Linear measure functional differential equations with infinite delay
Monteiro, G. (Giselle Antunes); Slavík, A.
2014-01-01
We use the theory of generalized linear ordinary differential equations in Banach spaces to study linear measure functional differential equations with infinite delay. We obtain new results concerning the existence, uniqueness, and continuous dependence of solutions. Even for equations with a finite delay, our results are stronger than the existing ones. Finally, we present an application to functional differential equations with impulses.
On nonnegative solutions of second order linear functional differential equations
Czech Academy of Sciences Publication Activity Database
Lomtatidze, Alexander; Vodstrčil, Petr
2004-01-01
Roč. 32, č. 1 (2004), s. 59-88 ISSN 1512-0015 Institutional research plan: CEZ:AV0Z1019905 Keywords : second order linear functional differential equations * nonnegative solution * two-point boundary value problem Subject RIV: BA - General Mathematics
Nahay, John Michael
2008-01-01
We present a new approach to solving polynomial ordinary differential equations by transforming them to linear functional equations and then solving the linear functional equations. We will focus most of our attention upon the first-order Abel differential equation with two nonlinear terms in order to demonstrate in as much detail as possible the computations necessary for a complete solution. We mention in our section on further developments that the basic transformation idea can be generali...
Linear measure functional differential equations with infinite delay
Czech Academy of Sciences Publication Activity Database
Monteiro, Giselle Antunes; Slavík, A.
2014-01-01
Roč. 287, 11-12 (2014), s. 1363-1382 ISSN 0025-584X Institutional support: RVO:67985840 Keywords : measure functional differential equations * generalized ordinary differential equations * Kurzweil-Stieltjes integral Subject RIV: BA - General Mathematics Impact factor: 0.683, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/mana.201300048/abstract
A linear functional differential equation with distributions in the input
Directory of Open Access Journals (Sweden)
Vadim Z. Tsalyuk
2003-10-01
Full Text Available This paper studies the functional differential equation $$ dot x(t = int_a^t {d_s R(t,s, x(s} + F'(t, quad t in [a,b], $$ where $F'$ is a generalized derivative, and $R(t,cdot$ and $F$ are functions of bounded variation. A solution is defined by the difference $x - F$ being absolutely continuous and satisfying the inclusion $$ frac{d}{dt} (x(t - F(t in int_a^t {d_s R(t,s,x(s}. $$ Here, the integral in the right is the multivalued Stieltjes integral presented in cite{VTs1} (in this article we review and extend the results in cite{VTs1}. We show that the solution set for the initial-value problem is nonempty, compact, and convex. A solution $x$ is said to have memory if there exists the function $x$ such that $x(a = x(a$, $x(b = x(b$, $ x(t in [x(t-0,x(t+0]$ for $t in (a,b$, and $frac{d}{dt} (x(t - F(t = int_a^t {d_s R(t,s,{x}(s}$, where Lebesgue-Stieltjes integral is used. We show that such solutions form a nonempty, compact, and convex set. It is shown that solutions with memory obey the Cauchy-type formula $$ x(t in C(t,ax(a + int_a^t C(t,s, dF(s. $$
Differentiability of Palmer's linearization Theorem and converse result for density functions
Castañeda, Alvaro; Robledo, Gonzalo
2014-01-01
We study differentiability properties in a particular case of the Palmer's linearization Theorem, which states the existence of an homeomorphism $H$ between the solutions of a linear ODE system having exponential dichotomy and a quasilinear system. Indeed, if the linear system is uniformly asymptotically stable, sufficient conditions ensuring that $H$ is a $C^{2}$ preserving orientation diffeomorphism are given. As an application, we generalize a converse result of density functions for a non...
Multi-point boundary value problems for linear functional-differential equations
Czech Academy of Sciences Publication Activity Database
Domoshnitsky, A.; Hakl, Robert; Půža, Bedřich
2017-01-01
Roč. 24, č. 2 (2017), s. 193-206 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : boundary value problems * linear functional- differential equations * functional- differential inequalities Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0076/gmj-2016-0076.xml
Multi-point boundary value problems for linear functional-differential equations
Czech Academy of Sciences Publication Activity Database
Domoshnitsky, A.; Hakl, Robert; Půža, Bedřich
2017-01-01
Roč. 24, č. 2 (2017), s. 193-206 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : boundary value problems * linear functional-differential equations * functional-differential inequalities Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0076/gmj-2016-0076. xml
Linear hyperbolic functional-differential equations with essentially bounded right-hand side
Czech Academy of Sciences Publication Activity Database
Domoshnitsky, A.; Lomtatidze, Alexander; Maghakyan, A.; Šremr, Jiří
2011-01-01
Roč. 2011, - (2011), s. 242965 ISSN 1085-3375 Institutional research plan: CEZ:AV0Z10190503 Keywords : linear functional-differential equation of hyperbolic type * Darboux problem * unique solvability Subject RIV: BA - General Mathematics Impact factor: 1.318, year: 2011 http://www.hindawi.com/journals/ aaa /2011/242965/
Directory of Open Access Journals (Sweden)
Salih Yalcinbas
2016-01-01
Full Text Available In this paper, a new collocation method based on the Fibonacci polynomials is introduced to solve the high-order linear Volterra integro-differential equations under the conditions. Numerical examples are included to demonstrate the applicability and validity of the proposed method and comparisons are made with the existing results. In addition, an error estimation based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation.
Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series
Gnoffo, Peter A.
2015-01-01
Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.
Suzuki, Makoto; Sugimura, Yuko; Yamada, Sumio; Omori, Yoshitsugu; Miyamoto, Masaaki; Yamamoto, Jun-ichi
2013-01-01
Cognitive disorders in the acute stage of stroke are common and are important independent predictors of adverse outcome in the long term. Despite the impact of cognitive disorders on both patients and their families, it is still difficult to predict the extent or duration of cognitive impairments. The objective of the present study was, therefore, to provide data on predicting the recovery of cognitive function soon after stroke by differential modeling with logarithmic and linear regression. This study included two rounds of data collection comprising 57 stroke patients enrolled in the first round for the purpose of identifying the time course of cognitive recovery in the early-phase group data, and 43 stroke patients in the second round for the purpose of ensuring that the correlation of the early-phase group data applied to the prediction of each individual's degree of cognitive recovery. In the first round, Mini-Mental State Examination (MMSE) scores were assessed 3 times during hospitalization, and the scores were regressed on the logarithm and linear of time. In the second round, calculations of MMSE scores were made for the first two scoring times after admission to tailor the structures of logarithmic and linear regression formulae to fit an individual's degree of functional recovery. The time course of early-phase recovery for cognitive functions resembled both logarithmic and linear functions. However, MMSE scores sampled at two baseline points based on logarithmic regression modeling could estimate prediction of cognitive recovery more accurately than could linear regression modeling (logarithmic modeling, R(2) = 0.676, PLogarithmic modeling based on MMSE scores could accurately predict the recovery of cognitive function soon after the occurrence of stroke. This logarithmic modeling with mathematical procedures is simple enough to be adopted in daily clinical practice.
Directory of Open Access Journals (Sweden)
Tülin Acar
2012-01-01
Full Text Available The aim of this research is to compare the result of the differential item functioning (DIF determining with hierarchical generalized linear model (HGLM technique and the results of the DIF determining with logistic regression (LR and item response theory–likelihood ratio (IRT-LR techniques on the test items. For this reason, first in this research, it is determined whether the students encounter DIF with HGLM, LR, and IRT-LR techniques according to socioeconomic status (SES, in the Turkish, Social Sciences, and Science subtest items of the Secondary School Institutions Examination. When inspecting the correlations among the techniques in terms of determining the items having DIF, it was discovered that there was significant correlation between the results of IRT-LR and LR techniques in all subtests; merely in Science subtest, the results of the correlation between HGLM and IRT-LR techniques were found significant. DIF applications can be made on test items with other DIF analysis techniques that were not taken to the scope of this research. The analysis results, which were determined by using the DIF techniques in different sample sizes, can be compared.
Ito, Kazufumi; Teglas, Russell
1987-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
Ito, K.; Teglas, R.
1984-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
On nonseparated three-point boundary value problems for linear functional differential equations
Czech Academy of Sciences Publication Activity Database
Rontó, András; Rontó, M.
2011-01-01
Roč. 2011, - (2011), s. 326052 ISSN 1085-3375 Institutional research plan: CEZ:AV0Z10190503 Keywords : functional-differential equation * three-point boundary value problem * nonseparated boundary condition Subject RIV: BA - General Mathematics Impact factor: 1.318, year: 2011 http://www.hindawi.com/journals/ aaa /2011/326052/
Czech Academy of Sciences Publication Activity Database
Dilna, N.; Rontó, András
2010-01-01
Roč. 60, č. 3 (2010), s. 327-338 ISSN 0139-9918 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-linear boundary value-problem * functional differential equation * non-local condition * unique solvability * differential inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0015-9
Solving Linear Differential Equations
Nguyen, K.A.; Put, M. van der
2010-01-01
The theme of this paper is to 'solve' an absolutely irreducible differential module explicitly in terms of modules of lower dimension and finite extensions of the differential field K. Representations of semi-simple Lie algebras and differential Galo is theory are the main tools. The results extend
Differential calculus in normed linear spaces
Mukherjea, Kalyan
2007-01-01
This book presents Advanced Calculus from a geometric point of view: instead of dealing with partial derivatives of functions of several variables, the derivative of the function is treated as a linear transformation between normed linear spaces. Not only does this lead to a simplified and transparent exposition of "difficult" results like the Inverse and Implicit Function Theorems but also permits, without any extra effort, a discussion of the Differential Calculus of functions defined on infinite dimensional Hilbert or Banach spaces.The prerequisites demanded of the reader are modest: a sound understanding of convergence of sequences and series of real numbers, the continuity and differentiability properties of functions of a real variable and a little Linear Algebra should provide adequate background for understanding the book. The first two chapters cover much of the more advanced background material on Linear Algebra (like dual spaces, multilinear functions and tensor products.) Chapter 3 gives an ab ini...
Basic linear partial differential equations
Treves, Francois
1975-01-01
Focusing on the archetypes of linear partial differential equations, this text for upper-level undergraduates and graduate students features most of the basic classical results. The methods, however, are decidedly nontraditional: in practically every instance, they tend toward a high level of abstraction. This approach recalls classical material to contemporary analysts in a language they can understand, as well as exploiting the field's wealth of examples as an introduction to modern theories.The four-part treatment covers the basic examples of linear partial differential equations and their
Lorenzo, C F; Hartley, T T; Malti, R
2013-05-13
A new and simplified method for the solution of linear constant coefficient fractional differential equations of any commensurate order is presented. The solutions are based on the R-function and on specialized Laplace transform pairs derived from the principal fractional meta-trigonometric functions. The new method simplifies the solution of such fractional differential equations and presents the solutions in the form of real functions as opposed to fractional complex exponential functions, and thus is directly applicable to real-world physics.
Periodic linear differential stochastic processes
Kwakernaak, H.
1975-01-01
Periodic linear differential processes are defined and their properties are analyzed. Equivalent representations are discussed, and the solutions of related optimal estimation problems are given. An extension is presented of Kailath and Geesey’s [1] results concerning the innovations representation
Czech Academy of Sciences Publication Activity Database
Šremr, Jiří
2007-01-01
Roč. 132, č. 3 (2007), s. 263-295 ISSN 0862-7959 R&D Projects: GA ČR GP201/04/P183 Institutional research plan: CEZ:AV0Z10190503 Keywords : system of functional differential equations with monotone operators * initial value problem * unique solvability Subject RIV: BA - General Mathematics
Czech Academy of Sciences Publication Activity Database
Rontó, András; Samoilenko, A. M.
2007-01-01
Roč. 41, - (2007), s. 115-136 ISSN 1512-0015 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : two-point problem * functional differential equation * singular boundary problem Subject RIV: BA - General Mathematics
Linear determining equations for differential constraints
International Nuclear Information System (INIS)
Kaptsov, O V
1998-01-01
A construction of differential constraints compatible with partial differential equations is considered. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the classical determining equations used in the search for admissible Lie operators. As applications of this approach equations of an ideal incompressible fluid and non-linear heat equations are discussed
GLOBAL LINEARIZATION OF DIFFERENTIAL EQUATIONS WITH SPECIAL STRUCTURES
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
This paper introduces the global linearization of the differential equations with special structures.The function in the differential equation is unbounded.We prove that the differential equation with unbounded function can be topologically linearlized if it has a special structure.
Lie algebras and linear differential equations.
Brockett, R. W.; Rahimi, A.
1972-01-01
Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.
On deformations of linear differential systems
Gontsov, R.R.; Poberezhnyi, V.A.; Helminck, G.F.
2011-01-01
This article concerns deformations of meromorphic linear differential systems. Problems relating to their existence and classification are reviewed, and the global and local behaviour of solutions to deformation equations in a neighbourhood of their singular set is analysed. Certain classical
Linearized gravity in terms of differential forms
Baykal, Ahmet; Dereli, Tekin
2017-01-01
A technique to linearize gravitational field equations is developed in which the perturbation metric coefficients are treated as second rank, symmetric, 1-form fields belonging to the Minkowski background spacetime by using the exterior algebra of differential forms.
Schwarzian conditions for linear differential operators with selected differential Galois groups
International Nuclear Information System (INIS)
Abdelaziz, Y; Maillard, J-M
2017-01-01
We show that non-linear Schwarzian differential equations emerging from covariance symmetry conditions imposed on linear differential operators with hypergeometric function solutions can be generalized to arbitrary order linear differential operators with polynomial coefficients having selected differential Galois groups. For order three and order four linear differential operators we show that this pullback invariance up to conjugation eventually reduces to symmetric powers of an underlying order-two operator. We give, precisely, the conditions to have modular correspondences solutions for such Schwarzian differential equations, which was an open question in a previous paper. We analyze in detail a pullbacked hypergeometric example generalizing modular forms, that ushers a pullback invariance up to operator homomorphisms. We finally consider the more general problem of the equivalence of two different order-four linear differential Calabi–Yau operators up to pullbacks and conjugation, and clarify the cases where they have the same Yukawa couplings. (paper)
Schwarzian conditions for linear differential operators with selected differential Galois groups
Abdelaziz, Y.; Maillard, J.-M.
2017-11-01
We show that non-linear Schwarzian differential equations emerging from covariance symmetry conditions imposed on linear differential operators with hypergeometric function solutions can be generalized to arbitrary order linear differential operators with polynomial coefficients having selected differential Galois groups. For order three and order four linear differential operators we show that this pullback invariance up to conjugation eventually reduces to symmetric powers of an underlying order-two operator. We give, precisely, the conditions to have modular correspondences solutions for such Schwarzian differential equations, which was an open question in a previous paper. We analyze in detail a pullbacked hypergeometric example generalizing modular forms, that ushers a pullback invariance up to operator homomorphisms. We finally consider the more general problem of the equivalence of two different order-four linear differential Calabi-Yau operators up to pullbacks and conjugation, and clarify the cases where they have the same Yukawa couplings.
Singular Linear Differential Equations in Two Variables
Braaksma, B.L.J.; Put, M. van der
2008-01-01
The formal and analytic classification of integrable singular linear differential equations has been studied among others by R. Gerard and Y. Sibuya. We provide a simple proof of their main result, namely: For certain irregular systems in two variables there is no Stokes phenomenon, i.e. there is no
Spectral theories for linear differential equations
International Nuclear Information System (INIS)
Sell, G.R.
1976-01-01
The use of spectral analysis in the study of linear differential equations with constant coefficients is not only a fundamental technique but also leads to far-reaching consequences in describing the qualitative behaviour of the solutions. The spectral analysis, via the Jordan canonical form, will not only lead to a representation theorem for a basis of solutions, but will also give a rather precise statement of the (exponential) growth rates of various solutions. Various attempts have been made to extend this analysis to linear differential equations with time-varying coefficients. The most complete such extensions is the Floquet theory for equations with periodic coefficients. For time-varying linear differential equations with aperiodic coefficients several authors have attempted to ''extend'' the Foquet theory. The precise meaning of such an extension is itself a problem, and we present here several attempts in this direction that are related to the general problem of extending the spectral analysis of equations with constant coefficients. The main purpose of this paper is to introduce some problems of current research. The primary problem we shall examine occurs in the context of linear differential equations with almost periodic coefficients. We call it ''the Floquet problem''. (author)
Dual exponential polynomials and linear differential equations
Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne
2018-01-01
We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.
Introduction to linear systems of differential equations
Adrianova, L Ya
1995-01-01
The theory of linear systems of differential equations is one of the cornerstones of the whole theory of differential equations. At its root is the concept of the Lyapunov characteristic exponent. In this book, Adrianova presents introductory material and further detailed discussions of Lyapunov exponents. She also discusses the structure of the space of solutions of linear systems. Classes of linear systems examined are from the narrowest to widest: 1)�autonomous, 2)�periodic, 3)�reducible to autonomous, 4)�nearly reducible to autonomous, 5)�regular. In addition, Adrianova considers the following: stability of linear systems and the influence of perturbations of the coefficients on the stability the criteria of uniform stability and of uniform asymptotic stability in terms of properties of the solutions several estimates of the growth rate of solutions of a linear system in terms of its coefficients How perturbations of the coefficients change all the elements of the spectrum of the system is defin...
Automatic differentiation of functions
International Nuclear Information System (INIS)
Douglas, S.R.
1990-06-01
Automatic differentiation is a method of computing derivatives of functions to any order in any number of variables. The functions must be expressible as combinations of elementary functions. When evaluated at specific numerical points, the derivatives have no truncation error and are automatically found. The method is illustrated by simple examples. Source code in FORTRAN is provided
On a representation of linear differential equations
Czech Academy of Sciences Publication Activity Database
Neuman, František
2010-01-01
Roč. 52, 1-2 (2010), s. 355-360 ISSN 0895-7177 Grant - others:GA ČR(CZ) GA201/08/0469 Institutional research plan: CEZ:AV0Z10190503 Keywords : Brandt and Ehresmann groupoinds * transformations * canonical forms * linear differential equations Subject RIV: BA - General Mathematics Impact factor: 1.066, year: 2010 http://www.sciencedirect.com/science/article/pii/S0895717710001184
Functionalized linear and cyclic polyolefins
Energy Technology Data Exchange (ETDEWEB)
Tuba, Robert; Grubbs, Robert H.
2018-02-13
This invention relates to methods and compositions for preparing linear and cyclic polyolefins. More particularly, the invention relates to methods and compositions for preparing functionalized linear and cyclic polyolefins via olefin metathesis reactions. Polymer products produced via the olefin metathesis reactions of the invention may be utilized for a wide range of materials applications. The invention has utility in the fields of polymer and materials chemistry and manufacture.
Feedback nash equilibria for linear quadratic descriptor differential games
Engwerda, J.C.; Salmah, S.
2012-01-01
In this paper, we consider the non-cooperative linear feedback Nash quadratic differential game with an infinite planning horizon for descriptor systems of index one. The performance function is assumed to be indefinite. We derive both necessary and sufficient conditions under which this game has a
Feedback Nash Equilibria for Linear Quadratic Descriptor Differential Games
Engwerda, J.C.; Salmah, Y.
2010-01-01
In this note we consider the non-cooperative linear feedback Nash quadratic differential game with an infinite planning horizon for descriptor systems of index one. The performance function is assumed to be indefinite. We derive both necessary and sufficient conditions under which this game has a
Differentiation of real functions
Bruckner, Andrew
1994-01-01
Topics related to the differentiation of real functions have received considerable attention during the last few decades. This book provides an efficient account of the present state of the subject. Bruckner addresses in detail the problems that arise when dealing with the class \\Delta ' of derivatives, a class that is difficult to handle for a number of reasons. Several generalized forms of differentiation have assumed importance in the solution of various problems. Some generalized derivatives are excellent substitutes for the ordinary derivative when the latter is not known to exist; others are not. Bruckner studies generalized derivatives and indicates "geometric" conditions that determine whether or not a generalized derivative will be a good substitute for the ordinary derivative. There are a number of classes of functions closely linked to differentiation theory, and these are examined in some detail. The book unifies many important results from the literature as well as some results not previously pub...
Differential analysis of matrix convex functions II
DEFF Research Database (Denmark)
Hansen, Frank; Tomiyama, Jun
2009-01-01
We continue the analysis in [F. Hansen, and J. Tomiyama, Differential analysis of matrix convex functions. Linear Algebra Appl., 420:102--116, 2007] of matrix convex functions of a fixed order defined in a real interval by differential methods as opposed to the characterization in terms of divided...
Reduction of Linear Functional Systems using Fuhrmann's Equivalence
Directory of Open Access Journals (Sweden)
Mohamed S. Boudellioua
2016-11-01
Full Text Available Functional systems arise in the treatment of systems of partial differential equations, delay-differential equations, multidimensional equations, etc. The problem of reducing a linear functional system to a system containing fewer equations and unknowns was first studied by Serre. Finding an equivalent presentation of a linear functional system containing fewer equations and fewer unknowns can generally simplify both the study of the structural properties of the linear functional system and of different numerical analysis issues, and it can sometimes help in solving the linear functional system. In this paper, Fuhrmann's equivalence is used to present a constructive result on the reduction of under-determined linear functional systems to a single equation involving a single unknown. This equivalence transformation has been studied by a number of authors and has been shown to play an important role in the theory of linear functional systems.
Oscillatory solutions of the Cauchy problem for linear differential equations
Directory of Open Access Journals (Sweden)
Gro Hovhannisyan
2015-06-01
Full Text Available We consider the Cauchy problem for second and third order linear differential equations with constant complex coefficients. We describe necessary and sufficient conditions on the data for the existence of oscillatory solutions. It is known that in the case of real coefficients the oscillatory behavior of solutions does not depend on initial values, but we show that this is no longer true in the complex case: hence in practice it is possible to control oscillatory behavior by varying the initial conditions. Our Proofs are based on asymptotic analysis of the zeros of solutions, represented as linear combinations of exponential functions.
A Solution to the Fundamental Linear Fractional Order Differential Equation
Hartley, Tom T.; Lorenzo, Carl F.
1998-01-01
This paper provides a solution to the fundamental linear fractional order differential equation, namely, (sub c)d(sup q, sub t) + ax(t) = bu(t). The impulse response solution is shown to be a series, named the F-function, which generalizes the normal exponential function. The F-function provides the basis for a qth order "fractional pole". Complex plane behavior is elucidated and a simple example, the inductor terminated semi- infinite lossy line, is used to demonstrate the theory.
Meromorphic functions and linear algebra
Nevanlinna, Olavi
2003-01-01
This volume describes for the first time in monograph form important applications in numerical methods of linear algebra. The author presents new material and extended results from recent papers in a very readable style. The main goal of the book is to study the behavior of the resolvent of a matrix under the perturbation by low rank matrices. Whereas the eigenvalues (the poles of the resolvent) and the pseudospectra (the sets where the resolvent takes large values) can move dramatically under such perturbations, the growth of the resolvent as a matrix-valued meromorphic function remains essen
A Trivial Linear Discriminant Function
Directory of Open Access Journals (Sweden)
Shuichi Shinmura
2015-11-01
Full Text Available In this paper, we focus on the new model selection procedure of the discriminant analysis. Combining re-sampling technique with k-fold cross validation, we develop a k-fold cross validation for small sample method. By this breakthrough, we obtain the mean error rate in the validation samples (M2 and the 95\\% confidence interval (CI of discriminant coefficient. Moreover, we propose the model selection procedure in which the model having a minimum M2 was chosen to the best model. We apply this new method and procedure to the pass/ fail determination of exam scores. In this case, we fix the constant =1 for seven linear discriminant functions (LDFs and several good results were obtained as follows: 1 M2 of Fisher's LDF are over 4.6\\% worse than Revised IP-OLDF. 2 A soft-margin SVM for penalty c=1 (SVM1 is worse than another mathematical programming (MP based LDFs and logistic regression . 3 The 95\\% CI of the best discriminant coefficients was obtained. Seven LDFs except for Fisher's LDF are almost the same as a trivial LDF for the linear separable model. Furthermore, if we choose the median of the coefficient of seven LDFs except for Fisher's LDF, those are almost the same as the trivial LDF for the linear separable model.
Schwarz maps of algebraic linear ordinary differential equations
Sanabria Malagón, Camilo
2017-12-01
A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.
Lyapunov functionals and stability of stochastic functional differential equations
Shaikhet, Leonid
2013-01-01
Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author’s previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for discrete- and continuous-time difference equations. The text begins with a description of the peculiarities of deterministic and stochastic functional differential equations. There follow basic definitions for stability theory of stochastic hereditary systems, and a formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of di...
Introducing Linear Functions: An Alternative Statistical Approach
Nolan, Caroline; Herbert, Sandra
2015-01-01
The introduction of linear functions is the turning point where many students decide if mathematics is useful or not. This means the role of parameters and variables in linear functions could be considered to be "threshold concepts". There is recognition that linear functions can be taught in context through the exploration of linear…
Linear-quadratic control and quadratic differential forms for multidimensional behaviors
Napp, D.; Trentelman, H.L.
2011-01-01
This paper deals with systems described by constant coefficient linear partial differential equations (nD-systems) from a behavioral point of view. In this context we treat the linear-quadratic control problem where the performance functional is the integral of a quadratic differential form. We look
A local-global problem for linear differential equations
Put, Marius van der; Reversat, Marc
2008-01-01
An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is
A local-global problem for linear differential equations
Put, Marius van der; Reversat, Marc
An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is
First order linear ordinary differential equations in associative algebras
Directory of Open Access Journals (Sweden)
Gordon Erlebacher
2004-01-01
Full Text Available In this paper, we study the linear differential equation $$ frac{dx}{dt}=sum_{i=1}^n a_i(t x b_i(t + f(t $$ in an associative but non-commutative algebra $mathcal{A}$, where the $b_i(t$ form a set of commuting $mathcal{A}$-valued functions expressed in a time-independent spectral basis consisting of mutually annihilating idempotents and nilpotents. Explicit new closed solutions are derived, and examples are presented to illustrate the theory.
Oscillation of solutions of some higher order linear differential equations
Directory of Open Access Journals (Sweden)
Hong-Yan Xu
2009-11-01
Full Text Available In this paper, we deal with the order of growth and the hyper order of solutions of higher order linear differential equations $$f^{(k}+B_{k-1}f^{(k-1}+\\cdots+B_1f'+B_0f=F$$ where $B_j(z (j=0,1,\\ldots,k-1$ and $F$ are entire functions or polynomials. Some results are obtained which improve and extend previous results given by Z.-X. Chen, J. Wang, T.-B. Cao and C.-H. Li.
Linear algebra a first course with applications to differential equations
Apostol, Tom M
2014-01-01
Developed from the author's successful two-volume Calculus text this book presents Linear Algebra without emphasis on abstraction or formalization. To accommodate a variety of backgrounds, the text begins with a review of prerequisites divided into precalculus and calculus prerequisites. It continues to cover vector algebra, analytic geometry, linear spaces, determinants, linear differential equations and more.
Covariant differential complexes of quantum linear groups
International Nuclear Information System (INIS)
Isaev, A.P.; Pyatov, P.N.
1993-01-01
We consider the possible covariant external algebra structures for Cartan's 1-forms (Ω) on G L q (N) and S L q (N). Our starting point is that Ω s realize an adjoint representation of quantum group and all monomials of Ω s possess the unique ordering. For the obtained external algebras we define the differential mapping d possessing the usual nilpotence condition, and the generally deformed version of Leibnitz rules. The status of the known examples of G L q (N)-differential calculi in the proposed classification scheme and the problems of S L q (N)-reduction are discussed. (author.). 26 refs
Antiderivative Series for Differentiable Functions
Howard, Roy M.
2004-01-01
A series defining the antiderivative of an n th order differentiable function is defined. This series provides an explicit expression for the second part of the Fundamental Theorem of Calculus and can facilitate the establishment of new antiderivative functions.
Subroutine for series solutions of linear differential equations
International Nuclear Information System (INIS)
Tasso, H.; Steuerwald, J.
1976-02-01
A subroutine for Taylor series solutions of systems of ordinary linear differential equations is descriebed. It uses the old idea of Lie series but allows simple implementation and is time-saving for symbolic manipulations. (orig.) [de
Approximate Method for Solving the Linear Fuzzy Delay Differential Equations
Directory of Open Access Journals (Sweden)
S. Narayanamoorthy
2015-01-01
Full Text Available We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.
Linear matrix differential equations of higher-order and applications
Directory of Open Access Journals (Sweden)
Mustapha Rachidi
2008-07-01
Full Text Available In this article, we study linear differential equations of higher-order whose coefficients are square matrices. The combinatorial method for computing the matrix powers and exponential is adopted. New formulas representing auxiliary results are obtained. This allows us to prove properties of a large class of linear matrix differential equations of higher-order, in particular results of Apostol and Kolodner are recovered. Also illustrative examples and applications are presented.
Linear differential equations to solve nonlinear mechanical problems: A novel approach
Nair, C. Radhakrishnan
2004-01-01
Often a non-linear mechanical problem is formulated as a non-linear differential equation. A new method is introduced to find out new solutions of non-linear differential equations if one of the solutions of a given non-linear differential equation is known. Using the known solution of the non-linear differential equation, linear differential equations are set up. The solutions of these linear differential equations are found using standard techniques. Then the solutions of the linear differe...
Lie symmetries and differential galois groups of linear equations
Oudshoorn, W.R.; Put, M. van der
2002-01-01
For a linear ordinary differential equation the Lie algebra of its infinitesimal Lie symmetries is compared with its differential Galois group. For this purpose an algebraic formulation of Lie symmetries is developed. It turns out that there is no direct relation between the two above objects. In
INPUT-OUTPUT STRUCTURE OF LINEAR-DIFFERENTIAL ALGEBRAIC SYSTEMS
KUIJPER, M; SCHUMACHER, JM
Systems of linear differential and algebraic equations occur in various ways, for instance, as a result of automated modeling procedures and in problems involving algebraic constraints, such as zero dynamics and exact model matching. Differential/algebraic systems may represent an input-output
Understanding Linear Functions and Their Representations
Wells, Pamela J.
2015-01-01
Linear functions are an important part of the middle school mathematics curriculum. Students in the middle grades gain fluency by working with linear functions in a variety of representations (NCTM 2001). Presented in this article is an activity that was used with five eighth-grade classes at three different schools. The activity contains 15 cards…
From the hypergeometric differential equation to a non-linear Schrödinger one
International Nuclear Information System (INIS)
Plastino, A.; Rocca, M.C.
2015-01-01
We show that the q-exponential function is a hypergeometric function. Accordingly, it obeys the hypergeometric differential equation. We demonstrate that this differential equation can be transformed into a non-linear Schrödinger equation (NLSE). This NLSE exhibits both similarities and differences vis-a-vis the Nobre–Rego-Monteiro–Tsallis one. - Highlights: • We show that the q-exponential is a hypergeometric function. • It thus obeys the hypergeometric differential equation (HDE). • We show that the HDE can be cast as a non-linear Schrödinger equation. • This is different from the Nobre, Rego-Monteiro, Tsallis one.
On the reduction of the degree of linear differential operators
International Nuclear Information System (INIS)
Bobieński, Marcin; Gavrilov, Lubomir
2011-01-01
Let L be a linear differential operator with coefficients in some differential field k of characteristic zero with algebraically closed field of constants. Let k a be the algebraic closure of k. For a solution y 0 , Ly 0 = 0, we determine the linear differential operator of minimal degree L-tilde and coefficients in k a , such that L-tilde y 0 =0. This result is then applied to some Picard–Fuchs equations which appear in the study of perturbations of plane polynomial vector fields of Lotka–Volterra type
Rational approximations to solutions of linear differential equations.
Chudnovsky, D V; Chudnovsky, G V
1983-08-01
Rational approximations of Padé and Padé type to solutions of differential equations are considered. One of the main results is a theorem stating that a simultaneous approximation to arbitrary solutions of linear differential equations over C(x) cannot be "better" than trivial ones implied by the Dirichlet box principle. This constitutes, in particular, the solution in the linear case of Kolchin's problem that the "Roth's theorem" holds for arbitrary solutions of algebraic differential equations. Complete effective proofs for several valuations are presented based on the Wronskian methods and graded subrings of Picard-Vessiot extensions.
Links among impossible differential, integral and zero correlation linear cryptanalysis
DEFF Research Database (Denmark)
Sun, Bing; Liu, Zhiqiang; Rijmen, Vincent
2015-01-01
is to fix this gap and establish links between impossible differential cryptanalysis and integral cryptanalysis. Firstly, by introducing the concept of structure and dual structure, we prove that a → b is an impossible differential of a structure E if and only if it is a zero correlation linear hull...... linear hull always indicates the existence of an integral distinguisher. With this observation we improve the number of rounds of integral distinguishers of Feistel structures, CAST-256, SMS4 and Camellia. Finally, we conclude that an r-round impossible differential of E always leads to an r...
Growth of meromorphic solutions of higher-order linear differential equations
Directory of Open Access Journals (Sweden)
Wenjuan Chen
2009-01-01
Full Text Available In this paper, we investigate the higher-order linear differential equations with meromorphic coefficients. We improve and extend a result of M.S. Liu and C.L. Yuan, by using the estimates for the logarithmic derivative of a transcendental meromorphic function due to Gundersen, and the extended Winman-Valiron theory which proved by J. Wang and H.X. Yi. In addition, we also consider the nonhomogeneous linear differential equations.
High-order quantum algorithm for solving linear differential equations
International Nuclear Information System (INIS)
Berry, Dominic W
2014-01-01
Linear differential equations are ubiquitous in science and engineering. Quantum computers can simulate quantum systems, which are described by a restricted type of linear differential equations. Here we extend quantum simulation algorithms to general inhomogeneous sparse linear differential equations, which describe many classical physical systems. We examine the use of high-order methods (where the error over a time step is a high power of the size of the time step) to improve the efficiency. These provide scaling close to Δt 2 in the evolution time Δt. As with other algorithms of this type, the solution is encoded in amplitudes of the quantum state, and it is possible to extract global features of the solution. (paper)
International Nuclear Information System (INIS)
Kalmykov, Mikhail Yu.; Kniehl, Bernd A.
2012-05-01
We argue that the Mellin-Barnes representations of Feynman diagrams can be used for obtaining linear systems of homogeneous differential equations for the original Feynman diagrams with arbitrary powers of propagators without recourse to the integration-by-parts technique. These systems of differential equation can be used (i) for the differential reductions to sets of basic functions and (ii) for counting the numbers of master-integrals.
Introducing linear functions: an alternative statistical approach
Nolan, Caroline; Herbert, Sandra
2015-12-01
The introduction of linear functions is the turning point where many students decide if mathematics is useful or not. This means the role of parameters and variables in linear functions could be considered to be `threshold concepts'. There is recognition that linear functions can be taught in context through the exploration of linear modelling examples, but this has its limitations. Currently, statistical data is easily attainable, and graphics or computer algebra system (CAS) calculators are common in many classrooms. The use of this technology provides ease of access to different representations of linear functions as well as the ability to fit a least-squares line for real-life data. This means these calculators could support a possible alternative approach to the introduction of linear functions. This study compares the results of an end-of-topic test for two classes of Australian middle secondary students at a regional school to determine if such an alternative approach is feasible. In this study, test questions were grouped by concept and subjected to concept by concept analysis of the means of test results of the two classes. This analysis revealed that the students following the alternative approach demonstrated greater competence with non-standard questions.
Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation
Directory of Open Access Journals (Sweden)
Hamidreza Rezazadeh
2014-05-01
Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.
Asymptotic formulae for solutions of half-linear differential equations
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
2017-01-01
Roč. 292, January (2017), s. 165-177 ISSN 0096-3003 Institutional support: RVO:67985840 Keywords : half-linear differential equation * nonoscillatory solution * regular variation Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www.sciencedirect.com/science/article/pii/S0096300316304581
Oscillatory behaviour of solutions of linear neutral differential ...
African Journals Online (AJOL)
The paper considers the contribution of space-time noise to the oscillatory behaviour of solutions of a linear neutral stochastic delay differential equation. It was established that under certain conditions on the time lags and their speed of adjustments, the presence of noise generates oscillation in the solution of the equation ...
On oscillation of second-order linear ordinary differential equations
Czech Academy of Sciences Publication Activity Database
Lomtatidze, A.; Šremr, Jiří
2011-01-01
Roč. 54, - (2011), s. 69-81 ISSN 1512-0015 Institutional research plan: CEZ:AV0Z10190503 Keywords : linear second-order ordinary differential equation * Kamenev theorem * oscillation Subject RIV: BA - General Mathematics http://www.rmi.ge/jeomj/memoirs/vol54/abs54-4.htm
Exponential estimates for solutions of half-linear differential equations
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
2015-01-01
Roč. 147, č. 1 (2015), s. 158-171 ISSN 0236-5294 Institutional support: RVO:67985840 Keywords : half-linear differential equation * decreasing solution * increasing solution * asymptotic behavior Subject RIV: BA - General Mathematics Impact factor: 0.469, year: 2015 http://link.springer.com/article/10.1007%2Fs10474-015-0522-9
Pareto optimality in infinite horizon linear quadratic differential games
Reddy, P.V.; Engwerda, J.C.
2013-01-01
In this article we derive conditions for the existence of Pareto optimal solutions for linear quadratic infinite horizon cooperative differential games. First, we present a necessary and sufficient characterization for Pareto optimality which translates to solving a set of constrained optimal
Jamison, J. W.
1994-01-01
CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.
Stability of Functional Differential Equations
Lemm, Jeffrey M
1986-01-01
This book provides an introduction to the structure and stability properties of solutions of functional differential equations. Numerous examples of applications (such as feedback systrems with aftereffect, two-reflector antennae, nuclear reactors, mathematical models in immunology, viscoelastic bodies, aeroautoelastic phenomena and so on) are considered in detail. The development is illustrated by numerous figures and tables.
A non-linear kinematic hardening function
International Nuclear Information System (INIS)
Ottosen, N.S.
1977-05-01
Based on the classical theory of plasticity, and accepting the von Mises criterion as the initial yield criterion, a non-linear kinematic hardening function applicable both to Melan-Prager's and to Ziegler's hardening rule is proposed. This non-linear hardening function is determined by means of the uniaxial stress-strain curve, and any such curve is applicable. The proposed hardening function considers the problem of general reversed loading, and a smooth change in the behaviour from one plastic state to another nearlying plastic state is obtained. A review of both the kinematic hardening theory and the corresponding non-linear hardening assumptions is given, and it is shown that material behaviour is identical whether Melan-Prager's or Ziegler's hardening rule is applied, provided that the von Mises yield criterion is adopted. (author)
International Nuclear Information System (INIS)
Mickols, W.; Maestre, M.F.
1988-01-01
A differential polarization microscope that couples the sensitivity of single-beam measurement of circular dichroism and circular differential scattering with the simultaneous measurement of linear dichroism and linear differential scattering has been developed. The microscope uses a scanning microscope stage and single-point illumination to give the very shallow depth of field found in confocal microscopy. This microscope can operate in the confocal mode as well as in the near confocal condition that can allow one to program the coherence and spatial resolution of the microscope. This microscope has been used to study the change in the structure of chromatin during the development of sperm in Drosophila
Linear scaling of density functional algorithms
International Nuclear Information System (INIS)
Stechel, E.B.; Feibelman, P.J.; Williams, A.R.
1993-01-01
An efficient density functional algorithm (DFA) that scales linearly with system size will revolutionize electronic structure calculations. Density functional calculations are reliable and accurate in determining many condensed matter and molecular ground-state properties. However, because current DFA's, including methods related to that of Car and Parrinello, scale with the cube of the system size, density functional studies are not routinely applied to large systems. Linear scaling is achieved by constructing functions that are both localized and fully occupied, thereby eliminating the need to calculate global eigenfunctions. It is, however, widely believed that exponential localization requires the existence of an energy gap between the occupied and unoccupied states. Despite this, the authors demonstrate that linear scaling can still be achieved for metals. Using a linear scaling algorithm, they have explicitly constructed localized, almost fully occupied orbitals for the quintessential metallic system, jellium. The algorithm is readily generalizable to any system geometry and Hamiltonian. They will discuss the conceptual issues involved, convergence properties and scaling for their new algorithm
A linear combination of modified Bessel functions
Shitzer, A.; Chato, J. C.
1971-01-01
A linear combination of modified Bessel functions is defined, discussed briefly, and tabulated. This combination was found to recur in the analysis of various heat transfer problems and in the analysis of the thermal behavior of living tissue when modeled by cylindrical shells.
Thresholding projection estimators in functional linear models
Cardot, Hervé; Johannes, Jan
2010-01-01
We consider the problem of estimating the regression function in functional linear regression models by proposing a new type of projection estimators which combine dimension reduction and thresholding. The introduction of a threshold rule allows to get consistency under broad assumptions as well as minimax rates of convergence under additional regularity hypotheses. We also consider the particular case of Sobolev spaces generated by the trigonometric basis which permits to get easily mean squ...
Diagnostics for Linear Models With Functional Responses
Xu, Hongquan; Shen, Qing
2005-01-01
Linear models where the response is a function and the predictors are vectors are useful in analyzing data from designed experiments and other situations with functional observations. Residual analysis and diagnostics are considered for such models. Studentized residuals are defined and their properties are studied. Chi-square quantile-quantile plots are proposed to check the assumption of Gaussian error process and outliers. Jackknife residuals and an associated test are proposed to det...
Refined Fuchs inequalities for systems of linear differential equations
International Nuclear Information System (INIS)
Gontsov, R R
2004-01-01
We refine the Fuchs inequalities obtained by Corel for systems of linear meromorphic differential equations given on the Riemann sphere. Fuchs inequalities enable one to estimate the sum of exponents of the system over all its singular points. We refine these well-known inequalities by considering the Jordan structure of the leading coefficient of the Laurent series for the matrix of the right-hand side of the system in the neighbourhood of a singular point
System theory as applied differential geometry. [linear system
Hermann, R.
1979-01-01
The invariants of input-output systems under the action of the feedback group was examined. The approach used the theory of Lie groups and concepts of modern differential geometry, and illustrated how the latter provides a basis for the discussion of the analytic structure of systems. Finite dimensional linear systems in a single independent variable are considered. Lessons of more general situations (e.g., distributed parameter and multidimensional systems) which are increasingly encountered as technology advances are presented.
Leibov Roman
2017-01-01
This paper presents a bilinear approach to nonlinear differential equations system approximation problem. Sometimes the nonlinear differential equations right-hand sides linearization is extremely difficult or even impossible. Then piecewise-linear approximation of nonlinear differential equations can be used. The bilinear differential equations allow to improve piecewise-linear differential equations behavior and reduce errors on the border of different linear differential equations systems ...
Runge-Kutta Methods for Linear Ordinary Differential Equations
Zingg, David W.; Chisholm, Todd T.
1997-01-01
Three new Runge-Kutta methods are presented for numerical integration of systems of linear inhomogeneous ordinary differential equations (ODES) with constant coefficients. Such ODEs arise in the numerical solution of the partial differential equations governing linear wave phenomena. The restriction to linear ODEs with constant coefficients reduces the number of conditions which the coefficients of the Runge-Kutta method must satisfy. This freedom is used to develop methods which are more efficient than conventional Runge-Kutta methods. A fourth-order method is presented which uses only two memory locations per dependent variable, while the classical fourth-order Runge-Kutta method uses three. This method is an excellent choice for simulations of linear wave phenomena if memory is a primary concern. In addition, fifth- and sixth-order methods are presented which require five and six stages, respectively, one fewer than their conventional counterparts, and are therefore more efficient. These methods are an excellent option for use with high-order spatial discretizations.
Linear program differentiation for single-channel speech separation
DEFF Research Database (Denmark)
Pearlmutter, Barak A.; Olsson, Rasmus Kongsgaard
2006-01-01
Many apparently difficult problems can be solved by reduction to linear programming. Such problems are often subproblems within larger systems. When gradient optimisation of the entire larger system is desired, it is necessary to propagate gradients through the internally-invoked LP solver....... For instance, when an intermediate quantity z is the solution to a linear program involving constraint matrix A, a vector of sensitivities dE/dz will induce sensitivities dE/dA. Here we show how these can be efficiently calculated, when they exist. This allows algorithmic differentiation to be applied...... to algorithms that invoke linear programming solvers as subroutines, as is common when using sparse representations in signal processing. Here we apply it to gradient optimisation of over complete dictionaries for maximally sparse representations of a speech corpus. The dictionaries are employed in a single...
International Nuclear Information System (INIS)
Granita; Bahar, A.
2015-01-01
This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found
Energy Technology Data Exchange (ETDEWEB)
Granita, E-mail: granitafc@gmail.com [Dept. Mathematical Education, State Islamic University of Sultan Syarif Kasim Riau, 28293 Indonesia and Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor (Malaysia); Bahar, A. [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor Malaysia and UTM Center for Industrial and Applied Mathematics (UTM-CIAM) (Malaysia)
2015-03-09
This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.
Legendre-tau approximations for functional differential equations
Ito, K.; Teglas, R.
1986-01-01
The numerical approximation of solutions to linear retarded functional differential equations are considered using the so-called Legendre-tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time-differentiation. The approximate solution is then represented as a truncated Legendre series with time-varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximation is made.
International Nuclear Information System (INIS)
Ravi Kanth, A.S.V.; Aruna, K.
2009-01-01
In this paper, we propose a reliable algorithm to develop exact and approximate solutions for the linear and nonlinear Schroedinger equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and nonlinear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method.
Differential pleiotropy and HOX functional organization.
Sivanantharajah, Lovesha; Percival-Smith, Anthony
2015-02-01
Key studies led to the idea that transcription factors are composed of defined modular protein motifs or domains, each with separable, unique function. During evolution, the recombination of these modular domains could give rise to transcription factors with new properties, as has been shown using recombinant molecules. This archetypic, modular view of transcription factor organization is based on the analyses of a few transcription factors such as GAL4, which may represent extreme exemplars rather than an archetype or the norm. Recent work with a set of Homeotic selector (HOX) proteins has revealed differential pleiotropy: the observation that highly-conserved HOX protein motifs and domains make small, additive, tissue specific contributions to HOX activity. Many of these differentially pleiotropic HOX motifs may represent plastic sequence elements called short linear motifs (SLiMs). The coupling of differential pleiotropy with SLiMs, suggests that protein sequence changes in HOX transcription factors may have had a greater impact on morphological diversity during evolution than previously believed. Furthermore, differential pleiotropy may be the genetic consequence of an ensemble nature of HOX transcription factor allostery, where HOX proteins exist as an ensemble of states with the capacity to integrate an extensive array of developmental information. Given a new structural model for HOX functional domain organization, the properties of the archetypic TF may require reassessment. Copyright © 2014 Elsevier Inc. All rights reserved.
Exponential stability in a scalar functional differential equation
Directory of Open Access Journals (Sweden)
Pituk Mihály
2006-01-01
Full Text Available We establish a criterion for the global exponential stability of the zero solution of the scalar retarded functional differential equation whose linear part generates a monotone semiflow on the phase space with respect to the exponential ordering, and the nonlinearity has at most linear growth.
The Use of Graphs in Specific Situations of the Initial Conditions of Linear Differential Equations
Buendía, Gabriela; Cordero, Francisco
2013-01-01
In this article, we present a discussion on the role of graphs and its significance in the relation between the number of initial conditions and the order of a linear differential equation, which is known as the initial value problem. We propose to make a functional framework for the use of graphs that intends to broaden the explanations of the…
A block Krylov subspace time-exact solution method for linear ordinary differential equation systems
Bochev, Mikhail A.
2013-01-01
We propose a time-exact Krylov-subspace-based method for solving linear ordinary differential equation systems of the form $y'=-Ay+g(t)$ and $y"=-Ay+g(t)$, where $y(t)$ is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of
International Nuclear Information System (INIS)
Frank, T D
2005-01-01
Stationary distributions of processes are derived that involve a time delay and are defined by a linear stochastic neutral delay differential equation. The distributions are Gaussian distributions. The variances of the Gaussian distributions are either monotonically increasing or decreasing functions of the time delays. The variances become infinite when fixed points of corresponding deterministic processes become unstable. (letter to the editor)
Directory of Open Access Journals (Sweden)
Şuayip Yüzbaşı
2017-03-01
Full Text Available In this paper, we suggest a matrix method for obtaining the approximate solutions of the delay linear Fredholm integro-differential equations with constant coefficients using the shifted Legendre polynomials. The problem is considered with mixed conditions. Using the required matrix operations, the delay linear Fredholm integro-differential equation is transformed into a matrix equation. Additionally, error analysis for the method is presented using the residual function. Illustrative examples are given to demonstrate the efficiency of the method. The results obtained in this study are compared with the known results.
Linear functional analysis for scientists and engineers
Limaye, Balmohan V
2016-01-01
This book provides a concise and meticulous introduction to functional analysis. Since the topic draws heavily on the interplay between the algebraic structure of a linear space and the distance structure of a metric space, functional analysis is increasingly gaining the attention of not only mathematicians but also scientists and engineers. The purpose of the text is to present the basic aspects of functional analysis to this varied audience, keeping in mind the considerations of applicability. A novelty of this book is the inclusion of a result by Zabreiko, which states that every countably subadditive seminorm on a Banach space is continuous. Several major theorems in functional analysis are easy consequences of this result. The entire book can be used as a textbook for an introductory course in functional analysis without having to make any specific selection from the topics presented here. Basic notions in the setting of a metric space are defined in terms of sequences. These include total boundedness, c...
Approximate Controllability for Linear Stochastic Differential Equations in Infinite Dimensions
International Nuclear Information System (INIS)
Goreac, D.
2009-01-01
The objective of the paper is to investigate the approximate controllability property of a linear stochastic control system with values in a separable real Hilbert space. In a first step we prove the existence and uniqueness for the solution of the dual linear backward stochastic differential equation. This equation has the particularity that in addition to an unbounded operator acting on the Y-component of the solution there is still another one acting on the Z-component. With the help of this dual equation we then deduce the duality between approximate controllability and observability. Finally, under the assumption that the unbounded operator acting on the state process of the forward equation is an infinitesimal generator of an exponentially stable semigroup, we show that the generalized Hautus test provides a necessary condition for the approximate controllability. The paper generalizes former results by Buckdahn, Quincampoix and Tessitore (Stochastic Partial Differential Equations and Applications, Series of Lecture Notes in Pure and Appl. Math., vol. 245, pp. 253-260, Chapman and Hall, London, 2006) and Goreac (Applied Analysis and Differential Equations, pp. 153-164, World Scientific, Singapore, 2007) from the finite dimensional to the infinite dimensional case
Darboux transformations and linear parabolic partial differential equations
International Nuclear Information System (INIS)
Arrigo, Daniel J.; Hickling, Fred
2002-01-01
Solutions for a class of linear parabolic partial differential equation are provided. These solutions are obtained by first solving a system of (n+1) nonlinear partial differential equations. This system arises as the coefficients of a Darboux transformation and is equivalent to a matrix Burgers' equation. This matrix equation is solved using a generalized Hopf-Cole transformation. The solutions for the original equation are given in terms of solutions of the heat equation. These results are applied to the (1+1)-dimensional Schroedinger equation where all bound state solutions are obtained for a 2n-parameter family of potentials. As a special case, the solutions for integral members of the regular and modified Poeschl-Teller potentials are recovered. (author). Letter-to-the-editor
Linear stochastic differential equations with anticipating initial conditions
DEFF Research Database (Denmark)
Khalifa, Narjess; Kuo, Hui-Hsiung; Ouerdiane, Habib
In this paper we use the new stochastic integral introduced by Ayed and Kuo (2008) and the results obtained by Kuo et al. (2012b) to find a solution to a drift-free linear stochastic differential equation with anticipating initial condition. Our solution is based on well-known results from...... classical Itô theory and anticipative Itô formula results from Kue et al. (2012b). We also show that the solution obtained by our method is consistent with the solution obtained by the methods of Malliavin calculus, e.g. Buckdahn and Nualart (1994)....
Maximum principles for boundary-degenerate linear parabolic differential operators
Feehan, Paul M. N.
2013-01-01
We develop weak and strong maximum principles for boundary-degenerate, linear, parabolic, second-order partial differential operators, $Lu := -u_t-\\tr(aD^2u)-\\langle b, Du\\rangle + cu$, with \\emph{partial} Dirichlet boundary conditions. The coefficient, $a(t,x)$, is assumed to vanish along a non-empty open subset, $\\mydirac_0!\\sQ$, called the \\emph{degenerate boundary portion}, of the parabolic boundary, $\\mydirac!\\sQ$, of the domain $\\sQ\\subset\\RR^{d+1}$, while $a(t,x)$ may be non-zero at po...
Liu, Da-Yan; Tian, Yang; Boutat, Driss; Laleg-Kirati, Taous-Meriem
2015-01-01
This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.
Liu, Da-Yan
2015-04-30
This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.
Continuous nowhere differentiable functions the monsters of analysis
Jarnicki, Marek
2015-01-01
This book covers the construction, analysis, and theory of continuous nowhere differentiable functions, comprehensively and accessibly. After illuminating the significance of the subject through an overview of its history, the reader is introduced to the sophisticated toolkit of ideas and tricks used to study the explicit continuous nowhere differentiable functions of Weierstrass, Takagi–van der Waerden, Bolzano, and others. Modern tools of functional analysis, measure theory, and Fourier analysis are applied to examine the generic nature of continuous nowhere differentiable functions, as well as linear structures within the (nonlinear) space of continuous nowhere differentiable functions. To round out the presentation, advanced techniques from several areas of mathematics are brought together to give a state-of-the-art analysis of Riemann’s continuous, and purportedly nowhere differentiable, function. For the reader’s benefit, claims requiring elaboration, and open problems, are clearly indicated. An a...
Linear Prediction Using Refined Autocorrelation Function
Directory of Open Access Journals (Sweden)
M. Shahidur Rahman
2007-07-01
Full Text Available This paper proposes a new technique for improving the performance of linear prediction analysis by utilizing a refined version of the autocorrelation function. Problems in analyzing voiced speech using linear prediction occur often due to the harmonic structure of the excitation source, which causes the autocorrelation function to be an aliased version of that of the vocal tract impulse response. To estimate the vocal tract characteristics accurately, however, the effect of aliasing must be eliminated. In this paper, we employ homomorphic deconvolution technique in the autocorrelation domain to eliminate the aliasing effect occurred due to periodicity. The resulted autocorrelation function of the vocal tract impulse response is found to produce significant improvement in estimating formant frequencies. The accuracy of formant estimation is verified on synthetic vowels for a wide range of pitch frequencies typical for male and female speakers. The validity of the proposed method is also illustrated by inspecting the spectral envelopes of natural speech spoken by high-pitched female speaker. The synthesis filter obtained by the current method is guaranteed to be stable, which makes the method superior to many of its alternatives.
Numerical solution of two-dimensional non-linear partial differential ...
African Journals Online (AJOL)
linear partial differential equations using a hybrid method. The solution technique involves discritizing the non-linear system of partial differential equations (PDEs) to obtain a corresponding nonlinear system of algebraic difference equations to be ...
A Differential Monolithically Integrated Inductive Linear Displacement Measurement Microsystem
Directory of Open Access Journals (Sweden)
Matija Podhraški
2016-03-01
Full Text Available An inductive linear displacement measurement microsystem realized as a monolithic Application-Specific Integrated Circuit (ASIC is presented. The system comprises integrated microtransformers as sensing elements, and analog front-end electronics for signal processing and demodulation, both jointly fabricated in a conventional commercially available four-metal 350-nm CMOS process. The key novelty of the presented system is its full integration, straightforward fabrication, and ease of application, requiring no external light or magnetic field source. Such systems therefore have the possibility of substituting certain conventional position encoder types. The microtransformers are excited by an AC signal in MHz range. The displacement information is modulated into the AC signal by a metal grating scale placed over the microsystem, employing a differential measurement principle. Homodyne mixing is used for the demodulation of the scale displacement information, returned by the ASIC as a DC signal in two quadrature channels allowing the determination of linear position of the target scale. The microsystem design, simulations, and characterization are presented. Various system operating conditions such as frequency, phase, target scale material and distance have been experimentally evaluated. The best results have been achieved at 4 MHz, demonstrating a linear resolution of 20 µm with steel and copper scale, having respective sensitivities of 0.71 V/mm and 0.99 V/mm.
Neutral Backward Stochastic Functional Differential Equations and Their Application
Wei, Wenning
2013-01-01
In this paper we are concerned with a new type of backward equations with anticipation which we call neutral backward stochastic functional differential equations. We obtain the existence and uniqueness and prove a comparison theorem. As an application, we discuss the optimal control of neutral stochastic functional differential equations, establish a Pontryagin maximum principle, and give an explicit optimal value for the linear optimal control.
Rotational partition functions for linear molecules
International Nuclear Information System (INIS)
McDowell, R.S.
1988-01-01
An accurate closed-form expression for the rotational partition function of linear polyatomic molecules in 1 summation electronic states is derived, including the effect of nuclear spin (significant at very low temperatures) and of quartic and sextic centrifugal distortion terms (significant at moderate and high temperatures). The proper first-order quantum correction to the classical rigid-rotator partition function is shown to yield Q/sub r/ ≅β -1 exp(β/3), where βequivalenthcB/kT and B is the rotational constant in cm -1 ; for β≥0.2 additional power-series terms in β are necessary. Comparison between the results of this treatment and exact summations are made for HCN and C 2 H 2 at temperatures from 2 to 5000 K, including separate evaluation of the contributions of nuclear spin and centrifugal distortion
Directory of Open Access Journals (Sweden)
Athanasios D. Karageorgos
2009-01-01
Full Text Available In many applications, and generally speaking in many dynamical differential systems, the problem of transferring the initial state of the system to a desired state in (almost zero-time time is desirable but difficult to achieve. Theoretically, this can be achieved by using a linear combination of Dirac -function and its derivatives. Obviously, such an input is physically unrealizable. However, we can think of it approximately as a combination of small pulses of very high magnitude and infinitely small duration. In this paper, the approximation process of the distributional behaviour of higher-order linear descriptor (regular differential systems is presented. Thus, new analytical formulae based on linear algebra methods and generalized inverses theory are provided. Our approach is quite general and some significant conditions are derived. Finally, a numerical example is presented and discussed.
Optimal overlapping of waveform relaxation method for linear differential equations
International Nuclear Information System (INIS)
Yamada, Susumu; Ozawa, Kazufumi
2000-01-01
Waveform relaxation (WR) method is extremely suitable for solving large systems of ordinary differential equations (ODEs) on parallel computers, but the convergence of the method is generally slow. In order to accelerate the convergence, the methods which decouple the system into many subsystems with overlaps some of the components between the adjacent subsystems have been proposed. The methods, in general, converge much faster than the ones without overlapping, but the computational cost per iteration becomes larger due to the increase of the dimension of each subsystem. In this research, the convergence of the WR method for solving constant coefficients linear ODEs is investigated and the strategy to determine the number of overlapped components which minimizes the cost of the parallel computations is proposed. Numerical experiments on an SR2201 parallel computer show that the estimated number of the overlapped components by the proposed strategy is reasonable. (author)
Maximum principles for boundary-degenerate second-order linear elliptic differential operators
Feehan, Paul M. N.
2012-01-01
We prove weak and strong maximum principles, including a Hopf lemma, for smooth subsolutions to equations defined by linear, second-order, partial differential operators whose principal symbols vanish along a portion of the domain boundary. The boundary regularity property of the smooth subsolutions along this boundary vanishing locus ensures that these maximum principles hold irrespective of the sign of the Fichera function. Boundary conditions need only be prescribed on the complement in th...
International Nuclear Information System (INIS)
LaChapelle, J.
2004-01-01
A path integral is presented that solves a general class of linear second order partial differential equations with Dirichlet/Neumann boundary conditions. Elementary kernels are constructed for both Dirichlet and Neumann boundary conditions. The general solution can be specialized to solve elliptic, parabolic, and hyperbolic partial differential equations with boundary conditions. This extends the well-known path integral solution of the Schroedinger/diffusion equation in unbounded space. The construction is based on a framework for functional integration introduced by Cartier/DeWitt-Morette
Directory of Open Access Journals (Sweden)
Heinz Toparkus
2014-04-01
Full Text Available In this paper we consider first-order systems with constant coefficients for two real-valued functions of two real variables. This is both a problem in itself, as well as an alternative view of the classical linear partial differential equations of second order with constant coefficients. The classification of the systems is done using elementary methods of linear algebra. Each type presents its special canonical form in the associated characteristic coordinate system. Then you can formulate initial value problems in appropriate basic areas, and you can try to achieve a solution of these problems by means of transform methods.
Quasi-Newton methods for parameter estimation in functional differential equations
Brewer, Dennis W.
1988-01-01
A state-space approach to parameter estimation in linear functional differential equations is developed using the theory of linear evolution equations. A locally convergent quasi-Newton type algorithm is applied to distributed systems with particular emphasis on parameters that induce unbounded perturbations of the state. The algorithm is computationally implemented on several functional differential equations, including coefficient and delay estimation in linear delay-differential equations.
On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra
Ndogmo, J. C.
2017-06-01
Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.
A logic circuit for solving linear function by digital method
International Nuclear Information System (INIS)
Ma Yonghe
1986-01-01
A mathematical method for determining the linear relation of physical quantity with rediation intensity is described. A logic circuit has been designed for solving linear function by digital method. Some applications and the circuit function are discussed
On Theories of Superalgebras of Differentiable Functions
Carchedi, D.J.; Roytenberg, D.
2013-01-01
This is the first in a series of papers laying the foundations for a differential graded approach to derived differential geometry (and other geometries in characteristic zero). In this paper, we study theories of supercommutative algebras for which infinitely differentiable functions can be
Tisdell, Christopher C.
2017-11-01
For over 50 years, the learning of teaching of a priori bounds on solutions to linear differential equations has involved a Euclidean approach to measuring the size of a solution. While the Euclidean approach to a priori bounds on solutions is somewhat manageable in the learning and teaching of the proofs involving second-order, linear problems with constant co-efficients, we believe it is not pedagogically optimal. Moreover, the Euclidean method becomes pedagogically unwieldy in the proofs involving higher-order cases. The purpose of this work is to propose a simpler pedagogical approach to establish a priori bounds on solutions by considering a different way of measuring the size of a solution to linear problems, which we refer to as the Uber size. The Uber form enables a simplification of pedagogy from the literature and the ideas are accessible to learners who have an understanding of the Fundamental Theorem of Calculus and the exponential function, both usually seen in a first course in calculus. We believe that this work will be of mathematical and pedagogical interest to those who are learning and teaching in the area of differential equations or in any of the numerous disciplines where linear differential equations are used.
International Nuclear Information System (INIS)
Man, Yiu-Kwong
2010-01-01
In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided. (fast track communication)
Functional differential equations—a reciprocity principle
Directory of Open Access Journals (Sweden)
Lloyd K. Williams
1986-01-01
Full Text Available The functional differential equations proposed for solution here are mainly ordinary differential equations with fairly general argument deviations. Included among them are equations with involutions and some with reflections of the argument. Solutions will be obtained by quadratures in terms of implicitly defined functions. They have a wide range of applicability from the stability theory of differential-difference equations to electrodynamics and biological models.
Special solutions of neutral functional differential equations
Directory of Open Access Journals (Sweden)
Győri István
2001-01-01
Full Text Available For a system of nonlinear neutral functional differential equations we prove the existence of an -parameter family of "special solutions" which characterize the asymptotic behavior of all solutions at infinity. For retarded functional differential equations the special solutions used in this paper were introduced by Ryabov.
Detecting Differential Person Functioning in Emotional Intelligence
Alsmadi, Yahia M.; Alsmadi, Abdalla A.
2009-01-01
Differential Item Functioning (DIF) is a widely used term in test development literature. It is very important to analyze test's data for DIF because It is a serious threat to validity. If the same data matrix was transposed, similar analysis can be carried for Differential Person Functioning (DPF). The purpose of this paper is to introduce and…
Ghadie, Mohamed A; Japkowicz, Nathalie; Perkins, Theodore J
2015-08-15
Stem cell differentiation is largely guided by master transcriptional regulators, but it also depends on the expression of other types of genes, such as cell cycle genes, signaling genes, metabolic genes, trafficking genes, etc. Traditional approaches to understanding gene expression patterns across multiple conditions, such as principal components analysis or K-means clustering, can group cell types based on gene expression, but they do so without knowledge of the differentiation hierarchy. Hierarchical clustering can organize cell types into a tree, but in general this tree is different from the differentiation hierarchy itself. Given the differentiation hierarchy and gene expression data at each node, we construct a weighted Euclidean distance metric such that the minimum spanning tree with respect to that metric is precisely the given differentiation hierarchy. We provide a set of linear constraints that are provably sufficient for the desired construction and a linear programming approach to identify sparse sets of weights, effectively identifying genes that are most relevant for discriminating different parts of the tree. We apply our method to microarray gene expression data describing 38 cell types in the hematopoiesis hierarchy, constructing a weighted Euclidean metric that uses just 175 genes. However, we find that there are many alternative sets of weights that satisfy the linear constraints. Thus, in the style of random-forest training, we also construct metrics based on random subsets of the genes and compare them to the metric of 175 genes. We then report on the selected genes and their biological functions. Our approach offers a new way to identify genes that may have important roles in stem cell differentiation. tperkins@ohri.ca Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Matrix form of Legendre polynomials for solving linear integro-differential equations of high order
Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.
2017-04-01
This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.
DEFF Research Database (Denmark)
Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.
1994-01-01
perturbation method using stochastic differential equations. The joint statistical moments entering the perturbation solution are determined by considering an augmented dynamic system with state variables made up of the displacement and velocity vector and their first and second derivatives with respect......The paper deals with the first and second order statistical moments of the response of linear systems with random parameters subject to random excitation modelled as white-noise multiplied by an envelope function with random parameters. The method of analysis is basically a second order...... to the random parameters of the problem. Equations for partial derivatives are obtained from the partial differentiation of the equations of motion. The zero time-lag joint statistical moment equations for the augmented state vector are derived from the Itô differential formula. General formulation is given...
Fractional order differentiation by integration: An application to fractional linear systems
Liu, Dayan
2013-02-04
In this article, we propose a robust method to compute the output of a fractional linear system defined through a linear fractional differential equation (FDE) with time-varying coefficients, where the input can be noisy. We firstly introduce an estimator of the fractional derivative of an unknown signal, which is defined by an integral formula obtained by calculating the fractional derivative of a truncated Jacobi polynomial series expansion. We then approximate the FDE by applying to each fractional derivative this formal algebraic integral estimator. Consequently, the fractional derivatives of the solution are applied on the used Jacobi polynomials and then we need to identify the unknown coefficients of the truncated series expansion of the solution. Modulating functions method is used to estimate these coefficients by solving a linear system issued from the approximated FDE and some initial conditions. A numerical result is given to confirm the reliability of the proposed method. © 2013 IFAC.
Galois theory and algorithms for linear differential equations
Put, Marius van der
2005-01-01
This paper is an informal introduction to differential Galois theory. It surveys recent work on differential Galois groups, related algorithms and some applications. (c) 2005 Elsevier Ltd. All rights reserved.
Asymptotic integration of a linear fourth order differential equation of Poincaré type
Directory of Open Access Journals (Sweden)
Anibal Coronel
2015-11-01
Full Text Available This article deals with the asymptotic behavior of nonoscillatory solutions of fourth order linear differential equation where the coefficients are perturbations of constants. We define a change of variable and deduce that the new variable satisfies a third order nonlinear differential equation. We assume three hypotheses. The first hypothesis is related to the constant coefficients and set up that the characteristic polynomial associated with the fourth order linear equation has simple and real roots. The other two hypotheses are related to the behavior of the perturbation functions and establish asymptotic integral smallness conditions of the perturbations. Under these general hypotheses, we obtain four main results. The first two results are related to the application of a fixed point argument to prove that the nonlinear third order equation has a unique solution. The next result concerns with the asymptotic behavior of the solutions of the nonlinear third order equation. The fourth main theorem is introduced to establish the existence of a fundamental system of solutions and to precise the formulas for the asymptotic behavior of the linear fourth order differential equation. In addition, we present an example to show that the results introduced in this paper can be applied in situations where the assumptions of some classical theorems are not satisfied.
Robust fractional order differentiators using generalized modulating functions method
Liu, Dayan; Laleg-Kirati, Taous-Meriem
2015-01-01
This paper aims at designing a fractional order differentiator for a class of signals satisfying a linear differential equation with unknown parameters. A generalized modulating functions method is proposed first to estimate the unknown parameters, then to derive accurate integral formulae for the left-sided Riemann-Liouville fractional derivatives of the studied signal. Unlike the improper integral in the definition of the left-sided Riemann-Liouville fractional derivative, the integrals in the proposed formulae can be proper and be considered as a low-pass filter by choosing appropriate modulating functions. Hence, digital fractional order differentiators applicable for on-line applications are deduced using a numerical integration method in discrete noisy case. Moreover, some error analysis are given for noise error contributions due to a class of stochastic processes. Finally, numerical examples are given to show the accuracy and robustness of the proposed fractional order differentiators.
Robust fractional order differentiators using generalized modulating functions method
Liu, Dayan
2015-02-01
This paper aims at designing a fractional order differentiator for a class of signals satisfying a linear differential equation with unknown parameters. A generalized modulating functions method is proposed first to estimate the unknown parameters, then to derive accurate integral formulae for the left-sided Riemann-Liouville fractional derivatives of the studied signal. Unlike the improper integral in the definition of the left-sided Riemann-Liouville fractional derivative, the integrals in the proposed formulae can be proper and be considered as a low-pass filter by choosing appropriate modulating functions. Hence, digital fractional order differentiators applicable for on-line applications are deduced using a numerical integration method in discrete noisy case. Moreover, some error analysis are given for noise error contributions due to a class of stochastic processes. Finally, numerical examples are given to show the accuracy and robustness of the proposed fractional order differentiators.
Backward stochastic differential equations from linear to fully nonlinear theory
Zhang, Jianfeng
2017-01-01
This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.
