal fuzzy numbers

    Science.gov (United States)

    Maheswari, P. Uma; Ganesan, K.

    2018-04-01

    In this paper, we propose a simple approach for the solution of fuzzy transportation problem under fuzzy environment in which the transportation costs, supplies at sources and demands at destinations are represented by pentagonal fuzzy numbers. The fuzzy transportation problem is solved without converting to its equivalent crisp form using a robust ranking technique and a new fuzzy arithmetic on pentagonal fuzzy numbers. To illustrate the proposed approach a numerical example is provided.

  15. Probe-level linear model fitting and mixture modeling results in high accuracy detection of differential gene expression

    Directory of Open Access Journals (Sweden)

    Lemieux Sébastien

    2006-08-01

    Full Text Available Abstract Background The identification of differentially expressed genes (DEGs from Affymetrix GeneChips arrays is currently done by first computing expression levels from the low-level probe intensities, then deriving significance by comparing these expression levels between conditions. The proposed PL-LM (Probe-Level Linear Model method implements a linear model applied on the probe-level data to directly estimate the treatment effect. A finite mixture of Gaussian components is then used to identify DEGs using the coefficients estimated by the linear model. This approach can readily be applied to experimental design with or without replication. Results On a wholly defined dataset, the PL-LM method was able to identify 75% of the differentially expressed genes within 10% of false positives. This accuracy was achieved both using the three replicates per conditions available in the dataset and using only one replicate per condition. Conclusion The method achieves, on this dataset, a higher accuracy than the best set of tools identified by the authors of the dataset, and does so using only one replicate per condition.

  16. Conditional density estimation using fuzzy GARCH models

    NARCIS (Netherlands)

    Almeida, R.J.; Bastürk, N.; Kaymak, U.; Costa Sousa, da J.M.; Kruse, R.; Berthold, M.R.; Moewes, C.; Gil, M.A.; Grzegorzewski, P.; Hryniewicz, O.

    2013-01-01

    Abstract. Time series data exhibits complex behavior including non-linearity and path-dependency. This paper proposes a flexible fuzzy GARCH model that can capture different properties of data, such as skewness, fat tails and multimodality in one single model. Furthermore, additional information and

  17. Introduction to Fuzzy Set Theory

    Science.gov (United States)

    Kosko, Bart

    1990-01-01

    An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.

  18. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation.

    Directory of Open Access Journals (Sweden)

    Kotaro Ishii

    Full Text Available A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET. LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.

  19. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation.

    Science.gov (United States)

    Ishii, Kotaro; Kazama, Yusuke; Morita, Ryouhei; Hirano, Tomonari; Ikeda, Tokihiro; Usuda, Sachiko; Hayashi, Yoriko; Ohbu, Sumie; Motoyama, Ritsuko; Nagamura, Yoshiaki; Abe, Tomoko

    2016-01-01

    A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET). LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation) revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO) analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.

  20. Decomposition of fuzzy continuity and fuzzy ideal continuity via fuzzy idealization

    International Nuclear Information System (INIS)

    Zahran, A.M.; Abbas, S.E.; Abd El-baki, S.A.; Saber, Y.M.

    2009-01-01

    Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum paretical physics in connection with string theory and E-infinity space time theory. In this paper, we study the concepts of r-fuzzy semi-I-open, r-fuzzy pre-I-open, r-fuzzy α-I-open and r-fuzzy β-I-open sets, which is properly placed between r-fuzzy openness and r-fuzzy α-I-openness (r-fuzzy pre-I-openness) sets regardless the fuzzy ideal topological space in Sostak sense. Moreover, we give a decomposition of fuzzy continuity, fuzzy ideal continuity and fuzzy ideal α-continuity, and obtain several characterization and some properties of these functions. Also, we investigate their relationship with other types of function.

  1. Fuzzy risk matrix

    International Nuclear Information System (INIS)

    Markowski, Adam S.; Mannan, M. Sam

    2008-01-01

    A risk matrix is a mechanism to characterize and rank process risks that are typically identified through one or more multifunctional reviews (e.g., process hazard analysis, audits, or incident investigation). This paper describes a procedure for developing a fuzzy risk matrix that may be used for emerging fuzzy logic applications in different safety analyses (e.g., LOPA). The fuzzification of frequency and severity of the consequences of the incident scenario are described which are basic inputs for fuzzy risk matrix. Subsequently using different design of risk matrix, fuzzy rules are established enabling the development of fuzzy risk matrices. Three types of fuzzy risk matrix have been developed (low-cost, standard, and high-cost), and using a distillation column case study, the effect of the design on final defuzzified risk index is demonstrated

  2. Intuitionistic fuzzy calculus

    CERN Document Server

    Lei, Qian

    2017-01-01

    This book offers a comprehensive and systematic review of the latest research findings in the area of intuitionistic fuzzy calculus. After introducing the intuitionistic fuzzy numbers’ operational laws and their geometrical and algebraic properties, the book defines the concept of intuitionistic fuzzy functions and presents the research on the derivative, differential, indefinite integral and definite integral of intuitionistic fuzzy functions. It also discusses some of the methods that have been successfully used to deal with continuous intuitionistic fuzzy information or data, which are different from the previous aggregation operators focusing on discrete information or data. Mainly intended for engineers and researchers in the fields of fuzzy mathematics, operations research, information science and management science, this book is also a valuable textbook for postgraduate and advanced undergraduate students alike.

  3. FUZZY RINGS AND ITS PROPERTIES

    Directory of Open Access Journals (Sweden)

    Karyati Karyati

    2017-01-01

      One of algebraic structure that involves a binary operation is a group that is defined  an un empty set (classical with an associative binary operation, it has identity elements and each element has an inverse. In the structure of the group known as the term subgroup, normal subgroup, subgroup and factor group homomorphism and its properties. Classical algebraic structure is developed to algebraic structure fuzzy by the researchers as an example semi group fuzzy and fuzzy group after fuzzy sets is introduced by L. A. Zadeh at 1965. It is inspired of writing about semi group fuzzy and group of fuzzy, a research on the algebraic structure of the ring is held with reviewing ring fuzzy, ideal ring fuzzy, homomorphism ring fuzzy and quotient ring fuzzy with its properties. The results of this study are obtained fuzzy properties of the ring, ring ideal properties fuzzy, properties of fuzzy ring homomorphism and properties of fuzzy quotient ring by utilizing a subset of a subset level  and strong level  as well as image and pre-image homomorphism fuzzy ring.   Keywords: fuzzy ring, subset level, homomorphism fuzzy ring, fuzzy quotient ring

  4. Metamathematics of fuzzy logic

    CERN Document Server

    Hájek, Petr

    1998-01-01

    This book presents a systematic treatment of deductive aspects and structures of fuzzy logic understood as many valued logic sui generis. Some important systems of real-valued propositional and predicate calculus are defined and investigated. The aim is to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named `fuzzy inference' can be naturally understood as logical deduction.

  5. Fuzzy Control Tutorial

    DEFF Research Database (Denmark)

    Dotoli, M.; Jantzen, Jan

    1999-01-01

    The tutorial concerns automatic control of an inverted pendulum, especially rule based control by means of fuzzy logic. A ball balancer, implemented in a software simulator in Matlab, is used as a practical case study. The objectives of the tutorial are to teach the basics of fuzzy control......, and to show how to apply fuzzy logic in automatic control. The tutorial is distance learning, where students interact one-to-one with the teacher using e-mail....

  6. Intuitionistic fuzzy logics

    CERN Document Server

    T Atanassov, Krassimir

    2017-01-01

    The book offers a comprehensive survey of intuitionistic fuzzy logics. By reporting on both the author’s research and others’ findings, it provides readers with a complete overview of the field and highlights key issues and open problems, thus suggesting new research directions. Starting with an introduction to the basic elements of intuitionistic fuzzy propositional calculus, it then provides a guide to the use of intuitionistic fuzzy operators and quantifiers, and lastly presents state-of-the-art applications of intuitionistic fuzzy sets. The book is a valuable reference resource for graduate students and researchers alike.

  7. Fuzzy control and identification

    CERN Document Server

    Lilly, John H

    2010-01-01

    This book gives an introduction to basic fuzzy logic and Mamdani and Takagi-Sugeno fuzzy systems. The text shows how these can be used to control complex nonlinear engineering systems, while also also suggesting several approaches to modeling of complex engineering systems with unknown models. Finally, fuzzy modeling and control methods are combined in the book, to create adaptive fuzzy controllers, ending with an example of an obstacle-avoidance controller for an autonomous vehicle using modus ponendo tollens logic.

  8. Fuzzy Control in the Process Industry

    DEFF Research Database (Denmark)

    Jantzen, Jan; Verbruggen, Henk; Østergaard, Jens-Jørgen

    1999-01-01

    Control problems in the process industry are dominated by non-linear and time-varying behaviour, many inner loops, and much interaction between the control loops. Fuzzy controllers have in some cases nevertheless mimicked the control actions of a human operator. Simple fuzzy controllers can...... be designed starting from PID controllers, and in more complex cases these can be used in connection with model-based predictive control. For high level control and supervisory control several simple controllers can be combined in a priority hierarchy such as the one developed in the cement industry...

  9. Type-2 fuzzy logic uncertain systems’ modeling and control

    CERN Document Server

    Antão, Rómulo

    2017-01-01

    This book focuses on a particular domain of Type-2 Fuzzy Logic, related to process modeling and control applications. It deepens readers’understanding of Type-2 Fuzzy Logic with regard to the following three topics: using simpler methods to train a Type-2 Takagi-Sugeno Fuzzy Model; using the principles of Type-2 Fuzzy Logic to reduce the influence of modeling uncertainties on a locally linear n-step ahead predictor; and developing model-based control algorithms according to the Generalized Predictive Control principles using Type-2 Fuzzy Sets. Throughout the book, theory is always complemented with practical applications and readers are invited to take their learning process one step farther and implement their own applications using the algorithms’ source codes (provided). As such, the book offers avaluable referenceguide for allengineers and researchers in the field ofcomputer science who are interested in intelligent systems, rule-based systems and modeling uncertainty.

  10. An intutionistic fuzzy optimization approach to vendor selection problem

    Directory of Open Access Journals (Sweden)

    Prabjot Kaur

    2016-09-01

    Full Text Available Selecting the right vendor is an important business decision made by any organization. The decision involves multiple criteria and if the objectives vary in preference and scope, then nature of decision becomes multiobjective. In this paper, a vendor selection problem has been formulated as an intutionistic fuzzy multiobjective optimization where appropriate number of vendors is to be selected and order allocated to them. The multiobjective problem includes three objectives: minimizing the net price, maximizing the quality, and maximizing the on time deliveries subject to supplier's constraints. The objection function and the demand are treated as intutionistic fuzzy sets. An intutionistic fuzzy set has its ability to handle uncertainty with additional degrees of freedom. The Intutionistic fuzzy optimization (IFO problem is converted into a crisp linear form and solved using optimization software Tora. The advantage of IFO is that they give better results than fuzzy/crisp optimization. The proposed approach is explained by a numerical example.

  11. Pricing Strategy Selection Using Fuzzy Linear Programming

    OpenAIRE

    Elif Alaybeyoğlu; Y. Esra Albayrak

    2013-01-01

    Marketing establishes a communication network between producers and consumers. Nowadays, marketing approach is customer-focused and products are directly oriented to meet customer needs. Marketing, which is a long process, needs organization and management. Therefore strategic marketing planning becomes more and more important in today’s competitive conditions. Main focus of this paper is to evaluate pricing strategies and select the best pricing strategy solution while considering internal a...

  12. Optimasi Produksi Hijab dengan Fuzzy Linear Programming

    OpenAIRE

    Martini, Martini

    2017-01-01

    To meet the needs of the wearer veil or hijab, then many models of hijab are easy to use and look good. Many manufacturers and home-industry that produce hijab with various models and affordable prices. Models are also tailored to the age of the wearer or a universal means it can be used by all people from teenagers to adults. In producing hijab can not be separated from the observation of the manufacturer of the model of the most desirable. One of the problems facing the hijab producers is h...

  13. Group spike-and-slab lasso generalized linear models for disease prediction and associated genes detection by incorporating pathway information.

    Science.gov (United States)

    Tang, Zaixiang; Shen, Yueping; Li, Yan; Zhang, Xinyan; Wen, Jia; Qian, Chen'ao; Zhuang, Wenzhuo; Shi, Xinghua; Yi, Nengjun

    2018-03-15

    Large-scale molecular data have been increasingly used as an important resource for prognostic prediction of diseases and detection of associated genes. However, standard approaches for omics data analysis ignore the group structure among genes encoded in functional relationships or pathway information. We propose new Bayesian hierarchical generalized linear models, called group spike-and-slab lasso GLMs, for predicting disease outcomes and detecting associated genes by incorporating large-scale molecular data and group structures. The proposed model employs a mixture double-exponential prior for coefficients that induces self-adaptive shrinkage amount on different coefficients. The group information is incorporated into the model by setting group-specific parameters. We have developed a fast and stable deterministic algorithm to fit the proposed hierarchal GLMs, which can perform variable selection within groups. We assess the performance of the proposed method on several simulated scenarios, by varying the overlap among groups, group size, number of non-null groups, and the correlation within group. Compared with existing methods, the proposed method provides not only more accurate estimates of the parameters but also better prediction. We further demonstrate the application of the proposed procedure on three cancer datasets by utilizing pathway structures of genes. Our results show that the proposed method generates powerful models for predicting disease outcomes and detecting associated genes. The methods have been implemented in a freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/). nyi@uab.edu. Supplementary data are available at Bioinformatics online.

  14. Relations Among Some Fuzzy Entropy Formulae

    Institute of Scientific and Technical Information of China (English)

    卿铭

    2004-01-01

    Fuzzy entropy has been widely used to analyze and design fuzzy systems, and many fuzzy entropy formulae have been proposed. For further in-deepth analysis of fuzzy entropy, the axioms and some important formulae of fuzzy entropy are introduced. Some equivalence results among these fuzzy entropy formulae are proved, and it is shown that fuzzy entropy is a special distance measurement.

  15. Polynomial fuzzy observer designs: a sum-of-squares approach.

    Science.gov (United States)

    Tanaka, Kazuo; Ohtake, Hiroshi; Seo, Toshiaki; Tanaka, Motoyasu; Wang, Hua O

    2012-10-01

    This paper presents a sum-of-squares (SOS) approach to polynomial fuzzy observer designs for three classes of polynomial fuzzy systems. The proposed SOS-based framework provides a number of innovations and improvements over the existing linear matrix inequality (LMI)-based approaches to Takagi-Sugeno (T-S) fuzzy controller and observer designs. First, we briefly summarize previous results with respect to a polynomial fuzzy system that is a more general representation of the well-known T-S fuzzy system. Next, we propose polynomial fuzzy observers to estimate states in three classes of polynomial fuzzy systems and derive SOS conditions to design polynomial fuzzy controllers and observers. A remarkable feature of the SOS design conditions for the first two classes (Classes I and II) is that they realize the so-called separation principle, i.e., the polynomial fuzzy controller and observer for each class can be separately designed without lack of guaranteeing the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. Although, for the last class (Class III), the separation principle does not hold, we propose an algorithm to design polynomial fuzzy controller and observer satisfying the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. All the design conditions in the proposed approach can be represented in terms of SOS and are symbolically and numerically solved via the recently developed SOSTOOLS and a semidefinite-program solver, respectively. To illustrate the validity and applicability of the proposed approach, three design examples are provided. The examples demonstrate the advantages of the SOS-based approaches for the existing LMI approaches to T-S fuzzy observer designs.

  16. On Intuitionistic Fuzzy Filters of Intuitionistic Fuzzy Coframes

    Directory of Open Access Journals (Sweden)

    Rajesh K. Thumbakara

    2013-01-01

    Full Text Available Frame theory is the study of topology based on its open set lattice, and it was studied extensively by various authors. In this paper, we study quotients of intuitionistic fuzzy filters of an intuitionistic fuzzy coframe. The quotients of intuitionistic fuzzy filters are shown to be filters of the given intuitionistic fuzzy coframe. It is shown that the collection of all intuitionistic fuzzy filters of a coframe and the collection of all intutionistic fuzzy quotient filters of an intuitionistic fuzzy filter are coframes.

  17. A revisit to quadratic programming with fuzzy parameters

    International Nuclear Information System (INIS)

    Liu, S.-T.

    2009-01-01

    Quadratic programming has been widely applied to solving real-world problems. Recently, Liu describes a solution method for solving a class of fuzzy quadratic programming problems, where the cost coefficients of the linear terms in objective function, constraint coefficients, and right-hand sides are fuzzy numbers [Liu ST. Quadratic programming with fuzzy parameters: a membership function approach. Chaos, Solitons and Fractals 2009;40:237-45]. In this paper, we generalize Liu's method to a more general fuzzy quadratic programming problem, where the cost coefficients in objective function, constraint coefficients, and right-hand sides are all fuzzy numbers. A pair of two-level mathematical programs is formulated to calculate the upper bound and lower bound of the objective values of the fuzzy quadratic program. Based on the duality theorem and by applying the variable transformation technique, the pair of two-level mathematical programs is transformed into a family of conventional one-level quadratic programs. Solving the pair of quadratic programs produces the fuzzy objective values of the problem. With the ability of calculating the fuzzy objective value developed in this paper, it might help initiate wider applications.

  18. Decentralized fuzzy control of multiple nonholonomic vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, B.J.; Feddema, J.T.; Kwok, K.S.

    1997-09-01

    This work considers the problem of controlling multiple nonholonomic vehicles so that they converge to a scent source without colliding with each other. Since the control is to be implemented on simple 8-bit microcontrollers, fuzzy control rules are used to simplify a linear quadratic regulator control design. The inputs to the fuzzy controllers for each vehicle are the (noisy) direction to the source, the distance to the closest neighbor vehicle, and the direction to the closest vehicle. These directions are discretized into four values: Forward, Behind, Left, and Right, and the distance into three values: Near, Far, Gone. The values of the control at these discrete values are obtained based on the collision-avoidance repulsive forces and the change of variables that reduces the motion control problem of each nonholonomic vehicle to a nonsingular one with two degrees of freedom, instead of three. A fuzzy inference system is used to obtain control values for inputs between the small number of discrete input values. Simulation results are provided which demonstrate that the fuzzy control law performs well compared to the exact controller. In fact, the fuzzy controller demonstrates improved robustness to noise.

  19. Fuzzy Modeling and Synchronization of a New Hyperchaotic Complex System with Uncertainties

    Directory of Open Access Journals (Sweden)

    Hadi Delavari

    2015-07-01

    Full Text Available In this paper, the synchronization of a new hyperchaotic complex system based on T-S fuzzy model is proposed. First the considered hyperchaotic system is represented by T-S fuzzy model equivalently. Then by using the parallel distributed compensation (PDC method and by applying linear system theory and exact linearization (EL technique, a fuzzy controller is designed to realize the synchronization. Finally, simulation results are carried out to demonstrate the performance of our proposed control scheme, and also the robustness of the designed fuzzy controller to uncertainties.

  20. DESCRIBING FUNCTION METHOD FOR PI-FUZZY CONTROLLED SYSTEMS STABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Stefan PREITL

    2004-12-01

    Full Text Available The paper proposes a global stability analysis method dedicated to fuzzy control systems containing Mamdani PI-fuzzy controllers with output integration to control SISO linear / linearized plants. The method is expressed in terms of relatively simple steps, and it is based on: the generalization of the describing function method for the considered fuzzy control systems to the MIMO case, the approximation of the describing functions by applying the least squares method. The method is applied to the stability analysis of a class of PI-fuzzy controlled servo-systems, and validated by considering a case study.

  1. Possibility Fuzzy Soft Set

    Directory of Open Access Journals (Sweden)

    Shawkat Alkhazaleh

    2011-01-01

    Full Text Available We introduce the concept of possibility fuzzy soft set and its operation and study some of its properties. We give applications of this theory in solving a decision-making problem. We also introduce a similarity measure of two possibility fuzzy soft sets and discuss their application in a medical diagnosis problem.

  2. Properties of Bipolar Fuzzy Hypergraphs

    OpenAIRE

    Akram, M.; Dudek, W. A.; Sarwar, S.

    2013-01-01

    In this article, we apply the concept of bipolar fuzzy sets to hypergraphs and investigate some properties of bipolar fuzzy hypergraphs. We introduce the notion of $A-$ tempered bipolar fuzzy hypergraphs and present some of their properties. We also present application examples of bipolar fuzzy hypergraphs.

  3. Statistical Methods for Fuzzy Data

    CERN Document Server

    Viertl, Reinhard

    2011-01-01

    Statistical data are not always precise numbers, or vectors, or categories. Real data are frequently what is called fuzzy. Examples where this fuzziness is obvious are quality of life data, environmental, biological, medical, sociological and economics data. Also the results of measurements can be best described by using fuzzy numbers and fuzzy vectors respectively. Statistical analysis methods have to be adapted for the analysis of fuzzy data. In this book, the foundations of the description of fuzzy data are explained, including methods on how to obtain the characterizing function of fuzzy m

  4. Polynomial fuzzy model-based approach for underactuated surface vessels

    DEFF Research Database (Denmark)

    Khooban, Mohammad Hassan; Vafamand, Navid; Dragicevic, Tomislav

    2018-01-01

    The main goal of this study is to introduce a new polynomial fuzzy model-based structure for a class of marine systems with non-linear and polynomial dynamics. The suggested technique relies on a polynomial Takagi–Sugeno (T–S) fuzzy modelling, a polynomial dynamic parallel distributed compensation...... surface vessel (USV). Additionally, in order to overcome the USV control challenges, including the USV un-modelled dynamics, complex nonlinear dynamics, external disturbances and parameter uncertainties, the polynomial fuzzy model representation is adopted. Moreover, the USV-based control structure...... and a sum-of-squares (SOS) decomposition. The new proposed approach is a generalisation of the standard T–S fuzzy models and linear matrix inequality which indicated its effectiveness in decreasing the tracking time and increasing the efficiency of the robust tracking control problem for an underactuated...

  5. Construction of fuzzy automata by fuzzy experiments

    International Nuclear Information System (INIS)

    Mironov, A.

    1994-01-01

    The solving the problem of canonical realization of partial reaction morphisms (PRM) for automata in toposes and fuzzy automata is addressed. This problem extends the optimal construction problem for finite deterministic automata by experiments. In the present paper the conception of canonical realization of PRM for automata in toposes is introduced and the sufficient conditions for the existence of canonical realizations for PRM in toposes are presented. As a consequence of this result the existence of canonical realizations for PRM in the category of fuzzy sets over arbitrary complete chain is proven

  6. Construction of fuzzy automata by fuzzy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, A [Moscow Univ. (Russian Federation). Dept. of Mathematics and Computer Science

    1994-12-31

    The solving the problem of canonical realization of partial reaction morphisms (PRM) for automata in toposes and fuzzy automata is addressed. This problem extends the optimal construction problem for finite deterministic automata by experiments. In the present paper the conception of canonical realization of PRM for automata in toposes is introduced and the sufficient conditions for the existence of canonical realizations for PRM in toposes are presented. As a consequence of this result the existence of canonical realizations for PRM in the category of fuzzy sets over arbitrary complete chain is proven.

  7. Fuzzy Stabilization for Nonlinear Discrete Ship Steering Stochastic Systems Subject to State Variance and Passivity Constraints

    Directory of Open Access Journals (Sweden)

    Wen-Jer Chang

    2014-01-01

    Full Text Available For nonlinear discrete-time stochastic systems, a fuzzy controller design methodology is developed in this paper subject to state variance constraint and passivity constraint. According to fuzzy model based control technique, the nonlinear discrete-time stochastic systems considered in this paper are represented by the discrete-time Takagi-Sugeno fuzzy models with multiplicative noise. Employing Lyapunov stability theory, upper bound covariance control theory, and passivity theory, some sufficient conditions are derived to find parallel distributed compensation based fuzzy controllers. In order to solve these sufficient conditions, an iterative linear matrix inequality algorithm is applied based on the linear matrix inequality technique. Finally, the fuzzy stabilization problem for nonlinear discrete ship steering stochastic systems is investigated in the numerical example to illustrate the feasibility and validity of proposed fuzzy controller design method.

  8. Chaotic System Identification Based on a Fuzzy Wiener Model with Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Yong, Li; Ying-Gan, Tang

    2010-01-01

    A fuzzy Wiener model is proposed to identify chaotic systems. The proposed fuzzy Wiener model consists of two parts, one is a linear dynamic subsystem and the other is a static nonlinear part, which is represented by the Takagi–Sugeno fuzzy model. Identification of chaotic systems is converted to find optimal parameters of the fuzzy Wiener model by minimizing the state error between the original chaotic system and the fuzzy Wiener model. Particle swarm optimization algorithm, a global optimizer, is used to search the optimal parameter of the fuzzy Wiener model. The proposed method can identify the parameters of the linear part and nonlinear part simultaneously. Numerical simulations for Henón and Lozi chaotic system identification show the effectiveness of the proposed method

  9. Creating Clinical Fuzzy Automata with Fuzzy Arden Syntax.

    Science.gov (United States)

    de Bruin, Jeroen S; Steltzer, Heinz; Rappelsberger, Andrea; Adlassnig, Klaus-Peter

    2017-01-01

    Formal constructs for fuzzy sets and fuzzy logic are incorporated into Arden Syntax version 2.9 (Fuzzy Arden Syntax). With fuzzy sets, the relationships between measured or observed data and linguistic terms are expressed as degrees of compatibility that model the unsharpness of the boundaries of linguistic terms. Propositional uncertainty due to incomplete knowledge of relationships between clinical linguistic concepts is modeled with fuzzy logic. Fuzzy Arden Syntax also supports the construction of fuzzy state monitors. The latter are defined as monitors that employ fuzzy automata to observe gradual transitions between different stages of disease. As a use case, we re-implemented FuzzyARDS, a previously published clinical monitoring system for patients suffering from acute respiratory distress syndrome (ARDS). Using the re-implementation as an example, we show how key concepts of fuzzy automata, i.e., fuzzy states and parallel fuzzy state transitions, can be implemented in Fuzzy Arden Syntax. The results showed that fuzzy state monitors can be implemented in a straightforward manner.

