WorldWideScience

Sample records for linear functional copolymers

  1. Responsive linear-dendritic block copolymers.

    Science.gov (United States)

    Blasco, Eva; Piñol, Milagros; Oriol, Luis

    2014-06-01

    The combination of dendritic and linear polymeric structures in the same macromolecule opens up new possibilities for the design of block copolymers and for applications of functional polymers that have self-assembly properties. There are three main strategies for the synthesis of linear-dendritic block copolymers (LDBCs) and, in particular, the emergence of click chemistry has made the coupling of preformed blocks one of the most efficient ways of obtaining libraries of LDBCs. In these materials, the periphery of the dendron can be precisely functionalised to obtain functional LDBCs with self-assembly properties of interest in different technological areas. The incorporation of stimuli-responsive moieties gives rise to smart materials that are generally processed as self-assemblies of amphiphilic LDBCs with a morphology that can be controlled by an external stimulus. Particular emphasis is placed on light-responsive LDBCs. Furthermore, a brief review of the biomedical or materials science applications of LDBCs is presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thin Films of Novel Linear-Dendritic Diblock Copolymers

    Science.gov (United States)

    Iyer, Jyotsna; Hammond, Paula

    1998-03-01

    A series of diblock copolymers with one linear block and one dendrimeric block have been synthesized with the objective of forming ultrathin film nanoporous membranes. Polyethyleneoxide serves as the linear hydrophilic portion of the diblock copolymer. The hyperbranched dendrimeric block consists of polyamidoamine with functional end groups. Thin films of these materials made by spin casting and the Langmuir-Blodgett techniques are being studied. The effect of the polyethylene oxide block size and the number and chemical nature of the dendrimer end group on the nature and stability of the films formed willbe discussed.

  3. Formation of nanophases in epoxy thermosets containing amphiphilic block copolymers with linear and star-like topologies.

    Science.gov (United States)

    Wang, Lei; Zhang, Chongyin; Cong, Houluo; Li, Lei; Zheng, Sixun; Li, Xiuhong; Wang, Jie

    2013-07-11

    In this work, we investigated the effect of topological structures of block copolymers on the formation of the nanophase in epoxy thermosets containing amphiphilic block copolymers. Two block copolymers composed of poly(ε-caprolactone) (PCL) and poly(2,2,2-trifluoroethyl acrylate) (PTFEA) blocks were synthesized to possess linear and star-shaped topologies. The star-shaped block copolymer composed a polyhedral oligomeric silsesquioxane (POSS) core and eight poly(ε-caprolactone)-block-poly(2,2,2-trifluoroethyl acrylate) (PCL-b-PTFEA) diblock copolymer arms. Both block copolymers were synthesized via the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process; they were controlled to have identical compositions of copolymerization and lengths of blocks. Upon incorporating both block copolymers into epoxy thermosets, the spherical PTFEA nanophases were formed in all the cases. However, the sizes of PTFEA nanophases from the star-like block copolymer were significantly lower than those from the linear diblock copolymer. The difference in the nanostructures gave rise to the different glass transition behavior of the nanostructured thermosets. The dependence of PTFEA nanophases on the topologies of block copolymers is interpreted in terms of the conformation of the miscible subchain (viz. PCL) at the surface of PTFEA microdomains and the restriction of POSS cages on the demixing of the thermoset-philic block (viz. PCL).

  4. Functionalization of Block Copolymer Vesicle Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang Meier

    2011-01-01

    Full Text Available In dilute aqueous solutions certain amphiphilic block copolymers self-assemble into vesicles that enclose a small pool of water with a membrane. Such polymersomes have promising applications ranging from targeted drug-delivery devices, to biosensors, and nanoreactors. Interactions between block copolymer membranes and their surroundings are important factors that determine their potential biomedical applications. Such interactions are influenced predominantly by the membrane surface. We review methods to functionalize block copolymer vesicle surfaces by chemical means with ligands such as antibodies, adhesion moieties, enzymes, carbohydrates and fluorophores. Furthermore, surface-functionalization can be achieved by self-assembly of polymers that carry ligands at their chain ends or in their hydrophilic blocks. While this review focuses on the strategies to functionalize vesicle surfaces, the applications realized by, and envisioned for, such functional polymersomes are also highlighted.

  5. TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material

    International Nuclear Information System (INIS)

    Sciancalepore, C; Agostiano, A; Cassano, T; Valentini, A; Curri, M L; Striccoli, M; Mecerreyes, D; Tommasi, R

    2008-01-01

    Original nanocomposites have been obtained by direct incorporation of pre-synthesized oleic acid capped TiO 2 nanorods into properly functionalized poly(methyl methacrylate) copolymers, carrying carboxylic acid groups on the repeating polymer unit. The presence of carboxylic groups on the alkyl chain of the host functionalized copolymer allows an highly homogeneous dispersion of the nanorods in the organic matrix. The prepared TiO 2 /PMMA-co-MA nanocomposites show high optical transparency in the visible region, even at high TiO 2 nanorod content, and tunable linear refractive index depending on the nanoparticle concentration. Finally measurements of nonlinear optical properties of TiO 2 polymer nanocomposites demonstrate a negligible two-photon absorption and a negative value of nonlinear refractive index, highlighting the potential of the nanocomposite for efficient optical devices operating in the visible region

  6. TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material

    Science.gov (United States)

    Sciancalepore, C.; Cassano, T.; Curri, M. L.; Mecerreyes, D.; Valentini, A.; Agostiano, A.; Tommasi, R.; Striccoli, M.

    2008-05-01

    Original nanocomposites have been obtained by direct incorporation of pre-synthesized oleic acid capped TiO2 nanorods into properly functionalized poly(methyl methacrylate) copolymers, carrying carboxylic acid groups on the repeating polymer unit. The presence of carboxylic groups on the alkyl chain of the host functionalized copolymer allows an highly homogeneous dispersion of the nanorods in the organic matrix. The prepared TiO2/PMMA-co-MA nanocomposites show high optical transparency in the visible region, even at high TiO2 nanorod content, and tunable linear refractive index depending on the nanoparticle concentration. Finally measurements of nonlinear optical properties of TiO2 polymer nanocomposites demonstrate a negligible two-photon absorption and a negative value of nonlinear refractive index, highlighting the potential of the nanocomposite for efficient optical devices operating in the visible region.

  7. Functional Nanoporous Polymers from Block Copolymer Precursors

    DEFF Research Database (Denmark)

    Guo, Fengxiao

    Abstract Self-assembly of block copolymers provides well-defined morphologies with characteristic length scales in the nanometer range. Nanoporous polymers prepared by selective removal of one block from self-assembled block copolymers offer great technological promise due to their many potential...... functionalities remains a great challenge due to the limitation of available polymer synthesis and the nanoscale confinement of the porous cavities. The main topic of this thesis is to develop methods for fabrication of functional nanoporous polymers from block copolymer precursors. A method has been developed......, where living anionic polymerization and atom transfer radical polymerization (ATRP) are combined to synthesize a polydimethylsiloxane-b-poly(tert-butyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer precursor. By using either anhydrous hydrogen fluoride or trifluoroacetic acid, PtBA block...

  8. Linear optical absorption response of poly(vinylidene fluoride - trifluoroethylene) copolymers to high gamma dose

    International Nuclear Information System (INIS)

    Medeiros, Adriana S.

    2009-01-01

    Poly(vinylidene fluoride) [PVDF] is a semicrystalline linear homopolymer composed by the repetition of CH 2 - CF 2 monomers. The Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] is a copolymer which is obtained with the random introduction of fluorinated CHF-CF 2 monomers in the PVDF main chain. PVDF, and also its copolymers with TrFE contents ranging from 18 to 63 wt. %, have long been studied for their striking ferroelectric properties and their applications in actuators, transducers and ferroelectric memory. Recent research work around the world have demonstrated that, for TrFE contents ranging from with 30 to 50 wt. %, the copolymer can have its ferroelectric properties modified by high doses of ionizing radiation, with the appearing of radio-induced relaxor ferroelectric features. These studies have lead us to investigate the possible use of these copolymers as high dose dosemeters, once the reported amount of induced C=C conjugated bonds after X-ray, UV and gamma irradiation seems to be a function of the delivered radiation dose. In a first investigation for doses ranging from 0.1 to 100 kGy we found out a linear relation between the gamma radiation dose and the absorption peak intensities in the UV region of the spectrum, i.e., at 223 and 274 nm. The absorption peak at 223 nm is the most sensitive to gamma rays and can be used for detecting gamma doses ranging from 0.3 to 75 kGy. Simultaneously, the absorption peak at 274 nm can be used for doses ranging from 1 to 100 kGy. Now, in the present work, we extended the investigation to gamma doses up to 3 MGy. Particularly, this study is focused in the optical absorption peak at 274 nm, corresponding to the radio-induction of triplets of conjugated C=C double bonds. The investigation revealed a linear correlation between the gamma dose and peak intensity at 274 nm for gamma doses ranging from 0.1 to more than 750 KGy, with a huge extension of the original usable dose range. Calorimetric data revealed a

  9. Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation.

    Science.gov (United States)

    Zydziak, Nicolas; Konrad, Waldemar; Feist, Florian; Afonin, Sergii; Weidner, Steffen; Barner-Kowollik, Christopher

    2016-11-30

    Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequence-defined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy-combining sequential and modular concepts-enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read. We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain.

  10. Assessment of ethylene vinyl-acetate copolymer samples exposed to γ-rays via linearity analyses

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Lucas N. de; Nascimento, Eriberto O. do; Schimidt, Fernando [Instituto Federal de Educação, Ciência e Tecnologia de Goiás (IFG), Goiânia, GO (Brazil); Antonio, Patrícia L.; Caldas, Linda V.E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Materials with the potential to become dosimeters are of interest in radiation physics. In this research, the materials were analyzed and compared in relation to their linearity ranges. Samples of ethylene vinyl-acetate copolymer (EVA) were irradiated with doses from 10 Gy to 10 kGy using a {sup 60}Co Gamma-Cell system 220 and evaluated with the FTIR technique. The linearity analyses were applied through two methodologies, searching for linear regions in their response. The results show that both applied analyses indicate linear regions in defined dose interval. The radiation detectors EVA can be useful for radiation dosimetry in intermediate and high doses. (author)

  11. The Preparation and Characterization of Tourmaline-Containing Functional Copolymer p (VST/MMA/BA

    Directory of Open Access Journals (Sweden)

    Yingmo Hu

    2018-01-01

    Full Text Available Tourmaline was modified with vinyl triethoxysilane containing double bond to prepare the polymerizable organic vinylsiliconoxyl tourmaline (VST and then copolymerized with methyl methacrylate (MMA and butyl acrylate (BA to produce the tourmaline-containing functional copolymer p (VST/MMA/BA. The structures and morphologies of VST and p (VST/MMA/BA copolymer were characterized by IR, SEM, and EDX. The experimental results indicated that tourmaline was introduced into the copolymer via surface modification and the tourmaline-containing functional copolymer was obtained by a copolymerization process with MMA and BA. The prepared p (VST/MMA/BA copolymer displayed excellent storage stabilities, high far-infrared radiation and negative ion releasing performances, and good mechanical properties.

  12. Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Díaz, A.; Valle, L.; Franco, L. del [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Sarasua, J.R. [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain); Estrany, F. [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Puiggalí, J., E-mail: Jordi.Puiggali@upc.es [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain)

    2014-09-01

    Lactide and trimethylene carbonate copolymers were successfully grafted with polyethylene glycol via previous functionalization with maleic anhydride and using N,N′-diisopropylcarbodiimide as condensing agent. Maleinization led to moderate polymer degradation. Specifically, the weight average molecular weight decreased from 36,200 to 30,200 g/mol for the copolymer having 20 mol% of trimethylene carbonate units. Copolymers were characterized by differential scanning calorimetry, thermogravimetry and X-ray diffraction. Morphology of spherulites and lamellar crystals was evaluated with optical and atomic force microscopies, respectively. The studied copolymers were able to crystallize despite the randomness caused by the trimethylene carbonate units and the lateral groups. Contact angle measurements indicated that PEG grafted copolymers were more hydrophilic than parent copolymers. This feature justified that enzymatic degradation in lipase medium and proliferation of both epithelial-like and fibroblast-like cells were enhanced. Grafted copolymers were appropriate to prepare regular drug loaded microspheres by the oil-in-water emulsion method. Triclosan release from loaded microspheres was evaluated in two media. - Highlights: • Pegylated copolymers of lactide and trimethylene carbonate have been synthesized. • Grafting with polyethylene glycol was able via maleic anhydride functionalization. • Drug-loaded microspheres could be prepared from new pegylated copolymers. • Hydrophilicity of lactide/trimethylene carbonate copolymers increased by pegylation. • New pegylated copolymers supported cell adhesion and proliferation.

  13. Synthesis and characterization of functional acrylic copolymers via RAFT mini-emulsion polymerization

    Science.gov (United States)

    Yılmaz, Onur; Özkan, ćiǧdem Kılıçarislan; Yılmaz, Catalina N.; Yorgancıoǧlu, Ali; Özgünay, Hasan; Karavana, Hüseyin Ata

    2017-12-01

    Copolymers bearing reactive functional groups with controlled molecular weights are of importance since they can be used in many fields such as composites, coatings, membranes, catalysis, biology, optoelectronics, pharmaceuticals, etc. In the present study low molecular weight copolymers based on butyl acrylate (BA) and methyl methacrylate (MMA) in combination with reactive functional monomers of vinyl trietoxysilane (VTES), 3-trimetoxysilylpropyl methacrylate (TMSPMA) and glycidyl methacrylate (GMA) were synthesized via RAFT mini-emulsion technique using 2-cyano 2-propyldodecyldithiocarbonate as CTA agent. The results showed that the average molecular weights of copolymers were close to the theoretical values. On the other hand, PDI values were found to be higher than conventional RAFT polymers. The particle sizes of the latexes were small with very homogenous distributions and good stability. FTIR, H-NMR and TGA results verified the success of copolymer syntheses.

  14. A series of poly(butylimidazolium) ionic liquid functionalized copolymers for anion exchange membranes

    Science.gov (United States)

    Ouadah, Amina; Xu, Hulin; Luo, Tianwei; Gao, Shuitao; Wang, Xing; Fang, Zhou; Jing, Chaojun; Zhu, Changjin

    2017-12-01

    A new series of ionic liquid functionalized copolymers for anion exchange membranes (AEM) is prepared. Poly(butylvinylimidazolium)(b-VIB) is copolymerized with para-methyl styrene (p-MS) by the radical polymerization formed block copolymers b-VIB/p-MS, which is crosslinked with poly(diphenylether bibenzimidazole) (DPEBI) providing the desired materials b-VIB/p-MS/DPEBI. Structures are characterized via H1NMR, FTIR spectra and elemental analysis. The b-VIB blocks offer the anion conduction function while DPEBI moieties contribute to enhancing other properties. The prepared membranes display chloride conductivity as high as 19.5 mS/cm at 25 °C and 69.2 mS/cm at 100 °C-higher than that of the commercial membrane tokuyuama A201-. Their hydroxide conductivity reaches 35.7 Scm-1 at 25 °C and 73.1 Scm-1 at 100 °C. The membranes showed a linear Arrhenius behavior in the anion conduction, low activation energies and distinguished nanophase separation of hydrophilic/hydrophobic regions by the transmission electron microscopy (TEM) studies. Thermal investigations using TGA and DSC confirm that the membranes are stable up to 250 °C. Particularly, drastically alkaline stability due to no decrease in the hydroxide conductivity after 168 h of treatment with 2M KOH.

  15. Radiation cross-linking of ethylene vinyl alcohol copolymer functionalized with m-isopropenyl-α,α-dimethyl benzyl isocyanate

    International Nuclear Information System (INIS)

    Ekman, K.B.; Naesman, J.H.

    1993-01-01

    An ethylene vinyl alcohol copolymer was functionalized with m-isopropenyl-α,α-dimethyl benzyl isocyanate using reactive processing in a mixer. The functionalization introduces pendant unsaturation to the polymer, which allows radiation cross-linked to gel contents >70% at radiation doses below 100 kGy. Unfunctionalized ethylene vinyl alcohol copolymer, on the other hand, forms no gel upon irradiation. The functionalization was completed within a few minutes of reactive mixing, which was confirmed with both FTIR and 13 C-NMR measurements. The oxygen permeability of ethylene vinyl alcohol copolymer increased with increasing degree of functionalization, and irradiation of the samples formed trapped radicals, which act as oxygen scavengers. Consequently no oxygen permeability was detected. However, radical activity was inhibited by annealing the samples at 110 C resulting in a 24% higher oxygen permeability value for the irradiated unfunctionalized copolymer. The oxygen permeability values of the irradiated functionalized samples were approximately 13% lower. Laminates of m-isopropenyl-α,α-dimethyl benzyl isocyanate functionalized ethylene vinyl alcohol copolymer and m-isopropenyl-α,α-dimethyl benzyl isocyanate functionalized ethylene hydroxyethyl methacrylate copolymer acquired improved adhesive strength both at dry and wet conditions as well as at elevated temperature upon exposure to radiation

  16. Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization

    CSIR Research Space (South Africa)

    Ojijo, Vincent O

    2015-12-01

    Full Text Available to the formation of non-linear copolymer architecture at the interface. Scanning electron microscopy showed a drastic reduction of the dispersed phase size upon compatibilization, even at very low quantities of the chain extender. Rheological probing...

  17. Thermoresponsive Poly(2-Oxazoline) Molecular Brushes by Living Ionic Polymerization: Modulation of the Cloud Point by Random and Block Copolymer Pendant Chains

    KAUST Repository

    Zhang, Ning; Luxenhofer, Robert; Jordan, Rainer

    2012-01-01

    random and block copolymers. Their aqueous solutions displayed a distinct thermoresponsive behavior as a function of the side-chain composition and sequence. The cloud point (CP) of MBs with random copolymer side chains is a linear function

  18. Analysis of the static properties of cluster formations in symmetric linear multiblock copolymers

    International Nuclear Information System (INIS)

    Fytas, N G; Theodorakis, P E

    2011-01-01

    We use molecular dynamics simulations to study the static properties of a single linear multiblock copolymer chain under poor solvent conditions varying the block length N, the number of blocks n, and the solvent quality by variation of the temperature T. We study the most symmetrical case, where the number of blocks of monomers of type A, n A , equals that of monomers B, n B (n A = n B = n/2), the length of all blocks is the same irrespective of their type, and the potential parameters are also chosen symmetrically, as for a standard Lennard-Jones fluid. Under poor solvent conditions the chains collapse and blocks with monomers of the same type form clusters, which are phase separated from the clusters with monomers of the other type. We study the dependence of the size of the clusters formed on n, N and T. Furthermore, we discuss our results with respect to recent simulation data on the phase behaviour of such macromolecules, providing a complete picture for the cluster formations in single multiblock copolymer chains under poor solvent conditions.

  19. Ultrahigh Molecular Weight Linear Block Copolymers: Rapid Access by Reversible-Deactivation Radical Polymerization and Self- Assembly into Large Domain Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Mapas, Jose Kenneth D.; Thomay, Tim; Cartwright, Alexander N.; Ilavsky, Jan; Rzayev, Javid

    2016-05-05

    Block copolymer (BCP) derived periodic nanostructures with domain sizes larger than 150 nm present a versatile platform for the fabrication of photonic materials. So far, the access to such materials has been limited to highly synthetically involved protocols. Herein, we report a simple, “user-friendly” method for the preparation of ultrahigh molecular weight linear poly(solketal methacrylate-b-styrene) block copolymers by a combination of Cu-wire-mediated ATRP and RAFT polymerizations. The synthesized copolymers with molecular weights up to 1.6 million g/mol and moderate dispersities readily assemble into highly ordered cylindrical or lamella microstructures with domain sizes as large as 292 nm, as determined by ultra-small-angle x-ray scattering and scanning electron microscopy analyses. Solvent cast films of the synthesized block copolymers exhibit stop bands in the visible spectrum correlated to their domain spacings. The described method opens new avenues for facilitated fabrication and the advancement of fundamental understanding of BCP-derived photonic nanomaterials for a variety of applications.

  20. Reorganizing Neural Network System for Two Spirals and Linear Low-Density Polyethylene Copolymer Problems

    Directory of Open Access Journals (Sweden)

    G. M. Behery

    2009-01-01

    Full Text Available This paper presents an automatic system of neural networks (NNs that has the ability to simulate and predict many of applied problems. The system architectures are automatically reorganized and the experimental process starts again, if the required performance is not reached. This processing is continued until the performance obtained. This system is first applied and tested on the two spiral problem; it shows that excellent generalization performance obtained by classifying all points of the two-spirals correctly. After that, it is applied and tested on the shear stress and the pressure drop problem across the short orifice die as a function of shear rate at different mean pressures for linear low-density polyethylene copolymer (LLDPE at 190∘C. The system shows a better agreement with an experimental data of the two cases: shear stress and pressure drop. The proposed system has been also designed to simulate other distributions not presented in the training set (predicted and matched them effectively.

  1. Functionalization of carbon nanofibers with elastomeric block copolymer using carbodiimide chemistry

    International Nuclear Information System (INIS)

    Mapkar, Javed A.; Iyer, Ganesh; Coleman, Maria R.

    2009-01-01

    Surface functionalization of carbon nanofibers (CNFs) with aminopropyl terminated polydimethylsiloxane [(PDMS-NH 2 )] and other organic diamines was achieved using carbodiimide chemistry. The carbodiimide chemistry provides faster reaction rate so that the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. CNF functionalized with PDMS-NH 2 fibers were further functionalized with oligomer of polyimide (6FDA-BisP) using imidization reaction. The formation of block copolymer on the surface of CNF is proposed as an effective method to engineer the interphase between the fiber and the polymer, which is essential to modulate and enhance the properties of the nanocomposite. The efficiency of the carbodiimide chemistry to functionalize amine terminated groups on CNF and the functionalization of block copolymer was characterized using thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy.

  2. Functionalization of carbon nanofibers with elastomeric block copolymer using carbodiimide chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mapkar, Javed A.; Iyer, Ganesh [Chemical and Environmental Engineering Department, University of Toledo, Mail Stop 305, 2801 W Bancroft St., Toledo, OH 43606 (United States); Coleman, Maria R., E-mail: maria.coleman6@utoledo.edu [Chemical and Environmental Engineering Department, University of Toledo, Mail Stop 305, 2801 W Bancroft St., Toledo, OH 43606 (United States)

    2009-02-15

    Surface functionalization of carbon nanofibers (CNFs) with aminopropyl terminated polydimethylsiloxane [(PDMS-NH{sub 2})] and other organic diamines was achieved using carbodiimide chemistry. The carbodiimide chemistry provides faster reaction rate so that the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. CNF functionalized with PDMS-NH{sub 2} fibers were further functionalized with oligomer of polyimide (6FDA-BisP) using imidization reaction. The formation of block copolymer on the surface of CNF is proposed as an effective method to engineer the interphase between the fiber and the polymer, which is essential to modulate and enhance the properties of the nanocomposite. The efficiency of the carbodiimide chemistry to functionalize amine terminated groups on CNF and the functionalization of block copolymer was characterized using thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy.

  3. Functional (co)polymers from carbenes: scope, mechanism & polymer properties

    NARCIS (Netherlands)

    Franssen, N.M.G.

    2012-01-01

    Polymerization of carbenes is a valuable alternative to traditional olefin polymerization with regard to the formation of high molecular-weight functional copolymers in a stereoregular way. The versatility of this reaction with respect to different carbene precursors allows the formation of a large

  4. Linear low density polyethylene/cycloolefin copolymer blends

    Czech Academy of Sciences Publication Activity Database

    Dorigato, A.; Pegoretti, A.; Fambri, L.; Lonardi, C.; Šlouf, Miroslav; Kolařík, Jan

    2011-01-01

    Roč. 5, č. 1 (2011), s. 23-37 ISSN 1788-618X R&D Projects: GA ČR GA106/09/1348 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer blends * cycloolefin copolymer * creep Subject RIV: JI - Composite Materials Impact factor: 1.769, year: 2011

  5. Polyethylene-Based Tadpole Copolymers

    KAUST Repository

    Alkayal, Nazeeha

    2017-02-15

    Novel well-defined polyethylene-based tadpole copolymers ((c-PE)-b-PS, PE: polyethylene, PS: polystyrene) with ring PE head and linear PS tail are synthesized by combining polyhomologation, atom transfer radical polymerization (ATRP), and Glaser coupling reaction. The -OH groups of the 3-miktoarm star copolymers (PE-OH)-b-PS, synthesized by polyhomologation and ATRP, are transformed to alkyne groups by esterification with propiolic acid, followed by Glaser cyclization and removal of the unreacted linear with Merrifield\\'s resin-azide. The characterization results of intermediates and final products by high-temperature size exclusion chromatography, H NMR spectroscopy, and differential scanning calorimetry confirm the tadpole topology.

  6. Poly(methacrylic acid-ran-2-vinylpyridine Statistical Copolymer and Derived Dual pH-Temperature Responsive Block Copolymers by Nitroxide-Mediated Polymerization

    Directory of Open Access Journals (Sweden)

    Milan Marić

    2017-02-01

    Full Text Available Nitroxide-mediated polymerization using the succinimidyl ester functional unimolecular alkoxyamine initiator (NHS-BlocBuilder was used to first copolymerize tert-butyl methacrylate/2-vinylpyridine (tBMA/2VP with low dispersity (Đ = 1.30–1.41 and controlled growth (linear number average molecular Mn versus conversion, Mn = 3.8–10.4 kg·mol−1 across a wide composition of ranges (initial mol fraction 2VP, f2VP,0 = 0.10–0.90. The resulting statistical copolymers were first de-protected to give statistical polyampholytic copolymers comprised of methacrylic acid/2VP (MAA/2VP units. These copolymers exhibited tunable water-solubility due to the different pKas of the acidic MAA and basic 2VP units; being soluble at very low pH < 3 and high pH > 8. One of the tBMA/2VP copolymers was used as a macroinitiator for a 4-acryloylmorpholine/4-acryloylpiperidine (4AM/4AP mixture, to provide a second block with thermo-responsive behavior with tunable cloud point temperature (CPT, depending on the ratio of 4AM:4AP. Dynamic light scattering of the block copolymer at various pHs (3, 7 and 10 as a function of temperature indicated a rapid increase in particle size >2000 nm at 22–27 °C, corresponding to the 4AM/4AP segment’s thermos-responsiveness followed by a leveling in particle size to about 500 nm at higher temperatures.

  7. Hydrophilization of poly(caprolactone copolymers through introduction of oligo(ethylene glycol moieties.

    Directory of Open Access Journals (Sweden)

    Jonathan J Wurth

    Full Text Available In this study, a new family of poly(ε-caprolactone (PCL copolymers that bear oligo(ethylene glycol (OEG moieties is described. The synthesis of three different oligo(ethylene glycol functionalized epoxide monomers derived from 2-methyl-4-pentenoic acid, and their copolymerization with ε-caprolactone (CL to poly(CL-co-OEG-MPO copolymers is presented. The statistical copolymerization initiated with SnOct2/BnOH yielded the copolymers with varying OEG content and composition. The linear relationship between feed ratio and incorporation of the OEG co-monomer enables control over backbone functional group density. The introduction of OEG moieties influenced both the thermal and the hydrophilic characteristics of the copolymers. Both increasing OEG length and backbone content resulted in a decrease in static water contact angle. The introduction of OEG side chains in the PCL copolymers had no adverse influence on MC-3TE3-E1 cell interaction. However, changes to cell form factor (Φ were observed. While unmodified PCL promoted elongated (anisotropic morphologies (Φ = 0.094, PCL copolymer with tri-ethylene glycol side chains at or above seven percent backbone incorporation induced more isotropic cell morphologies (Φ = 0.184 similar to those observed on glass controls (Φ = 0.151.

  8. Synthesis and Functionalization of Poly(ethylene oxide-b-ethyloxazoline) Diblock Copolymers with Phosphonate Ions

    OpenAIRE

    Chen, Alfred Yuen-Wei

    2013-01-01

    Poly(ethylene oxide) (PEO) and poly(2-ethyl-2-oxazoline) (PEOX) are biocompatible polymers that act as hydrophilic "stealth" drug carriers. As block copolymers, the PEOX group offers a wider variety of functionalization. The goal of this project was to synthesize a poly(ethylene oxide)-b-poly(2-ethyl-2-oxazoline) (PEO-b-PEOX) block copolymer and functionalize pendent groups of PEOX with phosphonic acid. This was achieved through cationic ring opening polymerization (CROP) of 2-...

  9. Functionalized isothianaphthene monomers that promote quinoidal character in donor-acceptor copolymers for organic photovoltaics

    KAUST Repository

    Douglas, Jessica D.

    2012-05-22

    A series of low band gap isothianaphthene-based (ITN) polymers with various electron-withdrawing substituents and intrinsic quinoidal character were synthesized, characterized, and tested in organic photovoltaic (OPV) devices. The three investigated ITN cores contained either ester, imide, or nitrile functionalities and were each synthesized in only four linear steps. The relative electron-withdrawing strength of the three substituents on the ITN moiety was evaluated and correlated to the optical and electronic properties of ITN-based copolymers. The ester- and imide-containing p-type polymers reached device efficiencies as high as 3% in bulk heterojunction blends with phenyl C 61-butyric acid methyl ester (PC 61BM), while the significantly electron-deficient nitrile-functionalized polymer behaved as an n-type material with an efficiency of 0.3% in bilayer devices with poly(3-(4-n-octyl)phenylthiophene) (POPT). © 2012 American Chemical Society.

  10. Substituent effects on furan-phenylene copolymer for photovoltaic improvement: A density functional study

    Science.gov (United States)

    Janprapa, Nuttaporn; Vchirawongkwin, Viwat; Kritayakornupong, Chinapong

    2018-06-01

    The structural, electronic and photovoltaic properties of furan-phenylene copolymer ((Fu-co-Ph)4) and its derivatives were evaluated using density functional theory (DFT) and time-dependent density functional theory (TD-DFT). The calculated band gaps of pristine furan and phenylene are in good agreement with the available experimental data. The lower band gap value of 2.72 eV was obtained from -NO2 and -NHCH3 substituents, leading to broader solar absorption range. With respected to the reorganization energy, -OCH3, -NHCH3, -OH, -SCH3, -CH3, -CF3, -NO2, and -F substituted (Fu-co-Ph)4 structures were classified as better electron donor materials. For combination with PC61BM, -NO2, -CN, -CF3 and -F functionalized copolymers demonstrated significantly higher open circuit voltage (Voc) values ranging from 1.07 to 2.10 eV. Our results revealed that electron withdrawing group substitution on furan-phenylene copolymers was an effective way for improving electronic and optical properties of donor materials used in photovoltaic applications.

  11. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    Science.gov (United States)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  12. Effect of sequence dispersity on morphology of tapered diblock copolymers from molecular dynamics simulations.

    Science.gov (United States)

    Levine, William G; Seo, Youngmi; Brown, Jonathan R; Hall, Lisa M

    2016-12-21

    Tapered diblock copolymers are similar to typical AB diblock copolymers but have an added transition region between the two blocks which changes gradually in composition from pure A to pure B. This tapered region can be varied from 0% (true diblock) to 100% (gradient copolymer) of the polymer length, and this allows some control over the microphase separated domain spacing and other material properties. We perform molecular dynamics simulations of linearly tapered block copolymers with tapers of various lengths, initialized from fluids density functional theory predictions. To investigate the effect of sequence dispersity, we compare systems composed of identical polymers, whose taper has a fixed sequence that most closely approximates a linear gradient, with sequentially disperse polymers, whose sequences are created statistically to yield the appropriate ensemble average linear gradient. Especially at high segregation strength, we find clear differences in polymer conformations and microstructures between these systems. Importantly, the statistical polymers are able to find more favorable conformations given their sequence, for instance, a statistical polymer with a larger fraction of A than the median will tend towards the A lamellae. The conformations of the statistically different polymers can thus be less stretched, and these systems have higher overall density. Consequently, the lamellae formed by statistical polymers have smaller domain spacing with sharper interfaces.

  13. Morphologies of precise polyethylene-based acid copolymers and ionomers

    Science.gov (United States)

    Buitrago, C. Francisco

    Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been

  14. Silicon containing copolymers

    CERN Document Server

    Amiri, Sahar; Amiri, Sanam

    2014-01-01

    Silicones have unique properties including thermal oxidative stability, low temperature flow, high compressibility, low surface tension, hydrophobicity and electric properties. These special properties have encouraged the exploration of alternative synthetic routes of well defined controlled microstructures of silicone copolymers, the subject of this Springer Brief. The authors explore the synthesis and characterization of notable block copolymers. Recent advances in controlled radical polymerization techniques leading to the facile synthesis of well-defined silicon based thermo reversible block copolymers?are described along with atom transfer radical polymerization (ATRP), a technique utilized to develop well-defined functional thermo reversible block copolymers. The brief also focuses on Polyrotaxanes and their great potential as stimulus-responsive materials which produce poly (dimethyl siloxane) (PDMS) based thermo reversible block copolymers.