POSITIVE SOLUTIONS TO SEMI-LINEAR SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACE
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In this paper,we study the existence of positive periodic solution to some second- order semi-linear differential equation in Banach space.By the fixed point index theory, we prove that the semi-linear differential equation has two positive periodic solutions.
DEFF Research Database (Denmark)
Abdelraheem, Mohamed Ahmed
2012-01-01
We use large but sparse correlation and transition-difference-probability submatrices to find the best linear and differential approximations respectively on PRESENT-like ciphers. This outperforms the branch and bound algorithm when the number of low-weight differential and linear characteristics...
Camporesi, Roberto
2011-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…
Stability analysis of impulsive functional differential equations
Stamova, Ivanka
2009-01-01
This book is devoted to impulsive functional differential equations which are a natural generalization of impulsive ordinary differential equations (without delay) and of functional differential equations (without impulses). At the present time the qualitative theory of such equationsis under rapid development. After a presentation of the fundamental theory of existence, uniqueness and continuability of solutions, a systematic development of stability theory for that class of problems is given which makes the book unique. It addresses to a wide audience such as mathematicians, applied research
Directory of Open Access Journals (Sweden)
Huiying Sun
2014-01-01
Full Text Available We mainly consider the stability of discrete-time Markovian jump linear systems with state-dependent noise as well as its linear quadratic (LQ differential games. A necessary and sufficient condition involved with the connection between stochastic Tn-stability of Markovian jump linear systems with state-dependent noise and Lyapunov equation is proposed. And using the theory of stochastic Tn-stability, we give the optimal strategies and the optimal cost values for infinite horizon LQ stochastic differential games. It is demonstrated that the solutions of infinite horizon LQ stochastic differential games are concerned with four coupled generalized algebraic Riccati equations (GAREs. Finally, an iterative algorithm is presented to solve the four coupled GAREs and a simulation example is given to illustrate the effectiveness of it.
Slope Estimation in Noisy Piecewise Linear Functions.
Ingle, Atul; Bucklew, James; Sethares, William; Varghese, Tomy
2015-03-01
This paper discusses the development of a slope estimation algorithm called MAPSlope for piecewise linear data that is corrupted by Gaussian noise. The number and locations of slope change points (also known as breakpoints) are assumed to be unknown a priori though it is assumed that the possible range of slope values lies within known bounds. A stochastic hidden Markov model that is general enough to encompass real world sources of piecewise linear data is used to model the transitions between slope values and the problem of slope estimation is addressed using a Bayesian maximum a posteriori approach. The set of possible slope values is discretized, enabling the design of a dynamic programming algorithm for posterior density maximization. Numerical simulations are used to justify choice of a reasonable number of quantization levels and also to analyze mean squared error performance of the proposed algorithm. An alternating maximization algorithm is proposed for estimation of unknown model parameters and a convergence result for the method is provided. Finally, results using data from political science, finance and medical imaging applications are presented to demonstrate the practical utility of this procedure.
Integration of differential equations by the pseudo-linear (PL) approximation
International Nuclear Information System (INIS)
Bonalumi, Riccardo A.
1998-01-01
A new method of integrating differential equations was originated with the technique of approximately calculating the integrals called the pseudo-linear (PL) procedure: this method is A-stable. This article contains the following examples: 1st order ordinary differential equations (ODEs), 2nd order linear ODEs, stiff system of ODEs (neutron kinetics), one-dimensional parabolic (diffusion) partial differential equations. In this latter case, this PL method coincides with the Crank-Nicholson method
Function of caspase-14 in trophoblast differentiation
Directory of Open Access Journals (Sweden)
Charles Adrian K
2009-09-01
Full Text Available Abstract Background Within the human placenta, the cytotrophoblast consists of a proliferative pool of progenitor cells which differentiate to replenish the overlying continuous, multi-nucleated syncytiotrophoblast, which forms the barrier between the maternal and fetal tissues. Disruption to trophoblast differentiation and function may result in impaired fetal development and preeclampsia. Caspase-14 expression is limited to barrier forming tissues. It promotes keratinocyte differentiation by cleaving profilaggrin to stabilise keratin intermediate filaments, and indirectly providing hydration and UV protection. However its role in the trophoblast remains unexplored. Methods Using RNA Interference the reaction of control and differentiating trophoblastic BeWo cells to suppressed caspase-14 was examined for genes pertaining to hormonal, cell cycle and cytoskeletal pathways. Results Transcription of hCG, KLF4 and cytokeratin-18 were increased following caspase-14 suppression suggesting a role for caspase-14 in inhibiting their pathways. Furthermore, hCG, KLF4 and cytokeratin-18 protein levels were disrupted. Conclusion Since expression of these molecules is normally increased with trophoblast differentiation, our results imply that caspase-14 inhibits trophoblast differentiation. This is the first functional study of this unusual member of the caspase family in the trophoblast, where it has a different function than in the epidermis. This knowledge of the molecular underpinnings of trophoblast differentiation may instruct future therapies of trophoblast disease.
Hyers-Ulam stability for second-order linear differential equations with boundary conditions
Directory of Open Access Journals (Sweden)
Pasc Gavruta
2011-06-01
Full Text Available We prove the Hyers-Ulam stability of linear differential equations of second-order with boundary conditions or with initial conditions. That is, if y is an approximate solution of the differential equation $y''+ eta (x y = 0$ with $y(a = y(b =0$, then there exists an exact solution of the differential equation, near y.
Basic methods of linear functional analysis
Pryce, John D
2011-01-01
Introduction to the themes of mathematical analysis, geared toward advanced undergraduate and graduate students. Topics include operators, function spaces, Hilbert spaces, and elementary Fourier analysis. Numerous exercises and worked examples.1973 edition.
Numerical methods for hyperbolic differential functional problems
Directory of Open Access Journals (Sweden)
Roman Ciarski
2008-01-01
Full Text Available The paper deals with the initial boundary value problem for quasilinear first order partial differential functional systems. A general class of difference methods for the problem is constructed. Theorems on the error estimate of approximate solutions for difference functional systems are presented. The convergence results are proved by means of consistency and stability arguments. A numerical example is given.
OSCILLATION OF A SECOND-ORDER HALF-LINEAR NEUTRAL DAMPED DIFFERENTIAL EQUATION WITH TIME-DELAY
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
In this paper,the oscillation for a class of second-order half-linear neutral damped differential equation with time-delay is studied.By means of Yang-inequality,the generalized Riccati transformation and a certain function,some new sufficient conditions for the oscillation are given for all solutions to the equation.
Stability of Nonlinear Neutral Stochastic Functional Differential Equations
Directory of Open Access Journals (Sweden)
Minggao Xue
2010-01-01
Full Text Available Neutral stochastic functional differential equations (NSFDEs have recently been studied intensively. The well-known conditions imposed for the existence and uniqueness and exponential stability of the global solution are the local Lipschitz condition and the linear growth condition. Therefore, the existing results cannot be applied to many important nonlinear NSFDEs. The main aim of this paper is to remove the linear growth condition and establish a Khasminskii-type test for nonlinear NSFDEs. New criteria not only cover a wide class of highly nonlinear NSFDEs but they can also be verified much more easily than the classical criteria. Finally, several examples are given to illustrate main results.
Focal decompositions for linear differential equations of the second order
Directory of Open Access Journals (Sweden)
L. Birbrair
2003-01-01
two-points problems to itself such that the image of the focal decomposition associated to the first equation is a focal decomposition associated to the second one. In this paper, we present a complete classification for linear second-order equations with respect to this equivalence relation.
The Embedding Method for Linear Partial Differential Equations
Indian Academy of Sciences (India)
The recently suggested embedding method to solve linear boundary value problems is here extended to cover situations where the domain of interest is unbounded or multiply connected. The extensions involve the use of complete sets of exterior and interior eigenfunctions on canonical domains. Applications to typical ...
Functional differential equations with unbounded delay in extrapolation spaces
Directory of Open Access Journals (Sweden)
Mostafa Adimy
2014-08-01
Full Text Available We study the existence, regularity and stability of solutions for nonlinear partial neutral functional differential equations with unbounded delay and a Hille-Yosida operator on a Banach space X. We consider two nonlinear perturbations: the first one is a function taking its values in X and the second one is a function belonging to a space larger than X, an extrapolated space. We use the extrapolation techniques to prove the existence and regularity of solutions and we establish a linearization principle for the stability of the equilibria of our equation.
How linear features alter predator movement and the functional response.
McKenzie, Hannah W
2012-01-18
In areas of oil and gas exploration, seismic lines have been reported to alter the movement patterns of wolves (Canis lupus). We developed a mechanistic first passage time model, based on an anisotropic elliptic partial differential equation, and used this to explore how wolf movement responses to seismic lines influence the encounter rate of the wolves with their prey. The model was parametrized using 5 min GPS location data. These data showed that wolves travelled faster on seismic lines and had a higher probability of staying on a seismic line once they were on it. We simulated wolf movement on a range of seismic line densities and drew implications for the rate of predator-prey interactions as described by the functional response. The functional response exhibited a more than linear increase with respect to prey density (type III) as well as interactions with seismic line density. Encounter rates were significantly higher in landscapes with high seismic line density and were most pronounced at low prey densities. This suggests that prey at low population densities are at higher risk in environments with a high seismic line density unless they learn to avoid them.
How linear features alter predator movement and the functional response.
McKenzie, Hannah W; Merrill, Evelyn H; Spiteri, Raymond J; Lewis, Mark A
2012-01-01
In areas of oil and gas exploration, seismic lines have been reported to alter the movement patterns of wolves (Canis lupus). We developed a mechanistic first passage time model, based on an anisotropic elliptic partial differential equation, and used this to explore how wolf movement responses to seismic lines influence the encounter rate of the wolves with their prey. The model was parametrized using 5 min GPS location data. These data showed that wolves travelled faster on seismic lines and had a higher probability of staying on a seismic line once they were on it. We simulated wolf movement on a range of seismic line densities and drew implications for the rate of predator-prey interactions as described by the functional response. The functional response exhibited a more than linear increase with respect to prey density (type III) as well as interactions with seismic line density. Encounter rates were significantly higher in landscapes with high seismic line density and were most pronounced at low prey densities. This suggests that prey at low population densities are at higher risk in environments with a high seismic line density unless they learn to avoid them.
Asymptotic analysis for functional stochastic differential equations
Bao, Jianhai; Yuan, Chenggui
2016-01-01
This brief treats dynamical systems that involve delays and random disturbances. The study is motivated by a wide variety of systems in real life in which random noise has to be taken into consideration and the effect of delays cannot be ignored. Concentrating on such systems that are described by functional stochastic differential equations, this work focuses on the study of large time behavior, in particular, ergodicity. This brief is written for probabilists, applied mathematicians, engineers, and scientists who need to use delay systems and functional stochastic differential equations in their work. Selected topics from the brief can also be used in a graduate level topics course in probability and stochastic processes.
Linear regression methods a ccording to objective functions
Yasemin Sisman; Sebahattin Bektas
2012-01-01
The aim of the study is to explain the parameter estimation methods and the regression analysis. The simple linear regressionmethods grouped according to the objective function are introduced. The numerical solution is achieved for the simple linear regressionmethods according to objective function of Least Squares and theLeast Absolute Value adjustment methods. The success of the appliedmethods is analyzed using their objective function values.
Hasegawa, Chihiro; Duffull, Stephen B
2018-02-01
Pharmacokinetic-pharmacodynamic systems are often expressed with nonlinear ordinary differential equations (ODEs). While there are numerous methods to solve such ODEs these methods generally rely on time-stepping solutions (e.g. Runge-Kutta) which need to be matched to the characteristics of the problem at hand. The primary aim of this study was to explore the performance of an inductive approximation which iteratively converts nonlinear ODEs to linear time-varying systems which can then be solved algebraically or numerically. The inductive approximation is applied to three examples, a simple nonlinear pharmacokinetic model with Michaelis-Menten elimination (E1), an integrated glucose-insulin model and an HIV viral load model with recursive feedback systems (E2 and E3, respectively). The secondary aim of this study was to explore the potential advantages of analytically solving linearized ODEs with two examples, again E3 with stiff differential equations and a turnover model of luteinizing hormone with a surge function (E4). The inductive linearization coupled with a matrix exponential solution provided accurate predictions for all examples with comparable solution time to the matched time-stepping solutions for nonlinear ODEs. The time-stepping solutions however did not perform well for E4, particularly when the surge was approximated by a square wave. In circumstances when either a linear ODE is particularly desirable or the uncertainty in matching the integrator to the ODE system is of potential risk, then the inductive approximation method coupled with an analytical integration method would be an appropriate alternative.
Variance Function Partially Linear Single-Index Models1.
Lian, Heng; Liang, Hua; Carroll, Raymond J
2015-01-01
We consider heteroscedastic regression models where the mean function is a partially linear single index model and the variance function depends upon a generalized partially linear single index model. We do not insist that the variance function depend only upon the mean function, as happens in the classical generalized partially linear single index model. We develop efficient and practical estimation methods for the variance function and for the mean function. Asymptotic theory for the parametric and nonparametric parts of the model is developed. Simulations illustrate the results. An empirical example involving ozone levels is used to further illustrate the results, and is shown to be a case where the variance function does not depend upon the mean function.
Pseudo-differential operators and generalized functions
Toft, Joachim
2015-01-01
This book gathers peer-reviewed contributions representing modern trends in the theory of generalized functions and pseudo-differential operators. It is dedicated to Professor Michael Oberguggenberger (Innsbruck University, Austria) in honour of his 60th birthday. The topics covered were suggested by the ISAAC Group in Generalized Functions (GF) and the ISAAC Group in Pseudo-Differential Operators (IGPDO), which met at the 9th ISAAC congress in Krakow, Poland in August 2013. Topics include Columbeau algebras, ultra-distributions, partial differential equations, micro-local analysis, harmonic analysis, global analysis, geometry, quantization, mathematical physics, and time-frequency analysis. Featuring both essays and research articles, the book will be of great interest to graduate students and researchers working in analysis, PDE and mathematical physics, while also offering a valuable complement to the volumes on this topic previously published in the OT series.
Novel method of interpolation and extrapolation of functions by a linear initial value problem
CSIR Research Space (South Africa)
Shatalov, M
2008-09-01
Full Text Available A novel method of function approximation using an initial value, linear, ordinary differential equation (ODE) is presented. The main advantage of this method is to obtain the approximation expressions in a closed form. This technique can be taught...
Martini, Ruud; Kersten, P.H.M.
1983-01-01
Using 1-1 mappings, the complete symmetry groups of contact transformations of general linear second-order ordinary differential equations are determined from two independent solutions of those equations, and applied to the harmonic oscillator with and without damping.
Some Additional Remarks on the Cumulant Expansion for Linear Stochastic Differential Equations
Roerdink, J.B.T.M.
1984-01-01
We summarize our previous results on cumulant expansions for linear stochastic differential equations with correlated multipliclative and additive noise. The application of the general formulas to equations with statistically independent multiplicative and additive noise is reconsidered in detail,
Some additional remarks on the cumulant expansion for linear stochastic differential equations
Roerdink, J.B.T.M.
1984-01-01
We summarize our previous results on cumular expasions for linear stochastic differential equations with correlated multipliclative and additive noise. The application of the general formulas to equations with statistically independent multiplicative and additive noise is reconsidered in detail,
Differential analysis of matrix convex functions
DEFF Research Database (Denmark)
Hansen, Frank; Tomiyama, Jun
2007-01-01
We analyze matrix convex functions of a fixed order defined in a real interval by differential methods as opposed to the characterization in terms of divided differences given by Kraus [F. Kraus, Über konvekse Matrixfunktionen, Math. Z. 41 (1936) 18-42]. We obtain for each order conditions for ma...
Efficient Estimating Functions for Stochastic Differential Equations
DEFF Research Database (Denmark)
Jakobsen, Nina Munkholt
The overall topic of this thesis is approximate martingale estimating function-based estimationfor solutions of stochastic differential equations, sampled at high frequency. Focuslies on the asymptotic properties of the estimators. The first part of the thesis deals with diffusions observed over...
Differential functional von Foerster equations with renewal
Directory of Open Access Journals (Sweden)
H.Leszczyński
2008-06-01
Full Text Available Natural iterative methods converge to the exact solution of a differential-functional von Foerster-type equation which describes a single population dependent on its past time and state densities as well as on its total size. On the lateral boundary we impose a renewal condition.
Qualitative properties of functional differential equation
Directory of Open Access Journals (Sweden)
Diana Otrocol
2014-10-01
Full Text Available The aim of this paper is to discuss some basic problems (existence and uniqueness, data dependence of the fixed point theory for a functional differential equation with an abstract Volterra operator. In the end an application is given.
Camporesi, Roberto
2016-01-01
This book presents a method for solving linear ordinary differential equations based on the factorization of the differential operator. The approach for the case of constant coefficients is elementary, and only requires a basic knowledge of calculus and linear algebra. In particular, the book avoids the use of distribution theory, as well as the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The case of variable coefficients is addressed using Mammana’s result for the factorization of a real linear ordinary differential operator into a product of first-order (complex) factors, as well as a recent generalization of this result to the case of complex-valued coefficients.
Sloss, J. M.; Kranzler, S. K.
1972-01-01
The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.
Increase in speed of Wilkinson-type ADC and improvement of differential non-linearity
Energy Technology Data Exchange (ETDEWEB)
Kinbara, S [Japan Atomic Energy Research Inst., Tokai, Ibaraki. Tokai Research Establishment
1977-06-01
It is shown that the differential non-linearity of a Wilkinson-type analog-to-digital converter (ADC) is dominated by the unbalance of even-numbered periods caused by the action of interference resulting from operation of a channel scaler. To improve this situation, new methods were tested which allow such action of interference to be dispersed. Measurements show that a differential non-linearity value of +- 0.043% is attainable for a clock rate of 300 MHz.
DEFF Research Database (Denmark)
Mejlbro, Leif
1997-01-01
An alternative formula for the solution of linear differential equations of order n is suggested. When applicable, the suggested method requires fewer and simpler computations than the well-known method using Wronskians.......An alternative formula for the solution of linear differential equations of order n is suggested. When applicable, the suggested method requires fewer and simpler computations than the well-known method using Wronskians....
Use of linear discriminant function analysis in seed morphotype ...
African Journals Online (AJOL)
Use of linear discriminant function analysis in seed morphotype relationship study in 31 ... Data were collected on 100-seed weight, seed length and seed width. ... to the Mesoamerican gene pool, comprising the cultigroups Sieva-Big Lima, ...
TRANSFER-FUNCTIONS OF A LINEARIZED MULTI-REGION REACTOR
Energy Technology Data Exchange (ETDEWEB)
Higgins, Thomas J.
1963-09-15
The development of the transfer functions for a linearized multi-region reactor is studied, and an illustration is made of application of the corresponding theory by a numerical illustrative example. (auth)
Argument estimates of certain multivalent functions involving a linear operator
Directory of Open Access Journals (Sweden)
Nak Eun Cho
2002-01-01
Full Text Available The purpose of this paper is to derive some argument properties of certain multivalent functions in the open unit disk involving a linear operator. We also investigate their integral preserving property in a sector.
Dorodnitsyn, Vladimir A.; Kozlov, Roman; Meleshko, Sergey V.; Winternitz, Pavel
2018-05-01
A recent article was devoted to an analysis of the symmetry properties of a class of first-order delay ordinary differential systems (DODSs). Here we concentrate on linear DODSs, which have infinite-dimensional Lie point symmetry groups due to the linear superposition principle. Their symmetry algebra always contains a two-dimensional subalgebra realized by linearly connected vector fields. We identify all classes of linear first-order DODSs that have additional symmetries, not due to linearity alone, and we present representatives of each class. These additional symmetries are then used to construct exact analytical particular solutions using symmetry reduction.
Monotone viable trajectories for functional differential inclusions
Haddad, Georges
This paper is a study on functional differential inclusions with memory which represent the multivalued version of retarded functional differential equations. The main result gives a necessary and sufficient equations. The main result gives a necessary and sufficient condition ensuring the existence of viable trajectories; that means trajectories remaining in a given nonempty closed convex set defined by given constraints the system must satisfy to be viable. Some motivations for this paper can be found in control theory where F( t, φ) = { f( t, φ, u)} uɛU is the set of possible velocities of the system at time t, depending on the past history represented by the function φ and on a control u ranging over a set U of controls. Other motivations can be found in planning procedures in microeconomics and in biological evolutions where problems with memory do effectively appear in a multivalued version. All these models require viability constraints represented by a closed convex set.
LINTAB, Linear Interpolable Tables from any Continuous Variable Function
International Nuclear Information System (INIS)
1988-01-01
1 - Description of program or function: LINTAB is designed to construct linearly interpolable tables from any function. The program will start from any function of a single continuous variable... FUNKY(X). By user input the function can be defined, (1) Over 1 to 100 X ranges. (2) Within each X range the function is defined by 0 to 50 constants. (3) At boundaries between X ranges the function may be continuous or discontinuous (depending on the constants used to define the function within each X range). 2 - Method of solution: LINTAB will construct a table of X and Y values where the tabulated (X,Y) pairs will be exactly equal to the function (Y=FUNKY(X)) and linear interpolation between the tabulated pairs will be within any user specified fractional uncertainty of the function for all values of X within the requested X range
Variations in the Solution of Linear First-Order Differential Equations. Classroom Notes
Seaman, Brian; Osler, Thomas J.
2004-01-01
A special project which can be given to students of ordinary differential equations is described in detail. Students create new differential equations by changing the dependent variable in the familiar linear first-order equation (dv/dx)+p(x)v=q(x) by means of a substitution v=f(y). The student then creates a table of the new equations and…
A differential-geometric approach to generalized linear models with grouped predictors
Augugliaro, Luigi; Mineo, Angelo M.; Wit, Ernst C.
We propose an extension of the differential-geometric least angle regression method to perform sparse group inference in a generalized linear model. An efficient algorithm is proposed to compute the solution curve. The proposed group differential-geometric least angle regression method has important
Mallet, D. G.; McCue, S. W.
2009-01-01
The solution of linear ordinary differential equations (ODEs) is commonly taught in first-year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognizing what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to…
Hartman-Wintner growth results for sublinear functional differential equations
Directory of Open Access Journals (Sweden)
John A. D. Appleby
2017-01-01
Full Text Available This article determines the rate of growth to infinity of scalar autonomous nonlinear functional and Volterra differential equations. In these equations, the right-hand side is a positive continuous linear functional of f(x. We assume f grows sublinearly, leading to subexponential growth in the solutions. The main results show that the solution of the functional differential equations are asymptotic to that of an auxiliary autonomous ordinary differential equation with right-hand side proportional to f. This happens provided f grows more slowly than l(x=x/log(x. The linear-logarithmic growth rate is also shown to be critical: if f grows more rapidly than l, the ODE dominates the FDE; if f is asymptotic to a constant multiple of l, the FDE and ODE grow at the same rate, modulo a constant non-unit factor; if f grows more slowly than l, the ODE and FDE grow at exactly the same rate. A partial converse of the last result is also proven. In the case when the growth rate is slower than that of the ODE, sharp bounds on the growth rate are determined. The Volterra and finite memory equations can have differing asymptotic behaviour and we explore the source of these differences.
Linear density response function in the projector augmented wave method
DEFF Research Database (Denmark)
Yan, Jun; Mortensen, Jens Jørgen; Jacobsen, Karsten Wedel
2011-01-01
We present an implementation of the linear density response function within the projector-augmented wave method with applications to the linear optical and dielectric properties of both solids, surfaces, and interfaces. The response function is represented in plane waves while the single...... functions of Si, C, SiC, AlP, and GaAs compare well with previous calculations. While optical properties of semiconductors, in particular excitonic effects, are generally not well described by ALDA, we obtain excellent agreement with experiments for the surface loss function of graphene and the Mg(0001...
Directory of Open Access Journals (Sweden)
Yi-hua Zhong
2013-01-01
Full Text Available Recently, various methods have been developed for solving linear programming problems with fuzzy number, such as simplex method and dual simplex method. But their computational complexities are exponential, which is not satisfactory for solving large-scale fuzzy linear programming problems, especially in the engineering field. A new method which can solve large-scale fuzzy number linear programming problems is presented in this paper, which is named a revised interior point method. Its idea is similar to that of interior point method used for solving linear programming problems in crisp environment before, but its feasible direction and step size are chosen by using trapezoidal fuzzy numbers, linear ranking function, fuzzy vector, and their operations, and its end condition is involved in linear ranking function. Their correctness and rationality are proved. Moreover, choice of the initial interior point and some factors influencing the results of this method are also discussed and analyzed. The result of algorithm analysis and example study that shows proper safety factor parameter, accuracy parameter, and initial interior point of this method may reduce iterations and they can be selected easily according to the actual needs. Finally, the method proposed in this paper is an alternative method for solving fuzzy number linear programming problems.
Hyers-Ulam stability of linear second-order differential equations in complex Banach spaces
Directory of Open Access Journals (Sweden)
Yongjin Li
2013-08-01
Full Text Available We prove the Hyers-Ulam stability of linear second-order differential equations in complex Banach spaces. That is, if y is an approximate solution of the differential equation $y''+ alpha y'(t +eta y = 0$ or $y''+ alpha y'(t +eta y = f(t$, then there exists an exact solution of the differential equation near to y.
Asymptotic behavior of solutions of linear multi-order fractional differential equation systems
Diethelm, Kai; Siegmund, Stefan; Tuan, H. T.
2017-01-01
In this paper, we investigate some aspects of the qualitative theory for multi-order fractional differential equation systems. First, we obtain a fundamental result on the existence and uniqueness for multi-order fractional differential equation systems. Next, a representation of solutions of homogeneous linear multi-order fractional differential equation systems in series form is provided. Finally, we give characteristics regarding the asymptotic behavior of solutions to some classes of line...
International Nuclear Information System (INIS)
Franco-Pérez, Marco; Ayers, Paul W.; Gázquez, José L.; Vela, Alberto
2015-01-01
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model
Growth and Zeros of Meromorphic Solutions to Second-Order Linear Differential Equations
Directory of Open Access Journals (Sweden)
Maamar Andasmas
2016-04-01
Full Text Available The main purpose of this article is to investigate the growth of meromorphic solutions to homogeneous and non-homogeneous second order linear differential equations f00+Af0+Bf = F, where A(z, B (z and F (z are meromorphic functions with finite order having only finitely many poles. We show that, if there exist a positive constants σ > 0, α > 0 such that |A(z| ≥ eα|z|σ as |z| → +∞, z ∈ H, where dens{|z| : z ∈ H} > 0 and ρ = max{ρ(B, ρ(F} < σ, then every transcendental meromorphic solution f has an infinite order. Further, we give some estimates of their hyper-order, exponent and hyper-exponent of convergence of distinct zeros.
Zhang, Ling
2017-01-01
The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs). It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order [Formula: see text] to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.
Interval Oscillation Criteria for Super-Half-Linear Impulsive Differential Equations with Delay
Directory of Open Access Journals (Sweden)
Zhonghai Guo
2012-01-01
Full Text Available We study the following second-order super-half-linear impulsive differential equations with delay [r(tφγ(x′(t]′+p(tφγ(x(t-σ+q(tf(x(t-σ=e(t, t≠τk, x(t+=akx(t, x′(t+=bkx′(t, t=τk, where t≥t0∈ℝ, φ*(u=|u|*-1u, σ is a nonnegative constant, {τk} denotes the impulsive moments sequence with τ1σ. By some classical inequalities, Riccati transformation, and two classes of functions, we give several interval oscillation criteria which generalize and improve some known results. Moreover, we also give two examples to illustrate the effectiveness and nonemptiness of our results.
Directory of Open Access Journals (Sweden)
Ling Zhang
2017-10-01
Full Text Available Abstract The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs. It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order 1 2 $\\frac{1}{2}$ to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.
International Nuclear Information System (INIS)
Paris, R.B.; Wood, A.D.
1984-11-01
The asymptotic expansions of solutions of a class of linear ordinary differential equations of arbitrary order n, containing a factor zsup(m) multiplying the lower order derivatives, are investigated for large values of z in the complex plane. Four classes of solutions are considered which exhibit the following behaviour as /z/ → infinity in certain sectors: (i) solutions whose behaviour is either exponentially large or algebraic (involving p ( < n) algebraic expansions), (ii) solutions which are exponentially small (iii) solutions with a single algebraic expansion and (iv) solutions which are even and odd functions of z whenever n+m is even. The asymptotic expansions of these solutions in a full neigbourhood of the point at infinity are obtained by means of the theory of the solutions in the case m=O developed in a previous paper
International Nuclear Information System (INIS)
Grigoriu, Mircea; Samorodnitsky, Gennady
2004-01-01
Two methods are considered for assessing the asymptotic stability of the trivial solution of linear stochastic differential equations driven by Poisson white noise, interpreted as the formal derivative of a compound Poisson process. The first method attempts to extend a result for diffusion processes satisfying linear stochastic differential equations to the case of linear equations with Poisson white noise. The developments for the method are based on Ito's formula for semimartingales and Lyapunov exponents. The second method is based on a geometric ergodic theorem for Markov chains providing a criterion for the asymptotic stability of the solution of linear stochastic differential equations with Poisson white noise. Two examples are presented to illustrate the use and evaluate the potential of the two methods. The examples demonstrate limitations of the first method and the generality of the second method
Transiently chaotic neural networks with piecewise linear output functions
Energy Technology Data Exchange (ETDEWEB)
Chen, S.-S. [Department of Mathematics, National Taiwan Normal University, Taipei, Taiwan (China); Shih, C.-W. [Department of Applied Mathematics, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan (China)], E-mail: cwshih@math.nctu.edu.tw
2009-01-30
Admitting both transient chaotic phase and convergent phase, the transiently chaotic neural network (TCNN) provides superior performance than the classical networks in solving combinatorial optimization problems. We derive concrete parameter conditions for these two essential dynamic phases of the TCNN with piecewise linear output function. The confirmation for chaotic dynamics of the system results from a successful application of the Marotto theorem which was recently clarified. Numerical simulation on applying the TCNN with piecewise linear output function is carried out to find the optimal solution of a travelling salesman problem. It is demonstrated that the performance is even better than the previous TCNN model with logistic output function.
Unstable volatility functions: the break preserving local linear estimator
DEFF Research Database (Denmark)
Casas, Isabel; Gijbels, Irene
The objective of this paper is to introduce the break preserving local linear (BPLL) estimator for the estimation of unstable volatility functions. Breaks in the structure of the conditional mean and/or the volatility functions are common in Finance. Markov switching models (Hamilton, 1989......) and threshold models (Lin and Terasvirta, 1994) are amongst the most popular models to describe the behaviour of data with structural breaks. The local linear (LL) estimator is not consistent at points where the volatility function has a break and it may even report negative values for finite samples...
Non-linear variation of the beta function with momentum
International Nuclear Information System (INIS)
Parzen, G.
1983-07-01
A theory is presented for computing the non-linear dependence of the β-functions on momentum. Results are found for the quadratic term. The results of the theory are compared with computed results. A procedure is proposed for computing the strengths of the sextupole correctors to correct the dependence of the β-function on momentum
Linearization of non-commuting operators in the partition function
International Nuclear Information System (INIS)
Ahmed, M.
1983-06-01
A generalization of the Stratonovich-Hubbard scheme for evaluating the grand canonical partition function is given. The scheme involves linearization of products of non-commuting operators using the functional integral method. The non-commutivity of the operators leads to an additional term which can be absorbed in the single-particle Hamiltonian. (author)
Some subclasses of multivalent functions involving a certain linear operator
Srivastava, H. M.; Patel, J.
2005-10-01
The authors investigate various inclusion and other properties of several subclasses of the class of normalized p-valent analytic functions in the open unit disk, which are defined here by means of a certain linear operator. Problems involving generalized neighborhoods of analytic functions in the class are investigated. Finally, some applications of fractional calculus operators are considered.
Synchronization with propagation - The functional differential equations
Rǎsvan, Vladimir
2016-06-01
The structure represented by one or several oscillators couple to a one-dimensional transmission environment (e.g. a vibrating string in the mechanical case or a lossless transmission line in the electrical case) turned to be attractive for the research in the field of complex structures and/or complex behavior. This is due to the fact that such a structure represents some generalization of various interconnection modes with lumped parameters for the oscillators. On the other hand the lossless and distortionless propagation along transmission lines has generated several research in electrical, thermal, hydro and control engineering leading to the association of some functional differential equations to the basic initial boundary value problems. The present research is performed at the crossroad of the aforementioned directions. We shall associate to the starting models some functional differential equations - in most cases of neutral type - and make use of the general theorems for existence and stability of forced oscillations for functional differential equations. The challenges introduced by the analyzed problems for the general theory are emphasized, together with the implication of the results for various applications.
Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept.
Mazandarani, Mehran; Pariz, Naser
2018-05-01
This paper deals with sub-optimal control of a fuzzy linear dynamical system. The aim is to keep the state variables of the fuzzy linear dynamical system close to zero in an optimal manner. In the fuzzy dynamical system, the fuzzy derivative is considered as the granular derivative; and all the coefficients and initial conditions can be uncertain. The criterion for assessing the optimality is regarded as a granular integral whose integrand is a quadratic function of the state variables and control inputs. Using the relative-distance-measure (RDM) fuzzy interval arithmetic and calculus of variations, the optimal control law is presented as the fuzzy state variables feedback. Since the optimal feedback gains are obtained as fuzzy functions, they need to be defuzzified. This will result in the sub-optimal control law. This paper also sheds light on the restrictions imposed by the approaches which are based on fuzzy standard interval arithmetic (FSIA), and use strongly generalized Hukuhara and generalized Hukuhara differentiability concepts for obtaining the optimal control law. The granular eigenvalues notion is also defined. Using an RLC circuit mathematical model, it is shown that, due to their unnatural behavior in the modeling phenomenon, the FSIA-based approaches may obtain some eigenvalues sets that might be different from the inherent eigenvalues set of the fuzzy dynamical system. This is, however, not the case with the approach proposed in this study. The notions of granular controllability and granular stabilizability of the fuzzy linear dynamical system are also presented in this paper. Moreover, a sub-optimal control for regulating a Boeing 747 in longitudinal direction with uncertain initial conditions and parameters is gained. In addition, an uncertain suspension system of one of the four wheels of a bus is regulated using the sub-optimal control introduced in this paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik
2004-01-01
The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...
Directory of Open Access Journals (Sweden)
Luo Li-Qin
2016-01-01
Full Text Available In this paper, we investigate the value distribution of meromorphic solutions of homogeneous and non-homogeneous complex linear differential-difference equations, and obtain the results on the relations between the order of the solutions and the convergence exponents of the zeros, poles, a-points and small function value points of the solutions, which show the relations in the case of non-homogeneous equations are sharper than the ones in the case of homogeneous equations.
Orthogonality, Lommel integrals and cross product zeros of linear combinations of Bessel functions.