  10. Model predictive control using fuzzy decision functions

    NARCIS (Netherlands)

    Kaymak, U.; Costa Sousa, da J.M.

    2001-01-01

    Fuzzy predictive control integrates conventional model predictive control with techniques from fuzzy multicriteria decision making, translating the goals and the constraints to predictive control in a transparent way. The information regarding the (fuzzy) goals and the (fuzzy) constraints of the

  11. Approximations of Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Vinai K. Singh

    2013-03-01

    Full Text Available A fuzzy system can uniformly approximate any real continuous function on a compact domain to any degree of accuracy. Such results can be viewed as an existence of optimal fuzzy systems. Li-Xin Wang discussed a similar problem using Gaussian membership function and Stone-Weierstrass Theorem. He established that fuzzy systems, with product inference, centroid defuzzification and Gaussian functions are capable of approximating any real continuous function on a compact set to arbitrary accuracy. In this paper we study a similar approximation problem by using exponential membership functions

  12. Beyond fuzzy spheres

    International Nuclear Information System (INIS)

    Govindarajan, T R; Padmanabhan, Pramod; Shreecharan, T

    2010-01-01

    We study polynomial deformations of the fuzzy sphere, specifically given by the cubic or the Higgs algebra. We derive the Higgs algebra by quantizing the Poisson structure on a surface in R 3 . We find that several surfaces, differing by constants, are described by the Higgs algebra at the fuzzy level. Some of these surfaces have a singularity and we overcome this by quantizing this manifold using coherent states for this nonlinear algebra. This is seen in the measure constructed from these coherent states. We also find the star product for this non-commutative algebra as a first step in constructing field theories on such fuzzy spaces.

  13. Fuzzy Rough Ring and Its Prop erties

    Institute of Scientific and Technical Information of China (English)

    REN Bi-jun; FU Yan-ling

    2013-01-01

    This paper is devoted to the theories of fuzzy rough ring and its properties. The fuzzy approximation space generated by fuzzy ideals and the fuzzy rough approximation operators were proposed in the frame of fuzzy rough set model. The basic properties of fuzzy rough approximation operators were analyzed and the consistency between approximation operators and the binary operation of ring was discussed.

  14. Fuzzy data analysis

    CERN Document Server

    Bandemer, Hans

    1992-01-01

    Fuzzy data such as marks, scores, verbal evaluations, imprecise observations, experts' opinions and grey tone pictures, are quite common. In Fuzzy Data Analysis the authors collect their recent results providing the reader with ideas, approaches and methods for processing such data when looking for sub-structures in knowledge bases for an evaluation of functional relationship, e.g. in order to specify diagnostic or control systems. The modelling presented uses ideas from fuzzy set theory and the suggested methods solve problems usually tackled by data analysis if the data are real numbers. Fuzzy Data Analysis is self-contained and is addressed to mathematicians oriented towards applications and to practitioners in any field of application who have some background in mathematics and statistics.

  15. Fuzzy stochastic multiobjective programming

    CERN Document Server

    Sakawa, Masatoshi; Katagiri, Hideki

    2011-01-01

    With a stress on interactive decision-making, this work breaks new ground by covering both the random nature of events related to environments, and the fuzziness of human judgements. The text runs from mathematical preliminaries to future research directions.

  16. Improving sensitivity of linear regression-based cell type-specific differential expression deconvolution with per-gene vs. global significance threshold.

    Science.gov (United States)

    Glass, Edmund R; Dozmorov, Mikhail G

    2016-10-06

    The goal of many human disease-oriented studies is to detect molecular mechanisms different between healthy controls and patients. Yet, commonly used gene expression measurements from blood samples suffer from variability of cell composition. This variability hinders the detection of differentially expressed genes and is often ignored. Combined with cell counts, heterogeneous gene expression may provide deeper insights into the gene expression differences on the cell type-specific level. Published computational methods use linear regression to estimate cell type-specific differential expression, and a global cutoff to judge significance, such as False Discovery Rate (FDR). Yet, they do not consider many artifacts hidden in high-dimensional gene expression data that may negatively affect linear regression. In this paper we quantify the parameter space affecting the performance of linear regression (sensitivity of cell type-specific differential expression detection) on a per-gene basis. We evaluated the effect of sample sizes, cell type-specific proportion variability, and mean squared error on sensitivity of cell type-specific differential expression detection using linear regression. Each parameter affected variability of cell type-specific expression estimates and, subsequently, the sensitivity of differential expression detection. We provide the R package, LRCDE, which performs linear regression-based cell type-specific differential expression (deconvolution) detection on a gene-by-gene basis. Accounting for variability around cell type-specific gene expression estimates, it computes per-gene t-statistics of differential detection, p-values, t-statistic-based sensitivity, group-specific mean squared error, and several gene-specific diagnostic metrics. The sensitivity of linear regression-based cell type-specific differential expression detection differed for each gene as a function of mean squared error, per group sample sizes, and variability of the proportions

  17. Fuzzy Control Teaching Models

    Directory of Open Access Journals (Sweden)

    Klaus-Dietrich Kramer

    2016-05-01

    Full Text Available Many degree courses at technical universities include the subject of control systems engineering. As an addition to conventional approaches Fuzzy Control can be used to easily find control solutions for systems, even if they include nonlinearities. To support further educational training, models which represent a technical system to be controlled are required. These models have to represent the system in a transparent and easy cognizable manner. Furthermore, a programming tool is required that supports an easy Fuzzy Control development process, including the option to verify the results and tune the system behavior. In order to support the development process a graphical user interface is needed to display the fuzzy terms under real time conditions, especially with a debug system and trace functionality. The experiences with such a programming tool, the Fuzzy Control Design Tool (FHFCE Tool, and four fuzzy teaching models will be presented in this paper. The methodical and didactical objective in the utilization of these teaching models is to develop solution strategies using Computational Intelligence (CI applications for Fuzzy Controllers in order to analyze different algorithms of inference or defuzzyfication and to verify and tune those systems efficiently.

  18. Fuzzy forecasting based on fuzzy-trend logical relationship groups.

    Science.gov (United States)

    Chen, Shyi-Ming; Wang, Nai-Yi

    2010-10-01

    In this paper, we present a new method to predict the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy-trend logical relationship groups (FTLRGs). The proposed method divides fuzzy logical relationships into FTLRGs based on the trend of adjacent fuzzy sets appearing in the antecedents of fuzzy logical relationships. First, we apply an automatic clustering algorithm to cluster the historical data into intervals of different lengths. Then, we define fuzzy sets based on these intervals of different lengths. Then, the historical data are fuzzified into fuzzy sets to derive fuzzy logical relationships. Then, we divide the fuzzy logical relationships into FTLRGs for forecasting the TAIEX. Moreover, we also apply the proposed method to forecast the enrollments and the inventory demand, respectively. The experimental results show that the proposed method gets higher average forecasting accuracy rates than the existing methods.

  19. Model-based fuzzy control solutions for a laboratory Antilock Braking System

    DEFF Research Database (Denmark)

    Precup, Radu-Emil; Spataru, Sergiu; Rǎdac, Mircea-Bogdan

    2010-01-01

    This paper gives two original model-based fuzzy control solutions dedicated to the longitudinal slip control of Antilock Braking System laboratory equipment. The parallel distributed compensation leads to linear matrix inequalities which guarantee the global stability of the fuzzy control systems...

  20. The Absolute Stability Analysis in Fuzzy Control Systems with Parametric Uncertainties and Reference Inputs

    Science.gov (United States)

    Wu, Bing-Fei; Ma, Li-Shan; Perng, Jau-Woei

    This study analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur'e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Finally, the comparisons are also given to show the effectiveness of the analysis method.

  1. Control of multi-machine using adaptive fuzzy

    Directory of Open Access Journals (Sweden)

    Bouchiba Bousmaha

    2011-01-01

    Full Text Available An indirect Adaptive fuzzy excitation control (IAFLC of power systems based on multi-input-multi-output linearization technique is developed in this paper. The power system considered in this paper consists of two generators and infinite bus connected through a network of transformers and transmission lines. The fuzzy controller is constructed from fuzzy feedback linearization controller whose parameters are adjusted indirectly from the estimates of plant parameters. The adaptation law adjusts the controller parameters on-line so that the plant output tracks the reference model output. Simulation results shown that the proposed controller IAFLC, compared with a controller based on tradition linearization technique can enhance the transient stability of the power system.

  2. Application of fuzzy logic to determine the odour intensity of model gas mixtures using electronic nose

    Science.gov (United States)

    Szulczyński, Bartosz; Gębicki, Jacek; Namieśnik, Jacek

    2018-01-01

    The paper presents the possibility of application of fuzzy logic to determine the odour intensity of model, ternary gas mixtures (α-pinene, toluene and triethylamine) using electronic nose prototype. The results obtained using fuzzy logic algorithms were compared with the values obtained using multiple linear regression (MLR) model and sensory analysis. As the results of the studies, it was found the electronic nose prototype along with the fuzzy logic pattern recognition system can be successfully used to estimate the odour intensity of tested gas mixtures. The correctness of the results obtained using fuzzy logic was equal to 68%.

  3. Fuzzy model-based servo and model following control for nonlinear systems.

    Science.gov (United States)

    Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O

    2009-12-01

    This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.

  4. Robust Takagi-Sugeno Fuzzy Dynamic Regulator for Trajectory Tracking of a Pendulum-Cart System

    Directory of Open Access Journals (Sweden)

    Miguel A. Llama

    2015-01-01

    Full Text Available Starting from a nonlinear model for a pendulum-cart system, on which viscous friction is considered, a Takagi-Sugeno (T-S fuzzy augmented model (TSFAM as well as a TSFAM with uncertainty (TSFAMwU is proposed. Since the design of a T-S fuzzy controller is based on the T-S fuzzy model of the nonlinear system, then, to address the trajectory tracking problem of the pendulum-cart system, three T-S fuzzy controllers are proposed via parallel distributed compensation: (1 a T-S fuzzy servo controller (TSFSC designed from the TSFAM; (2 a robust TSFSC (RTSFSC designed from the TSFAMwU; and (3 a robust T-S fuzzy dynamic regulator (RTSFDR designed from the RTSFSC with the addition of a T-S fuzzy observer, which estimates cart and pendulum velocities. Both TSFAM and TSFAMwU are comprised of two fuzzy rules and designed via local approximation in fuzzy partition spaces technique. Feedback gains for the three fuzzy controllers are obtained via linear matrix inequalities approach. A swing-up controller is developed to swing the pendulum up from its pendant position to its upright position. Real-time experiments validate the effectiveness of the proposed schemes, keeping the pendulum in its upright position while the cart follows a reference signal, standing out the RTSFDR.

  5. Shapley's value for fuzzy games

    Directory of Open Access Journals (Sweden)

    Raúl Alvarado Sibaja

    2009-02-01

    Full Text Available This is the continuation of a previous article titled "Fuzzy Games", where I defined a new type of games based on the Multilinear extensions f, of characteristic functions and most of standard theorems for cooperative games also hold for this new type of games: The fuzzy games. Now we give some other properties and the extension of the definition of Shapley¨s Value for Fuzzy Games Keywords: game theory, fuzzy sets, multiattribute decisions.

  6. A Combined Fuzzy-AHP and Fuzzy-GRA Methodology for Hydrogen Energy Storage Method Selection in Turkey

    Directory of Open Access Journals (Sweden)

    Aytac Yildiz

    2013-06-01

    Full Text Available In this paper, we aim to select the most appropriate Hydrogen Energy Storage (HES method for Turkey from among the alternatives of tank, metal hydride and chemical storage, which are determined based on expert opinions and literature review. Thus, we propose a Buckley extension based fuzzy Analytical Hierarchical Process (Fuzzy-AHP and linear normalization based fuzzy Grey Relational Analysis (Fuzzy-GRA combined Multi Criteria Decision Making (MCDM methodology. This combined approach can be applied to a complex decision process, which often makes sense with subjective data or vague information; and used to solve to solve HES selection problem with different defuzzification methods. The proposed approach is unique both in the HES literature and the MCDM literature.

  7. Robust fuzzy output feedback controller for affine nonlinear systems via T-S fuzzy bilinear model: CSTR benchmark.

    Science.gov (United States)

    Hamdy, M; Hamdan, I

    2015-07-01

    In this paper, a robust H∞ fuzzy output feedback controller is designed for a class of affine nonlinear systems with disturbance via Takagi-Sugeno (T-S) fuzzy bilinear model. The parallel distributed compensation (PDC) technique is utilized to design a fuzzy controller. The stability conditions of the overall closed loop T-S fuzzy bilinear model are formulated in terms of Lyapunov function via linear matrix inequality (LMI). The control law is robustified by H∞ sense to attenuate external disturbance. Moreover, the desired controller gains can be obtained by solving a set of LMI. A continuous stirred tank reactor (CSTR), which is a benchmark problem in nonlinear process control, is discussed in detail to verify the effectiveness of the proposed approach with a comparative study. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  8. T-S Fuzzy Modelling and H∞ Attitude Control for Hypersonic Gliding Vehicles

    Directory of Open Access Journals (Sweden)

    Weidong Zhang

    2017-01-01

    Full Text Available This paper addresses the T-S fuzzy modelling and H∞ attitude control in three channels for hypersonic gliding vehicles (HGVs. First, the control-oriented affine nonlinear model has been established which is transformed from the reentry dynamics. Then, based on Taylor’s expansion approach and the fuzzy linearization approach, the homogeneous T-S local modelling technique for HGVs is proposed. Given the approximation accuracy and controller design complexity, appropriate fuzzy premise variables and operating points of interest are selected to construct the T-S homogeneous submodels. With so-called fuzzy blending, the original plant is transformed into the overall T-S fuzzy model with disturbance. By utilizing Lyapunov functional approach, a state feedback fuzzy controller has been designed based on relaxed linear matrix inequality (LMI conditions to stable the original plants with a prescribed H∞ performance of disturbance. Finally, numerical simulations are performed to demonstrate the effectiveness of the proposed H∞ T-S fuzzy controller for the original attitude dynamics; the superiority of the designed T-S fuzzy controller compared with other local controllers based on the constructed fuzzy model is shown as well.

  9. CHARACTERIZATIONS OF FUZZY SOFT PRE SEPARATION AXIOMS

    OpenAIRE

    El-Latif, Alaa Mohamed Abd

    2015-01-01

    − The notions of fuzzy pre open soft sets and fuzzy pre closed soft sets were introducedby Abd El-latif et al. [2]. In this paper, we continue the study on fuzzy soft topological spaces andinvestigate the properties of fuzzy pre open soft sets, fuzzy pre closed soft sets and study variousproperties and notions related to these structures. In particular, we study the relationship betweenfuzzy pre soft interior fuzzy pre soft closure. Moreover, we study the properties of fuzzy soft pre regulars...

  10. Prototyping qualitative controllers for fuzzy-logic controller design

    International Nuclear Information System (INIS)

    Bakhtiari, S.; Jabedar-Maralani, P.

    1999-05-01

    Qualitative controls can be designed for linear and nonlinear models with the same computational complexity. At the same time they show the general form of the proper control. These properties can help ease the design process for quantitative controls. In this paper qualitative controls are used as prototypes for the design of linear or nonlinear, and in particular Sugeno-type fuzzy, controls. The LMS identification method is used to approximate the qualitative control with the nearest fuzzy control. The method is applied to the problem of position control in a permanent magnet synchronous motor; moreover, the performance and the robustness of the two controllers are compared

  11. Cardinal Basis Piecewise Hermite Interpolation on Fuzzy Data

    Directory of Open Access Journals (Sweden)

    H. Vosoughi

    2016-01-01

    Full Text Available A numerical method along with explicit construction to interpolation of fuzzy data through the extension principle results by widely used fuzzy-valued piecewise Hermite polynomial in general case based on the cardinal basis functions, which satisfy a vanishing property on the successive intervals, has been introduced here. We have provided a numerical method in full detail using the linear space notions for calculating the presented method. In order to illustrate the method in computational examples, we take recourse to three prime cases: linear, cubic, and quintic.

  12. Systematic methods for the design of a class of fuzzy logic controllers

    Science.gov (United States)

    Yasin, Saad Yaser

    2002-09-01

    Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental

  13. A neural fuzzy controller learning by fuzzy error propagation

    Science.gov (United States)

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  14. The foundations of fuzzy control

    CERN Document Server

    Lewis, Harold W

    1997-01-01

    Harold Lewis applied a cross-disciplinary approach in his highly accessible discussion of fuzzy control concepts. With the aid of fifty-seven illustrations, he thoroughly presents a unique mathematical formalism to explain the workings of the fuzzy inference engine and a novel test plant used in the research. Additionally, the text posits a new viewpoint on why fuzzy control is more popular in some countries than in others. A direct and original view of Japanese thinking on fuzzy control methods, based on the author's personal knowledge of - and association with - Japanese fuzzy research, is also included.

  15. WHY FUZZY QUALITY?

    Directory of Open Access Journals (Sweden)

    Abbas Parchami

    2016-09-01

    Full Text Available Such as other statistical problems, we may confront with uncertain and fuzzy concepts in quality control. One particular case in process capability analysis is a situation in which specification limits are two fuzzy sets. In such a uncertain and vague environment, the produced product is not qualified with a two-valued Boolean view, but to some degree depending on the decision-maker strictness and the quality level of the produced product. This matter can be cause to a rational decision-making on the quality of the production line. First, a comprehensive approach is presented in this paper for modeling the fuzzy quality concept. Then, motivations and advantages of applying this flexible approach instead of using classical quality are mentioned.

  16. (L,M-Fuzzy σ-Algebras

    Directory of Open Access Journals (Sweden)

    Fu-Gui Shi

    2010-01-01

    Full Text Available The notion of (L,M-fuzzy σ-algebras is introduced in the lattice value fuzzy set theory. It is a generalization of Klement's fuzzy σ-algebras. In our definition of (L,M-fuzzy σ-algebras, each L-fuzzy subset can be regarded as an L-measurable set to some degree.

  17. The first order fuzzy predicate logic (I)

    International Nuclear Information System (INIS)

    Sheng, Y.M.

    1986-01-01

    Some analysis tools of fuzzy measures, Sugeno's integrals, etc. are introduced into the semantic of the first order predicate logic to explain the concept of fuzzy quantifiers. The truth value of a fuzzy quantification proposition is represented by Sugeno's integral. With this framework, several important notions of formation rules, fuzzy valutions and fuzzy validity are discussed

  18. Managing Controversies in the Fuzzy Front End

    DEFF Research Database (Denmark)

    Christiansen, John K.; Gasparin, Marta

    2016-01-01

    . The analysis investigates the microprocesses around the controversies that emerge during the fuzzy front end of four products. Five different types of controversies are identified: profit, production, design, brand and customers/market. Each controversy represents a threat, but also an opportunity to search...... for new solutions in the unpredictable non-linear processes. The study uses an ethnographic approach using qualitative data from interviews, company documents, external communication and marketing material, minutes of meetings, informal conversations and observations. The analysis of four FFE processes...... demonstrates how the fuzzy front requires managers to deal with controversies that emerge from many different places and involve both human and non-human actors. Closing the controversies requires managers to take account of the situation, identify the problem that needs to be addressed, and initiate a search...

  19. A fuzzy logic pitch angle controller for power system stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Cronin, Tom; Sorensen, Poul [Wind Energy Department, Riso National Laboratory, PO Box 49, DK-4000 Roskilde, (Denmark); Jensen, Birgitte Bak [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East, (Denmark)

    2006-07-12

    In this article the design of a fuzzy logic pitch angle controller for a fixed speed, active-stall wind turbine, which is used for power system stabilization, is presented. The system to be controlled, which is the wind turbine and the power system to which the turbine is connected, is described. The advantages of fuzzy logic control when applied to large-signal control of active-stall wind turbines are outlined. The general steps of the design process for a fuzzy logic controller, including definition of the controller inputs, set-up of the fuzzy rules and the method of defuzzification, are described. The performance of the controller is assessed by simulation, where the wind turbine's task is to dampen power system oscillations. In the scenario simulated for this work, the wind turbine has to ride through a transient short-circuit fault and subsequently contribute to the damping of the grid frequency oscillations that are caused by the transient fault. It is concluded that the fuzzy logic controller enables the wind turbine to dampen power system oscillations. It is also concluded that, owing to the inherent non-linearities in a wind turbine and the unpredictability of the whole system, the fuzzy logic controller is very suitable for this application. (Author).

  20. Cylinder Position Servo Control Based on Fuzzy PID

    Directory of Open Access Journals (Sweden)

    Shibo Cai

    2013-01-01

    Full Text Available The arbitrary position control of cylinder has always been the hard challenge in pneumatic system. We try to develop a cylinder position servo control method by combining fuzzy PID with the theoretical model of the proportional valve-controlled cylinder system. The pressure differential equation of cylinder, pressure-flow equation of proportional valve, and moment equilibrium equation of cylinder are established. And the mathematical models of the cylinder driving system are linearized. Then fuzzy PID control algorithm is designed for the cylinder position control, including the detail analysis of fuzzy variables and domain, fuzzy logic rules, and defuzzification. The stability of the proposed fuzzy PID controller is theoretically proved according to the small gain theorem. Experiments for targets position of 250 mm, 300 mm, and 350 mm were done and the results showed that the absolute error of the position control is less than 0.25 mm. And comparative experiment between fuzzy PID and classical PID verified the advantage of the proposed algorithm.

  1. Advanced Takagi‒Sugeno fuzzy systems delay and saturation

    CERN Document Server

    Benzaouia, Abdellah

    2014-01-01

    This monograph puts the reader in touch with a decade’s worth of new developments in the field of fuzzy control specifically those of the popular Takagi-Sugeno (T-S) type. New techniques for stabilizing control analysis and design based on multiple Lyapunov functions and linear matrix inequalities (LMIs), are proposed. All the results are illustrated with numerical examples and figures and a rich bibliography is provided for further investigation. Control saturations are taken into account within the fuzzy model. The concept of positive invariance is used to obtain sufficient asymptotic stability conditions for the fuzzy system with constrained control inside a subset of the state space. The authors also consider the non-negativity of the states. This is of practical importance in many chemical, physical and biological processes that involve quantities that have intrinsically constant and non-negative sign: concentration of substances, level of liquids, etc. Results for linear systems are then extended to l...

  2. What procedure to choose while designing a fuzzy control? Towards mathematical foundations of fuzzy control

    Science.gov (United States)

    Kreinovich, Vladik YA.; Quintana, Chris; Lea, Robert

    1991-01-01

    Fuzzy control has been successfully applied in industrial systems. However, there is some caution in using it. The reason is that it is based on quite reasonable ideas, but each of these ideas can be implemented in several different ways, and depending on which of the implementations chosen different results are achieved. Some implementations lead to a high quality control, some of them not. And since there are no theoretical methods for choosing the implementation, the basic way to choose it now is experimental. But if one chooses a method that is good for several examples, there is no guarantee that it will work fine in all of them. Hence the caution. A theoretical basis for choosing the fuzzy control procedures is provided. In order to choose a procedure that transforms a fuzzy knowledge into a control, one needs, first, to choose a membership function for each of the fuzzy terms that the experts use, second, to choose operations of uncertainty values that corresponds to 'and' and 'or', and third, when a membership function for control is obtained, one must defuzzy it, that is, somehow generate a value of the control u that will be actually used. A general approach that will help to make all these choices is described: namely, it is proved that under reasonable assumptions membership functions should be linear or fractionally linear, defuzzification must be described by a centroid rule and describe all possible 'and' and 'or' operations. Thus, a theoretical explanation of the existing semi-heuristic choices is given and the basis for the further research on optimal fuzzy control is formulated.

  3. Stability Analysis of a Type of Takagi-Sugeno PI Fuzzy Control Systems Using Circle Criterion

    Directory of Open Access Journals (Sweden)

    Kairui Cao

    2011-04-01

    Full Text Available A type of Takagi-Sugeno (T-S Proportional-Integral (PI fuzzy controllers is studied. The T-S PI fuzzy controller is formed by a T-S Proportional-Derivative (PD fuzzy controller connected with an integrator. In this particular structure, the T-S PD fuzzy controller is a weighted sum of some linear PD sub-controllers. The mathematical properties of our T-S PI fuzzy controller are also investigated. Based on these properties, the global asymptotic stability of the fuzzy control systems, in which the T-S PI fuzzy controllers are employed, are analyzed by using the well-known circle criterion. A sufficient condition with an elegant graphical interpretation in the frequency domain is further derived to guarantee the global asymptotic stability of the above fuzzy control systems. Finally, two numerical examples are provided to demonstrate how to deploy this method in analyzing the T-S PI fuzzy control systems in the frequency domain with the aid of some simple graphs.

  4. Fuzzy efficiency without convexity

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Balezentis, Tomas

    2014-01-01

    approach builds directly upon the definition of Farrell's indexes of technical efficiency used in crisp FDH. Therefore we do not require the use of fuzzy programming techniques but only utilize ranking probabilities of intervals as well as a related definition of dominance between pairs of intervals. We...

  5. On-line tuning of a fuzzy-logic power system stabilizer

    International Nuclear Information System (INIS)

    Hossein-Zadeh, N.; Kalam, A.