  15. Application of Bottlebrush Block Copolymers as Photonic Crystals.

    Science.gov (United States)

    Liberman-Martin, Allegra L; Chu, Crystal K; Grubbs, Robert H

    2017-07-01

    Brush block copolymers are a class of comb polymers that feature polymeric side chains densely grafted to a linear backbone. These polymers display interesting properties due to their dense functionality, low entanglement, and ability to rapidly self-assemble to highly ordered nanostructures. The ability to prepare brush polymers with precise structures has been enabled by advancements in controlled polymerization techniques. This Feature Article highlights the development of brush block copolymers as photonic crystals that can reflect visible to near-infrared wavelengths of light. Fabrication of these materials relies on polymer self-assembly processes to achieve nanoscale ordering, which allows for the rapid preparation of photonic crystals from common organic chemical feedstocks. The characteristic physical properties of brush block copolymers are discussed, along with methods for their preparation. Strategies to induce self-assembly at ambient temperatures and the use of blending techniques to tune photonic properties are emphasized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Polyethylene-Based Tadpole Copolymers

    KAUST Repository

    Alkayal, Nazeeha; Zhang, Zhen; Bilalis, Panayiotis; Gnanou, Yves; Hadjichristidis, Nikolaos

    2017-01-01

    Novel well-defined polyethylene-based tadpole copolymers ((c-PE)-b-PS, PE: polyethylene, PS: polystyrene) with ring PE head and linear PS tail are synthesized by combining polyhomologation, atom transfer radical polymerization (ATRP), and Glaser

  17. Polystyrene-block-Poly(ionic liquid) Copolymers as Work Function Modifiers in Inverted Organic Photovoltaic Cells.

    Science.gov (United States)

    Park, Jong Baek; Isik, Mehmet; Park, Hea Jung; Jung, In Hwan; Mecerreyes, David; Hwang, Do-Hoon

    2018-02-07

    Interfacial layers play a critical role in building up the Ohmic contact between electrodes and functional layers in organic photovoltaic (OPV) solar cells. These layers are based on either inorganic oxides (ZnO and TiO 2 ) or water-soluble organic polymers such as poly[(9,9-dioctyl-2,7-fluorene)-alt-(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)] and polyethylenimine ethoxylated (PEIE). In this work, we have developed a series of novel poly(ionic liquid) nonconjugated block copolymers for improving the performance of inverted OPV cells by using them as work function modifiers of the indium tin oxide (ITO) cathode. Four nonconjugated polyelectrolytes (n-CPEs) based on polystyrene and imidazolium poly(ionic liquid) (PSImCl) were synthesized by reversible addition-fragmentation chain transfer polymerization. The ratio of hydrophobic/hydrophilic block copolymers was varied depending on the ratio of polystyrene to the PSImCl block. The ionic density, which controls the work function of the electrode by forming an interfacial dipole between the electrode and the block copolymers, was easily tuned by simply changing the PSImCl molar ratio. The inverted OPV device with the ITO/PS 29 -b-PSImCl 60 cathode achieved the best power conversion efficiency (PCE) of 7.55% among the synthesized block copolymers, exhibiting an even higher PCE than that of the reference OPV device with PEIE (7.30%). Furthermore, the surface properties of the block copolymers films were investigated by contact angle measurements to explore the influence of the controlled hydrophobic/hydrophilic characters on the device performances.

  18. Synthesis and Characterization of Block Copolymers with Unique Chemical Functionalities and Entropically-Hindering Moieties

    Science.gov (United States)

    2017-08-14

    methanol as a function of chemistry , morphology and hydration levels. Accomplishments: This section is included in the "upload" section. Training...Copolymer Blend Membranes.” In Press, Polymer Engineering and Science, DOI: 10.1002 /pen.24508, 2017. 5. M. Pérez-Pérez and D. Suleiman. “Synthesis and...Synthesis and Characterization of Sulfonated Amine Block Copolymers for Energy Efficient Applications". Chemical Engineering Symposium, University of

  19. Synthesis and Thermosensitive Behavior of Polyacrylamide Copolymers and Their Applications in Smart Textiles

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2015-05-01

    Full Text Available We tuned the lower critical solution temperature (LCST of amphiphilic poly(N-isopropylacrylamide (PNIPAAm via copolymerization with a hydrophilic comonomer of N-hydroxymethyl acrylamide (NHMAAm. A series of copolymers P(NIPAAm-co-NHMAAm were synthesized by atom transfer radical polymerization (ATRP using CuBr/(N,N,N',N',N''-Pentamethyldiethylenetriamine (PMDETA as a catalyst system and 2-bromo ethyl isobutyrate (EBiB as an initiator. The copolymers were well characterized by Fourier transform infrared spectroscopy (FT-IR, 1H Nuclear magnetic resonance (NMR, and Thermogravimetric analysis (TGA. The copolymers followed a simple rule in their thermosensitive behaviors and have a linear increase in the LCST as a function of NHMAAm mol%. The thermosensitive properties of the copolymer films were investigated and demonstrated hydrophilic-hydrophobic transitions. Finally, the copolymer was grafted onto cotton fabrics using citric acid (CA as a crosslinking agent and sodium hypophosphite (SHP as a catalyst following a two dipping, two padding process. The large number of hydroxyl groups in the copolymer makes grafting convenient and firm. The grafted cotton fabrics show obvious thermosensitive behaviors. The results demonstrate that the cotton fabrics become more hydrophobic when the temperature is higher than the LCST. This study presents a valuable route towards temperature-responsive smart textiles and their potential applications.

  20. Stress relaxation experiments on a lamellar polystyrene-polyisoprene diblock copolymer melt

    DEFF Research Database (Denmark)

    Holmqvist, P.; Castelletto, V.; Hamley, I.W.

    2001-01-01

    The non-linear rheology of the lamellar phase of a polystyrene-polyisoprene diblock copolymer is studied by oscillatory shear experiments. The relaxation of the shear modulus, G(t, gamma) is studied as a function of strain amplitude, gamma, up to large amplitude strains, gamma = 100%. The decay...... of G(t, gamma) is analysed using the model-independent CONTIN inverse Laplace transform algorithm to obtain a series of relaxation times, which reveals multiple relaxation processes. The timescale for the fastest relaxation processes is compared to those previously observed for diblock copolymer melts...... via dynamic light scattering experiments. The slowest relaxation process may be related to the shear-induced orientation of the lamellae. It is shown that time-strain separability G(t, gamma)= G(t)h(gamma) can be applied, and the damping function h(gamma) is consistent with a strongly strain...

  1. Temperature-Responsive Biocompatible Copolymers Incorporating Hyperbranched Polyglycerols for Adjustable Functionality

    Directory of Open Access Journals (Sweden)

    Alan J. House

    2011-08-01

    Full Text Available Temperature-triggered copolymers are proposed for a number of bio-applications but there is no ideal material platform, especially for injectable drug delivery. Options are needed for degradable biomaterials that not only respond to temperature but also easily accommodate linkage of active molecules. A first step toward realizing this goal is the design and synthesis of the novel materials reported herein. A multifunctional macromer, methacrylated hyperbranched polyglycerol (HPG-MA with an average of one acrylate unit per copolymer, was synthesized and copolymerized with N-isopropylacrylamide (NIPAAm, hydroxyethyl methacrylate-polylactide (HEMAPLA and acrylic acid (AAc. The potential to fully exploit the copolymers by modification of the multiple HPG hydroxyl groups will not be discussed here. Instead, this report focuses on the thermoresponsive, biocompatible, and degradation properties of the material. Poly(NIPAAm-co-HEMAPLA-co-AAc-co-HPG-MA displayed increasing lower critical solution temperatures (LCST as the HPG content increased over a range of macromer ratios. For the copolymer with the maximum HPG incorporation (17%, the LCST was ~30 °C. In addition, this sample showed no toxicity when human uterine fibroid cells were co-cultured with the copolymer for up to 72 h. This copolymer lost approximately 92% of its mass after 17 hours at 37 °C. Thus, the reported biomaterials offer attractive properties for the design of drug delivery systems where orthogonally triggered mechanisms of therapeutic release in relatively short time periods would be attractive.

  2. Design, synthesis, and characterization of lightly sulfonated multigraft acrylate-based copolymer superelastomers

    Energy Technology Data Exchange (ETDEWEB)

    Misichronis, Konstantinos [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Wang, Weiyu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Cheng, Shiwang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Wang, Yangyang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Shrestha, Umesh [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Dadmun, Mark D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Mays, Jimmy W. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Saito, Tomonori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division

    2018-01-29

    Multigraft copolymer superelastomers consisting of a poly(n-butyl acrylate) backbone and polystyrene side chains were synthesized and the viscoelastic properties of the non-sulfonated and sulfonated final materials were investigated using extensional rheology (SER3). The non-linear viscoelastic experiments revealed significantly increased true stresses (up to 10 times higher) after sulfonating only 2–3% of the copolymer while the materials maintained high elongation (<700%). The linear viscoelastic experiments showed that the storage and loss modulus are increased by sulfonation and that the copolymers can be readily tuned and further improved by increasing the number of branching points and the molecular weight of the backbone. Here, in this way, we show that by tuning not only the molecular characteristics of the multigraft copolymers but also their architecture and chemical interaction, we can acquire thermoplastic superelastomer materials with desired viscoelastic properties.

  3. New Linear and Star-Shaped Thermogelling Poly([R]-3-hydroxybutyrate) Copolymers.

    Science.gov (United States)

    Barouti, Ghislaine; Liow, Sing Shy; Dou, Qingqing; Ye, Hongye; Orione, Clément; Guillaume, Sophie M; Loh, Xian Jun

    2016-07-18

    The synthesis of multi-arm poly([R]-3-hydroxybutyrate) (PHB)-based triblock copolymers (poly([R]-3-hydroxybutyrate)-b-poly(N-isopropylacrylamide)-b-[[poly(methyl ether methacrylate)-g-poly(ethylene glycol)]-co-[poly(methacrylate)-g-poly(propylene glycol)

  4. Dynamic photoinduced realignment processes in photoresponsive block copolymer films: effects of the chain length and block copolymer architecture.

    Science.gov (United States)

    Sano, Masami; Shan, Feng; Hara, Mitsuo; Nagano, Shusaku; Shinohara, Yuya; Amemiya, Yoshiyuki; Seki, Takahiro

    2015-08-07

    A series of block copolymers composed of an amorphous poly(butyl methacrylate) (PBMA) block connected with an azobenzene (Az)-containing liquid crystalline (PAz) block were synthesized by changing the chain length and polymer architecture. With these block copolymer films, the dynamic realignment process of microphase separated (MPS) cylinder arrays of PBMA in the PAz matrix induced by irradiation with linearly polarized light was studied by UV-visible absorption spectroscopy, and time-resolved grazing incidence small angle X-ray scattering (GI-SAXS) measurements using a synchrotron beam. Unexpectedly, the change in the chain length hardly affected the realignment rate. In contrast, the architecture of the AB-type diblock or the ABA-type triblock essentially altered the realignment feature. The strongly cooperative motion with an induction period before realignment was characteristic only for the diblock copolymer series, and the LPL-induced alignment change immediately started for triblock copolymers and the PAz homopolymer. Additionally, a marked acceleration in the photoinduced dynamic motions was unveiled in comparison with a thermal randomization process.

  5. Hierarchical self-assembly of two-length-scale multiblock copolymers

    International Nuclear Information System (INIS)

    Brinke, Gerrit ten; Loos, Katja; Vukovic, Ivana; Du Sart, Gerrit Gobius

    2011-01-01

    The self-assembly in diblock copolymer-based supramolecules, obtained by hydrogen bonding short side chains to one of the blocks, as well as in two-length-scale linear terpolymers results in hierarchical structure formation. The orientation of the different domains, e.g. layers in the case of a lamellar-in-lamellar structure, is determined by the molecular architecture, graft-like versus linear, and the relative magnitude of the interactions involved. In both cases parallel and perpendicular arrangements have been observed. The comb-shaped supramolecules approach is ideally suited for the preparation of nanoporous structures. A bicontinuous morphology with the supramolecular comb block forming the channels was finally achieved by extending the original approach to suitable triblock copolymer-based supramolecules.

  6. Research Update: Triblock copolymers as templates to synthesize inorganic nanoporous materials

    OpenAIRE

    Yunqi Li; Bishnu Prasad Bastakoti; Yusuke Yamauchi

    2016-01-01

    This review focuses on the application of triblock copolymers as designed templates to synthesize nanoporous materials with various compositions. Asymmetric triblock copolymers have several advantages compared with symmetric triblock copolymers and diblock copolymers, because the presence of three distinct domains can provide more functional features to direct the resultant nanoporous materials. Here we clearly describe significant contributions of asymmetric triblock copolymers, especially p...

  7. Molecular Mobility in Phase Segregated Bottlebrush Block Copolymer Melts

    Science.gov (United States)

    Yavitt, Benjamin; Gai, Yue; Song, Dongpo; Winter, H. Henning; Watkins, James

    We investigate the linear viscoelastic behavior of poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO) brush block copolymer (BBCP) materials over a range of vol. fractions and with side chain lengths below the entanglement molecular weights. The high chain mobility of the brush architecture results in rapid micro-phase segregation of the brush copolymer segments, which occurs during thermal annealing at mild temperatures. Master curves of the dynamic moduli were obtained by time-temperature superposition. The reduced degree of chain entanglements leads to a unique liquid-like rheology similar to that of bottlebrush homopolymers, even in the phase segregated state. We also explore the alignment of phase segregated domains at exceptionally low strain amplitudes (γ = 0.01) and mild processing temperatures using small angle X-ray scattering (SAXS). Domain orientation occurred readily at strains within the linear viscoelastic regime without noticeable effect on the moduli. This interplay of high molecular mobility and rapid phase segregation that are exhibited simultaneously in BBCPs is in contrast to the behavior of conventional linear block copolymer (LBCP) analogs and opens up new possibilities for processing BBCP materials for a wide range of nanotechnology applications. NSF Center for Hierarchical Manufacturing at the University of Massachusetts, Amherst (CMMI-1025020).

  8. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-03-22

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  9. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-01-01

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  10. Polyketones as alternating copolymers of carbon monoxide

    International Nuclear Information System (INIS)

    Belov, Gennady P; Novikova, Elena V

    2004-01-01

    Characteristic features of the catalytic synthesis of alternating copolymers of carbon monoxide with various olefins, dienes, styrene and its derivatives are considered. The diversity of catalyst systems used for the copolymerisation of carbon monoxide is demonstrated and their influence on the structure and the molecular mass of the resulting copolymers is analysed. The data on the structure and physicochemical and mechanical properties of this new generation of functional copolymers are generalised and described systematically for the first time.

  11. Ion transport properties of mechanically stable symmetric ABCBA pentablock copolymers with quaternary ammonium functionalized midblock

    Energy Technology Data Exchange (ETDEWEB)

    Ertem, S. Piril [Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive Amherst Massachusetts 01003; Caire, Benjamin R. [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401; Tsai, Tsung-Han [Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive Amherst Massachusetts 01003; Zeng, Di [Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive Amherst Massachusetts 01003; Vandiver, Melissa A. [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401; Kusoglu, Ahmet [Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley California 94720; Seifert, Soenke [Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley California 94720; Hayward, Ryan C. [Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive Amherst Massachusetts 01003; Weber, Adam Z. [Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley California 94720; Herring, Andrew M. [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401; Coughlin, E. Bryan [Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive Amherst Massachusetts 01003; Liberatore, Matthew W. [Department of Chemical Engineering Department, University of Toledo, 2801 W Bancroft Street MS305 Toledo Ohio 43606

    2017-02-07

    Anion exchange membranes (AEMs) are a promising class of materials for applications that require selective ion transport, such as fuel cells, water purification, and electrolysis devices. Studies of structure–morphology–property relationships of ion-exchange membranes revealed that block copolymers exhibit improved ion conductivity and mechanical properties due to their microphase-separated morphologies with well-defined ionic domains. While most studies focused on symmetric diblock or triblock copolymers, here, the first example of a midblock quaternized pentablock AEM is presented. A symmetric ABCBA pentablock copolymer was functionalized to obtain a midblock brominated polymer. Solution cast films were then quaternized to obtain AEMs with resulting ion exchange capacities (IEC) ranging from 0.4 to 0.9 mmol/g. Despite the relatively low IEC, the polymers were highly conductive (up to 60 mS/cm Br2 at 90 8C and 95%RH) with low water absorption (<25 wt %) and maintained adequate mechanical properties in both dry and hydrated conditions. Xray scattering and transmission electron microscopy (TEM) revealed formation of cylindrical non-ionic domains in a connected ionic phase.

  12. Self-assembling block copolymer systems involving competing length scales : A route toward responsive materials

    NARCIS (Netherlands)

    Nap, R; Erukhimovich, [No Value; ten Brinke, G; Erukhimovich, Igor

    2004-01-01

    The phase behavior of block copolymers melts involving competing length scales, i.e., able to microphase separate on two different length scales, is theoretically investigated using a self-consistent field approach. The specific block copolymers studied consist of a linear A-block linked to an

  13. Controlling block copolymer phase behavior using ionic surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Ray, D.; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India E-mail: debes.phys@gmail.com (India)

    2016-05-23

    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO{sub 26}PO{sub 39}EO{sub 26})] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle–surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at higher temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.

  14. Density Functional Study of Stacking Structures and Electronic Behaviors of AnE-PV Copolymer.

    Science.gov (United States)

    Dong, Chuan-Ding; Beenken, Wichard J D

    2016-10-10

    In this work, we report an in-depth investigation on the π-stacking and interdigitating structures of poly(p-anthracene-ethynylene)-alt-poly(p-phenylene-vinylene) copolymer with octyl and ethyl-hexyl side chains and the resulting electronic band structures using density functional theory calculations. We found that in the π-stacking direction, the preferred stacking structure, determined by the steric effect of the branched ethyl-hexyl side chains, is featured by the anthracene-ethynylene units stacking on the phenylene-vinylene units of the neighboring chains and vice versa. This stacking structure, combined with the interdigitating structure where the branched side chains of the laterally neighboring chains are isolated, defines the energetically favorable structure of the ordered copolymer phase, which provides a good compromise between light absorption and charge-carrier transport.

  15. Synthesis of Functional Block Copolymers Carrying One Poly( p -phenylenevinylene) and One Nonconjugated Block in a Facile One-Pot Procedure

    KAUST Repository

    Menk, Florian

    2016-02-29

    Block copolymers composed of a MEH-PPV block and a nonconjugated functional block (molecular weights between 5 and 90 kg/mol) were synthesized in a facile one-pot procedure via ROMP. This one-pot procedure permits the synthesis of numerous block copolymers with little effort. Amphiphilic block copolymers were obtained via incorporation of oxanorbornene carrying a PEG side chain as well as via postpolymerization modification of a reactive ester carrying norbornene derivative with methoxypoly(ethylene glycol)amine. These amphiphilic block copolymers can be self-assembled into micelles exhibiting different sizes (60-95 nm), morphologies (micelles or fused, caterpillar-like micelles), and optical properties depending on the polymer composition and the micellization procedure. Furthermore, the reactive ester carrying block copolymers enabled the introduction of anchor groups which facilitated the preparation of nanocomposites with CdSe/CdZnS core-shell QDs. The obtained composites were studied using time-resolved photoluminescence measurements. The results revealed an increased interaction based on an accelerated decay of the QD emission for composites as compared to the mixture of the QDs with unfunctionalized polymers. © 2016 American Chemical Society.

  16. Synthesis of Functional Block Copolymers Carrying One Poly( p -phenylenevinylene) and One Nonconjugated Block in a Facile One-Pot Procedure

    KAUST Repository

    Menk, Florian; Shin, Suyong; Kim, Kyung-Oh; Scherer, Martin; Gehrig, Dominik; Laquai, Fré dé ric; Choi, Tae-Lim; Zentel, Rudolf

    2016-01-01

    Block copolymers composed of a MEH-PPV block and a nonconjugated functional block (molecular weights between 5 and 90 kg/mol) were synthesized in a facile one-pot procedure via ROMP. This one-pot procedure permits the synthesis of numerous block copolymers with little effort. Amphiphilic block copolymers were obtained via incorporation of oxanorbornene carrying a PEG side chain as well as via postpolymerization modification of a reactive ester carrying norbornene derivative with methoxypoly(ethylene glycol)amine. These amphiphilic block copolymers can be self-assembled into micelles exhibiting different sizes (60-95 nm), morphologies (micelles or fused, caterpillar-like micelles), and optical properties depending on the polymer composition and the micellization procedure. Furthermore, the reactive ester carrying block copolymers enabled the introduction of anchor groups which facilitated the preparation of nanocomposites with CdSe/CdZnS core-shell QDs. The obtained composites were studied using time-resolved photoluminescence measurements. The results revealed an increased interaction based on an accelerated decay of the QD emission for composites as compared to the mixture of the QDs with unfunctionalized polymers. © 2016 American Chemical Society.

  17. Sulfomethylated graft copolymers of xanthan gum and polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, I.W.; Empey, R.A.; Racciato, J.S.

    1978-08-08

    A water-soluble anionic graft copolymer of xanthan gum and polyacrylamide is described in which at least part of the amide function of the acrylamide portion of the copolymer is sulfomethylated and the xanthan gum portion of the copolymer is unreacted with formaldehyde. The copolymer is sulfomethylated by reaction with formaldehyde and sodium metabisulfite. The formaldehyde does not cause any appreciable cross-linking between hydroxyl groups of the xanthan moieties. The sulfomethylation of the acrylamido group takes place at temperatures from 35 to 70 C. The pH is 10 or higher, typically from 12 to 13. The degree of anionic character may be varied by adjusting the molar ratio of formaldehyde and sodium metabisulfite with respect to the copolymer. 10 claims.

  18. Amphiphilic block copolymers for biomedical applications

    Science.gov (United States)

    Zupancich, John Andrew

    Amphiphilic block copolymer self-assembly provides a versatile means to prepare nanoscale objects in solution. Control over aggregate shape is granted through manipulation of amphiphile composition and the synthesis of well-defined polymers offers the potential to produce micelles with geometries optimized for specific applications. Currently, polymer micelles are being investigated as vehicles for the delivery of therapeutics and attempts to increase efficacy has motivated efforts to incorporate bioactive ligands and stimuli-responsive character into these structures. This thesis reports the synthesis and self-assembly of biocompatible, degradable polymeric amphiphiles. Spherical, cylindrical, and bilayered vesicle structures were generated spontaneously by the direct dispersion of poly(ethylene oxide)-b-poly(gamma-methyl-ε-caprolactone) block copolymers in water and solutions were characterized with cryogenic transmission electron microscopy (cryo-TEM). The dependence of micelle structure on diblock copolymer composition was examined through the systematic variation of the hydrophobic block molecular weight. A continuous evolution of morphology was observed with coexistence of aggregate structures occurring in windows of composition intermediate to that of pure spheres, cylinders and vesicles. A number of heterobifunctional poly(ethylene oxide) polymers were synthesized for the preparation of ligand-functionalized amphiphilic diblock copolymers. The effect of ligand conjugation on block copolymer self-assembly and micelle morphology was also examined. An RGD-containing peptide sequence was efficiently conjugated to a set of well characterized poly(ethylene oxide)-b-poly(butadiene) copolymers. The reported aggregate morphologies of peptide-functionalized polymeric amphiphiles deviated from canonical structures and the micelle clustering, cylinder fragmentation, network formation, and multilayer vesicle generation documented with cryo-TEM was attributed to

  19. Physical properties of metallocenes propene-higher α-olefins copolymers

    International Nuclear Information System (INIS)

    Lovisi, Humberto; Santa Maria, Luiz Claudio de; Coutinho, Fernanda M.B.

    2001-01-01

    In this work, new copolymers of propene/1-hexene (PHC) and propene/1-octene (POC) were synthesized by using a highly iso specific metallocenes catalyst system based on rac-Me 2 Si(2-ethyl,4-phenyl,1-indenyl) 2 ZrCl 2 , in the homogeneous and heterogeneous forms, methylaluminoxane (MAO) activated. An investigation about the copolymerization of propene with 1-hexene and 1-octene using this catalyst system illustrates the potential for the tailoring of propene/higher α-olefin copolymers with controlled thermal and mechanical properties by varying the comonomer concentration in the polymerization feed. Both catalyst systems showed high activity and produced random copolymers with very low or no detectable crystallinity. It was observed that properties such as enthalpy of crystallization (ΔHc), crystallization temperature (Tc), melting temperature (Tm), glass transition temperature (Tg) and elastic modulus (E') decreased in a linear pattern with increasing comonomer content in the copolymer. The effect of the short chain branch length was also investigated and it was observed that, compared to 1-hexene, much less 1-octene was necessary to disrupt the crystalline structure and impart rubbery behaviour to the copolymers. (author)

  20. Spectral Signatures of Polarons in Conjugated Co-polymers

    NARCIS (Netherlands)

    Wiebeler, Christian; Tautz, Raphael; Feldmann, Jochen; von Hauff, Elizabeth; Da Como, Enrico; Schumacher, Stefan

    2013-01-01

    We study electronic and optical properties of the low-bandgap co-polymer PCPDT-BT (poly-cyclopentadithiophene-co-benzothiadiazole) and compare it with the corresponding homo-polymer PCPDT (poly-cyclopentadithiophene). We investigate the linear absorptivity in these systems for neutral molecules and

  1. Research Update: Triblock copolymers as templates to synthesize inorganic nanoporous materials

    Directory of Open Access Journals (Sweden)

    Yunqi Li

    2016-04-01

    Full Text Available This review focuses on the application of triblock copolymers as designed templates to synthesize nanoporous materials with various compositions. Asymmetric triblock copolymers have several advantages compared with symmetric triblock copolymers and diblock copolymers, because the presence of three distinct domains can provide more functional features to direct the resultant nanoporous materials. Here we clearly describe significant contributions of asymmetric triblock copolymers, especially polystyrene-block-poly(2-vinylpyridine-block-poly(ethylene oxide (abbreviated as PS-b-P2VP-b-PEO.

  2. Critical Conditions for Liquid Chromatography of Statistical Copolymers: Functionality Type and Composition Distribution Characterization by UP-LCCC/ESI-MS.

    Science.gov (United States)

    Epping, Ruben; Panne, Ulrich; Falkenhagen, Jana

    2017-02-07

    Statistical ethylene oxide (EO) and propylene oxide (PO) copolymers of different monomer compositions and different average molar masses additionally containing two kinds of end groups (FTD) were investigated by ultra high pressure liquid chromatography under critical conditions (UP-LCCC) combined with electrospray ionization time-of flight mass spectrometry (ESI-TOF-MS). Theoretical predictions of the existence of a critical adsorption point (CPA) for statistical copolymers with a given chemical and sequence distribution1 could be studied and confirmed. A fundamentally new approach to determine these critical conditions in a copolymer, alongside the inevitable chemical composition distribution (CCD), with mass spectrometric detection, is described. The shift of the critical eluent composition with the monomer composition of the polymers was determined. Due to the broad molar mass distribution (MMD) and the presumed existence of different end group functionalities as well as monomer sequence distribution (MSD), gradient separation only by CCD was not possible. Therefore, isocratic separation conditions at the CPA of definite CCD fractions were developed. Although the various present distributions partly superimposed the separation process, the goal of separation by end group functionality was still achieved on the basis of the additional dimension of ESI-TOF-MS. The existence of HO-H besides the desired allylO-H end group functionalities was confirmed and their amount estimated. Furthermore, indications for a MSD were found by UPLC/MS/MS measurements. This approach offers for the first time the possibility to obtain a fingerprint of a broad distributed statistical copolymer including MMD, FTD, CCD, and MSD.

  3. Biomimetic triblock copolymer membrane arrays: a stable template for functional membrane proteins

    DEFF Research Database (Denmark)

    Gonzalez-Perez, A.; Jensen, Karin Bagger Stibius; Vissing, Thomas

    2009-01-01

    It is demonstrated that biomimetic stable triblock copolymer membrane arrays can be prepared using a scaffold containing 64 apertures of 300 μm diameter each. The membranes were made from a stock solution of block copolymers with decane as a solvent using a new deposition method. By using decane...

  4. Thermoresponsive Poly(2-Oxazoline) Molecular Brushes by Living Ionic Polymerization: Modulation of the Cloud Point by Random and Block Copolymer Pendant Chains

    KAUST Repository

    Zhang, Ning

    2012-08-10

    Molecular brushes (MBs) of poly(2-oxazoline)s were prepared by living anionic polymerization of 2-isopropenyl-2-oxazoline to form the backbone and living cationic ring-opening polymerization of 2-n-propyl-2-oxazoline and 2-methyl-2-oxazoline to form random and block copolymers. Their aqueous solutions displayed a distinct thermoresponsive behavior as a function of the side-chain composition and sequence. The cloud point (CP) of MBs with random copolymer side chains is a linear function of the hydrophilic monomer content and can be modulated in a wide range. For MBs with block copolymer side chains, it was found that the block sequence had a strong and surprising effect on the CP. While MBs with a distal hydrophobic block had a CP at 70 °C, MBs with hydrophilic outer blocks already precipitated at 32 °C. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Position transitions of polymer-grafted nanoparticles in diblock-copolymer nanocomposites

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Self-assembly of block copolymer/nanoparticle blends has promising applications in the design and fabrication of novel functional nanomaterials. Precise control of the spatial positions of nanoparticles within block copolymer-based nanomaterials is crucial to achieve some special physical properties and functions. Here, we employ the self-consistent field method to theoretically investigate the self-assembly of polymer grafted-nanoparticles in a diblock copolymer. It is found that by varying the size and selectivity of nanoparticles, one can not only produce various self-assembled nanostructures but also modulate the spatial positions of the nanoparticles, either at the copolymer interfaces or in the center of one copolymer phase, within the nanostructures. A denser grafted polymer brush plays a role of shielding effect on nanoparticles and can position them into the center of one copolymer phase. The nanostructural transition we observed is dictated by the competition between entropy and enthalpy. On the basis of a number of simulations, two phase diagrams of self-assembled nanostructures are constructed. This study may be helpful for optimal design of advanced materials with desired nanostructures and enhanced performance.

  6. Self-Assembly of Block and Graft Copolymers in Organic Solvents: An Overview of Recent Advances

    Directory of Open Access Journals (Sweden)

    Leonard Ionut Atanase

    2018-01-01

    Full Text Available This review is an attempt to update the recent advances in the self-assembly of amphiphilic block and graft copolymers. Their micellization behavior is highlighted for linear AB, ABC triblock terpolymers, and graft structures in non-aqueous selective polar and non-polar solvents, including solvent mixtures and ionic liquids. The micellar characteristics, such as particle size, aggregation number, and morphology, are examined as a function of the copolymers’ architecture and molecular characteristics.

  7. Synthesis, Characterization and Photoinduction of Optical Anisotropy in Liquid Crystalline Diblock Azo-Copolymers

    DEFF Research Database (Denmark)

    Forcén, P; Oriol, L; Sánchez, C

    2007-01-01

    Diblock copolymers with polymethyl methacrylate and side chain liquid crystalline WC) azopolymethacrylate blocks were synthesized by atom transfer radical polymerization (ATRP). The azobeazene content in these copolymers ranges from 52 to 7 wt %. For an azo conteat dowri to 20% they exhibit a LC...... anisotropy induced in these films by illumination with linearly polarized 488 nm light was studied and the resuits compared with those of the azo homopolymer and of a random copolymer with a similar composition. The formation of azo aggregates inside the azo blocks is strongly reduced in going from...... the homopolymer to the copolymers. Photoinduced azo orientation perpendicular to the 488 nm light polarization was found in aH the polymers. The orientational order parameter is very similar in the homopolymer and in the block copolymers with an azo content down to 20 wt %, while it is much lower in the random...

  8. Chemical modifications to vesicle forming diblock copolymers: Development of smart functional polymersome membranes

    Science.gov (United States)

    Katz, Joshua S.