Ziener, Christian H; Kurz, Felix T; Buschle, Lukas R; Kampf, Thomas
2015-01-01
The cylindrical Bessel differential equation and the spherical Bessel differential equation in the interval [Formula: see text] with Neumann boundary conditions are considered. The eigenfunctions are linear combinations of the Bessel function [Formula: see text] or linear combinations of the spherical Bessel functions [Formula: see text]. The orthogonality relations with analytical expressions for the normalization constant are given. Explicit expressions for the Lommel integrals in terms of Lommel functions are derived. The cross product zeros [Formula: see text] and [Formula: see text] are considered in the complex plane for real as well as complex values of the index [Formula: see text] and approximations for the exceptional zero [Formula: see text] are obtained. A numerical scheme based on the discretization of the two-dimensional and three-dimensional Laplace operator with Neumann boundary conditions is presented. Explicit representations of the radial part of the Laplace operator in form of a tridiagonal matrix allow the simple computation of the cross product zeros.
Functional analysis in the study of differential and integral equations
International Nuclear Information System (INIS)
Sell, G.R.
1976-01-01
This paper illustrates the use of functional analysis in the study of differential equations. Our particular starting point, the theory of flows or dynamical systems, originated with the work of H. Poincare, who is the founder of the qualitative theory of ordinary differential equations. In the qualitative theory one tries to describe the behaviour of a solution, or a collection of solutions, without ''solving'' the differential equation. As a starting point one assumes the existence, and sometimes the uniqueness, of solutions and then one tries to describe the asymptotic behaviour, as time t→+infinity, of these solutions. We compare the notion of a flow with that of a C 0 -group of bounded linear operators on a Banach space. We shall show how the concept C 0 -group, or more generally a C 0 -semigroup, can be used to study the behaviour of solutions of certain differential and integral equations. Our main objective is to show how the concept of a C 0 -group and especially the notion of weak-compactness can be used to prove the existence of an invariant measure for a flow on a compact Hausdorff space. Applications to the theory of ordinary differential equations are included. (author)
Energy Technology Data Exchange (ETDEWEB)
Yuan, Rong [Univ. of California, Berkeley, CA (United States)
2007-01-01
Linear elastic fracture mechanics is widely used in industry because it established simple and explicit relationships between the permissible loading conditions and the critical crack size that is allowed in a structure. Stress intensity factors are the above-mentioned functional expressions that relate load with crack size through geometric functions or weight functions. Compliance functions are to determine the crack/flaw size in a structure when optical inspection is inconvenient. As a result, geometric functions, weight functions and compliance functions have been intensively studied to determine the stress intensity factor expressions for different geometries. However, the relations between these functions have received less attention. This work is therefore to investigate the intrinsic relationships between these functions. Theoretical derivation was carried out and the results were verified on single-edge cracked plate under tension and bending. It is found out that the geometric function is essentially the non-dimensional weight function at the loading point. The compliance function is composed of two parts: a varying part due to crack extension and a constant part from the intact structure if no crack exists. The derivative of the compliance function at any location is the product of the geometric function and the weight function at the evaluation point. Inversely, the compliance function can be acquired by the integration of the product of the geometric function and the weight function with respect to the crack size. The integral constant is just the unchanging compliance from the intact structure. Consequently, a special application of the relations is to obtain the compliance functions along a crack once the geometric function and weight functions are known. Any of the three special functions can be derived once the other two functions are known. These relations may greatly simplify the numerical process in obtaining either geometric functions, weight
High-Order Automatic Differentiation of Unmodified Linear Algebra Routines via Nilpotent Matrices
Dunham, Benjamin Z.
This work presents a new automatic differentiation method, Nilpotent Matrix Differentiation (NMD), capable of propagating any order of mixed or univariate derivative through common linear algebra functions--most notably third-party sparse solvers and decomposition routines, in addition to basic matrix arithmetic operations and power series--without changing data-type or modifying code line by line; this allows differentiation across sequences of arbitrarily many such functions with minimal implementation effort. NMD works by enlarging the matrices and vectors passed to the routines, replacing each original scalar with a matrix block augmented by derivative data; these blocks are constructed with special sparsity structures, termed "stencils," each designed to be isomorphic to a particular multidimensional hypercomplex algebra. The algebras are in turn designed such that Taylor expansions of hypercomplex function evaluations are finite in length and thus exactly track derivatives without approximation error. Although this use of the method in the "forward mode" is unique in its own right, it is also possible to apply it to existing implementations of the (first-order) discrete adjoint method to find high-order derivatives with lowered cost complexity; for example, for a problem with N inputs and an adjoint solver whose cost is independent of N--i.e., O(1)--the N x N Hessian can be found in O(N) time, which is comparable to existing second-order adjoint methods that require far more problem-specific implementation effort. Higher derivatives are likewise less expensive--e.g., a N x N x N rank-three tensor can be found in O(N2). Alternatively, a Hessian-vector product can be found in O(1) time, which may open up many matrix-based simulations to a range of existing optimization or surrogate modeling approaches. As a final corollary in parallel to the NMD-adjoint hybrid method, the existing complex-step differentiation (CD) technique is also shown to be capable of
Functional linear models for association analysis of quantitative traits.
Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao
2013-11-01
Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. © 2013 WILEY
Construction of a Smooth Lyapunov Function for the Robust and Exact Second-Order Differentiator
Directory of Open Access Journals (Sweden)
Tonametl Sanchez
2016-01-01
Full Text Available Differentiators play an important role in (continuous feedback control systems. In particular, the robust and exact second-order differentiator has shown some very interesting properties and it has been used successfully in sliding mode control, in spite of the lack of a Lyapunov based procedure to design its gains. As contribution of this paper, we provide a constructive method to determine a differentiable Lyapunov function for such a differentiator. Moreover, the Lyapunov function is used to provide a procedure to design the differentiator’s parameters. Also, some sets of such parameters are provided. The determination of the positive definiteness of the Lyapunov function and negative definiteness of its derivative is converted to the problem of solving a system of inequalities linear in the parameters of the Lyapunov function candidate and also linear in the gains of the differentiator, but bilinear in both.
Belkhatir, Zehor
2015-11-05
This paper deals with the joint estimation of the unknown input and the fractional differentiation orders of a linear fractional order system. A two-stage algorithm combining the modulating functions with a first-order Newton method is applied to solve this estimation problem. First, the modulating functions approach is used to estimate the unknown input for a given fractional differentiation orders. Then, the method is combined with a first-order Newton technique to identify the fractional orders jointly with the input. To show the efficiency of the proposed method, numerical examples illustrating the estimation of the neural activity, considered as input of a fractional model of the neurovascular coupling, along with the fractional differentiation orders are presented in both noise-free and noisy cases.
Non-cooperative stochastic differential game theory of generalized Markov jump linear systems
Zhang, Cheng-ke; Zhou, Hai-ying; Bin, Ning
2017-01-01
This book systematically studies the stochastic non-cooperative differential game theory of generalized linear Markov jump systems and its application in the field of finance and insurance. The book is an in-depth research book of the continuous time and discrete time linear quadratic stochastic differential game, in order to establish a relatively complete framework of dynamic non-cooperative differential game theory. It uses the method of dynamic programming principle and Riccati equation, and derives it into all kinds of existence conditions and calculating method of the equilibrium strategies of dynamic non-cooperative differential game. Based on the game theory method, this book studies the corresponding robust control problem, especially the existence condition and design method of the optimal robust control strategy. The book discusses the theoretical results and its applications in the risk control, option pricing, and the optimal investment problem in the field of finance and insurance, enriching the...
Stability of numerical method for semi-linear stochastic pantograph differential equations
Directory of Open Access Journals (Sweden)
Yu Zhang
2016-01-01
Full Text Available Abstract As a particular expression of stochastic delay differential equations, stochastic pantograph differential equations have been widely used in nonlinear dynamics, quantum mechanics, and electrodynamics. In this paper, we mainly study the stability of analytical solutions and numerical solutions of semi-linear stochastic pantograph differential equations. Some suitable conditions for the mean-square stability of an analytical solution are obtained. Then we proved the general mean-square stability of the exponential Euler method for a numerical solution of semi-linear stochastic pantograph differential equations, that is, if an analytical solution is stable, then the exponential Euler method applied to the system is mean-square stable for arbitrary step-size h > 0 $h>0$ . Numerical examples further illustrate the obtained theoretical results.
Chemical networks with inflows and outflows: a positive linear differential inclusions approach.
Angeli, David; De Leenheer, Patrick; Sontag, Eduardo D
2009-01-01
Certain mass-action kinetics models of biochemical reaction networks, although described by nonlinear differential equations, may be partially viewed as state-dependent linear time-varying systems, which in turn may be modeled by convex compact valued positive linear differential inclusions. A result is provided on asymptotic stability of such inclusions, and applied to a ubiquitous biochemical reaction network with inflows and outflows, known as the futile cycle. We also provide a characterization of exponential stability of general homogeneous switched systems which is not only of interest in itself, but also plays a role in the analysis of the futile cycle. 2009 American Institute of Chemical Engineers
ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations
Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil
2018-04-01
In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.
The numerical solution of linear multi-term fractional differential equations: systems of equations
Edwards, John T.; Ford, Neville J.; Simpson, A. Charles
2002-11-01
In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.
Functional myelographic differentiation of lumbar bulging annulus
Energy Technology Data Exchange (ETDEWEB)
Park, Choong Ki; Kim, Hong Kil; Park, Sang Gyu; Lee, Young Jung; Yoon, Jong Sup [Hallym University College of Medicine, Seoul (Korea, Republic of)
1988-08-15
Herniated disk and bulging annulus are the major causes of lower back pain. It is necessary to differentiate bulging annulus from herniated disk because of their different methods of treatment. Myelography is one of the useful diagnostic methods for disk diseases even though advanced diagnostic modalities such as CT and MRI are more accurate. Functional myelography is not a new technology expect for two additional views, flexion and extension, are obtained with conventional myelography. Differentiation between bulging annulus and herniated disk by conventional myelography is based on the extent and multiplicity of extradural deformity of the contrast filled dural sac and neural sleeve as well as the changes of nerve root. There is no previous report about differential points between bulging annulus and herniated disk according to functional myelography. It is the purpose of this study to find any additional differential points on functional myelography between bulging annulus and herniated disk over convectional myelography. Authors analysed functional myelographic findings of 152 cases from July 1986 to July 1987. Among them, 22 cases who had been suffered from cervical abnormality or vague lower back pain were diagnosed as normal by myelography, and 30 cases of L4-5 herniated disk and 21 cases of L4-5 bulging annulus which had been finally diagnosed by operation were studied. The results were as follows. 1. In normal group, anterior epidural space was gradually widened from the upper lumbar vertebra downward. And anterior epidural space was more sidened at the disk level in extension view than in flexion except for L5-S1 lever. 2. In bulging annulus group, the shape of anterior epidural space in flexion state was as similar as normal. Anoterior epidural space in extension state was more sidened at the buldging annulus than normal, but lesser than herniated disk. 3. In herniated disk group, widening of anterior epidural space at the herniated disk level was
Zhou, L.-Q.; Meleshko, S. V.
2017-07-01
The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.
GDTM-Padé technique for the non-linear differential-difference equation
Directory of Open Access Journals (Sweden)
Lu Jun-Feng
2013-01-01
Full Text Available This paper focuses on applying the GDTM-Padé technique to solve the non-linear differential-difference equation. The bell-shaped solitary wave solution of Belov-Chaltikian lattice equation is considered. Comparison between the approximate solutions and the exact ones shows that this technique is an efficient and attractive method for solving the differential-difference equations.
Non-linear partial differential equations an algebraic view of generalized solutions
Rosinger, Elemer E
1990-01-01
A massive transition of interest from solving linear partial differential equations to solving nonlinear ones has taken place during the last two or three decades. The availability of better computers has often made numerical experimentations progress faster than the theoretical understanding of nonlinear partial differential equations. The three most important nonlinear phenomena observed so far both experimentally and numerically, and studied theoretically in connection with such equations have been the solitons, shock waves and turbulence or chaotical processes. In many ways, these phenomen
Directory of Open Access Journals (Sweden)
Musa Danjuma SHEHU
2008-06-01
Full Text Available This paper lays emphasis on formulation of two dimensional differential games via optimal control theory and consideration of control systems whose dynamics is described by a system of Ordinary Differential equation in the form of linear equation under the influence of two controls U(. and V(.. Base on this, strategies were constructed. Hence we determine the optimal strategy for a control say U(. under a perturbation generated by the second control V(. within a given manifold M.
Linear variable differential transformer sensor using glass-covered amorphous wires as active core
International Nuclear Information System (INIS)
Chiriac, H.; Hristoforou, E.; Neagu, Maria; Pieptanariu, M.
2000-01-01
Results concerning linear variable differential transformer (LVDT) displacement sensor using as movable core glass-covered amorphous wires are presented. The LVDT response is linear for a displacement of the movable core up to about 14 mm, with an accuracy of 1 μm. LVDT using glass-covered amorphous wire as an active core presents a high sensitivity and good mechanical and corrosion resistance
Linear circuit transfer functions an introduction to fast analytical techniques
Basso, Christophe P
2016-01-01
Linear Circuit Transfer Functions: An introduction to Fast Analytical Techniques teaches readers how to determine transfer functions of linear passive and active circuits by applying Fast Analytical Circuits Techniques. Building on their existing knowledge of classical loop/nodal analysis, the book improves and expands their skills to unveil transfer functions in a swift and efficient manner. Starting with simple examples, the author explains step-by-step how expressing circuits time constants in different configurations leads to writing transfer functions in a compact and insightful way. By learning how to organize numerators and denominators in the fastest possible way, readers will speed-up analysis and predict the frequency resp nse of simple to complex circuits. In some cases, they will be able to derive the final expression by inspection, without writing a line of algebra. Key features: * Emphasizes analysis through employing time constant-based methods discussed in other text books but not widely us...
Optimal choice of basis functions in the linear regression analysis
International Nuclear Information System (INIS)
Khotinskij, A.M.
1988-01-01
Problem of optimal choice of basis functions in the linear regression analysis is investigated. Step algorithm with estimation of its efficiency, which holds true at finite number of measurements, is suggested. Conditions, providing the probability of correct choice close to 1 are formulated. Application of the step algorithm to analysis of decay curves is substantiated. 8 refs
A new chaotic Hopfield network with piecewise linear activation function
International Nuclear Information System (INIS)
Peng-Sheng, Zheng; Wan-Sheng, Tang; Jian-Xiong, Zhang
2010-01-01
This paper presents a new chaotic Hopfield network with a piecewise linear activation function. The dynamic of the network is studied by virtue of the bifurcation diagram, Lyapunov exponents spectrum and power spectrum. Numerical simulations show that the network displays chaotic behaviours for some well selected parameters
Geometrically non linear analysis of functionally graded material ...
African Journals Online (AJOL)
user
when compared to the other engineering materials (Akhavan and Hamed, 2010). However, FGM plates under mechanical loading may undergo elastic instability. Hence, the non-linear behavior of functionally graded plates has to be understood for their optimum design. Reddy (2000) proposed the theoretical formulation ...
The linear potential propagator via wave function expansion
International Nuclear Information System (INIS)
Nassar, Antonio B.; Cattani, Mauro S.D.
2002-01-01
We evaluate the quantum propagator for the motion of a particle in a linear potential via a recently developed formalism [A.B. Nassar et al., Phys. Rev. E56, 1230, (1997)]. In this formalism, the propagator comes about as a type of expansion of the wave function over the space of the initial velocities. (author)
A Hamiltonian functional for the linearized Einstein vacuum field equations
International Nuclear Information System (INIS)
Rosas-RodrIguez, R
2005-01-01
By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form by using a conserved functional as Hamiltonian; this Hamiltonian is not the analog of the energy of the field. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained. The generator of spatial translations associated with such bracket is also obtained
Verification of Differential Item Functioning (DIF) Status of West ...
African Journals Online (AJOL)
This study investigated test item bias and Differential Item Functioning (DIF) of West African ... items in chemistry function differentially with respect to gender and location. In Aba education zone of Abia, 50 secondary schools were purposively ...
On the existence of solutions for functional differential equations
International Nuclear Information System (INIS)
Walo Omana, R.
1994-12-01
The aim of the paper is to extend the Granas Topological Transversality Method used in boundary value problems for functional differential equations for first and second order, to the case of n-th order functional differential equations. 15 refs
Generating functionals and Lagrangian partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Vankerschaver, Joris; Liao, Cuicui; Leok, Melvin [Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, Dept. 0112, La Jolla, California 92093-0112 (United States)
2013-08-15
The main goal of this paper is to derive an alternative characterization of the multisymplectic form formula for classical field theories using the geometry of the space of boundary values. We review the concept of Type-I/II generating functionals defined on the space of boundary data of a Lagrangian field theory. On the Lagrangian side, we define an analogue of Jacobi's solution to the Hamilton–Jacobi equation for field theories, and we show that by taking variational derivatives of this functional, we obtain an isotropic submanifold of the space of Cauchy data, described by the so-called multisymplectic form formula. As an example of the latter, we show that Lorentz's reciprocity principle in electromagnetism is a particular instance of the multisymplectic form formula. We also define a Hamiltonian analogue of Jacobi's solution, and we show that this functional is a Type-II generating functional. We finish the paper by defining a similar framework of generating functions for discrete field theories, and we show that for the linear wave equation, we recover the multisymplectic conservation law of Bridges.
Factorization of a class of almost linear second-order differential equations
International Nuclear Information System (INIS)
Estevez, P G; Kuru, S; Negro, J; Nieto, L M
2007-01-01
A general type of almost linear second-order differential equations, which are directly related to several interesting physical problems, is characterized. The solutions of these equations are obtained using the factorization technique, and their non-autonomous invariants are also found by means of scale transformations
Directory of Open Access Journals (Sweden)
Ai-Min Yang
2014-01-01
Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.
Solutions of half-linear differential equations in the classes Gamma and Pi
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel; Taddei, V.
2016-01-01
Roč. 29, 7-8 (2016), s. 683-714 ISSN 0893-4983 Institutional support: RVO:67985840 Keywords : half-linear differential equation * positive solution * asymptotic formula Subject RIV: BA - General Mathematics Impact factor: 0.565, year: 2016 http://projecteuclid.org/euclid.die/1462298681
Eck, van H.J.N.; Koppers, W.R.; Rooij, van G.J.; Goedheer, W.J.; Engeln, R.A.H.; Schram, D.C.; Lopes Cardozo, N.J.; Kleyn, A.W.
2009-01-01
The direct simulation Monte Carlo (DSMC) method was used to investigate the efficiency of differential pumping in linear plasma generators operating at high gas flows. Skimmers are used to separate the neutrals from the plasma beam, which is guided from the source to the target by a strong axial
Comparison of nonlinearities in oscillation theory of half-linear differential equations
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
2008-01-01
Roč. 121, č. 2 (2008), s. 93-105 ISSN 0236-5294 R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear differential equation * comparison theorem * Riccati technique Subject RIV: BA - General Mathematics Impact factor: 0.317, year: 2008
Successive approximation analog to digital conversion system with good differential linearity
Energy Technology Data Exchange (ETDEWEB)
Carter, D E; Randers-Pehrson, G [Ohio Univ., Athens (USA). Dept. of Physics
1982-08-15
A high speed modified successive approximation 4 input ADC system has been designed and constructed. Throughput rates of 250 kHz at 12 bit conversion gain with good differential linearity is achieved at low cost, using the MPX4 ADC system.
Tisdell, Christopher C.
2017-01-01
For over 50 years, the learning of teaching of "a priori" bounds on solutions to linear differential equations has involved a Euclidean approach to measuring the size of a solution. While the Euclidean approach to "a priori" bounds on solutions is somewhat manageable in the learning and teaching of the proofs involving…
Roerdink, J.B.T.M.
1981-01-01
The cumulant expansion for linear stochastic differential equations is extended to the general case in which the coefficient matrix, the inhomogeneous part and the initial condition are all random and, moreover, statistically interdependent. The expansion now involves not only the autocorrelation
Myshkis type oscillation criteria for second-order linear delay differential equations
Czech Academy of Sciences Publication Activity Database
Opluštil, Z.; Šremr, Jiří
2015-01-01
Roč. 178, č. 1 (2015), s. 143-161 ISSN 0026-9255 Institutional support: RVO:67985840 Keywords : linear second-order delay differential equation * oscillation criteria Subject RIV: BA - General Mathematics Impact factor: 0.664, year: 2015 http://link.springer.com/article/10.1007%2Fs00605-014-0719-y
Some oscillation criteria for the second-order linear delay differential equation
Czech Academy of Sciences Publication Activity Database
Opluštil, Z.; Šremr, Jiří
2011-01-01
Roč. 136, č. 2 (2011), s. 195-204 ISSN 0862-7959 Institutional research plan: CEZ:AV0Z10190503 Keywords : second-order linear differential equation with a delay * oscillatory solution Subject RIV: BA - General Mathematics http://www.dml.cz/handle/10338.dmlcz/141582
Directory of Open Access Journals (Sweden)
Yoshitsugu Takei
2015-01-01
Full Text Available Using two concrete examples, we discuss the multisummability of WKB solutions of singularly perturbed linear ordinary differential equations. Integral representations of solutions and a criterion for the multisummability based on the Cauchy-Heine transform play an important role in the proof.
Boyko, Vyacheslav M; Popovych, Roman O; Shapoval, Nataliya M
2013-01-01
Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach.
Analysis of a monetary union enlargement in the framework of linear-quadratic differential games
Plasmans, J.E.J.; Engwerda, J.C.; van Aarle, B.; Michalak, T.
2009-01-01
"This paper studies the effects of a monetary union enlargement using the techniques and outcomes from an extensive research project on macroeconomic policy coordination in the EMU. Our approach is characterized by two main pillars: (i) linear-quadratic differential games to capture externalities,
Belkhatir, Zehor; Laleg-Kirati, Taous-Meriem
2017-01-01
This paper proposes a two-stage estimation algorithm to solve the problem of joint estimation of the parameters and the fractional differentiation orders of a linear continuous-time fractional system with non-commensurate orders. The proposed algorithm combines the modulating functions and the first-order Newton methods. Sufficient conditions ensuring the convergence of the method are provided. An error analysis in the discrete case is performed. Moreover, the method is extended to the joint estimation of smooth unknown input and fractional differentiation orders. The performance of the proposed approach is illustrated with different numerical examples. Furthermore, a potential application of the algorithm is proposed which consists in the estimation of the differentiation orders of a fractional neurovascular model along with the neural activity considered as input for this model.
Belkhatir, Zehor
2017-05-31
This paper proposes a two-stage estimation algorithm to solve the problem of joint estimation of the parameters and the fractional differentiation orders of a linear continuous-time fractional system with non-commensurate orders. The proposed algorithm combines the modulating functions and the first-order Newton methods. Sufficient conditions ensuring the convergence of the method are provided. An error analysis in the discrete case is performed. Moreover, the method is extended to the joint estimation of smooth unknown input and fractional differentiation orders. The performance of the proposed approach is illustrated with different numerical examples. Furthermore, a potential application of the algorithm is proposed which consists in the estimation of the differentiation orders of a fractional neurovascular model along with the neural activity considered as input for this model.
Perturbations of linear delay differential equations at the verge of instability.
Lingala, N; Namachchivaya, N Sri
2016-06-01
The characteristic equation for a linear delay differential equation (DDE) has countably infinite roots on the complex plane. This paper considers linear DDEs that are on the verge of instability, i.e., a pair of roots of the characteristic equation lies on the imaginary axis of the complex plane and all other roots have negative real parts. It is shown that when small noise perturbations are present, the probability distribution of the dynamics can be approximated by the probability distribution of a certain one-dimensional stochastic differential equation (SDE) without delay. This is advantageous because equations without delay are easier to simulate and one-dimensional SDEs are analytically tractable. When the perturbations are also linear, it is shown that the stability depends on a specific complex number. The theory is applied to study oscillators with delayed feedback. Some errors in other articles that use multiscale approach are pointed out.
Beretvas, S. Natasha; Walker, Cindy M.
2012-01-01
This study extends the multilevel measurement model to handle testlet-based dependencies. A flexible two-level testlet response model (the MMMT-2 model) for dichotomous items is introduced that permits assessment of differential testlet functioning (DTLF). A distinction is made between this study's conceptualization of DTLF and that of…
Efficient Estimating Functions for Stochastic Differential Equations
DEFF Research Database (Denmark)
Jakobsen, Nina Munkholt
The overall topic of this thesis is approximate martingale estimating function-based estimationfor solutions of stochastic differential equations, sampled at high frequency. Focuslies on the asymptotic properties of the estimators. The first part of the thesis deals with diffusions observed over...... a fixed time interval. Rate optimal and effcient estimators areobtained for a one-dimensional diffusion parameter. Stable convergence in distribution isused to achieve a practically applicable Gaussian limit distribution for suitably normalisedestimators. In a simulation example, the limit distributions...... multidimensional parameter. Conditions for rate optimality and effciency of estimatorsof drift-jump and diffusion parameters are given in some special cases. Theseconditions are found to extend the pre-existing conditions applicable to continuous diffusions,and impose much stronger requirements on the estimating...
Generalized Functional Linear Models With Semiparametric Single-Index Interactions
Li, Yehua
2010-06-01
We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor is modeled semiparametrically with a single-index structure. We propose a two step estimation procedure based on local estimating equations, and investigate two situations: (a) when the basis functions are pre-determined, e.g., Fourier or wavelet basis functions and the functional features of interest are known; and (b) when the basis functions are data driven, such as with functional principal components. Asymptotic properties are developed. Notably, we show that when the functional features are data driven, the parameter estimates have an increased asymptotic variance, due to the estimation error of the basis functions. Our methods are illustrated with a simulation study and applied to an empirical data set, where a previously unknown interaction is detected. Technical proofs of our theoretical results are provided in the online supplemental materials.
Generalized Functional Linear Models With Semiparametric Single-Index Interactions
Li, Yehua; Wang, Naisyin; Carroll, Raymond J.
2010-01-01
We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor is modeled semiparametrically with a single-index structure. We propose a two step estimation procedure based on local estimating equations, and investigate two situations: (a) when the basis functions are pre-determined, e.g., Fourier or wavelet basis functions and the functional features of interest are known; and (b) when the basis functions are data driven, such as with functional principal components. Asymptotic properties are developed. Notably, we show that when the functional features are data driven, the parameter estimates have an increased asymptotic variance, due to the estimation error of the basis functions. Our methods are illustrated with a simulation study and applied to an empirical data set, where a previously unknown interaction is detected. Technical proofs of our theoretical results are provided in the online supplemental materials.
ON THE BOUNDEDNESS AND THE STABILITY OF SOLUTION TO THIRD ORDER NON-LINEAR DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In this paper we investigate the global asymptotic stability,boundedness as well as the ultimate boundedness of solutions to a general third order nonlinear differential equation,using complete Lyapunov function.
Certain non-linear differential polynomials sharing a non zero polynomial
Directory of Open Access Journals (Sweden)
Majumder Sujoy
2015-10-01
functions sharing a nonzero polynomial and obtain two results which improves and generalizes the results due to L. Liu [Uniqueness of meromorphic functions and differential polynomials, Comput. Math. Appl., 56 (2008, 3236-3245.] and P. Sahoo [Uniqueness and weighted value sharing of meromorphic functions, Applied. Math. E-Notes., 11 (2011, 23-32.].
Oscillation and non-oscillation criterion for Riemann–Weber type half-linear differential equations
Directory of Open Access Journals (Sweden)
Petr Hasil
2016-08-01
Full Text Available By the combination of the modified half-linear Prüfer method and the Riccati technique, we study oscillatory properties of half-linear differential equations. Taking into account the transformation theory of half-linear equations and using some known results, we show that the analysed equations in the Riemann–Weber form with perturbations in both terms are conditionally oscillatory. Within the process, we identify the critical oscillation values of their coefficients and, consequently, we decide when the considered equations are oscillatory and when they are non-oscillatory. As a direct corollary of our main result, we solve the so-called critical case for a certain type of half-linear non-perturbed equations.
Discrete linear canonical transforms based on dilated Hermite functions.
Pei, Soo-Chang; Lai, Yun-Chiu
2011-08-01
Linear canonical transform (LCT) is very useful and powerful in signal processing and optics. In this paper, discrete LCT (DLCT) is proposed to approximate LCT by utilizing the discrete dilated Hermite functions. The Wigner distribution function is also used to investigate DLCT performances in the time-frequency domain. Compared with the existing digital computation of LCT, our proposed DLCT possess additivity and reversibility properties with no oversampling involved. In addition, the length of input/output signals will not be changed before and after the DLCT transformations, which is consistent with the time-frequency area-preserving nature of LCT; meanwhile, the proposed DLCT has very good approximation of continuous LCT.
q-analogue of summability of formal solutions of some linear q-difference-differential equations
Directory of Open Access Journals (Sweden)
Hidetoshi Tahara
2015-01-01
Full Text Available Let \\(q\\gt 1\\. The paper considers a linear \\(q\\-difference-differential equation: it is a \\(q\\-difference equation in the time variable \\(t\\, and a partial differential equation in the space variable \\(z\\. Under suitable conditions and by using \\(q\\-Borel and \\(q\\-Laplace transforms (introduced by J.-P. Ramis and C. Zhang, the authors show that if it has a formal power series solution \\(\\hat{X}(t,z\\ one can construct an actual holomorphic solution which admits \\(\\hat{X}(t,z\\ as a \\(q\\-Gevrey asymptotic expansion of order \\(1\\.
New results for exponential synchronization of linearly coupled ordinary differential systems
International Nuclear Information System (INIS)
Tong Ping; Chen Shi-Hua
2017-01-01
This paper investigates the exponential synchronization of linearly coupled ordinary differential systems. The intrinsic nonlinear dynamics may not satisfy the QUAD condition or weak-QUAD condition. First, it gives a new method to analyze the exponential synchronization of the systems. Second, two theorems and their corollaries are proposed for the local or global exponential synchronization of the coupled systems. Finally, an application to the linearly coupled Hopfield neural networks and several simulations are provided for verifying the effectiveness of the theoretical results. (paper)
Directory of Open Access Journals (Sweden)
Mervan Pašić
2016-10-01
Full Text Available We study non-monotone positive solutions of the second-order linear differential equations: $(p(tx'' + q(t x = e(t$, with positive $p(t$ and $q(t$. For the first time, some criteria as well as the existence and nonexistence of non-monotone positive solutions are proved in the framework of some properties of solutions $\\theta (t$ of the corresponding integrable linear equation: $(p(t\\theta''=e(t$. The main results are illustrated by many examples dealing with equations which allow exact non-monotone positive solutions not necessarily periodic. Finally, we pose some open questions.
Methods of measurement of integral and differential linearity distortions of spectrometry sets
International Nuclear Information System (INIS)
Fuan, Jacques; Grimont, Bernard; Marin, Roland; Richard, Jean-Pierre
1969-05-01
The objective of this document is to describe different measurement methods, and more particularly to present a software for the processing of obtained results in order to avoid interpretation by the investigator. In a first part, the authors define the parameters of integral and differential linearity, outlines their importance in measurements performed by spectrometry, and describe the use of these parameters. In the second part, they propose various methods of measurement of these linearity parameters, report experimental applications of these methods and compare the obtained results
Directory of Open Access Journals (Sweden)
M. A.P. PURCARU
2017-12-01
Full Text Available This paper aims at highlighting some aspects related to assessment as regards its use as a differentiated training strategy for Linear Algebra and Analytic and Differential Geometry courses and seminars. Thus, the following methods of continuous differentiated assessment are analyzed and exemplified: the portfolio, the role play, some interactive methods and practical examinations.
Directory of Open Access Journals (Sweden)
Domoshnitsky Alexander
2009-01-01
Full Text Available We obtain the maximum principles for the first-order neutral functional differential equation where , and are linear continuous operators, and are positive operators, is the space of continuous functions, and is the space of essentially bounded functions defined on . New tests on positivity of the Cauchy function and its derivative are proposed. Results on existence and uniqueness of solutions for various boundary value problems are obtained on the basis of the maximum principles.
Dorren, H.J.S.
1998-01-01
It is shown that the Korteweg–de Vries (KdV) equation can be transformed into an ordinary linear partial differential equation in the wave number domain. Explicit solutions of the KdV equation can be obtained by subsequently solving this linear differential equation and by applying a cascade of
Camporesi, Roberto
2016-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…
On one two-point BVP for the fourth order linear ordinary differential equation
Czech Academy of Sciences Publication Activity Database
Mukhigulashvili, Sulkhan; Manjikashvili, M.
2017-01-01
Roč. 24, č. 2 (2017), s. 265-275 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : fourth order linear ordinary differential equations * two-point boundary value problems Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0077/gmj-2016-0077.xml
Stability Analysis for Fractional-Order Linear Singular Delay Differential Systems
Directory of Open Access Journals (Sweden)
Hai Zhang
2014-01-01
Full Text Available We investigate the delay-independently asymptotic stability of fractional-order linear singular delay differential systems. Based on the algebraic approach, the sufficient conditions are presented to ensure the asymptotic stability for any delay parameter. By applying the stability criteria, one can avoid solving the roots of transcendental equations. An example is also provided to illustrate the effectiveness and applicability of the theoretical results.
On oscillations of solutions to second-order linear delay differential equations
Czech Academy of Sciences Publication Activity Database
Opluštil, Z.; Šremr, Jiří
2013-01-01
Roč. 20, č. 1 (2013), s. 65-94 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : linear second-order delay differential equation * oscillatory solution Subject RIV: BA - General Mathematics Impact factor: 0.340, year: 2013 http://www.degruyter.com/view/j/gmj.2013.20.issue-1/gmj-2013-0001/gmj-2013-0001.xml?format=INT
Frank, T D; Beek, P J
2001-08-01
Recently, Küchler and Mensch [Stochastics Stochastics Rep. 40, 23 (1992)] derived exact stationary probability densities for linear stochastic delay differential equations. This paper presents an alternative derivation of these solutions by means of the Fokker-Planck approach introduced by Guillouzic [Phys. Rev. E 59, 3970 (1999); 61, 4906 (2000)]. Applications of this approach, which is argued to have greater generality, are discussed in the context of stochastic models for population growth and tracking movements.
On oscillations of solutions to second-order linear delay differential equations
Czech Academy of Sciences Publication Activity Database
Opluštil, Z.; Šremr, Jiří
2013-01-01
Roč. 20, č. 1 (2013), s. 65-94 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : linear second-order delay differential equation * oscillatory solution Subject RIV: BA - General Mathematics Impact factor: 0.340, year: 2013 http://www.degruyter.com/view/j/gmj.2013.20.issue-1/gmj-2013-0001/gmj-2013-0001. xml ?format=INT
On one two-point BVP for the fourth order linear ordinary differential equation
Czech Academy of Sciences Publication Activity Database
Mukhigulashvili, Sulkhan; Manjikashvili, M.
2017-01-01
Roč. 24, č. 2 (2017), s. 265-275 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : fourth order linear ordinary differential equations * two-point boundary value problems Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0077/gmj-2016-0077. xml
A General Construction of Linear Differential Equations with Solutions of Prescribed Properties
Czech Academy of Sciences Publication Activity Database
Neuman, František
2004-01-01
Roč. 17, č. 1 (2004), s. 71-76 ISSN 0893-9659 R&D Projects: GA AV ČR IAA1019902; GA ČR GA201/99/0295 Institutional research plan: CEZ:AV0Z1019905 Keywords : construction of linear differential equations * prescribed qualitative properties of solutions Subject RIV: BA - General Mathematics Impact factor: 0.414, year: 2004
Multiscale functions, scale dynamics, and applications to partial differential equations
Cresson, Jacky; Pierret, Frédéric
2016-05-01
Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.