    2002-01-01

    A scheme for on-line tuning of a fuzzy-logic power system stabilizer is presented. firstly, a fuzzy-logic power system stabilizer is developed using speed deviation and accelerating power as the controller input variables. The inference mechanism of fuzzy-logic controller is represented by a decision table, constructed of linguistic IF-THEN rules. The Linguistic rules are available from experts and the design procedure is based on these rules. It assumed that an exact model of the plant is not available and it is difficult to extract the exact parameters of the power plant. Thus, the design procedure can not be based on an exact model. This is an advantage of fuzzy logic that makes the design of a controller possible without knowing the exact model of the plant. Secondly, two scaling parameters are introduced to tune the fuzzy-logic power system stabilizer. These scaling parameters are the outputs of another fuzzy-logic system, which gets the operating conditions of power system as inputs. These mechanism of tuning the fuzzy-logic power system stabilizer makes the fuzzy-logic power system stabilizer adaptive to changes in the operating conditions. Therefore, the degradation of the system response, under a wide range of operating conditions, is less compared to the system response with a fixed-parameter fuzzy-logic power system stabilizer and a conventional (linear) power system stabilizer. The tuned stabilizer has been tested by performing nonlinear simulations using a synchronous machine-infinite bus model. The responses are compared with a fixed parameters fuzzy-logic power system stabilizer and a conventional (linear) power system stabilizer. It is shown that the tuned fuzzy-logic power system stabilizer is superior to both of them

  6. How Uncertain Information on Service Capacity Influences the Intermodal Routing Decision: A Fuzzy Programming Perspective

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2018-01-01

    Full Text Available Capacity uncertainty is a common issue in the transportation planning field. However, few studies discuss the intermodal routing problem with service capacity uncertainty. Based on our previous study on the intermodal routing under deterministic capacity consideration, we systematically explore how service capacity uncertainty influences the intermodal routing decision. First of all, we adopt trapezoidal fuzzy numbers to describe the uncertain information of the service capacity, and further transform the deterministic capacity constraint into a fuzzy chance constraint based on fuzzy credibility measure. We then integrate such fuzzy chance constraint into the mixed-integer linear programming (MILP model proposed in our previous study to develop a fuzzy chance-constrained programming model. To enable the improved model to be effectively programmed in the standard mathematical programming software and solved by exact solution algorithms, a crisp equivalent linear reformulation of the fuzzy chance constraint is generated. Finally, we modify the empirical case presented in our previous study by replacing the deterministic service capacities with trapezoidal fuzzy ones. Using the modified empirical case, we utilize sensitivity analysis and fuzzy simulation to analyze the influence of service capacity uncertainty on the intermodal routing decision, and summarize some interesting insights that are helpful for decision makers.

  7. Fuzzy modeling to predict chicken egg hatchability in commercial hatchery.

    Science.gov (United States)

    Peruzzi, N J; Scala, N L; Macari, M; Furlan, R L; Meyer, A D; Fernandez-Alarcon, M F; Kroetz Neto, F L; Souza, F A

    2012-10-01

    Experimental studies have shown that hatching rate depends, among other factors, on the main physical characteristics of the eggs. The physical parameters used in our work were egg weight, eggshell thickness, egg sphericity, and yolk per albumen ratio. The relationships of these parameters in the incubation process were modeled by Fuzzy logic. The rules of the Fuzzy modeling were based on the analysis of the physical characteristics of the hatching eggs and the respective hatching rate using a commercial hatchery by applying a trapezoidal membership function into the modeling process. The implementations were performed in software. Aiming to compare the Fuzzy with a statistical modeling, the same data obtained in the commercial hatchery were analyzed using multiple linear regression. The estimated parameters of multiple linear regressions were based on a backward selection procedure. The results showed that the determination coefficient and the mean square error were higher using the Fuzzy method when compared with the statistical modeling. Furthermore, the predicted hatchability rates by Fuzzy Logic agreed with hatching rates obtained in the commercial hatchery.

  8. Neuro-fuzzy system modeling based on automatic fuzzy clustering

    Institute of Scientific and Technical Information of China (English)

    Yuangang TANG; Fuchun SUN; Zengqi SUN

    2005-01-01

    A neuro-fuzzy system model based on automatic fuzzy clustering is proposed.A hybrid model identification algorithm is also developed to decide the model structure and model parameters.The algorithm mainly includes three parts:1) Automatic fuzzy C-means (AFCM),which is applied to generate fuzzy rules automatically,and then fix on the size of the neuro-fuzzy network,by which the complexity of system design is reducesd greatly at the price of the fitting capability;2) Recursive least square estimation (RLSE).It is used to update the parameters of Takagi-Sugeno model,which is employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy values according to the back propagation algorithm of neural network.Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to validate the feasibility of the method.

  9. Hierarchical type-2 fuzzy aggregation of fuzzy controllers

    CERN Document Server

    Cervantes, Leticia

    2016-01-01

    This book focuses on the fields of fuzzy logic, granular computing and also considering the control area. These areas can work together to solve various control problems, the idea is that this combination of areas would enable even more complex problem solving and better results. In this book we test the proposed method using two benchmark problems: the total flight control and the problem of water level control for a 3 tank system. When fuzzy logic is used it make it easy to performed the simulations, these fuzzy systems help to model the behavior of a real systems, using the fuzzy systems fuzzy rules are generated and with this can generate the behavior of any variable depending on the inputs and linguistic value. For this reason this work considers the proposed architecture using fuzzy systems and with this improve the behavior of the complex control problems.

  10. Word Similarity from Dictionaries: Inferring Fuzzy Measures from Fuzzy Graphs

    Directory of Open Access Journals (Sweden)

    Vicenc Torra

    2008-01-01

    Full Text Available WORD SIMILARITY FROM DICTIONARIES: INFERRING FUZZY MEASURES FROM FUZZY GRAPHS The computation of similarities between words is a basic element of information retrieval systems, when retrieval is not solely based on word matching. In this work we consider a measure between words based on dictionaries. This is achieved assuming that a dictionary is formalized as a fuzzy graph. We show that the approach permits to compute measures not only for pairs of words but for sets of them.

  11. Fuzzy logic control of vehicle suspensions with dry friction nonlinearity

    Indian Academy of Sciences (India)

    We design and investigate the performance of fuzzy logic-controlled (FLC) active suspensions on a nonlinear vehicle model with four degrees of freedom, without causing any degeneration in suspension working limits. Force actuators were mounted parallel to the suspensions. In this new approach, linear combinations of ...

  12. W-algebra for solving problems with fuzzy parameters

    Science.gov (United States)

    Shevlyakov, A. O.; Matveev, M. G.

    2018-03-01

    A method of solving the problems with fuzzy parameters by means of a special algebraic structure is proposed. The structure defines its operations through operations on real numbers, which simplifies its use. It avoids deficiencies limiting applicability of the other known structures. Examples for solution of a quadratic equation, a system of linear equations and a network planning problem are given.

  13. Fuzzy control. Fundamentals, stability and design of fuzzy controllers

    Energy Technology Data Exchange (ETDEWEB)

    Michels, K. [Fichtner GmbH und Co. KG, Stuttgart (Germany); Klawonn, F. [Fachhochschule Braunschweig/Wolfenbuettel (Germany). Fachbereich Informatik; Kruse, R. [Magdeburg Univ. (Germany). Fakultaet Informatik, Abt. Wiss.- und Sprachverarbeitung; Nuernberger, A. (eds.) [California Univ., Berkeley, CA (United States). Computer Science Division

    2006-07-01

    The book provides a critical discussion of fuzzy controllers from the perspective of classical control theory. Special emphases are placed on topics that are of importance for industrial applications, like (self-) tuning of fuzzy controllers, optimisation and stability analysis. The book is written as a textbook for graduate students as well as a comprehensive reference book about fuzzy control for researchers and application engineers. Starting with a detailed introduction to fuzzy systems and control theory the reader is guided to up-to-date research results. (orig.)

  14. Fuzzy pharmacology: theory and applications.

    Science.gov (United States)

    Sproule, Beth A; Naranjo, Claudio A; Türksen, I Burhan

    2002-09-01

    Fuzzy pharmacology is a term coined to represent the application of fuzzy logic and fuzzy set theory to pharmacological problems. Fuzzy logic is the science of reasoning, thinking and inference that recognizes and uses the real world phenomenon that everything is a matter of degree. It is an extension of binary logic that is able to deal with complex systems because it does not require crisp definitions and distinctions for the system components. In pharmacology, fuzzy modeling has been used for the mechanical control of drug delivery in surgical settings, and work has begun evaluating its use in other pharmacokinetic and pharmacodynamic applications. Fuzzy pharmacology is an emerging field that, based on these initial explorations, warrants further investigation.

  15. Intuitionistic fuzzy aggregation and clustering

    CERN Document Server

    Xu, Zeshui

    2012-01-01

    This book offers a systematic introduction to the clustering algorithms for intuitionistic fuzzy values, the latest research results in intuitionistic fuzzy aggregation techniques, the extended results in interval-valued intuitionistic fuzzy environments, and their applications in multi-attribute decision making, such as supply chain management, military system performance evaluation, project management, venture capital, information system selection, building materials classification, and operational plan assessment, etc.

  16. Developing a univariate approach to phase-I monitoring of fuzzy quality profiles

    Directory of Open Access Journals (Sweden)

    Kazem Noghondarian

    2012-10-01

    Full Text Available In many real-world applications, the quality of a process or a particular product can be characterized by a functional relationship called profile. A profile builds the relationships between a response quality characteristic and one or more explanatory variables. Monitoring the quality of a profile is implemented to understand and to verify the stability of this functional relationship over time. In some real applications, a fuzzy linear regression model can represent the profile adequately where the response quality characteristic is fuzzy. The purpose of this paper is to develop an approach for monitoring process/product profiles in fuzzy environment. A model in fuzzy linear regression is developed to construct the quality profiles by using linear programming and then fuzzy individuals and moving-range (I-MR control charts are developed to monitor both intercept and slope of fuzzy profiles to achieve an in-control process. A case study in customer satisfaction is presented to show the application of our approach and to express the sensitivity analysis of parameters for building a fuzzy profile.

  17. Stability analysis of fuzzy parametric uncertain systems.

    Science.gov (United States)

    Bhiwani, R J; Patre, B M

    2011-10-01

    In this paper, the determination of stability margin, gain and phase margin aspects of fuzzy parametric uncertain systems are dealt. The stability analysis of uncertain linear systems with coefficients described by fuzzy functions is studied. A complexity reduced technique for determining the stability margin for FPUS is proposed. The method suggested is dependent on the order of the characteristic polynomial. In order to find the stability margin of interval polynomials of order less than 5, it is not always necessary to determine and check all four Kharitonov's polynomials. It has been shown that, for determining stability margin of FPUS of order five, four, and three we require only 3, 2, and 1 Kharitonov's polynomials respectively. Only for sixth and higher order polynomials, a complete set of Kharitonov's polynomials are needed to determine the stability margin. Thus for lower order systems, the calculations are reduced to a large extent. This idea has been extended to determine the stability margin of fuzzy interval polynomials. It is also shown that the gain and phase margin of FPUS can be determined analytically without using graphical techniques. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Fuzzy self-learning control for magnetic servo system

    Science.gov (United States)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  19. A Fast Approach to Bimatrix Games with Intuitionistic Fuzzy Payoffs

    Directory of Open Access Journals (Sweden)

    Min Fan

    2014-01-01

    Full Text Available The aim of this paper is to develop an effective method for solving bimatrix games with payoffs of intuitionistic fuzzy value. Firstly, bimatrix game model with intuitionistic fuzzy payoffs (IFPBiG was put forward. Secondly, two kinds of nonlinear programming algorithms were discussed with the Nash equilibrium of IFPBiG. Thirdly, Nash equilibrium of the algorithm was proved by the fixed point theory and the algorithm was simplified by linear programming methods. Finally, an example was solved through Matlab; it showed the validity, applicability, and superiority.

  20. pp wave big bangs: Matrix strings and shrinking fuzzy spheres

    International Nuclear Information System (INIS)

    Das, Sumit R.; Michelson, Jeremy

    2005-01-01

    We find pp wave solutions in string theory with null-like linear dilatons. These provide toy models of big bang cosmologies. We formulate matrix string theory in these backgrounds. Near the big bang 'singularity', the string theory becomes strongly coupled but the Yang-Mills description of the matrix string is weakly coupled. The presence of a second length scale allows us to focus on a specific class of non-Abelian configurations, viz. fuzzy cylinders, for a suitable regime of parameters. We show that, for a class of pp waves, fuzzy cylinders which start out big at early times dynamically shrink into usual strings at sufficiently late times

  1. Design and implementation of fuzzy-PD controller based on relation models: A cross-entropy optimization approach

    Science.gov (United States)

    Anisimov, D. N.; Dang, Thai Son; Banerjee, Santo; Mai, The Anh

    2017-07-01

    In this paper, an intelligent system use fuzzy-PD controller based on relation models is developed for a two-wheeled self-balancing robot. Scaling factors of the fuzzy-PD controller are optimized by a Cross-Entropy optimization method. A linear Quadratic Regulator is designed to bring a comparison with the fuzzy-PD controller by control quality parameters. The controllers are ported and run on STM32F4 Discovery Kit based on the real-time operating system. The experimental results indicate that the proposed fuzzy-PD controller runs exactly on embedded system and has desired performance in term of fast response, good balance and stabilize.

  2. Fuzzy ABC: modeling the uncertainty in environmental cost allocation

    OpenAIRE

    Borba, José Alonso; Murcia, Fernando Dal Ri; Maior, Cesar Duarte Souto

    2007-01-01

    In many cases, preventing pollution and environmental destruction is cheaper than remedying these damages. In this sense, environmental cost allocation enables a better visualization and analysis of a product's profitability. However, the environmental allocation process involves estimated information and assumes linearity between activity consumption and product that is not real in many cases. In order to handle this not-linearity, this research presents a methodology based on fuzzy logic co...

  3. Fuzzy vulnerability matrix

    International Nuclear Information System (INIS)

    Baron, Jorge H.; Rivera, S.S.

    2000-01-01

    The so-called vulnerability matrix is used in the evaluation part of the probabilistic safety assessment for a nuclear power plant, during the containment event trees calculations. This matrix is established from what is knows as Numerical Categories for Engineering Judgement. This matrix is usually established with numerical values obtained with traditional arithmetic using the set theory. The representation of this matrix with fuzzy numbers is much more adequate, due to the fact that the Numerical Categories for Engineering Judgement are better represented with linguistic variables, such as 'highly probable', 'probable', 'impossible', etc. In the present paper a methodology to obtain a Fuzzy Vulnerability Matrix is presented, starting from the recommendations on the Numerical Categories for Engineering Judgement. (author)

  4. Spinning the fuzzy sphere

    International Nuclear Information System (INIS)

    Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin

    2015-01-01

    We construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N=1"∗ field theory with a non-trivial charge density. The solutions we construct have a ℤ_N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions for each value of the angular momentum. We study the phase structure of the solutions for various values of N. Also the continuum limit where N→∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.

  5. Radial Fuzzy Systems

    Czech Academy of Sciences Publication Activity Database

    Coufal, David

    2017-01-01

    Roč. 319, 15 July (2017), s. 1-27 ISSN 0165-0114 R&D Projects: GA MŠk(CZ) LD13002 Institutional support: RVO:67985807 Keywords : fuzzy systems * radial functions * coherence Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.718, year: 2016

  6. Univariate and multiple linear regression analyses for 23 single nucleotide polymorphisms in 14 genes predisposing to chronic glomerular diseases and IgA nephropathy in Han Chinese.

    Science.gov (United States)

    Wang, Hui; Sui, Weiguo; Xue, Wen; Wu, Junyong; Chen, Jiejing; Dai, Yong

    2014-09-01

    Immunoglobulin A nephropathy (IgAN) is a complex trait regulated by the interaction among multiple physiologic regulatory systems and probably involving numerous genes, which leads to inconsistent findings in genetic studies. One possibility of failure to replicate some single-locus results is that the underlying genetics of IgAN nephropathy is based on multiple genes with minor effects. To learn the association between 23 single nucleotide polymorphisms (SNPs) in 14 genes predisposing to chronic glomerular diseases and IgAN in Han males, the 23 SNPs genotypes of 21 Han males were detected and analyzed with a BaiO gene chip, and their associations were analyzed with univariate analysis and multiple linear regression analysis. Analysis showed that CTLA4 rs231726 and CR2 rs1048971 revealed a significant association with IgAN. These findings support the multi-gene nature of the etiology of IgAN and propose a potential gene-gene interactive model for future studies.

  7. Fuzzy Neuron: Method and Hardware Realization

    Science.gov (United States)

    Krasowski, Michael J.; Prokop, Norman F.

    2014-01-01

    This innovation represents a method by which single-to-multi-input, single-to-many-output system transfer functions can be estimated from input/output data sets. This innovation can be run in the background while a system is operating under other means (e.g., through human operator effort), or may be utilized offline using data sets created from observations of the estimated system. It utilizes a set of fuzzy membership functions spanning the input space for each input variable. Linear combiners associated with combinations of input membership functions are used to create the output(s) of the estimator. Coefficients are adjusted online through the use of learning algorithms.

  8. Fuzzy Clustering Methods and their Application to Fuzzy Modeling

    DEFF Research Database (Denmark)

    Kroszynski, Uri; Zhou, Jianjun

    1999-01-01

    Fuzzy modeling techniques based upon the analysis of measured input/output data sets result in a set of rules that allow to predict system outputs from given inputs. Fuzzy clustering methods for system modeling and identification result in relatively small rule-bases, allowing fast, yet accurate....... An illustrative synthetic example is analyzed, and prediction accuracy measures are compared between the different variants...

  9. Nuclear Power Plant Operator Reliability Research Based on Fuzzy Math

    Directory of Open Access Journals (Sweden)

    Fang Xiang

    2011-01-01

    Full Text Available This paper makes use of the concept and theory of fuzzy number in fuzzy mathematics, to research for the response time of operator in accident of Chinese nuclear power plant. Through the quantitative analysis for the performance shape factors (PSFs which influence the response time of operators, the formula of the operator response time is obtained based on the possibilistic fuzzy linear regression model which is used for the first time in this kind of research. The research result shows that the correct research method can be achieved through the analysis of the information from a small sample. This method breaks through the traditional research method and can be used not only for the reference to the safe operation of nuclear power plant, but also in other areas.

  10. Control of beam halo-chaos using fuzzy logic controller

    International Nuclear Information System (INIS)

    Gao Yuan; Yuan Haiying; Tan Guangxing; Luo Wenguang

    2012-01-01

    Considering the ion beam with initial K-V distribution in the periodic focusing magnetic filed channels (PFCs) as a typical sample, a fuzzy control method for control- ling beam halo-chaos was studied. A fuzzy proportional controller, using output of fuzzy inference as a control factor, was presented for adjusting exterior focusing magnetic field. The stability of controlled system was proved by fuzzy phase plane analysis. The simulation results demonstrate that the chaotic radius of envelope can be controlled to the matched radius via controlling magnetic field. This method was also applied to the multi-particle model. Under the control condition, the beam halos and its regeneration can be eliminated effectively, and that both the compactness and the uniformity of ion beam are improved evidently. Since the exterior magnetic field can be rather easily adjusted by proportional control and the fuzzy logic controller is independent to the mathematical model, this method has adaptive ability and is easily realized in experiment. The research offers a valuable reference for the design of the PFCs in the high- current linear ion accelerators. (authors)

  11. Fuzzy C-means method for clustering microarray data.

    Science.gov (United States)

    Dembélé, Doulaye; Kastner, Philippe

    2003-05-22

    Clustering analysis of data from DNA microarray hybridization studies is essential for identifying biologically relevant groups of genes. Partitional clustering methods such as K-means or self-organizing maps assign each gene to a single cluster. However, these methods do not provide information about the influence of a given gene for the overall shape of clusters. Here we apply a fuzzy partitioning method, Fuzzy C-means (FCM), to attribute cluster membership values to genes. A major problem in applying the FCM method for clustering microarray data is the choice of the fuzziness parameter m. We show that the commonly used value m = 2 is not appropriate for some data sets, and that optimal values for m vary widely from one data set to another. We propose an empirical method, based on the distribution of distances between genes in a given data set, to determine an adequate value for m. By setting threshold levels for the membership values, genes which are tigthly associated to a given cluster can be selected. Using a yeast cell cycle data set as an example, we show that this selection increases the overall biological significance of the genes within the cluster. Supplementary text and Matlab functions are available at http://www-igbmc.u-strasbg.fr/fcm/

  12. Fuzzy linguistic model for interpolation

    International Nuclear Information System (INIS)

    Abbasbandy, S.; Adabitabar Firozja, M.

    2007-01-01

    In this paper, a fuzzy method for interpolating of smooth curves was represented. We present a novel approach to interpolate real data by applying the universal approximation method. In proposed method, fuzzy linguistic model (FLM) applied as universal approximation for any nonlinear continuous function. Finally, we give some numerical examples and compare the proposed method with spline method

  13. Uncovering transcriptional interactions via an adaptive fuzzy logic approach

    Directory of Open Access Journals (Sweden)

    Chen Chung-Ming

    2009-12-01

    Full Text Available Abstract Background To date, only a limited number of transcriptional regulatory interactions have been uncovered. In a pilot study integrating sequence data with microarray data, a position weight matrix (PWM performed poorly in inferring transcriptional interactions (TIs, which represent physical interactions between transcription factors (TF and upstream sequences of target genes. Inferring a TI means that the promoter sequence of a target is inferred to match the consensus sequence motifs of a potential TF, and their interaction type such as AT or RT is also predicted. Thus, a robust PWM (rPWM was developed to search for consensus sequence motifs. In addition to rPWM, one feature extracted from ChIP-chip data was incorporated to identify potential TIs under specific conditions. An interaction type classifier was assembled to predict activation/repression of potential TIs using microarray data. This approach, combining an adaptive (learning fuzzy inference system and an interaction type classifier to predict transcriptional regulatory networks, was named AdaFuzzy. Results AdaFuzzy was applied to predict TIs using real genomics data from Saccharomyces cerevisiae. Following one of the latest advances in predicting TIs, constrained probabilistic sparse matrix factorization (cPSMF, and using 19 transcription factors (TFs, we compared AdaFuzzy to four well-known approaches using over-representation analysis and gene set enrichment analysis. AdaFuzzy outperformed these four algorithms. Furthermore, AdaFuzzy was shown to perform comparably to 'ChIP-experimental method' in inferring TIs identified by two sets of large scale ChIP-chip data, respectively. AdaFuzzy was also able to classify all predicted TIs into one or more of the four promoter architectures. The results coincided with known promoter architectures in yeast and provided insights into transcriptional regulatory mechanisms. Conclusion AdaFuzzy successfully integrates multiple types of

  14. Fuzzy Logic in Medicine and Bioinformatics

    Directory of Open Access Journals (Sweden)

    Angela Torres

    2006-01-01

    Full Text Available The purpose of this paper is to present a general view of the current applications of fuzzy logic in medicine and bioinformatics. We particularly review the medical literature using fuzzy logic. We then recall the geometrical interpretation of fuzzy sets as points in a fuzzy hypercube and present two concrete illustrations in medicine (drug addictions and in bioinformatics (comparison of genomes.

  15. Algebraic Aspects of Families of Fuzzy Languages

    NARCIS (Netherlands)

    Asveld, P.R.J.; Heylen, Dirk K.J.; Nijholt, Antinus; Scollo, Giuseppe

    2000-01-01

    We study operations on fuzzy languages such as union, concatenation,Kleene $\\star$, intersection with regular fuzzy languages, and several kinds of (iterated) fuzzy substitution. Then we consider families of fuzzy languages, closed under a fixed collection of these operations, which results in the

  16. Fuzzy control in environmental engineering

    CERN Document Server

    Chmielowski, Wojciech Z

    2016-01-01

    This book is intended for engineers, technicians and people who plan to use fuzzy control in more or less developed and advanced control systems for manufacturing processes, or directly for executive equipment. Assuming that the reader possesses elementary knowledge regarding fuzzy sets and fuzzy control, by way of a reminder, the first parts of the book contain a reminder of the theoretical foundations as well as a description of the tools to be found in the Matlab/Simulink environment in the form of a toolbox. The major part of the book presents applications for fuzzy controllers in control systems for various manufacturing and engineering processes. It presents seven processes and problems which have been programmed using fuzzy controllers. The issues discussed concern the field of Environmental Engineering. Examples are the control of a flood wave passing through a hypothetical, and then the real Dobczyce reservoir in the Raba River, which is located in the upper Vistula River basin in Southern Poland, th...

  17. Design of interpretable fuzzy systems

    CERN Document Server

    Cpałka, Krzysztof

    2017-01-01

    This book shows that the term “interpretability” goes far beyond the concept of readability of a fuzzy set and fuzzy rules. It focuses on novel and precise operators of aggregation, inference, and defuzzification leading to flexible Mamdani-type and logical-type systems that can achieve the required accuracy using a less complex rule base. The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms. It also demonstrates how to eliminate various system components, such as inputs, rules and fuzzy sets, whose reduction does not adversely affect system accuracy. It illustrates the performance of the developed algorithms and methods with commonly used benchmarks. The book provides valuable tools for possible applications in many fields including expert systems, automatic control and robotics.

  18. On Intuitionistic Fuzzy Sets Theory

    CERN Document Server

    Atanassov, Krassimir T

    2012-01-01

    This book aims to be a  comprehensive and accurate survey of state-of-art research on intuitionistic fuzzy sets theory and could be considered a continuation and extension of the author´s previous book on Intuitionistic Fuzzy Sets, published by Springer in 1999 (Atanassov, Krassimir T., Intuitionistic Fuzzy Sets, Studies in Fuzziness and soft computing, ISBN 978-3-7908-1228-2, 1999). Since the aforementioned  book has appeared, the research activity of the author within the area of intuitionistic fuzzy sets has been expanding into many directions. The results of the author´s most recent work covering the past 12 years as well as the newest general ideas and open problems in this field have been therefore collected in this new book.

  19. Safety critical application of fuzzy control

    International Nuclear Information System (INIS)

    Schildt, G.H.

    1995-01-01

    After an introduction into safety terms a short description of fuzzy logic will be given. Especially, for safety critical applications of fuzzy controllers a possible controller structure will be described. The following items will be discussed: Configuration of fuzzy controllers, design aspects like fuzzfiication, inference strategies, defuzzification and types of membership functions. As an example a typical fuzzy rule set will be presented. Especially, real-time behaviour a fuzzy controllers is mentioned. An example of fuzzy controlling for temperature control purpose within a nuclear reactor together with membership functions and inference strategy of such a fuzzy controller will be presented. (author). 4 refs, 17 figs

  20. Image matching navigation based on fuzzy information

    Institute of Scientific and Technical Information of China (English)

    田玉龙; 吴伟仁; 田金文; 柳健

    2003-01-01

    In conventional image matching methods, the image matching process is mostly based on image statistic information. One aspect neglected by all these methods is that there is much fuzzy information contained in these images. A new fuzzy matching algorithm based on fuzzy similarity for navigation is presented in this paper. Because the fuzzy theory is of the ability of making good description of the fuzzy information contained in images, the image matching method based on fuzzy similarity would look forward to producing good performance results. Experimental results using matching algorithm based on fuzzy information also demonstrate its reliability and practicability.

  1. Radiation protection and fuzzy set theory

    International Nuclear Information System (INIS)

    Nishiwaki, Y.