    2011-07-01

    A major limitation to current treatment regimens for diseases is the inability to adequately deliver therapeutics. Many routes to encapsulation of these materials have been explored to improve biodistribution and better protect encapsulants from harsh biological conditions. One vehicle particularly attractive for encapsulation of such materials is the polymersome. While promising for translation to clinical use, there are still limitations in polymer chemistry and resulting polymersome behavior that will slow their adaptation. This thesis addresses several of these limitations. The first major limitation to polymersomes is lack of control over their release rate. Release is generally by simple diffusion, leading to a burst. To address this burst, Aim 1 proposes a route to stabilizing polymersome membranes through their polymerization. PCL-PEG copolymers were terminally acrylated and the acrylates polymerized in the membrane following vesicle assembly. Polymerization enhanced mechanical robustness of the membranes and reduced diffusion of encapsulated contents. To ultimately trigger release, Aim 2 presents a novel route to synthesizing diblock copolymers, enabling insertion of a functional group at the blocks' junction. To facilitate triggering of release, we inserted UV-cleavable 2-nitrophenylalanine. Polymersomes assembled from this polymer collapse upon exposure to light and molecules release. Demonstrating further utility of this synthetic route, fluorescent vesicles were prepared using fluorescent lysine as the joining molecule. These vesicles labeled dendritic cells, providing a novel route to cell labeling and tracking. The second limitation to vesicles promising for biomedical applications (made of PCL-PEG) is their solid membranes. Aim 3 demonstrates partial (or full) replacement of the PCL block with a caprolactone analogue, TOSUO, which is non-crystalline and assembles into soft, deformable vesicles. Increasing TOSUO content in the copolymer leads to

  9. Block coordination copolymers

    Science.gov (United States)

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  10. Nanoparticles based on novel amphiphilic polyaspartamide copolymers

    International Nuclear Information System (INIS)

    Craparo, Emanuela Fabiola; Teresi, Girolamo; Ognibene, Maria Chiara; Casaletto, Maria Pia; Bondi, Maria Luisa; Cavallaro, Gennara

    2010-01-01

    In this article, the synthesis of two amphiphilic polyaspartamide copolymers, useful to obtain polymeric nanoparticles without using surfactants or stabilizing agents, is described. These copolymers were obtained starting from α,β-poly-(N-2-hydroxyethyl)-dl-aspartamide (PHEA) by following a novel synthetic strategy. In particular, PHEA and its pegylated derivative (PHEA-PEG 2000 ) were functionalized with poly(lactic acid) (PLA) through 1,1'-carbonyldiimidazole (CDI) activation to obtain PHEA-PLA and PHEA-PEG 2000 -PLA graft copolymers, respectively. These copolymers were properly purified and characterized by 1 H-NMR, FT-IR, and Size Exclusion Chromatography (SEC) analyses, which confirmed that derivatization reactions occurred. Nanoparticles were obtained from PHEA-PLA and PHEA-PEG 2000 -PLA graft copolymers by using the high pressure homogenization-solvent evaporation method, avoiding the use of surfactants or stabilizing agents. Polymeric nanoparticles were characterized by dimensional analysis, before and after freeze-drying process, and Scanning Electron Microscopy (SEM). Zeta potential measurements and X-ray Photoelectron Spectroscopy (XPS) analysis demonstrated the presence of PEG and/or PHEA onto the PHEA-PEG 2000 -PLA and PHEA-PLA nanoparticle surface, respectively.

  11. Multiblock Copolymers of Styrene and Butyl Acrylate via Polytrithiocarbonate-Mediated RAFT Polymerization

    Directory of Open Access Journals (Sweden)

    Bastian Ebeling

    2011-03-01

    Full Text Available When linear polytrithiocarbonates as Reversible Addition-Fragmentation chain Transfer (RAFT agents are employed in a radical polymerization, the resulting macromolecules consist of several homogeneous polymer blocks, interconnected by the functional groups of the respective RAFT agent. Via a second polymerization with another monomer, multiblock copolymers—polymers with alternating segments of both monomers—can be prepared. This strategy was examined mechanistically in detail based on subsequent RAFT polymerizations of styrene and butyl acrylate. Size-exclusion chromatography (SEC of these polymers showed that the examined method yields low-disperse products. In some cases, resolved peaks for molecules with different numbers of blocks (polymer chains separated by the trithiocarbonate groups could be observed. Cleavage of the polymers at the trithiocarbonate groups and SEC analysis of the products showed that the blocks in the middle of the polymers are longer than those at the ends and that the number of blocks corresponds to the number of functional groups in the initial RAFT agent. Furthermore, the produced multiblock copolymers were analyzed via differential scanning calorimetry (DSC. This work underlines that the examined methodology is very well suited for the synthesis of well-defined multiblock copolymers.

  12. Bacterial Reaction Centers Purified with Styrene Maleic Acid Copolymer Retain Native Membrane Functional Properties and Display Enhanced Stability**

    Science.gov (United States)

    Swainsbury, David J K; Scheidelaar, Stefan; van Grondelle, Rienk; Killian, J Antoinette; Jones, Michael R

    2014-01-01

    Integral membrane proteins often present daunting challenges for biophysical characterization, a fundamental issue being how to select a surfactant that will optimally preserve the individual structure and functional properties of a given membrane protein. Bacterial reaction centers offer a rare opportunity to compare the properties of an integral membrane protein in different artificial lipid/surfactant environments with those in the native bilayer. Here, we demonstrate that reaction centers purified using a styrene maleic acid copolymer remain associated with a complement of native lipids and do not display the modified functional properties that typically result from detergent solubilization. Direct comparisons show that reaction centers are more stable in this copolymer/lipid environment than in a detergent micelle or even in the native membrane, suggesting a promising new route to exploitation of such photovoltaic integral membrane proteins in device applications. PMID:25212490

  13. Poly(ortho-phenylenediamine-co-aniline) based copolymer with improved capacitance

    Science.gov (United States)

    Olmedo-Martínez, Jorge L.; Farías-Mancilla, Bárbara I.; Vega-Rios, Alejandro; Zaragoza-Contreras, E. Armando

    2017-10-01

    A poly(ortho-phenylenediamine-co-aniline) copolymer is synthesized via the oxidative route, using a 1:1 M ratio of aniline to ortho-phenylenediamine (oPDA) and ammonium persulfate as the oxidizing agent. Infrared spectroscopy indicates that the copolymer contains the functional groups typically present in polyaniline and poly(ortho-phenylenediamine); whereas UV-vis-NIR spectroscopy shows that the copolymer adopts a phenazine-type structure. Cyclic voltammetry evidences the copolymer synthesis, as a redox peak at -65 mV, different from those exhibited by polyaniline (160 mV and 600 mV) or poly(o-phenylenediamine) (-240 mV) is observed. Finally, electrochemical impedance spectroscopy and the charge/discharge test provide support to propose the copolymer application in electrodes for supercapacitors.

  14. Patchy micelles based on coassembly of block copolymer chains and block copolymer brushes on silica particles.

    Science.gov (United States)

    Zhu, Shuzhe; Li, Zhan-Wei; Zhao, Hanying

    2015-04-14

    Patchy particles are a type of colloidal particles with one or more well-defined patches on the surfaces. The patchy particles with multiple compositions and functionalities have found wide applications from the fundamental studies to practical uses. In this research patchy micelles with thiol groups in the patches were prepared based on coassembly of free block copolymer chains and block copolymer brushes on silica particles. Thiol-terminated and cyanoisopropyl-capped polystyrene-block-poly(N-isopropylacrylamide) block copolymers (PS-b-PNIPAM-SH and PS-b-PNIPAM-CIP) were synthesized by reversible addition-fragmentation chain transfer polymerization and chemical modifications. Pyridyl disulfide-functionalized silica particles (SiO2-SS-Py) were prepared by four-step surface chemical reactions. PS-b-PNIPAM brushes on silica particles were prepared by thiol-disulfide exchange reaction between PS-b-PNIPAM-SH and SiO2-SS-Py. Surface micelles on silica particles were prepared by coassembly of PS-b-PNIPAM-CIP and block copolymer brushes. Upon cleavage of the surface micelles from silica particles, patchy micelles with thiol groups in the patches were obtained. Dynamic light scattering, transmission electron microscopy, and zeta-potential measurements demonstrate the preparation of patchy micelles. Gold nanoparticles can be anchored onto the patchy micelles through S-Au bonds, and asymmetric hybrid structures are formed. The thiol groups can be oxidized to disulfides, which results in directional assembly of the patchy micelles. The self-assembly behavior of the patchy micelles was studied experimentally and by computer simulation.

  15. Non-immunogenic, hydrophilic/cationic block copolymers and uses thereof

    Science.gov (United States)

    Scales, Charles W.; Huang, Faqing; McCormick, Charles L.

    2010-05-18

    The present invention provides novel non-immunogenic, hydrophilic/cationic block copolymers comprising a neutral-hydrophilic polymer and a cationic polymer, wherein both polymers have well-defined chain-end functionality. A representative example of such a block copolymer comprises poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and poly(N-[3-(dimethylamino)propyl]methacrylamide) (PDMAPMA). Also provided is a synthesis method thereof in aqueous media via reversible addition fragmentation chain transfer (RAFT) polymerization. Further provided are uses of these block copolymers as drug delivery vehicles and protection agents.

  16. Controlled specific placement of nanoparticles into microdomains of block copolymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Joonwon, E-mail: joonwonbae@gmail.com [Department of Applied Chemistry, Dongduk Women' s University, Seoul 136-714 (Korea, Republic of); Kim, Jungwook [Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742 (Korea, Republic of); Park, Jongnam, E-mail: jnpark@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)

    2014-07-01

    Conceptually attractive hybrid materials composed of nanoparticles and elegant block copolymers have become important for diverse applications. In this work, controlled specific placement of nanoparticles such as gold (Au) and titania (TiO{sub 2}) into microphase separated domains in poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films was demonstrated. The effect of nanoparticle surface functionality on the spatial location of particles inside polymer film was observed by transmission electron microscopy. It was revealed that the location of nanoparticles was highly dependent on the surface ligand property of nanoparticle. In addition, the microphase separation behavior of thin block copolymer film was also affected by the nanoparticle surface functional groups. This study might provide a way to understand the properties and behaviors of numerous block copolymer/nanoparticle hybrid systems. - Highlights: • Controlled location of nanoparticles in the block copolymer matrix • Tailoring surface functionality of metal nanocrystals • Fabrication of homogeneous nanocomposites using organic inorganic components • Possibility for the preparation of nanohybrids.

  17. Controlled specific placement of nanoparticles into microdomains of block copolymer thin films

    International Nuclear Information System (INIS)

    Bae, Joonwon; Kim, Jungwook; Park, Jongnam

    2014-01-01

    Conceptually attractive hybrid materials composed of nanoparticles and elegant block copolymers have become important for diverse applications. In this work, controlled specific placement of nanoparticles such as gold (Au) and titania (TiO 2 ) into microphase separated domains in poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films was demonstrated. The effect of nanoparticle surface functionality on the spatial location of particles inside polymer film was observed by transmission electron microscopy. It was revealed that the location of nanoparticles was highly dependent on the surface ligand property of nanoparticle. In addition, the microphase separation behavior of thin block copolymer film was also affected by the nanoparticle surface functional groups. This study might provide a way to understand the properties and behaviors of numerous block copolymer/nanoparticle hybrid systems. - Highlights: • Controlled location of nanoparticles in the block copolymer matrix • Tailoring surface functionality of metal nanocrystals • Fabrication of homogeneous nanocomposites using organic inorganic components • Possibility for the preparation of nanohybrids

  18. Radiation synthesis of a water-soluble temperature sensitive polymer, activated copolymer and applications in immobilization of proteins

    International Nuclear Information System (INIS)

    Zhai Maolin; Ha Hongfei; Wu Jilan

    1993-01-01

    In this work the radiation polymerization of N-isopropylacrylamide (NIPAAM) in aqueous solutions has been carried out and a water-soluble, temperature sensitive polymer and copolymer were obtained by using γ-rays from Co-60 source at room temperature. We have gained the optimum dose and dose-rate of radiation synthesis of linear polyNIPAAM through determining conversion yield and viscosity. In order to immobilize protein (BSA) and enzyme (HRP) into this water-soluble polymer, we prepared an activated copolymer, poly(N-isopropylacrylamide-co-N-acryloxysuccinimide). The BSA and HRP has been immobilized onto the activated copolymer. The BSA (HRP)/copolymer conjugates still kept the original thermally sensitive properties of the linear polyNIPAAM. The conjugation yield of BSA to the activated copolymer decreased with increasing dose. Immobilized HRP was stable at 0 o C for a long time and has, at least, 4 days stability at room temperature. Immobilized HRP activity was lowered when the temperature was raised. This phenomenon was reversible and the immobilized HRP regained activity. The optimum pH of the immobilized HRP shifted from ca.5 upward to ca. 7. (author)

  19. Synthesis and Characterization of Novel Magnetite Nanoparticle Block Copolymer Complexes

    OpenAIRE

    Zhang, Qian

    2007-01-01

    Superparamagnetic Magnetite (Fe3O4) nanoparticles were synthesized and complexed with carboxylate-functionalized block copolymers, and aqueous dispersions of the complexes were investigated as functions of their chemical and morphological structures. The block copolymer dispersants possessed either poly(ethylene oxide), poly(ethylene oxide-co-propylene oxide), or poly(ethylene oxide-b-propylene oxide) outer blocks, and all contained a polyurethane center block with pendant carboxylate functi...

  20. Phase behavior of diblock copolymer/star-shaped polymer thin film mixtures.

    Science.gov (United States)

    Zhao, Junnan; Sakellariou, Georgios; Green, Peter F

    2016-05-07

    We investigated the phase behavior of thin film, thickness h≈ 100 nm, mixtures of a polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer with star-shaped polystyrene (SPS) molecules of varying functionalities f, where 4 ≤f≤ 64, and molecular weights per arm Marm. The miscibility of the system and the surface composition varied appreciably with Marm and f. For large values of Marm, regardless of f, the miscibility of the system was qualitatively similar to that of linear chain PS/PS-b-P2VP mixtures - the copolymer chains aggregate to form micelles, each composed of an inner P2VP core and PS corona, which preferentially segregate to the free surface. On the other hand, for large f and small Marm, SPS molecules preferentially resided at the free surface. Moreover, blends containing SPS molecules with the highest values of f and lowest values of Marm were phase separated. These observations are rationalized in terms of competing entropic interactions and the dependence of the surface tension of the star-shaped molecules on Marm and f.

  1. Time-resolved SAXS studies of morphological changes in a blend of linear polyethylene with homogeneous ethylene-1-octene copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Ślusarczyk, Czesław, E-mail: cslusarczyk@ath.bielsko.pl

    2015-12-01

    Isothermal melt crystallization in the 15/85 (m/m) blend of a high density polyethylene (HDPE) and a homogeneous ethylene copolymer with 5.5 mol% 1-octene was studied by time-resolved SAXS method with synchrotron radiation over a wide-range of crystallization temperatures. The SAXS profile was analyzed by means of the correlation function which allows to elucidate the evolution of the morphological parameters of polyethylene lamellar structure (long period (LP), thicknesses of crystalline (L{sub C}) and amorphous (L{sub A}) layers) during a crystallization process. It was found that for the samples crystallized at 100 °C, 120 °C and 122 °C L{sub C} increases with time. The lamellar thickening rate strongly depends on crystallization temperature. At 40 °C thickening of the crystalline layers does not occur. The time evolution of the lamellar structure in the blend studied confirms the role of hexyl branches of homogeneous copolymer in the crystallization process of polyethylene. The branches introduce steric constraints which hinder the crystallization of HDPE, thus decreasing the size of the HDPE lamellar crystals.

  2. Functionalized and graft copolymers of chitosan and its pharmaceutical applications.

    Science.gov (United States)

    Bhavsar, Chintan; Momin, Munira; Gharat, Sankalp; Omri, Abdelwahab

    2017-10-01

    Chitosan is the second most abundant natural polysaccharide. It belongs a family of polycationic polymers comprised of repetitive units of glucosamine and N-acetylglucosamine. Its biodegradability, nontoxicity, non-immunogenicity and biocompatibility along with properties like mucoadhesion, fungistatic and bacteriogenic have made chitosan an appreciated polymer with numerous applications in the pharmaceutical, comestics and food industry. However, the limited solubility of chitosan at alkaline and neutral pH limits its widespread commercial use. This can be circumvented by fabrication of chitosan by graft copolymerization with acyl, alkyl, monomeric and polymeric moieties. Areas covered: Modifications like quarterization, thiolation, acylation and grafting result in copolymers with higher mucoadhesion strength, increased hydrophobic interactions (advantageous in hydrophobic drug entrapment), and increased solubility in alkaline pH, the ability for adsorption of metal ions, protein and peptide delivery and nutrient delivery. Insights on methods of polymerization, including atomic transfer radical polymerization and click chemistry are discussed. Applications of such modified chitosan copolymers in medical and surgical, and drug delivery, including nasal, oral and buccal delivery have also been covered. Expert opinion: Despite a number of successful investigations, commercialization of chitosan copolymers still remains a challenge. Further advancements in polymerization techniques may address the unmet needs of the healthcare industry.

  3. Investigations on the Phase Diagram and Interaction Parameter of Poly(styrene-b-1,3-cyclohexadiene) Copolymers

    KAUST Repository

    Misichronis, Konstantinos

    2017-03-15

    A series of linear diblock copolymers containing polystyrene (PS) and poly(1,3-cyclohexadiene) (PCHD) with high 1,4-microstructure (>87%) was synthesized by anionic polymerization and high vacuum techniques. Microphase separation in the bulk was examined by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) and compared to computational analysis of the predicted morphological phase diagram for this system. Because of the high conformational asymmetry between PS and PCHD, these materials self-assemble into typical morphologies expected for linear diblock copolymer systems and atypical structures. Rheological measurements were conducted and revealed order–disorder transition temperatures (TODT), for the first time for PS-b-PCHD copolymers, resulting in a working expression for the effective interaction parameter χeff = 32/T – 0.016. Furthermore, we performed computational studies that coincide with the experimental results. These copolymers exhibit well-ordered structures even at high temperatures (∼260 °C) therefore providing a better insight concerning their microphase separation at the nanoscale which is important for their potential use in nanotechnology and/or nanolithography applications.

  4. Investigations on the Phase Diagram and Interaction Parameter of Poly(styrene-b-1,3-cyclohexadiene) Copolymers

    KAUST Repository

    Misichronis, Konstantinos; Chen, Jihua; Imel, Adam; Kumar, Rajeev; Thostenson, James; Hong, Kunlun; Dadmun, Mark; Sumpter, Bobby G.; Kennemur, Justin G.; Hadjichristidis, Nikolaos; Mays, Jimmy W.; Avgeropoulos, Apostolos

    2017-01-01

    A series of linear diblock copolymers containing polystyrene (PS) and poly(1,3-cyclohexadiene) (PCHD) with high 1,4-microstructure (>87%) was synthesized by anionic polymerization and high vacuum techniques. Microphase separation in the bulk was examined by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) and compared to computational analysis of the predicted morphological phase diagram for this system. Because of the high conformational asymmetry between PS and PCHD, these materials self-assemble into typical morphologies expected for linear diblock copolymer systems and atypical structures. Rheological measurements were conducted and revealed order–disorder transition temperatures (TODT), for the first time for PS-b-PCHD copolymers, resulting in a working expression for the effective interaction parameter χeff = 32/T – 0.016. Furthermore, we performed computational studies that coincide with the experimental results. These copolymers exhibit well-ordered structures even at high temperatures (∼260 °C) therefore providing a better insight concerning their microphase separation at the nanoscale which is important for their potential use in nanotechnology and/or nanolithography applications.

  5. Introducing Linear Functions: An Alternative Statistical Approach

    Science.gov (United States)

    Nolan, Caroline; Herbert, Sandra

    2015-01-01

    The introduction of linear functions is the turning point where many students decide if mathematics is useful or not. This means the role of parameters and variables in linear functions could be considered to be "threshold concepts". There is recognition that linear functions can be taught in context through the exploration of linear…

  6. Electrical characterization of fluorinated benzothiadiazole based conjugated copolymer – a promising material for high-performance solar cells

    Directory of Open Access Journals (Sweden)

    J. Toušek

    2015-12-01

    Full Text Available Measurements of electrical conductivity, electron work function, carrier mobility of holes and the diffusion length of excitons were performed on samples of conjugated polymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazole based conjugated copolymer (PBDTTHD − DTBTff was studied and benchmarked against the reference polymer poly-3-hexylthiophene (P3HT. We employed, respectively, four electrode conductivity measurements, Kelvin probe work function measurements, carrier mobility using charge extraction by linearly increasing voltage (CELIV measurements and diffusion length determinaton using surface photovoltage measurements.

  7. Molecular changes in copolymers of styrene and methyl methacrylate caused by radiation

    International Nuclear Information System (INIS)

    Busfield, W.K.; O'Donnell, J.H.; Smith, C.A.

    1976-01-01

    Homopolymers of styrene and methyl methacrylate and copolymers of these monomers were irradiated in vacuo at room temperature using 60 Co γ-radiation to various doses. The gaseous radiolysis products of the polymers were analysed by gas chromatography. The radiation chemical yield, G values, of the gaseous and liquid products were calculated for the homopolymers and copolymers. The G values obtained for the homopolymers were compared with those obtained by previous workers. The graphs of G value versus composition (% Styrene) showed a marked deviation from linearity which indicated that the styrene in the copolymer had a greater effect on the behaviour than did the methyl methacrylate units. It has been postulated that the benzene ring on the styrene unit acts in some way as an energy sink, and hence protects the copolymer from radiation damage in an analogous way to that suggested for hydrocarbon mixtures. Mechanisms for the process are discussed. (author)

  8. Complexation of Polyelectrolyte Micelles with Oppositely Charged Linear Chains.

    Science.gov (United States)

    Kalogirou, Andreas; Gergidis, Leonidas N; Miliou, Kalliopi; Vlahos, Costas

    2017-03-02

    The formation of interpolyelectrolyte complexes (IPECs) from linear AB diblock copolymer precursor micelles and oppositely charged linear homopolymers is studied by means of molecular dynamics simulations. All beads of the linear polyelectrolyte (C) are charged with elementary quenched charge +1e, whereas in the diblock copolymer only the solvophilic (A) type beads have quenched charge -1e. For the same Bjerrum length, the ratio of positive to negative charges, Z +/- , of the mixture and the relative length of charged moieties r determine the size of IPECs. We found a nonmonotonic variation of the size of the IPECs with Z +/- . For small Z +/- values, the IPECs retain the size of the precursor micelle, whereas at larger Z +/- values the IPECs decrease in size due to the contraction of the corona and then increase as the aggregation number of the micelle increases. The minimum size of the IPECs is obtained at lower Z +/- values when the length of the hydrophilic block of the linear diblock copolymer decreases. The aforementioned findings are in agreement with experimental results. At a smaller Bjerrum length, we obtain the same trends but at even smaller Z +/- values. The linear homopolymer charged units are distributed throughout the corona.

  9. Living cationic polymerization and polyhomologation: an ideal combination to synthesize functionalized polyethylene–polyisobutylene block copolymers

    KAUST Repository

    Zhang, Hefeng

    2015-12-17

    A series of hydroxyl-terminated polyisobutylene-b-polyethylene (PIB-b-PE-OH) copolymers were synthesized by combining living cationic polymerization and polyhomologation. Allyl-terminated PIBs, synthesized by living cationic polymerization, were hydroborated with BH3·THF to produce 3-arm boron-linked stars, PIB3B, which served as macroinitiators for the in situ polyhomologation of dimethylsulfoxonium methylide. The resulting 3-arm star block copolymers, (PIB-b-PE)3B, were oxidized/hydrolysed to afford PIB-b-PE-OH. Characterization of all intermediates and final products by high temperature gel permeation chromatography (HT-GPC) and proton nuclear magnetic resonance spectroscopy (1H NMR) revealed the well-defined character of the copolymers. The thermal properties of the copolymers were studied by differential scanning calorimetry (DSC).

  10. Copolymers of N-cyclohexylacrylamide and n-butyl acrylate: synthesis, characterization, monomer reactivity ratios and mean sequence length

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available Copolymerization of N-cyclohexylacrylamide (NCHA and n-butyl acrylate (BA was carried out in dimethylformamide at 55±1°C using azobisisobutyronitrile as a free radical initiator. The copolymers were characterized by 1H-NMR spectroscopy and the copolymer compositions were determined by 1H-NMR analysis. The reactivity ratios of the monomers were determined by both linear and non-linear methods. The reactivity ratios of monomers determined using linear methods like Fineman-Ross (r1 = 0.37 and r2 = 1.77 , Kelen-Tudos (r1 = 0.38 and r2 = 1.77, ext. Kelen-Tudos (r1 = 0.37 and r2 = 1.75 Yezrieler-Brokhina-Roskin (r1 = 0.37 and r2 = 1.77 and non-linear methods like Tidwell-Mortimer (r1 = 0.37 and r2 = 1.76, ProCop (r1 = 0.36 and r2 = 1.82. The Q and e values for NCHA are 0.67 and 0.68 respectively. Mean sequence lengths of copolymers are estimated from r1 and r2 values. It shows that the BA units increases in a linear fashion in the polymer chain as the concentration of BA increases in the monomer feed.

  11. Synthesis, characterization and antimicrobial activity of important heterocyclic acrylic copolymers

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available The acrylate monomer, 7-acryloyloxy-4-methyl coumarin (AMC has been synthesized by reacting 7-hydroxy-4-methyl coumarin, with acryloyl chloride in the presence of NaOH at 0–5°C. Copolymers of 7-acryloyloxy-4-methyl coumarin (AMC with vinyl acetate (VAc were synthesized in DMF (dimethyl formamide solution at 70±1°C using 2,2′-azobisisobutyronitrile (AIBN as an initiator with different monomer-to-monomer ratios in the feed. The copolymers were characterized by Fourier transform infra red (FTIR spectroscopy. The copolymer composition was evaluated by 1H-NMR (proton nuclear magnetic resonance and was further used to determine reactivity ratios. The monomer reactivity ratios for AMC (M1-VAc (M2 pair were determined by the application of conventional linearization methods such as Fineman-Ross (r1 = 0.6924; r2 = 0.6431, Kelen-Tüdõs (r1 = 0.6776; r2 = 0.6374 and extended Kelen-Tüdõs (r1 = 0.6657; r2 = 0.6256. Thermo gravimetric analysis showed that thermal decomposition of the copolymers occurred in single stage in the temperature range of 263–458°C. The molecular weights of the polymers were determined using gel permeation chromatography. The homo and copolymers were tested for their antimicrobial properties against selected microorganisms.

  12. The effect of copolymers on the interfaces in incompatible homopolymers blend: Molecular dynamics study

    Science.gov (United States)

    Ryu, Jiho; Lee, Won Bo

    2015-03-01

    Using molecular dynamics simulations the effect of copolymers as compatibilizer for reducing interfacial tension and enhancement of interfacial adhesion at the interface of thermodynamic unfavorable homopolymers blend is studied with block- and graft-copolymers. We have calculated local pressure tensor of system along the axis perpendicular to interface, varying bending potential energy of one part, which consist of just one kind of beads, of copolymer chain to examine the effect of stiffness of surfactin molecules. Here we consider symmetric diblock copolymer (f =1/2) having 1/2 N make of beads of type A and the other part made of beads of type B, and graft copolymer having backbone linear chain consist of 1/2 N beads of type of A and branched with two side-chain consist of 1/4 N beads of type B. All simulations were performed under the constant NPT ensemble at T* =1, ρ* ~0.85. Also we studied changes of effect of copolymers with increasing pairwise repulsive interaction potential between two beads of types A and B while homopolymers chain length are fixed, N =30. Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea.

  13. Synthesis and characterization of acrylate copolymer containing fluorescein functional group

    International Nuclear Information System (INIS)

    Hui, Guodong; Huang, Weiyun; Song, Yunzhao; Chen, Deben; Zhong, Anyong

    2013-01-01

    We report a novel method to fabricate fluorescent polymer (F-CPA) based on the esterification between acrylate copolymer (CPA) and fluorescein using N, N-dicyclohexylcarbodiimide (DCC)/4-dimethylaminopyridine (DMAP) as catalyst. The resulting copolymer was characterized by Fourier transform-infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), ultraviolet-visible spectroscopy (UV-Vis) and fluorescence spectroscopy. In addition, the influences of concentration, solvents, pH and metal cations (Cu"2"+, Fe"3"+ and Zn"2"+) on the fluorescent behaviors of F-CPA are discussed in detail. All those observations suggest that the synthesized F-CPA is an excellent luminescent macromolecular material with simple synthesis method and excellent solubility. Moreover, its sensitive fluorescence response behaviors to solvents, pH and metal cations make it to become a polymer-based probe

  14. Reduction of Linear Functional Systems using Fuhrmann's Equivalence

    Directory of Open Access Journals (Sweden)

    Mohamed S. Boudellioua

    2016-11-01

    Full Text Available Functional systems arise in the treatment of systems of partial differential equations, delay-differential equations, multidimensional equations, etc. The problem of reducing a linear functional system to a system containing fewer equations and unknowns was first studied by Serre. Finding an equivalent presentation of a linear functional system containing fewer equations and fewer unknowns can generally simplify both the study of the structural properties of the linear functional system and of different numerical analysis issues, and it can sometimes help in solving the linear functional system. In this paper, Fuhrmann's equivalence is used to present a constructive result on the reduction of under-determined linear functional systems to a single equation involving a single unknown. This equivalence transformation has been studied by a number of authors and has been shown to play an important role in the theory of linear functional systems.

  15. Olefin–Styrene Copolymers

    OpenAIRE

    Nunzia Galdi; Antonio Buonerba; Leone Oliva

    2016-01-01

    In this review are reported some of the most relevant achievements in the chemistry of the ethylene–styrene copolymerization and in the characterization of the copolymer materials. Focus is put on the relationship between the structure of the catalyst and that of the obtained copolymer. On the other hand, the wide variety of copolymer architecture is related to the properties of the material and to the potential utility.

  16. Electrical characterization of fluorinated benzothiadiazole based conjugated copolymer – a promising material for high-performance solar cells

    DEFF Research Database (Denmark)

    Toušek, J.; Toušková, J.; Remeš, Z.

    2015-01-01

    Measurements of electrical conductivity, electron work function, carrier mobility ofholes and the diffusion length of excitons were performed on samples of conjugatedpolymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazolebased conjugated copolymer (PBDTTHD − DTBTff......) was studied and benchmarkedagainst the reference polymer poly-3-hexylthiophene (P3HT).We employed,respectively, four electrode conductivity measurements, Kelvin probe work functionmeasurements, carrier mobility using charge extraction by linearly increasing voltage(CELIV) measurements and diffusion length...

  17. On the characterization of dynamic supramolecular systems: a general mathematical association model for linear supramolecular copolymers and application on a complex two-component hydrogen-bonding system.

    Science.gov (United States)

    Odille, Fabrice G J; Jónsson, Stefán; Stjernqvist, Susann; Rydén, Tobias; Wärnmark, Kenneth

    2007-01-01

    A general mathematical model for the characterization of the dynamic (kinetically labile) association of supramolecular assemblies in solution is presented. It is an extension of the equal K (EK) model by the stringent use of linear algebra to allow for the simultaneous presence of an unlimited number of different units in the resulting assemblies. It allows for the analysis of highly complex dynamic equilibrium systems in solution, including both supramolecular homo- and copolymers without the recourse to extensive approximations, in a field in which other analytical methods are difficult. The derived mathematical methodology makes it possible to analyze dynamic systems such as supramolecular copolymers regarding for instance the degree of polymerization, the distribution of a given monomer in different copolymers as well as its position in an aggregate. It is to date the only general means to characterize weak supramolecular systems. The model was fitted to NMR dilution titration data by using the program Matlab, and a detailed algorithm for the optimization of the different parameters has been developed. The methodology is applied to a case study, a hydrogen-bonded supramolecular system, salen 4+porphyrin 5. The system is formally a two-component system but in reality a three-component system. This results in a complex dynamic system in which all monomers are associated to each other by hydrogen bonding with different association constants, resulting in homo- and copolymers 4n5m as well as cyclic structures 6 and 7, in addition to free 4 and 5. The system was analyzed by extensive NMR dilution titrations at variable temperatures. All chemical shifts observed at different temperatures were used in the fitting to obtain the DeltaH degrees and DeltaS degrees values producing the best global fit. From the derived general mathematical expressions, system 4+5 could be characterized with respect to above-mentioned parameters.

  18. Slip-spring model of entangled rod-coil block copolymers

    Science.gov (United States)

    Wang, Muzhou; Likhtman, Alexei E.; Olsen, Bradley D.

    2015-03-01

    Understanding the dynamics of rod-coil block copolymers is important for optimal design of functional nanostructured materials for organic electronics and biomaterials. Recently, we proposed a reptation theory of entangled rod-coil block copolymers, predicting the relaxation mechanisms of activated reptation and arm retraction that slow rod-coil dynamics relative to coil and rod homopolymers, respectively. In this work, we introduce a coarse-grained slip-spring model of rod-coil block copolymers to further explore these mechanisms. First, parameters of the coarse-grained model are tuned to match previous molecular dynamics simulation results for coils, rods, and block copolymers. For activated reptation, rod-coil copolymers are shown to disfavor configurations where the rod occupies curved portions of the entanglement tube of randomly varying curvature created by the coil ends. The effect of these barriers on diffusion is quantitatively captured by considering one-dimensional motion along an entanglement tube with a rough free energy potential. Finally, we analyze the crossover between the two mechanisms. The resulting dynamics from both mechanisms acting in combination is faster than from each one individually.