Camporesi, Roberto
2016-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The approach presented here can be used in a first course on differential equations for science and engineering majors.
International Nuclear Information System (INIS)
Jimenez, J.C.
2009-06-01
Local Linearization (LL) methods conform a class of one-step explicit integrators for ODEs derived from the following primary and common strategy: the vector field of the differential equation is locally (piecewise) approximated through a first-order Taylor expansion at each time step, thus obtaining successive linear equations that are explicitly integrated. Hereafter, the LL approach may include some additional strategies to improve that basic affine approximation. Theoretical and practical results have shown that the LL integrators have a number of convenient properties. These include arbitrary order of convergence, A-stability, linearization preserving, regularity under quite general conditions, preservation of the dynamics of the exact solution around hyperbolic equilibrium points and periodic orbits, integration of stiff and high-dimensional equations, low computational cost, and others. In this paper, a review of the LL methods and their properties is presented. (author)
Asiri, Sharefa M.; Laleg-Kirati, Taous-Meriem
2016-01-01
In this paper, modulating functions-based method is proposed for estimating space–time-dependent unknowns in one-dimensional partial differential equations. The proposed method simplifies the problem into a system of algebraic equations linear
Optimal Piecewise Linear Basis Functions in Two Dimensions
Energy Technology Data Exchange (ETDEWEB)
Brooks III, E D; Szoke, A
2009-01-26
We use a variational approach to optimize the center point coefficients associated with the piecewise linear basis functions introduced by Stone and Adams [1], for polygonal zones in two Cartesian dimensions. Our strategy provides optimal center point coefficients, as a function of the location of the center point, by minimizing the error induced when the basis function interpolation is used for the solution of the time independent diffusion equation within the polygonal zone. By using optimal center point coefficients, one expects to minimize the errors that occur when these basis functions are used to discretize diffusion equations, or transport equations in optically thick zones (where they approach the solution of the diffusion equation). Our optimal center point coefficients satisfy the requirements placed upon the basis functions for any location of the center point. We also find that the location of the center point can be optimized, but this requires numerical calculations. Curiously, the optimum center point location is independent of the values of the dependent variable on the corners only for quadrilaterals.
Filtering Non-Linear Transfer Functions on Surfaces.
Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice
2014-07-01
Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few
Higher-order automatic differentiation of mathematical functions
Charpentier, Isabelle; Dal Cappello, Claude
2015-04-01
Functions of mathematical physics such as the Bessel functions, the Chebyshev polynomials, the Gauss hypergeometric function and so forth, have practical applications in many scientific domains. On the one hand, differentiation formulas provided in reference books apply to real or complex variables. These do not account for the chain rule. On the other hand, based on the chain rule, the automatic differentiation has become a natural tool in numerical modeling. Nevertheless automatic differentiation tools do not deal with the numerous mathematical functions. This paper describes formulas and provides codes for the higher-order automatic differentiation of mathematical functions. The first method is based on Faà di Bruno's formula that generalizes the chain rule. The second one makes use of the second order differential equation they satisfy. Both methods are exemplified with the aforementioned functions.
Directory of Open Access Journals (Sweden)
V. N. Chetverikov
2014-01-01
Full Text Available Invertible linear differential operators with one independent variable are investigated. The problem of description of such operators is important, because it is connected with transformations and the classification of control systems, in particular, with the flatness problem.Each invertible linear differential operator represents a square matrix of scalar differential operators. Its product with an operator-column is an operator-column whose order does not exceed the sum of orders of initial operators. The operators-columns, the product with which leads to order fall, i.e. the order of the product is less than sum of orders of factors, are interesting for the description of invertible operators. In this paper the classification of invertible operators is based on dimensions dk,p of intersections of modules Gp and Fk for various k and p, where Gp is the module of all operators-columns of order not above p, and Fk is the module of compositions of the invertible operator with all operators-columns of order not above k. The invertible operators that have identical sets of numbers dk,p form one class.In the paper the general properties of tables of numbers dk,p for invertible operators are investigated. A correspondence between invertible operators and elementary-geometrical models which in the paper are named by d-schemes of squares is constructed. The invertible operator is ambiguously defined by its d-scheme of squares. The mathematical structure that must be set for its unique definition and an algorithm for the construction of the invertible operator are offered.In the proof of the main result, methods of the theory of chain complexes and their spectral sequences are used. In the paper all necessary concepts of this theory are formulated and the corresponding facts are proved.Results of the paper can be used for solving problems in which invertible linear differential operators are arisen. Namely, it is necessary to formulate the conditions on
Czech Academy of Sciences Publication Activity Database
Lomtatidze, Alexander; Vodstrčil, Petr
2005-01-01
Roč. 84, č. 2 (2005), s. 197-209 ISSN 0003-6811 Institutional research plan: CEZ:AV0Z10190503 Keywords : second order linear functional differential equations * nonnegative solution * two-point boundary value problem Subject RIV: BA - General Mathematics http://www.tandfonline.com/doi/full/10.1080/00036810410001724427
Czech Academy of Sciences Publication Activity Database
Drabinová, Adéla; Martinková, Patrícia
2017-01-01
Roč. 54, č. 4 (2017), s. 498-517 ISSN 0022-0655 R&D Projects: GA ČR GJ15-15856Y Institutional support: RVO:67985807 Keywords : differential item functioning * non-linear regression * logistic regression * item response theory Subject RIV: AM - Education OBOR OECD: Statistics and probability Impact factor: 0.979, year: 2016
International Nuclear Information System (INIS)
Kowalewski, A.
1982-11-01
In this paper an optimal control problem with non-differentiable cost function for distributed parameter system is solved. As an example an optimal control problem for system described by a linear partial differential of hyperbolic type with the Neuman's boundary condition is considered. By use of the Milutin-Dubovicki method, necessary and sufficient conditions of optimality with non-differentiable performance functional and constrained control are derived for Neuman's problem. (author)
Modular differential equations for torus one-point functions
International Nuclear Information System (INIS)
Gaberdiel, Matthias R; Lang, Samuel
2009-01-01
It is shown that in a rational conformal field theory every torus one-point function of a given highest weight state satisfies a modular differential equation. We derive and solve these differential equations explicitly for some Virasoro minimal models. In general, however, the resulting amplitudes do not seem to be expressible in terms of standard transcendental functions
DIF Trees: Using Classification Trees to Detect Differential Item Functioning
Vaughn, Brandon K.; Wang, Qiu
2010-01-01
A nonparametric tree classification procedure is used to detect differential item functioning for items that are dichotomously scored. Classification trees are shown to be an alternative procedure to detect differential item functioning other than the use of traditional Mantel-Haenszel and logistic regression analysis. A nonparametric…
FORCED OSCILLATIONS OF SECOND ORDER SUPER-LINEAR DIFFERENTIAL EQUATION WITH IMPULSES
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
At first,by means of Kartsatos technique,we reduce the impulsive differential equation to a second order nonlinear impulsive homogeneous equation.We find some suitable impulse functions such that all the solutions to the equation are oscillatory.Several criteria on the oscillations of solutions are given.At last,we give an example to demonstrate our results.
Wu, Jiayang; Cao, Pan; Hu, Xiaofeng; Jiang, Xinhong; Pan, Ting; Yang, Yuxing; Qiu, Ciyuan; Tremblay, Christine; Su, Yikai
2014-10-20
We propose and experimentally demonstrate an all-optical temporal differential-equation solver that can be used to solve ordinary differential equations (ODEs) characterizing general linear time-invariant (LTI) systems. The photonic device implemented by an add-drop microring resonator (MRR) with two tunable interferometric couplers is monolithically integrated on a silicon-on-insulator (SOI) wafer with a compact footprint of ~60 μm × 120 μm. By thermally tuning the phase shifts along the bus arms of the two interferometric couplers, the proposed device is capable of solving first-order ODEs with two variable coefficients. The operation principle is theoretically analyzed, and system testing of solving ODE with tunable coefficients is carried out for 10-Gb/s optical Gaussian-like pulses. The experimental results verify the effectiveness of the fabricated device as a tunable photonic ODE solver.
Analytical approach to linear fractional partial differential equations arising in fluid mechanics
International Nuclear Information System (INIS)
Momani, Shaher; Odibat, Zaid
2006-01-01
In this Letter, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving linear fractional partial differential equations arising in fluid mechanics. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these methods, the solution takes the form of a convergent series with easily computable components. The corresponding solutions of the integer order equations are found to follow as special cases of those of fractional order equations. Some numerical examples are presented to illustrate the efficiency and reliability of the two methods
Shah, A A; Xing, W W; Triantafyllidis, V
2017-04-01
In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.
Directory of Open Access Journals (Sweden)
Tess Miller
2010-07-01
Full Text Available This study illustrates the use of differential item functioning (DIF and differential step functioning (DSF analyses to detect differences in item difficulty that are related to experiences of examinees, such as their teachers' instructional practices, that are relevant to the knowledge, skill, or ability the test is intended to measure. This analysis is in contrast to the typical use of DIF or DSF to detect differences related to characteristics of examinees, such as gender, language, or cultural knowledge, that should be irrelevant. Using data from two forms of Ontario's Grade 9 Assessment of Mathematics, analyses were performed comparing groups of students defined by their teachers' instructional practices. All constructed-response items were tested for DIF using the Mantel Chi-Square, standardized Liu Agresti cumulative common log-odds ratio, and standardized Cox's noncentrality parameter. Items exhibiting moderate to large DIF were subsequently tested for DSF. In contrast to typical DIF or DSF analyses, which inform item development, these analyses have the potential to inform instructional practice.
Energy Technology Data Exchange (ETDEWEB)
Sailer, Andre Philippe
2009-04-15
The International Linear Collider (ILC) is an electron-positron-collider with a variable center-of-mass energy {radical}(2) between 200 and 500 GeV. The small bunch sizes needed to reach the design luminosity of L{sub Peak}=2.10{sup 34} cm{sup -2}s{sup -1} necessary for the physics goals of the ILC, cause the particles to radiate beamstrahlung during the bunch crossings. Beamstrahlung reduces the center-of-mass energy from its nominal value to the effective center-of-mass energy {radical}(2'). The spectrum of the effective center-of-mass energy {radical}(2') is the differential luminosity dL/d{radical}(2'), which has to be known to precisely measure particle masses through threshold scans. The differential luminosity can be measured by using Bhabha events. The real differential luminosity is simulated by the GuineaPig software. The energy spectrum of the Bhabha events is measured by the detector and compared to the energy spectrum of Monte Carlo (MC) Bhabha events with a known differential luminosity given by an approximate parameterization. The parameterization is used to assign each MC event a weight. By re-weighting the events, until the energy spectra from the real and the MC Bhabha events match, the differential luminosity can be measured. The approximate parameterization of the differential luminosity is given by the Circe parameterization introduced by T. Ohl (1997), which does not include the correlation between the particle energies due to beamstrahlung. The Circe parameterization is extended to include the correlation and better describe the differential luminosity. With this new parameterization of the differential luminosity it is possible to predict the observed production cross section of a MC toy particle with a mass of 250 GeV/c{sup 2} to a precision better than 0.2%. Using the re-weighting fit with the extended parameterization also allows the measurement of the beam energy spreads of {sigma}{sub E}=0.0014 for electrons and {sigma
International Nuclear Information System (INIS)
Sailer, Andre Philippe
2009-04-01
The International Linear Collider (ILC) is an electron-positron-collider with a variable center-of-mass energy √(2) between 200 and 500 GeV. The small bunch sizes needed to reach the design luminosity of L Peak =2.10 34 cm -2 s -1 necessary for the physics goals of the ILC, cause the particles to radiate beamstrahlung during the bunch crossings. Beamstrahlung reduces the center-of-mass energy from its nominal value to the effective center-of-mass energy √(2'). The spectrum of the effective center-of-mass energy √(2') is the differential luminosity dL/d√(2'), which has to be known to precisely measure particle masses through threshold scans. The differential luminosity can be measured by using Bhabha events. The real differential luminosity is simulated by the GuineaPig software. The energy spectrum of the Bhabha events is measured by the detector and compared to the energy spectrum of Monte Carlo (MC) Bhabha events with a known differential luminosity given by an approximate parameterization. The parameterization is used to assign each MC event a weight. By re-weighting the events, until the energy spectra from the real and the MC Bhabha events match, the differential luminosity can be measured. The approximate parameterization of the differential luminosity is given by the Circe parameterization introduced by T. Ohl (1997), which does not include the correlation between the particle energies due to beamstrahlung. The Circe parameterization is extended to include the correlation and better describe the differential luminosity. With this new parameterization of the differential luminosity it is possible to predict the observed production cross section of a MC toy particle with a mass of 250 GeV/c 2 to a precision better than 0.2%. Using the re-weighting fit with the extended parameterization also allows the measurement of the beam energy spreads of σ E =0.0014 for electrons and σ E = 0.0010 for positrons with a precision of a few percent. The total error
Reproducing kernel method with Taylor expansion for linear Volterra integro-differential equations
Directory of Open Access Journals (Sweden)
Azizallah Alvandi
2017-06-01
Full Text Available This research aims of the present a new and single algorithm for linear integro-differential equations (LIDE. To apply the reproducing Hilbert kernel method, there is made an equivalent transformation by using Taylor series for solving LIDEs. Shown in series form is the analytical solution in the reproducing kernel space and the approximate solution $ u_{N} $ is constructed by truncating the series to $ N $ terms. It is easy to prove the convergence of $ u_{N} $ to the analytical solution. The numerical solutions from the proposed method indicate that this approach can be implemented easily which shows attractive features.
International Nuclear Information System (INIS)
Datta, Dhurjati Prasad; Bose, Manoj Kumar
2004-01-01
We present a new one parameter family of second derivative discontinuous solutions to the simplest scale invariant linear ordinary differential equation. We also point out how the construction could be extended to generate families of higher derivative discontinuous solutions as well. The discontinuity can occur only for a subset of even order derivatives, viz., 2nd, 4th, 8th, 16th,.... The solutions are shown to break the discrete parity (reflection) symmetry of the underlying equation. These results are expected to gain significance in the contemporary search of a new dynamical principle for understanding complex phenomena in nature
"Real-Time Optical Laboratory Linear Algebra Solution Of Partial Differential Equations"
Casasent, David; Jackson, James
1986-03-01
A Space Integrating (SI) Optical Linear Algebra Processor (OLAP) employing space and frequency-multiplexing, new partitioning and data flow, and achieving high accuracy performance with a non base-2 number system is described. Laboratory data on the performance of this system and the solution of parabolic Partial Differential Equations (PDEs) is provided. A multi-processor OLAP system is also described for the first time. It use in the solution of multiple banded matrices that frequently arise is then discussed. The utility and flexibility of this processor compared to digital systolic architectures should be apparent.
Estimation of Multiple Point Sources for Linear Fractional Order Systems Using Modulating Functions
Belkhatir, Zehor
2017-06-28
This paper proposes an estimation algorithm for the characterization of multiple point inputs for linear fractional order systems. First, using polynomial modulating functions method and a suitable change of variables the problem of estimating the locations and the amplitudes of a multi-pointwise input is decoupled into two algebraic systems of equations. The first system is nonlinear and solves for the time locations iteratively, whereas the second system is linear and solves for the input’s amplitudes. Second, closed form formulas for both the time location and the amplitude are provided in the particular case of single point input. Finally, numerical examples are given to illustrate the performance of the proposed technique in both noise-free and noisy cases. The joint estimation of pointwise input and fractional differentiation orders is also presented. Furthermore, a discussion on the performance of the proposed algorithm is provided.
Functional Determinants for Radially Separable Partial Differential Operators
Directory of Open Access Journals (Sweden)
G. V. Dunne
2007-01-01
Full Text Available Functional determinants of differential operators play a prominent role in many fields of theoretical and mathematical physics, ranging from condensed matter physics, to atomic, molecular and particle physics. They are, however, difficult to compute reliably in non-trivial cases. In one dimensional problems (i.e. functional determinants of ordinary differential operators, a classic result of Gel’fand and Yaglom greatly simplifies the computation of functional determinants. Here I report some recent progress in extending this approach to higher dimensions (i.e., functional determinants of partial differential operators, with applications in quantum field theory.
Zoladz, Phillip R.; Diamond, David M.
2008-01-01
Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as ...
NP-Hardness of optimizing the sum of Rational Linear Functions over an Asymptotic-Linear-Program
Chermakani, Deepak Ponvel
2012-01-01
We convert, within polynomial-time and sequential processing, an NP-Complete Problem into a real-variable problem of minimizing a sum of Rational Linear Functions constrained by an Asymptotic-Linear-Program. The coefficients and constants in the real-variable problem are 0, 1, -1, K, or -K, where K is the time parameter that tends to positive infinity. The number of variables, constraints, and rational linear functions in the objective, of the real-variable problem is bounded by a polynomial ...
Stability of Vector Functional Differential Equations: A Survey | Gil ...
African Journals Online (AJOL)
This paper is a survey of the recent results of the author on the stability of linear and nonlinear vector differential equations with delay. Explicit conditions for the exponential and absolute stabilities are derived. Moreover, solution estimates for the considered equations are established. They provide the bounds for the regions ...
Sanz, Luis; Alonso, Juan Antonio
2017-12-01
In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of 'global' variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.
Deboeck, Pascal R.; Boker, Steven M.; Bergeman, C. S.
2008-01-01
Among the many methods available for modeling intraindividual time series, differential equation modeling has several advantages that make it promising for applications to psychological data. One interesting differential equation model is that of the damped linear oscillator (DLO), which can be used to model variables that have a tendency to…
The solutions of second-order linear differential systems with constant delays
Diblík, Josef; Svoboda, Zdeněk
2017-07-01
The representations of solutions to initial problems for non-homogenous n-dimensional second-order differential equations with delays x″(t )-2 A x'(t -τ )+(A2+B2)x (t -2 τ )=f (t ) by means of special matrix delayed functions are derived. Square matrices A and B are commuting and τ > 0. Derived representations use what is called a delayed exponential of a matrix and results generalize some of known results previously derived for homogenous systems.
Human Pluripotent Stem Cell Differentiation into Functional Epicardial Progenitor Cells
Guadix, Juan Antonio; Orlova, Valeria V.; Giacomelli, Elisa; Bellin, Milena; Ribeiro, Marcelo C.; Mummery, Christine L.; Pérez-Pomares, José M.; Passier, Robert
2017-01-01
Human pluripotent stem cells (hPSCs) are widely used to study cardiovascular cell differentiation and function. Here, we induced differentiation of hPSCs (both embryonic and induced) to proepicardial/epicardial progenitor cells that cover the heart during development. Addition of retinoic acid (RA)
Weak theorems on differential inequalities for two-dimensional functional differential systems
Czech Academy of Sciences Publication Activity Database
Šremr, Jiří
2008-01-01
Roč. 65, č. 2 (2008), s. 157-189 ISSN 0032-5155 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : two-dimensional functional differential system * weak theorem on differential inequalities * Volterra operator Subject RIV: BA - General Mathematics
Polynomial chaos functions and stochastic differential equations
International Nuclear Information System (INIS)
Williams, M.M.R.
2006-01-01
The Karhunen-Loeve procedure and the associated polynomial chaos expansion have been employed to solve a simple first order stochastic differential equation which is typical of transport problems. Because the equation has an analytical solution, it provides a useful test of the efficacy of polynomial chaos. We find that the convergence is very rapid in some cases but that the increased complexity associated with many random variables can lead to very long computational times. The work is illustrated by exact and approximate solutions for the mean, variance and the probability distribution itself. The usefulness of a white noise approximation is also assessed. Extensive numerical results are given which highlight the weaknesses and strengths of polynomial chaos. The general conclusion is that the method is promising but requires further detailed study by application to a practical problem in transport theory
Linear Pursuit Differential Game under Phase Constraint on the State of Evader
Directory of Open Access Journals (Sweden)
Askar Rakhmanov
2016-01-01
Full Text Available We consider a linear pursuit differential game of one pursuer and one evader. Controls of the pursuer and evader are subjected to integral and geometric constraints, respectively. In addition, phase constraint is imposed on the state of evader, whereas pursuer moves throughout the space. We say that pursuit is completed, if inclusion y(t1-x(t1∈M is satisfied at some t1>0, where x(t and y(t are states of pursuer and evader, respectively, and M is terminal set. Conditions of completion of pursuit in the game from all initial points of players are obtained. Strategy of the pursuer is constructed so that the phase vector of the pursuer first is brought to a given set, and then pursuit is completed.
Lawson, Daniel J; Holtrop, Grietje; Flint, Harry
2011-07-01
Process models specified by non-linear dynamic differential equations contain many parameters, which often must be inferred from a limited amount of data. We discuss a hierarchical Bayesian approach combining data from multiple related experiments in a meaningful way, which permits more powerful inference than treating each experiment as independent. The approach is illustrated with a simulation study and example data from experiments replicating the aspects of the human gut microbial ecosystem. A predictive model is obtained that contains prediction uncertainty caused by uncertainty in the parameters, and we extend the model to capture situations of interest that cannot easily be studied experimentally. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy Technology Data Exchange (ETDEWEB)
Tariq, Hareem E-mail: htariq@ligo.caltech.edu; Takamori, Akiteru; Vetrano, Flavio; Wang Chenyang; Bertolini, Alessandro; Calamai, Giovanni; DeSalvo, Riccardo; Gennai, Alberto; Holloway, Lee; Losurdo, Giovanni; Marka, Szabolcs; Mazzoni, Massimo; Paoletti, Federico; Passuello, Diego; Sannibale, Virginio; Stanga, Ruggero
2002-08-21
Low-power, ultra-high-vacuum compatible, non-contacting position sensors with nanometer resolution and centimeter dynamic range have been developed, built and tested. They have been designed at Virgo as the sensors for low-frequency modal damping of Seismic Attenuation System chains in Gravitational Wave interferometers and sub-micron absolute mirror positioning. One type of these linear variable differential transformers (LVDTs) has been designed to be also insensitive to transversal displacement thus allowing 3D movement of the sensor head while still precisely reading its position along the sensitivity axis. A second LVDT geometry has been designed to measure the displacement of the vertical seismic attenuation filters from their nominal position. Unlike the commercial LVDTs, mostly based on magnetic cores, the LVDTs described here exert no force on the measured structure.
Linear variable differential transformer and its uses for in-core fuel rod behavior measurements
International Nuclear Information System (INIS)
Wolf, J.R.
1979-01-01
The linear variable differential transformer (LVDT) is an electromechanical transducer which produces an ac voltage proportional to the displacement of a movable ferromagnetic core. When the core is connected to the cladding of a nuclear fuel rod, it is capable of producing extremely accurate measurements of fuel rod elongation caused by thermal expansion. The LVDT is used in the Thermal Fuels Behavior Program at the U.S. Idaho National Engineering Laboratory (INEL) for measurements of nuclear fuel rod elongation and as an indication of critical heat flux and the occurrence of departure from nucleate boiling. These types of measurements provide important information about the behavior of nuclear fuel rods under normal and abnormal operating conditions. The objective of the paper is to provide a complete account of recent advances made in LVDT design and experimental data from in-core nuclear reactor tests which use the LVDT
Murphy, K. A.
1990-01-01
A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.
Fast solution of elliptic partial differential equations using linear combinations of plane waves.
Pérez-Jordá, José M
2016-02-01
Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.
Glass, Edmund R; Dozmorov, Mikhail G
2016-10-06
The goal of many human disease-oriented studies is to detect molecular mechanisms different between healthy controls and patients. Yet, commonly used gene expression measurements from blood samples suffer from variability of cell composition. This variability hinders the detection of differentially expressed genes and is often ignored. Combined with cell counts, heterogeneous gene expression may provide deeper insights into the gene expression differences on the cell type-specific level. Published computational methods use linear regression to estimate cell type-specific differential expression, and a global cutoff to judge significance, such as False Discovery Rate (FDR). Yet, they do not consider many artifacts hidden in high-dimensional gene expression data that may negatively affect linear regression. In this paper we quantify the parameter space affecting the performance of linear regression (sensitivity of cell type-specific differential expression detection) on a per-gene basis. We evaluated the effect of sample sizes, cell type-specific proportion variability, and mean squared error on sensitivity of cell type-specific differential expression detection using linear regression. Each parameter affected variability of cell type-specific expression estimates and, subsequently, the sensitivity of differential expression detection. We provide the R package, LRCDE, which performs linear regression-based cell type-specific differential expression (deconvolution) detection on a gene-by-gene basis. Accounting for variability around cell type-specific gene expression estimates, it computes per-gene t-statistics of differential detection, p-values, t-statistic-based sensitivity, group-specific mean squared error, and several gene-specific diagnostic metrics. The sensitivity of linear regression-based cell type-specific differential expression detection differed for each gene as a function of mean squared error, per group sample sizes, and variability of the proportions
Differentiated thyroid carcinoma with functional autonomy.
Yaturu, Subhashini; Fowler, Marjorie R
2002-01-01
To present a case of papillary carcinoma in an autonomously hyperfunctioning thyroid nodule. We chronicle the clinical and laboratory findings in a patient with a painless neck mass, with a particular focus on the pathologic findings after surgical removal of the right thyroid lobe. A 39-year-old woman had an enlarging nodule of the right thyroid lobe. Results of thyroid function tests suggested subclinical hyperthyroidism. Two months later, the patient complained of increasing swelling in the neck (but still had no symptoms suggestive of hyperthyroidism). Thus, resection of the right thyroid lobe was performed. Pathologic analysis disclosed low-grade papillary thyroid carcinoma within the nodule, with a small rim of compressed inactive-appearing thyroid tissue surrounding the nodule. Subsequently, she underwent total thyroidectomy and follow-up care for thyroid carcinoma. Although solitary hyperfunctioning nodules of the thyroid gland are usually considered benign, the current case suggests that the diagnosis of autonomous thyroid nodules does not preclude thyroid carcinoma in a functioning nodule.
Operational method of solution of linear non-integer ordinary and partial differential equations.
Zhukovsky, K V
2016-01-01
We propose operational method with recourse to generalized forms of orthogonal polynomials for solution of a variety of differential equations of mathematical physics. Operational definitions of generalized families of orthogonal polynomials are used in this context. Integral transforms and the operational exponent together with some special functions are also employed in the solutions. The examples of solution of physical problems, related to such problems as the heat propagation in various models, evolutional processes, Black-Scholes-like equations etc. are demonstrated by the operational technique.
Growth of solutions of an $n$-th order linear differential equation with entire coefficients
Bela\\"{i}di, Benharrat; Hamouda, Saada
2002-01-01
We consider a differential equation $f^{\\left( n\\right) }+A_{n-1}\\left( z\\right) f^{\\left( n-1\\right) }+...+A_{1}\\left( z\\right) f^{^{/}}+A_{0}\\left( z\\right) f=0,$ where $A_{0}\\left( z\\right) ,...,A_{n-1}\\left( z\\right) $ are entire functions with $A_{0}\\left( z\\right) \\hbox{$/\\hskip -11pt\\equiv$}0$. Suppose that there exist a positive number $\\mu ,$\\ and a sequence $\\left( z_{j}\\right) _{j\\in N}$ with $\\stackunder{j\\rightarrow +\\infty }{\\lim }z_{j}=\\infty ,$ \\ and also ...
Deterministic Differential Properties of the Compression Function of BMW
DEFF Research Database (Denmark)
Guo, Jian; Thomsen, Søren Steffen
2011-01-01
In this paper, we give some determinstic differential properties for the compression function of SHA-3 candidate Blue Midnight Wish (tweaked version for round 2). The computational complexity is about 20 compression function calls. This applies to security parameters 0/16, 1/15, and 2/14. The eff...
Zia, Haider
2017-06-01
This paper describes an updated exponential Fourier based split-step method that can be applied to a greater class of partial differential equations than previous methods would allow. These equations arise in physics and engineering, a notable example being the generalized derivative non-linear Schrödinger equation that arises in non-linear optics with self-steepening terms. These differential equations feature terms that were previously inaccessible to model accurately with low computational resources. The new method maintains a 3rd order error even with these additional terms and models the equation in all three spatial dimensions and time. The class of non-linear differential equations that this method applies to is shown. The method is fully derived and implementation of the method in the split-step architecture is shown. This paper lays the mathematical ground work for an upcoming paper employing this method in white-light generation simulations in bulk material.
Semigroup Approach to Semilinear Partial Functional Differential Equations with Infinite Delay
Directory of Open Access Journals (Sweden)
Hassane Bouzahir
2007-02-01
Full Text Available We describe a semigroup of abstract semilinear functional differential equations with infinite delay by the use of the Crandall Liggett theorem. We suppose that the linear part is not necessarily densely defined but satisfies the resolvent estimates of the Hille-Yosida theorem. We clarify the properties of the phase space ensuring equivalence between the equation under investigation and the nonlinear semigroup.
Marzban, Hamid Reza
2018-05-01
In this paper, we are concerned with the parameter identification of linear time-invariant systems containing multiple delays. The approach is based upon a hybrid of block-pulse functions and Legendre's polynomials. The convergence of the proposed procedure is established and an upper error bound with respect to the L2-norm associated with the hybrid functions is derived. The problem under consideration is first transformed into a system of algebraic equations. The least squares technique is then employed for identification of the desired parameters. Several multi-delay systems of varying complexity are investigated to evaluate the performance and capability of the proposed approximation method. It is shown that the proposed approach is also applicable to a class of nonlinear multi-delay systems. It is demonstrated that the suggested procedure provides accurate results for the desired parameters.
A novel method to solve functional differential equations
International Nuclear Information System (INIS)
Tapia, V.
1990-01-01
A method to solve differential equations containing the variational operator as the derivation operation is presented. They are called variational differential equations (VDE). The solution to a VDE should be a function containing the derivatives, with respect to the base space coordinates, of the fields up to a generic order s: a s-th-order function. The variational operator doubles the order of the function on which it acts. Therefore, in order to make compatible the orders of the different terms appearing in a VDE, the solution should be a function containing the derivatives of the fields at all orders. But this takes us again back to the functional methods. In order to avoid this, one must restrict the considerations, in the case of second-order VDEs, to the space of s-th-order functions on which the variational operator acts transitively. These functions have been characterized for a one-dimensional base space for the first- and second-order cases. These functions turn out to be polynomial in the highest-order derivatives of the fields with functions of the lower-order derivatives as coefficients. Then VDEs reduce to a system of coupled partial differential equations for the coefficients above mentioned. The importance of the method lies on the fact that the solutions to VDEs are in a one-to-one correspondence with the solutions of functional differential equations. The previous method finds direct applications in quantum field theory, where the Schroedinger equation plays a central role. Since the Schroedinger equation is reduced to a system of coupled partial differential equations, this provides a nonperturbative scheme for quantum field theory. As an example, the massless scalar field is considered
Calculation of the exponential function of linear idempotent operators
International Nuclear Information System (INIS)
Chavoya-Aceves, O.; Luna, H.M.
1989-01-01
We give a method to calculate the exponential EXP[A r ] where A is a linear operator which satisfies the reaction A n =I, n is an integer and I is the identity operator. The method is generalised to operators such that A n +1=A and is applied to obtain some Lorentz transformations which generalise the notion of 'boost'. (Author)
Simultaneous Optimization of Decisions Using a Linear Utility Function.
Vos, Hans J.
1990-01-01
An approach is presented to simultaneously optimize decision rules for combinations of elementary decisions through a framework derived from Bayesian decision theory. The developed linear utility model for selection-mastery decisions was applied to a sample of 43 first year medical students to illustrate the procedure. (SLD)
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.
EXPALS, Least Square Fit of Linear Combination of Exponential Decay Function
International Nuclear Information System (INIS)
Douglas Gardner, C.
1980-01-01
1 - Description of problem or function: This program fits by least squares a function which is a linear combination of real exponential decay functions. The function is y(k) = summation over j of a(j) * exp(-lambda(j) * k). Values of the independent variable (k) and the dependent variable y(k) are specified as input data. Weights may be specified as input information or set by the program (w(k) = 1/y(k)). 2 - Method of solution: The Prony-Householder iteration method is used. For unequally-spaced data, a number of interpolation options are provided. This revision includes an option to call a differential correction subroutine REFINE to improve the approximation to unequally-spaced data when equal-interval interpolation is faulty. If convergence is achieved, the probable errors in the computed parameters are calculated also. 3 - Restrictions on the complexity of the problem: Generally, it is desirable to have at least 10n observations where n equals the number of terms and to input k+n significant figures if k significant figures are expected
International Nuclear Information System (INIS)
Abdel-Halim Hassan, I.H.
2008-01-01
In this paper, we will compare the differential transformation method DTM and Adomian decomposition method ADM to solve partial differential equations (PDEs). The definition and operations of differential transform method was introduced by Zhou [Zhou JK. Differential transformation and its application for electrical circuits. Wuuhahn, China: Huarjung University Press; 1986 [in Chinese
Global dynamics for switching systems and their extensions by linear differential equations
Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin
2018-03-01
Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.
Basic design of radiation-resistant LVDTs: Linear Variable Differential Transformer
Energy Technology Data Exchange (ETDEWEB)
Sohn, J. M.; Park, S. J.; Kang, Y. H. (and others)
2008-02-15
A LVDT(Linear Variable Differential Transformer) for measuring the pressure level was used to measure the pressure of a nuclear fuel rod during the neutron irradiation test in a research reactor. A LVDT for measuring the elongation was also used to measure the elongation of nuclear fuels, and the creep and fatigue of materials during a neutron irradiation test in a research reactor. In this report, the basic design of two radiation-resistant LVDTs for measuring the pressure level and elongation are described. These LVDTs are used a under radiation environment such as a research reactor. In the basic design step, we analyzed the domestic and foreign technical status for radiation-resistant LVDTs, made part and assembly drawings and established simple procedures for their assembling. Only a few companies in the world can produce radiation-resistant LVDTs. Not only these are extremely expensive, but the prices are continuously rising. Also, it takes a long time to procure a LVDT, as it can only be bought about by an order-production. The localization of radiation-resistant LVDTs is necessary in order to provide them quickly and at a low cost. These radiation-resistant LVDTs will be used at neutron irradiation devices such as instrumented fuel capsules, special purpose capsules and a fuel test loop in research reactors. We expect that the use of neutron irradiation tests will be revitalized by the localization of radiation-resistant LVDTs.
Global dynamics for switching systems and their extensions by linear differential equations.
Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin
2018-03-15
Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.
Diet models with linear goal programming: impact of achievement functions.
Gerdessen, J C; de Vries, J H M
2015-11-01
Diet models based on goal programming (GP) are valuable tools in designing diets that comply with nutritional, palatability and cost constraints. Results derived from GP models are usually very sensitive to the type of achievement function that is chosen.This paper aims to provide a methodological insight into several achievement functions. It describes the extended GP (EGP) achievement function, which enables the decision maker to use either a MinSum achievement function (which minimizes the sum of the unwanted deviations) or a MinMax achievement function (which minimizes the largest unwanted deviation), or a compromise between both. An additional advantage of EGP models is that from one set of data and weights multiple solutions can be obtained. We use small numerical examples to illustrate the 'mechanics' of achievement functions. Then, the EGP achievement function is demonstrated on a diet problem with 144 foods, 19 nutrients and several types of palatability constraints, in which the nutritional constraints are modeled with fuzzy sets. Choice of achievement function affects the results of diet models. MinSum achievement functions can give rise to solutions that are sensitive to weight changes, and that pile all unwanted deviations on a limited number of nutritional constraints. MinMax achievement functions spread the unwanted deviations as evenly as possible, but may create many (small) deviations. EGP comprises both types of achievement functions, as well as compromises between them. It can thus, from one data set, find a range of solutions with various properties.