    1993-01-01

    In radiation protection we encounter a variety of sources of uncertainties which are due to fuzziness in our cognition or perception of objects. For systematic treatment of this type of uncertainty, the concepts of fuzzy sets or fuzzy measures could be applied to construct system models, which may take into consideration both subjective or intrinsic fuzziness and objective or extrinsic fuzziness. The theory of fuzzy sets and fuzzy measures is still in a developing stage, but its concept may be applied to various problems of subjective perception of risk, nuclear safety, radiation protection and also to the problems of man-machine interface and human factor engineering or ergonomic

  2. DESIGN OF ROBUST COMMAND TO LINE-OF-SIGHT GUIDANCE LAW: A FUZZY ADAPTIVE APPROACH

    Directory of Open Access Journals (Sweden)

    ESMAIL SADEGHINASAB

    2016-11-01

    Full Text Available In this paper, the design of command to line-of-sight (CLOS missile guidance law is addressed. Taking a three dimensional guidance model, the tracking control problem is formulated. To solve the target tracking problem, the feedback linearization controller is first designed. Although such control scheme possesses the simplicity property, but it presents the acceptable performance only in the absence of perturbations. In order to ensure the robustness properties against model uncertainties, a fuzzy adaptive algorithm is proposed with two parts including a fuzzy (Mamdani system, whose rules are constructed based on missile guidance, and a so-called rule modifier to compensate the fuzzy rules, using the negative gradient method. Compared with some previous works, such control strategy provides a faster time response without large control efforts. The performance of feedback linearization controller is also compared with that of fuzzy adaptive strategy via various simulations.

  3. Fuzzy Control of Yaw and Roll Angles of a Simulated Helicopter Model Includes Articulated Manipulators

    Directory of Open Access Journals (Sweden)

    Hossein Sadegh Lafmejani

    2015-09-01

    Full Text Available Fuzzy logic controller (FLC is a heuristic method by If-Then Rules which resembles human intelligence and it is a good method for designing Non-linear control systems. In this paper, an arbitrary helicopter model includes articulated manipulators has been simulated with Matlab SimMechanics toolbox. Due to the difficulties of modeling this complex system, a fuzzy controller with simple fuzzy rules has been designed for its yaw and roll angles in order to stabilize the helicopter while it is in the presence of disturbances or its manipulators are moving for a task. Results reveal that a simple FLC can appropriately control this system.

  4. Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays

    Science.gov (United States)

    Syed Ali, M.; Balasubramaniam, P.

    2008-07-01

    In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB.

  5. Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Syed Ali, M.; Balasubramaniam, P.

    2008-01-01

    In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB

  6. Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions

    Science.gov (United States)

    Tsaur, Ruey-Chyn

    2015-02-01

    In the finance market, a short-term investment strategy is usually applied in portfolio selection in order to reduce investment risk; however, the economy is uncertain and the investment period is short. Further, an investor has incomplete information for selecting a portfolio with crisp proportions for each chosen security. In this paper we present a new method of constructing fuzzy portfolio model for the parameters of fuzzy-input return rates and fuzzy-output proportions, based on possibilistic mean-standard deviation models. Furthermore, we consider both excess or shortage of investment in different economic periods by using fuzzy constraint for the sum of the fuzzy proportions, and we also refer to risks of securities investment and vagueness of incomplete information during the period of depression economics for the portfolio selection. Finally, we present a numerical example of a portfolio selection problem to illustrate the proposed model and a sensitivity analysis is realised based on the results.

  7. Improvement of Fuzzy Image Contrast Enhancement Using Simulated Ergodic Fuzzy Markov Chains

    Directory of Open Access Journals (Sweden)

    Behrouz Fathi-Vajargah

    2014-01-01

    Full Text Available This paper presents a novel fuzzy enhancement technique using simulated ergodic fuzzy Markov chains for low contrast brain magnetic resonance imaging (MRI. The fuzzy image contrast enhancement is proposed by weighted fuzzy expected value. The membership values are then modified to enhance the image using ergodic fuzzy Markov chains. The qualitative performance of the proposed method is compared to another method in which ergodic fuzzy Markov chains are not considered. The proposed method produces better quality image.

  8. The World of Combinatorial Fuzzy Problems and the Efficiency of Fuzzy Approximation Algorithms

    OpenAIRE

    Yamakami, Tomoyuki

    2015-01-01

    We re-examine a practical aspect of combinatorial fuzzy problems of various types, including search, counting, optimization, and decision problems. We are focused only on those fuzzy problems that take series of fuzzy input objects and produce fuzzy values. To solve such problems efficiently, we design fast fuzzy algorithms, which are modeled by polynomial-time deterministic fuzzy Turing machines equipped with read-only auxiliary tapes and write-only output tapes and also modeled by polynomia...

  9. Supplier Selection for Food Industry: A Combination of Taguchi Loss Function and Fuzzy Analytical Hierarchy Process

    OpenAIRE

    Renna Magdalena

    2012-01-01

    Supplier selection is an important part of supply chain management process by which firms identify, evaluate, and establish contracts with suppliers. Deciding the right supplier can be a complex task. As such, various criteria must be taken into account to choose the best supplier. This study focused on the supply in the packaging division of a food industry in Denpasar-Bali. A combination of Taguchi Loss Function and fuzzy-AHP (Analytical Hierarchy Process Fuzzy Linear Programming) was used ...

  10. An efficient computer based wavelets approximation method to solve Fuzzy boundary value differential equations

    Science.gov (United States)

    Alam Khan, Najeeb; Razzaq, Oyoon Abdul

    2016-03-01

    In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.

  11. Robust Fuzzy Control for Fractional-Order Uncertain Hydroturbine Regulating System with Random Disturbances

    OpenAIRE

    Fengjiao Wu; Guitao Zhang; Zhengzhong Wang

    2016-01-01

    The robust fuzzy control for fractional-order hydroturbine regulating system is studied in this paper. First, the more practical fractional-order hydroturbine regulating system with uncertain parameters and random disturbances is presented. Then, on the basis of interval matrix theory and fractional-order stability theorem, a fuzzy control method is proposed for fractional-order hydroturbine regulating system, and the stability condition is expressed as a group of linear matrix inequalities. ...

  12. Global exponential stability of uncertain fuzzy BAM neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Syed Ali, M.; Balasubramaniam, P.

    2009-01-01

    In this paper, the Takagi-Sugeno (TS) fuzzy model representation is extended to the stability analysis for uncertain Bidirectional Associative Memory (BAM) neural networks with time-varying delays using linear matrix inequality (LMI) theory. A novel LMI-based stability criterion is obtained by LMI optimization algorithms to guarantee the exponential stability of uncertain BAM neural networks with time-varying delays which are represented by TS fuzzy models. Finally, the proposed stability conditions are demonstrated with numerical examples.

  13. Optimization Settings in the Fuzzy Combined Mamdani PID Controller

    Science.gov (United States)

    Kudinov, Y. I.; Pashchenko, F. F.; Pashchenko, A. F.; Kelina, A. Y.; Kolesnikov, V. A.

    2017-11-01

    In the present work the actual problem of determining the optimal settings of fuzzy parallel proportional-integral-derivative (PID) controller is considered to control nonlinear plants that is not always possible to perform with classical linear PID controllers. In contrast to the linear fuzzy PID controllers there are no analytical methods of settings calculation. In this paper, we develop a numerical optimization approach to determining the coefficients of a fuzzy PID controller. Decomposition method of optimization is proposed, the essence of which was as follows. All homogeneous coefficients were distributed to the relevant groups, for example, three error coefficients, the three coefficients of the changes of errors and the three coefficients of the outputs P, I and D components. Consistently in each of such groups the search algorithm was selected that has determined the coefficients under which we receive the schedule of the transition process satisfying all the applicable constraints. Thus, with the help of Matlab and Simulink in a reasonable time were found the factors of a fuzzy PID controller, which meet the accepted limitations on the transition process.

  14. Securing Body Sensor Networks with Biometric Methods: A New Key Negotiation Method and a Key Sampling Method for Linear Interpolation Encryption

    OpenAIRE

    Zhao, Huawei; Chen, Chi; Hu, Jiankun; Qin, Jing

    2015-01-01

    We present two approaches that exploit biometric data to address security problems in the body sensor networks: a new key negotiation scheme based on the fuzzy extractor technology and an improved linear interpolation encryption method. The first approach designs two attack games to give the formal definition of fuzzy negotiation that forms a new key negotiation scheme based on fuzzy extractor technology. According to the definition, we further define a concrete structure of fuzzy negotiation...

  15. Model Reduction of Fuzzy Logic Systems

    Directory of Open Access Journals (Sweden)

    Zhandong Yu

    2014-01-01

    Full Text Available This paper deals with the problem of ℒ2-ℒ∞ model reduction for continuous-time nonlinear uncertain systems. The approach of the construction of a reduced-order model is presented for high-order nonlinear uncertain systems described by the T-S fuzzy systems, which not only approximates the original high-order system well with an ℒ2-ℒ∞ error performance level γ but also translates it into a linear lower-dimensional system. Then, the model approximation is converted into a convex optimization problem by using a linearization procedure. Finally, a numerical example is presented to show the effectiveness of the proposed method.

  16. Type-2 fuzzy granular models

    CERN Document Server

    Sanchez, Mauricio A; Castro, Juan R

    2017-01-01

    In this book, a series of granular algorithms are proposed. A nature inspired granular algorithm based on Newtonian gravitational forces is proposed. A series of methods for the formation of higher-type information granules represented by Interval Type-2 Fuzzy Sets are also shown, via multiple approaches, such as Coefficient of Variation, principle of justifiable granularity, uncertainty-based information concept, and numerical evidence based. And a fuzzy granular application comparison is given as to demonstrate the differences in how uncertainty affects the performance of fuzzy information granules.

  17. Fuzzy resource optimization for safeguards

    International Nuclear Information System (INIS)

    Zardecki, A.; Markin, J.T.

    1991-01-01

    Authorization, enforcement, and verification -- three key functions of safeguards systems -- form the basis of a hierarchical description of the system risk. When formulated in terms of linguistic rather than numeric attributes, the risk can be computed through an algorithm based on the notion of fuzzy sets. Similarly, this formulation allows one to analyze the optimal resource allocation by maximizing the overall detection probability, regarded as a linguistic variable. After summarizing the necessary elements of the fuzzy sets theory, we outline the basic algorithm. This is followed by a sample computation of the fuzzy optimization. 10 refs., 1 tab

  18. Fuzzy improvement of the SQL

    Directory of Open Access Journals (Sweden)

    Hudec Miroslav

    2011-01-01

    Full Text Available Structured Query Language (SQL is used to obtain data from relational databases. Fuzzy improvement of SQL queries has advantages in cases when the user cannot unambiguously define selection criteria or when the user wants to examine data that almost meet the given criteria. In this paper we examine a realization of the fuzzy querying concept. For this purposes the fuzzy generalized logical condition for the WHERE part of the SQL is created. It allows users to create queries by linguistic terms. The proposed model is an extension of the SQL so that no modification inside databases has to be undertaken.

  19. Fuzzy expert systems using CLIPS

    Science.gov (United States)

    Le, Thach C.

    1994-01-01

    This paper describes a CLIPS-based fuzzy expert system development environment called FCLIPS and illustrates its application to the simulated cart-pole balancing problem. FCLIPS is a straightforward extension of CLIPS without any alteration to the CLIPS internal structures. It makes use of the object-oriented and module features in CLIPS version 6.0 for the implementation of fuzzy logic concepts. Systems of varying degrees of mixed Boolean and fuzzy rules can be implemented in CLIPS. Design and implementation issues of FCLIPS will also be discussed.

  20. Integrating Fuzzy AHP and Fuzzy ARAS for evaluating financial performance

    Directory of Open Access Journals (Sweden)

    Abdolhamid Safaei Ghadikolaei

    2014-09-01

    Full Text Available Multi Criteria Decision Making (MCDM is an advanced field of Operation Research; recently MCDM methods are efficient and common tools for performance evaluation in many areas such as finance and economy. The aim of this study is to show one of applications of mathematics in real word. This study with considering value based measures and accounting based measures simultaneously, provided a hybrid approach of MCDM methods in fuzzy environment for financial performance evaluation of automotive and parts manufacturing industry of Tehran stock exchange (TSE.for this purpose Fuzzy analytic hierarchy process (FAHP is applied to determine the relative important of each criterion, then The companies are ranked according their financial performance by using fuzzy additive ratio assessment (Fuzzy ARAS method. The finding of this study showed effective of this approach in evaluating financial performance.

  1. Pemodelan Sistem Fuzzy Dengan Menggunakan Matlab

    Directory of Open Access Journals (Sweden)

    Afan Galih Salman

    2010-12-01

    Full Text Available Fuzzy logic is a method in soft computing category, a method that could process uncertain, inaccurate, and less cost implemented data. Some methods in soft computing category besides fuzzy logic are artificial network nerve, probabilistic reasoning, and evolutionary computing. Fuzzy logic has the ability to develop fuzzy system that is intelligent system in uncertain environment. Some stages in fuzzy system formation process is input and output analysis, determining input and output variable, defining each fuzzy set member function, determining rules based on experience or knowledge of an expert in his field, and implementing fuzzy system. Overall, fuzzy logic uses simple mathematical concept, understandable, detectable uncertain and accurate data. Fuzzy system could create and apply expert experiences directly without exercise process and effort to decode the knowledge into a computer until becoming a modeling system that could be relied on decision making.

  2. Fuzzy histogram for internal and external fuzzy directional relations

    OpenAIRE

    Salamat , Nadeem; Zahzah , El-Hadi

    2009-01-01

    5 Pages; Spatial relations have key point importance in image analysis and computer vision. Numerous technics have been developed to study these relations especially directional relations. Modern digital computers give rise to quantitative methods and among them fuzzy methods have core importance due to handling imprecise knowledge information and vagueness. In most fuzzy methods external directional relations are considered which are useful for small scale space image analysis but in large s...

  3. Solution of Fuzzy Differential Equations Using Fuzzy Sumudu Transforms

    Directory of Open Access Journals (Sweden)

    Raheleh Jafari

    2018-01-01

    Full Text Available The uncertain nonlinear systems can be modeled with fuzzy differential equations (FDEs and the solutions of these equations are applied to analyze many engineering problems. However, it is very difficult to obtain solutions of FDEs. In this paper, the solutions of FDEs are approximated by utilizing the fuzzy Sumudu transform (FST method. Significant theorems are suggested in order to explain the properties of FST. The proposed method is validated with three real examples.

  4. Theta-Generalized closed sets in fuzzy topological spaces

    International Nuclear Information System (INIS)

    El-Shafei, M.E.; Zakari, A.

    2006-01-01

    In this paper we introduce the concepts of theta-generalized closed fuzzy sets and generalized fuzzy sets in topological spaces. Furthermore, generalized fuzzy sets are extended to theta-generalized fuzzy sets. Also, we introduce the concepts of fuzzy theta-generalized continuous and fuzzy theta-generalized irresolute mappings. (author)

  5. Neutral network and fuzzy logic based grate control; Roststyrning med neutrala naetverk och fuzzy logic

    Energy Technology Data Exchange (ETDEWEB)

    Ramstroem, Erik [TPS Termiska Processer AB, Nykoeping (Sweden)

    2002-04-01

    Grate-control is a complex task in many ways. The relations between controlled variables and the values they depend on are mostly unknown. Research projects are going on to create grate models based on physical laws. Those models are too complex for control implementation. The evaluation time is to long for control use. Another fundamental difficulty is that the relationships are none linear. That is, for a specific change in control value, the change in controlled value depends on the original size of control value, process disturbances and controlled values. There are extensive theories for linear process control. Non-linear control theory is used in robotic applications, but not in process and combustion control. The aim of grate control is to use as much of the grate area as possible, without having unburned material in ash. The outlined strategy is: To keep the position of the final bum out zone constant and its extension controlled. The control variables should be primary airflow, distribution of primary air, and fuel flow. Disturbances that should be measured are the fuel moisture content, the temperature of primary air and the grate temperature under the fuel bed. Technologies used are, fuzzy-logic and neural networks. A combination of booth could be used as well as any of them separately. A Fuzzy-logic controller acts as a computerised operator. Rules are specified with 'if - then' thesis. An example of that is: - if temperature is low, then close the valve The boundaries between the rules are made fuzzy. That makes it possible for the temperature to be just a bit low, which makes the valve open a bit. A lot of rules are created so that the controller knows what to do in every situation. Neural networks are sort of multi dimensional curves, with arbitrary degrees of freedom. The nets are used to predict future process values from measured ones. The model is evaluated from collected data. Parameters are adjusted for best correspondence between

  6. An extension of fuzzy decisi

    Directory of Open Access Journals (Sweden)

    Basem Mohamed Elomda

    2013-07-01

    Full Text Available This paper presents a new extension to Fuzzy Decision Maps (FDMs by allowing use of fuzzy linguistic values to represent relative importance among criteria in the preference matrix as well as representing relative influence among criteria for computing the steady-state matrix in the stage of Fuzzy Cognitive Map (FCM. The proposed model is called the Linguistic Fuzzy Decision Networks (LFDNs. The proposed LFDN provides considerable flexibility to decision makers when solving real world Multi-Criteria Decision-Making (MCDM problems. The performance of the proposed LFDN model is compared with the original FDM using a previously published case study. The result of comparison ensures the ability to draw the same decisions with a more realistic decision environment.

  7. Fuzzy logic based control system for fresh water aquaculture: A MATLAB based simulation approach

    Directory of Open Access Journals (Sweden)

    Rana Dinesh Singh

    2015-01-01

    Full Text Available Fuzzy control is regarded as the most widely used application of fuzzy logic. Fuzzy logic is an innovative technology to design solutions for multiparameter and non-linear control problems. One of the greatest advantages of fuzzy control is that it uses human experience and process information obtained from operator rather than a mathematical model for the definition of a control strategy. As a result, it often delivers solutions faster than conventional control design techniques. The proposed system is an attempt to apply fuzzy logic techniques to predict the stress factor on the fish, based on line data and rule base generated using domain expert. The proposed work includes a use of Data acquisition system, an interfacing device for on line parameter acquisition and analysis, fuzzy logic controller (FLC for inferring the stress factor. The system takes stress parameters on the fish as inputs, fuzzified by using FLC with knowledge base rules and finally provides single output. All the parameters are controlled and calibrated by the fuzzy logic toolbox and MATLAB programming.

  8. FUZZY LOGIC IN LEGAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Z. Gonul BALKIR

    2011-04-01

    Full Text Available The necessity of examination of every case within its peculiar conditions in social sciences requires different approaches complying with the spirit and nature of social sciences. Multiple realities require different and various perceptual interpretations. In modern world and social sciences, interpretation of perception of valued and multi-valued have been started to be understood by the principles of fuzziness and fuzzy logic. Having the verbally expressible degrees of truthness such as true, very true, rather true, etc. fuzzy logic provides the opportunity for the interpretation of especially complex and rather vague set of information by flexibility or equivalence of the variables’ of fuzzy limitations. The methods and principles of fuzzy logic can be benefited in examination of the methodological problems of law, especially in the applications of filling the legal loopholes arising from the ambiguities and interpretation problems in order to understand the legal rules in a more comprehensible and applicable way and the efficiency of legal implications. On the other hand, fuzzy logic can be used as a technical legal method in legal education and especially in legal case studies and legal practice applications in order to provide the perception of law as a value and the more comprehensive and more quality perception and interpretation of value of justice, which is the core value of law. In the perception of what happened as it has happened in legal relationships and formations, the understanding of social reality and sociological legal rules with multi valued sense perspective and the their applications in accordance with the fuzzy logic’s methods could create more equivalent and just results. It can be useful for the young lawyers and law students as a facilitating legal method especially in the materialization of the perception and interpretation of multi valued and variables. Using methods and principles of fuzzy logic in legal

  9. On the mathematics of fuzziness

    Energy Technology Data Exchange (ETDEWEB)

    Kerre, E. [Ghent Univ. (Belgium)

    1994-12-31

    During the past twenty-five years, the scientific community has been working very extensively on the development of reliable models for the representation and manipulation of impreciseness and uncertainty that pervade the real world. Fuzzy set theory is one of the most popular theories able to treat incomplete information. In this paper, the basic mathematical principles underlying fuzzy set theory are outlined. Special attention is paid to the way that set theory has influenced the development of mathematics in a positive way.

  10. On the mathematics of fuzziness

    International Nuclear Information System (INIS)

    Kerre, E.

    1994-01-01

    During the past twenty-five years, the scientific community has been working very extensively on the development of reliable models for the representation and manipulation of impreciseness and uncertainty that pervade the real world. Fuzzy set theory is one of the most popular theories able to treat incomplete information. In this paper, the basic mathematical principles underlying fuzzy set theory are outlined. Special attention is paid to the way that set theory has influenced the development of mathematics in a positive way

  11. Fuzzy reasoning on Horn Set

    International Nuclear Information System (INIS)

    Liu, X.; Fang, K.

    1986-01-01

    A theoretical study in fuzzy reasoning on Horn Set is presented in this paper. The authors first introduce the concepts of λ-Horn Set of clauses and λ-Input Half Lock deduction. They then use the λ-resolution method to discuss fuzzy reasoning on λ-Horn set of clauses. It is proved that the proposed λ-Input Half Lock resolution method is complete with the rules in certain format

  12. A Fuzzy Query Mechanism for Human Resource Websites

    Science.gov (United States)

    Lai, Lien-Fu; Wu, Chao-Chin; Huang, Liang-Tsung; Kuo, Jung-Chih

    Users' preferences often contain imprecision and uncertainty that are difficult for traditional human resource websites to deal with. In this paper, we apply the fuzzy logic theory to develop a fuzzy query mechanism for human resource websites. First, a storing mechanism is proposed to store fuzzy data into conventional database management systems without modifying DBMS models. Second, a fuzzy query language is proposed for users to make fuzzy queries on fuzzy databases. User's fuzzy requirement can be expressed by a fuzzy query which consists of a set of fuzzy conditions. Third, each fuzzy condition associates with a fuzzy importance to differentiate between fuzzy conditions according to their degrees of importance. Fourth, the fuzzy weighted average is utilized to aggregate all fuzzy conditions based on their degrees of importance and degrees of matching. Through the mutual compensation of all fuzzy conditions, the ordering of query results can be obtained according to user's preference.

  13. An Improvement for Fuzzy Stochastic Goal Programming Problems

    Directory of Open Access Journals (Sweden)

    Shu-Cheng Lin

    2017-01-01

    Full Text Available We examined the solution process for linear programming problems under a fuzzy and random environment to transform fuzzy stochastic goal programming problems into standard linear programming problems. A previous paper that revised the solution process with the lower-side attainment index motivated our work. In this paper, we worked on a revision for both-side attainment index to amend its definition and theorems. Two previous examples were used to examine and demonstrate our improvement over previous results. Our findings not only improve the previous paper with both-side attainment index, but also provide a theoretical extension from lower-side attainment index to the both-side attainment index.

  14. Fuzzy barrier distributions

    International Nuclear Information System (INIS)

    Piasecki, E.

    2009-01-01

    Heavy-ion collisions often produce a fusion barrier distribution with structures displaying a fingerprint of couplings to highly collective excitations [1]. Basically the same distribution can be obtained from large-angle quasi-elastic scattering, though here the role of the many weak direct-reaction channels is unclear. For 2 0N e + 9 0Z r we have observed the barrier structures expected for the highly deformed neon projectile, but for 2 0N e + 9 2Z r we find completely smooth distribution (see Fig.1). We find that transfer channels in these systems are of similar strength but single particle excitations are significantly stronger in the latter case. They apparently reduce the 'resolving power' of the quasi-elastic channel, what leads to smeared out, or 'fuzzy' barrier distribution. This is the first case when such a phenomenon has been observed.(author)

  15. Small-world networks of fuzzy chaotic oscillators

    CERN Document Server

    Bucolo, M; Fortuna, L

    2003-01-01

    Small-world topology has been used to build lattices of nonlinear fuzzy systems. Chaotic units, ruled by linguistic description and with specified Lyapunov exponent, have been realized and connected using linear diffusion coefficient. The dynamic features of the networks versus the number of systems connected have been investigated to underline phenomena like spatiotemporal chaos and complete regularization. The synchronization characteristics in case of sparse long-term connections and the performances comparison with regular and random network configurations are shown.

  16. On Fuzzy β-I-open sets and Fuzzy β-I-continuous functions

    International Nuclear Information System (INIS)

    Keskin, Aynur

    2009-01-01

    In this paper, first of all we obtain some properties and characterizations of fuzzy β-I-open sets. After that, we also define the notion of β-I-closed sets and obtain some properties. Lastly, we introduce the notions of fuzzy β-I-continuity with the help of fuzzy β-I-open sets to obtain decomposition of fuzzy continuity.

  17. On Fuzzy {beta}-I-open sets and Fuzzy {beta}-I-continuous functions

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Aynur [Department of Mathematics, Faculty of Science and Arts, Selcuk University, Campus, 42075 Konya (Turkey)], E-mail: akeskin@selcuk.edu.tr

    2009-11-15

    In this paper, first of all we obtain some properties and characterizations of fuzzy {beta}-I-open sets. After that, we also define the notion of {beta}-I-closed sets and obtain some properties. Lastly, we introduce the notions of fuzzy {beta}-I-continuity with the help of fuzzy {beta}-I-open sets to obtain decomposition of fuzzy continuity.

  18. Gene conversion in yeast as a function of linear energy transfer (LET) for low-LET radiation

    International Nuclear Information System (INIS)

    Unrau, P.; Morrison, D.P.; Johnson, J.R.

    1992-05-01

    The relative biological effectiveness (RBE) for low-LET radiation is known to depend on such factors as LET and dose rate. Microdosimetric calculations indicate that the biological target size could also be an important parameter, and calculations predict that the RBE for effects produced by hits in target sizes below about 100 nm should be unity for all low LET radiation. We have measured that RBE for gene conversion in yeast (a small target) for five different low LET photon sources, and the results were consistent with an RBE of unity, which agrees with microdosimetric predictions. 4 refs

  19. A geographic information system for gas power plant location using analytical hierarchy process and fuzzy logic

    International Nuclear Information System (INIS)

    Alavipoor, F. S.; Karimi, S.; Balist, J.; Khakian, A. H.