  19. Synthesis and characterization of acrylate copolymer containing fluorescein functional group

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Guodong; Huang, Weiyun; Song, Yunzhao; Chen, Deben; Zhong, Anyong [Sichuan University, Chengdu (China)

    2013-08-15

    We report a novel method to fabricate fluorescent polymer (F-CPA) based on the esterification between acrylate copolymer (CPA) and fluorescein using N, N-dicyclohexylcarbodiimide (DCC)/4-dimethylaminopyridine (DMAP) as catalyst. The resulting copolymer was characterized by Fourier transform-infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), ultraviolet-visible spectroscopy (UV-Vis) and fluorescence spectroscopy. In addition, the influences of concentration, solvents, pH and metal cations (Cu{sup 2+}, Fe{sup 3+} and Zn{sup 2+}) on the fluorescent behaviors of F-CPA are discussed in detail. All those observations suggest that the synthesized F-CPA is an excellent luminescent macromolecular material with simple synthesis method and excellent solubility. Moreover, its sensitive fluorescence response behaviors to solvents, pH and metal cations make it to become a polymer-based probe.

  20. Understanding Linear Functions and Their Representations

    Science.gov (United States)

    Wells, Pamela J.

    2015-01-01

    Linear functions are an important part of the middle school mathematics curriculum. Students in the middle grades gain fluency by working with linear functions in a variety of representations (NCTM 2001). Presented in this article is an activity that was used with five eighth-grade classes at three different schools. The activity contains 15 cards…

  1. Blends of Styrene-Butadiene-Styrene Triblock Copolymer with Random Styrene-Maleic Anhydride Copolymers

    NARCIS (Netherlands)

    Piccini, Maria Teresa; Ruggeri, Giacomo; Passaglia, Elisa; Picchioni, Francesco; Aglietto, Mauro

    2002-01-01

    Blends of styrene-butadiene-styrene triblock copolymer (SBS) with random styrene-maleic anhydride copolymers (PS-co-MA), having different MA content, were prepared in a Brabender Plastigraph mixer. The presence of polystyrene (PS) blocks in the SBS copolymer and the high styrene content (93 and 86

  2. Pressure and temperature effects in homopolymer blends and diblock copolymers

    DEFF Research Database (Denmark)

    Frielinghaus, H.; Schwahn, D.; Mortensen, K.

    1997-01-01

    Thermal composition fluctuations in a homogeneous binary polymer blend and in a diblock copolymer were measured by small-angle neutron scattering as a function of temperature and pressure. The experimental data were analyzed with theoretical expressions, including the important effect of thermal...... fluctuations. Phase boundaries, the Flory-Huggins interaction parameter and the Ginzburg number were obtained. The packing of the molecules changes with pressure. Therefore, the degree of thermal fluctuation as a function of packing and temperature was studied. While in polymer blends packing leads, in some...... respects, to a universal behaviour, such behaviour is not found in diblock copolymers. It is shown that the Ginzburg number decreases with pressure sensitively in blends, while it is constant in diblock copolymers. The Ginzburg number is an estimation of the transition between the universality classes...

  3. Linear scaling of density functional algorithms

    International Nuclear Information System (INIS)

    Stechel, E.B.; Feibelman, P.J.; Williams, A.R.

    1993-01-01

    An efficient density functional algorithm (DFA) that scales linearly with system size will revolutionize electronic structure calculations. Density functional calculations are reliable and accurate in determining many condensed matter and molecular ground-state properties. However, because current DFA's, including methods related to that of Car and Parrinello, scale with the cube of the system size, density functional studies are not routinely applied to large systems. Linear scaling is achieved by constructing functions that are both localized and fully occupied, thereby eliminating the need to calculate global eigenfunctions. It is, however, widely believed that exponential localization requires the existence of an energy gap between the occupied and unoccupied states. Despite this, the authors demonstrate that linear scaling can still be achieved for metals. Using a linear scaling algorithm, they have explicitly constructed localized, almost fully occupied orbitals for the quintessential metallic system, jellium. The algorithm is readily generalizable to any system geometry and Hamiltonian. They will discuss the conceptual issues involved, convergence properties and scaling for their new algorithm

  4. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    International Nuclear Information System (INIS)

    Brisset, Florian; Vieillard, Julien; Berton, Benjamin; Morin-Grognet, Sandrine; Duclairoir-Poc, Cécile; Le Derf, Franck

    2015-01-01

    Graphical abstract: - Highlights: • An effective method to modify cyclic olefin copolymer surface. • The surface of COC was modified by covalent grafting of aryl diazonium salts. • The wettability of COC surface was modulated by diazonium salts. • Photoinitiation and chemical reduction have to be combined to graft diazonium salt on COC surface. - Abstract: Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique

  5. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    Energy Technology Data Exchange (ETDEWEB)

    Brisset, Florian, E-mail: florian.brisset@etu.univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Vieillard, Julien, E-mail: julien.vieillard@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Berton, Benjamin, E-mail: benjamin.berton@univ-rouen.fr [EA 3233 SMS, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Morin-Grognet, Sandrine, E-mail: sandrine.morin@univ-rouen.fr [EA 3829 MERCI, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Duclairoir-Poc, Cécile, E-mail: cecile.duclairoir@univ-rouen.fr [EA 4312 LMSM, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Le Derf, Franck, E-mail: franck.lederf@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France)

    2015-02-28

    Graphical abstract: - Highlights: • An effective method to modify cyclic olefin copolymer surface. • The surface of COC was modified by covalent grafting of aryl diazonium salts. • The wettability of COC surface was modulated by diazonium salts. • Photoinitiation and chemical reduction have to be combined to graft diazonium salt on COC surface. - Abstract: Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique.

  6. Retardation of the dewetting process due to the addition of functional copolymers at polymer-polymer interfaces

    CERN Document Server

    Wunnicke, O; Lorenz-Haas, C; Leiner, V

    2002-01-01

    We studied the retardation of the dewetting process due to the addition of a functional copolymer in a polymer bilayer film. The model system consists of fully deuterated polystyrene (PS-d) on top of an amorphous polyamide (PA) sublayer on silicon substrates. Bilayer films were prepared with different content (0, 5, 10 and 30 vol. %) of a statistical copolymer (protonated styrene maleic anhydride acid (SMA2) containing 2% MA groups along the chain) being capable of forming hydrogen bonds with PA. The as-prepared as well as the annealed samples were investigated by neutron-reflectivity (NR) experiments, scanning force microscopy and optical microscopy. A significant retardation of dewetting is observed with the addition of SMA2. From model fits of NR curves the scattering length density profiles perpendicular to the sample surface were determined and an enrichment layer of SMA2 is detected. Retardation is explained by the intermixing of SMA2 and PS-d at the interface. (orig.)

  7. STUDIES ON POLY (ETHYLENE TEREPHTHALATE)- POLY ( TETRAMETHYLENE ETHER ) MULTIBLOCK COPOLYMER.Ⅰ. COM POSITIONAL HOMOGENEITY

    Institute of Scientific and Technical Information of China (English)

    ZHAN Yongjian; YING Qicong; WU Meiyan; QIAN Renyuan

    1991-01-01

    The compositional homogeneity of a poly (ethylene terephthalate )-poly (tetramethylene ether)multiblock copolymer sample with low content of hard segment was examined by GPC, TLC, and solubility method. The copolymer sample was found to have a uniform composition as a function of elution volume over the major portion of sample from GPC method. However within one elution fraction, the copolymer chains, although having the same hydrodynamic volume, may have some difference in composition. Two fractions with different composition were obtained by precipitation in ethanol. Some low molar mass copolymers were also separated by a TLC technique from the copolymer sample.

  8. Introducing linear functions: an alternative statistical approach

    Science.gov (United States)

    Nolan, Caroline; Herbert, Sandra

    2015-12-01

    The introduction of linear functions is the turning point where many students decide if mathematics is useful or not. This means the role of parameters and variables in linear functions could be considered to be `threshold concepts'. There is recognition that linear functions can be taught in context through the exploration of linear modelling examples, but this has its limitations. Currently, statistical data is easily attainable, and graphics or computer algebra system (CAS) calculators are common in many classrooms. The use of this technology provides ease of access to different representations of linear functions as well as the ability to fit a least-squares line for real-life data. This means these calculators could support a possible alternative approach to the introduction of linear functions. This study compares the results of an end-of-topic test for two classes of Australian middle secondary students at a regional school to determine if such an alternative approach is feasible. In this study, test questions were grouped by concept and subjected to concept by concept analysis of the means of test results of the two classes. This analysis revealed that the students following the alternative approach demonstrated greater competence with non-standard questions.

  9. Impact of triblock copolymers on the biophysical function of naturally-derived lung surfactant

    DEFF Research Database (Denmark)

    Beck-Broichsitter, Moritz; Ruge, Christian A.; Bohr, Adam

    2017-01-01

    The current study aimed at investigating the general applicability of triblock copolymers consisting of poly(ethylene glycol) and poly(propylene glycol) (Pluronic®) as excipients for lung delivery. After thorough physicochemical characterization of the diverse polymers, their cytotoxicity...... was evaluated using alveolar epithelial cells. Next, a naturally-derived lung surfactant was challenged with the distinct triblock copolymers with respect to changes in microstructure, adsorption to the air/liquid interface and dynamic surface tension behavior under bubble pulsation. Biocompatibility assessment...

  10. Thermodynamics of coil-hyperbranched poly(styrene-b-acrylated epoxidized soybean oil) block copolymers

    Science.gov (United States)

    Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric

    Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.

  11. Fed-Batch Control and Visualization of Monomer Sequences of Individual ICAR ATRP Gradient Copolymer Chains

    Directory of Open Access Journals (Sweden)

    Dagmar R. D'hooge

    2014-04-01

    Full Text Available Based on kinetic Monte Carlo simulations of the monomer sequences of a representative number of copolymer chains (≈ 150,000, optimal synthesis procedures for linear gradient copolymers are proposed, using bulk Initiators for Continuous Activator Regeneration Atom Transfer Radical Polymerization (ICAR ATRP. Methyl methacrylate and n-butyl acrylate are considered as comonomers with CuBr2/PMDETA (N,N,N′,N′′,N′′-pentamethyldiethylenetriamine as deactivator at 80 °C. The linear gradient quality is determined in silico using the recently introduced gradient deviation ( polymer property. Careful selection or fed-batch addition of the conventional radical initiator I2 allows a reduction of the polymerization time with ca. a factor 2 compared to the corresponding batch case, while preserving control over polymer properties ( ≈ 0.30; dispersity ≈ 1.1. Fed-batch addition of not only I2, but also comonomer and deactivator (50 ppm under starved conditions yields a below 0.25 and, hence, an excellent linear gradient quality for the dormant polymer molecules, albeit at the expense of an increase of the overall polymerization time. The excellent control is confirmed by the visualization of the monomer sequences of ca. 1000 copolymer chains.

  12. Block copolymer morphologies confined by square-shaped particle: Hard and soft confinement

    International Nuclear Information System (INIS)

    Zhang Qiyi; Yang Wenyan; Hu Kaiyan

    2016-01-01

    The self-assembly of diblock copolymers confined around one square-shaped particle is studied systematically within two-dimensional self-consistent field theory (SCFT). In this model, we assume that the thin block copolymer film is confined in the vicinity of a square-shaped particle by a homopolymer melt, which is equivalent to the poor solvents. Multiple sequences of square-shaped particle-induced copolymer aggregates with different shapes and self-assembled internal morphologies are predicted as functions of the particle size, the structural portion of the copolymer, and the volume fraction of the copolymer. A rich variety of aggregates are found with complex internal self-assembled morphologies including complex structures of the vesicle, with one or several inverted micelle surrounded by the outer monolayer with the particle confined in the core. These results demonstrate that the assemblies of diblock copolymers formed around the square-shaped particle in poor solvents are of immediate interest to the assembly of copolymer and the morphology of biomembrane in the confined environment, as well as to the transitions of vesicles to micelles. (paper)

  13. Main-chain supramolecular block copolymers.

    Science.gov (United States)

    Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus

    2011-01-01

    Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.

  14. A Study on Copolymer Systems of Styrene with Diethanolamine Side Group and Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Aslisah Acikses

    2018-01-01

    Full Text Available 4-Diethanolaminomethyl styrene (DEAMSt monomer was prepared by the modification of 4-chloromethyl styrene with diethanolamine. The copolymers in different combinations (0.11, 0.19, and 0.30 by mole of DEAMSt and methyl methacrylate (MMA were prepared by free radical polymerization method at 60°C in the presence of 1,4-dioxane and AIBN as initiator. The structures of DEAMSt and DEAMSt-MMA copolymer were characterized by FT-IR and 1H-NMR. The glass transition temperature (Tg of the copolymers was measured by DSC. Thermal decomposition behavior of the copolymers was investigated by TGA. The average molecular weights of the copolymers were determined by GPC. The dye uptaking properties of the copolymers were investigated using bromocresol green. Then, the dielectric constant, dielectric loss factor, and conductivity of copolymers were investigated as a function of temperature and frequency. The activation energies (Ea of the copolymers were determined by impedance analyzer.

  15. A non-linear kinematic hardening function

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1977-05-01

    Based on the classical theory of plasticity, and accepting the von Mises criterion as the initial yield criterion, a non-linear kinematic hardening function applicable both to Melan-Prager's and to Ziegler's hardening rule is proposed. This non-linear hardening function is determined by means of the uniaxial stress-strain curve, and any such curve is applicable. The proposed hardening function considers the problem of general reversed loading, and a smooth change in the behaviour from one plastic state to another nearlying plastic state is obtained. A review of both the kinematic hardening theory and the corresponding non-linear hardening assumptions is given, and it is shown that material behaviour is identical whether Melan-Prager's or Ziegler's hardening rule is applied, provided that the von Mises yield criterion is adopted. (author)

  16. Metallo-supramolecular block copolymer micelles

    NARCIS (Netherlands)

    Gohy, J.M.W.

    2009-01-01

    Supramolecular copolymers have become of increasing interest in recent years in the search for new materials with tunable properties. In particular, metallo-supramolecular block copolymers in which metal-ligand complexes are introduced in block copolymer architectures, have known important progress,

  17. Block copolymer-nanoparticle hybrid self-assembly

    KAUST Repository

    Hoheisel, Tobias N.; Hur, Kahyun; Wiesner, Ulrich B.

    2015-01-01

    © 2014 Published by Elsevier Ltd. Polymer-inorganic hybrid materials provide exciting opportunities as they may display favorable properties from both constituents that are desired in applications including catalysis and energy conversion and storage. For the preparation of hybrid materials with well-defined morphologies, block copolymer-directed nanoparticle hybrids present a particularly promising approach. As will be described in this review, once the fundamental characteristics for successful nanostructure formation at or close to the thermodynamic equilibrium of these nanocomposites are identified, the approach can be generalized to various materials classes. In addition to the discussion of recent materials developments based on the use of AB diblock copolymers as well as ABC triblock terpolymers, this review will therefore emphasize progress in the fundamental understanding of the underlying formation mechanisms of such hybrid materials. To this end, critical experiments for, as well as theoretical progress in the description of these nanostructured block copolymer-based hybrid materials will be discussed. Rather than providing a comprehensive overview, the review will emphasize work by the Wiesner group at Cornell University, US, on block copolymer-directed nanoparticle assemblies as well as their use in first potential application areas. The results provide powerful design criteria for wet-chemical synthesis methodologies for the generation of functional nanomaterials for applications ranging from microelectronics to catalysis to energy conversion and storage.

  18. Statistical analysis of nitrogen-containing vinyl copolymers: radiation-induced copolymerization of vinyl acetate and N-vinyl-2-pyrrolidone

    International Nuclear Information System (INIS)

    Peppas, N.A.; Gehr, T.W.B.

    1979-01-01

    Radiation-induced copolymerization of vinyl acetate and N-vinyl-2-pyrrolidone was carried out at 5 0 C using γ-irradiation of 1450 rads/min. Copolymers prepared at conversions lower than 5% were analyzed by a saponification technique. Various linear and nonlinear statistical analysis techniques were used to determine the reactivity ratios of this system as r 1 = 0.348 and r 2 = 3.108. These data were examined and analyzed in relation to problems of elemental analysis involving nitrogen-containing copolymers and to discrepancies in the reactivity ratios obtained by previous investigators. The presence of oxygen and a higher dose rate did not affect the copolymer composition within statistical error. Hydrolyzed copolymers prepared by this method have potential applications as biocompatible materials

  19. Photoacoustic Monitoring of Internal Plastification in Poly(3-hydroxybutyrate-co-3-hydroxyvalerate Copolymers: Measurements of Thermal Parameters

    Directory of Open Access Journals (Sweden)

    Sanchez Ruben R.

    1999-01-01

    Full Text Available Basic data on thermophysical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate copolymers poly(3HB-co-3HV were investigated with the aim of understanding the role of 3-hydroxyvalerate monomeric units (3HV incorporated during random copolymerization. The results show strong evidence that internal plastification is produced by the introduction of 3HV units in the copolymer. It was observed that copolymer thermal conductivity increased approximately linearly with the 3HV content. On the other hand, thermal diffusivity was very sensitive to the change in the copolymer composition showing a sudden rise that attained a saturation plateau. Amplitude-frequency plots indicate that a thermoelastic bending mechanism is operating. In this paper a new photoacoustic arrangement for the measurement of thermal effusivity is presented.

  20. Phase transition of LB films of mixed diblock copolymer at the air/water interface

    Science.gov (United States)

    Seo, Y. S.; Kim, K. S.; Samuilov, V.; Rafailovich, M. H.; Sokolov, J.; Lammertink, Rob G. H.; Vancso, G. J.

    2000-03-01

    We have studied the morphology of Langmuir blodgett films at the air/water interface of mixed diblock copolymer films. Solutions of poly(styrene-b-ferrocenyldimethylsilane) and PS-b-P2VP mixed in a ratio of 20/80 in chloroform were spread at the air/water interface. The morphology of the films was studied with AFM as a function of the surface pressure and the diblock copolymer molecular weight. The results show that the two diblock copolymers can be induced to mix at the air/water interface with increasing surface pressure. A reversible transition from spherical to cylindrical morphologies is induced in the mixture which can not be observed in films formed of the two components separately. The effective surface phase diagram as a function of block copolymer composition and pressure will be presented.

  1. Variance Function Partially Linear Single-Index Models1.

    Science.gov (United States)

    Lian, Heng; Liang, Hua; Carroll, Raymond J

    2015-01-01

    We consider heteroscedastic regression models where the mean function is a partially linear single index model and the variance function depends upon a generalized partially linear single index model. We do not insist that the variance function depend only upon the mean function, as happens in the classical generalized partially linear single index model. We develop efficient and practical estimation methods for the variance function and for the mean function. Asymptotic theory for the parametric and nonparametric parts of the model is developed. Simulations illustrate the results. An empirical example involving ozone levels is used to further illustrate the results, and is shown to be a case where the variance function does not depend upon the mean function.

  2. Synthesis of Graft Copolymers Based on Poly(2‐Methoxyethyl Acrylate) and Investigation of the Associated Water Structure

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Tanaka, Masaru; Ogura, Keiko

    2012-01-01

    Graft copolymers composed of poly(2‐methoxyethyl acrylate) are prepared employing controlled radical polymerization techniques. Linear backbones bearing atom transfer radical polymerization (ATRP) initiating sites are obtained by reversible addition–fragmentation chain transfer copolymerization...... polydispersity indices (1.17–1.38) are attained. Thermal investigations of the graft copolymers indicate the presence of the freezing bound water, and imply that the materials may exhibit blood compatibility....

  3. Distribution of short block copolymer chains in Binary Blends of Block Copolymers Having Hydrogen Bonding

    Science.gov (United States)

    Kwak, Jongheon; Han, Sunghyun; Kim, Jin Kon

    2014-03-01

    A binary mixture of two block copolymers whose blocks are capable of forming the hydrogen bonding allows one to obtain various microdomains that could not be expected for neat block copolymer. For instance, the binary blend of symmetric polystyrene-block-poly(2-vinylpyridine) copolymer (PS-b-P2VP) and polystyrene-block-polyhydroxystyrene copolymer (PS-b-PHS) blends where the hydrogen bonding occurred between P2VP and PHS showed hexagonally packed (HEX) cylindrical and body centered cubic (BCC) spherical microdomains. To know the exact location of short block copolymer chains at the interface, we synthesized deuterated polystyrene-block-polyhydroxystyrene copolymer (dPS-b-PHS) and prepared a binary mixture with PS-b-P2VP. We investigate, via small angle X-ray scattering (SAXS) and neutron reflectivity (NR), the exact location of shorter dPS block chain near the interface of the microdomains.

  4. Dynamics of Disordered PI-PtBS Diblock Copolymer

    Science.gov (United States)

    Watanabe, Hiroshi

    2009-03-01

    Viscoelastic (G^*) and dielectric (ɛ'') data were examined for a LCST-type diblock copolymer composed of polyisoprene (PI; M = 53K) and poly(p-tert- butyl styrene) (PtBS; M = 42K) blocks disordered at T PtBS block at low T and the dynamic heterogeneity due to PtBS was effectively quenched to give a frictional nonuniformity for the PI block relaxation. The ɛ'' data were thermo-rheologically complex at low T, partly due to this nonuniformity. However, the block connectivity could have also led to the complexity. For testing this effect, the ɛ'' data were reduced at the iso- frictional state defined with respect to bulk PI. In this state, the ɛ'' data of the copolymer at low and high T, respectively, were close to the data for the star-branched and linear bulk PI. Thus, the PI block appeared to be effectively tethered in space at low T thereby behaving similarly to the star arm while the PI block tended to move cooperatively with the PtBS block at high T to behave similarly to the linear PI, which led to the complexity of the ɛ'' data. The PtBS block also exhibited the complexity (noted from the G^* data), which was well correlated with the complexity of the PI block.

  5. Polymers and block copolymers of fluorostyrenes by ATRP

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Borkar, Sachin; Abildgaard, Lillian

    2002-01-01

    Fully or partly fluorinated polymers have many desirable and intriguing properties. In the framework of a larger program on design and control of new functional block copolymers we recently employed the Atom Transfer Radical Polymerization (ATRP) protocol on 2,3,4,5,6-pentafluorostyrene (FS). We...... materials based on 2,3,5,6-tetrafiuoro-4-methoxy-styrene (TFMS). TFMS homopolymers as well as diblock copolymers with FS are produced by ATRP. Both types of novel polymers were subsequently demethylated and different side chains introduced on the resulting hydroxy sites....

  6. Copolymers of various architectures containing ethylene and 5-norbornen-2-yl derivatives

    Science.gov (United States)

    Diamanti, Steve Jon

    Polyolefins are a class of materials with enormous economic impact. Tailoring of polyolefin bulk properties by synthetic control is a major focus of many industrial and academic research groups. Polar functionalities within the hydrophobic polyolefin backbone can change important properties, such as, toughness, adhesion, solvent resistance, blend compatibility with other functional polymers, and rheological properties. Functional polyolefin materials with block or graft architectures are the most desirable structures as the pure polyolefin block maintains its intrinsic properties. Our initial work elucidated a neutral nickel based catalyst system capable of catalyzing the "quasi-living" homopolymerization of ethylene and the "quasi-living" copolymerization of ethylene with 5-norbornen-2-yl acetate (NBA), a polar comonomer. Through testing the effect of several reaction variables on the copolymerization of ethylene with NBA it was found that changing ethylene pressure causes a large change in the content of NBA in the copolymer chain. This change in NBA content, in turn, drastically affects the physical and thermal properties of these polymers. Understanding the impact of such reaction variables on copolymer properties made it possible to design more sophisticated architectures. This catalytic system has since been used to synthesize block copolymers and tapered block copolymers of ethylene and NBA. Block copolymers of ethylene and NBA have been synthesized by a method utilizing ethylene pressure variation to create two distinct copolymeric blocks that are able to order into microphase-separated structures. The block structure of these materials has been proven by 1H-NMR spectroscopy, thermal analysis, GPC, AFM, and TEM. The synthesis, characterization, and bulk and thermal properties of tapered block copolymers containing ethylene and NBA, has also been performed. The final structure of the tapered block polymer is a polar amorphous chain (rich in NBA) on one

  7. Dissipative particle dynamics of triblock copolymer melts: A midblock conformational study at moderate segregation

    Science.gov (United States)

    Tallury, Syamal S.; Spontak, Richard J.; Pasquinelli, Melissa A.

    2014-12-01

    As thermoplastic elastomers, triblock copolymers constitute an immensely important class of shape-memory soft materials due to their unique ability to form molecular networks stabilized by physical, rather than chemical, cross-links. The extent to which such networks develop in triblock and higher-order multiblock copolymers is sensitive to the formation of midblock bridges, which serve to connect neighboring microdomains. In addition to bridges, copolymer molecules can likewise form loops and dangling ends upon microphase separation or they can remain unsegregated. While prior theoretical and simulation studies have elucidated the midblock bridging fraction in triblock copolymer melts, most have only considered strongly segregated systems wherein dangling ends and unsegregated chains become relatively insignificant. In this study, simulations based on dissipative particle dynamics are performed to examine the self-assembly and networkability of moderately segregated triblock copolymers. Utilizing a density-based cluster-recognition algorithm, we demonstrate how the simulations can be analyzed to extract information about microdomain formation and permit explicit quantitation of the midblock bridging, looping, dangling, and unsegregated fractions for linear triblock copolymers varying in chain length, molecular composition, and segregation level. We show that midblock conformations can be sensitive to variations in chain length, molecular composition, and bead repulsion, and that a systematic investigation can be used to identify the onset of strong segregation where the presence of dangling and unsegregated fractions are minimal. In addition, because this clustering approach is robust, it can be used with any particle-based simulation method to quantify network formation of different morphologies for a wide range of triblock and higher-order multiblock copolymer systems.

  8. Block copolymer self-assembly and co-assembly : shape function and application

    NARCIS (Netherlands)

    Li, F.

    2009-01-01

    Amphiphilic block copolymers can, in selective solvents such as water, assemble into various shapes and architectures. Among those, polymer vesicles, polymer micelles and polymer fibers are very popular structures in current nanotechnology. These objects each have their own particular properties and

  9. Functional materials derived from block copolymer self-assembly

    DEFF Research Database (Denmark)

    Li, Tao

    deposition methods, namely nanocasting and atomic layer deposition (ALD) will be applied to fabricate compact, inter-connected, and continuous metal oxide films. In this way, the structure integrity will be preserved after template removal during the annealing procedure. Another objective of this project......-casting, the block copolymer self-organizes into monolayer packed sphere pattern, without any surface treatment of the substrate and annealing process. Arrays of nano-pillars and nanowells of various materials are fabricated in dry etch processes over wafer scale without defects. We also show an in situ Al2O3 hard...

  10. Characterization and Some Properties of Functionalized Graft Copolymer

    International Nuclear Information System (INIS)

    Hegazy El-Sayed, A.; Kamal, H.; Mahmoud, Gh.A.; Khalifa, N.A.

    2000-01-01

    The study involved the investigation and characterization of membranes prepared by graft copolymerization of acrylonitrile (AN) and vinyl acetate (VAc) binary monomers onto low density polyethylene (LDPE) and isotactic polypropylene (IPP). The mutual gamma-irradiation method was used as a grafting technique. The effects of grafting and chemical treatments on the thermal properties and crystallinity of prepared graft copolymer have been investigated using DSC, TGA and XRD. IR spectra recorded before and after grafting and also for the chemically treated membranes to elucidate the structural changes occurred due to grafting and chemical treatments

  11. Functionalized linear and cyclic polyolefins

    Energy Technology Data Exchange (ETDEWEB)

    Tuba, Robert; Grubbs, Robert H.

    2018-02-13

    This invention relates to methods and compositions for preparing linear and cyclic polyolefins. More particularly, the invention relates to methods and compositions for preparing functionalized linear and cyclic polyolefins via olefin metathesis reactions. Polymer products produced via the olefin metathesis reactions of the invention may be utilized for a wide range of materials applications. The invention has utility in the fields of polymer and materials chemistry and manufacture.

  12. The radiation crosslinking of ethylene copolymers

    International Nuclear Information System (INIS)

    Burns, N.M.

    1979-01-01

    The enhanced radiation crosslinking tendency of ethylene-vinyl acetate and ethylene-ethyl acrylate copolymers over ethylene homopolymer is proportional to the comonomer content. This is caused by an increase in the amorphous polymer content and by structure-related factors. The copolymers crosslink by a random process that for ethylene-vinyl acetate copolymer involves some crosslinking through the acetoxy group of the comonomer. While knowledge of the process for the crosslinking of ethylene-ethyl acrylate copolymer is less certain, it is currently believed to occur primarily at the branch point on the polymer backbone. Data relating comonomer content and the molecular weight of the copolymers to the radiation crosslinking levels realized were developed to aid in resin selection by the formulator. Triallyl cyanurate cure accelerator was found to be less effective in ethylene-vinyl acetate copolymer than in homopolymer and to have no effect on gel development in ethylene-ethyl acrylate copolymer. (author)

  13. Entropic effects, shape, and size of mixed micelles formed by copolymers with complex architectures

    Science.gov (United States)

    Kalogirou, Andreas; Gergidis, Leonidas N.; Moultos, Othonas; Vlahos, Costas

    2015-11-01

    The entropic effects in the comicellization behavior of amphiphilic A B copolymers differing in the chain size of solvophilic A parts were studied by means of molecular dynamics simulations. In particular, mixtures of miktoarm star copolymers differing in the molecular weight of solvophilic arms were investigated. We found that the critical micelle concentration values show a positive deviation from the analytical predictions of the molecular theory of comicellization for chemically identical copolymers. This can be attributed to the effective interactions between copolymers originated from the arm size asymmetry. The effective interactions induce a very small decrease in the aggregation number of preferential micelles triggering the nonrandom mixing between the solvophilic moieties in the corona. Additionally, in order to specify how the chain architecture affects the size distribution and the shape of mixed micelles we studied star-shaped, H-shaped, and homo-linked-rings-linear mixtures. In the first case the individual constituents form micelles with preferential and wide aggregation numbers and in the latter case the individual constituents form wormlike and spherical micelles.

  14. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Determan, Michael Duane [Iowa State Univ., Ames, IA (United States)

    2005-12-17

    -responsive properties of the pentablock copolymer. Demonstrate potential biomedical applications of these materials with in vitro drug release studies from pentablock copolymer hydrogels. The intent of this work is to contribute to the knowledge necessary for further tailoring of these, and other functional block copolymer materials for biomedical applications.

  15. Influence of chain microstructure on thermodegradative behavior of furfuryl methacrylate-N-vinylpyrrolidone random copolymers by thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Peniche, C.; Zaldivar, D. (Univ. de la Habana, Havana (Cuba). Centro de Biomateriales); Bulay, A. (Plastmassi, Moscow (Russian Federation)); Roman, J.S. (CSIC, Madrid (Spain). Inst. de Ciencia y Tecnologia de Polimeros)

    1993-12-20

    The thermal behavior of random copolymers of furfuryl methacrylate (F) and N-vinyl-pyrrolidone (P) was studied by means of dynamic thermogravimetric analysis (TGA) in the range 100--600 C. The dynamic experiments show that these copolymers exhibit two degradation steps in the intervals 260--320 C and 350--520 C, respectively. The normalized weight loss in the low temperature interval increases as the mole fraction of F in the copolymer m[sub F] increases, whereas an inverted trend in the high temperature interval is observed. The apparent activation energy E[sub a] of the first degradation step for copolymers prepared with different composition, was obtained according to the treatment suggested by Broido. A plot of the values of E[sub a] versus the F dead molar fraction in the copolymer chains m[sub FF] gave a straight line that indicates that there is a direct relationship between the thermogravimetric behavior of these systems and their corresponding microstructure, that is, the distribution of comonomeric units along the copolymers chains. The first decomposition step was also studied by isothermal TGA and a good linearity for the variation of the weight loss percentage [Delta]W versus m[sub F] at least during the first 30 min of treatment was obtained.