Zoladz, Phillip R; Diamond, David M
2008-10-16
Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as well as the excitatory effects of several neuromodulators, including corticosteroids, norepinephrine, corticotropin-releasing hormone, acetylcholine and dopamine. We propose that this rapid activation of the amygdala-hippocampus brain memory system results in a linear dose-response relation between emotional strength and memory formation. More prolonged stress, however, leads to an inhibition of hippocampal function, which can be attributed to compensatory cellular responses that protect hippocampal neurons from excitotoxicity. This inhibition of hippocampal functioning in response to prolonged stress is potentially relevant to the well-described curvilinear dose-response relationship between arousal and memory. Our emphasis on the temporal features of stress-brain interactions addresses how stress can activate, as well as impair, hippocampal functioning to produce a hormetic relationship between stress and learning.
An inverse method for non linear ablative thermics with experimentation of automatic differentiation
Energy Technology Data Exchange (ETDEWEB)
Alestra, S [Simulation Information Technology and Systems Engineering, EADS IW Toulouse (France); Collinet, J [Re-entry Systems and Technologies, EADS ASTRIUM ST, Les Mureaux (France); Dubois, F [Professor of Applied Mathematics, Conservatoire National des Arts et Metiers Paris (France)], E-mail: stephane.alestra@eads.net, E-mail: jean.collinet@astrium.eads.net, E-mail: fdubois@cnam.fr
2008-11-01
Thermal Protection System is a key element for atmospheric re-entry missions of aerospace vehicles. The high level of heat fluxes encountered in such missions has a direct effect on mass balance of the heat shield. Consequently, the identification of heat fluxes is of great industrial interest but is in flight only available by indirect methods based on temperature measurements. This paper is concerned with inverse analyses of highly evolutive heat fluxes. An inverse problem is used to estimate transient surface heat fluxes (convection coefficient), for degradable thermal material (ablation and pyrolysis), by using time domain temperature measurements on thermal protection. The inverse problem is formulated as a minimization problem involving an objective functional, through an optimization loop. An optimal control formulation (Lagrangian, adjoint and gradient steepest descent method combined with quasi-Newton method computations) is then developed and applied, using Monopyro, a transient one-dimensional thermal model with one moving boundary (ablative surface) that has been developed since many years by ASTRIUM-ST. To compute numerically the adjoint and gradient quantities, for the inverse problem in heat convection coefficient, we have used both an analytical manual differentiation and an Automatic Differentiation (AD) engine tool, Tapenade, developed at INRIA Sophia-Antipolis by the TROPICS team. Several validation test cases, using synthetic temperature measurements are carried out, by applying the results of the inverse method with minimization algorithm. Accurate results of identification on high fluxes test cases, and good agreement for temperatures restitutions, are obtained, without and with ablation and pyrolysis, using bad fluxes initial guesses. First encouraging results with an automatic differentiation procedure are also presented in this paper.
Fuzzy optimization of primal-dual pair using piecewise linear membership functions
Directory of Open Access Journals (Sweden)
Pandey D.
2012-01-01
Full Text Available Present paper improves the model of Bector and Chandra [Fuzzy Sets and Systems, 125 (2002 317-325] on duality in fuzzy linear programming by using non-linear membership functions. Numerical problem discussed by these authors has also been worked out through our non-linear model to demonstrate improved optimality of the results.
Directory of Open Access Journals (Sweden)
Yunfeng Wu
2014-01-01
Full Text Available This paper presents a novel adaptive linear and normalized combination (ALNC method that can be used to combine the component radial basis function networks (RBFNs to implement better function approximation and regression tasks. The optimization of the fusion weights is obtained by solving a constrained quadratic programming problem. According to the instantaneous errors generated by the component RBFNs, the ALNC is able to perform the selective ensemble of multiple leaners by adaptively adjusting the fusion weights from one instance to another. The results of the experiments on eight synthetic function approximation and six benchmark regression data sets show that the ALNC method can effectively help the ensemble system achieve a higher accuracy (measured in terms of mean-squared error and the better fidelity (characterized by normalized correlation coefficient of approximation, in relation to the popular simple average, weighted average, and the Bagging methods.
Human Pluripotent Stem Cell Differentiation into Functional Epicardial Progenitor Cells
Directory of Open Access Journals (Sweden)
Juan Antonio Guadix
2017-12-01
Full Text Available Summary: Human pluripotent stem cells (hPSCs are widely used to study cardiovascular cell differentiation and function. Here, we induced differentiation of hPSCs (both embryonic and induced to proepicardial/epicardial progenitor cells that cover the heart during development. Addition of retinoic acid (RA and bone morphogenetic protein 4 (BMP4 promoted expression of the mesodermal marker PDGFRÎ±, upregulated characteristic (proepicardial progenitor cell genes, and downregulated transcription of myocardial genes. We confirmed the (proepicardial-like properties of these cells using inÂ vitro co-culture assays and in ovo grafting of hPSC-epicardial cells into chick embryos. Our data show that RAÂ + BMP4-treated hPSCs differentiate into (proepicardial-like cells displaying functional properties (adhesion and spreading over the myocardium of their inÂ vivo counterpart. The results extend evidence that hPSCs are an excellent model to study (proepicardial differentiation into cardiovascular cells in human development and evaluate their potential for cardiac regeneration. : The authors have shown that hPSCs can be instructed inÂ vitro to differentiate into a specific cardiac embryonic progenitor cell population called the proepicardium. Proepicardial cells are required for normal formation of the heart during development and might contribute to the development of cell-based therapies for heart repair. Keywords: human pluripotent stem cells, proepicardium, progenitor cells, cardiovascular, differentiation
Abarbanel, Saul; Gottlieb, David; Carpenter, Mark H.
1994-01-01
It has been previously shown that the temporal integration of hyperbolic partial differential equations (PDE's) may, because of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error in the linear case has been established previously. In the present paper we consider hyperbolic (PDE's) (linear and non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.
Pharmacological Bypass of Cockayne Syndrome B Function in Neuronal Differentiation
Directory of Open Access Journals (Sweden)
Yuming Wang
2016-03-01
Full Text Available Cockayne syndrome (CS is a severe neurodevelopmental disorder characterized by growth abnormalities, premature aging, and photosensitivity. Mutation of Cockayne syndrome B (CSB affects neuronal gene expression and differentiation, so we attempted to bypass its function by expressing downstream target genes. Intriguingly, ectopic expression of Synaptotagmin 9 (SYT9, a key component of the machinery controlling neurotrophin release, bypasses the need for CSB in neuritogenesis. Importantly, brain-derived neurotrophic factor (BDNF, a neurotrophin implicated in neuronal differentiation and synaptic modulation, and pharmacological mimics such as 7,8-dihydroxyflavone and amitriptyline can compensate for CSB deficiency in cell models of neuronal differentiation as well. SYT9 and BDNF are downregulated in CS patient brain tissue, further indicating that sub-optimal neurotrophin signaling underlies neurological defects in CS. In addition to shedding light on cellular mechanisms underlying CS and pointing to future avenues for pharmacological intervention, these data suggest an important role for SYT9 in neuronal differentiation.
Effective quadrature formula in solving linear integro-differential equations of order two
Eshkuvatov, Z. K.; Kammuji, M.; Long, N. M. A. Nik; Yunus, Arif A. M.
2017-08-01
In this note, we solve general form of Fredholm-Volterra integro-differential equations (IDEs) of order 2 with boundary condition approximately and show that proposed method is effective and reliable. Initially, IDEs is reduced into integral equation of the third kind by using standard integration techniques and identity between multiple and single integrals then truncated Legendre series are used to estimate the unknown function. For the kernel integrals, we have applied Gauss-Legendre quadrature formula and collocation points are chosen as the roots of the Legendre polynomials. Finally, reduce the integral equations of the third kind into the system of algebraic equations and Gaussian elimination method is applied to get approximate solutions. Numerical examples and comparisons with other methods reveal that the proposed method is very effective and dominated others in many cases. General theory of existence of the solution is also discussed.
Oscillation of two-dimensional linear second-order differential systems
International Nuclear Information System (INIS)
Kwong, M.K.; Kaper, H.G.
1985-01-01
This article is concerned with the oscillatory behavior at infinity of the solution y: [a, ∞) → R 2 of a system of two second-order differential equations, y''(t) + Q(t) y(t) = 0, t epsilon[a, ∞); Q is a continuous matrix-valued function on [a, ∞) whose values are real symmetric matrices of order 2. It is shown that the solution is oscillatory at infinity if the largest eigenvalue of the matrix integral/sub a//sup t/ Q(s) ds tends to infinity as t → ∞. This proves a conjecture of D. Hinton and R.T. Lewis for the two-dimensional case. Furthermore, it is shown that considerably weaker forms of the condition still suffice for oscillatory behavior at infinity. 7 references
Linear supermultiplets and non-holomorphic gauge coupling functions
International Nuclear Information System (INIS)
Binetruy, P.; Grimm, R.; Girardi, G.
1991-04-01
The general couplings of linear multiplets, including Chern-Simons forms, to chiral matter as well as to the standard supergravity-matter system are constructed. Insisting on a canonically normalised Einstein term in particular the appearance of non-holomorphic gauge couplings are discussed and duality transformations in full generality are performed. The implications of these structures for the effective description of sigma model anomalies are presented with and without coupling to supergravity, following recent proposals of Derendinger, Ferrara, Kounnas and Zwirner and of Cardoso and Ovrut. (author) 14 refs
International Nuclear Information System (INIS)
Bytev, Vladimir V.; Kniehl, Bernd A.
2016-12-01
We present a further extension of the HYPERDIRE project, which is devoted to the creation of a set of Mathematica-based program packages for manipulations with Horn-type hypergeometric functions on the basis of differential equations. Specifically, we present the implementation of the differential reduction for the Lauricella function F C of three variables.
Energy Technology Data Exchange (ETDEWEB)
Bytev, Vladimir V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Joint Institute for Nuclear Research, Dubna (Russian Federation); Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2016-12-15
We present a further extension of the HYPERDIRE project, which is devoted to the creation of a set of Mathematica-based program packages for manipulations with Horn-type hypergeometric functions on the basis of differential equations. Specifically, we present the implementation of the differential reduction for the Lauricella function F{sub C} of three variables.
International Nuclear Information System (INIS)
Phan Thanh An; Phan Le Na; Ngo Quoc Chung
2004-05-01
We describe a practical implementation for finding parametric domain for asymptotic stability with probability one of zero solution of linear Ito stochastic differential equations based on Korenevskij and Mitropolskij's sufficient condition and our sufficient conditions. Numerical results show that all of these sufficient conditions are crucial in the implementation. (author)
Czech Academy of Sciences Publication Activity Database
Kiguradze, I.; Šremr, Jiří
2011-01-01
Roč. 74, č. 17 (2011), s. 6537-6552 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear differential system * non-local boundary value problem * solvability Subject RIV: BA - General Mathematics Impact factor: 1.536, year: 2011 http://www.sciencedirect.com/science/article/pii/S0362546X11004573
Musthofa, M.W.; Salmah, S.; Engwerda, Jacob; Suparwanto, A.
This paper studies the robust optimal control problem for descriptor systems. We applied differential game theory to solve the disturbance attenuation problem. The robust control problem was converted into a reduced ordinary zero-sum game. Within a linear quadratic setting, we solved the problem for
Quantum tests for the linearity and permutation invariance of Boolean functions
Energy Technology Data Exchange (ETDEWEB)
Hillery, Mark [Department of Physics, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10021 (United States); Andersson, Erika [SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)
2011-12-15
The goal in function property testing is to determine whether a black-box Boolean function has a certain property or is {epsilon}-far from having that property. The performance of the algorithm is judged by how many calls need to be made to the black box in order to determine, with high probability, which of the two alternatives is the case. Here we present two quantum algorithms, the first to determine whether the function is linear and the second to determine whether it is symmetric (invariant under permutations of the arguments). Both require order {epsilon}{sup -2/3} calls to the oracle, which is better than known classical algorithms. In addition, in the case of linearity testing, if the function is linear, the quantum algorithm identifies which linear function it is. The linearity test combines the Bernstein-Vazirani algorithm and amplitude amplification, while the test to determine whether a function is symmetric uses projective measurements and amplitude amplification.
Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations
Nakamura, Gen; Vashisth, Manmohan
2017-01-01
In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...
Early development of executive functions: a differential study
Directory of Open Access Journals (Sweden)
Sylvia Sastre-Riba
2015-05-01
Full Text Available The ontogeny of executive functions is essential in explaining differential and normative developmental trends. Executive functions must be studied from an early age given their consequential effects on mental flexibility, monitoring information, planning, and cognitive control. We propose a differential study in alternative developmental courses through observing typical babies, Down syndrome babies, and babies with risk-factors at birth (due to low weight or to congenital hypothyroidism. Applymg Systematic Observational Methodology, spontaneous babies' activity was registered. The results indicated that: a Typical babies showed better shifting and action flexibility in order to obtain a goal, thus better results; b Among the higher risk-babies, the lower efficacy in executive functioning was observed in underweight babies. Those with hypothyroidism were more in line with the typical babies; c Underweight babies showed a good level of combining actions but they obtained inferior results; d Down syndrome babies displayed more executive functioning difficulty, lower flexibility, high perseveration and less error detection.
Mild Solutions of Neutral Stochastic Partial Functional Differential Equations
Directory of Open Access Journals (Sweden)
T. E. Govindan
2011-01-01
Full Text Available This paper studies the existence and uniqueness of a mild solution for a neutral stochastic partial functional differential equation using a local Lipschitz condition. When the neutral term is zero and even in the deterministic special case, the result obtained here appears to be new. An example is included to illustrate the theory.
Effect of Differential Item Functioning on Test Equating
Kabasakal, Kübra Atalay; Kelecioglu, Hülya
2015-01-01
This study examines the effect of differential item functioning (DIF) items on test equating through multilevel item response models (MIRMs) and traditional IRMs. The performances of three different equating models were investigated under 24 different simulation conditions, and the variables whose effects were examined included sample size, test…
A scale purification procedure for evaluation of differential item functioning
Khalid, Muhammad Naveed; Glas, Cornelis A.W.
2014-01-01
Item bias or differential item functioning (DIF) has an important impact on the fairness of psychological and educational testing. In this paper, DIF is seen as a lack of fit to an item response (IRT) model. Inferences about the presence and importance of DIF require a process of so-called test
Detection of differential item functioning using Lagrange multiplier tests
Glas, Cornelis A.W.
1998-01-01
Abstract: In the present paper it is shown that differential item functioning can be evaluated using the Lagrange multiplier test or Rao’s efficient score test. The test is presented in the framework of a number of IRT models such as the Rasch model, the OPLM, the 2-parameter logistic model, the
Detection of differential item functioning using Lagrange multiplier tests
Glas, Cornelis A.W.
1996-01-01
In this paper it is shown that differential item functioning can be evaluated using the Lagrange multiplier test or C. R. Rao's efficient score test. The test is presented in the framework of a number of item response theory (IRT) models such as the Rasch model, the one-parameter logistic model, the
MIMIC Methods for Assessing Differential Item Functioning in Polytomous Items
Wang, Wen-Chung; Shih, Ching-Lin
2010-01-01
Three multiple indicators-multiple causes (MIMIC) methods, namely, the standard MIMIC method (M-ST), the MIMIC method with scale purification (M-SP), and the MIMIC method with a pure anchor (M-PA), were developed to assess differential item functioning (DIF) in polytomous items. In a series of simulations, it appeared that all three methods…
Regulation of adipocyte differentiation and function by polyunsaturated fatty acids
DEFF Research Database (Denmark)
Madsen, Lise; Petersen, Rasmus Koefoed; Kristiansen, Karsten
2005-01-01
factors currently implicated as key players in adipocyte differentiation and function, including peroxisome proliferator activated receptors (PPARs) (alpha, beta and gamma), sterol regulatory element binding proteins (SREBPs) and liver X receptors (LXRs). We review evidence that dietary n-3 PUFAs decrease...
Partially linear varying coefficient models stratified by a functional covariate
Maity, Arnab; Huang, Jianhua Z.
2012-01-01
We consider the problem of estimation in semiparametric varying coefficient models where the covariate modifying the varying coefficients is functional and is modeled nonparametrically. We develop a kernel-based estimator of the nonparametric
Functionalized linear poly(amidoamine)s are efficient vectors for intracellular protein delivery
Coué, G.M.J.P.C.; Engbersen, Johannes F.J.
2011-01-01
An effective intracellular protein delivery system was developed based on functionalized linear poly(amidoamine)s (PAAs) that form self-assembled cationic nanocomplexes with oppositely charged proteins. Three differently functionalized PAAs were synthesized, two of these having repetitive disulfide
Functional Foods as Differentiated Products: the Italian Yogurt Market
Bonanno, A.
2013-01-01
In spite of the growing consumers' interest for functional foods, the knowledge regarding the demand for these products and their profitability is limited. Adapting the LA/AIDS (Linear Approximated–Almost Ideal Demand System) model by means of Pinkse, Slade and Brett's distance metric method (2002),
Time-course window estimator for ordinary differential equations linear in the parameters
Vujacic, Ivan; Dattner, Itai; Gonzalez, Javier; Wit, Ernst
In many applications obtaining ordinary differential equation descriptions of dynamic processes is scientifically important. In both, Bayesian and likelihood approaches for estimating parameters of ordinary differential equations, the speed and the convergence of the estimation procedure may
Partially linear varying coefficient models stratified by a functional covariate
Maity, Arnab
2012-10-01
We consider the problem of estimation in semiparametric varying coefficient models where the covariate modifying the varying coefficients is functional and is modeled nonparametrically. We develop a kernel-based estimator of the nonparametric component and a profiling estimator of the parametric component of the model and derive their asymptotic properties. Specifically, we show the consistency of the nonparametric functional estimates and derive the asymptotic expansion of the estimates of the parametric component. We illustrate the performance of our methodology using a simulation study and a real data application.
Bojnordi, Maryam Nazm; Azizi, Hossein; Skutella, Thomas; Movahedin, Mansoureh; Pourabdolhossein, Fereshteh; Shojaei, Amir; Hamidabadi, Hatef Ghasemi
2017-09-01
Transplantation of embryonic stem cells (ESCs) is a promising therapeutic approach for the treatment of neurodegenerative diseases. However, ESCs are not usable clinically due to immunological and ethical limitations. The identification of an alternative safe cell source opens novel options via autologous transplantation in neuro-regeneration circumventing these problems. Here, we examined the neurogenic capacity of embryonic stem-like cells (ES-like cells) derived from the testis using neural growth factor inducers and utilized them to generate functional mature neurons. The neuronal differentiation of ES-like cells is induced in three stages. Stage 1 is related to embryoid body (EB) formation. To induce neuroprogenitor cells, EBs were cultured in the presence of retinoic acid, N 2 supplement and fibroblast growth factor followed by culturing in a neurobasal medium containing B 27 , N 2 supplements for additional 10 days, to allow the maturation and development of neuronal progenitor cells. The neurogenic differentiation was confirmed by immunostaining for markers of mature neurons. The differentiated neurons were positive for Tuj1 and Tau1. Real-time PCR dates indicated the expression of Nestin and Neuro D (neuroprogenitor markers) in induced cells at the second stage of the differentiation protocol. The differentiated mature neurons exhibited the specific neuron markers Map2 and β-tubulin. The functional maturity of neurons was confirmed by an electrophysiological analysis of passive and active neural membrane properties. These findings indicated a differentiation capacity of ES-like cells derived from the testis to functionally mature neurons, which proposes them as a novel cell source for neuroregenerative medicine.
McDonald, A. David; Sandal, Leif Kristoffer
1998-01-01
Estimation of parameters in the drift and diffusion terms of stochastic differential equations involves simulation and generally requires substantial data sets. We examine a method that can be applied when available time series are limited to less than 20 observations per replication. We compare and contrast parameter estimation for linear and nonlinear first-order stochastic differential equations using two criterion functions: one based on a Chi-square statistic, put forward by Hurn and Lin...
Processes and Reasoning in Representations of Linear Functions
Adu-Gyamfi, Kwaku; Bossé, Michael J.
2014-01-01
This study examined student actions, interpretations, and language in respect to questions raised regarding tabular, graphical, and algebraic representations in the context of functions. The purpose was to investigate students' interpretations and specific ways of working within table, graph, and the algebraic on notions fundamental to a…
A remark on fractional differential equation involving I-function
Mishra, Jyoti
2018-02-01
The present paper deals with the solution of the fractional differential equation using the Laplace transform operator and its corresponding properties in the fractional calculus; we derive an exact solution of a complex fractional differential equation involving a special function known as I-function. The analysis of the some fractional integral with two parameters is presented using the suggested Theorem 1. In addition, some very useful corollaries are established and their proofs presented in detail. Some obtained exact solutions are depicted to see the effect of each fractional order. Owing to the wider applicability of the I-function, we can conclude that, the obtained results in our work generalize numerous well-known results obtained by specializing the parameters.
Rebenda, Josef; Šmarda, Zdeněk
2017-07-01
In the paper an efficient semi-analytical approach based on the method of steps and the differential transformation is proposed for numerical approximation of solutions of functional differential models of delayed and neutral type on a finite interval of arbitrary length, including models with several constant delays. Algorithms for both commensurate and non-commensurate delays are described, applications are shown in examples. Validity and efficiency of the presented algorithms is compared with the variational iteration method, the Adomian decomposition method and the polynomial least squares method numerically. Matlab package DDE23 is used to produce reference numerical values.
On MV-algebras of non-linear functions
Directory of Open Access Journals (Sweden)
Antonio Di Nola
2017-01-01
Full Text Available In this paper, the main results are:a study of the finitely generated MV-algebras of continuous functions from the n-th power of the unit real interval I to I;a study of Hopfian MV-algebras; anda category-theoretic study of the map sending an MV-algebra as above to the range of its generators (up to a suitable form of homeomorphism.
On MV-algebras of non-linear functions
Directory of Open Access Journals (Sweden)
Antonio Di Nola
2017-01-01
Full Text Available In this paper, the main results are: a study of the finitely generated MV-algebras of continuous functions from the n-th power of the unit real interval I to I; a study of Hopfian MV-algebras; and a category-theoretic study of the map sending an MV-algebra as above to the range of its generators (up to a suitable form of homeomorphism.
Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes
DEFF Research Database (Denmark)
Zhang, H.W.; Schäffer, Hemming Andreas
2007-01-01
An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....
Directed Differentiation of Zebrafish Pluripotent Embryonic Cells to Functional Cardiomyocytes
Directory of Open Access Journals (Sweden)
Yao Xiao
2016-09-01
Full Text Available A cardiomyocyte differentiation in vitro system from zebrafish embryos remains to be established. Here, we have determined pluripotency window of zebrafish embryos by analyzing their gene-expression patterns of pluripotency factors together with markers of three germ layers, and have found that zebrafish undergoes a very narrow period of pluripotency maintenance from zygotic genome activation to a brief moment after oblong stage. Based on the pluripotency and a combination of appropriate conditions, we established a rapid and efficient method for cardiomyocyte generation in vitro from primary embryonic cells. The induced cardiomyocytes differentiated into functional and specific cardiomyocyte subtypes. Notably, these in vitro generated cardiomyocytes exhibited typical contractile kinetics and electrophysiological features. The system provides a new paradigm of cardiomyocyte differentiation from primary embryonic cells in zebrafish. The technology provides a new platform for the study of heart development and regeneration, in addition to drug discovery, disease modeling, and assessment of cardiotoxic agents.
Measure functional differential equations in the space of functions of bounded variation
Czech Academy of Sciences Publication Activity Database
Afonso, S.; Rontó, András
2013-01-01
Roč. 2013, č. 582161 (2013), s. 582161 ISSN 1085-3375 Institutional support: RVO:67985840 Keywords : measure differential equations * functional differential equations Subject RIV: BA - General Mathematics Impact factor: 1.274, year: 2013 http://www.hindawi.com/journals/ aaa /2013/582161/
International Nuclear Information System (INIS)
Bytev, Vladimir V.; Kalmykov, Mikhail Yu.; Moch, Sven-Olaf; Hamburg Univ.
2013-12-01
HYPERDIRE is a project devoted to the creation of a set of Mathematica based programs for the differential reduction of hypergeometric functions. The current version includes two parts: the first one, FdFunction, for manipulations with Appell hypergeometric functions F D of r variables; and the second one, FsFunction, for manipulations with Lauricella-Saran hypergeometric functions F S of three variables. Both functions are related with one-loop Feynman diagrams.
Regulation of T cell differentiation and function by EZH2
Directory of Open Access Journals (Sweden)
THEODOROS KARANTANOS
2016-05-01
Full Text Available The enhancer of zeste homologue 2 (EZH2, one of the polycomb group (PcG proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2 and induces the trimethylation of the histone H3 lysine 27 (H3K27me3 promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity while the three other protein components of PRC2, namely EED, SUZ12 and RpAp46/48 induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic (Hox gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency and cancer biology. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft versus host disease (GvHD. In this review we will briefly summarize the current knowledge regarding the role of EZH2 in the regulation of T cell differentiation, effector function and homing in the tumor microenvironment and we will discuss possible therapeutic targeting of EZH2 in order to alter T cell immune functions.
Energy Technology Data Exchange (ETDEWEB)
Moryakov, A. V., E-mail: sailor@orc.ru [National Research Centre Kurchatov Institute (Russian Federation)
2016-12-15
An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.
Gene function in early mouse embryonic stem cell differentiation
Directory of Open Access Journals (Sweden)
Campbell Pearl A
2007-03-01
Full Text Available Abstract Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5 undergoing undirected differentiation into embryoid bodies (EBs over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1, our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2 that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of m
Inorganic arsenic impairs differentiation and functions of human dendritic cells
Energy Technology Data Exchange (ETDEWEB)
Macoch, Mélinda; Morzadec, Claudie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes (France); Vernhet, Laurent, E-mail: laurent.vernhet@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France)
2013-01-15
Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by
Inorganic arsenic impairs differentiation and functions of human dendritic cells
International Nuclear Information System (INIS)
Macoch, Mélinda; Morzadec, Claudie; Fardel, Olivier; Vernhet, Laurent
2013-01-01
Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by
Exp-function method for solving fractional partial differential equations.
Zheng, Bin
2013-01-01
We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.
Vissers, W.H.P.M.; Muys, L.; Erp, P.E.J. van; Jong, E.M.G.J. de; Kerkhof, P.C.M. van de
2004-01-01
Inflammatory linear verrucous epidermal nevus (ILVEN) is a rare skin disorder with a clinical and histological resemblance to psoriasis. In the past clinical and histological criteria have been defined. However, there remains a discussion as to whether ILVEN is a disease entity distinct from linear
Linear and Differential Ion Mobility Separations of Middle-Down Proteoforms
DEFF Research Database (Denmark)
Garabedian, Alyssa; Baird, Matthew A; Porter, Jacob
2018-01-01
. Separations using traveling-wave (TWIMS) and/or involving various time scales and electrospray ionization source conditions are similar (with lower resolution for TWIMS), showing the transferability of results across linear IMS instruments. The linear IMS and FAIMS dimensions are substantially orthogonal...
Least-squares fit of a linear combination of functions
Directory of Open Access Journals (Sweden)
Niraj Upadhyay
2013-12-01
Full Text Available We propose that given a data-set $S=\\{(x_i,y_i/i=1,2,{\\dots}n\\}$ and real-valued functions $\\{f_\\alpha(x/\\alpha=1,2,{\\dots}m\\},$ the least-squares fit vector $A=\\{a_\\alpha\\}$ for $y=\\sum_\\alpha a_{\\alpha}f_\\alpha(x$ is $A = (F^TF^{-1}F^TY$ where $[F_{i\\alpha}]=[f_\\alpha(x_i].$ We test this formalism by deriving the algebraic expressions of the regression coefficients in $y = ax + b$ and in $y = ax^2 + bx + c.$ As a practical application, we successfully arrive at the coefficients in the semi-empirical mass formula of nuclear physics. The formalism is {\\it generic} - it has the potential of being applicable to any {\\it type} of $\\{x_i\\}$ as long as there exist appropriate $\\{f_\\alpha\\}.$ The method can be exploited with a CAS or an object-oriented language and is excellently suitable for parallel-processing.
Glucose metabolism regulates T cell activation, differentiation and functions
Directory of Open Access Journals (Sweden)
Clovis Steve Palmer
2015-01-01
Full Text Available The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The Warburg effect originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.
Tunç, Cemil; Tunç, Osman
2016-01-01
In this paper, certain system of linear homogeneous differential equations of second-order is considered. By using integral inequalities, some new criteria for bounded and [Formula: see text]-solutions, upper bounds for values of improper integrals of the solutions and their derivatives are established to the considered system. The obtained results in this paper are considered as extension to the results obtained by Kroopnick (2014) [1]. An example is given to illustrate the obtained results.
Earnest, Darrell Steven
2012-01-01
This dissertation explores fifth and eighth grade students' interpretations of three kinds of mathematical representations: number lines, the Cartesian plane, and graphs of linear functions. Two studies were conducted. In Study 1, I administered the paper-and-pencil Linear Representations Assessment (LRA) to examine students'…
On Parameter Differentiation for Integral Representations of Associated Legendre Functions
Directory of Open Access Journals (Sweden)
Howard S. Cohl
2011-05-01
Full Text Available For integral representations of associated Legendre functions in terms of modified Bessel functions, we establish justification for differentiation under the integral sign with respect to parameters. With this justification, derivatives for associated Legendre functions of the first and second kind with respect to the degree are evaluated at odd-half-integer degrees, for general complex-orders, and derivatives with respect to the order are evaluated at integer-orders, for general complex-degrees. We also discuss the properties of the complex function f: C{−1,1}→C given by f(z=z/((z+1^{1/2}(z−1^{1/2}.
Regulation of T Cell Differentiation and Function by EZH2
Karantanos, Theodoros; Christofides, Anthos; Bardhan, Kankana; Li, Lequn; Boussiotis, Vassiliki A.
2016-01-01
The enhancer of zeste homolog 2 (EZH2), one of the polycomb-group proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2) and induces the trimethylation of the histone H3 lysine 27 (H3K27me3) promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity, while the three other protein components of PRC2, namely EED, SUZ12, and RpAp46/48, induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency, and cancer biology, being currently at the cutting edge of research. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft-versus-host disease (GVHD). The aim of this review is to summarize the current knowledge regarding the role of EZH2 in the regulation of the differentiation and function of T cells focusing on possible applications in various immune-mediated conditions, including autoimmune disorders and GVHD. PMID:27199994
Estimation of Multiple Point Sources for Linear Fractional Order Systems Using Modulating Functions
Belkhatir, Zehor; Laleg-Kirati, Taous-Meriem
2017-01-01
This paper proposes an estimation algorithm for the characterization of multiple point inputs for linear fractional order systems. First, using polynomial modulating functions method and a suitable change of variables the problem of estimating
A method for computing the stationary points of a function subject to linear equality constraints
International Nuclear Information System (INIS)
Uko, U.L.
1989-09-01
We give a new method for the numerical calculation of stationary points of a function when it is subject to equality constraints. An application to the solution of linear equations is given, together with a numerical example. (author). 5 refs
Studies with Parabolic Parabolic Linear Parabolic (PPLP) momentum function in the LHC
Solfaroli Camillocci, Matteo; Timko, Helga; Wenninger, Jorg; CERN. Geneva. ATS Department
2018-01-01
Measurements performed with a Parabolic Parabolic Linear Parabolic (PPLP) momentum function in the LHC. Three attempts have been performed with a pilot bunch and one with nominal bunch (1.1x1011 p/bunch).
Wigner weight functions and Weyl symbols of non-negative definite linear operators
Janssen, A.J.E.M.
1989-01-01
In this paper we present several necessary and, for radially symmetric functions, necessary and sufficient conditions for a function of two variables to be a Wigner weight function (Weyl symbol of a non-negative definite linear operator of L2(R)). These necessary conditions are in terms of spread
Approximation of functions in two variables by some linear positive operators
Directory of Open Access Journals (Sweden)
Mariola Skorupka
1995-12-01
Full Text Available We introduce some linear positive operators of the Szasz-Mirakjan type in the weighted spaces of continuous functions in two variables. We study the degree of the approximation of functions by these operators. The similar results for functions in one variable are given in [5]. Some operators of the Szasz-Mirakjan type are examined also in [3], [4].
International Nuclear Information System (INIS)
Wang Wansheng; Li Shoufu; Wang Wenqiang
2009-01-01
In this paper, we show that under identical conditions which guarantee the contractivity of the theoretical solutions of general nonlinear NDDEs, the numerical solutions obtained by a class of linear multistep methods are also contractive.
Directory of Open Access Journals (Sweden)
Edivaldo Antonio Bulba
2004-01-01
Full Text Available São apresentados métodos para determinação dos índices de capacidade tais como Cp e Cpk aplicados no "design for six sigma" (DFSS quando a característica de qualidade é não-observável e dada por Y = f(X1, X2, X3,....Xk, onde Xi são variáveis aleatórias com média e variância respectivamente iguais a miXi e sigma2Xi; f é uma função conhecida. A determinação é baseada na série de Taylor e o procedimento será ilustrado com exemplos práticos.Here we present methods to determine capabilit indices such as Cp and Cpk to be applied in "design for six sigma" (DFSS when the quality characteristic of interest Y is unobservable but given by Y = f(X1, X2, X3,....Xk, where Xi's are random variables with means and variance respectively equal to muXi and sigma2Xi; f is a known function. The determination is based on Taylor series and we illustrate the procedure with practical examples.
Non-linear shape functions over time in the space-time finite element method
Directory of Open Access Journals (Sweden)
Kacprzyk Zbigniew
2017-01-01
Full Text Available This work presents a generalisation of the space-time finite element method proposed by Kączkowski in his seminal of 1970’s and early 1980’s works. Kączkowski used linear shape functions in time. The recurrence formula obtained by Kączkowski was conditionally stable. In this paper, non-linear shape functions in time are proposed.
Differential quadrature method of nonlinear bending of functionally graded beam
Gangnian, Xu; Liansheng, Ma; Wang, Youzhi; Quan, Yuan; Weijie, You
2018-02-01
Using the third-order shear deflection beam theory (TBT), nonlinear bending of functionally graded (FG) beams composed with various amounts of ceramic and metal is analyzed utilizing the differential quadrature method (DQM). The properties of beam material are supposed to accord with the power law index along to thickness. First, according to the principle of stationary potential energy, the partial differential control formulae of the FG beams subjected to a distributed lateral force are derived. To obtain numerical results of the nonlinear bending, non-dimensional boundary conditions and control formulae are dispersed by applying the DQM. To verify the present solution, several examples are analyzed for nonlinear bending of homogeneous beams with various edges. A minute parametric research is in progress about the effect of the law index, transverse shear deformation, distributed lateral force and boundary conditions.