    2016-01-01

    This research recommends a geographic information system-based and multi-criteria evaluation for locating a gas power plant in Natanz City in Iran. The multi-criteria decision framework offers a hierarchy model to select a suitable place for a gas power plant. This framework includes analytic hierarchy process, fuzzy set theory and weighted linear combination. The analytic hierarchy process was applied to compare the importance of criteria among hierarchy elements classified by environmental group criteria. In the next step, the fuzzy logic was used to regulate the criteria through various fuzzy membership functions and fuzzy layers were formed by using fuzzy operators in the Arc-GIS environment. Subsequently, they were categorized into 6 classes using reclassify function. Then weighted linear combination was applied to combine the research layers. Finally, the two approaches were analyzed to find the most suitable place to set up a gas power plant. According to the results, the utilization of GAMMA fuzzy operator was shown to be suitable for this site selection.

  20. Inclusive integral evaluation for mammograms using the hierarchical fuzzy integral (HFI) model

    International Nuclear Information System (INIS)

    Amano, Takashi; Yamashita, Kazuya; Arao, Shinichi; Kitayama, Akira; Hayashi, Akiko; Suemori, Shinji; Ohkura, Yasuhiko

    2000-01-01

    Physical factors (physically evaluated values) and psychological factors (fuzzy measurements) of breast x-ray images were comprehensively evaluated by applying breast x-ray images to an extended stratum-type fuzzy integrating model. In addition, x-ray images were evaluated collectively by integrating the quality (sharpness, graininess, and contrast) of x-ray images and three representative shadows (fibrosis, calcification, tumor) in the breast x-ray images. We selected the most appropriate system for radiography of the breast from three kinds of intensifying screens and film systems for evaluation by this method and investigated the relationship between the breast x-ray images and noise equivalent quantum number, which is called the overall physical evaluation method, and between the breast x-ray images and psychological evaluation by a visual system with a stratum-type fuzzy integrating model. We obtained a linear relationship between the breast x-ray image and noise-equivalent quantum number, and linearity between the breast x-ray image and psychological evaluation by the visual system. Therefore, the determination of fuzzy measurement, which is a scale for fuzzy evaluation of psychological factors of the observer, and physically evaluated values with a stratum-type fuzzy integrating model enabled us to make a comprehensive evaluation of x-ray images that included both psychological and physical aspects. (author)

  1. Prediction system of hydroponic plant growth and development using algorithm Fuzzy Mamdani method

    Science.gov (United States)

    Sudana, I. Made; Purnawirawan, Okta; Arief, Ulfa Mediaty

    2017-03-01

    Hydroponics is a method of farming without soil. One of the Hydroponic plants is Watercress (Nasturtium Officinale). The development and growth process of hydroponic Watercress was influenced by levels of nutrients, acidity and temperature. The independent variables can be used as input variable system to predict the value level of plants growth and development. The prediction system is using Fuzzy Algorithm Mamdani method. This system was built to implement the function of Fuzzy Inference System (Fuzzy Inference System/FIS) as a part of the Fuzzy Logic Toolbox (FLT) by using MATLAB R2007b. FIS is a computing system that works on the principle of fuzzy reasoning which is similar to humans' reasoning. Basically FIS consists of four units which are fuzzification unit, fuzzy logic reasoning unit, base knowledge unit and defuzzification unit. In addition to know the effect of independent variables on the plants growth and development that can be visualized with the function diagram of FIS output surface that is shaped three-dimensional, and statistical tests based on the data from the prediction system using multiple linear regression method, which includes multiple linear regression analysis, T test, F test, the coefficient of determination and donations predictor that are calculated using SPSS (Statistical Product and Service Solutions) software applications.

  2. gsSKAT: Rapid gene set analysis and multiple testing correction for rare-variant association studies using weighted linear kernels.

    Science.gov (United States)

    Larson, Nicholas B; McDonnell, Shannon; Cannon Albright, Lisa; Teerlink, Craig; Stanford, Janet; Ostrander, Elaine A; Isaacs, William B; Xu, Jianfeng; Cooney, Kathleen A; Lange, Ethan; Schleutker, Johanna; Carpten, John D; Powell, Isaac; Bailey-Wilson, Joan E; Cussenot, Olivier; Cancel-Tassin, Geraldine; Giles, Graham G; MacInnis, Robert J; Maier, Christiane; Whittemore, Alice S; Hsieh, Chih-Lin; Wiklund, Fredrik; Catalona, William J; Foulkes, William; Mandal, Diptasri; Eeles, Rosalind; Kote-Jarai, Zsofia; Ackerman, Michael J; Olson, Timothy M; Klein, Christopher J; Thibodeau, Stephen N; Schaid, Daniel J

    2017-05-01

    Next-generation sequencing technologies have afforded unprecedented characterization of low-frequency and rare genetic variation. Due to low power for single-variant testing, aggregative methods are commonly used to combine observed rare variation within a single gene. Causal variation may also aggregate across multiple genes within relevant biomolecular pathways. Kernel-machine regression and adaptive testing methods for aggregative rare-variant association testing have been demonstrated to be powerful approaches for pathway-level analysis, although these methods tend to be computationally intensive at high-variant dimensionality and require access to complete data. An additional analytical issue in scans of large pathway definition sets is multiple testing correction. Gene set definitions may exhibit substantial genic overlap, and the impact of the resultant correlation in test statistics on Type I error rate control for large agnostic gene set scans has not been fully explored. Herein, we first outline a statistical strategy for aggregative rare-variant analysis using component gene-level linear kernel score test summary statistics as well as derive simple estimators of the effective number of tests for family-wise error rate control. We then conduct extensive simulation studies to characterize the behavior of our approach relative to direct application of kernel and adaptive methods under a variety of conditions. We also apply our method to two case-control studies, respectively, evaluating rare variation in hereditary prostate cancer and schizophrenia. Finally, we provide open-source R code for public use to facilitate easy application of our methods to existing rare-variant analysis results. © 2017 WILEY PERIODICALS, INC.

  3. Suitability of a Consensual Fuzzy Inference System to Evaluate Suppliers of Strategic Products

    Directory of Open Access Journals (Sweden)

    Nazario Garcia

    2018-01-01

    Full Text Available This paper designs a bidding and supplier evaluation model focused on strategic product procurement, and develops their respective evaluation knowledge bases. The model is built using the most relevant variables cited in the reviewed procurement literature and allows to compare two evaluation methods: a factor weighting method (WM and a fuzzy inference system (FIS. By consulting an expert panel and using a two-tuples symbolic translation system, strong fuzzy partitions for all model variables are built. The method, based on central symmetry, permits to obtain the fuzzy label borders from their cores, which have been previously agreed among experts. The system also allows to agree the fuzzy rules to embed in the FIS. The results show the FIS method’s superiority as it allows to better manage the non-linear behavior and the uncertainty inherent to the supplier evaluation process.

  4. Impulsive synchronization for Takagi-Sugeno fuzzy model and its application to continuous chaotic system

    International Nuclear Information System (INIS)

    Wang Yanwu; Guan Zhihong; Wang, Hua O.

    2005-01-01

    Recently, chaos synchronization based on T-S fuzzy model has attracted much attention because of the applicability in the case of uncertainty. In the fuzzy control scheme, linear and adaptive control methods have been introduced to solve the control problem. In this Letter, an impulsive synchronization scheme for T-S fuzzy model is developed. The proposed impulsive control scheme seems to have a simple control structure and may need less control energy than the normal continuous ones for the synchronization of T-S fuzzy system. Sufficient conditions for the impulsive synchronization are derived. The method is illustrated by applications to continuous chaotic systems and the simulation results demonstrate the effectiveness of the proposed control method

  5. Reliable Portfolio Selection Problem in Fuzzy Environment: An mλ Measure Based Approach

    Directory of Open Access Journals (Sweden)

    Yuan Feng

    2017-04-01

    Full Text Available This paper investigates a fuzzy portfolio selection problem with guaranteed reliability, in which the fuzzy variables are used to capture the uncertain returns of different securities. To effectively handle the fuzziness in a mathematical way, a new expected value operator and variance of fuzzy variables are defined based on the m λ measure that is a linear combination of the possibility measure and necessity measure to balance the pessimism and optimism in the decision-making process. To formulate the reliable portfolio selection problem, we particularly adopt the expected total return and standard variance of the total return to evaluate the reliability of the investment strategies, producing three risk-guaranteed reliable portfolio selection models. To solve the proposed models, an effective genetic algorithm is designed to generate the approximate optimal solution to the considered problem. Finally, the numerical examples are given to show the performance of the proposed models and algorithm.

  6. Takagi-Sugeno Fuzzy Systems Non-fragile H-infinity Filtering

    CERN Document Server

    Chang, Xiao-Heng

    2012-01-01

    "Takagi-Sugeno Fuzzy Systems Non-fragile H-infinity Filtering" investigates the problem of non-fragile H-infinity filter design for T-S fuzzy systems. The nonlinear plant is represented by a T-S fuzzy model. Given a T-S fuzzy system, the objective of this book is to design an H-infinity filter with the gain variations such that the filtering error system guarantees a prescribed H-infinity performance level. Furthermore, it demonstrates that the solution of non-fragile H-infinity filter design problem can be obtained by solving a set of linear matrix inequalities (LMIs). The intended audiences are graduate students and researchers both from the fields of engineering and mathematics. Dr. Xiao-Heng Chang is an Associate Professor at the College of Engineering, Bohai University, Jinzhou, Liaoning, China. He is also a Postdoctoral Researcher at the College of Information Science and Engineering, Northeastern University, Shenyang, China.

  7. Advanced Interval Type-2 Fuzzy Sliding Mode Control for Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Ji-Hwan Hwang

    2017-01-01

    Full Text Available In this paper, advanced interval type-2 fuzzy sliding mode control (AIT2FSMC for robot manipulator is proposed. The proposed AIT2FSMC is a combination of interval type-2 fuzzy system and sliding mode control. For resembling a feedback linearization (FL control law, interval type-2 fuzzy system is designed. For compensating the approximation error between the FL control law and interval type-2 fuzzy system, sliding mode controller is designed, respectively. The tuning algorithms are derived in the sense of Lyapunov stability theorem. Two-link rigid robot manipulator with nonlinearity is used to test and the simulation results are presented to show the effectiveness of the proposed method that can control unknown system well.

  8. Modified Levenberg-Marquardt Method for RÖSSLER Chaotic System Fuzzy Modeling Training

    Science.gov (United States)

    Wang, Yu-Hui; Wu, Qing-Xian; Jiang, Chang-Sheng; Xue, Ya-Li; Fang, Wei

    Generally, fuzzy approximation models require some human knowledge and experience. Operator's experience is involved in the mathematics of fuzzy theory as a collection of heuristic rules. The main goal of this paper is to present a new method for identifying unknown nonlinear dynamics such as Rössler system without any human knowledge. Instead of heuristic rules, the presented method uses the input-output data pairs to identify the Rössler chaotic system. The training algorithm is a modified Levenberg-Marquardt (L-M) method, which can adjust the parameters of each linear polynomial and fuzzy membership functions on line, and do not rely on experts' experience excessively. Finally, it is applied to training Rössler chaotic system fuzzy identification. Comparing this method with the standard L-M method, the convergence speed is accelerated. The simulation results demonstrate the effectiveness of the proposed method.

  9. CONTROL SYSTEM DESIGN WITH FUZZY LOGIC PID-СONTROLLER TYPE 2

    Directory of Open Access Journals (Sweden)

    A. Tунік

    2011-04-01

    Full Text Available This paper presents a fuzzy logic PID-controller synthesis method for solid body guidance. Formany nonlinear systems with nonlinearities and uncertainties, the performance of fuzzy controllertype 1 may not be satisfactory. Therefore, in this work, fuzzy logic type 2 controller design isintroduced. These controllers capture the advantage of a linear controller in terms of simplicity andalso can handle nonlinearity because of their inference mechanism.The main feature of the proposedmethod constitutes in a membership functions type 2 applications. The membership function type 2is represented by upper and lower membership functions of type 1. The interval between these twofunctions represent the footprint of uncertainty, which give an opportunity to synthesize commonregulator for set of a models. The structure of fuzzy logic controller for solid body control isgrounded. Simulation results confirm the effectiveness of the proposed approach.

  10. High dimensional model representation method for fuzzy structural dynamics

    Science.gov (United States)

    Adhikari, S.; Chowdhury, R.; Friswell, M. I.

    2011-03-01

    Uncertainty propagation in multi-parameter complex structures possess significant computational challenges. This paper investigates the possibility of using the High Dimensional Model Representation (HDMR) approach when uncertain system parameters are modeled using fuzzy variables. In particular, the application of HDMR is proposed for fuzzy finite element analysis of linear dynamical systems. The HDMR expansion is an efficient formulation for high-dimensional mapping in complex systems if the higher order variable correlations are weak, thereby permitting the input-output relationship behavior to be captured by the terms of low-order. The computational effort to determine the expansion functions using the α-cut method scales polynomically with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is first illustrated for multi-parameter nonlinear mathematical test functions with fuzzy variables. The method is then integrated with a commercial finite element software (ADINA). Modal analysis of a simplified aircraft wing with fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations. It is shown that using the proposed HDMR approach, the number of finite element function calls can be reduced without significantly compromising the accuracy.

  11. Fuzzy logic controllers and chaotic natural convection loops

    International Nuclear Information System (INIS)

    Theler, German

    2007-01-01

    The study of natural circulation loops is a subject of special concern for the engineering design of advanced nuclear reactors, as natural convection provides an efficient and completely passive heat removal system. However, under certain circumstances thermal-fluid-dynamical instabilities may appear, threatening the reactor safety as a whole.On the other hand, fuzzy logic controllers provide an ideal framework to approach highly non-linear control problems. In the present work, we develop a software-based fuzzy logic controller and study its application to chaotic natural convection loops.We numerically analyse the linguistic control of the loop known as the Welander problem in such conditions that, if the controller were not present, the circulation flow would be non-periodic unstable.We also design a Taka gi-Sugeno fuzzy controller based on a fuzzy model of a natural convection loop with a toroidal geometry, in order to stabilize a Lorenz-chaotic behaviour.Finally, we show experimental results obtained in a rectangular natural circulation loop [es

  12. Research on fuzzy PID control to electronic speed regulator

    Science.gov (United States)

    Xu, Xiao-gang; Chen, Xue-hui; Zheng, Sheng-guo

    2007-12-01

    As an important part of diesel engine, the speed regulator plays an important role in stabilizing speed and improving engine's performance. Because there are so many model parameters of diesel-engine considered in traditional PID control and these parameters present non-linear characteristic.The method to adjust engine speed using traditional PID is not considered as a best way. Especially for the diesel-engine generator set. In this paper, the Fuzzy PID control strategy is proposed. Some problems about its utilization in electronic speed regulator are discussed. A mathematical model of electric control system for diesel-engine generator set is established and the way of the PID parameters in the model to affect the function of system is analyzed. And then it is proposed the differential coefficient must be applied in control design for reducing dynamic deviation of system and adjusting time. Based on the control theory, a study combined control with PID calculation together for turning fuzzy PID parameter is implemented. And also a simulation experiment about electronic speed regulator system was conducted using Matlab/Simulink and the Fuzzy-Toolbox. Compared with the traditional PID Algorithm, the simulated results presented obvious improvements in the instantaneous speed governing rate and steady state speed governing rate of diesel-engine generator set when the fuzzy logic control strategy used.

  13. Compound Option Pricing under Fuzzy Environment

    Directory of Open Access Journals (Sweden)

    Xiandong Wang

    2014-01-01

    Full Text Available Considering the uncertainty of a financial market includes two aspects: risk and vagueness; in this paper, fuzzy sets theory is applied to model the imprecise input parameters (interest rate and volatility. We present the fuzzy price of compound option by fuzzing the interest and volatility in Geske’s compound option pricing formula. For each α, the α-level set of fuzzy prices is obtained according to the fuzzy arithmetics and the definition of fuzzy-valued function. We apply a defuzzification method based on crisp possibilistic mean values of the fuzzy interest rate and fuzzy volatility to obtain the crisp possibilistic mean value of compound option price. Finally, we present a numerical analysis to illustrate the compound option pricing under fuzzy environment.

  14. Fuzzy Arden Syntax: A fuzzy programming language for medicine.

    Science.gov (United States)

    Vetterlein, Thomas; Mandl, Harald; Adlassnig, Klaus-Peter

    2010-05-01

    The programming language Arden Syntax has been optimised for use in clinical decision support systems. We describe an extension of this language named Fuzzy Arden Syntax, whose original version was introduced in S. Tiffe's dissertation on "Fuzzy Arden Syntax: Representation and Interpretation of Vague Medical Knowledge by Fuzzified Arden Syntax" (Vienna University of Technology, 2003). The primary aim is to provide an easy means of processing vague or uncertain data, which frequently appears in medicine. For both propositional and number data types, fuzzy equivalents have been added to Arden Syntax. The Boolean data type was generalised to represent any truth degree between the two extremes 0 (falsity) and 1 (truth); fuzzy data types were introduced to represent fuzzy sets. The operations on truth values and real numbers were generalised accordingly. As the conditions to decide whether a certain programme unit is executed or not may be indeterminate, a Fuzzy Arden Syntax programme may split. The data in the different branches may be optionally aggregated subsequently. Fuzzy Arden Syntax offers the possibility to formulate conveniently Medical Logic Modules (MLMs) based on the principle of a continuously graded applicability of statements. Furthermore, ad hoc decisions about sharp value boundaries can be avoided. As an illustrative example shows, an MLM making use of the features of Fuzzy Arden Syntax is not significantly more complex than its Arden Syntax equivalent; in the ideal case, a programme handling crisp data remains practically unchanged when compared to its fuzzified version. In the latter case, the output data, which can be a set of weighted alternatives, typically depends continuously from the input data. In typical applications an Arden Syntax MLM can produce a different output after only slight changes of the input; discontinuities are in fact unavoidable when the input varies continuously but the output is taken from a discrete set of possibilities

  15. ANALYSIS OF FUZZY QUEUES: PARAMETRIC PROGRAMMING APPROACH BASED ON RANDOMNESS - FUZZINESS CONSISTENCY PRINCIPLE

    OpenAIRE

    Dhruba Das; Hemanta K. Baruah

    2015-01-01

    In this article, based on Zadeh’s extension principle we have apply the parametric programming approach to construct the membership functions of the performance measures when the interarrival time and the service time are fuzzy numbers based on the Baruah’s Randomness- Fuzziness Consistency Principle. The Randomness-Fuzziness Consistency Principle leads to defining a normal law of fuzziness using two different laws of randomness. In this article, two fuzzy queues FM...

  16. Fuzzy upper bounds and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani-damaneh, M. [Department of Mathematics, Faculty of Mathematical Science and Computer Engineering, Teacher Training University, 599 Taleghani Avenue, Tehran 15618 (Iran, Islamic Republic of)], E-mail: soleimani_d@yahoo.com

    2008-04-15

    This paper considers the concept of fuzzy upper bounds and provides some relevant applications. Considering a fuzzy DEA model, the existence of a fuzzy upper bound for the objective function of the model is shown and an effective approach to solve that model is introduced. Some dual interpretations are provided, which are useful for practical purposes. Applications of the concept of fuzzy upper bounds in two physical problems are pointed out.

  17. Neuro-fuzzy Control of Integrating Processes

    Directory of Open Access Journals (Sweden)

    Anna Vasičkaninová

    2011-11-01

    Full Text Available Fuzzy technology is adaptive and easily applicable in different areas.Fuzzy logic provides powerful tools to capture the perceptionof natural phenomena. The paper deals with tuning of neuro-fuzzy controllers for integrating plant and for integrating plantswith time delay. The designed approach is verified on three examples by simulations and compared plants with classical PID control.Designed fuzzy controllers lead to better closed-loop control responses then classical PID controllers.

  18. AN IMPROVED FUZZY CLUSTERING ALGORITHM FOR MICROARRAY IMAGE SPOTS SEGMENTATION

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-11-01

    Full Text Available An automatic cDNA microarray image processing using an improved fuzzy clustering algorithm is presented in this paper. The spot segmentation algorithm proposed uses the gridding technique developed by the authors earlier, for finding the co-ordinates of each spot in an image. Automatic cropping of spots from microarray image is done using these co-ordinates. The present paper proposes an improved fuzzy clustering algorithm Possibility fuzzy local information c means (PFLICM to segment the spot foreground (FG from background (BG. The PFLICM improves fuzzy local information c means (FLICM algorithm by incorporating typicality of a pixel along with gray level information and local spatial information. The performance of the algorithm is validated using a set of simulated cDNA microarray images added with different levels of AWGN noise. The strength of the algorithm is tested by computing the parameters such as the Segmentation matching factor (SMF, Probability of error (pe, Discrepancy distance (D and Normal mean square error (NMSE. SMF value obtained for PFLICM algorithm shows an improvement of 0.9 % and 0.7 % for high noise and low noise microarray images respectively compared to FLICM algorithm. The PFLICM algorithm is also applied on real microarray images and gene expression values are computed.

  19. A SELF-ORGANISING FUZZY LOGIC CONTROLLER

    African Journals Online (AJOL)

    ES Obe

    One major drawback of fuzzy logic controllers is the difficulty encountered in the construction of a rule- base ... The greatest limitation of fuzzy logic control is the lack ..... c(kT)= e(kT)-e((k-1)T). (16) .... with the aid of fuzzy models”, It in Industrial.

  20. On the intuitionistic fuzzy inner product spaces

    International Nuclear Information System (INIS)

    Goudarzi, M.; Vaezpour, S.M.; Saadati, R.

    2009-01-01

    In this paper, the definition of intuitionistic fuzzy inner product is given. By virtue of this definition, some convergence theorems, Schwarts inequality and the orthogonal concept for intuitionistic fuzzy inner product spaces are established and introduced. Moreover the relationship between this kind of spaces and intuitionistic fuzzy normed spaces is considered.

  1. Fuzzy control of pressurizer dynamic process

    International Nuclear Information System (INIS)

    Ming Zhedong; Zhao Fuyu

    2006-01-01

    Considering the characteristics of pressurizer dynamic process, the fuzzy control system that takes the advantages of both fuzzy controller and PID controller is designed for the dynamic process in pressurizer. The simulation results illustrate this type of composite control system is with better qualities than those of single fuzzy controller and single PID controller. (authors)

  2. Possible use of fuzzy logic in database

    Directory of Open Access Journals (Sweden)

    Vaclav Bezdek

    2011-04-01

    Full Text Available The article deals with fuzzy logic and its possible use in database systems. At first fuzzy thinking style is shown on a simple example. Next the advantages of the fuzzy approach to database searching are considered on the database of used cars in the Czech Republic.

  3. Effectiveness of Securities with Fuzzy Probabilistic Return

    Directory of Open Access Journals (Sweden)

    Krzysztof Piasecki

    2011-01-01

    Full Text Available The generalized fuzzy present value of a security is defined here as fuzzy valued utility of cash flow. The generalized fuzzy present value cannot depend on the value of future cash flow. There exists such a generalized fuzzy present value which is not a fuzzy present value in the sense given by some authors. If the present value is a fuzzy number and the future value is a random one, then the return rate is given as a probabilistic fuzzy subset on a real line. This kind of return rate is called a fuzzy probabilistic return. The main goal of this paper is to derive the family of effective securities with fuzzy probabilistic return. Achieving this goal requires the study of the basic parameters characterizing fuzzy probabilistic return. Therefore, fuzzy expected value and variance are determined for this case of return. These results are a starting point for constructing a three-dimensional image. The set of effective securities is introduced as the Pareto optimal set determined by the maximization of the expected return rate and minimization of the variance. Finally, the set of effective securities is distinguished as a fuzzy set. These results are obtained without the assumption that the distribution of future values is Gaussian. (original abstract

  4. The majority rule in a fuzzy environment.

    OpenAIRE

    Montero, Javier

    1986-01-01

    In this paper, an axiomatic approach to rational decision making in a fuzzy environment is studied. In particular, the majority rule is proposed as a rational way for aggregating fuzzy opinions in a group, when such agroup is defined as a fuzzy set.

  5. The fuzzy approach to statistical analysis

    NARCIS (Netherlands)

    Coppi, Renato; Gil, Maria A.; Kiers, Henk A. L.

    2006-01-01

    For the last decades, research studies have been developed in which a coalition of Fuzzy Sets Theory and Statistics has been established with different purposes. These namely are: (i) to introduce new data analysis problems in which the objective involves either fuzzy relationships or fuzzy terms;

  6. Study on Fuzzy Adaptive Fractional Order PIλDμ Control for Maglev Guiding System

    Science.gov (United States)

    Hu, Qing; Hu, Yuwei

    The mathematical model of the linear elevator maglev guiding system is analyzed in this paper. For the linear elevator needs strong stability and robustness to run, the integer order PID was expanded to the fractional order, in order to improve the steady state precision, rapidity and robustness of the system, enhance the accuracy of the parameter in fractional order PIλDμ controller, the fuzzy control is combined with the fractional order PIλDμ control, using the fuzzy logic achieves the parameters online adjustment. The simulations reveal that the system has faster response speed, higher tracking precision, and has stronger robustness to the disturbance.

  7. Fuzzy-logic assessment of failure hazard in pipelines due to mining activity

    Directory of Open Access Journals (Sweden)

    A. A. Malinowska

    2015-11-01

    Full Text Available The present research is aimed at a critical analysis of a method presently used for evaluating failure hazard in linear objects in mining areas. A fuzzy model of failure hazard of a linear object was created on the basis of the experience gathered so far. The rules of Mamdani fuzzy model have been used in the analyses. Finally the scaled model was integrated with a Geographic Information System (GIS, which was used to evaluate failure hazard in a water pipeline in a mining area.

  8. The function of the frizzled pathway in the Drosophila wing is dependent on inturned and fuzzy.

    OpenAIRE

    Lee, Haeryun; Adler, Paul N

    2002-01-01

    The Drosophila epidermis is characterized by a dramatic planar or tissue polarity. The frizzled pathway has been shown to be a key regulator of planar polarity for hairs on the wing, ommatidia in the eye, and sensory bristles on the notum. We have investigated the genetic relationships between putative frizzled pathway downstream genes inturned, fuzzy, and multiple wing hairs (inturned-like genes) and upstream genes such as frizzled, prickle, and starry night (frizzled-like genes). Previous d...