  16. Synthesis of graft copolymers onto starch and its semiconducting properties

    Directory of Open Access Journals (Sweden)

    Nevin Çankaya

    Full Text Available Literature review has revealed that, although there are studies about grafting on natural polymers, especially on starch, few of them are about electrical properties of graft polymers. Starch methacrylate (St.met was obtained by esterification of OH groups on natural starch polymer for this purpose. Grafting of synthesized N-cyclohexyl acrylamide (NCA and commercial methyl methacrylate (MMA monomers with St.met was done by free radical polymerization method. The graft copolymers were characterized with FT-IR spectra, thermal and elemental analysis. Thermal stabilities of the graft copolymers were determined by TGA (thermo gravimetric analysis method and thermal stability of the copolymers is decreased via grafting. The electrical conductivity of the polymers was measured as a function of temperature and it has been observed that electrical conductivity increases with increasing temperature. The absorbance and transmittance versus wavelength of the polymers have been measured. Keywords: Starch, Graft copolymer, Semiconducting, Thermal stability, Starch methacrylate

  17. Highχ block copolymers for directed self-assembly patterning without the need for topcoat or solvent annealing

    Science.gov (United States)

    Xu, Kui; Hockey, Mary Ann; Calderas, Eric; Guerrero, Douglas; Sweat, Daniel; Fiehler, Jeffrey

    2017-03-01

    High-χ block copolymers for directed self-assembly (DSA) patterning that do not need topcoat or solvent annealing have been developed. A variety of functionalities have been successfully added into the block copolymers, such as balanced surface energy between the polymer blocks, outstandingly high χ, tunable glass transition temperature (Tg), and selective crosslinking. Perpendicular orientation control, as desired for patterning, of the block copolymers can be simply achieved by thermal annealing due to the equal surface energy of the polymer blocks at the annealing temperatures, which allows avoiding solvent annealing or top-coat. The χ value can be tuned up to achieve L0 as low as 8-10 nm for lamellar-structured block copolymers and hole/pillar size as small as 5-6 nm for cylinder-structured block copolymers. The Tg of the block copolymers can be tuned to improve the kinetics of thermal annealing by enhancing the polymer chain mobility. Block-selective crosslinking facilitates the pattern transfer by mitigating pattern collapse during wet etching and improving oxygen plasma etching selectivity between the polymer blocks. This paper provides an introductory review of our high-χ block copolymer materials with various functionalities for achieving improved DSA performance.

  18. Microwave based synthesis and spectral characterization of thermo-sensitive poly(N,N-diethylacrylamide) grafted pectin copolymer.

    Science.gov (United States)

    Işıklan, Nuran; Tokmak, Şeyma

    2018-07-01

    The functionalization of polysaccharides with synthetic polymers has attracted great attention owing to its application in many industrial fields. The aim of this work was to study the impact of pectin functionalization with N,N-diethylacrylamide (DEAAm). Pectin was modified via microwave-induced graft copolymerization of DEAAm using ceric ammonium nitrate (CAN) and N,N,N',N'-tetramethylethylenediamine (TEMED). FTIR, 13 C NMR, DSC/TGA, XRD, and SEM techniques were used to verify the structure of graft copolymers. Various reaction conditions such as microwave irradiation time, temperature, microwave power, monomer, initiator, and TEMED concentrations were investigated to get a maximum grafting yield of 192%. Lower critical solution temperatures (LCST) of graft copolymers were determined by UV spectroscopy. Graft copolymers were found to be thermo-sensitive, with LCST of 31°C and high thermal resistance. Biocompatibility test of copolymers showed that copolymers were not cytotoxic to L929 fibroblasts cells and can be used as a biomaterial. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Responsive copolymers for enhanced petroleum recovery. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    1995-05-01

    The authors describe second year efforts in synthesis, characterization, and rheology to develop polymers with significantly improved efficiency in mobility control and conformance. These advanced polymer systems would maintain high viscosities or behave as virtual gels under low shear conditions and at elevated electrolyte concentrations. At high fluid shear rates, associates would deaggregate yielding low viscosity solutions, reducing problems of shear degradation or face plugging during injection. Polymeric surfactants were also developed with potential for use in higher salt, higher temperature reservoirs for mobilization of entrapped oil. Chapters include: Ampholytic terpolymers of acrylamide with sodium 3-acrylamido-3-methylbutanoate and 2-acrylamido-2-methylpropanetrimethylammonium chloride; Hydrophilic sulfobetaine copolymers of acrylamide and 3-(2-acrylamido-methylpropane-dimethylammonio)-1-propanesulfonate; Copolymerization of maleic anhydride and N-vinylformamide; Reactivity ratio of N-vinylformamide with acrylamide, sodium acrylate, and n-butyl acrylate; Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl(2-acrylamidoethyl)ammonium bromide on the solution behavior of associating acrylamide copolymers; Effect of surfactants on the solution properties of amphipathic copolymers of acrylamide and N,N-dimethyl-N-dodecyl-N-(2-acrylamidoethyl)ammonium bromide; Associative interactions and photophysical behavior of amphiphilic terpolymers prepared by modification of maleic anhydride/ethyl vinyl ether copolymers; Copolymer compositions of high-molecular-weight functional acrylamido water-soluble polymers using direct-polarization magic-angle spinning {sup 13}C NMR; Use of factorial experimental design in static and dynamic light scattering characterization of water soluble polymers; and Porous medium elongational rheometer studies of NaAMB/AM copolymer solutions.

  20. Self-assembly of block copolymer-based ionic supramolecules based upon multi-tail amphiphiles

    DEFF Research Database (Denmark)

    Asad Ayoubi, M.; Almdal, Kristoffer; Zhu, K.

    2015-01-01

    Utilising simple acid-base titration chemistry, a new family of Linear-b-Amphiphilic Comb (L-b-AC) ionic supramolecules [Soft Matter 2013, 9, 1540-1555] featuring multi-tail side-chains have been synthesized and examined by synchrotron SAXS. To three different parent diblock copolymers of poly...

  1. Synthesis of a gamma irradiation grafted polytetrafluoroethylene (PTFE) based olefinic copolymer

    International Nuclear Information System (INIS)

    Ferreto, Helio Fernando Rodrigues

    2006-01-01

    The extrusion of linear low density polyethylene (LLDPE) is limited by a process related defect known as 'melt fracture' or 'sharkskin', which is a surface defect of the extruded polymer. This defect results in a product with a rough surface that lacks luster and in alterations of specific surface properties. The aim of this study was to obtain a recycled polytetrafluoroethylene polymer with an olefin that could improve the extrudability of the LLDPE. The copolymer was obtained by irradiating recycled PTFE in an inert atmosphere followed by the addition of an olefinic monomer to graft the latter in the polymeric matrix (PTFE). After a certain time of contact, the copolymer was heat treated to permit recombination and elimination of the radicals, both in a reactive and/or inert atmosphere. Three olefinic monomers were used, namely; acetylene, ethylene and 1,3-butadiene. The 1,3-butadiene monomer was found to be more effective with respect to grafting. The specimens were studied using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential thermogravimetry (DTG). 0.2-2.0 wt% of the copolymer that was obtained was mixed with LLDPE. The rheological properties of the mixture were determined with a torque rheometer. The results indicated that the process used rendered a copolymer which when added to LLDPE, improved the extrusion process and eliminated the defect 'melt fracture'. (author)

  2. Microelectrode Arrays and the Use of PEG-Functionalized Diblock Copolymer Coatings

    Directory of Open Access Journals (Sweden)

    Sakshi Uppal

    2014-09-01

    Full Text Available PEG-modified diblock copolymer surfaces have been examined for their compatibility with microelectrode array based analytical methods. The use of PEG-modified polymer surfaces on the arrays was initially problematic because the redox couples used in the experiments were adsorbed by the polymer. This led the current measured by cyclic voltammetry for the redox couple to be unstable and increase with time. However, two key findings allow the experiments to be successful. First, after multiple cyclic voltammograms the current associated with the redox couple does stabilize so that a good baseline current can be established. Second, the rate at which the current stabilizes is consistent every time a particular coated array is used. Hence, multiple analytical experiments can be conducted on an array coated with a PEG-modified diblock copolymer and the data obtained is comparable as long as the data for each experiment is collected at a consistent time point.

  3. Characterization of Functionalized Acrylic acid /4- Vinyl Pyridine Graft Copolymers

    International Nuclear Information System (INIS)

    Kamal, H.; Mahmoud, Gh.A.; Hegazy, D.E.

    2009-01-01

    Properties and characterization of the membranes prepared by radiation grafting of acrylic acid (AAc) or/ and 4-vinyl pyridine (4VP) onto low density polyethylene (LDPE) and polypropylene (PP) films were carried out. The FTIR spectra for the grafted membranes were studied to evaluate the structure change as a result of grafting. The swelling behaviour of the graft copolymer in methanol was studied. It was found that the grafting of AAc and/ or 4- VP onto LDPE and PP resulted in introducing good hydrophilic properties to such polymer substrates. The hydrophilic properties were directly proportional to the amount of functional groups. The mechanical properties (Young's modulus, elongation percent and tensile strength) of the grafted membranes also, have been investigated. As the grafting degree increases, the modulus also increases. Increasing the hydrophilicity of the membranes by chemical treatment enhances its mechanical properties. The thermal parameters of the grafted membranes such as δH m1 . δH m2 , and T rc have been also studied by using DSC

  4. Radiation resistance of ethylene-styrene copolymers

    International Nuclear Information System (INIS)

    Matsumoto, Kaoru; Ikeda, Masaaki; Ohki, Yoshimichi; Kusama, Yasuo; Harashige, Masahiro; Yazaki, Fumihiko.

    1988-01-01

    In this paper, the radiation resistance of ethylene-styrene copolymer, a polymeric resin developed newly by the authors, is reported. Resin examined were five kinds of ethylene-styrene copolymers: three random and two graft copolymers with different styrene contents. Low-density polyethylene was used as a reference. The samples were irradiated by 60 Co γ-rays to total absorbed doses up to 10 MGy. The mechanical properties of the smaples were examined. Infrared spectroscopy, differential scanning calorimetry and X-ray scattering techniques were used to examine the morphology of the samples. The random copolymers are soft and easy to extend, because benzene rings which exisist highly at random hinder the crystallization. As for the radiation resistance, they are highly resistant to γ-rays in the aspects of carbonyl group formation, gel formation, and elongation. Further, they show even better radiation resistance when proper additives were compounded in. The graft copolymers are hard to extend, because they consist of segregated polystyrene and polyethylene regions which are connected with each other. The tensile strength of irradiated graft copolymers does not decrease below that of unirradiated copolymers, up to a total dose of 10 MGy. As a consequence, it can be said that ethylene-styrene copolymers have good radiation resistance owing to the so-called 'sponge' effect of benzene rings. (author)

  5. Fluorosilicone multi-block copolymers tethering quaternary ammonium salt groups for antimicrobial purpose

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fang; Qin, Xiaoshuai; Li, Yancai; Ren, Lixia; Zhao, Yunhui, E-mail: zhaoyunhui@tju.edu.cn; Yuan, Xiaoyan

    2015-08-30

    Highlights: • QAS-containing fluorosilicone multi-block copolymers were synthesized. • The block length of PHFBMA in the copolymers was tailored via RAFT polymerization. • Surface roughness of the copolymers decreased with the increased PHFBMA content. • A certain length of PHFBMA block enhanced C−N{sup +} percentage on the surface. - Abstract: Symmetrically structured fluorosilicone multi-block copolymers containing poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(hexafluorobutyl methacrylate) (PHFBMA) were sequentially synthesized via reversible addition–fragmentation chain transfer polymerization, using a polydimethylsiloxane (PDMS) chain transfer agent with dithiocarbonate groups at both ends. Then, the CBABC-type block copolymers were quaternized with n-octyliodide to tether quaternary ammonium salt (QAS) groups in the PDMAEMA blocks for the antimicrobial use. The obtained fluorosilicone copolymers showed clear variations in the C-N{sup +} composition and surface morphology on their films depending on the content of the PHFBMA blocks, which were characterized by X-ray photoelectron spectroscopy and atomic force microscopy, respectively. The results indicated that the symmetrical CBABC structure favored PDMS and QAS tethered blocks migrating to the film surface. With the mass percentage of the PHFBMA increased from 0 to 32.5%, the surface roughness of the copolymer film decreased gradually with a tendency to form a smooth surface. Owing to the surface properties, fluorosilicone multi-block copolymers containing a certain amount of PHFBMA with higher C-N{sup +} content and relatively smooth morphology demonstrated obvious antimicrobial activity against Gram-positive bacteria, Bacillus subtilis and Gram-negative bacteria, Escherichia coli. The functionalized multi-block copolymers based on fluorosilicone and QAS groups would have potential applications in antimicrobial coatings.

  6. Fluorosilicone multi-block copolymers tethering quaternary ammonium salt groups for antimicrobial purpose

    International Nuclear Information System (INIS)

    Zhou, Fang; Qin, Xiaoshuai; Li, Yancai; Ren, Lixia; Zhao, Yunhui; Yuan, Xiaoyan

    2015-01-01

    Highlights: • QAS-containing fluorosilicone multi-block copolymers were synthesized. • The block length of PHFBMA in the copolymers was tailored via RAFT polymerization. • Surface roughness of the copolymers decreased with the increased PHFBMA content. • A certain length of PHFBMA block enhanced C−N + percentage on the surface. - Abstract: Symmetrically structured fluorosilicone multi-block copolymers containing poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(hexafluorobutyl methacrylate) (PHFBMA) were sequentially synthesized via reversible addition–fragmentation chain transfer polymerization, using a polydimethylsiloxane (PDMS) chain transfer agent with dithiocarbonate groups at both ends. Then, the CBABC-type block copolymers were quaternized with n-octyliodide to tether quaternary ammonium salt (QAS) groups in the PDMAEMA blocks for the antimicrobial use. The obtained fluorosilicone copolymers showed clear variations in the C-N + composition and surface morphology on their films depending on the content of the PHFBMA blocks, which were characterized by X-ray photoelectron spectroscopy and atomic force microscopy, respectively. The results indicated that the symmetrical CBABC structure favored PDMS and QAS tethered blocks migrating to the film surface. With the mass percentage of the PHFBMA increased from 0 to 32.5%, the surface roughness of the copolymer film decreased gradually with a tendency to form a smooth surface. Owing to the surface properties, fluorosilicone multi-block copolymers containing a certain amount of PHFBMA with higher C-N + content and relatively smooth morphology demonstrated obvious antimicrobial activity against Gram-positive bacteria, Bacillus subtilis and Gram-negative bacteria, Escherichia coli. The functionalized multi-block copolymers based on fluorosilicone and QAS groups would have potential applications in antimicrobial coatings

  7. Photoconductivity enhancement and charge transport properties in ruthenium-containing block copolymer/carbon nanotube hybrids.

    Science.gov (United States)

    Lo, Kin Cheung; Hau, King In; Chan, Wai Kin

    2018-04-05

    Functional polymer/carbon nanotube (CNT) hybrid materials can serve as a good model for light harvesting systems based on CNTs. This paper presents the synthesis of block copolymer/CNT hybrids and the characterization of their photocurrent responses by both experimental and computational approaches. A series of functional diblock copolymers was synthesized by reversible addition-fragmentation chain transfer polymerizations for the dispersion and functionalization of CNTs. The block copolymers contain photosensitizing ruthenium complexes and modified pyrene-based anchoring units. The photocurrent responses of the polymer/CNT hybrids were measured by photoconductive atomic force microscopy (PCAFM), from which the experimental data were analyzed by vigorous statistical models. The difference in photocurrent response among different hybrids was correlated to the conformations of the hybrids, which were elucidated by molecular dynamics simulations, and the electronic properties of polymers. The photoresponse of the block copolymer/CNT hybrids can be enhanced by introducing an electron-accepting block between the photosensitizing block and the CNT. We have demonstrated that the application of a rigorous statistical methodology can unravel the charge transport properties of these hybrid materials and provide general guidelines for the design of molecular light harvesting systems.

  8. A semiflexible alternating copolymer chain adsorption on a flat and a fluctuating surface

    International Nuclear Information System (INIS)

    Mishra, Pramod Kumar

    2010-01-01

    A lattice model of a directed self-avoiding walk is used to investigate adsorption properties of a semiflexible alternating copolymer chain on an impenetrable flat and fluctuating surface in two (square, hexagonal and rectangular lattice) and three dimensions (cubic lattice). In the cubic lattice case the surface is two-dimensional impenetrable flat and in two dimensions the surface is a fluctuating impenetrable line (hexagonal lattice) and also flat impenetrable line (square and rectangular lattice). Walks of the copolymer chains are directed perpendicular to the plane of the surface and at a suitable value of monomer surface attraction, the copolymer chain gets adsorbed on the surface. To calculate the exact value of the monomer surface attraction, the directed walk model has been solved analytically using the generating function method to discuss results when one type of monomer of the copolymer chain has attractive, repulsive or no interaction with the surface. Results obtained in the flat surface case show that, for a stiffer copolymer chain, adsorption transition occurs at a smaller value of monomer surface attraction than a flexible copolymer chain while in the case of a fluctuating surface, the adsorption transition point is independent of bending energy of the copolymer chain. These features are similar to that of a semiflexible homopolymer chain adsorption.

  9. A semiflexible alternating copolymer chain adsorption on a flat and a fluctuating surface.

    Science.gov (United States)

    Mishra, Pramod Kumar

    2010-04-21

    A lattice model of a directed self-avoiding walk is used to investigate adsorption properties of a semiflexible alternating copolymer chain on an impenetrable flat and fluctuating surface in two (square, hexagonal and rectangular lattice) and three dimensions (cubic lattice). In the cubic lattice case the surface is two-dimensional impenetrable flat and in two dimensions the surface is a fluctuating impenetrable line (hexagonal lattice) and also flat impenetrable line (square and rectangular lattice). Walks of the copolymer chains are directed perpendicular to the plane of the surface and at a suitable value of monomer surface attraction, the copolymer chain gets adsorbed on the surface. To calculate the exact value of the monomer surface attraction, the directed walk model has been solved analytically using the generating function method to discuss results when one type of monomer of the copolymer chain has attractive, repulsive or no interaction with the surface. Results obtained in the flat surface case show that, for a stiffer copolymer chain, adsorption transition occurs at a smaller value of monomer surface attraction than a flexible copolymer chain while in the case of a fluctuating surface, the adsorption transition point is independent of bending energy of the copolymer chain. These features are similar to that of a semiflexible homopolymer chain adsorption.

  10. Self-Assembly of Narrowly Dispersed Brush Diblock Copolymers with Domain Spacing more than 100 nm

    Science.gov (United States)

    Gu, Weiyin; Sveinbjornsson, Benjamin; Hong, Sung Woo; Grubbs, Robert; Russell, Thomas

    2012-02-01

    Self-assembled structures of high molecular weight (MW), narrow molecular weight distribution brush block copolymers containing polylactic acid (PLA) and polystyrene (PS) side chains with similar MWs were studied in both the melt and thin films. The polynorbornene-backbone-based brush diblock copolymers containing approximately equal volume fractions of each block self-assembled into highly ordered lamellae with domain spacing over 100 nm, as revealed by SAXS, GISAXS and AFM. The domain size increased approximately linearly with backbone length, which indicated an extended conformation of the backbone in the ordered state. The length of side chains also played a significant role in terms of controlling the domain size. As the degree of polymerization (DP) increased, the symmetric brush diblock copolymers with longer side chains tended to form larger lamellar microdomains in comparison to those that have the same DP but shorter side chains.

  11. Linear regression methods a ccording to objective functions

    OpenAIRE

    Yasemin Sisman; Sebahattin Bektas

    2012-01-01

    The aim of the study is to explain the parameter estimation methods and the regression analysis. The simple linear regressionmethods grouped according to the objective function are introduced. The numerical solution is achieved for the simple linear regressionmethods according to objective function of Least Squares and theLeast Absolute Value adjustment methods. The success of the appliedmethods is analyzed using their objective function values.

  12. Synthesis, characterizations and biocompatibility of novel biodegradable star block copolymers based on poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone)

    DEFF Research Database (Denmark)

    Wu, Linping; Wang, Liang; Wang, Xiaojuan

    2010-01-01

    Star block copolymers based on poly[(R)-3-hydroxybutyrate] (PHB) and poly(epsilon-caprolactone) (PCL), termed SPHBCL, were successfully synthesized with structural variation on arm numbers and lengths via coupling reactions and ring opening polymerizations. Arm numbers 3, 4 and 6 of SPHBCL were...... weights of the SPHBCL due to the discrepancy of star copolymer structures. The melting temperature of SPHBCL decreased with increasing degree of branching. Thermal decomposition temperature was revealed to be lower than that of linear block copolymer LPHBCL counterparts based on PHB and PCL. Films made...... from various SPHBCL copolymers had different porous or networking surface morphology, and all possessed improved biocompatibility in terms of less blood clotting and more osteoblast cell growth compared with their corresponding homopolymers PHB and PCL. Among them, it was found, however, that the 4-arm...

  13. Synthesis of Polystyrene-Based Random Copolymers with Balanced Number of Basic or Acidic Functional Groups

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Jankova Atanasova, Katja; Hvilsted, Søren

    2010-01-01

    for the functionalization were applied. The first one involved direct functionalization of the template backbone through alkylation of the phenolic groups with suitable reagents. The second modification approach was based on "click" chemistry, where the introduction of alkyne groups onto the template backbone was followed......Pairs of polystyrene-based random copolymers with balanced number of pendant basic or acidic groups were synthesized utilizing the template strategy. The same poly[(4-hydroxystyrene)-ran-styrene] was used as a template backbone for modification. Two different synthetic approaches...... by copper-catalyzed 1,3 cycloaddition of aliphatic sulfonate- or amine-contaning azides. Both synthetic approaches proved to be highly efficient as evidenced by H-1-NMR analyses. The thermal properties were evaluated by differential scanning calorimetry and thermal gravimetric analyses and were influenced...

  14. Effects of Supported ( n BuCp) 2 ZrCl 2 Catalyst Active-Center Distribution on Ethylene–1-Hexene Copolymer Backbone Heterogeneity and Thermal Behaviors

    KAUST Repository

    Atiqullah, Muhammad

    2013-07-10

    Two catalysts, denoted as catalyst 1 [silica/MAO/(nBuCp) 2ZrCl2] and catalyst 2 [silica/nBuSnCl 3/MAO/(nBuCp)2ZrCl2] were synthesized and subsequently used to prepare, without separate feeding of methylaluminoxane (MAO), ethylene homopolymer 1 and homopolymer 2, respectively, and ethylene-1-hexene copolymer 1 and copolymer 2, respectively. Gel permeation chromatography (GPC), Crystaf, differential scanning calorimetry (DSC) [conventional and successive self-nucleation and annealing (SSA)], and 13C nuclear magnetic resonance (NMR) polymer characterization results were used, as appropriate, to model the catalyst active-center distribution, ethylene sequence (equilibrium crystal) distribution, and lamellar thickness distribution (both continuous and discrete). Five different types of active centers were predicted in each catalyst, as corroborated by the SSA experiments and complemented by an extended X-ray absorption fine structure (EXAFS) report published in the literature. 13C NMR spectroscopy also supported this active-center multiplicity. Models combined with experiments effectively illustrated how and why the active-center distribution and the variance in the design of the supported MAO anion, having different electronic and steric effects and coordination environments, influence the concerned copolymerization mechanism and polymer properties, including inter- and intrachain compositional heterogeneity and thermal behaviors. Copolymerization occurred according to the first-order Markovian terminal model, producing fairly random copolymers with minor skewedness toward blocky character. For each copolymer, the theoretical most probable ethylene sequences, nE MPDSC-GT and n E MPNMR-Flory, as well as the weight-average lamellar thicknesses, Lwav DSC-GT and Lwav SSA DSC, were found to be comparable. To the best of our knowledge, such a match has not previously been reported. The percentage crystallinities of the homo- and copolymers increased linearly as a function of

  15. Multiple ordered phases in a block copolymer melt

    DEFF Research Database (Denmark)

    Almdal, K.; Koppi, K.A.; Bates, F.S.

    1992-01-01

    A poly(ethylenepropylene)-poly(ethylethylene) (PEP-PEE) diblock copolymer containing 65% by volume PEP was investigated using small-angle neutron scattering (SANS) and rheological measurements. Four distinct phases have been identified as a function of temperature: three ordered phases at low...

  16. SiO{sub 2} nanodot arrays using functionalized block copolymer templates and selective silylation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Min; Ku, Se Jin; Kim, Jin-Baek, E-mail: kjb@kaist.ac.kr [Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-Dong, Yuseong-Gu, Daejeon, 305-701 (Korea, Republic of)

    2010-06-11

    Silicon oxide nanodot arrays were fabricated using functionalized block copolymer templates and selective silylation. A polystyrene-b-poly(acrylic acid/acrylic anhydride) (PS-b-PAA/AN) thin film containing spherical nanodomains was used as a template to build nanoscopic silica structures. A PS-b-PAA/AN thin film was prepared by acid-catalyzed thermal deprotection of polystyrene-b-poly(tert-butyl acrylate) on an SU-8 resist film containing a photoacid generator. This resulting film has excellent solvent and thermal resistance due to crosslinked anhydride linkages in carboxyl-functionalized PAA/AN block domains. Silicon was introduced by spin-spraying of hexamethyldisilazane (HMDS) over the entire surface of a self-assembled PS-b-PAA/AN thin film. HMDS was selectively reacted with carboxylic acid groups in spherical domains of a PAA/AN block. SiO{sub 2} nanodot arrays were generated by oxygen reactive ion etching.

  17. Thermoplastic elastomers blends based on linear low density polyethylene, ethylene-1-octene copolymers and ground rubber tire

    Directory of Open Access Journals (Sweden)

    Marisa Cristina Guimarães Rocha

    2014-01-01

    Full Text Available Blends of linear low density polyethylene (LLDPE ethylene-1-octene copolymers (EOC, with different 1-octene (OC content, and ground rubber tire (GRT were prepared by melt mixing in a twin screw extruder. Five different compositions of LLDPE/EOC/GRT blends were processed in the extruder to evaluate the effect of EOC addition to the LLDPE/GRT blends. The addition of EOC to LLDPE/GRT blends improves the mechanical properties. Besides, the replacement of 5% of GRT by EOC grades (OC = 20 or 30 wt % in the 50/50 LLDPE/GRT blend, leads to a significant increase of ultimate tensile properties. The EOC comonomer content affects the properties of LLDPE/EOC and LLDPE/EOC/GRT blends. Dynamical-mechanical analyses showed that, with the addition of EOC to LLDPE/GRT blends, the Tg of GRT and the Tg of EOC are closer. This effect is more pronounced when the EOC with the highest content of comonomer (30 wt % is added to LLDPE/GRT blend. In this case, only one peak related to the Tg of the rubber phase can be visualized in the amorphous region. These findings indicate that EOC may act as compatibilizer agent for LLDPE/GRT blends.

  18. Fabrication of supramolecular star-shaped amphiphilic copolymers for ROS-triggered drug release.

    Science.gov (United States)

    Zuo, Cai; Peng, Jinlei; Cong, Yong; Dai, Xianyin; Zhang, Xiaolong; Zhao, Sijie; Zhang, Xianshuo; Ma, Liwei; Wang, Baoyan; Wei, Hua

    2018-03-15

    Star-shaped copolymers with branched structures can form unimolecular micelles with better stability than the micelles self-assembled from conventional linear copolymers. However, the synthesis of star-shaped copolymers with precisely controlled degree of branching (DB) suffers from complicated sequential polymerizations and multi-step purification procedures, as well as repeated optimizations of polymer compositions. The use of a supramolecular host-guest pair as the block junction would significantly simplify the preparation. Moreover, the star-shaped copolymer-based unimolecular micelle provides an elegant solution to the tradeoff between extracellular stability and intracellular high therapeutic efficacy if the association/dissociation of the supramolecular host-guest joint can be triggered by the biologically relevant stimuli. For this purpose, in this study, a panel of supramolecular star-shaped amphiphilic block copolymers with 9, 12, and 18 arms were designed and fabricated by host-guest complexations between the ring-opening polymerization (ROP)-synthesized star-shaped poly(ε-caprolactone) (PCL) with 3, 4, and 6 arms end-capped with ferrocene (Fc) (PCL-Fc) and the atom transfer radical polymerization (ATRP)-produced 3-arm poly(oligo ethylene glycol) methacrylates (POEGMA) with different degrees of polymerization (DPs) of 24, 30, 47 initiated by β-cyclodextrin (β-CD) (3Br-β-CD-POEGMA). The effect of DB and polymer composition on the self-assembled properties of the five star-shaped copolymers was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and fluorescence spectrometery. Interestingly, the micelles self-assembled from 12-arm star-shaped copolymers exhibited greater stability than the 9- and 18-arm formulations. The potential of the resulting supramolecular star-shaped amphiphilic copolymers as drug carriers was evaluated by an in vitro drug release study, which confirmed the ROS-triggered accelerated drug

  19. Effect of cationic grafted copolymer structure on the encapsulation of bovine serum albumin

    International Nuclear Information System (INIS)

    Flynn, Nicholas; Topal, Ç. Özge; Hikkaduwa Koralege, Rangika S.; Hartson, Steve; Ranjan, Ashish; Liu, Jing; Pope, Carey; Ramsey, Joshua D.

    2016-01-01

    The aim of the present study was to evaluate a library of poly-L-lysine (PLL)-graft (g)-polyethylene glycol (PEG) copolymers for the ability to encapsulate effectively a model protein, bovine serum albumin (BSA), and to characterize the stability and protein function of the resulting nanoparticle. A library of nine grafted copolymers was produced by varying PLL molecular weight and PEG grafting ratio. Electrostatic self-assembly of the protein and the grafted copolymer drove encapsulation. The formation of protein/polymer nanoparticles with a core/shell structure was confirmed using PAGE, dynamic light scattering, and electron microscopy. Encapsulation of the BSA into nanoparticles was strongly dependent on the copolymer-to-protein mass ratio, PEG grafting ratio, and PLL molecular weight. A copolymer-to-protein mass ratio of 7:1 and higher was generally required for high levels of encapsulation, and under these conditions, no loss of protein activity was observed. Copolymer characteristics also influenced nanoparticle resistance to polyanions and protease degradation. The results indicate that a copolymer of 15–30 kDa PLL, with a PEG grafting ratio of 10:1, is most promising for protein delivery. - Highlights: • A 4–70 kDa range of PLL-g-PEG copolymers was able to encapsulate BSA into NPs. • Encapsulation of BSA by PLL-g-PEG not only retained but increased esterolytic activity. • NPs were stable against protease degradation and polyanion dissociation.

  20. Effect of cationic grafted copolymer structure on the encapsulation of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Nicholas [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Topal, Ç. Özge [School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Hikkaduwa Koralege, Rangika S. [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Hartson, Steve [Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 (United States); Ranjan, Ashish; Liu, Jing; Pope, Carey [Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078 (United States); Ramsey, Joshua D., E-mail: josh.ramsey@okstate.edu [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States)

    2016-05-01

    The aim of the present study was to evaluate a library of poly-L-lysine (PLL)-graft (g)-polyethylene glycol (PEG) copolymers for the ability to encapsulate effectively a model protein, bovine serum albumin (BSA), and to characterize the stability and protein function of the resulting nanoparticle. A library of nine grafted copolymers was produced by varying PLL molecular weight and PEG grafting ratio. Electrostatic self-assembly of the protein and the grafted copolymer drove encapsulation. The formation of protein/polymer nanoparticles with a core/shell structure was confirmed using PAGE, dynamic light scattering, and electron microscopy. Encapsulation of the BSA into nanoparticles was strongly dependent on the copolymer-to-protein mass ratio, PEG grafting ratio, and PLL molecular weight. A copolymer-to-protein mass ratio of 7:1 and higher was generally required for high levels of encapsulation, and under these conditions, no loss of protein activity was observed. Copolymer characteristics also influenced nanoparticle resistance to polyanions and protease degradation. The results indicate that a copolymer of 15–30 kDa PLL, with a PEG grafting ratio of 10:1, is most promising for protein delivery. - Highlights: • A 4–70 kDa range of PLL-g-PEG copolymers was able to encapsulate BSA into NPs. • Encapsulation of BSA by PLL-g-PEG not only retained but increased esterolytic activity. • NPs were stable against protease degradation and polyanion dissociation.