Mandell, D.J.; Ward, S.E.
2011-01-01
The neural processes that underlie executive function begin to develop in infancy. However, it is unclear how the behavior manifested by these processes are related or if they can be differentiated early in development. This study seeks to examine early emerging executive functioning skills in
Existence of entire solutions of some non-linear differential-difference equations.
Chen, Minfeng; Gao, Zongsheng; Du, Yunfei
2017-01-01
In this paper, we investigate the admissible entire solutions of finite order of the differential-difference equations [Formula: see text] and [Formula: see text], where [Formula: see text], [Formula: see text] are two non-zero polynomials, [Formula: see text] is a polynomial and [Formula: see text]. In addition, we investigate the non-existence of entire solutions of finite order of the differential-difference equation [Formula: see text], where [Formula: see text], [Formula: see text] are two non-constant polynomials, [Formula: see text], m , n are positive integers and satisfy [Formula: see text] except for [Formula: see text], [Formula: see text].
Faria, T.; Magalhaes, L. T.
The paper addresses, for retarded functional differential equations (FDEs), the computation of normal forms associated with the flow on a finite-dimensional invariant manifold tangent to invariant spaces for the infinitesimal generator of the linearized equation at a singularity. A phase space appropriate to the computation of these normal forms is introduced, and adequate nonresonance conditions for the computation of the normal forms are derived. As an application, the general situation of Bogdanov-Takens singularity and its versal unfolding for scalar retarded FDEs with nondegeneracy at second order is considered, both in the general case and in the case of differential-delay equations of the form ẋ( t) = ƒ( x( t), x( t-1)).
Directory of Open Access Journals (Sweden)
Diem Dang Huan
2015-12-01
Full Text Available The current paper is concerned with the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps in Hilbert spaces. Using the theory of a strongly continuous cosine family of bounded linear operators, stochastic analysis theory and with the help of the Banach fixed point theorem, we derive a new set of sufficient conditions for the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps. Finally, an application to the stochastic nonlinear wave equation with infinite delay and Poisson jumps is given.
Stability by fixed point theory for functional differential equations
Burton, T A
2006-01-01
This book is the first general introduction to stability of ordinary and functional differential equations by means of fixed point techniques. It contains an extensive collection of new and classical examples worked in detail and presented in an elementary manner. Most of this text relies on three principles: a complete metric space, the contraction mapping principle, and an elementary variation of parameters formula. The material is highly accessible to upper-level undergraduate students in the mathematical sciences, as well as working biologists, chemists, economists, engineers, mathematicia
A Differential 4-Path Highly Linear Widely Tunable On-Chip Band-Pass Filter
Ghaffari, A.; Klumperink, Eric A.M.; Nauta, Bram
2010-01-01
Abstract A passive switched capacitor RF band-pass filter with clock controlled center frequency is realized in 65nm CMOS. An off-chip transformer which acts as a balun, improves filter-Q and realizes impedance matching. The differential architecture reduces clock-leakage and suppresses selectivity
Generalized linear differential equations in a Banach space : continuous dependence on a parameter
Czech Academy of Sciences Publication Activity Database
Monteiro, G.A.; Tvrdý, Milan
2013-01-01
Roč. 33, č. 1 (2013), s. 283-303 ISSN 1078-0947 Institutional research plan: CEZ:AV0Z10190503 Keywords : generalized differential equations * continuous dependence * Kurzweil-Stieltjes integral Subject RIV: BA - General Mathematics Impact factor: 0.923, year: 2013 http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=7615
A Hierarchical Linear Model for Estimating Gender-Based Earnings Differentials.
Haberfield, Yitchak; Semyonov, Moshe; Addi, Audrey
1998-01-01
Estimates of gender earnings inequality in data from 116,431 Jewish workers were compared using a hierarchical linear model (HLM) and ordinary least squares model. The HLM allows estimation of the extent to which earnings inequality depends on occupational characteristics. (SK)
Remark on periodic boundary-value problem for second-order linear ordinary differential equations
Czech Academy of Sciences Publication Activity Database
Dosoudilová, M.; Lomtatidze, Alexander
2018-01-01
Roč. 2018, č. 13 (2018), s. 1-7 ISSN 1072-6691 Institutional support: RVO:67985840 Keywords : second-order linear equation * periodic boundary value problem * unique solvability Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.954, year: 2016 https://ejde.math.txstate.edu/Volumes/2018/13/abstr.html
Directory of Open Access Journals (Sweden)
Lemieux Sébastien
2006-08-01
Full Text Available Abstract Background The identification of differentially expressed genes (DEGs from Affymetrix GeneChips arrays is currently done by first computing expression levels from the low-level probe intensities, then deriving significance by comparing these expression levels between conditions. The proposed PL-LM (Probe-Level Linear Model method implements a linear model applied on the probe-level data to directly estimate the treatment effect. A finite mixture of Gaussian components is then used to identify DEGs using the coefficients estimated by the linear model. This approach can readily be applied to experimental design with or without replication. Results On a wholly defined dataset, the PL-LM method was able to identify 75% of the differentially expressed genes within 10% of false positives. This accuracy was achieved both using the three replicates per conditions available in the dataset and using only one replicate per condition. Conclusion The method achieves, on this dataset, a higher accuracy than the best set of tools identified by the authors of the dataset, and does so using only one replicate per condition.
The spin polarized linear response from density functional theory: Theory and application to atoms
Energy Technology Data Exchange (ETDEWEB)
Fias, Stijn, E-mail: sfias@vub.ac.be; Boisdenghien, Zino; De Proft, Frank; Geerlings, Paul [General Chemistry (ALGC), Vrije Universiteit Brussel (Free University Brussels – VUB), Pleinlaan 2, 1050 Brussels (Belgium)
2014-11-14
Within the context of spin polarized conceptual density functional theory, the spin polarized linear response functions are introduced both in the [N, N{sub s}] and [N{sub α}, N{sub β}] representations. The mathematical relations between the spin polarized linear response functions in both representations are examined and an analytical expression for the spin polarized linear response functions in the [N{sub α}, N{sub β}] representation is derived. The spin polarized linear response functions were calculated for all atoms up to and including argon. To simplify the plotting of our results, we integrated χ(r, r′) to a quantity χ(r, r{sup ′}), circumventing the θ and ϕ dependence. This allows us to plot and to investigate the periodicity throughout the first three rows in the periodic table within the two different representations. For the first time, χ{sub αβ}(r, r{sup ′}), χ{sub βα}(r, r{sup ′}), and χ{sub SS}(r, r{sup ′}) plots have been calculated and discussed. By integration of the spin polarized linear response functions, different components to the polarisability, α{sub αα}, α{sub αβ}, α{sub βα}, and α{sub ββ} have been calculated.
International Nuclear Information System (INIS)
Lythgoe, M.F.; Gordon, I.; Khader, Z.; Smith, T.; Anderson, P.J.
1999-01-01
Differential renal function (DRF) is an important parameter that should be assessed from virtually every dynamic renogram. With the introduction of technetium-99m mercaptoacetyltriglycine ( 99m Tc-MAG3), a tracer with a high renal extraction, the estimation of DRF might hopefully become accurate and reproducible both between observers in the same institution and also between institutions. The aim of this study was to assess the effect of different parameters on the estimation of DRF. To this end we investigated two groups of children: group A, comprising 35 children with a single kidney (27 of whom had poor renal function), and group B, comprising 20 children with two kidneys and normal global function who also had an associated 99m Tc-dimercaptosuccinic acid scan ( 99m Tc-DMSA). The variables assessed for their effect on the estimation of DRF were: different operators, the choice of renal regions of interest (ROIs), the applied background subtraction, and six different techniques for analysis of the renogram. The six techniques were based on: linear regression of the slopes in the Rutland-Patlak plot, matrix deconvolution, differential method, integral method, linear regression of the slope of the renograms, and the area under the curve of the renogram. The estimation of DRF was less dependent upon both observer and method in patients with two normally functioning kidneys than in patients with a single kidney. The inter-observer comparison among children in either group was not dependent on either ROI or background subtraction. However, in patients with poor renal function the method of choice for the estimation of DRF was dependent on background subtraction, though not ROI. In children with two kidneys and normal renal function, the estimation of DRF from the 24 techniques gave similar results. Methods that produced DRF values closest to expected results, from either group of children, were the Rutland-Patlak plot and matrix deconvolution methods. (orig.)
Lifescience Database Archive (English)
Full Text Available in health and disease. PubmedID 18251777 Title Macrophage differentiation and function in health and disease...thol Int. 2008 Mar;58(3):143-55. (.png) (.svg) (.html) (.csml) Show Macrophage differentiation and function
Oracle Inequalities for Convex Loss Functions with Non-Linear Targets
DEFF Research Database (Denmark)
Caner, Mehmet; Kock, Anders Bredahl
This paper consider penalized empirical loss minimization of convex loss functions with unknown non-linear target functions. Using the elastic net penalty we establish a finite sample oracle inequality which bounds the loss of our estimator from above with high probability. If the unknown target...... of the same order as that of the oracle. If the target is linear we give sufficient conditions for consistency of the estimated parameter vector. Next, we briefly discuss how a thresholded version of our estimator can be used to perform consistent variable selection. We give two examples of loss functions...
Finite-dimensional linear algebra
Gockenbach, Mark S
2010-01-01
Some Problems Posed on Vector SpacesLinear equationsBest approximationDiagonalizationSummaryFields and Vector SpacesFields Vector spaces Subspaces Linear combinations and spanning sets Linear independence Basis and dimension Properties of bases Polynomial interpolation and the Lagrange basis Continuous piecewise polynomial functionsLinear OperatorsLinear operatorsMore properties of linear operatorsIsomorphic vector spaces Linear operator equations Existence and uniqueness of solutions The fundamental theorem; inverse operatorsGaussian elimination Newton's method Linear ordinary differential eq
Simple functional-differential equations for the bound-state wave-function components
International Nuclear Information System (INIS)
Kamuntavicius, G.P.
1986-01-01
The author presents a new method of a direct derivation of differential equations for the wave-function components of identical-particles systems. The method generates in a simple manner all the possible variants of these equations. In some cases they are the differential equations of Faddeev or Yakubovskii. It is shown that the case of the bound states allows to formulate very simple equations for the components which are equivalent to the Schroedinger equation for the complete wave function. The components with a minimal antisymmetry are defined and the corresponding equations are derived. (Auth.)
Determination of differential pulmonary function by the radioisotopic method
International Nuclear Information System (INIS)
Molinari, J.F.; Chatkin, J.M.; Barreto, S.M.
1991-01-01
A study of twenty-one patients with bronchogenic carcinoma which were submitted to lobectomy or pneumonectomy has been done, with the purpose of evaluation of regional and differential function of the lungs or parts of them. To accomplish this subject the patients underwent simple spirometry with FEV (forced expiratory volume in the first second) and FVC (forced vital capacity) measurements plus quantitative perfusional scintigraphy using 99 Tc-MAA (aggregated albumin). The relationship between these tests allowed the calculation of predictive values of FEV and FVC for the post-operative period through proposed equations. From the third month on after the operation, the patients were again submitted to spirometry with measurement of FEV and FVC to attest the hypothesis that these values were similar to those calculated. The statistical study of these results, utilizing the Student's t test, has demonstrated that the values of FEV and FVC were similar to those found in the postoperative period. These results allowed the conclusion that the radioisotopic method had predictive capacity of FEV and FVC in the lobectomized and pneumonectomized patients and it is a contribution in the evaluation of the differential pulmonary function. (author)
Differential item functioning of the UWES-17 in South Africa
Directory of Open Access Journals (Sweden)
Leanne Goliath-Yarde
2011-11-01
Research purpose: This study assesses the Differential Item Functioning (DIF of the Utrecht Work Engagement Scale (UWES-17 for different South African cultural groups in a South African company. Motivation for the study: Organisations are using the UWES-17 more and more in South Africa to assess work engagement. Therefore, research evidence from psychologists or assessment practitioners on its DIF across different cultural groups is necessary. Research design, approach and method: The researchers conducted a Secondary Data Analysis (SDA on the UWES-17 sample (n = 2429 that they obtained from a cross-sectional survey undertaken in a South African Information and Communication Technology (ICT sector company (n = 24 134. Quantitative item data on the UWES-17 scale enabled the authors to address the research question. Main findings: The researchers found uniform and/or non-uniform DIF on five of the vigour items, four of the dedication items and two of the absorption items. This also showed possible Differential Test Functioning (DTF on the vigour and dedication dimensions. Practical/managerial implications: Based on the DIF, the researchers suggested that organisations should not use the UWES-17 comparatively for different cultural groups or employment decisions in South Africa. Contribution/value add: The study provides evidence on DIF and possible DTF for the UWES-17. However, it also raises questions about possible interaction effects that need further investigation.
Tissue-transglutaminase contributes to neutrophil granulocyte differentiation and functions.
Balajthy, Zoltán; Csomós, Krisztián; Vámosi, György; Szántó, Attila; Lanotte, Michel; Fésüs, László
2006-09-15
Promyelocytic NB4 leukemia cells undergo differentiation to granulocytes following retinoic acid treatment. Here we report that tissue transglutaminase (TG2), a protein cross-linking enzyme, was induced, then partially translocated into the nucleus, and became strongly associated with the chromatin during the differentiation process. The transglutaminase-catalyzed cross-link content of both the cytosolic and the nuclear protein fractions increased while NB4 cells underwent cellular maturation. Inhibition of cross-linking activity of TG2 by monodansylcadaverin in these cells led to diminished nitroblue tetrazolium (NBT) positivity, production of less superoxide anion, and decreased expression of GP91PHOX, the membrane-associated subunit of NADPH oxidase. Neutrophils isolated from TG2(-/-) mice showed diminished NBT reduction capacity, reduced superoxide anion formation, and down-regulation of the gp91phox subunit of NADPH oxidase, compared with wild-type cells. It was also observed that TG2(-/-) mice exhibited increased neutrophil phagocytic activity, but had attenuated neutrophil chemotaxis and impaired neutrophil extravasation with higher neutrophil counts in their circulation during yeast extract-induced peritonitis. These results clearly suggest that TG2 may modulate the expression of genes related to neutrophil functions and is involved in several intracellular and extracellular functions of extravasating neutrophil.
International Nuclear Information System (INIS)
Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Åslund, Magnus
2012-01-01
Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption
Energy Technology Data Exchange (ETDEWEB)
Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Aslund, Magnus [Research and Development, Philips Women' s Healthcare, Smidesvaegen 5, SE-171 41 Solna, Sweden and Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering and Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Research and Development, Philips Women' s Healthcare, Smidesvaegen 5, SE-171 41 Solna (Sweden)
2012-09-15
Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption
Applications of Kalman filters based on non-linear functions to numerical weather predictions
Directory of Open Access Journals (Sweden)
G. Galanis
2006-10-01
Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.
Applications of Kalman filters based on non-linear functions to numerical weather predictions
Directory of Open Access Journals (Sweden)
G. Galanis
2006-10-01
Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.
On oscillation and nonoscillation of two-dimensional linear differential systems
Czech Academy of Sciences Publication Activity Database
Lomtatidze, A.; Šremr, Jiří
2013-01-01
Roč. 20, č. 3 (2013), s. 573-600 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : two-dimensional system of linear ODE * oscillation * nonoscillation Subject RIV: BA - General Mathematics Impact factor: 0.340, year: 2013 http://www.degruyter.com/view/j/gmj.2013.20.issue-3/gmj-2013-0025/gmj-2013-0025.xml?format=INT
Remark on zeros of solutions of second-order linear ordinary differential equations
Czech Academy of Sciences Publication Activity Database
Dosoudilová, M.; Lomtatidze, Alexander
2016-01-01
Roč. 23, č. 4 (2016), s. 571-577 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : second-order linear equation * zeros of solutions * periodic boundary value problem Subject RIV: BA - General Mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2016.23.issue-4/gmj-2016-0052/gmj-2016-0052. xml
On oscillation and nonoscillation of two-dimensional linear differential systems
Czech Academy of Sciences Publication Activity Database
Lomtatidze, A.; Šremr, Jiří
2013-01-01
Roč. 20, č. 3 (2013), s. 573-600 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : two-dimensional system of linear ODE * oscillation * nonoscillation Subject RIV: BA - General Mathematics Impact factor: 0.340, year: 2013 http://www.degruyter.com/view/j/gmj.2013.20.issue-3/gmj-2013-0025/gmj-2013-0025. xml ?format=INT
Remark on zeros of solutions of second-order linear ordinary differential equations
Czech Academy of Sciences Publication Activity Database
Dosoudilová, M.; Lomtatidze, Alexander
2016-01-01
Roč. 23, č. 4 (2016), s. 571-577 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : second-order linear equation * zero s of solutions * periodic boundary value problem Subject RIV: BA - General Mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2016.23.issue-4/gmj-2016-0052/gmj-2016-0052.xml
A Lie-Deprit perturbation algorithm for linear differential equations with periodic coefficients
Casas Pérez, Fernando; Chiralt Monleon, Cristina
2014-01-01
A perturbative procedure based on the Lie-Deprit algorithm of classical mechanics is proposed to compute analytic approximations to the fundamental matrix of linear di erential equations with periodic coe cients. These approximations reproduce the structure assured by the Floquet theorem. Alternatively, the algorithm provides explicit approximations to the Lyapunov transformation reducing the original periodic problem to an autonomous sys- tem and also to its characteristic ...
Completeness, special functions and uncertainty principles over q-linear grids
International Nuclear Information System (INIS)
Abreu, LuIs Daniel
2006-01-01
We derive completeness criteria for sequences of functions of the form f(xλ n ), where λ n is the nth zero of a suitably chosen entire function. Using these criteria, we construct complete nonorthogonal systems of Fourier-Bessel functions and their q-analogues, as well as other complete sets of q-special functions. We discuss connections with uncertainty principles over q-linear grids and the completeness of certain sets of q-Bessel functions is used to prove that, if a function f and its q-Hankel transform both vanish at the points {q -n } ∞ n=1 , 0 n } ∞ n=-∞
International Nuclear Information System (INIS)
Salat, A.
1981-12-01
The existence of quasi-periodic eigensolutions of a linear second order ordinary differential equation with quasi-periodic coefficient f(ω 1 t,ω 2 t) is investigated numerically and graphically. For sufficiently incommensurate frequencies ω 1 , ω 2 a doubly indexed infinite sequence of eigenvalues and eigenmodes is obtained. The equation considered is a model for the magneto-hydrodynamic 'continuum' in general toroidal geometry. The result suggests that continuum modes exist at least on sufficiently irrational magnetic surfaces. (orig.)
Antar, B. N.
1976-01-01
A numerical technique is presented for locating the eigenvalues of two point linear differential eigenvalue problems. The technique is designed to search for complex eigenvalues belonging to complex operators. With this method, any domain of the complex eigenvalue plane could be scanned and the eigenvalues within it, if any, located. For an application of the method, the eigenvalues of the Orr-Sommerfeld equation of the plane Poiseuille flow are determined within a specified portion of the c-plane. The eigenvalues for alpha = 1 and R = 10,000 are tabulated and compared for accuracy with existing solutions.
An Effect Size Measure for Raju's Differential Functioning for Items and Tests
Wright, Keith D.; Oshima, T. C.
2015-01-01
This study established an effect size measure for differential functioning for items and tests' noncompensatory differential item functioning (NCDIF). The Mantel-Haenszel parameter served as the benchmark for developing NCDIF's effect size measure for reporting moderate and large differential item functioning in test items. The effect size of…
Isomorphism and the #betta#-function of the non-linear sigma model in symmetric spaces
International Nuclear Information System (INIS)
Hikami, S.
1983-01-01
The renormalization group #betta#-function of the non-linear sigma model in symmetric spaces is discussed via the isomorphic relation and the reciprocal relation about a parameter α. The four-loop term is investigated and the symmetric properties of the #betta#-function are studied. The four-loop term in the #betta#-function is shown to be vanishing for the orthogonal Anderson localization problem. (orig.)
Assessing Differential Item Functioning on the Test of Relational Reasoning
Directory of Open Access Journals (Sweden)
Denis Dumas
2018-03-01
Full Text Available The test of relational reasoning (TORR is designed to assess the ability to identify complex patterns within visuospatial stimuli. The TORR is designed for use in school and university settings, and therefore, its measurement invariance across diverse groups is critical. In this investigation, a large sample, representative of a major university on key demographic variables, was collected, and the resulting data were analyzed using a multi-group, multidimensional item-response theory model-comparison procedure. No significant differential item functioning was found on any of the TORR items across any of the demographic groups of interest. This finding is interpreted as evidence of the cultural fairness of the TORR, and potential test-development choices that may have contributed to that cultural fairness are discussed.
Functional differentiation between fish assemblages from forested and deforested streams
Directory of Open Access Journals (Sweden)
Fabrício Barreto Teresa
Full Text Available We tested the hypothesis that streams in deforested areas shelter different fish communities to nearby forested areas, and that these disparities are due to environmental parameters that limit or benefit different species according to their functional traits. We compared the community composition of three south east Brazilian streams flanked by riparian forest with three nearby streams in deforested areas. The following functional traits were considered: diet, habitat use, water flow preference, size, and hypoxia tolerance. Differentiation between forested and deforested streams corresponded with the different contributions of three functional groups. Species reported in the literature to be hypoxia tolerant, and exhibiting a variable combination of the other traits prevailed in deforested streams, although we did not find substantial differences in oxygen levels between forested and deforested streams. In forested streams, benthic species associated with a high water flow and an insectivorous diet were dominant. Changes in streams induced by deforestation which are associated with habitat availability, food resources, and physicochemical conditions appear to restrict the occurrence of specialized species and instead benefit tolerant generalists.
International Nuclear Information System (INIS)
McMillan, B.F.; Jolliet, S.; Tran, T.M.; Villard, L.; Bottino, A.; Angelino, P.
2010-01-01
Fluctuating quantities in magnetic confinement geometries often inherit a strong anisotropy along the field lines. One technique for describing these structures is the use of a certain set of Fourier components on the tori of nested flux surfaces. We describe an implementation of this approach for solving partial differential equations, like Poisson's equation, where a different set of Fourier components may be chosen on each surface according to the changing safety factor profile. Allowing the resolved components to change to follow the anisotropy significantly reduces the total number of degrees of freedom in the description. This can permit large gains in computational performance. We describe, in particular, how this approach can be applied to rapidly solve the gyrokinetic Poisson equation in a particle code, ORB5 (Jolliet et al. (2007) [5]), with a regular (non-field-aligned) mesh. (authors)
Functional Thinking Ways in Relation to Linear Function Tables of Elementary School Students
Tanisli, Dilek
2011-01-01
One of the basic components of algebraic thinking is functional thinking. Functional thinking involves focusing on the relationship between two (or more) varying quantities and such thinking facilitates the studies on both algebra and the notion of function. The development of functional thinking of students should start in the early grades and it…
International Nuclear Information System (INIS)
Barnes, D.C.; Cayton, T.E.
1980-01-01
The ideal magnetohydrodynamic stability of the diffuse linear pinch is studied in the special case when the poloidal magnetic field component is small compared with the axial field component. A two-term approximation for growth rates is derived by straightforward asymptotic expansion in terms of a small parameter that is proportional to (B/sub theta//rB/sub z/). Evaluation of the second term in the expansion requires only a trivial amount of additional computation after the leading-order eigenvalue and eigenfunction are determined. For small, but finite, values of the expansion parameter the second term is found to be non-negligible compared with the leading term. The approximate solution is compared with exact solutions and the range of validity of the approximation is investigated. Implications of these results to a wide class of problems involving weakly unstable near theta-pinch configurations are discussed
Alkhalifah, Tariq Ali
2012-09-25
Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.
Alkhalifah, Tariq Ali; Choi, Yun Seok
2012-01-01
Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.
Directory of Open Access Journals (Sweden)
M. Mallika Arjunan
2014-01-01
Full Text Available In this paper, we investigate the existence and controllability of mild solutions for a damped second order impulsive functional differential equation with state-dependent delay in Banach spaces. The results are obtained by using Sadovskii's fixed point theorem combined with the theories of a strongly continuous cosine family of bounded linear operators. Finally, an example is provided to illustrate the main results.
Directory of Open Access Journals (Sweden)
Georges SARAFOPOULOS
2017-07-01
Full Text Available In this study we investigate the dynamics of a nonlinear Cournot- type duopoly game with differentiated goods, linear demand and a cost function that includes emission costs. The game is modeled with a system of two difference equations. Existence and stability of equilibria of this system are studied. We show that the model gives more complex chaotic and unpredictable trajectories as a consequence of change in the parameter of horizontal product differentiation and a higher (lower degree of product differentiation (weaker or fiercer competition destabilize (stabilize the economy. The chaotic features are justified numerically via computing Lyapunov numbers and sensitive dependence on initial conditions. Also, we show that in this case there are stable trajectories and a higher (lower degree of product differentiation does not tend to destabilize the economy.
Fertility Differentials and Educational Attainment in Portugal: A Non-Linear Relationship
Directory of Open Access Journals (Sweden)
Tiago de Oliveira, Isabel
2009-01-01
Full Text Available AbstractThis analysis of the Portuguese case shows a non-linear relationship betweenthe number of children and education in recent years. Using the data from tenyears before this hypothesis was confirmed, and we can see that the generaldecline in Portuguese fertility within the last decade was due to the fertilitydecrease of the less educated people, although partly attenuated by the fertilityincrease of the upper social groups. The reasons for a non-linear relationshipare discussed within the context of female employment rates and salarydifferentials by educational attainment. The main hypothesis is that differencesin fertility are related to an ‘education-work’ effect amongst those in the lesseducated groups and to an ‘education-income’ effect amongst the moreeducated.RésuméL’analyse de cas de la situation au Portugal démontre une relation non linéaireentre le nombre d’enfants et le niveau de scolarité au cours des dernièresannées. Les données recueillies pendant les dix dernières années ont étéétudiées avant de confirmer cette hypothèse ; nous avons pu voir que le déclingénéral dans le taux de fécondité au Portugal pendant la dernière décade étaitcausé par un déclin de fécondité chez les personnes moins éduquées ; ceci a étépartiellement atténué par une hausse dans le taux de fécondité dans les classessupérieures. Les raisons de cette relation non linéaire sont discutées dans lecontexte des taux d’emploi des femmes et les différentiels de salaire selon lesniveaux de scolarité. L’hypothèse majeure est que les différences dans les tauxde fécondité sont reliés à un effet « scolarité-travail » parmi les groupes moinséduqués et à un effet « scolarité-salaire » parmi les classes mieux éduqués.
Solutions to an advanced functional partial differential equation of the pantograph type.
Zaidi, Ali A; Van Brunt, B; Wake, G C
2015-07-08
A model for cells structured by size undergoing growth and division leads to an initial boundary value problem that involves a first-order linear partial differential equation with a functional term. Here, size can be interpreted as DNA content or mass. It has been observed experimentally and shown analytically that solutions for arbitrary initial cell distributions are asymptotic as time goes to infinity to a certain solution called the steady size distribution. The full solution to the problem for arbitrary initial distributions, however, is elusive owing to the presence of the functional term and the paucity of solution techniques for such problems. In this paper, we derive a solution to the problem for arbitrary initial cell distributions. The method employed exploits the hyperbolic character of the underlying differential operator, and the advanced nature of the functional argument to reduce the problem to a sequence of simple Cauchy problems. The existence of solutions for arbitrary initial distributions is established along with uniqueness. The asymptotic relationship with the steady size distribution is established, and because the solution is known explicitly, higher-order terms in the asymptotics can be readily obtained.
Lee, Eunjee; Zhu, Hongtu; Kong, Dehan; Wang, Yalin; Giovanello, Kelly Sullivan; Ibrahim, Joseph G
2015-12-01
The aim of this paper is to develop a Bayesian functional linear Cox regression model (BFLCRM) with both functional and scalar covariates. This new development is motivated by establishing the likelihood of conversion to Alzheimer's disease (AD) in 346 patients with mild cognitive impairment (MCI) enrolled in the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI-1) and the early markers of conversion. These 346 MCI patients were followed over 48 months, with 161 MCI participants progressing to AD at 48 months. The functional linear Cox regression model was used to establish that functional covariates including hippocampus surface morphology and scalar covariates including brain MRI volumes, cognitive performance (ADAS-Cog), and APOE status can accurately predict time to onset of AD. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. A simulation study is performed to evaluate the finite sample performance of BFLCRM.
Sliding mode control-based linear functional observers for discrete-time stochastic systems
Singh, Satnesh; Janardhanan, Sivaramakrishnan
2017-11-01
Sliding mode control (SMC) is one of the most popular techniques to stabilise linear discrete-time stochastic systems. However, application of SMC becomes difficult when the system states are not available for feedback. This paper presents a new approach to design a SMC-based functional observer for discrete-time stochastic systems. The functional observer is based on the Kronecker product approach. Existence conditions and stability analysis of the proposed observer are given. The control input is estimated by a novel linear functional observer. This approach leads to a non-switching type of control, thereby eliminating the fundamental cause of chatter. Furthermore, the functional observer is designed in such a way that the effect of process and measurement noise is minimised. Simulation example is given to illustrate and validate the proposed design method.
A differential calculus for random matrices with applications to (max,+)-linear stochastic systems
Heidergott, B.F.
2001-01-01
We introducet he concept of weak differentiabilityf or randomm atricesa nd therebyo btain closedform analytical expressions for derivatives of functions of random matrices. More specifically, we develop a calculus of weak differentiationf or randomm atricest hat resembles the standardc alculus of
Vibration suppression in ultrasonic machining described by non-linear differential equations
International Nuclear Information System (INIS)
Kamel, M. M.; El-Ganaini, W. A. A.; Hamed, Y. S.
2009-01-01
Vibrations are usually undesired phenomena as they may cause damage or destruction of the system. However, sometimes they are desirable, as in ultrasonic machining (USM). In such case, the problem is a complicated one, as it is required to reduce the vibration of the machine head and have reasonable amplitude for the tool. In the present work, the coupling of two non-linear oscillators of the tool holder and tool representing ultrasonic cutting process is investigated. This leads to a two-degree-of-freedom system subjected to multi-external excitation force. The aim of this work is to control the tool holder behavior at simultaneous primary and internal resonance condition and have high amplitude for the tool. Multiple scale perturbation method is applied to obtain a solution up to the second order approximations. Other different resonance cases are reported and studied numerically. The stability of the system is investigated applying both phase-plane and frequency response techniques. The effects of the different parameters of the tool on the system behavior are studied numerically. Comparison with the available published work is reported
Institute of Scientific and Technical Information of China (English)
Wan-sheng WANG; Shou-fu LI; Run-sheng YANG
2012-01-01
A series of contractivity and exponential stability results for the solutions to nonlinear neutral functional differential equations (NFDEs) in Banach spaces are obtained,which provide unified theoretical foundation for the contractivity analysis of solutions to nonlinear problems in functional differential equations (FDEs),neutral delay differential equations (NDDEs) and NFDEs of other types which appear in practice.
Understanding Linear Function: A Comparison of Selected Textbooks from England and Shanghai
Wang, Yuqian; Barmby, Patrick; Bolden, David
2017-01-01
This study describes a comparison of how worked examples in selected textbooks from England and Shanghai presented possible learning trajectories towards understanding linear function. Six selected English textbooks and one Shanghai compulsory textbook were analysed with regards to the understanding required for pure mathematics knowledge in…
DEFF Research Database (Denmark)
Abrahamsen, Trine Julie; Hansen, Lars Kai
2011-01-01
We investigate sparse non-linear denoising of functional brain images by kernel Principal Component Analysis (kernel PCA). The main challenge is the mapping of denoised feature space points back into input space, also referred to as ”the pre-image problem”. Since the feature space mapping is typi...
Novak, Melissa A.
2017-01-01
The purpose of this qualitative practitioner research study was to describe middle school algebra students' experiences of learning linear functions through kinesthetic movement. Participants were comprised of 8th grade algebra students. Practitioner research was used because I wanted to improve my teaching so students will have more success in…
Non-commutative linear algebra and plurisubharmonic functions of quaternionic variables
Alesker, Semyon
2003-01-01
We recall known and establish new properties of the Dieudonn\\'e and Moore determinants of quaternionic matrices.Using these linear algebraic results we develop a basic theory of plurisubharmonic functions of quaternionic variables. Then we introduce and briefly discuss quaternionic Monge-Amp\\'ere equations.
Matzke, Orville R.
The purpose of this study was to formulate a linear programming model to simulate a foundation type support program and to apply this model to a state support program for the public elementary and secondary school districts in the State of Iowa. The model was successful in producing optimal solutions to five objective functions proposed for…
Interpolation of polytopic control Lyapunov functions for discrete–time linear systems
Nguyen, T.T.; Lazar, M.; Spinu, V.; Boje, E.; Xia, X.
2014-01-01
This paper proposes a method for interpolating two (or more) polytopic control Lyapunov functions (CLFs) for discrete--time linear systems subject to polytopic constraints, thereby combining different control objectives. The corresponding interpolated CLF is used for synthesis of a stabilizing
Linear estimates of structure functions from deep inelastic lepton-nucleon scattering data. Part 1
International Nuclear Information System (INIS)
Anikeev, V.B.; Zhigunov, V.P.
1991-01-01
This paper concerns the linear estimation of structure functions from muon(electron)-nucleon scattering. The expressions obtained for the structure functions estimate provide correct analysis of the random error and the bias The bias arises because of the finite number of experimental data and the finite resolution of experiment. The approach suggested may become useful for data handling from experiments at HERA. 9 refs
Directory of Open Access Journals (Sweden)
V. Popov
2013-03-01
Full Text Available In the course of microeconomics it is convenient to use additive functions of requirements in educational purposes, in which the volume of requirements is set by the linear function of the price, revenue and other factors. But in arriving at the substitution effect there is a number of problems in which impossible answers come out. The formula adjustment concluded by the author, which will allow to avoid contradictions, is described in the article.
OSCILLATION BEHAVIOR OF SOLUTIONS FOR EVEN ORDER NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
T.Candan
2006-01-01
Even order neutral functional differential equations are considered. Sufficient conditions for the oscillation behavior of solutions for this differential equation are presented. The new results are presented and some examples are also given.
Ren, Jiagang; Wu, Jing; Zhang, Hua
2015-01-01
In this paper, we prove a large deviation principle of Freidlin-Wentzell's type for the multivalued stochastic differential equations. As an application, we derive a functional iterated logarithm law for the solutions of multivalued stochastic differential equations.
Parameter-dependent PWQ Lyapunov function stability criteria for uncertain piecewise linear systems
Directory of Open Access Journals (Sweden)
Morten Hovd
2018-01-01
Full Text Available The calculation of piecewise quadratic (PWQ Lyapunov functions is addressed in view of stability analysis of uncertain piecewise linear dynamics. As main contribution, the linear matrix inequality (LMI approach proposed in (Johansson and Rantzer, 1998 for the stability analysis of PWL and PWA dynamics is extended to account for parametric uncertainty based on a improved relaxation technique. The results are applied for the analysis of a Phase Locked Loop (PLL benchmark and the ability to guarantee a stability region in the parameter space well beyond the state of the art is demonstrated.