  9. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    Science.gov (United States)

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).

  10. Feedforward Tracking Control of Flat Recurrent Fuzzy Systems

    International Nuclear Information System (INIS)

    Gering, Stefan; Adamy, Jürgen

    2014-01-01

    Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis

  11. Feedforward Tracking Control of Flat Recurrent Fuzzy Systems

    Science.gov (United States)

    Gering, Stefan; Adamy, Jürgen

    2014-12-01

    Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis.

  12. Quick fuzzy backpropagation algorithm.

    Science.gov (United States)

    Nikov, A; Stoeva, S

    2001-03-01

    A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.

  13. On Intuitionistic Fuzzy Context-Free Languages

    Directory of Open Access Journals (Sweden)

    Jianhua Jin

    2013-01-01

    automata theory. Additionally, we introduce the concepts of Chomsky normal form grammar (IFCNF and Greibach normal form grammar (IFGNF based on intuitionistic fuzzy sets. The results of our study indicate that intuitionistic fuzzy context-free languages generated by IFCFGs are equivalent to those generated by IFGNFs and IFCNFs, respectively, and they are also equivalent to intuitionistic fuzzy recognizable step functions. Then some operations on the family of intuitionistic fuzzy context-free languages are discussed. Finally, pumping lemma for intuitionistic fuzzy context-free languages is investigated.

  14. A fuzzy controller for NPPs

    International Nuclear Information System (INIS)

    Schildt, G.H.

    1997-01-01

    A fuzzy controller for safety related process control is presented for applications in the field of NPPs. The size of necessary rules is relatively small. Thus, there exists a real chance for verification and validation of software due to the fact that the whole software can be structured into standard fuzzy software (like fuzzyfication, inference algorithms, and defuzzyfication), real-time operating system software, and the contents of the rule base. Furthermore, there is an excellent advantage fuel to real-time behaviour, because program execution time is much more predictable than for conventional PID-controller software. Additionally, up to now special know-how does exist to prove stability of fuzzy controller. Hardware design has been done due to fundamental principles of safety technique like watch dog function, dynamization principles, and quiescent current principle. (author). 3 refs, 5 figs

  15. A fuzzy controller for NPPs

    International Nuclear Information System (INIS)

    Schildt, G.H.

    1996-01-01

    After an introduction into safety terms a fuzzy controller for safety related process control will be presented, especially for applications in the field of NPPs. One can show that the size of necessary rules is relatively small. Thus, there exists a real chance for verification and validation of software due to the fact that the whole software can be structured into standard fuzzy software (like fuzzyfication, inference algorithms, and defuzzyfication), real-time operating system software, and the contents of the rule base. Furthermore, there is an excellent advantage due to real-time behaviour, because program execution time can be much more planned than for conventional PID-controller software. Additionally, up to now special know-how does exist to prove stability of fuzzy controller. Hardware design has been done due to fundamental principles of safety technique like watch dog function, dynamization principle, and quiescent current principle

  16. A fuzzy controller for NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Schildt, G H [Technische Univ., Vienna (Austria)

    1997-07-01

    A fuzzy controller for safety related process control is presented for applications in the field of NPPs. The size of necessary rules is relatively small. Thus, there exists a real chance for verification and validation of software due to the fact that the whole software can be structured into standard fuzzy software (like fuzzyfication, inference algorithms, and defuzzyfication), real-time operating system software, and the contents of the rule base. Furthermore, there is an excellent advantage fuel to real-time behaviour, because program execution time is much more predictable than for conventional PID-controller software. Additionally, up to now special know-how does exist to prove stability of fuzzy controller. Hardware design has been done due to fundamental principles of safety technique like watch dog function, dynamization principles, and quiescent current principle. (author). 3 refs, 5 figs.

  17. The Feedback Control Strategy of the Takagi-Sugeno Fuzzy Car-Following Model with Two Delays

    Directory of Open Access Journals (Sweden)

    Cong Zhai

    2016-01-01

    Full Text Available Considering the driver’s sensing the headway and velocity the different time-varying delays exist, respectively, and the sensitivity of drivers changes with headway and speed. Introducing the fuzzy control theory, a new fuzzy car-following model with two delays is presented, and the feedback control strategy of the new fuzzy car-following model is studied. Based on the Lyapunov function theory and linear matrix inequality (LMI approach, the sufficient condition that the existence of the fuzzy controller is given making the closed-loop system is asymptotic, stable; namely, traffic congestion phenomenon can effectively be suppressed, and the controller gain matrix can be obtained via solving linear matrix inequality. Finally, the simulation examples verify that the method which suppresses traffic congestion and reduces fuel consumption and exhaust emissions is effective.

  18. Combining fuzzy mathematics with fuzzy logic to solve business management problems

    Science.gov (United States)

    Vrba, Joseph A.

    1993-12-01

    Fuzzy logic technology has been applied to control problems with great success. Because of this, many observers fell that fuzzy logic is applicable only in the control arena. However, business management problems almost never deal with crisp values. Fuzzy systems technology--a combination of fuzzy logic, fuzzy mathematics and a graphical user interface--is a natural fit for developing software to assist in typical business activities such as planning, modeling and estimating. This presentation discusses how fuzzy logic systems can be extended through the application of fuzzy mathematics and the use of a graphical user interface to make the information contained in fuzzy numbers accessible to business managers. As demonstrated through examples from actual deployed systems, this fuzzy systems technology has been employed successfully to provide solutions to the complex real-world problems found in the business environment.

  19. Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy

    Science.gov (United States)

    Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng

    2018-06-01

    To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.

  20. Highly Effective Non-Viral Antitumor Gene Therapy System Comprised of Biocompatible Small Plasmid Complex Particles Consisting of pDNA, Anionic Polysaccharide, and Fully Deprotected Linear Polyethylenimine

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Koyama

    2015-07-01

    Full Text Available We have reported that ternary complexes of plasmid DNA with conventional linear polyethylenimine (l-PEI and certain polyanions were very stably dispersed, and, with no cryoprotectant, they could be freeze-dried and re-hydrated without the loss of transfection ability. These properties enabled the preparation of a concentrated suspension of very small pDNA complex, by preparing the complexes at highly diluted conditions, followed by condensation via lyophilization-and-rehydration procedure. Recently, a high potency linear polyethylenimine having no residual protective groups, i.e., Polyethylenimine “Max” (PEI “Max”, is available, which has been reported to induce much higher gene expression than conventional l-PEI. We tried to prepare the small DNA/PEI “Max”/polyanion complexes by a similar freeze-drying method. Small complex particles could be obtained without apparent aggregation, but transfection activity of the rehydrated complexes was severely reduced. Complex-preparation conditions were investigated in details to achieve the freeze-dried DNA/PEI “Max”/polyanion small ternary complexes with high transfection efficiency. DNA/PEI “Max”/polyanion complexes containing cytokine-coding plasmids were then prepared, and their anti-tumor therapeutic efficacy was examined in tumor-bearing mice.

  1. Fuzzy Entropy: Axiomatic Definition and Neural Networks Model

    Institute of Scientific and Technical Information of China (English)

    QINGMing; CAOYue; HUANGTian-min

    2004-01-01

    The measure of uncertainty is adopted as a measure of information. The measures of fuzziness are known as fuzzy information measures. The measure of a quantity of fuzzy information gained from a fuzzy set or fuzzy system is known as fuzzy entropy. Fuzzy entropy has been focused and studied by many researchers in various fields. In this paper, firstly, the axiomatic definition of fuzzy entropy is discussed. Then, neural networks model of fuzzy entropy is proposed, based on the computing capability of neural networks. In the end, two examples are discussed to show the efficiency of the model.

  2. Application of fuzzy logic to social choice theory

    CERN Document Server

    Mordeson, John N; Clark, Terry D

    2015-01-01

    Fuzzy social choice theory is useful for modeling the uncertainty and imprecision prevalent in social life yet it has been scarcely applied and studied in the social sciences. Filling this gap, Application of Fuzzy Logic to Social Choice Theory provides a comprehensive study of fuzzy social choice theory.The book explains the concept of a fuzzy maximal subset of a set of alternatives, fuzzy choice functions, the factorization of a fuzzy preference relation into the ""union"" (conorm) of a strict fuzzy relation and an indifference operator, fuzzy non-Arrowian results, fuzzy versions of Arrow's

  3. Ellipsoidal fuzzy learning for smart car platoons

    Science.gov (United States)

    Dickerson, Julie A.; Kosko, Bart

    1993-12-01

    A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.

  4. Fuzzy Stochastic Optimization Theory, Models and Applications

    CERN Document Server

    Wang, Shuming

    2012-01-01

    Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies.   The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins...

  5. Fuzzy logic controller using different inference methods

    International Nuclear Information System (INIS)

    Liu, Z.; De Keyser, R.

    1994-01-01

    In this paper the design of fuzzy controllers by using different inference methods is introduced. Configuration of the fuzzy controllers includes a general rule-base which is a collection of fuzzy PI or PD rules, the triangular fuzzy data model and a centre of gravity defuzzification algorithm. The generalized modus ponens (GMP) is used with the minimum operator of the triangular norm. Under the sup-min inference rule, six fuzzy implication operators are employed to calculate the fuzzy look-up tables for each rule base. The performance is tested in simulated systems with MATLAB/SIMULINK. Results show the effects of using the fuzzy controllers with different inference methods and applied to different test processes

  6. Introduction to fuzzy logic using Matlab

    CERN Document Server

    Sivanandam, SN; Deepa, S N

    2006-01-01

    Fuzzy Logic, at present is a hot topic, among academicians as well various programmers. This book is provided to give a broad, in-depth overview of the field of Fuzzy Logic. The basic principles of Fuzzy Logic are discussed in detail with various solved examples. The different approaches and solutions to the problems given in the book are well balanced and pertinent to the Fuzzy Logic research projects. The applications of Fuzzy Logic are also dealt to make the readers understand the concept of Fuzzy Logic. The solutions to the problems are programmed using MATLAB 6.0 and the simulated results are given. The MATLAB Fuzzy Logic toolbox is provided for easy reference.

  7. LUBAC-Recruited CYLD and A20 Regulate Gene Activation and Cell Death by Exerting Opposing Effects on Linear Ubiquitin in Signaling Complexes

    Directory of Open Access Journals (Sweden)

    Peter Draber

    2015-12-01

    Full Text Available Ubiquitination and deubiquitination are crucial for assembly and disassembly of signaling complexes. LUBAC-generated linear (M1 ubiquitin is important for signaling via various immune receptors. We show here that the deubiquitinases CYLD and A20, but not OTULIN, are recruited to the TNFR1- and NOD2-associated signaling complexes (TNF-RSC and NOD2-SC, at which they cooperate to limit gene activation. Whereas CYLD recruitment depends on its interaction with LUBAC, but not on LUBAC’s M1-chain-forming capacity, A20 recruitment requires this activity. Intriguingly, CYLD and A20 exert opposing effects on M1 chain stability in the TNF-RSC and NOD2-SC. While CYLD cleaves M1 chains, and thereby sensitizes cells to TNF-induced death, A20 binding to them prevents their removal and, consequently, inhibits cell death. Thus, CYLD and A20 cooperatively restrict gene activation and regulate cell death via their respective activities on M1 chains. Hence, the interplay between LUBAC, M1-ubiquitin, CYLD, and A20 is central for physiological signaling through innate immune receptors.

  8. Site-specific integration of CAR gene into Jurkat T cells with a linear close-ended AAV-based DNA vector for CAR-T engineering.

    Science.gov (United States)

    Zhang, Yun; Liu, Xiaomei; Zhang, Jinju; Zhang, Chun

    2016-09-01

    To develop a site-specific integration strategy for CAR-T engineering by using a non-viral vector dependent on adeno-associated viral (AAV) genome, which tends to be integrated into AAVS1 site with the help of its Rep proteins. AAV-dependent vectors were produced in Sf9 cells. Structural analyses revealed the vector as covalently close-ended, linear duplex molecules, which was termed "CELiD" DNA. A plasmid CMV-Rep was constructed to express the integrases Rep78 and Rep68. Jurkat cells were co-electroporated with "CELiD" DNA and plasmid CMV-Rep in order to specifically integrate CAR gene into AAVS1 site. We examined 71 stably transfected Jurkat clones by nested PCR, sequencing and southern blotting, of which 30 clones bore CAR gene within AAVS1 site. The site-specific integration efficiency was nearly 42.2 %. The AAV-dependent vector preferentially integrated CAR into AAVS1 site, which could be further used in human T cell modification and enhance the security of CAR-T therapy.

  9. Prediction on carbon dioxide emissions based on fuzzy rules

    Science.gov (United States)

    Pauzi, Herrini; Abdullah, Lazim

    2014-06-01

    There are several ways to predict air quality, varying from simple regression to models based on artificial intelligence. Most of the conventional methods are not sufficiently able to provide good forecasting performances due to the problems with non-linearity uncertainty and complexity of the data. Artificial intelligence techniques are successfully used in modeling air quality in order to cope with the problems. This paper describes fuzzy inference system (FIS) to predict CO2 emissions in Malaysia. Furthermore, adaptive neuro-fuzzy inference system (ANFIS) is used to compare the prediction performance. Data of five variables: energy use, gross domestic product per capita, population density, combustible renewable and waste and CO2 intensity are employed in this comparative study. The results from the two model proposed are compared and it is clearly shown that the ANFIS outperforms FIS in CO2 prediction.

  10. Fuzzy measure analysis of public attitude towards the use of nuclear energy

    International Nuclear Information System (INIS)

    Nishiwaki, Y.; Preyssl, C.; Onisawa, T.; Sen'ichi Mokuya

    1996-01-01

    It is important to identify the structure of public acceptance or rejection when new technologies are developed and implemented The structure of attitudes should have the essential attributes and their interrelation. In such a structural analysis the attitudes need to be decomposed into meaningful attributes by a suitable model However, the data obtained in this type of study may be more or less subjective and fuzzy, and the following problems may be pointed out: (1.) A man does net always have an additive measure such as probability to evaluate fuzzy objects, (2.) The attributes of an object in bis evaluation process are not always independent of each other. In either case a linear model may not be applicable. This paper is concerned with applying fuzzy measures and fuzzy integrals to analyze public attitude towards the use of nuclear energy. We applied the fuzzy measures and fuzzy integrals to analyze public attitude towards the use of nuclear energy by distributing questionnaires to about 100 students of Engineering Department of Kinki University, Higashi-Osaka, Osaka, Japan. Before and after the Chernobyl Accident we noticed a distinct difference in mental structure Before the accident, the students of pro-nuclear group were whole-heartedly in favour of the use of nuclear energy, based on fringe benefits, impacts on society and economic progress, but after the accident they showed a favourable attitude towards the use of nuclear energy based on economic progress, but with some reservation because of the potential threats. (author)

  11. A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design.

    Science.gov (United States)

    Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

  12. Perancangan Kendali Robot pada Smartphone Menggunakan Sensor Accelerometer Berbasis Metode Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Mohamad Agung Prawira Negara

    2017-08-01

    Full Text Available Telecommunications and robotics technology is being developed to assist and facilitate the work of a human. In the field of telecommunications particularly smartphone has reached the planting of operating systems like android until planting sensors such as an accelerometer, gyro, proximity, etc. We would like to take advantage of the accelerometer sensor on a smartphone as robot control. We will compare the use of Sugeno Fuzzy Logic and Mamdani Fuzzy Logic to determine the best control method. The basic components of the robot are the Bluetooth module HC-05 as a medium of communication with the android, arduino as the control system and actuators such as DC motors drive the rear wheels to adjust the speed of the robot, and servo motor drives the front wheels to adjust the degree of turn robot. In robot’s movement test, 4 of 8 trials or approximately 50% stated better Sugeno Fuzzy Logic than Mamdani Fuzzy Logic in terms of linearity. In robot's controller response test, for Sugeno Fuzzy Logic method the average delay is 0.41 seconds, and for Mamdani Fuzzy Logic method the average delay is 10.80 seconds.

  13. On Stochastic Finite-Time Control of Discrete-Time Fuzzy Systems with Packet Dropout

    Directory of Open Access Journals (Sweden)

    Yingqi Zhang

    2012-01-01

    Full Text Available This paper is concerned with the stochastic finite-time stability and stochastic finite-time boundedness problems for one family of fuzzy discrete-time systems over networks with packet dropout, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, we present the dynamic model description studied, in which the discrete-time fuzzy T-S systems with packet loss can be described by one class of fuzzy Markovian jump systems. Then, the concepts of stochastic finite-time stability and stochastic finite-time boundedness and problem formulation are given. Based on Lyapunov function approach, sufficient conditions on stochastic finite-time stability and stochastic finite-time boundedness are established for the resulting closed-loop fuzzy discrete-time system with Markovian jumps, and state-feedback controllers are designed to ensure stochastic finite-time stability and stochastic finite-time boundedness of the class of fuzzy systems. The stochastic finite-time stability and stochastic finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the stochastic stability of the class of fuzzy T-S systems with packet loss. Finally, two illustrative examples are presented to show the validity of the developed methodology.

  14. Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network - A novel structure.

    Science.gov (United States)

    El-Nagar, Ahmad M

    2018-01-01

    In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Development of neural network driven fuzzy controller for outlet sodium temperature of DHX

    International Nuclear Information System (INIS)

    Okusa, Kyoichi; Endou, Akira; Yoshikawa, Shinji; Ozawa, Kenji

    1996-01-01

    Fuzzy controls are capable to exquisitely control non-linear dynamic systems in wide operating range, using linguistic description to define the control law. However the selection and the definition of the fuzzy rules and sets require a tedious trial and error process based on experience. As a method to overcome this limitation, a neural network driven fuzzy control (NDF), where the learning capability of the neural network (NN) is used to build the fuzzy rules and sets, is presented in this paper. In the NDF control the IF part of a fuzzy control is represented by a multilayer NN while the THEN part is represented by a series of multilayer NNs which calculate the desirable control action. In this work the usual stepwise variable reduction method, used for the selection of the input variable in the THEN part NN, is replaced with a learning algorithm with forgetting mechanism that realizes the automatic reduction of the variables and the tuning up of all the fuzzy control law i.e. the membership function. The NDF has been successfully applied to control the outlet sodium temperature of a dump heat exchanger (DHX) of a FBR plant

  16. A Modified Dynamic Evolving Neural-Fuzzy Approach to Modeling Customer Satisfaction for Affective Design

    Directory of Open Access Journals (Sweden)

    C. K. Kwong

    2013-01-01

    Full Text Available Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1 the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS failed to run due to a large number of inputs; (2 the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

  17. Outdoor altitude stabilization of QuadRotor based on type-2 fuzzy and fuzzy PID

    Science.gov (United States)

    Wicaksono, H.; Yusuf, Y. G.; Kristanto, C.; Haryanto, L.

    2017-11-01

    This paper presents a design of altitude stabilization of QuadRotor based on type-2 fuzzy and fuzzy PID. This practical design is implemented outdoor. Barometric and sonar sensor were used in this experiment as an input for the controller YoHe. The throttle signal as a control input was provided by the controller to leveling QuadRotor in particular altitude and known well as altitude stabilization. The parameter of type-2 fuzzy and fuzzy PID was tuned in several heights to get the best control parameter for any height. Type-2 fuzzy produced better result than fuzzy PID but had a slow response in the beginning.

  18. Complex Fuzzy Set-Valued Complex Fuzzy Measures and Their Properties

    Science.gov (United States)

    Ma, Shengquan; Li, Shenggang

    2014-01-01

    Let F*(K) be the set of all fuzzy complex numbers. In this paper some classical and measure-theoretical notions are extended to the case of complex fuzzy sets. They are fuzzy complex number-valued distance on F*(K), fuzzy complex number-valued measure on F*(K), and some related notions, such as null-additivity, pseudo-null-additivity, null-subtraction, pseudo-null-subtraction, autocontionuous from above, autocontionuous from below, and autocontinuity of the defined fuzzy complex number-valued measures. Properties of fuzzy complex number-valued measures are studied in detail. PMID:25093202

  19. Supplier Selection for Food Industry: A Combination of Taguchi Loss Function and Fuzzy Analytical Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Renna Magdalena

    2012-09-01

    Full Text Available Supplier selection is an important part of supply chain management process by which firms identify, evaluate, and establish contracts with suppliers. Deciding the right supplier can be a complex task. As such, various criteria must be taken into account to choose the best supplier. This study focused on the supply in the packaging division of a food industry in Denpasar-Bali. A combination of Taguchi Loss Function and fuzzy-AHP (Analytical Hierarchy Process Fuzzy Linear Programming was used to determine the best supplier. In this analysis, several suppliers’ criteria were considered, namely quality, delivery, completeness, quality loss and environmental management. By maximizing the suppliers’ performances based on each criterion and aggregating the suppliers’ performances based on the overall criteria, the best supplier was determined. Keywords: supplier selection, taguchi loss function, AHP, fuzzy linear programming,environment

  20. Fuzzy view of environment

    Directory of Open Access Journals (Sweden)

    Bajat Branislav

    2007-01-01

    Full Text Available A period of fifty years has been reached since the introduction of the first applications based upon geographical information systems (GIS. GIS has not only influenced the development of methods, collection techniques, processing, manipulation and visualization of spatial data. It influenced also the expansion of scientific research in geosciences, as well as the technical disciplines that are engaged in spatial analysis. Nowadays, GIS is becoming the tool for verification and practical implementation of models and algorithms that have been developed within the frame of basic scientific disciplines. The meaning of the GIS acronym is becoming more and more related to term of Geographical or Geo Information Sciences. Scientific concepts that are increasingly applied in GIS are more emphasized in that way. GIS computational techniques, required also the development of geographical data models that should effectively support GIS operations. These models represent formal equivalents of conceptual models used by people in observing geographic phenomena. Spatial phenomena used to be mapped as clearly defined points with known coordinates, or as lines which connect the very same points, or as polygons with exactly defined borders. They were mapped previously in analog form and nowadays in digital format. This approach of perceiving a space, data analyses and visualization of spatial quires is limited on the application of basic rules of Boolean algebra and binary logic, with final results presented as classical thematic maps. The need for a mathematical model that would describe uncertainty of spatial data, resulted in the introduction of the theory of fuzzy sets in spatial analysis. Moreover, this model will provide a solution for visualization and grouping up of spatial phenomena in classes which do not have clearly defined borders.

  1. On Modeling the Behavior of Comparators for Complex Fuzzy Objects in a Fuzzy Object-Relational Database Management System

    Directory of Open Access Journals (Sweden)

    JuanM. Medina

    2012-08-01

    Full Text Available This paper proposes a parameterized definition for fuzzy comparators on complex fuzzy datatypes like fuzzy collections with conjunctive semantics and fuzzy objects. This definition and its implementation on a Fuzzy Object-Relational Database Management System (FORDBMS provides the designer with a powerful tool to adapt the behavior of these operators to the semantics of the considered application.

  2. Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter

    Science.gov (United States)

    Jafri, M. H.; Mansor, H.; Gunawan, T. S.

    2017-11-01

    Bench-top helicopter is a laboratory scale helicopter that usually used as a testing bench of the real helicopter behavior. This helicopter is a 3 Degree of Freedom (DOF) helicopter which works by three different axes wshich are elevation, pitch and travel. Thus, fuzzy logic controller has been proposed to be implemented into Quanser bench-top helicopter because of its ability to work with non-linear system. The objective for this project is to design and apply fuzzy logic controller for Quanser bench-top helicopter. Other than that, fuzzy logic controller performance system has been simulated to analyze and verify its behavior over existing PID controller by using Matlab & Simulink software. In this research, fuzzy logic controller has been designed to control the elevation angle. After simulation has been performed, it can be seen that simulation result shows that fuzzy logic elevation control is working for 4°, 5° and 6°. These three angles produce zero steady state error and has a fast response. Other than that, performance comparisons have been performed between fuzzy logic controller and PID controller. Fuzzy logic elevation control has a better performance compared to PID controller where lower percentage overshoot and faster settling time have been achieved in 4°, 5° and 6° step response test. Both controller are have zero steady state error but fuzzy logic controller is managed to produce a better performance in term of settling time and percentage overshoot which make the proposed controller is reliable compared to the existing PID controller.

  3. Assessing IT Projects Success with Extended Fuzzy Cognitive Maps & Neutrosophic Cognitive Maps in comparison to Fuzzy Cognitive Maps

    Directory of Open Access Journals (Sweden)

    Kanika Bhutani

    2016-08-01

    Full Text Available IT projects hold a huge importance to economic growth. Today, half of the capital investments are in IT technology. IT systems and projects are extensive and time consuming; thus implying that its failure is not affordable, so proper feasibility study of assessing project success factors is required. A current methodology like Fuzzy Cognitive Maps has been experimented for identifying and evaluating the success factors in IT projects, but this technique has certain limitations. This paper discusses two new approaches to evaluate IT project success: Extended Fuzzy Cognitive Maps (E-FCM & Neutrosophic Cognitive Maps (NCM.The limitations of FCM like non consideration for non-linear, conditional, time delay weights and indeterminate relations are targeted using E-FCM and NCM in this paper.

  4. Linear algebra

    CERN Document Server

    Shilov, Georgi E

    1977-01-01

    Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.

  5. Filters in Fuzzy Class Theory

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Tomáš

    2008-01-01

    Roč. 159, č. 14 (2008), s. 1773-1787 ISSN 0165-0114 R&D Projects: GA MŠk 1M0572; GA AV ČR KJB100300502 Institutional research plan: CEZ:AV0Z10750506 Keywords : filter * prime filter * fuzzy class theory Subject RIV: BA - General Mathematics Impact factor: 1.833, year: 2008

  6. Structural Completeness in Fuzzy Logics

    Czech Academy of Sciences Publication Activity Database

    Cintula, Petr; Metcalfe, G.

    2009-01-01

    Roč. 50, č. 2 (2009), s. 153-183 ISSN 0029-4527 R&D Projects: GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10300504 Keywords : structral logics * fuzzy logics * structural completeness * admissible rules * primitive variety * residuated lattices Subject RIV: BA - General Mathematics

  7. Fuzzy Querying: Issues and Perspectives..

    Czech Academy of Sciences Publication Activity Database

    Kacprzyk, J.; Pasi, G.; Vojtáš, Peter; Zadrozny, S.