  1. Study of the therapeutic benefit of cationic copolymer administration to vascular endothelium under mechanical stress

    Science.gov (United States)

    Giantsos-Adams, Kristina; Lopez-Quintero, Veronica; Kopeckova, Pavla; Kopecek, Jindrich; Tarbell, John M.; Dull, Randal

    2015-01-01

    Pulmonary edema and the associated increases in vascular permeability continue to represent a significant clinical problem in the intensive care setting, with no current treatment modality other than supportive care and mechanical ventilation. Therapeutic compound(s) capable of attenuating changes in vascular barrier function would represent a significant advance in critical care medicine. We have previously reported the development of HPMA-based copolymers, targeted to endothelial glycocalyx that are able to enhance barrier function. In this work, we report the refinement of copolymer design and extend our physiological studies todemonstrate that the polymers: 1) reduce both shear stress and pressure-mediated increase in hydraulic conductivity, 2) reduce nitric oxide production in response to elevated hydrostatic pressure and, 3) reduce the capillary filtration coefficient (Kfc) in an isolated perfused mouse lung model. These copolymers represent an important tool for use in mechanotransduction research and a novel strategy for developing clinically useful copolymers for the treatment of vascular permeability. PMID:20932573

  2. Rapid self-assembly of block copolymers to photonic crystals

    Science.gov (United States)

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  3. Phase Diagrams of Smart Copolymers Poly(N-isopropylacrylamide) and Poly(sodium acrylate)

    Science.gov (United States)

    Di Lorenzo, Maria Laura; Pyda, Marek

    2014-01-01

    The phase behavior of linear poly(N-isopropylacrylamide) (PNIPA), linear copolymer poly(N-isopropylacrylamide) and poly(sodium acrylate) (PNIPA-SA), and chemically cross-linked PNIPA in water has been determined by temperature modulated differential scanning calorimetry (TM-DSC). Experiments related to linear polymers (PNIPA and PNIPA-SA) indicated nontypical demixing/mixing behavior with a lower critical solution temperature (LCST), which do not correspond to the three classical types of limiting critical behavior. Some similarities and differences are observed in comparison to our literature data using standard TM-DSC for PNIPA/water. Furthermore no influence of composition cross-linked PNIPA/water system on demixing/mixing temperature was observed. PMID:25202728

  4. Phase Diagrams of Smart Copolymers Poly(N-isopropylacrylamide and Poly(sodium acrylate

    Directory of Open Access Journals (Sweden)

    Iwona Zarzyka

    2014-01-01

    Full Text Available The phase behavior of linear poly(N-isopropylacrylamide (PNIPA, linear copolymer poly(N-isopropylacrylamide and poly(sodium acrylate (PNIPA-SA, and chemically cross-linked PNIPA in water has been determined by temperature modulated differential scanning calorimetry (TM-DSC. Experiments related to linear polymers (PNIPA and PNIPA-SA indicated nontypical demixing/mixing behavior with a lower critical solution temperature (LCST, which do not correspond to the three classical types of limiting critical behavior. Some similarities and differences are observed in comparison to our literature data using standard TM-DSC for PNIPA/water. Furthermore no influence of composition cross-linked PNIPA/water system on demixing/mixing temperature was observed.

  5. Lignin poly(lactic acid) copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Johan Vilhelm; Chung, Yi-Lin; Li, Russell Jingxian; Waymouth, Robert; Sattely, Elizabeth; Billington, Sarah; Frank, Curtis W.

    2017-02-14

    Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.

  6. Redox-Stability of Alkoxy-BDT Copolymers and their Use for Organic Bioelectronic Devices

    KAUST Repository

    Giovannitti, Alexander

    2018-02-23

    Organic semiconductors can be employed as the active layer in accumulation mode organic electrochemical transistors (OECTs), where redox stability in aqueous electrolytes is important for long-term recordings of biological events. It is observed that alkoxy-benzo[1,2-b:4,5-b′]dithiophene (BDT) copolymers can be extremely unstable when they are oxidized in aqueous solutions. The redox stability of these copolymers can be improved by molecular design of the copolymer where it is observed that the electron rich comonomer 3,3′-dimethoxy-2,2′-bithiophene (MeOT2) lowers the oxidation potential and also stabilizes positive charges through delocalization and resonance effects. For copolymers where the comonomers do not have the same ability to stabilize positive charges, irreversible redox reactions are observed with the formation of quinone structures, being detrimental to performance of the materials in OECTs. Charge distribution along the copolymer from density functional theory calculations is seen to be an important factor in the stability of the charged copolymer. As a result of the stabilizing effect of the comonomer, a highly stable OECT performance is observed with transconductances in the mS range. The analysis of the decomposition pathway also raises questions about the general stability of the alkoxy-BDT unit, which is heavily used in donor-acceptor copolymers in the field of photovoltaics.

  7. Redox-Stability of Alkoxy-BDT Copolymers and their Use for Organic Bioelectronic Devices

    KAUST Repository

    Giovannitti, Alexander; Thorley, Karl J.; Nielsen, Christian B.; Li, Jun; Donahue, Mary J.; Malliaras, George G.; Rivnay, Jonathan; McCulloch, Iain

    2018-01-01

    Organic semiconductors can be employed as the active layer in accumulation mode organic electrochemical transistors (OECTs), where redox stability in aqueous electrolytes is important for long-term recordings of biological events. It is observed that alkoxy-benzo[1,2-b:4,5-b′]dithiophene (BDT) copolymers can be extremely unstable when they are oxidized in aqueous solutions. The redox stability of these copolymers can be improved by molecular design of the copolymer where it is observed that the electron rich comonomer 3,3′-dimethoxy-2,2′-bithiophene (MeOT2) lowers the oxidation potential and also stabilizes positive charges through delocalization and resonance effects. For copolymers where the comonomers do not have the same ability to stabilize positive charges, irreversible redox reactions are observed with the formation of quinone structures, being detrimental to performance of the materials in OECTs. Charge distribution along the copolymer from density functional theory calculations is seen to be an important factor in the stability of the charged copolymer. As a result of the stabilizing effect of the comonomer, a highly stable OECT performance is observed with transconductances in the mS range. The analysis of the decomposition pathway also raises questions about the general stability of the alkoxy-BDT unit, which is heavily used in donor-acceptor copolymers in the field of photovoltaics.

  8. Functional Block Copolymers as Compatibilizers for Nanoclays in Polypropylene Nanocomposites

    DEFF Research Database (Denmark)

    Jankova Atanasova, Katja; Daugaard, Anders Egede; Stribeck, Norbert

    2011-01-01

    With the aim of creating tough nanocomposits (NC) [1] based on polypropylene (PP) and nanoclay (NCl) in the framework of the 7th EU program NANOTOUGH we have designed amphiphilic block copolymers utilizing Atom Transfer Radical Polymerization (ATRP) [2]. They consist of a hydrophobic block...... crystallites) is replaced by alien-reinforcement (of the MMT). Furthermore, the results from the impact strength and cyclic test of the prepared PP nanocomposites [3] are promicing....

  9. Polyether-polyester graft copolymer

    Science.gov (United States)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  10. NP-Hardness of optimizing the sum of Rational Linear Functions over an Asymptotic-Linear-Program

    OpenAIRE

    Chermakani, Deepak Ponvel

    2012-01-01

    We convert, within polynomial-time and sequential processing, an NP-Complete Problem into a real-variable problem of minimizing a sum of Rational Linear Functions constrained by an Asymptotic-Linear-Program. The coefficients and constants in the real-variable problem are 0, 1, -1, K, or -K, where K is the time parameter that tends to positive infinity. The number of variables, constraints, and rational linear functions in the objective, of the real-variable problem is bounded by a polynomial ...

  11. Linear measure functional differential equations with infinite delay

    OpenAIRE

    Monteiro, G. (Giselle Antunes); Slavík, A.

    2014-01-01

    We use the theory of generalized linear ordinary differential equations in Banach spaces to study linear measure functional differential equations with infinite delay. We obtain new results concerning the existence, uniqueness, and continuous dependence of solutions. Even for equations with a finite delay, our results are stronger than the existing ones. Finally, we present an application to functional differential equations with impulses.

  12. Polyether/Polyester Graft Copolymers

    Science.gov (United States)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  13. Thermodynamics of Surfactants, Block Copolymers and Their Mixtures in Water: The Role of the Isothermal Calorimetry

    Science.gov (United States)

    De Lisi, Rosario; Milioto, Stefania; Muratore, Nicola

    2009-01-01

    The thermodynamics of conventional surfactants, block copolymers and their mixtures in water was described to the light of the enthalpy function. The two methodologies, i.e. the van’t Hoff approach and the isothermal calorimetry, used to determine the enthalpy of micellization of pure surfactants and block copolymers were described. The van’t Hoff method was critically discussed. The aqueous copolymer+surfactant mixtures were analyzed by means of the isothermal titration calorimetry and the enthalpy of transfer of the copolymer from the water to the aqueous surfactant solutions. Thermodynamic models were presented to show the procedure to extract straightforward molecular insights from the bulk properties. PMID:19742173

  14. PEO-related block copolymer surfactants

    DEFF Research Database (Denmark)

    Mortensen, K.

    2001-01-01

    Non-ionic block copolymer systems based on hydrophilic poly(ethylene oxide) and more hydrophobic co-polymer blocks are used intensively in a variety of industrial and personal applications. A brief description on the applications is presented. The physical properties of more simple model systems...... of such PEG-based block copolymers in aqueous suspensions are reviewed. Based on scattering experiments using either X-ray or neutrons, the phase behavior is characterized, showing that the thermo-reversible gelation is a result of micellar ordering into mesoscopic crystalline phases of cubic, hexagonal...

  15. Synthesis of Ethylene or Propylene/1,3-Butadiene Copolymers Possessing Pendant Vinyl Groups with Virtually No Internal Olefins

    Directory of Open Access Journals (Sweden)

    Kenji Michiue

    2015-11-01

    Full Text Available In general, ethylene/1,3-butadiene copolymerizations provides copolymers possessing both pendant vinyls and vinylenes as olefinic moieties. We, at MCI, studied the substituent effects of C2-symmetric zirconocene complexes, rac-[Me2Si(Indenyl’2]ZrCl2 (Indenyl’ = generic substituted indenyl, after activation on the ratio of the pendant vinyls and vinylenes of the resultant copolymers. Complexes examined in this study were rac-dimethylsilylbis (1-indenylzirconium dichloride (1, rac-dimethylsilyl-bis[1-(2-methyl-4,5-benzoindenyl] zirconium dichloride (2, rac-dimethylsilyl-bis[l-(2-methyl -4-phenylindenyl]zirconium dichloride (3, rac-dimethy1si1y1- bis(2-ethyl-4-phenylindenyl zirconium dichloride (4, rac-dimethylsilyl-bis[l-(2-n-propyl -4-(1-naphthylindenyl]zirconium dichloride (5, rac-dimethylsilyl-[1-(2-ethyl-4-(5-(2,2-dimethyl-2,3-dihydro-1H-cyclopenta [a]naphthalenylindenyl][1-(2-n-propyl-4-(5-(2,2-dimethyl-2,3-dihydro-1H-cyclopenta[a] naphthalenylindenyl]zirconium dichloride (6, rac-dimethylsilyl-bis[1-(2-ethyl-4-(9-phenanthrylindenyl]zirconium dichloride (7, and rac-dimethylsilyl-bis[l-(2-n-propyl-4-(9-phenanthrylindenyl]zirconium dichloride (8. We found that the ratio of the pendant vinyls and vinylenes is strongly affected by the bulkiness of the substituent on the complexes examined. The vinyl content increased linearly in the following order, 8 > 7 > 6 > 5 > 4 > 3 > 2 > 1. Notably, complex 8/DMAO formed ethylene/1,3-butadiene copolymers possessing predominant vinyl groups, which can be crucial precursors for functionalized polyolefins. Likewise, complex 8/DMAO afforded propylene/1,3-butadiene copolymers with predominant vinyl groups.

  16. MANUFACTURING BIODEGRADABLE COMPOSITE MATERIALS BASED ON POLYETHYLENE AND FUNCTIONALIZED BY ALCOHOLYSIS OF ETHYLENE-VINYL ACETATE COPOLYMER

    Directory of Open Access Journals (Sweden)

    Aleksandr A. Shabarin

    2016-06-01

    Full Text Available Introduction. The continuous growth of production and consumption of plastic packaging creates a serious problem of disposal of package. This problem has ecological character, because the contents of the landfills decompose for decades, emit toxic com¬pounds and pollute the environment. The work is devoted to obtaining and investigation mechanical and rheological properties of biodegradable composite materials based on polyethylene and starch. Materials and Methods. In this work the author used polyethylene grade HDPE 273- 83 (GOST 16338-85, Sevilen brand 12206-007 (TU 6-05-1636-97 and potato starch (GOST 53876-2010 as a filler. Functionalization of sevilen was carried in the 30 % ethanol solution KOH at a temperature 80 °C during 3 hours. Compounding components was carried out at the laboratory of the two rotary mixer HAAKE PolyLab Rheomix 600 OS with rotors Banbury. Formation of plates for elastic strength and rheological studies were carried out on a hydraulic press Gibitre. Elastic and strength tests were carried out on the tensile machine the UAI-7000 M. Rheology tests were carried out on the rheometer Haake MARS III. The humidity filler (starch authors determined by the thermogravimetric method on the analyzer of moisture “Evlas-2M”. Results. It is shown, that the filler should not contain more than 7% moisture. Functionalization of ethylene with vinyl acetate copolymer (sevilen has performed by the method of alkaline alcoholysis. By the method of IC – spectroscopy the authors confirmed the presence of hydroxyl groups in the polymer. Using as a compatibilizer functionalized by the method of alcoholises has greatly ( significantly improved physical, mechanical and rheological properties of composite materials. Optimal content of sevilen (F in the compound according to the results of experiments amount 10 %. Discussion and Conclusions. Using of functionalized by the method of alcoholysis ethy-lene-vinyl acetate copolymer as a

  17. Synthesis of Fluorinated Amphiphilic Block Copolymers Based on PEGMA, HEMA, and MMA via ATRP and CuAAC Click Chemistry

    Directory of Open Access Journals (Sweden)

    Fatime Eren Erol

    2014-01-01

    Full Text Available Synthesis of fluorinated amphiphilic block copolymers via atom transfer radical polymerization (ATRP and Cu(I catalyzed Huisgen 1,3-dipolar cycloaddition (CuAAC was demonstrated. First, a PEGMA and MMA based block copolymer carrying multiple side-chain acetylene moieties on the hydrophobic segment for postfunctionalization was carried out. This involves the synthesis of a series of P(HEMA-co-MMA random copolymers to be employed as macroinitiators in the controlled synthesis of P(HEMA-co-MMA-block-PPEGMA block copolymers by using ATRP, followed by a modification step on the hydroxyl side groups of HEMA via Steglich esterification to afford propargyl side-functional polymer, alkyne-P(HEMA-co-MMA-block-PPEGMA. Finally, click coupling between side-chain acetylene functionalities and 2,3,4,5,6-pentafluorobenzyl azide yielded fluorinated amphiphilic block copolymers. The obtained polymers were structurally characterized by 1H-NMR, 19F-NMR, FT-IR, and GPC. Their thermal characterizations were performed using DSC and TGA.

  18. Studies of P(VDF-HFP) copolymer applied to gamma dosimetry

    International Nuclear Information System (INIS)

    Liz, Otavio S.R.; Medeiros, Adriana S.

    2011-01-01

    When polymeric materials are irradiated by ionizing radiation, the effects are roughly divided into two types, degradation (chain scission) and chain link (crosslinking). These effects are normally identified by spectroscopic analysis in the UV-Vis and Infrared region. Recently, the intensities of optical absorption in the ultraviolet visible region (273 nm) due to radio-induction of conjugated C = C bonds in P(VDF-TrFE) copolymers have been successfully used for high dose gamma dosimetry, for doses ranging from 0.1 to 200 kGy. In this context, there is now an interest to conduct a similar systematic investigation of another fluorinated copolymer of PVDF, the poly(fluorovinylidene-co-hexafluoropropylene) [P(VDF-HFP)], not only in the UV-VIS region but also in the near and mid-infrared region. The copolymer used was obtained by randomly adding 10% molar of [CF2- CF-CF3] monomers in the [CH2-CF2]n main chain of PVDF homopolymer. Preliminary results have shown that the irradiated copolymer has characteristic absorption bands originated by irradiation in the FTIR spectrum. It was found that the 1852 cm -1 band, associated with C = O bonds, have a linear correlation with the absorbed dose for doses ranging from 10 to 750 kGy. The absorption band at 1729 cm -1 , associated to chain oxidation (C = O), has shown a similar behavior and can be used to measure doses from 100 to 1000 kGy. These results indicate that the FTIR absorption bands of gamma irradiated P (VDF-HFP) have great potential to be used in high dose dosimetry, without the addition of dyes. (author)

  19. Studies of P(VDF-HFP) copolymer applied to gamma dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Liz, Otavio S.R.; Medeiros, Adriana S. [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Faria, Luiz O., E-mail: farialo@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    When polymeric materials are irradiated by ionizing radiation, the effects are roughly divided into two types, degradation (chain scission) and chain link (crosslinking). These effects are normally identified by spectroscopic analysis in the UV-Vis and Infrared region. Recently, the intensities of optical absorption in the ultraviolet visible region (273 nm) due to radio-induction of conjugated C = C bonds in P(VDF-TrFE) copolymers have been successfully used for high dose gamma dosimetry, for doses ranging from 0.1 to 200 kGy. In this context, there is now an interest to conduct a similar systematic investigation of another fluorinated copolymer of PVDF, the poly(fluorovinylidene-co-hexafluoropropylene) [P(VDF-HFP)], not only in the UV-VIS region but also in the near and mid-infrared region. The copolymer used was obtained by randomly adding 10% molar of [CF2- CF-CF3] monomers in the [CH2-CF2]n main chain of PVDF homopolymer. Preliminary results have shown that the irradiated copolymer has characteristic absorption bands originated by irradiation in the FTIR spectrum. It was found that the 1852 cm{sup -1} band, associated with C = O bonds, have a linear correlation with the absorbed dose for doses ranging from 10 to 750 kGy. The absorption band at 1729 cm{sup -1}, associated to chain oxidation (C = O), has shown a similar behavior and can be used to measure doses from 100 to 1000 kGy. These results indicate that the FTIR absorption bands of gamma irradiated P (VDF-HFP) have great potential to be used in high dose dosimetry, without the addition of dyes. (author)

  20. CAVITATION PROPERTIES OF BLOCK COPOLYMER STABILIZED PHASE-SHIFT NANOEMULSIONS USED AS DRUG CARRIERS

    OpenAIRE

    RAPOPORT, NATALYA; CHRISTENSEN, DOUGLAS A.; KENNEDY, ANNE M.; NAM, KWEONHO

    2010-01-01

    Cavitation properties of block copolymer stabilized perfluoropentane nanoemulsions have been investigated. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers differing in the structure of the hydrophobic block, poly(ethylene oxide)-co-poly(L-lactide) (PEG-PLLA) and poly(ethylene oxide)-co-polycaprolactone (PEG-PCL). Cavitation parameters were measured in liquid emulsions and gels as a function of ultrasound pressure for unfocused or focused 1-MHz ultrasound. A...

  1. Interior Point Method for Solving Fuzzy Number Linear Programming Problems Using Linear Ranking Function

    Directory of Open Access Journals (Sweden)

    Yi-hua Zhong

    2013-01-01

    Full Text Available Recently, various methods have been developed for solving linear programming problems with fuzzy number, such as simplex method and dual simplex method. But their computational complexities are exponential, which is not satisfactory for solving large-scale fuzzy linear programming problems, especially in the engineering field. A new method which can solve large-scale fuzzy number linear programming problems is presented in this paper, which is named a revised interior point method. Its idea is similar to that of interior point method used for solving linear programming problems in crisp environment before, but its feasible direction and step size are chosen by using trapezoidal fuzzy numbers, linear ranking function, fuzzy vector, and their operations, and its end condition is involved in linear ranking function. Their correctness and rationality are proved. Moreover, choice of the initial interior point and some factors influencing the results of this method are also discussed and analyzed. The result of algorithm analysis and example study that shows proper safety factor parameter, accuracy parameter, and initial interior point of this method may reduce iterations and they can be selected easily according to the actual needs. Finally, the method proposed in this paper is an alternative method for solving fuzzy number linear programming problems.

  2. Design of block copolymer membranes using segregation strength trend lines

    KAUST Repository

    Sutisna, Burhannudin

    2016-05-18

    Block copolymer self-assembly and non-solvent induced phase separation are now being combined to fabricate membranes with narrow pore size distribution and high porosity. The method has the potential to be used with a broad range of tailor-made block copolymers to control functionality and selectivity for specific separations. However, the extension of this process to any new copolymer is challenging and time consuming, due to the complex interplay of influencing parameters, such as solvent composition, polymer molecular weights, casting solution concentration, and evaporation time. We propose here an effective method for designing new block copolymer membranes. The method consists of predetermining a trend line for the preparation of isoporous membranes, obtained by computing solvent properties, interactions and copolymer block sizes for a set of successful systems and using it as a guide to select the preparation conditions for new membranes. We applied the method to membranes based on poly(styrene-b-ethylene oxide) diblocks and extended it to newly synthesized poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) terpolymers. The trend line method can be generally applied to other new systems and is expected to dramatically shorten the path of isoporous membrane manufacture. The PS-b-P2VP-b-PEO membrane formation was investigated by in situ Grazing Incident Small Angle X-ray Scattering (GISAXS), which revealed a hexagonal micelle order with domain spacing clearly correlated to the membrane interpore distances.

  3. Biodegradable copolymers carrying cell-adhesion peptide sequences.

    Science.gov (United States)

    Proks, Vladimír; Machová, Lud'ka; Popelka, Stepán; Rypácek, Frantisek

    2003-01-01

    Amphiphilic block copolymers are used to create bioactive surfaces on biodegradable polymer scaffolds for tissue engineering. Cell-selective biomaterials can be prepared using copolymers containing peptide sequences derived from extracellular-matrix proteins (ECM). Here we discuss alternative ways for preparation of amphiphilic block copolymers composed of hydrophobic polylactide (PLA) and hydrophilic poly(ethylene oxide) (PEO) blocks with cell-adhesion peptide sequences. Copolymers PLA-b-PEO were prepared by a living polymerisation of lactide in dioxane with tin(II)2-ethylhexanoate as a catalyst. The following approaches for incorporation of peptides into copolymers were elaborated. (a) First, a side-chain protected Gly-Arg-Gly-Asp-Ser-Gly (GRGDSG) peptide was prepared by solid-phase peptide synthesis (SPPS) and then coupled with delta-hydroxy-Z-amino-PEO in solution. In the second step, the PLA block was grafted to it via a controlled polymerisation of lactide initiated by the hydroxy end-groups of PEO in the side-chain-protected GRGDSG-PEO. Deprotection of the peptide yielded a GRGDSG-b-PEO-b-PLA copolymer, with the peptide attached through its C-end. (b) A protected GRGDSG peptide was built up on a polymer resin and coupled with Z-carboxy-PEO using a solid-phase approach. After cleavage of the delta-hydroxy-PEO-GRGDSG copolymer from the resin, polymerisation of lactide followed by deprotection of the peptide yielded a PLA-b-PEO-b-GRGDSG block copolymer, in which the peptide is linked through its N-terminus.

  4. Synthesis of amylose-block-polystyrene rod-coil block copolymers

    NARCIS (Netherlands)

    Loos, Katja; Stadler, Reimund

    1997-01-01

    In the present communication we demonstrate the synthesis of a hybrid block copolymer based on the combination of a biopolymer (amylose) with a synthetic block (polystyrene). To obtain such materials, amino-functionalized polymers were modified with maltoheptaose moieties that serve as initiators

  5. Mechanical properties of weakly segregated block copolymers : 1. Synergism on tensile properties of poly(styrene-b-n-butylmethacrylate) diblock copolymers

    NARCIS (Netherlands)

    Weidisch, R.; Michler, G.H.; Fischer, H.; Arnold, M.; Hofmann, S.; Stamm, M.

    1999-01-01

    Mechanical properties of poly(styrene-b-n-butylmethacrylate) diblock copolymers, PS-b-PBMA, with different lengths of the polystyrene block were investigated. The copolymers display a composition range where the tensile strength of the block copolymers exceeds the values of the corresponding

  6. Polydimethylsiloxane-polymethacrylate block copolymers tethering quaternary ammonium salt groups for antimicrobial coating

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Xiaoshuai; Li, Yancai; Zhou, Fang; Ren, Lixia; Zhao, Yunhui, E-mail: zhaoyunhui@tju.edu.cn; Yuan, Xiaoyan

    2015-02-15

    Highlights: • A series of PDMS-b-QPDMAEMA block copolymers were synthesized via RAFT polymerization. • The composition and morphology of the copolymer films strongly depended on the content of QPDMAEMA. • Migration of QPDMAEMA blocks toward surface was promoted when contacting with water. • Heterogeneous film surfaces with higher N{sup +} content exhibited more obvious antimicrobial activity. - Abstract: Block copolymers PDMS-b-PDMAEMA were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization involving N,N-dimethylaminoethyl methacrylate (DMAEMA) by using poly(dimethylsiloxane) (PDMS) macro-chain transfer agent. And, the tertiary amino groups in PDMAEMA were quaternized with n-octyliodide to provide quaternary ammonium salts (QPDMAEMA). The well-defined copolymers generated composition variation and morphology evolvement on film surfaces, which were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, and contact angle measurements. The results indicated that the enrichment of QPDMAEMA brought about lower elemental ratios of Si/N on the film surfaces. The surface morphologies evolved with the variations of QPDMAEMA content, and the variation trend of film roughness was exactly opposite to that of water contact angle hysteresis. With regard to structure-antimicrobial relationships, the copolymer films had more evident antimicrobial activity against Gram-positive, Bacillus subtilis, and the surfaces with heterogeneous morphology and higher N{sup +} content presented better antimicrobial activity. The functionalized copolymers based PDMS and quaternary ammonium salts materials have the potential applications as antimicrobial coatings.

  7. Oil recovery with vinyl sulfonic acid-acrylamide copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-12-18

    An aqueous polymer flood containing sulfomethylated alkali metal vinyl sulfonate-acrylamide copolymers was proposed for use in secondary or tertiary enhanced oil recovery. The sulfonate groups on the copolymers sustain the viscosity of the flood in the presence of brine and lime. Injection of the copolymer solution into a waterflooded Berea core, produced 30.5 percent of the residual oil. It is preferred that the copolymers are partially hydrolyzed.

  8. Synthesis and characterization of functional copolymer/organo-silicate nanoarchitectures through interlamellar complex-radical (coterpolymerization

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available The functional copolymers, having a combination of rigid/flexible linkages and an ability of complex-formation with interlayered surface of organo-silicate, and their nanocomposites have been synthesized by interlamellar complex-radical (coterpolymerization of intercalated monomer complexes of maleic anhydride (MA and itaconic acid (IA with dimethyl dodecylamine surface modified montmorillonite (organo-MMT (MA…DMDA-MMT and IA…DMDA-MMT n-butyl methacrylate (BMA and/or BMA/styrene monomer mixtures. The results of nanocomposite structure–composition– property relationship studies indicate that interlamellar complex-formation between anhydride/acid units and surface alkyl amine and rigid/flexible linkage balance in polymer chains are important factors providing the effective intercalation/ exfoliation of the polymer chains into the silicate galleries, the formation of nanostructural hybrids with higher thermal stability, dynamic mechanical behaviour and well dispersed morphology.

  9. Non-covalent functionalization of carbon nanotubes: Controlling Chirality Selectivity via Alkyl Groups of Conjugated Co-Polymers

    Science.gov (United States)

    Weight, Braden; Gifford, Brendan; Kilina, Svetlana

    Carbon nanotubes (CNTs) play an important role in nanotechnology, including electronics, chemical sensors, and solar cells. Their electronic and optical properties depend on the size and geometry (chirality) of the nanotube. However, one main concern regarding nanotube application in optoelectronic devices is the difficulty of separating them based upon chirality after synthesis, as all known synthesis methods produce more than one chirality simultaneously. To get around this, one method is the functionalization of the CNTs via non-covalent bonding of co-polymers by wrapping them around the tube. We use force field simulations to explore the effects of various structural manipulations to the co-polymer 9,9-dialkylfluorenyl-2,7-diyl bipyridine (PFO-BPY) to find the preferential mechanisms of selective interactions between the PFO-BPY and CNTs of various chiralities. In particular, we focus on the effect of the branching in alkyl side-groups of PFO-BPY on their binding to the CNT surface. We have observed correlations between the side-group structures and their wrapping morphology on the CNT-Polymer interactions. Our calculations demonstrate that the branching in the position closest to the conjugated backboned results in the strongest interaction with all CNT. This research was supported by the National Science Foundation (CHE 1413614) and the Center for Computationally-Assisted Science and Technology at NDSU.

  10. Formation and Characterization of Anisotropic Block Copolymer Gels

    Science.gov (United States)

    Liaw, Chya Yan; Joester, Derk; Burghardt, Wesley; Shull, Kenneth

    2012-02-01

    Cylindrical micelles formed from block copolymer solutions closely mimic biological fibers that are presumed to guide mineral formation during biosynthesis of hard tissues like bone. The goal of our work is to use acrylic block copolymers as oriented templates for studying mineral formation reactions in model systems where the structure of the underlying template is well characterized and reproducible. Self-consistent mean field theory is first applied to investigate the thermodynamically stable micellar morphologies as a function of temperature and block copolymer composition. Small-angle x-ray scattering, optical birefringence and shear rheometry are used to study the morphology development during thermal processing. Initial experiments are based on a thermally-reversible alcohol-soluble system that can be converted to an aqueous gel by hydrolysis of a poly(t-butyl methacrylate) block to a poly(methacrylic acid) block. Aligned cylindrical domains are formed in the alcohol-based system when shear is applied in an appropriate temperature regime, which is below the critical micelle temperature but above the temperature at which the relaxation time of the gels becomes too large. Processing strategies for producing the desired cylindrical morphologies are being developed that account for both thermodynamic and kinetic effects.

  11. Proton conducting graft copolymers with tunable length and density of phosphonated side chains for fuel cell membranes

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Takamuku, Shogo; Jankova Atanasova, Katja

    2014-01-01

    Polysulfones functionalized with highly phosphonated poly(pentafluorostyrene) side chains of different lengths were synthesized applying controlled polymerization and modification methods. The graft copolymers' thermal properties were evaluated by differential scanning calorimetry and thermal...... gravimetrical analyses. The proton conductivity of membrane prepared from the graft copolymer with the shortest phosphonated side chains was 134 mS cm(-1) at 100 degrees C under fully immersed conditions. The graft copolymer TEM image shows a nanophase separation of ion-rich segments within the polysulfone...

  12. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu, E-mail: sde@che.iitkgp.ernet.in

    2015-12-31

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  13. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    International Nuclear Information System (INIS)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu

    2015-01-01

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  14. Quantum tests for the linearity and permutation invariance of Boolean functions

    Energy Technology Data Exchange (ETDEWEB)

    Hillery, Mark [Department of Physics, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10021 (United States); Andersson, Erika [SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2011-12-15

    The goal in function property testing is to determine whether a black-box Boolean function has a certain property or is {epsilon}-far from having that property. The performance of the algorithm is judged by how many calls need to be made to the black box in order to determine, with high probability, which of the two alternatives is the case. Here we present two quantum algorithms, the first to determine whether the function is linear and the second to determine whether it is symmetric (invariant under permutations of the arguments). Both require order {epsilon}{sup -2/3} calls to the oracle, which is better than known classical algorithms. In addition, in the case of linearity testing, if the function is linear, the quantum algorithm identifies which linear function it is. The linearity test combines the Bernstein-Vazirani algorithm and amplitude amplification, while the test to determine whether a function is symmetric uses projective measurements and amplitude amplification.

  15. A logic circuit for solving linear function by digital method

    International Nuclear Information System (INIS)

    Ma Yonghe

    1986-01-01

    A mathematical method for determining the linear relation of physical quantity with rediation intensity is described. A logic circuit has been designed for solving linear function by digital method. Some applications and the circuit function are discussed

  16. Study of structural morphologies of thermoresponsive diblock AB and triblock BAB copolymers (A = poly(N-isopropylacrylamide), B = polystyrene)

    Science.gov (United States)

    Rodríguez-Hidalgo, María del Rosario; Soto-Figueroa, César; Vicente, Luis

    2018-03-01

    Structural morphologies of diblock AB and triblock BAB copolymers (A = poly(N-isopropylacrylamide), B = polystyrene) in aqueous environment have been investigated by dissipative particle dynamics (DPD). In triblock copolymers insoluble PS blocks contract while soluble pNIPAM blocks stay at the periphery forming looped chains as corona. As the temperature is increased there is a continuous morphological transition and micelles form ellipsoidal structures with segregated polymer zones. The phase transition of looped pNIPAM chains occurs at lower temperature than for linear chains and within broader temperature range. It is discussed how the chain topology of pNIPAM affects the phase transition.

  17. Styrene-divinylbenzene copolymer grafted with phosphonic acid dialkylesters

    Directory of Open Access Journals (Sweden)

    SMARANDA ILIESCU

    2004-12-01

    Full Text Available The functionalization of a crosslinked chloromethylated polystyrene 8% divinylbenzene copolymer with phosphonic ester groups is detailed. The reacton conditions were studied in order to determine the optimal conditions for obtaining only diesters. A statistical method for the calculation of the fraction of repetive units for the inited and final resin is proposed.