Weighted functional linear regression models for gene-based association analysis.
Belonogova, Nadezhda M; Svishcheva, Gulnara R; Wilson, James F; Campbell, Harry; Axenovich, Tatiana I
2018-01-01
Functional linear regression models are effectively used in gene-based association analysis of complex traits. These models combine information about individual genetic variants, taking into account their positions and reducing the influence of noise and/or observation errors. To increase the power of methods, where several differently informative components are combined, weights are introduced to give the advantage to more informative components. Allele-specific weights have been introduced to collapsing and kernel-based approaches to gene-based association analysis. Here we have for the first time introduced weights to functional linear regression models adapted for both independent and family samples. Using data simulated on the basis of GAW17 genotypes and weights defined by allele frequencies via the beta distribution, we demonstrated that type I errors correspond to declared values and that increasing the weights of causal variants allows the power of functional linear models to be increased. We applied the new method to real data on blood pressure from the ORCADES sample. Five of the six known genes with P models. Moreover, we found an association between diastolic blood pressure and the VMP1 gene (P = 8.18×10-6), when we used a weighted functional model. For this gene, the unweighted functional and weighted kernel-based models had P = 0.004 and 0.006, respectively. The new method has been implemented in the program package FREGAT, which is freely available at https://cran.r-project.org/web/packages/FREGAT/index.html.
Fluctuations of two-time quantities and non-linear response functions
International Nuclear Information System (INIS)
Corberi, F; Lippiello, E; Sarracino, A; Zannetti, M
2010-01-01
We study the fluctuations of the autocorrelation and autoresponse functions and, in particular, their variances and covariance. In a first general part of the paper, we show the equivalence of the variance of the response function to the second-order susceptibility of a composite operator, and we derive an equilibrium fluctuation-dissipation theorem beyond linear order, relating it to the other variances. In a second part of the paper we apply the formalism in the study of non-disordered ferromagnets, in equilibrium or in the coarsening kinetics following a critical or sub-critical quench. We show numerically that the variances and the non-linear susceptibility obey scaling with respect to the coherence length ξ in equilibrium, and with respect to the growing length L(t) after a quench, similar to what is known for the autocorrelation and the autoresponse functions
KEELE, Minimization of Nonlinear Function with Linear Constraints, Variable Metric Method
International Nuclear Information System (INIS)
Westley, G.W.
1975-01-01
1 - Description of problem or function: KEELE is a linearly constrained nonlinear programming algorithm for locating a local minimum of a function of n variables with the variables subject to linear equality and/or inequality constraints. 2 - Method of solution: A variable metric procedure is used where the direction of search at each iteration is obtained by multiplying the negative of the gradient vector by a positive definite matrix which approximates the inverse of the matrix of second partial derivatives associated with the function. 3 - Restrictions on the complexity of the problem: Array dimensions limit the number of variables to 20 and the number of constraints to 50. These can be changed by the user
Theoretical foundations of functional data analysis, with an introduction to linear operators
Hsing, Tailen
2015-01-01
Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA).The self-contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self-adjoint and non self-adjoint operators. The probabilistic foundation for FDA is described from the
Computation of Value Functions in Nonlinear Differential Games with State Constraints
Botkin, Nikolai; Hoffmann, Karl-Heinz; Mayer, Natalie; Turova, Varvara
2013-01-01
Finite-difference schemes for the computation of value functions of nonlinear differential games with non-terminal payoff functional and state constraints are proposed. The solution method is based on the fact that the value function is a
International Nuclear Information System (INIS)
Zolotarev, Vladimir A
2009-01-01
Functional models are constructed for commutative systems {A 1 ,A 2 } of bounded linear non-self-adjoint operators which do not contain dissipative operators (which means that ξ 1 A 1 +ξ 2 A 2 is not a dissipative operator for any ξ 1 , ξ 2 element of R). A significant role is played here by the de Branges transform and the function classes occurring in this context. Classes of commutative systems of operators {A 1 ,A 2 } for which such a construction is possible are distinguished. Realizations of functional models in special spaces of meromorphic functions on Riemann surfaces are found, which lead to reasonable analogues of de Branges spaces on these Riemann surfaces. It turns out that the functions E(p) and E-tilde(p) determining the order of growth in de Branges spaces on Riemann surfaces coincide with the well-known Baker-Akhiezer functions. Bibliography: 11 titles.
International Nuclear Information System (INIS)
Yamasaki, K; Iwayama, T; Yajima, T
2011-01-01
The Okubo-Weiss field, frequently used for partitioning incompressible two-dimensional (2D) fluids into coherent and incoherent regions, corresponds to the Gaussian curvature of the stream function. Therefore, we consider the differential geometric structures of stream functions and calculate the Gaussian curvatures of some basic flows. We find the following. (I) The vorticity corresponds to the mean curvature of the stream function. Thus, the stream-function surface for an irrotational flow and that for a parallel shear flow correspond to the minimal surface and a developable surface, respectively. (II) The relationship between the coherency and the magnitude of the vorticity is interpreted by the curvatures. (III) Using the Gaussian curvature, stability of single and double point vortex streets is analyzed. The results of this analysis are compared with the well-known linear stability analysis. (IV) Conformal mapping in fluid mechanics is the physical expression of the geometric fact that the sign of the Gaussian curvature does not change in conformal mapping. These findings suggest that the curvatures of stream functions are useful for understanding the geometric structure of an incompressible 2D flow.
FUNCTIONAL FECAL INCONTINENCE IN CHILDREN (DIFFERENTIAL DIAGNOSTICS AND TREATMENT APPROACHES
Directory of Open Access Journals (Sweden)
V.N. Kopeikin
2009-01-01
Full Text Available Impairment of the intestinal content continence, a common clinical situation with various pathogenetic mechanisms. Disease proceeds with the child’s maladjustment events. 33 cases of encopresis have been analyzed. This condition has various clinical and instrumental diagnostic criteria depending on the origin which simplifies differential diagnostics. Using a differential diagnostics table helps expedite the process of making a diagnosis and hence start an adequate treatment in a timely manner.Key words: encopresis, differential diagnostics, treatment, children.
Differential Connexin Function Enhances Self-Renewal in Glioblastoma
Directory of Open Access Journals (Sweden)
Masahiro Hitomi
2015-05-01
Full Text Available The coordination of complex tumor processes requires cells to rapidly modify their phenotype and is achieved by direct cell-cell communication through gap junction channels composed of connexins. Previous reports have suggested that gap junctions are tumor suppressive based on connexin 43 (Cx43, but this does not take into account differences in connexin-mediated ion selectivity and intercellular communication rate that drive gap junction diversity. We find that glioblastoma cancer stem cells (CSCs possess functional gap junctions that can be targeted using clinically relevant compounds to reduce self-renewal and tumor growth. Our analysis reveals that CSCs express Cx46, while Cx43 is predominantly expressed in non-CSCs. During differentiation, Cx46 is reduced, while Cx43 is increased, and targeting Cx46 compromises CSC maintenance. The difference between Cx46 and Cx43 is reflected in elevated cell-cell communication and reduced resting membrane potential in CSCs. Our data demonstrate a pro-tumorigenic role for gap junctions that is dependent on connexin expression.
Racial differences in hypertension knowledge: effects of differential item functioning.
Ayotte, Brian J; Trivedi, Ranak; Bosworth, Hayden B
2009-01-01
Health-related knowledge is an important component in the self-management of chronic illnesses. The objective of this study was to more accurately assess racial differences in hypertension knowledge by using a latent variable modeling approach that controlled for sociodemographic factors and accounted for measurement issues in the assessment of hypertension knowledge. Cross-sectional data from 1,177 participants (45% African American; 35% female) were analyzed using a multiple indicator multiple causes (MIMIC) modeling approach. Available sociodemographic data included race, education, sex, financial status, and age. All participants completed six items on a hypertension knowledge questionnaire. Overall, the final model suggested that females, Whites, and patients with at least a high school diploma had higher latent knowledge scores than males, African Americans, and patients with less than a high school diploma, respectively. The model also detected differential item functioning (DIF) based on race for two of the items. Specifically, the error rate for African Americans was lower than would be expected given the lower level of latent knowledge on the items, on the questions related to: (a) the association between high blood pressure and kidney disease, and (b) the increased risk African Americans have for developing hypertension. Not accounting for DIF resulted in the difference between Whites and African Americans to be underestimated. These results are discussed in the context of the need for careful measurement of health-related constructs, and how measurement-related issues can result in an inaccurate estimation of racial differences in hypertension knowledge.
Antigen Availability Shapes T Cell Differentiation and Function during Tuberculosis.
Moguche, Albanus O; Musvosvi, Munyaradzi; Penn-Nicholson, Adam; Plumlee, Courtney R; Mearns, Helen; Geldenhuys, Hennie; Smit, Erica; Abrahams, Deborah; Rozot, Virginie; Dintwe, One; Hoff, Søren T; Kromann, Ingrid; Ruhwald, Morten; Bang, Peter; Larson, Ryan P; Shafiani, Shahin; Ma, Shuyi; Sherman, David R; Sette, Alessandro; Lindestam Arlehamn, Cecilia S; McKinney, Denise M; Maecker, Holden; Hanekom, Willem A; Hatherill, Mark; Andersen, Peter; Scriba, Thomas J; Urdahl, Kevin B
2017-06-14
CD4 T cells are critical for protective immunity against Mycobacterium tuberculosis (Mtb), the cause of tuberculosis (TB). Yet to date, TB vaccine candidates that boost antigen-specific CD4 T cells have conferred little or no protection. Here we examined CD4 T cell responses to two leading TB vaccine antigens, ESAT-6 and Ag85B, in Mtb-infected mice and in vaccinated humans with and without underlying Mtb infection. In both species, Mtb infection drove ESAT-6-specific T cells to be more differentiated than Ag85B-specific T cells. The ability of each T cell population to control Mtb in the lungs of mice was restricted for opposite reasons: Ag85B-specific T cells were limited by reduced antigen expression during persistent infection, whereas ESAT-6-specific T cells became functionally exhausted due to chronic antigenic stimulation. Our findings suggest that different vaccination strategies will be required to optimize protection mediated by T cells recognizing antigens expressed at distinct stages of Mtb infection. Copyright © 2017 Elsevier Inc. All rights reserved.
Measurement equivalence and differential item functioning in family psychology.
Bingenheimer, Jeffrey B; Raudenbush, Stephen W; Leventhal, Tama; Brooks-Gunn, Jeanne
2005-09-01
Several hypotheses in family psychology involve comparisons of sociocultural groups. Yet the potential for cross-cultural inequivalence in widely used psychological measurement instruments threatens the validity of inferences about group differences. Methods for dealing with these issues have been developed via the framework of item response theory. These methods deal with an important type of measurement inequivalence, called differential item functioning (DIF). The authors introduce DIF analytic methods, linking them to a well-established framework for conceptualizing cross-cultural measurement equivalence in psychology (C.H. Hui and H.C. Triandis, 1985). They illustrate the use of DIF methods using data from the Project on Human Development in Chicago Neighborhoods (PHDCN). Focusing on the Caregiver Warmth and Environmental Organization scales from the PHDCN's adaptation of the Home Observation for Measurement of the Environment Inventory, the authors obtain results that exemplify the range of outcomes that may result when these methods are applied to psychological measurement instruments. (c) 2005 APA, all rights reserved
Directory of Open Access Journals (Sweden)
Luiz Augusto da Cruz Meleiro
2005-06-01
Full Text Available In this work a MIMO non-linear predictive controller was developed for an extractive alcoholic fermentation process. The internal model of the controller was represented by two MISO Functional Link Networks (FLNs, identified using simulated data generated from a deterministic mathematical model whose kinetic parameters were determined experimentally. The FLN structure presents as advantages fast training and guaranteed convergence, since the estimation of the weights is a linear optimization problem. Besides, the elimination of non-significant weights generates parsimonious models, which allows for fast execution in an MPC-based algorithm. The proposed algorithm showed good potential in identification and control of non-linear processes.Neste trabalho um controlador preditivo não linear multivariável foi desenvolvido para um processo de fermentação alcoólica extrativa. O modelo interno do controlador foi representado por duas redes do tipo Functional Link (FLN, identificadas usando dados de simulação gerados a partir de um modelo validado experimentalmente. A estrutura FLN apresenta como vantagem o treinamento rápido e convergência garantida, já que a estimação dos seus pesos é um problema de otimização linear. Além disso, a eliminação de pesos não significativos gera modelos parsimoniosos, o que permite a rápida execução em algoritmos de controle preditivo baseado em modelo. Os resultados mostram que o algoritmo proposto tem grande potencial para identificação e controle de processos não lineares.
Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki
2017-05-01
The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
СREATION OF CORRELATION FUNCTIONS OF LINEAR CONTINUOUS SYSTEMS BASED ON THEIR FUNDAMENTAL MATRICES
Directory of Open Access Journals (Sweden)
N. A. Vunder
2015-11-01
Full Text Available The paper presents a method of creating correlation matrices and functions of the state vectors and outputs of the linear continuous systems functioning under the conditions of stochastic stationary, in a broad sense, effects. Fundamental matrices form the basis of the method. We have shown that for the linear continuous systems with single dimensional input and single dimensional output the correlation output function of such system can be found as the free movement of this system generated by its initial state. This state is constructed from the variance matrix of the state vector and the transposed output matrix. We have elucidated that when a continuous system belongs to a class of multi-dimensional input – multi-dimensional output systems, the following options are available for solving the problem of creation of the correlation function of a linear system. The first option is to partition the system into separate channels. Then the approach developed for systems with onedimensional input and one-dimensional output is applied to each of the separate channels. The second option is used to preserve the vector nature of the stochastic external influence. It consists in partition of output vector to scalar components by separating output matrix into separate rows with subsequent formation of the correlation function according to the scheme for single dimensional input and single dimensional output type systems. The third option is based on the scalarization of matrix correlation output function by applying the singular value decomposition to it. That gives the possibility to form scalar majorant and minorant of correlation output functions. We have established that a key component of a computational procedure of creating the correlation function of continuous linear system is a variance matrix of the system state vector. In the case of functioning under an exogenous stochastic effect like "white noise" the variance matrix is calculated by
On New p-Valent Meromorphic Function Involving Certain Differential and Integral Operators
Directory of Open Access Journals (Sweden)
Aabed Mohammed
2014-01-01
Full Text Available We define new subclasses of meromorphic p-valent functions by using certain differential operator. Combining the differential operator and certain integral operator, we introduce a general p-valent meromorphic function. Then we prove the sufficient conditions for the function in order to be in the new subclasses.
In vitro differentiation of mouse embryonic stem cells into functional ...
African Journals Online (AJOL)
Studies have shown that embryonic stem (ES) cells can be successfully differentiated into liver cells, which offer the potential unlimited cell source for a variety of end-stage liver disease. In our study, in order to induce mouse ES cells to differentiate into hepatocyte-like cells under chemically defined conditions, ES cells ...
A New Comparison Principle for Impulsive Functional Differential Equations
Directory of Open Access Journals (Sweden)
Gang Li
2015-01-01
Full Text Available We establish a new comparison principle for impulsive differential systems with time delay. Then, using this comparison principle, we obtain some sufficient conditions for several stabilities of impulsive delay differential equations. Finally, we present an example to show the effectiveness of our results.
Pei, Soo-Chang; Ding, Jian-Jiun
2005-03-01
Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fourier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical transform. These finite transforms are more flexible than the fi-FT and can model much more generalized optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to analyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-sized one-stage or multiple-stage optical systems.
International Nuclear Information System (INIS)
Kumar, K. Vasanth; Porkodi, K.; Rocha, F.
2008-01-01
A comparison of linear and non-linear regression method in selecting the optimum isotherm was made to the experimental equilibrium data of methylene blue sorption by activated carbon. The r 2 was used to select the best fit linear theoretical isotherm. In the case of non-linear regression method, six error functions, namely coefficient of determination (r 2 ), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), average relative error (ARE), sum of the errors squared (ERRSQ) and sum of the absolute errors (EABS) were used to predict the parameters involved in the two and three parameter isotherms and also to predict the optimum isotherm. For two parameter isotherm, MPSD was found to be the best error function in minimizing the error distribution between the experimental equilibrium data and predicted isotherms. In the case of three parameter isotherm, r 2 was found to be the best error function to minimize the error distribution structure between experimental equilibrium data and theoretical isotherms. The present study showed that the size of the error function alone is not a deciding factor to choose the optimum isotherm. In addition to the size of error function, the theory behind the predicted isotherm should be verified with the help of experimental data while selecting the optimum isotherm. A coefficient of non-determination, K 2 was explained and was found to be very useful in identifying the best error function while selecting the optimum isotherm
Non-Linear Back-propagation: Doing Back-Propagation withoutDerivatives of the Activation Function
DEFF Research Database (Denmark)
Hertz, John; Krogh, Anders Stærmose; Lautrup, Benny
1997-01-01
The conventional linear back-propagation algorithm is replaced by a non-linear version, which avoids the necessity for calculating the derivative of the activation function. This may be exploited in hardware realizations of neural processors. In this paper we derive the non-linear back...
Nonparametric adaptive estimation of linear functionals for low frequency observed Lévy processes
Kappus, Johanna
2012-01-01
For a Lévy process X having finite variation on compact sets and finite first moments, Âµ( dx) = xv( dx) is a finite signed measure which completely describes the jump dynamics. We construct kernel estimators for linear functionals of Âµ and provide rates of convergence under regularity assumptions. Moreover, we consider adaptive estimation via model selection and propose a new strategy for the data driven choice of the smoothing parameter.
Two-fluid static spherical configurations with linear mass function in the Einstein-Cartan theory
International Nuclear Information System (INIS)
Gallakhmetov, A.M.
2002-01-01
In the framework of the Einstein-Cartan theory, two-fluid static spherical configurations with linear mass function are considered. One of these modelling anisotropic matter distributions within star and the other fluid is a perfect fluid representing a source of torsion. It is shown that the solutions of the Einstein equations for anisotropic relativistic spheres in General Relativity may generate the solutions in the Einstein-Cartan theory. Some exact solutions are obtained
Czech Academy of Sciences Publication Activity Database
Haslinger, Jaroslav; Repin, S.; Sysala, Stanislav
2016-01-01
Roč. 61, č. 5 (2016), s. 527-564 ISSN 0862-7940 R&D Projects: GA MŠk LQ1602 Institutional support: RVO:68145535 Keywords : functionals with linear growth * limit load * truncation method * perfect plasticity Subject RIV: BA - General Mathematics Impact factor: 0.618, year: 2016 http://link.springer.com/article/10.1007/s10492-016-0146-6
Localization of periodic orbits of polynomial vector fields of even degree by linear functions
Energy Technology Data Exchange (ETDEWEB)
Starkov, Konstantin E. [CITEDI-IPN, Av. del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)] e-mail: konst@citedi.mx
2005-08-01
This paper is concerned with the localization problem of periodic orbits of polynomial vector fields of even degree by using linear functions. Conditions of the localization of all periodic orbits in sets of a simple structure are obtained. Our results are based on the solution of the conditional extremum problem and the application of homogeneous polynomial forms of even degrees. As examples, the Lanford system, the jerky system with one quadratic monomial and a quartically perturbed harmonic oscillator are considered.
Localization of periodic orbits of polynomial vector fields of even degree by linear functions
International Nuclear Information System (INIS)
Starkov, Konstantin E.
2005-01-01
This paper is concerned with the localization problem of periodic orbits of polynomial vector fields of even degree by using linear functions. Conditions of the localization of all periodic orbits in sets of a simple structure are obtained. Our results are based on the solution of the conditional extremum problem and the application of homogeneous polynomial forms of even degrees. As examples, the Lanford system, the jerky system with one quadratic monomial and a quartically perturbed harmonic oscillator are considered
Bogdan, V. M.; Bond, V. B.
1980-01-01
The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.
Asiri, Sharefa M.
2016-10-20
In this paper, modulating functions-based method is proposed for estimating space–time-dependent unknowns in one-dimensional partial differential equations. The proposed method simplifies the problem into a system of algebraic equations linear in unknown parameters. The well-posedness of the modulating functions-based solution is proved. The wave and the fifth-order KdV equations are used as examples to show the effectiveness of the proposed method in both noise-free and noisy cases.
Differential Retention of Gene Functions in a Secondary Metabolite Cluster.
Reynolds, Hannah T; Slot, Jason C; Divon, Hege H; Lysøe, Erik; Proctor, Robert H; Brown, Daren W
2017-08-01
In fungi, distribution of secondary metabolite (SM) gene clusters is often associated with host- or environment-specific benefits provided by SMs. In the plant pathogen Alternaria brassicicola (Dothideomycetes), the DEP cluster confers an ability to synthesize the SM depudecin, a histone deacetylase inhibitor that contributes weakly to virulence. The DEP cluster includes genes encoding enzymes, a transporter, and a transcription regulator. We investigated the distribution and evolution of the DEP cluster in 585 fungal genomes and found a wide but sporadic distribution among Dothideomycetes, Sordariomycetes, and Eurotiomycetes. We confirmed DEP gene expression and depudecin production in one fungus, Fusarium langsethiae. Phylogenetic analyses suggested 6-10 horizontal gene transfers (HGTs) of the cluster, including a transfer that led to the presence of closely related cluster homologs in Alternaria and Fusarium. The analyses also indicated that HGTs were frequently followed by loss/pseudogenization of one or more DEP genes. Independent cluster inactivation was inferred in at least four fungal classes. Analyses of transitions among functional, pseudogenized, and absent states of DEP genes among Fusarium species suggest enzyme-encoding genes are lost at higher rates than the transporter (DEP3) and regulatory (DEP6) genes. The phenotype of an experimentally-induced DEP3 mutant of Fusarium did not support the hypothesis that selective retention of DEP3 and DEP6 protects fungi from exogenous depudecin. Together, the results suggest that HGT and gene loss have contributed significantly to DEP cluster distribution, and that some DEP genes provide a greater fitness benefit possibly due to a differential tendency to form network connections. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.
Roquin Paralogs Differentially Regulate Functional NKT Cell Subsets.
Drees, Christoph; Vahl, J Christoph; Bortoluzzi, Sabrina; Heger, Klaus D; Fischer, Julius C; Wunderlich, F Thomas; Peschel, Christian; Schmidt-Supprian, Marc
2017-04-01
NKT cells represent a small subset of glycolipid-recognizing T cells that are heavily implicated in human allergic, autoimmune, and malignant diseases. In the thymus, precursor cells recognize self-glycolipids by virtue of their semi-invariant TCR, which triggers NKT cell lineage commitment and maturation. During their development, NKT cells are polarized into the NKT1, NKT2, and NKT17 subsets, defined through their cytokine-secretion patterns and the expression of key transcription factors. However, we have largely ignored how the differentiation into the NKT cell subsets is regulated. In this article, we describe the mRNA-binding Roquin-1 and -2 proteins as central regulators of murine NKT cell fate decisions. In the thymus, T cell-specific ablation of the Roquin paralogs leads to a dramatic expansion of NKT17 cells, whereas peripheral mature NKT cells are essentially absent. Roquin-1/2-deficient NKT17 cells show exaggerated lineage-specific expression of nearly all NKT17-defining proteins tested. We show through mixed bone marrow chimera experiments that NKT17 polarization is mediated through cell-intrinsic mechanisms early during NKT cell development. In contrast, the loss of peripheral NKT cells is due to cell-extrinsic factors. Surprisingly, Roquin paralog-deficient NKT cells are, in striking contrast to conventional T cells, compromised in their ability to secrete cytokines. Altogether, we show that Roquin paralogs regulate the development and function of NKT cell subsets in the thymus and periphery. Copyright © 2017 by The American Association of Immunologists, Inc.
Rusyaman, E.; Parmikanti, K.; Chaerani, D.; Asefan; Irianingsih, I.
2018-03-01
One of the application of fractional ordinary differential equation is related to the viscoelasticity, i.e., a correlation between the viscosity of fluids and the elasticity of solids. If the solution function develops into function with two or more variables, then its differential equation must be changed into fractional partial differential equation. As the preliminary study for two variables viscoelasticity problem, this paper discusses about convergence analysis of function sequence which is the solution of the homogenous fractional partial differential equation. The method used to solve the problem is Homotopy Analysis Method. The results show that if given two real number sequences (αn) and (βn) which converge to α and β respectively, then the solution function sequences of fractional partial differential equation with order (αn, βn) will also converge to the solution function of fractional partial differential equation with order (α, β).
The application of He's exp-function method to a nonlinear differential-difference equation
International Nuclear Information System (INIS)
Dai Chaoqing; Cen Xu; Wu Shengsheng
2009-01-01
This paper applies He's exp-function method, which was originally proposed to find new exact travelling wave solutions of nonlinear partial differential equations (NPDEs) or coupled nonlinear partial differential equations (CNPDEs), to a nonlinear differential-difference equation, and some new travelling wave solutions are obtained.
Yi, Sun; Nelson, Patrick W; Ulsoy, A Galip
2007-04-01
In a turning process modeled using delay differential equations (DDEs), we investigate the stability of the regenerative machine tool chatter problem. An approach using the matrix Lambert W function for the analytical solution to systems of delay differential equations is applied to this problem and compared with the result obtained using a bifurcation analysis. The Lambert W function, known to be useful for solving scalar first-order DDEs, has recently been extended to a matrix Lambert W function approach to solve systems of DDEs. The essential advantages of the matrix Lambert W approach are not only the similarity to the concept of the state transition matrix in lin ear ordinary differential equations, enabling its use for general classes of linear delay differential equations, but also the observation that we need only the principal branch among an infinite number of roots to determine the stability of a system of DDEs. The bifurcation method combined with Sturm sequences provides an algorithm for determining the stability of DDEs without restrictive geometric analysis. With this approach, one can obtain the critical values of delay, which determine the stability of a system and hence the preferred operating spindle speed without chatter. We apply both the matrix Lambert W function and the bifurcation analysis approach to the problem of chatter stability in turning, and compare the results obtained to existing methods. The two new approaches show excellent accuracy and certain other advantages, when compared to traditional graphical, computational and approximate methods.
In vitro differentiation of mouse embryonic stem cells into functional ...
African Journals Online (AJOL)
Jane
2011-08-22
Aug 22, 2011 ... hepatocyte transplantation therapy and toxicity screening in drug discovery. Key words: Embryonic stem cells, hepatic-like cells, in vitro differentiation, sodium butyrate, ... from embryonic stem (ES) cell or induced pluripotent.
Institute of Scientific and Technical Information of China (English)
LI Shoufu
2005-01-01
A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified theoretical foundation for the stability analysis of solutions to nonlinear stiff problems in ordinary differential equations(ODEs), delay differential equations(DDEs), integro-differential equations(IDEs) and VFDEs of other type which appear in practice.
An existence theorem for a type of functional differential equation with infinite delay
Izsak, F.
We prove an existence theorem for a functional differential equation with infinite delay using the Schauder fixpoint theorem. We extend a result in [19] applying the fixed point procedure in an appropriate function space.
Fractional Complex Transform and exp-Function Methods for Fractional Differential Equations
Directory of Open Access Journals (Sweden)
Ahmet Bekir
2013-01-01
Full Text Available The exp-function method is presented for finding the exact solutions of nonlinear fractional equations. New solutions are constructed in fractional complex transform to convert fractional differential equations into ordinary differential equations. The fractional derivatives are described in Jumarie's modified Riemann-Liouville sense. We apply the exp-function method to both the nonlinear time and space fractional differential equations. As a result, some new exact solutions for them are successfully established.
On functional determinants of matrix differential operators with multiple zero modes
Falco, G.M.; Fedorenko, Andrey A; Gruzberg, Ilya A
2017-01-01
We generalize the method of computing functional determinants with a single excluded zero eigenvalue developed by McKane and Tarlie to differential operators with multiple zero eigenvalues. We derive general formulas for such functional determinants of $r\\times r$ matrix second order differential
The MIMIC Model as a Tool for Differential Bundle Functioning Detection
Finch, W. Holmes
2012-01-01
Increasingly, researchers interested in identifying potentially biased test items are encouraged to use a confirmatory, rather than exploratory, approach. One such method for confirmatory testing is rooted in differential bundle functioning (DBF), where hypotheses regarding potential differential item functioning (DIF) for sets of items (bundles)…
Directory of Open Access Journals (Sweden)
Miguel Flores
2016-11-01
Full Text Available This work aims to classify the DNA sequences of healthy and malignant cancer respectively. For this, supervised and unsupervised classification methods from a functional context are used; i.e. each strand of DNA is an observation. The observations are discretized, for that reason different ways to represent these observations with functions are evaluated. In addition, an exploratory study is done: estimating the mean and variance of each functional type of cancer. For the unsupervised classification method, hierarchical clustering with different measures of functional distance is used. On the other hand, for the supervised classification method, a functional generalized linear model is used. For this model the first and second derivatives are used which are included as discriminating variables. It has been verified that one of the advantages of working in the functional context is to obtain a model to correctly classify cancers by 100%. For the implementation of the methods it has been used the fda.usc R package that includes all the techniques of functional data analysis used in this work. In addition, some that have been developed in recent decades. For more details of these techniques can be consulted Ramsay, J. O. and Silverman (2005 and Ferraty et al. (2006.
Sartabanov, Zhaishylyk A.
2017-09-01
A new approach to the study of periodic by all independent variables system of equations with a differentiation operator solutions along the direction of the main diagonal and with delayed arguments is proposed. The essence of the approach is to reduce the study of the multi-periodic solution of a linear inhomogeneous system to the construction of a solution of a simpler linear differential-difference system on the basis of the method of variating arbitrary constants of the complete integral of a homogeneous system. An integral representation of the unique multiperiodic solution of an inhomogeneous system is presented, expressed by a functional series of terms given by multiple repeated integrals. An estimate is given for the norm of a multi-periodic solution.
Which functional parameters can help differentiate severe asthma from COPD?
Directory of Open Access Journals (Sweden)
Ricardo Marques Dias
2010-03-01
Full Text Available The aim of this study was to identify the respiratory function parameters that help in the accurate diagnosis of asthma and COPD. We studied 20 asthma and 30 COPD patients who underwent lung function tests including spirometry and plethysmography both with bronchodilator test and diffusion with carbon monoxide (DLCO. The tests were performed according to International Guidelines (ATS/ERS. The asthma patients were younger (mean ageÂ =Â 48 than those in the COPD group (mean ageÂ =Â 59 and this group also had more female patients (65% than the COPD group (40%. The results showed a more severe obstruction in the asthma group: FEV1/FVCÂ =Â 59% versus 66% for COPD. There was also a greater bronchodilator response as shown by changes in absolute and percentage values for FEV1 in the asthma group. Average DLCO values were normal in the asthma group (103%P and lower in the COPD (69%. In plethysmography the asthma group had a higher residual volume (%P and a higher airway resistance. We concluded that many functional parameters were useful in distinguishing the asthma and COPD groups. In individual analysis, DLCO was the parameter which best aided in an accurate diagnosis in both groups, with a higher specificity for COPD. The bronchodilator response measured by changes in FEV1 showed a higher sensitivity for asthma. Thus, these two tests are highlighted in the differential diagnosis of obstructive diseases. Resumo: Com o objectivo de identificar parÃ¢metros funcionais respiratÃ³rios que contribuam para o diagnÃ³stico diferencial entre asma e DPOC, estudÃ¡mos 20 asmÃ¡ticos e 30 bronquÃticos, com ou sem enfisema, com os exames usuais de funÃ§Ã£o pulmonar: espirografia, pletismografia e DLCO, prÃ© e pÃ³s-broncodilataÃ§Ã£o para os dois primeiros exames. Os grupos apresentam diferenÃ§as significativas na sua constituiÃ§Ã£o. Os asmÃ¡ticos sÃ£o mais jovens, mÃ©dia de 48 anos, contra 59 anos no grupo com DPOC, e o
Liu, Jian; Miller, William H
2008-09-28
The maximum entropy analytic continuation (MEAC) method is used to extend the range of accuracy of the linearized semiclassical initial value representation (LSC-IVR)/classical Wigner approximation for real time correlation functions. LSC-IVR provides a very effective "prior" for the MEAC procedure since it is very good for short times, exact for all time and temperature for harmonic potentials (even for correlation functions of nonlinear operators), and becomes exact in the classical high temperature limit. This combined MEAC+LSC/IVR approach is applied here to two highly nonlinear dynamical systems, a pure quartic potential in one dimensional and liquid para-hydrogen at two thermal state points (25 and 14 K under nearly zero external pressure). The former example shows the MEAC procedure to be a very significant enhancement of the LSC-IVR for correlation functions of both linear and nonlinear operators, and especially at low temperature where semiclassical approximations are least accurate. For liquid para-hydrogen, the LSC-IVR is seen already to be excellent at T=25 K, but the MEAC procedure produces a significant correction at the lower temperature (T=14 K). Comparisons are also made as to how the MEAC procedure is able to provide corrections for other trajectory-based dynamical approximations when used as priors.
Directory of Open Access Journals (Sweden)
Il Young Song
2015-01-01
Full Text Available This paper focuses on estimation of a nonlinear function of state vector (NFS in discrete-time linear systems with time-delays and model uncertainties. The NFS represents a multivariate nonlinear function of state variables, which can indicate useful information of a target system for control. The optimal nonlinear estimator of an NFS (in mean square sense represents a function of the receding horizon estimate and its error covariance. The proposed receding horizon filter represents the standard Kalman filter with time-delays and special initial horizon conditions described by the Lyapunov-like equations. In general case to calculate an optimal estimator of an NFS we propose using the unscented transformation. Important class of polynomial NFS is considered in detail. In the case of polynomial NFS an optimal estimator has a closed-form computational procedure. The subsequent application of the proposed receding horizon filter and nonlinear estimator to a linear stochastic system with time-delays and uncertainties demonstrates their effectiveness.
Induction of morphological and functional differentiation of human ...
Indian Academy of Sciences (India)
Samaneh Sharif
2017-10-31
Oct 31, 2017 ... model of neuroblastoma cancer. Influence of miR-124 .... a more reliable marker for quantifying the expand of cell differentiation (Thiele et al. ..... results for children with high-risk neuroblastoma treated on a randomized trial of ...
Function spaces and partial differential equations 2 volume set
Taheri, Ali
2015-01-01
This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour.
Function spaces and partial differential equations volume 2 : contemporary analysis
Taheri, Ali
2015-01-01
This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour.
Shilov, Georgi E
1977-01-01
Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.
Sequential double excitations from linear-response time-dependent density functional theory
Energy Technology Data Exchange (ETDEWEB)
Mosquera, Martín A.; Ratner, Mark A.; Schatz, George C., E-mail: g-schatz@northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chen, Lin X. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Ave., Lemont, Illinois 60439 (United States)
2016-05-28
Traditional UV/vis and X-ray spectroscopies focus mainly on the study of excitations starting exclusively from electronic ground states. However there are many experiments where transitions from excited states, both absorption and emission, are probed. In this work we develop a formalism based on linear-response time-dependent density functional theory to investigate spectroscopic properties of excited states. We apply our model to study the excited-state absorption of a diplatinum(II) complex under X-rays, and transient vis/UV absorption of pyrene and azobenzene.