    2000-01-01

    Roč. 36, č. 6 (2000), s. 605-616 ISSN 0023-5954 Institutional research plan: AV0Z1030915 Keywords : flexible querying * information retrieval * fuzzy databases Subject RIV: BA - General Mathematics http://dml.cz/handle/10338.dmlcz/135376

  8. The fuzzy bag model revisited

    International Nuclear Information System (INIS)

    Pilotto, F.; Vasconcellos, C.A.Z.; Coelho, H.T.

    2001-01-01

    In this work we develop a new version of the fuzzy bag model. Th main ideas is to include the conservation of energy and momentum in the model. This feature is not included in the original formulation of the fuzzy bag model, but is of paramount importance to interpret the model as being a bag model - that, is a model in which the outward pressure of the quarks inside the bag is balanced by the inward pressure of the non-perturbative vacuum outside the bag - as opposed to a relativistic potential model, in which there is no energy-momentum conservation. In the MT bag model, as well as in the original version of the fuzzy bag model, the non-perturbative QCD vacuum is parametrized by a constant B in the Lagrangian density. One immediate consequence of including energy-momentum conservation in the fuzzy bag model is that the bag constant B will acquire a radial dependence, B = B(r). (author)

  9. The fuzzy bag model revisited

    Energy Technology Data Exchange (ETDEWEB)

    Pilotto, F.; Vasconcellos, C.A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Coelho, H.T. [Pernambuco Univ., Recife, PE (Brazil). Inst. de Fisica

    2001-07-01

    In this work we develop a new version of the fuzzy bag model. Th main ideas is to include the conservation of energy and momentum in the model. This feature is not included in the original formulation of the fuzzy bag model, but is of paramount importance to interpret the model as being a bag model - that, is a model in which the outward pressure of the quarks inside the bag is balanced by the inward pressure of the non-perturbative vacuum outside the bag - as opposed to a relativistic potential model, in which there is no energy-momentum conservation. In the MT bag model, as well as in the original version of the fuzzy bag model, the non-perturbative QCD vacuum is parametrized by a constant B in the Lagrangian density. One immediate consequence of including energy-momentum conservation in the fuzzy bag model is that the bag constant B will acquire a radial dependence, B = B(r). (author)

  10. Fuzzy audit risk modeling algorithm

    Directory of Open Access Journals (Sweden)

    Zohreh Hajihaa

    2011-07-01

    Full Text Available Fuzzy logic has created suitable mathematics for making decisions in uncertain environments including professional judgments. One of the situations is to assess auditee risks. During recent years, risk based audit (RBA has been regarded as one of the main tools to fight against fraud. The main issue in RBA is to determine the overall audit risk an auditor accepts, which impact the efficiency of an audit. The primary objective of this research is to redesign the audit risk model (ARM proposed by auditing standards. The proposed model of this paper uses fuzzy inference systems (FIS based on the judgments of audit experts. The implementation of proposed fuzzy technique uses triangular fuzzy numbers to express the inputs and Mamdani method along with center of gravity are incorporated for defuzzification. The proposed model uses three FISs for audit, inherent and control risks, and there are five levels of linguistic variables for outputs. FISs include 25, 25 and 81 rules of if-then respectively and officials of Iranian audit experts confirm all the rules.

  11. Fuzzy-TLBO optimal reactive power control variables planning for energy loss minimization

    International Nuclear Information System (INIS)

    Moghadam, Ahmad; Seifi, Ali Reza

    2014-01-01

    Highlights: • A new approach to the problem of optimal reactive power control variables planning is proposed. • The energy loss minimization problem has been formulated by modeling the load of system as a Load Duration Curve. • To solving the energy loss problem, the classic methods and the evolutionary methods are used. • A new proposed fuzzy teaching–learning based algorithm is applied to energy loss problem. • Simulations are done to show the effectiveness and superiority of the proposed algorithm compared with other methods. - Abstract: This paper offers a new approach to the problem of optimal reactive power control variables planning (ORPVCP). The basic idea is division of Load Duration Curve (LDC) into several time intervals with constant active power demand in each interval and then solving the energy loss minimization (ELM) problem to obtain an optimal initial set of control variables of the system so that is valid for all time intervals and can be used as an initial operating condition of the system. In this paper, the ELM problem has been solved by the linear programming (LP) and fuzzy linear programming (Fuzzy-LP) and evolutionary algorithms i.e. MHBMO and TLBO and the results are compared with the proposed Fuzzy-TLBO method. In the proposed method both objective function and constraints are evaluated by membership functions. The inequality constraints are embedded into the fitness function by the membership function of the fuzzy decision and the problem is modeled by fuzzy set theory. The proposed Fuzzy-TLBO method is performed on the IEEE 30 bus test system by considering two different LDC; and it is shown that using this method has further minimized objective function than original TLBO and other optimization techniques and confirms its potential to solve the ORPCVP problem with considering ELM as the objective function

  12. Fuzzy Evidence in Identification, Forecasting and Diagnosis

    CERN Document Server

    Rotshtein, Alexander P

    2012-01-01

    The purpose of this book is to present a methodology for designing and tuning fuzzy expert systems in order to identify nonlinear objects; that is, to build input-output models using expert and experimental information. The results of these identifications are used for direct and inverse fuzzy evidence in forecasting and diagnosis problem solving. The book is organised as follows: Chapter 1 presents the basic knowledge about fuzzy sets, genetic algorithms and neural nets necessary for a clear understanding of the rest of this book. Chapter 2 analyzes direct fuzzy inference based on fuzzy if-then rules. Chapter 3 is devoted to the tuning of fuzzy rules for direct inference using genetic algorithms and neural nets. Chapter 4 presents models and algorithms for extracting fuzzy rules from experimental data. Chapter 5 describes a method for solving fuzzy logic equations necessary for the inverse fuzzy inference in diagnostic systems. Chapters 6 and 7 are devoted to inverse fuzzy inference based on fu...

  13. Fuzzy tree automata and syntactic pattern recognition.

    Science.gov (United States)

    Lee, E T

    1982-04-01

    An approach of representing patterns by trees and processing these trees by fuzzy tree automata is described. Fuzzy tree automata are defined and investigated. The results include that the class of fuzzy root-to-frontier recognizable ¿-trees is closed under intersection, union, and complementation. Thus, the class of fuzzy root-to-frontier recognizable ¿-trees forms a Boolean algebra. Fuzzy tree automata are applied to processing fuzzy tree representation of patterns based on syntactic pattern recognition. The grade of acceptance is defined and investigated. Quantitative measures of ``approximate isosceles triangle,'' ``approximate elongated isosceles triangle,'' ``approximate rectangle,'' and ``approximate cross'' are defined and used in the illustrative examples of this approach. By using these quantitative measures, a house, a house with high roof, and a church are also presented as illustrative examples. In addition, three fuzzy tree automata are constructed which have the capability of processing the fuzzy tree representations of ``fuzzy houses,'' ``houses with high roofs,'' and ``fuzzy churches,'' respectively. The results may have useful applications in pattern recognition, image processing, artificial intelligence, pattern database design and processing, image science, and pictorial information systems.

  14. On fuzzy quasi continuity and an application of fuzzy set theory

    CERN Document Server

    Mahmoud, R A

    2003-01-01

    Where as classical topology has been developed closely connected with classical analysis describing topological phenomena in analysis, fuzzy topology with its important application in quantum gravity indicated by Witten and Elnaschie, has only been introduced as an analogue of the classical topology. The development of fuzzy topology without close relations to analytical problems did not give the possibility of testing successfully the applicability of the new notions and results. Till now this situation did not change, essentially. Although, many types of fuzzy sets and fuzzy functions having the quasi-property in both of weak and strong than openness and continuity, respectively, have been studied in detail. Many properties on fuzzy topological spaces such as compactness are discussed via fuzzy notion. While others are far from being completely devoted in its foundation. So, this paper is devoted to present a new class of fuzzy quasi-continuous functions via fuzzy compactness has been defined. Some characte...

  15. Influence of fuzzy norms and other heuristics on "Mixed fuzzy rule formation" - [Corrigendum

    OpenAIRE

    Gabriel, Thomas R.; Berthold, Michael R.

    2008-01-01

    We hereby correct an error in Ref. [2], in which we studied the influence of various parameters that affect the generalization performance of fuzzy models constructed using the mixed fuzzy rule formation method [1].

  16. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool.

    Science.gov (United States)

    Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi

    2007-10-01

    Traditionally, the multiple linear regression technique has been one of the most widely used models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have gained much popularity for calibrating the nonlinear relationships. This study evaluated the potential of a neuro-fuzzy system as an alternative to the traditional statistical regression technique for the purpose of predicting flow from a local source in a river basin. The effectiveness of the proposed identification technique was demonstrated through a simulation study of the river flow time series of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty associated with the estimation of river flow, a Monte Carlo simulation was performed. As a comparison, a multiple linear regression analysis that was being used by the Citarum River Authority was also examined using various statistical indices. The simulation results using 95% confidence intervals indicated that the neuro-fuzzy model consistently underestimated the magnitude of high flow while the low and medium flow magnitudes were estimated closer to the observed data. The comparison of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated that the neuro-fuzzy approach was more accurate in predicting river flow dynamics. The neuro-fuzzy model was able to improve the root mean square error (RMSE) and mean absolute percentage error (MAPE) values of the multiple linear regression forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling of flow dynamics in the study area.

  17. Application of fuzzy method in the spectrophotometrical research of biological object

    International Nuclear Information System (INIS)

    Gadzieva, N.N.; Gardashova, L.A.; Velijanova, M.Z.

    2003-01-01

    Full Text: Adsorption spectra of tobacco's alhogol infusion has been received in visible range. Linear dependence between spectroscopy parameters and tobacco quality has been found. Based on spectroscopy dates using theory of Fuzzy method, clear borders tobacco classification by its quality

  18. Approximate Analytic and Numerical Solutions to Lane-Emden Equation via Fuzzy Modeling Method

    Directory of Open Access Journals (Sweden)

    De-Gang Wang

    2012-01-01

    Full Text Available A novel algorithm, called variable weight fuzzy marginal linearization (VWFML method, is proposed. This method can supply approximate analytic and numerical solutions to Lane-Emden equations. And it is easy to be implemented and extended for solving other nonlinear differential equations. Numerical examples are included to demonstrate the validity and applicability of the developed technique.

  19. Minimal solution for inconsistent singular fuzzy matrix equations

    Directory of Open Access Journals (Sweden)

    M. Nikuie

    2013-10-01

    Full Text Available The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fuzzy matrix equations are investigated.

  20. Real Time Implementation of a DC Motor Speed Control by Fuzzy Logic Controller and PI Controller Using FPGA

    Directory of Open Access Journals (Sweden)

    G. Sakthivel

    2010-10-01

    Full Text Available Fuzzy logic control has met with growing interest in many motor control applications due to its non-linearity, handling features and independence of plant modelling. The hardware implementation of fuzzy logic controller (FLC on FPGA is very important because of the increasing number of fuzzy applications requiring highly parallel and high speed fuzzy processing. Implementation of a fuzzy logic controller and conventional PI controller on an FPGA using VHDL for DC motor speed control is presented in this paper. The proposed scheme is to improve tracking performance of D.C. motor as compared to the conventional (PI control strategy .This paper describes the hardware implementation of two inputs (error and change in error, one output fuzzy logic controller based on PI controller and conventional PI controller using VHDL. Real time implementation FLC and conventional PI controller is made on Spartan-3A DSP FPGA (XC3SD1800A FPGA for the speed control of DC motor. It is observed that fuzzy logic based controllers give better responses than the conventional PI controller for the speed control of dc motor.

  1. (Fuzzy) Ideals of BN-Algebras

    Science.gov (United States)

    Walendziak, Andrzej

    2015-01-01

    The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050

  2. Analysis of inventory difference using fuzzy controllers

    International Nuclear Information System (INIS)

    Zardecki, A.

    1994-01-01

    The principal objectives of an accounting system for safeguarding nuclear materials are as follows: (a) to provide assurance that all material quantities are present in the correct amount; (b) to provide timely detection of material loss; and (c) to estimate the amount of any loss and its location. In fuzzy control, expert knowledge is encoded in the form of fuzzy rules, which describe recommended actions for different classes of situations represented by fuzzy sets. The concept of a fuzzy controller is applied to the forecasting problem in a time series, specifically, to forecasting and detecting anomalies in inventory differences. This paper reviews the basic notion underlying the fuzzy control systems and provides examples of application. The well-known material-unaccounted-for diffusion plant data of Jaech are analyzed using both feedforward neural networks and fuzzy controllers. By forming a deference between the forecasted and observed signals, an efficient method to detect small signals in background noise is implemented

  3. Fuzzy associative memories for instrument fault detection

    International Nuclear Information System (INIS)

    Heger, A.S.

    1996-01-01

    A fuzzy logic instrument fault detection scheme is developed for systems having two or three redundant sensors. In the fuzzy logic approach the deviation between each signal pairing is computed and classified into three fuzzy sets. A rule base is created allowing the human perception of the situation to be represented mathematically. Fuzzy associative memories are then applied. Finally, a defuzzification scheme is used to find the centroid location, and hence the signal status. Real-time analyses are carried out to evaluate the instantaneous signal status as well as the long-term results for the sensor set. Instantaneous signal validation results are used to compute a best estimate for the measured state variable. The long-term sensor validation method uses a frequency fuzzy variable to determine the signal condition over a specific period. To corroborate the methodology synthetic data representing various anomalies are analyzed with both the fuzzy logic technique and the parity space approach. (Author)

  4. Optical Generation of Fuzzy-Based Rules

    Science.gov (United States)

    Gur, Eran; Mendlovic, David; Zalevsky, Zeev

    2002-08-01

    In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.

  5. Logika Fuzzy untuk Audit Sistem Informasi

    Directory of Open Access Journals (Sweden)

    Hari Setiabudi Husni

    2013-06-01

    Full Text Available The aim of this research is to study and introduce fuzzy logic into audit information system. Fuzzy logic is already adopted in other field of study. It helps decision process that incorporates subjective information and transforms it to scientific objective information which is more accepted. This research implements simulation scenario to see how fuzzy logic concept should be used in audit information process. The result shows that there is a possible concept of fuzzy logic that can be used for helping auditor in making objective decision in audit information system process. More researches needed to further explore the fuzzy logic concept such as creating the system of fuzzy logic and build application that can be used for daily information system audit process. 

  6. On Algebraic Study of Type-2 Fuzzy Finite State Automata

    Directory of Open Access Journals (Sweden)

    Anupam K. Singh

    2017-08-01

    Full Text Available Theories of fuzzy sets and type-2 fuzzy sets are powerful mathematical tools for modeling various types of uncertainty. In this paper we introduce the concept of type-2 fuzzy finite state automata and discuss the algebraic study of type-2 fuzzy finite state automata, i.e., to introduce the concept of homomorphisms between two type-2 fuzzy finite state automata, to associate a type-2 fuzzy transformation semigroup with a type-2 fuzzy finite state automata. Finally, we discuss several product of type-2 fuzzy finite state automata and shown that these product is a categorical product.

  7. Fuzzy weakly preopen (preclosed) function in Kubiak-Sostak fuzzy topological spaces

    International Nuclear Information System (INIS)

    Zahran, A.M.; Abd-Allah, M. Azab.; Abd El-Rahman, Abd El-Nasser G.

    2009-01-01

    In this paper, we introduce and characterize fuzzy weakly preopen and fuzzy weakly preclosed functions between L-fuzzy topological spaces in Kubiak-Sostak sense and also study these functions in relation to some other types of already known functions.

  8. Combinational Reasoning of Quantitative Fuzzy Topological Relations for Simple Fuzzy Regions

    Science.gov (United States)

    Liu, Bo; Li, Dajun; Xia, Yuanping; Ruan, Jian; Xu, Lili; Wu, Huanyi

    2015-01-01

    In recent years, formalization and reasoning of topological relations have become a hot topic as a means to generate knowledge about the relations between spatial objects at the conceptual and geometrical levels. These mechanisms have been widely used in spatial data query, spatial data mining, evaluation of equivalence and similarity in a spatial scene, as well as for consistency assessment of the topological relations of multi-resolution spatial databases. The concept of computational fuzzy topological space is applied to simple fuzzy regions to efficiently and more accurately solve fuzzy topological relations. Thus, extending the existing research and improving upon the previous work, this paper presents a new method to describe fuzzy topological relations between simple spatial regions in Geographic Information Sciences (GIS) and Artificial Intelligence (AI). Firstly, we propose a new definition for simple fuzzy line segments and simple fuzzy regions based on the computational fuzzy topology. And then, based on the new definitions, we also propose a new combinational reasoning method to compute the topological relations between simple fuzzy regions, moreover, this study has discovered that there are (1) 23 different topological relations between a simple crisp region and a simple fuzzy region; (2) 152 different topological relations between two simple fuzzy regions. In the end, we have discussed some examples to demonstrate the validity of the new method, through comparisons with existing fuzzy models, we showed that the proposed method can compute more than the existing models, as it is more expressive than the existing fuzzy models. PMID:25775452

  9. New Definition and Properties of Fuzzy Entropy

    Institute of Scientific and Technical Information of China (English)

    Qing Ming; Qin Yingbing

    2006-01-01

    Let X = (x1,x2 ,…,xn ) and F(X) be a fuzzy set on a universal set X. A new definition of fuzzy entropy about a fuzzy set A on F(X), e*, is defined based on the order relation "≤" on [0,1/2] n. It is proved that e* is a σ-entropy under an additional requirement. Besides, some entropy formulas are presented and related properties are discussed.

  10. Simulasi Kecepatan Kendaraan dengan Menggunakan Logika Fuzzy

    OpenAIRE

    Lukas, Samuel; Aribowo, Arnold; Tjia, Yogih Suharta

    2008-01-01

    Artificial intelligence has been implemented widely. Many of household products are designed based on artificial intellegence concept. One of them is fuzzy logic system. This paper describes on how a fuzzy logic system can also be implemented in controling the speed of a car in the road. The fuzzy inference system was designed according to Tsukamoto inferencing method and for the defuzzyfication method is used weighted average method. There are three inputs for the system. The are distance b...

  11. Simulasi Kecepatan Kendaraan Dengan Menggunakan Logika Fuzzy

    OpenAIRE

    Lukas, Samuel; Aribowo, Arnold; Tjia, Yogih Suharta

    2009-01-01

    Artificial intelligence has been implemented widely. Many of household products are designed based on artificial intellegence concept. One of them is fuzzy logic system. This paper describes on how a fuzzy logic system can also be implemented in controling the speed of a car in the road.  The fuzzy inference system was designed according to Tsukamoto inferencing method and for the defuzzyfication method is used weighted average method. There are three inputs for the system. The are distance b...

  12. Statistical convergence on intuitionistic fuzzy normed spaces

    International Nuclear Information System (INIS)

    Karakus, S.; Demirci, K.; Duman, O.

    2008-01-01

    Saadati and Park [Saadati R, Park JH, Chaos, Solitons and Fractals 2006;27:331-44] has recently introduced the notion of intuitionistic fuzzy normed space. In this paper, we study the concept of statistical convergence on intuitionistic fuzzy normed spaces. Then we give a useful characterization for statistically convergent sequences. Furthermore, we display an example such that our method of convergence is stronger than the usual convergence on intuitionistic fuzzy normed spaces

  13. Recent advances in fuzzy preference modelling

    International Nuclear Information System (INIS)

    Van de Walle, B.; De Baets, B.; Kerre, E.

    1996-01-01

    Preference structures are well-known mathematical concepts having numerous applications in a variety of disciplines, such as economics, sociology and psychology. The generalization of preference structures to the fuzzy case has received considerable attention over the past years. Fuzzy preference structures allow a decision maker to express degrees of preference instead of the rigid classical yes-or-no preference assignment. This paper reports on the recent insights gained into the existence, construction and characterization of these fuzzy preference structures

  14. Fuzzy Law and the Boundaries of Secularism

    Directory of Open Access Journals (Sweden)

    W Menski

    2010-12-01

    Full Text Available The author delivered a speech at a Religare Conference. Showing his distaste for fuzzy law, he argues that "moderate secularism" is not merely another fuzzy concept, but it is "super-fuzzy", and that lawyers claiming to love certainty "have a tendency to sit in judgment over matters and even pre-judge things they know little about, including legal pluralism" leading to much irritation.

  15. An inexact fuzzy-chance-constrained air quality management model.

    Science.gov (United States)

    Xu, Ye; Huang, Guohe; Qin, Xiaosheng

    2010-07-01

    Regional air pollution is a major concern for almost every country because it not only directly relates to economic development, but also poses significant threats to environment and public health. In this study, an inexact fuzzy-chance-constrained air quality management model (IFAMM) was developed for regional air quality management under uncertainty. IFAMM was formulated through integrating interval linear programming (ILP) within a fuzzy-chance-constrained programming (FCCP) framework and could deal with uncertainties expressed as not only possibilistic distributions but also discrete intervals in air quality management systems. Moreover, the constraints with fuzzy variables could be satisfied at different confidence levels such that various solutions with different risk and cost considerations could be obtained. The developed model was applied to a hypothetical case of regional air quality management. Six abatement technologies and sulfur dioxide (SO2) emission trading under uncertainty were taken into consideration. The results demonstrated that IFAMM could help decision-makers generate cost-effective air quality management patterns, gain in-depth insights into effects of the uncertainties, and analyze tradeoffs between system economy and reliability. The results also implied that the trading scheme could achieve lower total abatement cost than a nontrading one.

  16. Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate

    Directory of Open Access Journals (Sweden)

    Minh Vu Trieu

    2017-03-01

    Full Text Available This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS, Brazilian tensile strength (BTS, rock brittleness index (BI, the distance between planes of weakness (DPW, and the alpha angle (Alpha between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP. Four (4 statistical regression models (two linear and two nonlinear are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2 of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.

  17. Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate

    Science.gov (United States)

    Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno

    2017-03-01

    This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four (4) statistical regression models (two linear and two nonlinear) are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2) of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.

  18. Integrating Fuzzy AHP and Fuzzy ARAS for evaluating financial performance

    OpenAIRE

    Abdolhamid Safaei Ghadikolaei; Saber Khalili Esbouei

    2014-01-01

    Multi Criteria Decision Making (MCDM) is an advanced field of Operation Research; recently MCDM methods are efficient and common tools for performance evaluation in many areas such as finance and economy. The aim of this study is to show one of applications of mathematics in real word. This study with considering value based measures and accounting based measures simultaneously, provided a hybrid approach of MCDM methods in fuzzy environment for financial performance evaluation of automotive ...

  19. Word Similarity From Dictionaries: Inferring Fuzzy Measures From Fuzzy Graphs

    Directory of Open Access Journals (Sweden)

    Torra

    2008-01-01

    Full Text Available The computation of similarities between words is a basic element of information retrieval systems, when retrieval is not solely based on word matching. In this work we consider a measure between words based on dictionaries. This is achieved assuming that a dictionary is formalized as a fuzzy graph. We show that the approach permits to compute measures not only for pairs of words but for sets of them.

  20. Fuzzy Riemann surfaces

    International Nuclear Information System (INIS)

    Arnlind, Joakim; Hofer, Laurent; Hoppe, Jens; Bordemann, Martin; Shimada, Hidehiko

    2009-01-01

    We introduce C-Algebras (quantum analogues of compact Riemann surfaces), defined by polynomial relations in non-commutative variables and containing a real parameter that, when taken to zero, provides a classical non-linear, Poisson-bracket, obtainable from a single polynomial C(onstraint) function. For a continuous class of quartic constraints, we explicitly work out finite dimensional representations of the corresponding C-Algebras.

  1. Fuzzy logic control for camera tracking system

    Science.gov (United States)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  2. Fuzzy sets, rough sets, multisets and clustering

    CERN Document Server

    Dahlbom, Anders; Narukawa, Yasuo

    2017-01-01

    This book is dedicated to Prof. Sadaaki Miyamoto and presents cutting-edge papers in some of the areas in which he contributed. Bringing together contributions by leading researchers in the field, it concretely addresses clustering, multisets, rough sets and fuzzy sets, as well as their applications in areas such as decision-making. The book is divided in four parts, the first of which focuses on clustering and classification. The second part puts the spotlight on multisets, bags, fuzzy bags and other fuzzy extensions, while the third deals with rough sets. Rounding out the coverage, the last part explores fuzzy sets and decision-making.

  3. Equipment Selection by using Fuzzy TOPSIS Method

    Science.gov (United States)

    Yavuz, Mahmut

    2016-10-01

    In this study, Fuzzy TOPSIS method was performed for the selection of open pit truck and the optimal solution of the problem was investigated. Data from Turkish Coal Enterprises was used in the application of the method. This paper explains the Fuzzy TOPSIS approaches with group decision-making application in an open pit coal mine in Turkey. An algorithm of the multi-person multi-criteria decision making with fuzzy set approach was applied an equipment selection problem. It was found that Fuzzy TOPSIS with a group decision making is a method that may help decision-makers in solving different decision-making problems in mining.

  4. A computationally efficient fuzzy control s

    Directory of Open Access Journals (Sweden)

    Abdel Badie Sharkawy

    2013-12-01

    Full Text Available This paper develops a decentralized fuzzy control scheme for MIMO nonlinear second order systems with application to robot manipulators via a combination of genetic algorithms (GAs and fuzzy systems. The controller for each degree of freedom (DOF consists of a feedforward fuzzy torque computing system and a feedback fuzzy PD system. The feedforward fuzzy system is trained and optimized off-line using GAs, whereas not only the parameters but also the structure of the fuzzy system is optimized. The feedback fuzzy PD system, on the other hand, is used to keep the closed-loop stable. The rule base consists of only four rules per each DOF. Furthermore, the fuzzy feedback system is decentralized and simplified leading to a computationally efficient control scheme. The proposed control scheme has the following advantages: (1 it needs no exact dynamics of the system and the computation is time-saving because of the simple structure of the fuzzy systems and (2 the controller is robust against various parameters and payload uncertainties. The computational complexity of the proposed control scheme has been analyzed and compared with previous works. Computer simulations show that this controller is effective in achieving the control goals.