  18. Linear and Non-Linear Dose-Response Functions Reveal a Hormetic Relationship Between Stress and Learning

    OpenAIRE

    Zoladz, Phillip R.; Diamond, David M.

    2008-01-01

    Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as ...

  19. Preparation and Characterization of Styrene Bearing Diethanolamine Side Group, Styrene Copolymer Systems, and Their Metal Complexes

    Directory of Open Access Journals (Sweden)

    Aslışah Açıkses

    2018-01-01

    Full Text Available The two copolymer systems of styrene bearing diethanol amine side group and styrene were prepared by free radical polymerization method at 60°C in presence of 1,4-dioxane as solvent and AIBN as initiator. Their metal complexes were prepared by reaction of the copolymer used as ligand P(DEAMSt-co-StL′′ and Ni(II and Co(II metal ions, which was carried out in presence of ethanol and NaOH at 65°C for 48 h in pH = 7.5. The structures of the copolymers used as ligand and metal complexes were identified by FT-IR, 1H-NMR spectra, and elemental analysis. The properties of the copolymers used as ligand and metal complexes were characterized by SEM-EDX, AAS, DSC, TGA, and DTA techniques. Then, the electrical properties of the copolymers and metal complexes were examined as a function of the temperature and frequency, and the activation energies (Ea were estimated with conductivity measurements.

  20. Tuning of Block Copolymer Membrane Morphology through Water Induced Phase Inversion Technique

    KAUST Repository

    Madhavan, Poornima

    2016-06-01

    Isoporous membranes are attractive for the regulation and detection of transport at the molecular level. A well-defined asymmetric membranes from diblock copolymers with an ordered nanoporous membrane morphologies were fabricated by the combination of block copolymer self-assembly and non-solvent-induced phase separation (NIPS) technique. This is a straightforward and fast one step procedure to develop integrally anisotropic (“asymmetric”) membranes having isoporous top selective layer. Membranes prepared via this method exhibit an anisotropic cross section with a thin separation layer supported from underneath a macroporous support. These membrane poses cylindrical pore structure with ordered nanopores across the entire membrane surfaces with pore size in the range from 20 to 40 nm. Tuning the pore morphology of the block copolymer membranes before and after fabrication are of great interest. In this thesis, we first investigated the pore morphology tuning of asymmetric block copolymer membrane by complexing with small organic molecules. We found that the occurrence of hydrogen-bond formation between PS-b-P4VP block copolymer and –OH/ –COOH functionalized organic molecules significantly tunes the pore morphology of asymmetric nanoporous membranes. In addition, we studied the complexation behavior of ionic liquids with PS-b-P4VP block copolymer in solutions and investigated their effect on final membrane morphology during the non-solvent induced phase separation process. We found that non-protic ionic liquids facilitate the formation of hexagonal nanoporous block copolymer structure, while protic ionic liquids led to a lamella-structured membrane. Secondly, we demonstrated the catalytic activity of the gold nanoparticle-enhanced hollow fiber membranes by the reduction of nitrophenol. Also, we systematically investigated the pore morphology of isoporous PS-b-P4VP using 3D imaging technique. Thirdly, we developed well-distributed silver nanoparticles on the

  1. Synthesis of PMMA-b-PU-b-PMMA tri-block copolymers through ARGET ATRP in the presence of air

    Directory of Open Access Journals (Sweden)

    P. Krol

    2013-03-01

    Full Text Available ARGET (activators regenerated by electron transfer ATRP (atom transfer radical polymerization has been successfully performed (in flasks fitted with rubber septa without the need for use of Schlenk line in the presence of limited amount of air and with a very small (370 ppm amount of copper catalyst together with an appropriate reducing agent Cu(0. Novelty of this work is that the poly(methyl methacrylate-block-polyurethane-block-poly(methyl methacrylate triblock copolymers were synthesized for the first time through ARGET ATRP, by using tertiary bromine-terminated polyurethane as a macroinitiator (MBP-PU-MBP, CuBr2 or CuCl2 as a catalyst and N,N,N',N",N"-pentamethyldiethylenetriamine (PMDETA or 2,2'-bipyridine (Bpy as a complexing agent. As the polymerization time increases, both the monomer conversion and ln([M]0/[M] increased and the molecular weight of copolymer increases linearly with increasing conversion. Theoretical number-average molecular weight (Mn, th of the tri-block copolymers was found to be comparable with number-average molecular weight determined by GPC analyses (Mn, GPC. These results indicate that the formation of the tri-block copolymers was through atom transfer radical polymerization mechanism. 1H and 13C NMR spectral methods were employed to confirm chemical structures of synthesized macroinitiator and tri-block copolymers. Mole percentage of PMMA in the tri-block copolymers was calculated using 1H NMR spectroscopy and was found to be comparable with the GPC results. Additionally, the studies of surface properties (confocal microscopy and SFE of tri-block copolymer coatings confirmed the presence of MMA segments.

  2. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials, containers...

  3. Block Copolymers: Synthesis and Applications in Nanotechnology

    Science.gov (United States)

    Lou, Qin

    This study is focused on the synthesis and study of (block) copolymers using reversible deactivation radical polymerizations (RDRPs), including atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, two primary areas of study are undertaken: (1) a proof-of-concept application of lithographic block copolymers, and (2) the mechanistic study of the deposition of titania into block copolymer templates for the production of well-ordered titania nanostructures. Block copolymers have the ability to undergo microphase separation, with an average size of each microphase ranging from tens to hundreds of nanometers. As such, block copolymers have been widely considered for nanotechnological applications over the past two decades. The development of materials for various nanotechnologies has become an increasingly studied area as improvements in many applications, such as those found in the semiconductor and photovoltaic industries are constantly being sought. Significant growth in developments of new synthetic methods ( i.e. RDRPs) has allowed the production of block copolymers with molecular (and sometimes atomic) definition. In turn, this has greatly expanded the use of block copolymers in nanotechnology. Herein, we describe the synthesis of statistical and block copolymers of 193 nm photolithography methacrylate and acrylate resist monomers with norbornyl and adamantyl moieties using RAFT polymerization.. For these resist (block) copolymers, the phase separation behaviors were examined by atomic force microscopy (AFM). End groups were removed from the polymers to avoid complications during the photolithography since RAFT end groups absorb visible light. Poly(glycidyl methacrylate-block-polystyrene) (PGMA-b-PS) was synthesize by ATRP and demonstrated that this block copolymer acts as both a lithographic UV (365 nm) photoresist and a self-assembly material. The PGMA segments can undergo cationic

  4. Field-theoretic simulations of block copolymer nanocomposites in a constant interfacial tension ensemble.

    Science.gov (United States)

    Koski, Jason P; Riggleman, Robert A

    2017-04-28

    Block copolymers, due to their ability to self-assemble into periodic structures with long range order, are appealing candidates to control the ordering of functionalized nanoparticles where it is well-accepted that the spatial distribution of nanoparticles in a polymer matrix dictates the resulting material properties. The large parameter space associated with block copolymer nanocomposites makes theory and simulation tools appealing to guide experiments and effectively isolate parameters of interest. We demonstrate a method for performing field-theoretic simulations in a constant volume-constant interfacial tension ensemble (nVγT) that enables the determination of the equilibrium properties of block copolymer nanocomposites, including when the composites are placed under tensile or compressive loads. Our approach is compatible with the complex Langevin simulation framework, which allows us to go beyond the mean-field approximation. We validate our approach by comparing our nVγT approach with free energy calculations to determine the ideal domain spacing and modulus of a symmetric block copolymer melt. We analyze the effect of numerical and thermodynamic parameters on the efficiency of the nVγT ensemble and subsequently use our method to investigate the ideal domain spacing, modulus, and nanoparticle distribution of a lamellar forming block copolymer nanocomposite. We find that the nanoparticle distribution is directly linked to the resultant domain spacing and is dependent on polymer chain density, nanoparticle size, and nanoparticle chemistry. Furthermore, placing the system under tension or compression can qualitatively alter the nanoparticle distribution within the block copolymer.

  5. Mesoscopic multiphase structures and the interfaces of block and graft copolymers in bulk

    International Nuclear Information System (INIS)

    Matsushita, Yushu

    1996-01-01

    Microphase-separated structures of copolymers with various architectures and their polymer/polymer interfaces were studied. They are SP diblock, PSP triblock, and SPP graft copolymers, where S and P denote polystyrene and poly(2-vinylpyridine), respectively. Morphological observations were carried out by means of transmission electron microscopy and small-angle X-ray scattering. Chain dimensions of component polymers were measured by small-angle neutron scattering and microphase-separated interfaces were observed by neutron reflectivity measurements using deuterium-labeled samples. It was clarified that morphological phase transitions among thermodynamically equilibrium structures for SP diblock and PSP triblock copolymers occur at almost the same compositions; however, those of SPP graft copolymers tend to occur at higher volume fraction of polystyrene, φ s , than those for block copolymers. As for alternating lamellar structures it turned out to be clear that lamellar domain spacings, D's, were scaled as the 2/3 power of the molecular weight of polymers irrespective of their architectures. S block chains of SP diblock and PSP triblock copolymers in lamellar structures were both confirmed to be deformed toward the direction perpendicular to the lamellar interfaces, but it revealed that their volumes were preserved. Further, S/P interfacial thicknesses of SP and PSP were essentially the same to each other and the values defined as the FWHM of the error functions which express the segment density distributions of the interfaces were determined to be about 4 nm. (author)

  6. Linear and non-linear dose-response functions reveal a hormetic relationship between stress and learning.

    Science.gov (United States)

    Zoladz, Phillip R; Diamond, David M

    2008-10-16

    Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as well as the excitatory effects of several neuromodulators, including corticosteroids, norepinephrine, corticotropin-releasing hormone, acetylcholine and dopamine. We propose that this rapid activation of the amygdala-hippocampus brain memory system results in a linear dose-response relation between emotional strength and memory formation. More prolonged stress, however, leads to an inhibition of hippocampal function, which can be attributed to compensatory cellular responses that protect hippocampal neurons from excitotoxicity. This inhibition of hippocampal functioning in response to prolonged stress is potentially relevant to the well-described curvilinear dose-response relationship between arousal and memory. Our emphasis on the temporal features of stress-brain interactions addresses how stress can activate, as well as impair, hippocampal functioning to produce a hormetic relationship between stress and learning.

  7. Core-shell-corona micelles by PS-b-P2VP-b-PEO copolymers: focus on the water-induced micellization process.

    Science.gov (United States)

    Willet, Nicolas; Gohy, Jean-François; Auvray, Loïc; Varshney, Sunil; Jérôme, Robert; Leyh, Bernard

    2008-04-01

    It is now well established that amphiphilic PS-b-P2VP-b-PEO linear triblock copolymers can form multilayered assemblies, thus core-shell-corona (CSC) micelles, in water. Micellization is triggered by addition of a small amount of water into a dilute solution of the PS-b-P2VP-b-PEO copolymer in a non-selective organic solvent. However, the phenomena that take place at the very beginning of this process are poorly documented. How these copolymer chains are perturbed by addition of water was investigated in this work by light and neutron scattering techniques and transmission electron microscopy. It was accordingly possible to determine the critical water concentration (CWC), the compactness of the nano-objects in solution, their number of aggregation, and their hydrodynamic diameter at each step of the micellization process.

  8. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be safely...

  9. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be safely...

  10. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of articles...

  11. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-ethylene copolymers. 177.1950... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950 Vinyl chloride-ethylene copolymers. The vinyl chloride-ethylene copolymers identified in paragraph (a) of this section may be safely...

  12. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  13. Antimicrobial activity of poly(acrylic acid) block copolymers

    International Nuclear Information System (INIS)

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P.; Lackner, Maximilian

    2014-01-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed

  14. Asymmetric block copolymers confined in a thin film

    NARCIS (Netherlands)

    Huinink, HP; Brokken-Zijp, JCM; van Dijk, MA; Sevink, GJA

    2000-01-01

    We have used a dynamic density functional theory (DDFT) for polymeric systems, to simulate the formation of micro phases in a melt of an asymmetric block copolymer, A(n)B(m)(f(A) = 1/3), both in the bulk and in a thin film. In the DDFT model a polymer is represented as a chain of springs and beads.

  15. Cationic nanoparticles with quaternary ammonium-functionalized PLGA–PEG-based copolymers for potent gene transfection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan-Hsung [Kaohsiung Medical University, School of Dentistry, College of Dental Medicine (China); Fu, Yin-Chih [Kaohsiung Medical University, Graduate Institute of Medicine, College of Medicine (China); Chiu, Hui-Chi [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China); Wang, Chau-Zen [Kaohsiung Medical University, Department of Physiology, College of Medicine (China); Lo, Shao-Ping [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China); Ho, Mei-Ling [Kaohsiung Medical University, Department of Physiology, College of Medicine (China); Liu, Po-Len [Kaohsiung Medical University, Department of Respiratory Therapy, College of Medicine (China); Wang, Chih-Kuang, E-mail: ckwang@kmu.edu.tw [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China)

    2013-11-15

    The objective of the present work was to develop new cationic nanoparticles (cNPs) with amphiphilic cationic copolymers for the delivery of plasmid DNA (pDNA). Cationic copolymers were built on the synthesis of quaternary ammonium salt compounds from diethylenetriamine (DETA) to include the positively charged head group and amphiphilic multi-grafts. PLGA-phe-PEG-qDETA (PPD), phe-PEG-qDETA-PLGA (PDP), and PLGA-phe-PEG-qDETA-PLGA (PPDP) cationic copolymers were created by this moiety of DETA quaternary ammonium, heterobifunctional polyethylene glycol (COOH-PEG-NH{sub 2}), phenylalanine (phe), and poly(lactic-co-glycolic acid) (PLGA). These new cNPs were prepared by the water miscible solvent displacement method. They exhibit good pDNA binding ability, as shown in a retardation assay that occurred at a particle size of ∼217 nm. The zeta potential was approximately +21 mV when the cNP concentration was 25 mg/ml. The new cNPs also have a better buffering capacity than PLGA NPs. However, the pDNA binding ability was demonstrated starting at a weight ratio of approximately 6.25 cNPs/pDNA. Gene transfection results showed that these cNPs had transfection effects similar to those of Lipofectamine 2000 in 293T cells. Furthermore, cNPs can also transfect human adipose-derived stem cells. The results indicate that the newly developed cNP is a promising candidate for a novel gene delivery vehicle.

  16. Collapse transitions in thermosensitive multi-block copolymers: A Monte Carlo study

    Science.gov (United States)

    Rissanou, Anastassia N.; Tzeli, Despoina S.; Anastasiadis, Spiros H.; Bitsanis, Ioannis A.

    2014-05-01

    Monte Carlo simulations are performed on a simple cubic lattice to investigate the behavior of a single linear multiblock copolymer chain of various lengths N. The chain of type (AnBn)m consists of alternating A and B blocks, where A are solvophilic and B are solvophobic and N = 2nm. The conformations are classified in five cases of globule formation by the solvophobic blocks of the chain. The dependence of globule characteristics on the molecular weight and on the number of blocks, which participate in their formation, is examined. The focus is on relative high molecular weight blocks (i.e., N in the range of 500-5000 units) and very differing energetic conditions for the two blocks (very good—almost athermal solvent for A and bad solvent for B). A rich phase behavior is observed as a result of the alternating architecture of the multiblock copolymer chain. We trust that thermodynamic equilibrium has been reached for chains of N up to 2000 units; however, for longer chains kinetic entrapments are observed. The comparison among equivalent globules consisting of different number of B-blocks shows that the more the solvophobic blocks constituting the globule the bigger its radius of gyration and the looser its structure. Comparisons between globules formed by the solvophobic blocks of the multiblock copolymer chain and their homopolymer analogs highlight the important role of the solvophilic A-blocks.

  17. Copolymers at the solid - liquid interface

    NARCIS (Netherlands)

    Wijmans, C.M.

    1994-01-01

    Copolymers consisting of both adsorbing and nonadsorbing segments can show an adsorption behaviour which is very different from that of homopolymers. We have mainly investigated the adsorption of AB diblock copolymers, which have one adsorbing block (anchor) and one nonadsorbing block

  18. Star-shaped poly[(trimethylene carbonate)-co-(epsilon-caprolactone)] and its block copolymers with lactide/glycolide : synthesis, characterization and properties

    NARCIS (Netherlands)

    Joziasse, CAP; Grablowitz, H; Pennings, AJ

    Linear and star-shaped copolymers of trimethylene carbonat/epsilon-caprolactone were synthesized using different polyol initiators and catalysts. Unexpectedly, when dipentaerythritol was used as an initiator cross-linked rubbers were obtained, that swell in chlorofonn. This network formation can be

  19. Simultaneous determination of the styrene unit content and assessment of molecular weight of triblock copolymers in adhesives by a size exclusion chromatography method.

    Science.gov (United States)

    Wang, Mingfang; Wang, Yuerong; Luo, Pei; Zhang, Hongyang; Zhang, Min; Hu, Ping

    2017-10-01

    The content of styrene units in nonhydrogenated and hydrogenated styrene-butadiene-styrene and styrene-isoprene-styrene triblock copolymers significantly influences product performance. A size exclusion chromatography method was developed to determine the average styrene content of triblock copolymers blended with tackifier in adhesives. A complete separation of the triblock copolymer from the other additives was realized with size exclusion chromatography. The peak area ratio of the UV and refraction index signals of the copolymers at the same effective elution volume was correlated to the average styrene unit content using nuclear magnetic resonance spectroscopy with commercial copolymers as standards. The obtained calibration curves showed good linearity for both the hydrogenated and nonhydrogenated styrene-butadiene-styrene and styrene-isoprene-styrene triblock copolymers (r = 0.974 for styrene contents of 19.3-46.3% for nonhydrogenated ones and r = 0.970 for the styrene contents of 23-58.2% for hydrogenated ones). For copolymer blends, the developed method provided more accurate average styrene unit contents than nuclear magnetic resonance spectroscopy provided. These results were validated using two known copolymer blends consisting of either styrene-isoprene-styrene or hydrogenated styrene-butadiene-styrene and a hydrocarbon tackifying resin as well as an unknown adhesive with styrene-butadiene-styrene and an aromatic tackifying resin. The methodology can be readily applied to styrene-containing polymers in blends such as poly(acrylonitrile-butadiene styrene). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Linear Prediction Using Refined Autocorrelation Function

    Directory of Open Access Journals (Sweden)

    M. Shahidur Rahman

    2007-07-01

    Full Text Available This paper proposes a new technique for improving the performance of linear prediction analysis by utilizing a refined version of the autocorrelation function. Problems in analyzing voiced speech using linear prediction occur often due to the harmonic structure of the excitation source, which causes the autocorrelation function to be an aliased version of that of the vocal tract impulse response. To estimate the vocal tract characteristics accurately, however, the effect of aliasing must be eliminated. In this paper, we employ homomorphic deconvolution technique in the autocorrelation domain to eliminate the aliasing effect occurred due to periodicity. The resulted autocorrelation function of the vocal tract impulse response is found to produce significant improvement in estimating formant frequencies. The accuracy of formant estimation is verified on synthetic vowels for a wide range of pitch frequencies typical for male and female speakers. The validity of the proposed method is also illustrated by inspecting the spectral envelopes of natural speech spoken by high-pitched female speaker. The synthesis filter obtained by the current method is guaranteed to be stable, which makes the method superior to many of its alternatives.

  1. Synthesis and characterization of waterborne polyurethane acrylate copolymers

    International Nuclear Information System (INIS)

    Sultan, Misbah; Bhatti, Haq Nawaz; Zuber, Mohammad; Barikani, Mehdi

    2013-01-01

    Polyurethane acrylate copolymers were synthesized by emulsion polymerization process. To reduce the environmental hazards, organic solvents were replaced by eco-friendly aqueous system. Concentration of polyurethane and acrylate monomer was varied to investigate the effect of chemical composition on performance properties of copolymers. FTIR spectroscopy was used as a key tool to record the chemical synthesis route. The synthesized copolymer emulsions were characterized by evaluating their particle size, viscosity, dry weight content, chemical and water resistance. Thermal decomposition was studied by thermogravimetric analysis. Scanning electron microscope was used to visualize the morphological structure of copolymers. The experimental results indicate better polyurethane acrylate compatibility till the ratio of 30/70. However, these copolymers exhibited synergistic effects between the two polymers and revealed a remarkable improvement in numerous coating properties

  2. Functional linear models for association analysis of quantitative traits.

    Science.gov (United States)

    Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao

    2013-11-01

    Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. © 2013 WILEY

  3. Color changing block copolymer films for chemical sensing of simple sugars.

    Science.gov (United States)

    Ayyub, Omar B; Sekowski, Jennifer W; Yang, Ta-I; Zhang, Xin; Briber, Robert M; Kofinas, Peter

    2011-10-15

    We investigated the use of functionalized photonic block copolymer films for the detection of glucose. Polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) block copolymers were chemically functionalized with 2-(bromomethyl)phenylboronic acid and cast into films that reflect a visible color when exposed to aqueous media. The 2-(bromomethyl)phenylboronic acid functionality can reversibly bind to glucose. When exposed to high concentrations of glucose the polymer responded with a red shift in color. Low concentration exposure of glucose caused the polymer films to blue shift in color. The BCP films also exhibited a selective response to fructose, mannose or galactose, giving a different response depending on which sugar is present. The color of the polymer was tuned to blue, green, yellow or orange by varying the film's crosslink density. The color change can be visually observed without the use of equipment such as a spectrometer. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Block copolymer systems: from single chain to self-assembled nanostructures.

    Science.gov (United States)

    Giacomelli, Cristiano; Schmidt, Vanessa; Aissou, Karim; Borsali, Redouane

    2010-10-19

    Recent advances in the field of macromolecular engineering applied to the fabrication of nanostructured materials using block copolymer chains as elementary building blocks are described in this feature article. By highlighting some of our work in the area and accounting for the contribution of other groups, we discuss the relationship between the physical-chemical properties of copolymer chains and the characteristics of nano-objects originating from their self-assembly in solution and in bulk, with emphasis on convenient strategies that allow for the control of composition, functionality, and topology at different levels of sophistication. In the case of micellar nanoparticles in solution, in particular, we present approaches leading to morphology selection via macromolecular architectural design, the functionalization of external solvent-philic shells with biomolecules (polysaccharides and proteins), and the maximization of micelle loading capacity by the suitable choice of solvent-phobic polymer segments. The fabrication of nanomaterials mediated by thin block copolymer films is also discussed. In this case, we emphasize the development of novel polymer chain manipulation strategies that ultimately allow for the preparation of precisely positioned nanodomains with a reduced number of defects via block-selective chemical reactivity. The challenges facing the soft matter community, the urgent demand to convert huge public and private investments into consumer products, and future possible directions in the field are also considered herein.

  5. Facile synthesis of linear-dendritic cholesteryl-poly(epsilon-caprolactone)-b-(L-lysine)(G2) by thiol-ene and azide-alkyne "click" reactions

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Binder, W.H.; Tanner, S.

    2010-01-01

    The construction of a linear-dendritic block copolymer consisting of terminal cholesteryl moiety, poly(epsilon-caprolactone), and a second generation L-lysine dendron has been accomplished by the combination of copper(I) catalyzed azide-alkyne and UV-triggered thiol-ene "click" reactions. Ring-op...... and thiocholesterol. Near to quantitative functionalization of the intermediate and final products has been attained as confirmed by NMR spectroscopy and MALDI-TOF spectrometry....

  6. Manipulating Interfaces through Surface Confinement of Poly(glycidyl methacrylate)-block-poly(vinyldimethylazlactone), a Dually Reactive Block Copolymer

    International Nuclear Information System (INIS)

    Lokitz, Bradley S.; Wei, Jifeng; Hinestrosa Salazar, Juan P.; Ivanov, Ilia N.; Browning, James B.; Ankner, John Francis; Kilbey, S. Michael II; Messman, Jamie M.

    2012-01-01

    The assembly of dually reactive, well-defined diblock copolymers incorporating the chemoselective/functional monomer, 4,4-dimethyl-2-vinylazlactone (VDMA) and the surface-reactive monomer glycidyl methacrylate (GMA) is examined to understand how competition between surface attachment and microphase segregation influences interfacial structure. Reaction of the PGMA block with surface hydroxyl groups not only anchors the copolymer to the surface, but limits chain mobility, creating brush-like structures comprising PVDMA blocks, which contain reactive azlactone groups. The block copolymers are spin coated at various solution concentrations and annealed at elevated temperature to optimize film deposition to achieve a molecularly uniform layer. The thickness and structure of the polymer thin films are investigated by ellipsometry, infrared spectroscopy, and neutron reflectometry. The results show that deposition of PGMA-b-PVDMA provides a useful route to control film thickness while preserving azlactone groups that can be further modified with biotin-poly(ethylene glycol)amine to generate designer surfaces. The method described herein offers guidance for creating highly functional surfaces, films, or coatings through the use of dually reactive block copolymers and postpolymerization modification.

  7. The thermodynamic and structural properties of metallocenes-type random ethylene copolymers

    International Nuclear Information System (INIS)

    Simanke, Adriane G.; Mauler, Raquel S.; Galland, Griselda B.; Alamo, Rufina G.

    2001-01-01

    The properties of a series of random ethylene copolymers prepared with the metallocenes catalytic system rac-Et[Ind] 2 ZrCl 2 /MAO were studied for a large variety of comonomer types. These include the classical 1-alkene type with length up to 10 carbons and those of the cyclic type such as cyclopentadiene and dicyclopentadiene. Under rapid crystallization, the melting temperatures of the newly synthesized copolymers followed the relation of model random copolymers indicating a behavior that conforms to that predicted by Flory's phase equilibrium theory. The molar entropy of fusion is not significantly altered by the comonomer type including the dicyclopentadiene type. All types of comonomers studied showed, for a fixed comonomer content, the same change in properties during annealing, except the ethylene 1-butenes. These latter copolymers and the hydrogenated poly butadiene showed a faster rate of change in thermal properties. This is consistent with a higher molecular diffusion for the butene comonomer than for the rest of comonomers analyzed. The properties of the inter lamellar region were also studied as a function of comonomer type and content following the variation of the amorphous halo extracted from the WAXS diffractograms. The observed systematic decrease in the peak scattering angle with increasing comonomer content indicates a variation of the intermolecular liquid structure. (author)

  8. Single- and Multilayered Nanostructures via Laser-Induced Block Copolymer Self-Assembly

    Science.gov (United States)

    Majewski, Pawel; Yager, Kevin; Rahman, Atikur; Black, Charles

    We present a novel method of accelerated self-assembly of block copolymer thin films utilizing laser light, called Laser Zone Annealing (LZA). In our approach, steep temperature transients are induced in block copolymer films by rastering narrowly focused laser line over the light-absorbing substrate. Extremely steep temperature gradients accelerate the process of self-assembly by several orders-of-magnitude compared to conventional oven annealing, and, when coupled to photo-thermal shearing, lead to global alignment of block copolymer domains assessed by GISXAS diffraction studies and real-space SEM imaging. We demonstrate monolithic alignment of various block-copolymer thin films including PS-b-PMMA, PS-b-PEO, PS-b-P2VP, PS-b-PI and observe different responsiveness to the shearing rate depending on the characteristic relaxation timescale of the particular material. Subsequently, we use the aligned polymeric films as templates for synthesis of single- and multi-layered arrays of inorganic, metallic or semiconducting nanowires and nanomeshes and investigate their anisotropic electro-optical properties. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

  9. Nonaqueous Dispersion Formed by an Emulsion Solvent Evaporation Method Using Block-Random Copolymer Surfactant Synthesized by RAFT Polymerization.

    Science.gov (United States)

    Ezaki, Naofumi; Watanabe, Yoshifumi; Mori, Hideharu

    2015-10-27

    As surfactants for preparation of nonaqueous microcapsule dispersions by the emulsion solvent evaporation method, three copolymers composed of stearyl methacrylate (SMA) and glycidyl methacrylate (GMA) with different monomer sequences (i.e., random, block, and block-random) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Despite having the same comonomer composition, the copolymers exhibited different functionality as surfactants for creating emulsions with respective dispersed and continuous phases consisting of methanol and isoparaffin solvent. The optimal monomer sequence for the surfactant was determined based on the droplet sizes and the stabilities of the emulsions created using these copolymers. The block-random copolymer led to an emulsion with better stability than obtained using the random copolymer and a smaller droplet size than achieved with the block copolymer. Modification of the epoxy group of the GMA unit by diethanolamine (DEA) further decreased the droplet size, leading to higher stability of the emulsion. The DEA-modified block-random copolymer gave rise to nonaqueous microcapsule dispersions after evaporation of methanol from the emulsions containing colored dyes in their dispersed phases. These dispersions exhibited high stability, and the particle sizes were small enough for application to the inkjet printing process.

  10. Unstable volatility functions: the break preserving local linear estimator

    DEFF Research Database (Denmark)

    Casas, Isabel; Gijbels, Irene

    The objective of this paper is to introduce the break preserving local linear (BPLL) estimator for the estimation of unstable volatility functions. Breaks in the structure of the conditional mean and/or the volatility functions are common in Finance. Markov switching models (Hamilton, 1989......) and threshold models (Lin and Terasvirta, 1994) are amongst the most popular models to describe the behaviour of data with structural breaks. The local linear (LL) estimator is not consistent at points where the volatility function has a break and it may even report negative values for finite samples...

  11. Amphiphilic block copolymers for drug delivery.

    Science.gov (United States)

    Adams, Monica L; Lavasanifar, Afsaneh; Kwon, Glen S

    2003-07-01

    Amphiphilic block copolymers (ABCs) have been used extensively in pharmaceutical applications ranging from sustained-release technologies to gene delivery. The utility of ABCs for delivery of therapeutic agents results from their unique chemical composition, which is characterized by a hydrophilic block that is chemically tethered to a hydrophobic block. In aqueous solution, polymeric micelles are formed via the association of ABCs into nanoscopic core/shell structures at or above the critical micelle concentration. Upon micellization, the hydrophobic core regions serve as reservoirs for hydrophobic drugs, which may be loaded by chemical, physical, or electrostatic means, depending on the specific functionalities of the core-forming block and the solubilizate. Although the Pluronics, composed of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide), are the most widely studied ABC system, copolymers containing poly(L-amino acid) and poly(ester) hydrophobic blocks have also shown great promise in delivery applications. Because each ABC has unique advantages with respect to drug delivery, it may be possible to choose appropriate block copolymers for specific purposes, such as prolonging circulation time, introduction of targeting moieties, and modification of the drug-release profile. ABCs have been used for numerous pharmaceutical applications including drug solubilization/stabilization, alteration of the pharmacokinetic profile of encapsulated substances, and suppression of multidrug resistance. The purpose of this minireview is to provide a concise, yet detailed, introduction to the use of ABCs and polymeric micelles as delivery agents as well as to highlight current and past work in this area. Copyright 2003 Wiley-Liss, Inc. and the American Pharmacists Association

  12. The influence of chain stretching on the phase behavior of multiblock copolymer and comb copolymer melts

    NARCIS (Netherlands)

    Angerman, HJ; ten Brinke, G

    The subject of this paper is inspired by microphase-separated copolymer melts in which a small-scale structure is present inside one of the phases of a large-scale structure. Such a situation can arise in a diblock copolymer melt, if one of the blocks of the diblock is in itself a multiblock

  13. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Science.gov (United States)

    2010-04-01

    ... Components of Articles Intended for Repeated Use § 177.2470 Polyoxymethylene copolymer. Polyoxymethylene copolymer identified in this section may be safely used as an article or component of articles intended for... are available from the Center for Food Safety and Applied Nutrition (HFS-200), Food and Drug...

  14. Determination of the linear coefficient of thermal expansion in polymer films at the nanoscale: influence of the composition of EVA copolymers and the molecular weight of PMMA.

    Science.gov (United States)

    González-Benito, J; Castillo, E; Cruz-Caldito, J F

    2015-07-28

    Nanothermal-expansion of poly(ethylene-co-vinylacetate), EVA, and poly(methyl methacrylate), PMMA, in the form of films was measured to finally obtain linear coefficients of thermal expansion, CTEs. The simple deflection of a cantilever in an atomic force microscope, AFM, was used to monitor thermal expansions at the nanoscale. The influences of: (a) the structure of EVA in terms of its composition (vinylacetate content) and (b) the size of PMMA chains in terms of the molecular weight were studied. To carry out this, several polymer samples were used, EVA copolymers with different weight percents of the vinylacetate comonomer (12, 18, 25 and 40%) and PMMA polymers with different weight average molecular weights (33.9, 64.8, 75.600 and 360.0 kg mol(-1)). The dependencies of the vinyl acetate weight fraction of EVA and the molecular weight of PMMA on their corresponding CTEs were analyzed to finally explain them using new, intuitive and very simple models based on the rule of mixtures. In the case of EVA copolymers a simple equation considering the weighted contributions of each comonomer was enough to estimate the final CTE above the glass transition temperature. On the other hand, when the molecular weight dependence is considered the free volume concept was used as novelty. The expansion of PMMA, at least at the nanoscale, was well and easily described by the sum of the weighted contributions of the occupied and free volumes, respectively.