  5. Fuzzy logic control and optimization system

    Science.gov (United States)

    Lou, Xinsheng [West Hartford, CT

    2012-04-17

    A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  6. Fuzzy logic control of nuclear power plant

    International Nuclear Information System (INIS)

    Yao Liangzhong; Guo Renjun; Ma Changwen

    1996-01-01

    The main advantage of the fuzzy logic control is that the method does not require a detailed mathematical model of the object to be controlled. In this paper, the shortcomings and limitations of the model-based method in nuclear power plant control were presented, the theory of the fuzzy logic control was briefly introduced, and the applications of the fuzzy logic control technology in nuclear power plant controls were surveyed. Finally, the problems to be solved by using the fuzzy logic control in nuclear power plants were discussed

  7. Fuzzy neural network theory and application

    CERN Document Server

    Liu, Puyin

    2004-01-01

    This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he

  8. Fuzzy set classifier for waste classification tracking

    International Nuclear Information System (INIS)

    Gavel, D.T.

    1992-01-01

    We have developed an expert system based on fuzzy logic theory to fuse the data from multiple sensors and make classification decisions for objects in a waste reprocessing stream. Fuzzy set theory has been applied in decision and control applications with some success, particularly by the Japanese. We have found that the fuzzy logic system is rather easy to design and train, a feature that can cut development costs considerably. With proper training, the classification accuracy is quite high. We performed several tests sorting radioactive test samples using a gamma spectrometer to compare fuzzy logic to more conventional sorting schemes

  9. Application of fuzzy logic control in industry

    International Nuclear Information System (INIS)

    Van der Wal, A.J.

    1994-01-01

    An overview is given of the various ways fuzzy logic can be used to improve industrial control. The application of fuzzy logic in control is illustrated by two case studies. The first example shows how fuzzy logic, incorporated in the hardware of an industrial controller, helps to finetune a PID controller, without the operator having any a priori knowledge of the system to be controlled. The second example is from process industry. Here, fuzzy logic supervisory control is implemented in software and enhances the operation of a sintering oven through a subtle combination of priority management and deviation-controlled timing

  10. Optimal operation planning of radioactive waste processing system by fuzzy theory

    International Nuclear Information System (INIS)

    Yang, Jin Yeong; Lee, Kun Jai

    2000-01-01

    This study is concerned with the applications of linear goal programming and fuzzy theory to the analysis of management and operational problems in the radioactive processing system (RWPS). The developed model is validated and verified using actual data obtained from the RWPS at Kyoto University in Japan. The solution by goal programming and fuzzy theory would show the optimal operation point which is to maximize the total treatable radioactive waste volume and minimize the released radioactivity of liquid waste even under the restricted resources. (orig.)

  11. Robust Fuzzy Control for Fractional-Order Uncertain Hydroturbine Regulating System with Random Disturbances

    Directory of Open Access Journals (Sweden)

    Fengjiao Wu

    2016-01-01

    Full Text Available The robust fuzzy control for fractional-order hydroturbine regulating system is studied in this paper. First, the more practical fractional-order hydroturbine regulating system with uncertain parameters and random disturbances is presented. Then, on the basis of interval matrix theory and fractional-order stability theorem, a fuzzy control method is proposed for fractional-order hydroturbine regulating system, and the stability condition is expressed as a group of linear matrix inequalities. Furthermore, the proposed method has good robustness which can process external random disturbances and uncertain parameters. Finally, the validity and superiority are proved by the numerical simulations.

  12. Analysis of Usefulness of a Fuzzy Transform for Industrial Data Compression

    International Nuclear Information System (INIS)

    Sztyber, Anna

    2014-01-01

    This paper presents the first part of an ongoing work on detailed analysis of compression algorithms and development of an algorithm for implementation in a real industrial data processing system. Fuzzy transforms give promising results in an image compression. The main aim of this paper is to test the possibility of an application of the fuzzy transforms to the industrial data compression. Test are carried out on the data from DAMADICS benchmark. Comparison is provided with a piecewise linear compression, which is nowadays the standard in the industry. The last section contains discussion of the obtained results and plans for the future work

  13. First experience from in-core sensor validation based on correlation and neuro-fuzzy techniques

    International Nuclear Information System (INIS)

    Figedy, S.

    2011-01-01

    In this work new types of nuclear reactor in-core sensor validation methods are outlined. The first one is based on combination of correlation coefficients and mutual information indices, which reflect the correlation of signals in linear and nonlinear regions. The method may be supplemented by wavelet transform based signal features extraction and pattern recognition by artificial neural networks and also fuzzy logic based decision making. The second one is based on neuro-fuzzy modeling of residuals between experimental values and their theoretical counterparts obtained from the reactor core simulator calculations. The first experience with this approach is described and further improvements to enhance the outcome reliability are proposed (Author)

  14. Design and simplification of Adaptive Neuro-Fuzzy Inference Controllers for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Alturki, F.A.; Abdennour, A. [King Saud University, Riyadh (Saudi Arabia). Electrical Engineering Dept.

    1999-10-01

    This article presents the design of an Adaptive Neuro-Fuzzy Inference Controller (ANFIC) for a 160 MW power plant. The space of operating conditions of the plant is partitioned into five regions. For each of the regions, an optimal controller is designed to meet a set of design objectives. The resulting five linear controllers are used to train the ANFIC. To enhance the applicability of the control system, a new algorithm that reduces the fuzzy rules to the most essential ones is also presented. This algorithm offers substantial savings in computation time while maintaining the performance and robustness of the original controller. (author)

  15. Application of robust fuzzy control in power control of nuclear reactor

    International Nuclear Information System (INIS)

    Liu Lei; Luan Xiuchun; Jin Guangyuan; Yu Tao; Rao Su

    2013-01-01

    Robust-fuzzy controller based on T-S fuzzy model was designed for real-time controlling of nuclear reactor power and adapting to the load changing of power grid. Local controller was designed by means of state feedback technique, and the global controller was designed by parallel distributed compensation (PDC) method. The result of solving linear matrix inequalities (LMI) proves that this controller is stable. The simulation shows that the nuclear power can be well controlled in three typical conditions by this controller. (authors)

  16. Adaptive fuzzy bilinear observer based synchronization design for generalized Lorenz system

    International Nuclear Information System (INIS)

    Baek, Jaeho; Lee, Heejin; Kim, Seungwoo; Park, Mignon

    2009-01-01

    This Letter proposes an adaptive fuzzy bilinear observer (FBO) based synchronization design for generalized Lorenz system (GLS). The GLS can be described to TS fuzzy bilinear generalized Lorenz model (FBGLM) with their states immeasurable and their parameters unknown. We design an adaptive FBO based on TS FBGLM for synchronization. Lyapunov theory is employed to guarantee the stability of error dynamic system via linear matrix equalities (LMIs) and to derive the adaptive laws to estimate unknown parameters. Numerical example is given to demonstrate the validity of our proposed adaptive FBO approach for synchronization.

  17. Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.B. [Inst. Nikola Tesla, Belgrade (Yugoslavia). Dept. of Power Systems; Calovic, M.S. [Univ. of Belgrade (Yugoslavia). Dept. of Electrical Engineering; Vesovic, B.V. [Inst. Mihajlo Pupin, Belgrade (Yugoslavia). Dept. of Automatic Control; Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-01

    This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.

  18. Fuzzy fractals, chaos, and noise

    Energy Technology Data Exchange (ETDEWEB)

    Zardecki, A.

    1997-05-01

    To distinguish between chaotic and noisy processes, the authors analyze one- and two-dimensional chaotic mappings, supplemented by the additive noise terms. The predictive power of a fuzzy rule-based system allows one to distinguish ergodic and chaotic time series: in an ergodic series the likelihood of finding large numbers is small compared to the likelihood of finding them in a chaotic series. In the case of two dimensions, they consider the fractal fuzzy sets whose {alpha}-cuts are fractals, arising in the context of a quadratic mapping in the extended complex plane. In an example provided by the Julia set, the concept of Hausdorff dimension enables one to decide in favor of chaotic or noisy evolution.

  19. Stability analysis of polynomial fuzzy models via polynomial fuzzy Lyapunov functions

    OpenAIRE

    Bernal Reza, Miguel Ángel; Sala, Antonio; JAADARI, ABDELHAFIDH; Guerra, Thierry-Marie

    2011-01-01

    In this paper, the stability of continuous-time polynomial fuzzy models by means of a polynomial generalization of fuzzy Lyapunov functions is studied. Fuzzy Lyapunov functions have been fruitfully used in the literature for local analysis of Takagi-Sugeno models, a particular class of the polynomial fuzzy ones. Based on a recent Taylor-series approach which allows a polynomial fuzzy model to exactly represent a nonlinear model in a compact set of the state space, it is shown that a refinemen...

  20. Local Model Predictive Control for T-S Fuzzy Systems.

    Science.gov (United States)

    Lee, Donghwan; Hu, Jianghai

    2017-09-01

    In this paper, a new linear matrix inequality-based model predictive control (MPC) problem is studied for discrete-time nonlinear systems described as Takagi-Sugeno fuzzy systems. A recent local stability approach is applied to improve the performance of the proposed MPC scheme. At each time k , an optimal state-feedback gain that minimizes an objective function is obtained by solving a semidefinite programming problem. The local stability analysis, the estimation of the domain of attraction, and feasibility of the proposed MPC are proved. Examples are given to demonstrate the advantages of the suggested MPC over existing approaches.

  1. Robust hydraulic position controller by a fuzzy state controller

    International Nuclear Information System (INIS)

    Zhao, T.; Van der Wal, A.J.

    1994-01-01

    In nuclear industry, one of the most important design considerations of controllers is their robustness. Robustness in this context is defined as the ability of a system to be controlled in a stable way over a wide range of system parameters. Generally the systems to be controlled are linearized, and stability is subsequently proven for this idealized system. By combining classical control theory and fuzzy set theory, a new kind of state controller is proposed and successfully applied to a hydraulic position servo with excellent robustness against variation of system parameters

  2. Geometric Programming Approach to an Interactive Fuzzy Inventory Problem

    Directory of Open Access Journals (Sweden)

    Nirmal Kumar Mandal

    2011-01-01

    Full Text Available An interactive multiobjective fuzzy inventory problem with two resource constraints is presented in this paper. The cost parameters and index parameters, the storage space, the budgetary cost, and the objective and constraint goals are imprecise in nature. These parameters and objective goals are quantified by linear/nonlinear membership functions. A compromise solution is obtained by geometric programming method. If the decision maker is not satisfied with this result, he/she may try to update the current solution to his/her satisfactory solution. In this way we implement man-machine interactive procedure to solve the problem through geometric programming method.

  3. Fuzzy Portfolio Selection Problem with Different Borrowing and Lending Rates

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2011-01-01

    the returns of each assets are assumed to be fuzzy variables, then following the mean-variance approach, a new possibilistic portfolio selection model with different interest rates for borrowing and lending is proposed, in which the possibilistic semiabsolute deviation of the return is used to measure investment risk. The conventional probabilistic mean variance model can be transformed to a linear programming problem under possibility distributions. Finally, a numerical example is given to illustrate the modeling idea and the impact of borrowing and lending on optimal decision making.

  4. Fuzzy Networked Control Systems Design Considering Scheduling Restrictions

    Directory of Open Access Journals (Sweden)

    H. Benítez-Pérez

    2012-01-01

    known a priory but from a dynamic real-time behavior. To do so, the use of priority dynamic Priority exchange scheduling is performed. The objective of this paper is to show a way to tackle multiple time delays that are bounded and the dynamic response from real-time scheduling approximation. The related control law is designed considering fuzzy logic approximation for nonlinear time delays coupling, where the main advantage is the integration of this behavior through extended state space representation keeping certain linear and bounded behavior and leading to a stable situation during events presentation by guaranteeing stability through Lyapunov.

  5. A neuro approach to solve fuzzy Riccati differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Shahrir, Mohammad Shazri, E-mail: mshazri@gmail.com [InstitutSainsMatematik, Universiti Malaya 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur (Malaysia); Telekom Malaysia, R& D TM Innovation Centre, LingkaranTeknokrat Timur, 63000 Cyberjaya, Selangor (Malaysia); Kumaresan, N., E-mail: drnk2008@gmail.com; Kamali, M. Z. M.; Ratnavelu, Kurunathan [InstitutSainsMatematik, Universiti Malaya 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur (Malaysia)

    2015-10-22

    There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.

  6. Fuzzy Control of Robotic Arm

    Science.gov (United States)

    Lin, Kyaw Kyaw; Soe, Aung Kyaw; Thu, Theint Theint

    2008-10-01

    This research work investigates a Self-Tuning Proportional Derivative (PD) type Fuzzy Logic Controller (STPDFLC) for a two link robot system. The proposed scheme adjusts on-line the output Scaling Factor (SF) by fuzzy rules according to the current trend of the robot. The rule base for tuning the output scaling factor is defined on the error (e) and change in error (de). The scheme is also based on the fact that the controller always tries to manipulate the process input. The rules are in the familiar if-then format. All membership functions for controller inputs (e and de) and controller output (UN) are defined on the common interval [-1,1]; whereas the membership functions for the gain updating factor (α) is defined on [0,1]. There are various methods to calculate the crisp output of the system. Center of Gravity (COG) method is used in this application due to better results it gives. Performances of the proposed STPDFLC are compared with those of their corresponding PD-type conventional Fuzzy Logic Controller (PDFLC). The proposed scheme shows a remarkably improved performance over its conventional counterpart especially under parameters variation (payload). The two-link results of analysis are simulated. These simulation results are illustrated by using MATLAB® programming.

  7. Dc microgrid stabilization through fuzzy control of interleaved, heterogeneous storage elements

    Science.gov (United States)

    Smith, Robert David

    As microgrid power systems gain prevalence and renewable energy comprises greater and greater portions of distributed generation, energy storage becomes important to offset the higher variance of renewable energy sources and maximize their usefulness. One of the emerging techniques is to utilize a combination of lead-acid batteries and ultracapacitors to provide both short and long-term stabilization to microgrid systems. The different energy and power characteristics of batteries and ultracapacitors imply that they ought to be utilized in different ways. Traditional linear controls can use these energy storage systems to stabilize a power grid, but cannot effect more complex interactions. This research explores a fuzzy logic approach to microgrid stabilization. The ability of a fuzzy logic controller to regulate a dc bus in the presence of source and load fluctuations, in a manner comparable to traditional linear control systems, is explored and demonstrated. Furthermore, the expanded capabilities (such as storage balancing, self-protection, and battery optimization) of a fuzzy logic system over a traditional linear control system are shown. System simulation results are presented and validated through hardware-based experiments. These experiments confirm the capabilities of the fuzzy logic control system to regulate bus voltage, balance storage elements, optimize battery usage, and effect self-protection.

  8. Fuzzy ABC: Modelando a Incerteza na Alocação dos Custos AmbientaisFuzzy ABC: Modeling the Uncertainty in Environmental Cost AllocationFuzzy ABC: Modelando la Incertidumbre en la Alocation de los Costos Ambientales

    Directory of Open Access Journals (Sweden)

    BORBA, José Alonso

    2007-05-01

    Full Text Available RESUMOEm muitos casos, prevenir a poluição e a destruição do meio ambiente é menos oneroso do que remediar esses danos. Nesse contexto, a alocação de custos ambientais aos produtos permite uma melhor visualização e análise da rentabilidade dos produtos. Entretanto, a alocação dos custos ambientais aos produtos envolve informações estimadas e assume uma linearidade entre o consumo das atividades e os produtos, que muitas vezes não existe. Para contemplar essa não linearidade, esta pesquisa apresenta uma metodologia baseada na utilização da lógica fuzzy para modelar a incerteza e a subjetividade, inerentes ao processo de alocação dos custos ambientais. Para isso, além de um estudo de caso desenvolvido por Hansen e Mowen (2001, p. 584, que foi utilizado como referência, outras variáveis foram incorporadas. Em seguida, uma proposta de solução, que utiliza fundamentos da teoria dos conjuntos fuzzy, ou nebulosos, foi desenvolvida com o objetivo de contemplar a subjetividade e a incerteza na alocação dos custos ambientais. Para simular esse modelo, foram estabelecidas 126 regras de inferência. A etapa final da elaboração do modelo nebuloso consistiu na fuzzificação e defuzzificação dos dados existentes e dos novos direcionadores gerados por intermédio da utilização do software FuzzyTECH®. Os resultados encontrados no modelo proposto - FuzzyABC (Fuzzy Activity Based Costing - evidenciam que a lógica fuzzy pode ser utilizada como uma importante ferramenta para tratar da ambigüidade e da incerteza, inerentes ao processo de alocação dos custos ambientais.ABSTRACTIn many cases, preventing pollution and environmental destruction is cheaper than remedying these damages. In this sense, environmental cost allocation enables a better visualization and analysis of a product’s profitability. However, the environmental allocation process involves estimated information and assumes linearity between activity consumption

  9. ANALYSIS OF FUZZY QUEUES: PARAMETRIC PROGRAMMING APPROACH BASED ON RANDOMNESS - FUZZINESS CONSISTENCY PRINCIPLE

    Directory of Open Access Journals (Sweden)

    Dhruba Das

    2015-04-01

    Full Text Available In this article, based on Zadeh’s extension principle we have apply the parametric programming approach to construct the membership functions of the performance measures when the interarrival time and the service time are fuzzy numbers based on the Baruah’s Randomness- Fuzziness Consistency Principle. The Randomness-Fuzziness Consistency Principle leads to defining a normal law of fuzziness using two different laws of randomness. In this article, two fuzzy queues FM/M/1 and M/FM/1 has been studied and constructed their membership functions of the system characteristics based on the aforesaid principle. The former represents a queue with fuzzy exponential arrivals and exponential service rate while the latter represents a queue with exponential arrival rate and fuzzy exponential service rate.

  10. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  11. Fuzzy support vector machine for microarray imbalanced data classification

    Science.gov (United States)

    Ladayya, Faroh; Purnami, Santi Wulan; Irhamah

    2017-11-01

    DNA microarrays are data containing gene expression with small sample sizes and high number of features. Furthermore, imbalanced classes is a common problem in microarray data. This occurs when a dataset is dominated by a class which have significantly more instances than the other minority classes. Therefore, it is needed a classification method that solve the problem of high dimensional and imbalanced data. Support Vector Machine (SVM) is one of the classification methods that is capable of handling large or small samples, nonlinear, high dimensional, over learning and local minimum issues. SVM has been widely applied to DNA microarray data classification and it has been shown that SVM provides the best performance among other machine learning methods. However, imbalanced data will be a problem because SVM treats all samples in the same importance thus the results is bias for minority class. To overcome the imbalanced data, Fuzzy SVM (FSVM) is proposed. This method apply a fuzzy membership to each input point and reformulate the SVM such that different input points provide different contributions to the classifier. The minority classes have large fuzzy membership so FSVM can pay more attention to the samples with larger fuzzy membership. Given DNA microarray data is a high dimensional data with a very large number of features, it is necessary to do feature selection first using Fast Correlation based Filter (FCBF). In this study will be analyzed by SVM, FSVM and both methods by applying FCBF and get the classification performance of them. Based on the overall results, FSVM on selected features has the best classification performance compared to SVM.

  12. Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem

    Directory of Open Access Journals (Sweden)

    S. Molla-Alizadeh-Zavardehi

    2014-01-01

    Full Text Available This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA, variable neighborhood search (VNS, and simulated annealing (SA frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms.

  13. Neuro-Fuzzy Wavelet Based Adaptive MPPT Algorithm for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Syed Zulqadar Hassan

    2017-03-01

    Full Text Available An intelligent control of photovoltaics is necessary to ensure fast response and high efficiency under different weather conditions. This is often arduous to accomplish using traditional linear controllers, as photovoltaic systems are nonlinear and contain several uncertainties. Based on the analysis of the existing literature of Maximum Power Point Tracking (MPPT techniques, a high performance neuro-fuzzy indirect wavelet-based adaptive MPPT control is developed in this work. The proposed controller combines the reasoning capability of fuzzy logic, the learning capability of neural networks and the localization properties of wavelets. In the proposed system, the Hermite Wavelet-embedded Neural Fuzzy (HWNF-based gradient estimator is adopted to estimate the gradient term and makes the controller indirect. The performance of the proposed controller is compared with different conventional and intelligent MPPT control techniques. MATLAB results show the superiority over other existing techniques in terms of fast response, power quality and efficiency.

  14. Linguistic fuzzy control of the Welander problem in the chaotic regime

    International Nuclear Information System (INIS)

    Theler, German; Urdapilleta, Eugenio; Bonetto, Fabian J.

    2007-01-01

    As natural convection provides an efficient and completely passive heat removal system, natural circulation loops are a matter of great interest in the subject of advanced nuclear reactor design. However, under certain circumstances thermal-fluid dynamical instabilities may appear, threatening the reactor safety as a whole. On the other hand, fuzzy logic controllers provide and ideal framework to approach highly non-linear control problems. In the present work we introduce the basic ideas of the fuzzy logic theory and analyse the natural convection system known as the Welander problem, that is one of the simplest configurations of single-phase thermalhydraulic loops in which chaos actually occurs. Finally, we design a linguistic fuzzy controller that is able to stabilise the circulation flow in conditions that, if the controller was not present, would be otherwise non-periodic unstable. (author) [es

  15. Determination of the Main Influencing Factors on Road Fatalities Using an Integrated Neuro-Fuzzy Algorithm

    Directory of Open Access Journals (Sweden)

    Amir Masoud Rahimi

    Full Text Available Abstract This paper proposed an integrated algorithm of neuro-fuzzy techniques to examine the complex impact of socio-technical influencing factors on road fatalities. The proposed algorithm could handle complexity, non-linearity and fuzziness in the modeling environment due to its mechanism. The Neuro-fuzzy algorithm for determination of the potential influencing factors on road fatalities consisted of two phases. In the first phase, intelligent techniques are compared for their improved accuracy in predicting fatality rate with respect to some socio-technical influencing factors. Then in the second phase, sensitivity analysis is performed to calculate the pure effect on fatality rate of the potential influencing factors. The applicability and usefulness of the proposed algorithm is illustrated using the data in Iran provincial road transportation systems in the time period 2012-2014. Results show that road design improvement, number of trips, and number of passengers are the most influencing factors on provincial road fatality rate.

  16. Design of sewage treatment system by applying fuzzy adaptive PID controller

    Science.gov (United States)

    Jin, Liang-Ping; Li, Hong-Chan

    2013-03-01

    In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.

  17. Analysis of selected structures for model-based measuring methods using fuzzy logic

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, R.; Kaestner, W.; Fenske, A.; Vandreier, B.; Schefter, S. [Hochschule fuer Technik, Wirtschaft und Sozialwesen Zittau/Goerlitz (FH), Zittau (DE). Inst. fuer Prozesstechnik, Prozessautomatisierung und Messtechnik e.V. (IPM)

    2000-07-01

    Monitoring and diagnosis of safety-related technical processes in nuclear enginering can be improved with the help of intelligent methods of signal processing such as analytical redundancies. This chapter gives an overview about combined methods in form of hybrid models using model based measuring methods (observer) and knowledge-based methods (fuzzy logic). Three variants of hybrid observers (fuzzy-supported observer, hybrid observer with variable gain and hybrid non-linear operating point observer) are explained. As a result of the combination of analytical and fuzzy-based algorithms a new quality of monitoring and diagnosis is achieved. The results will be demonstrated in summary for the example water level estimation within pressure vessels (pressurizer, steam generator, and Boiling Water Reactor) with water-steam mixture during the accidental depressurization. (orig.)

  18. Analysis of selected structures for model-based measuring methods using fuzzy logic

    International Nuclear Information System (INIS)

    Hampel, R.; Kaestner, W.; Fenske, A.; Vandreier, B.; Schefter, S.

    2000-01-01

    Monitoring and diagnosis of safety-related technical processes in nuclear engineering can be improved with the help of intelligent methods of signal processing such as analytical redundancies. This chapter gives an overview about combined methods in form of hybrid models using model based measuring methods (observer) and knowledge-based methods (fuzzy logic). Three variants of hybrid observers (fuzzy-supported observer, hybrid observer with variable gain and hybrid non-linear operating point observer) are explained. As a result of the combination of analytical and fuzzy-based algorithms a new quality of monitoring and diagnosis is achieved. The results will be demonstrated in summary for the example water level estimation within pressure vessels (pressurizer, steam generator, and Boiling Water Reactor) with water-steam mixture during the accidental depressurization. (orig.)

  19. Adaptive Fuzzy Robust Control for a Class of Nonlinear Systems via Small Gain Theorem

    Directory of Open Access Journals (Sweden)

    Xingjian Wang

    2013-01-01

    Full Text Available Practical nonlinear systems can usually be represented by partly linearizable models with unknown nonlinearities and external disturbances. Based on this consideration, we propose a novel adaptive fuzzy robust control (AFRC algorithm for such systems. The AFRC effectively combines techniques of adaptive control and fuzzy control, and it improves the performance by retaining the advantages of both methods. The linearizable part will be linearly parameterized with unknown but constant parameters, and the discontinuous-projection-based adaptive control law is used to compensate these parts. The Takagi-Sugeno fuzzy logic systems are used to approximate unknown nonlinearities. Robust control law ensures the robustness of closed-loop control system. A systematic design procedure of the AFRC algorithm by combining the backstepping technique and small-gain approach is presented. Then the closed-loop stability is studied by using small gain theorem, and the result indicates that the closed-loop system is semiglobally uniformly ultimately bounded.

  20. PREDIKSI KEMUNGKINAN BPREDIKSI BANJIR SUNGAI CITARUM DENGAN LOGIKA FUZZY HASIL ALGORITMA PARTICLE SWARM OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Phitsa Mauliana

    2016-09-01

    Full Text Available Abstract The purpose of this paper is the prediction of the possibility of flooding using fuzzy logic results of data processing algorithms using particle swarm optimization (PSO. Flooding is the water level exceeds the normal stream. Usually on the face of water and erratic rainfall cause people cannot predict the occurrence of floods. It required an effort to predict the flood in order to minimize losses resulting from flooding. Particle swarm optimization algorithm can solve a system of nonlinear equations for predicting flooding is a non-linear data processing. Particle swarm optimization algorithm and sample used was rainfall and water level, the result is a flood prediction accuracy of 73% based on the resulting confusion matrix calculations. Implementation of fuzzy logic can help predict the likelihood of flooding around the Citarum River. Keywords: Prediction, Flood, Particle Swarm Optimization, Fuzzy Logic.