  15. Synthesis of DNA block copolymers with extended nucleic acid segments by enzymatic ligation : cut and paste large hybrid architectures

    NARCIS (Netherlands)

    Ayaz, Meryem S.; Kwak, Minseok; Alemdaroglu, Fikri E.; Wang, Jie; Berger, Ruediger; Herrmann, Andreas; Berger, Rüdiger

    2011-01-01

    Ultra-high molecular weight DNA/polymer hybrid materials were prepared employing molecular biology techniques. Nucleic acid restriction and ligation enzymes were used to generate linear DNA di- and triblock copolymers that contain up to thousands of base pairs in the DNA segments.

  16. Fluctuations effects in diblock copolymer fluids: Comparison of theories and experiment

    International Nuclear Information System (INIS)

    Guenza, M.; Schweizer, K.S.

    1997-01-01

    The analytic Polymer Reference Interaction Site Model (PRISM) theory of structurally and interaction symmetric Gaussian diblock copolymer fluids is reformulated, extended, and applied to make predictions for experimentally observable equilibrium properties of the disordered state. These include the temperature, degree of polymerization, copolymer composition, and polymer density or concentration dependences of the peak scattering intensity, effective chi-parameter, and heat capacity. The location of the order-disorder transition is empirically estimated based on the disordered, strongly fluctuating state scattering function. Detailed numerical applications of PRISM theory demonstrates it provides an excellent description of the data. An in depth comparison of the mathematical structure and predictions of PRISM theory with the highly coarse-grained, incompressible Brazovski endash Leibler endash Fredrickson endash Helfand (BLFH) fluctuation corrected field theory is also carried out. Under some conditions (nearly symmetric composition, high melt densities, moderate temperatures) there are striking mathematical similarities between the predictions of the physically very different theories, although quantitative differences always persist. However, for strongly asymmetric copolymer compositions, short chains, compressible copolymer solutions, and low temperatures many qualitative differences emerge. The possibility of multiple, self-consistent fluctuation feedback mechanisms within the most general PRISM approach are identified, their qualitative features discussed, and contrasted with alternative versions of the fluctuation-corrected incompressible field theories due to BLFH and Stepanow. The predictions of PRISM and BLFH theory for the composition, copolymer density, temperature, and molecular weight dependence of the effective chi-parameter are presented and qualitatively compared with recent experiments. copyright 1997 American Institute of Physics

  17. LINTAB, Linear Interpolable Tables from any Continuous Variable Function

    International Nuclear Information System (INIS)

    1988-01-01

    1 - Description of program or function: LINTAB is designed to construct linearly interpolable tables from any function. The program will start from any function of a single continuous variable... FUNKY(X). By user input the function can be defined, (1) Over 1 to 100 X ranges. (2) Within each X range the function is defined by 0 to 50 constants. (3) At boundaries between X ranges the function may be continuous or discontinuous (depending on the constants used to define the function within each X range). 2 - Method of solution: LINTAB will construct a table of X and Y values where the tabulated (X,Y) pairs will be exactly equal to the function (Y=FUNKY(X)) and linear interpolation between the tabulated pairs will be within any user specified fractional uncertainty of the function for all values of X within the requested X range

  18. Self-assembly behavior of a linear-star supramolecular amphiphile based on host-guest complexation.

    Science.gov (United States)

    Wang, Juan; Wang, Xing; Yang, Fei; Shen, Hong; You, Yezi; Wu, Decheng

    2014-11-04

    A star polymer, β-cyclodextrin-poly(l-lactide) (β-CD-PLLA), and a linear polymer, azobenzene-poly(ethylene glycol) (Azo-PEG), could self-assemble into a supramolecular amphiphilic copolymer (β-CD-PLLA@Azo-PEG) based on the host-guest interaction between β-CD and azobenzene moieties. This linear-star supramolecular amphiphilic copolymer further self-assembled into a variety of morphologies, including sphere-like micelle, carambola-like micelle, naan-like micelle, shuttle-like lamellae, tube-like fiber, and random curled-up lamellae, by tuning the length of hydrophilic or hydrophobic chains. The variation of morphology was closely related to the topological structure and block ratio of the supramolecular amphiphiles. These self-assembly structures could disassemble upon an ultraviolet (UV) light irradiation.

  19. A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization.

    Science.gov (United States)

    Keddie, Daniel J

    2014-01-21

    The discovery of reversible-deactivation radical polymerization (RDRP) has provided an avenue for the synthesis of a vast array of polymers with a rich variety of functionality and architecture. The preparation of block copolymers has received significant focus in this burgeoning research field, due to their diverse properties and potential in a wide range of research environments. This tutorial review will address the important concepts behind the design and synthesis of block copolymers using reversible addition-fragmentation chain transfer (RAFT) polymerization. RAFT polymerization is arguably the most versatile of the RDRP methods due to its compatibility with a wide range of functional monomers and reaction media along with its relative ease of use. With an ever increasing array of researchers that possess a variety of backgrounds now turning to RDRP, and RAFT in particular, to prepare their required polymeric materials, it is pertinent to discuss the important points which enable the preparation of high purity functional block copolymers with targeted molar mass and narrow molar mass distribution using RAFT polymerization. The key principles of appropriate RAFT agent selection, the order of monomer addition in block synthesis and potential issues with maintaining high end-group fidelity are addressed. Additionally, techniques which allow block copolymers to be accessed using a combination of RAFT polymerization and complementary techniques are touched upon.

  20. Amphiphilic copolymers for fouling-release coatings

    DEFF Research Database (Denmark)

    Noguer, Albert Camós; Olsen, Stefan Møller; Hvilsted, Søren

    of the coatings [9,10,11]. This work shows the effect of an amphiphilic copolymer that induces hydrophilicity on the surface of the silicone-based fouling release coatings. The behaviour of these copolymers within the coating upon immersion and the interaction of these surface-active additives with other...

  1. Poly(ferrocenylsilane)-block-Polylactide Block Copolymers

    NARCIS (Netherlands)

    Roerdink, M.; van Zanten, Thomas S.; Hempenius, Mark A.; Zhong, Zhiyuan; Feijen, Jan; Vancso, Gyula J.

    2007-01-01

    A PFS/PLA block copolymer was studied to probe the effect of strong surface interactions on pattern formation in PFS block copolymer thin films. Successful synthesis of PFS-b-PLA was demonstrated. Thin films of these polymers show phase separation to form PFS microdomains in a PLA matrix, and

  2. Sequence-controlled copolymers of 2,3,4,5-pentafluorostyrene: Mechanistic insight and application to organocatalysis

    KAUST Repository

    O'Shea, John Paul; Solov'eva, Vera A.; Guo, Xianrong; Zhao, Junpeng; Hadjichristidis, Nikolaos; Rodionov, Valentin

    2014-01-01

    A number of copolymers between styrene (St) or 4-azidomethylstyrene (N 3St) and 2,3,4,5,6-pentafluorostyrene (FSt) have been prepared by atom-transfer radical polymerization (ATRP) and conventional free radical polymerization (FRP). The mode of monomer alternation in copolymers has been established unambiguously using heteronuclear multiple bond correlation (HMBC) NMR. The degree and nature of monomer alternation was found to be strongly dependent on both the solvent (or lack thereof) and the polymerization initiator. These results are in contrast to previously published studies, which rely primarily on classic analysis of monomer reactivity ratios. We proceeded to independently functionalize the N3St and FSt moieties using orthogonal "click" chemistries: copper-catalyzed azide-alkyne cycloaddition (CuAAC) and fluoroarene-thiol coupling (FTC). An alternating copolymer bearing -NH2 and -SO3 - functional groups was found to be a competent organocatalyst for a Henry reaction between benzaldehyde and nitromethane. This journal is © 2014 The Royal Society of Chemistry.

  3. Micellization and Dynamics of a Block Copolymer

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2006-01-01

    and copolymer mixtures, and evidence in favor of a multi-equilibria unimer-micelle model will be presented. Results obtained by liquid chromatographic methods will be shown and it will be demonstrated that commercial EPE copolymers are inhomogeneous at several levels and many of their unusual properties reflect...... ratios and temperature. The micellization process with increasing temperature has been followed by a number of techniques including differential scanning calorimetry, liquid chromatography, and surface tension measurements. Different micellization models have been tested for purified copolymers...

  4. Acrylonitrile-methyl Methacrylate Copolymer Films Containing Microencapsulated n-Octadecane

    Institute of Scientific and Technical Information of China (English)

    LI Jun; HAN Na; ZHANG Xing-xiang

    2006-01-01

    Acrylonitrile-methyl methacrylate copolymer was synthesized in aqueous solution by Redox. The copolymer was mixed with 10 - 40 wt% of microencapsulated n-octadecane (MicroPCMs) in water. Copolymer films containing MicroPCMs were cast at room temperature in N, N-Dimethylformamide solution. The copolymer of acrylonitrile-methyl methacrylate and the copolymer films containing MicroPCMs were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analyzer (TG), X-ray Diffrac tion (XRD) and Scanning Electron Microscopy (SEM), etc.The microcapsules in the films are evenly distributed in the copolymer matrix. The heat-absorbing temperatures and heat-evolving temperatures of the films are almost the same as that of the MicroPCMs, respectively, and fluctuate in a slight range. In addition, the enthalpy efficiency of MicroPCMs rises with the contents of MicroPCMs increasing.The crystallinity of the film increases with the contents of MicroPCMs increasing.

  5. Creating surfactant nanoparticles for block copolymer composites through surface chemistry.

    Science.gov (United States)

    Kim, Bumjoon J; Bang, Joona; Hawker, Craig J; Chiu, Julia J; Pine, David J; Jang, Se Gyu; Yang, Seung-Man; Kramer, Edward J

    2007-12-04

    A simple strategy to tailor the surface of nanoparticles for their specific adsorption to and localization at block copolymer interfaces was explored. Gold nanoparticles coated by a mixture of low molecular weight thiol end-functional polystyrene (PS-SH) (Mn = 1.5 and 3.4 kg/mol) and poly(2-vinylpyridine) homopolymers (P2VP-SH) (Mn = 1.5 and 3.0 kg/mol) were incorporated into a lamellar poly(styrene-b-2-vinylpyridine) diblock copolymer (PS-b-P2VP) (Mn = 196 kg/mol). A library of nanoparticles with varying PS and P2VP surface compositions (FPS) and high polymer ligand areal chain densities was synthesized. The location of the nanoparticles in the PS-b-P2VP block copolymer was determined by transmission electron microscopy. Sharp transitions in particle location from the PS domain to the PS/P2VP interface, and subsequently to the P2VP domain, were observed at FPS = 0.9 and 0.1, respectively. This extremely wide window of FPS values where the polymer-coated gold nanoparticles adsorb to the interface suggests a redistribution of PS and P2VP polymers on the Au surface, inducing the formation of amphiphilic nanoparticles at the PS/P2VP interface. In a second and synthetically more challenging approach, gold nanoparticles were covered with a thiol terminated random copolymer of styrene and 2-vinylpyridine synthesized by RAFT polymerization. Two different random copolymers were considered, where the molecular weight was fixed at 3.5 kg/mol and the relative incorporation of styrene and 2-vinylpyridine repeat units varied (FPS = 0.52 and 0.40). The areal chain density of these random copolymers on Au is unfortunately not high enough to preclude any contact between the P2VP block of the block copolymer and the Au surface. Interestingly, gold nanoparticles coated by the random copolymer with FPS = 0.4 were dispersed in the P2VP domain, while those with FPS = 0.52 were located at the interface. A simple calculation for the adsorption energy to the interface of the nanoparticles

  6. Morphological studies on block copolymer modified PA 6 blends

    Energy Technology Data Exchange (ETDEWEB)

    Poindl, M., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut für Kunststofftechnik, University of Stuttgart (Germany)

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  7. Soft Functional Silicone Elastomers with High Dielectric Permittivty: Simple Additives vs. Cross-Linked Synthesized Copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Skov, Anne Ladegaard

    Though dielectric elastomers (DEs) have many favorable properties, the issue of high driving voltages limits the commercial viability of the technology. Improved actuation at lower voltages can be obtained by decreasing the Young’s modulus and/or decreasing the dielectric permittivity of the elas......Though dielectric elastomers (DEs) have many favorable properties, the issue of high driving voltages limits the commercial viability of the technology. Improved actuation at lower voltages can be obtained by decreasing the Young’s modulus and/or decreasing the dielectric permittivity...... of the elastomer. A decrease in Young’s modulus, however, is often accompanied by the loss of mechanical stability and thereby the lifetime of the DE whereas addition of high permittivity fillers such as metal oxides often increases Young’s modulus such that improved actuation is not accomplished. New soft...... silicone elastomers with high dielectric permittivity were prepared through the use of chloropropyl-functional silicones. One method was through the synthesis of modular cross-linkable chloropropyl-functional copolymers that allow for a high degree of chemical freedom such that a tuneable silicone...

  8. Quasi-Block Copolymers Based on a General Polymeric Chain Stopper.

    Science.gov (United States)

    Sanguramath, Rajashekharayya A; Nealey, Paul F; Shenhar, Roy

    2016-07-11

    Quasi-block copolymers (q-BCPs) are block copolymers consisting of conventional and supramolecular blocks, in which the conventional block is end-terminated by a functionality that interacts with the supramolecular monomer (a "chain stopper" functionality). A new design of q-BCPs based on a general polymeric chain stopper, which consists of polystyrene end-terminated with a sulfonate group (PS-SO3 Li), is described. Through viscosity measurements and a detailed diffusion-ordered NMR spectroscopy study, it is shown that PS-SO3 Li can effectively cap two types of model supramolecular monomers to form q-BCPs in solution. Furthermore, differential scanning calorimetry data and structural characterization of thin films by scanning force microscopy suggests the existence of the q-BCP architecture in the melt. The new design considerably simplifies the synthesis of polymeric chain stoppers; thus promoting the utilization of q-BCPs as smart, nanostructured materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Three Arm Star Homo- And Co-Polymers Via Atom Transfer Radical Polymerization

    International Nuclear Information System (INIS)

    Amin, A.; Sobh, R.A.; Ayoub, M.M.H.

    2005-01-01

    Star homo and co-polymers of some vinyl monomers such as methylmethacrylate, butylmethacrylate and styrene (MMA, BMA, St.) were prepared using N, N, N', N' tetramethylethylenediamine ligand/ CuBr catalytic system via atom transfer radical polymerization (ATRP). Three armed benzene based core was successfully used as initiator. Low polydispersities and regular molecular weight values were obtained in most cases especially at low conversions. MMA and BuMA showed comparable behavior where controlled and true ATRP was observed even at the high conversions. However, styrene monomer recorded irregular high polydispersities at high conversions in spite of the relatively low molecular weight values. 1HNMR confirmed the structures of the resulting polymers. Transmission Electron microscope (TEM) proved the nano-structure of the star polymers. The thermal behavior of the MMA star homo and copolymers was studied. The effect of the star shape on the thermal behavior was very clear with respect to the linear ones

  10. Photo-Induced Micellization of Block Copolymers

    Directory of Open Access Journals (Sweden)

    Satoshi Kuwayama

    2010-11-01

    Full Text Available We found novel photo-induced micellizations through photolysis, photoelectron transfer, and photo-Claisen rearrangement. The photolysis-induced micellization was attained using poly(4-tert-butoxystyrene-block-polystyrene diblock copolymer (PBSt-b-PSt. BSt-b-PSt showed no self-assembly in dichloromethane and existed as isolated copolymers. Dynamic light scattering demonstrated that the copolymer produced spherical micelles in this solvent due to irradiation with a high-pressure mercury lamp in the presence of photo-acid generators, such as bis(alkylphenyliodonium hexafluorophosphate, diphenyliodonium hexafluorophosphate, and triphenylsulfonium triflate. The 1H NMR analysis confirmed that PBSt-b-PSt was converted into poly(4-vinylphenol-block-PSt by the irradiation, resulting in self-assembly into micelles. The irradiation in the presence of the photo-acid generator also induced the micellization of poly(4-pyridinemethoxymethylstyrene-block-polystyrene diblock copolymer (PPySt-b-PSt. Micellization occurred by electron transfer from the pyridine to the photo-acid generator in their excited states and provided monodispersed spherical micelles with cores of PPySt blocks. Further, the photo-Claisen rearrangement caused the micellization of poly(4-allyloxystyrene-block-polystyrene diblock copolymer (PASt-b-PSt. Micellization was promoted in cyclohexane at room temperature without a catalyst. During micellization, the elimination of the allyl groups competitively occurred along with the photorearrangement of the 4-allyloxystyrene units into the 3-allyl-4-hydroxystyrene units.

  11. Fast & scalable pattern transfer via block copolymer nanolithography

    DEFF Research Database (Denmark)

    Li, Tao; Wang, Zhongli; Schulte, Lars

    2015-01-01

    A fully scalable and efficient pattern transfer process based on block copolymer (BCP) self-assembling directly on various substrates is demonstrated. PS-rich and PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are used to give monolayer sphere morphology after spin-casting of s......A fully scalable and efficient pattern transfer process based on block copolymer (BCP) self-assembling directly on various substrates is demonstrated. PS-rich and PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are used to give monolayer sphere morphology after spin...... on long range lateral order, including fabrication of substrates for catalysis, solar cells, sensors, ultrafiltration membranes and templating of semiconductors or metals....

  12. A self-consistent field study of diblock copolymer/charged particle system morphologies for nanofiltration membranes

    International Nuclear Information System (INIS)

    Zhang, Bo; Ye, Xianggui; Edwards, Brian J.

    2013-01-01

    A combination of self-consistent field theory and density functional theory was used to examine the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Both neutral and interacting particles were examined, with and without favorable/unfavorable energetic potentials between the particles and the block segments. The phase diagrams of the various systems were constructed, allowing the identification of three types of ordered mesophases composed of lamellae, hexagonally packed cylinders, and spheroids. In particular, we examined the conditions under which the mesophases could be generated wherein the tethered particles were primarily located within the interface between the two blocks of the copolymer. Key factors influencing these properties were determined to be the particle position along the diblock chain, the interaction potentials of the blocks and particles, the block copolymer composition, and molecular weight of the copolymer

  13. Synthesis of photoluminescent o-phenylenediamine–m-phenylenediamine copolymer nanospheres: An effective fluorescent sensing platform for selective and sensitive detection of chromium(VI) ion

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xun [Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, School of Chemistry and Chemical Industry, China West Normal University, Nanchong 637002 (China); Sun, Huaiyu [Applied Technique College of Southwest Peteoleum University, Nanchong 637002 (China); Yang, Siwei; Zhao, Shizhen [Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, School of Chemistry and Chemical Industry, China West Normal University, Nanchong 637002 (China); Liao, Fang, E-mail: liaozhang2003@163.com [Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, School of Chemistry and Chemical Industry, China West Normal University, Nanchong 637002 (China)

    2016-01-15

    In this paper, we demonstrated a fluorescent o-phenylenediamine–m-phenylenediamine copolymer sensing system, which was synthesized by a facile and one-step hydrothermal method. The copolymer was first used as fluorescent probe for the detection of Chromium(VI) ion (Cr{sup 6+}) and showed high selectivity and sensitivity. The detection limit was 1×10{sup −11} M. It showed excellent linear relationships in wide range of 7×10{sup −11}–6×10{sup −10} M. Moreover, the addition of ethylenediaminetetraacetate (EDTA) to the detection system could successfully combine with Cr{sup 6+} to form metal chelates, making the fluorescence recovery of o-phenylenediamine–m-phenylenediamine copolymer. What is important, the prepared process had no addition of initiating agent.

  14. Synthesis of click-reactive HPMA copolymers using RAFT polymerization for drug delivery applications

    DEFF Research Database (Denmark)

    Ebbesen, Morten F; Schaffert, D.H.; Crowley, Michael L

    2013-01-01

    This study describes a versatile strategy combining reversible addition fragmentation transfer (RAFT) polymerization and click chemistry to synthesize well-defined, reactive copolymers of N-(2-hydroxypropyl)methacrylamide (HPMA) for drug delivery applications. A novel azide containing monomer N-(3......-azidopropyl)methacrylamide (AzMA) was synthesized and copolymerized with HPMA using RAFT polymerization to provide p(HPMA-co-AzMA) copolymers with high control of molecular weight (∼10–54 kDa) and polydispersity (≤1.06). The utility of the side-chain azide functionality by Cu(I)-catalyzed azide...

  15. Morphology and electrical properties of electrochemically synthesized pyrrole–formyl pyrrole copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Gholami, Mehrdad, E-mail: mehrdad897@um.edu.my [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Marvdasht Branch, Islamic Azad University, P.O. Box 465, Marvdasht (Iran, Islamic Republic of); Nia, Pooria Moozarm, E-mail: pooriamn@yahoo.com [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Alias, Yatimah, E-mail: yatimah70@um.edu.my [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2015-12-01

    Graphical abstract: - Highlights: • The (Py–co-FPy) copolymer was synthesized electrochemically. • This copolymer has 1.6 times higher surface coverage compared to polypyrrole. • This copolymer showed 2.5 times lower resistance compared to polypyrrole. • The conjugated structure between Py and FPy causes enhancement of conductivity. • This conducting copolymer has a strong potential to be used in various applications. - Abstract: A direct electrochemical copolymerization of pyrrole–formyl pyrrole (Py–co-FPy) was carried out by oxidative copolymerization of formyl pyrrole and pyrrole in LiClO{sub 4} aqueous solution through galvanostatic method. The (Py–co-FPy) copolymer was characterized using Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FESEM), energy-filtering transmission electron microscope (EFTEM), thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The FESEM images showed that the synthesized copolymer had a hollow whelk-like helixes structure, which justifies the enhancement of charge transportation through the copolymer film. Cyclic voltammetry studies revealed that the electrocatalytic activity of synthesized copolymer has improved and the surface coverage in copolymer enhanced 1.6 times compared to polypyrrole alone. Besides, (Py–co-FPy) copolymer showed 2.5 times lower electrochemical charge transfer resistance (R{sub ct}) value in impedance spectroscopy. Therefore, this copolymer has a strong potential to be used in several applications such as sensor applications.

  16. Linear density response function in the projector augmented wave method

    DEFF Research Database (Denmark)

    Yan, Jun; Mortensen, Jens Jørgen; Jacobsen, Karsten Wedel

    2011-01-01

    We present an implementation of the linear density response function within the projector-augmented wave method with applications to the linear optical and dielectric properties of both solids, surfaces, and interfaces. The response function is represented in plane waves while the single...... functions of Si, C, SiC, AlP, and GaAs compare well with previous calculations. While optical properties of semiconductors, in particular excitonic effects, are generally not well described by ALDA, we obtain excellent agreement with experiments for the surface loss function of graphene and the Mg(0001...

  17. Linear Viscoelastic and Dielectric Relaxation Response of Unentangled UPy-Based Supramolecular Networks

    DEFF Research Database (Denmark)

    Shabbir, Aamir; Javakhishvili, Irakli; Cerveny, Silvina

    2016-01-01

    Supramolecular polymers possess versatile mechanical properties and a unique ability to respond to external stimuli. Understanding the rich dynamics of such associative polymers is essential for tailoring user-defined properties in many products. Linear copolymers of 2-methoxyethyl acrylate (MEA)...

  18. Effect of Side Chains on Molecular Conformation of Anthracene-Ethynylene-Phenylene-Vinylene Oligomers: A Comparative Density Functional Study With and Without Dispersion Interaction.

    Science.gov (United States)

    Dong, Chuanding; Hoppe, Harald; Beenken, Wichard J D

    2016-06-02

    Using density functional calculations with and without dispersion interaction, we studied the effects of linear octyl and branched 2-ethylhexyl side chains on the oligomer conformation of the conjugated copolymer poly(p-anthracene-ethynylene)-alt-poly(p-phenylene-vinylene). With dispersion included, the branched side chains can cause significant bending of the oligomer backbone, while without dispersion they induce mainly torsional disorder. The oligomers with mainly linear side chains keep good planarity when optimized with and without dispersion. Despite their dramatically different conformations, the calculated absorption spectra of the oligomers with various side chain combinations are very similar, indicating that the conformation of the copolymer is not the main reason for the experimentally observed different spectra of ordered and disordered phases.

  19. Collapse transitions in thermosensitive multi-block copolymers: A Monte Carlo study

    International Nuclear Information System (INIS)

    Rissanou, Anastassia N.; Tzeli, Despoina S.; Anastasiadis, Spiros H.; Bitsanis, Ioannis A.

    2014-01-01

    Monte Carlo simulations are performed on a simple cubic lattice to investigate the behavior of a single linear multiblock copolymer chain of various lengths N. The chain of type (A n B n ) m consists of alternating A and B blocks, where A are solvophilic and B are solvophobic and N = 2nm. The conformations are classified in five cases of globule formation by the solvophobic blocks of the chain. The dependence of globule characteristics on the molecular weight and on the number of blocks, which participate in their formation, is examined. The focus is on relative high molecular weight blocks (i.e., N in the range of 500–5000 units) and very differing energetic conditions for the two blocks (very good—almost athermal solvent for A and bad solvent for B). A rich phase behavior is observed as a result of the alternating architecture of the multiblock copolymer chain. We trust that thermodynamic equilibrium has been reached for chains of N up to 2000 units; however, for longer chains kinetic entrapments are observed. The comparison among equivalent globules consisting of different number of B-blocks shows that the more the solvophobic blocks constituting the globule the bigger its radius of gyration and the looser its structure. Comparisons between globules formed by the solvophobic blocks of the multiblock copolymer chain and their homopolymer analogs highlight the important role of the solvophilic A-blocks

  20. Collapse transitions in thermosensitive multi-block copolymers: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Rissanou, Anastassia N., E-mail: rissanou@tem.uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete, GR-71003 Heraklion Crete, Greece and Archimedes Center for Analysis, Modeling and Computation, University of Crete, P.O. Box 2208, GR-71003 Heraklion Crete (Greece); Tzeli, Despoina S. [Department of Materials Science and Technology, University of Crete, GR-71003 Heraklion Crete (Greece); Anastasiadis, Spiros H. [Department of Chemistry, University of Crete, P.O. Box 2208, 710 03 Heraklion Crete (Greece); Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, GR-71110 Heraklion Crete (Greece); Bitsanis, Ioannis A. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, GR-71110 Heraklion Crete (Greece)

    2014-05-28

    Monte Carlo simulations are performed on a simple cubic lattice to investigate the behavior of a single linear multiblock copolymer chain of various lengths N. The chain of type (A{sub n}B{sub n}){sub m} consists of alternating A and B blocks, where A are solvophilic and B are solvophobic and N = 2nm. The conformations are classified in five cases of globule formation by the solvophobic blocks of the chain. The dependence of globule characteristics on the molecular weight and on the number of blocks, which participate in their formation, is examined. The focus is on relative high molecular weight blocks (i.e., N in the range of 500–5000 units) and very differing energetic conditions for the two blocks (very good—almost athermal solvent for A and bad solvent for B). A rich phase behavior is observed as a result of the alternating architecture of the multiblock copolymer chain. We trust that thermodynamic equilibrium has been reached for chains of N up to 2000 units; however, for longer chains kinetic entrapments are observed. The comparison among equivalent globules consisting of different number of B-blocks shows that the more the solvophobic blocks constituting the globule the bigger its radius of gyration and the looser its structure. Comparisons between globules formed by the solvophobic blocks of the multiblock copolymer chain and their homopolymer analogs highlight the important role of the solvophilic A-blocks.

  1. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-methyl acrylate copolymer resins. 177.1340... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used as articles or components of...

  2. POLYCAPROLACTONE-POLY (ETHYLENE GLYCOL) BLOCK COPOLYMER Ⅲ DRUG RELEASE BEHAVIOR

    Institute of Scientific and Technical Information of China (English)

    BEI Jianzhong; WANG Zhifeng; WANG Shenguo

    1995-01-01

    The drug release behavior of degradable polymer - polycaprolactone-poly (ethylene glycol)block copolymer(PCE) in vitro was investigated by using 5-Fluoro-uracil (5-Fu) as a model drug under a condition of pH 7.4 at 37℃. It is found that the release rate of 5-Fu from PCE increased with increasing polyether content of the copolymer. The results show that the increasing polyether content of the copolymer caused increasing hydrophilicity and decreasing crystallinity of the PCE copolymer. Thus, the drug release behavior and the degradable property of the PCE can be controlled by adjusting the composition of the copolymer.

  3. Fluids density functional theory and initializing molecular dynamics simulations of block copolymers

    Science.gov (United States)

    Brown, Jonathan R.; Seo, Youngmi; Maula, Tiara Ann D.; Hall, Lisa M.

    2016-03-01

    Classical, fluids density functional theory (fDFT), which can predict the equilibrium density profiles of polymeric systems, and coarse-grained molecular dynamics (MD) simulations, which are often used to show both structure and dynamics of soft materials, can be implemented using very similar bead-based polymer models. We aim to use fDFT and MD in tandem to examine the same system from these two points of view and take advantage of the different features of each methodology. Additionally, the density profiles resulting from fDFT calculations can be used to initialize the MD simulations in a close to equilibrated structure, speeding up the simulations. Here, we show how this method can be applied to study microphase separated states of both typical diblock and tapered diblock copolymers in which there is a region with a gradient in composition placed between the pure blocks. Both methods, applied at constant pressure, predict a decrease in total density as segregation strength or the length of the tapered region is increased. The predictions for the density profiles from fDFT and MD are similar across materials with a wide range of interfacial widths.

  4. Polymalic Acid Tritryptophan Copolymer Interacts with Lipid Membrane Resulting in Membrane Solubilization

    Directory of Open Access Journals (Sweden)

    Hui Ding

    2017-01-01

    Full Text Available Anionic polymers with membrane permeation functionalities are highly desirable for secure cytoplasmic drug delivery. We have developed tritryptophan containing copolymer (P/WWW of polymalic acid (PMLA that permeates membranes by a mechanism different from previously described PMLA copolymers of trileucine (P/LLL and leucine ethyl ester (P/LOEt that use the “barrel stave” and “carpet” mechanism, respectively. The novel mechanism leads to solubilization of membranes by forming copolymer “belts” around planar membrane “packages.” The formation of such packages is supported by results obtained from studies including size-exclusion chromatography, confocal microscopy, and fluorescence energy transfer. According to this “belt” mechanism, it is hypothesized that P/WWW first attaches to the membrane surface. Subsequently the hydrophobic tryptophan side chains translocate into the periphery and insert into the lipid bilayer thereby cutting the membrane into packages. The reaction is driven by the high affinity between the tryptophan residues and lipid side chains resulting in a stable configuration. The formation of the membrane packages requires physical agitation suggesting that the success of the translocation depends on the fluidity of the membrane. It is emphasized that the “belt” mechanism could specifically function in the recognition of abnormal cells with high membrane fluidity and in response to hyperthermia.

  5. Surface functionalization of cyclic olefin copolymer (COC) with evaporated TiO{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    El Fissi, Lamia, E-mail: lamia.elfissi@uclouvain.be [ICTEAM Institute, Université catholique du Louvain, place de Levant 3, 1348 Louvain-la-Neuve (Belgium); Vandormael, Denis [SIRRIS Liege Science Park, 4102 Seraing (Belgium); Houssiau, Laurent [Research Centre in Physics of Matter and Radiation (PMR), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Francis, Laurent A. [ICTEAM Institute, Université catholique du Louvain, place de Levant 3, 1348 Louvain-la-Neuve (Belgium)

    2016-02-15

    Highlights: • TiO{sub 2}/COC (cyclic olefin copolymer) hybrid material for BioMEMS applications. • Thin layer of TiO{sub 2} was deposed on cyclic olefin copolymer using physical vapor deposition (PVD) technique. • The coating possess the highest level of adhesion with an excellent morphology of the hybrid material (TiO{sub 2}/COC). - Abstract: Cyclic olefin copolymer (COC) is a new class of thermoplastic polymers used for a variety of applications ranging from bio-sensing to optics. However, the hydrophobicity of native COC hampers the further development and application of this material [1]. In this work, we report the structural, morphological, and optical properties of the TiO{sub 2}/COC hybrid material, which provides a desirable substrate for optical devices and subsequent surface modifications. The TiO{sub 2} film on COC substrate was deposited by the evaporation method, and it was characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), profilometry and atomic force microscope (AFM). Using an UV-vis spectrophotometer, we found that the transmittance of the TiO{sub 2}/COC hybrid material in the visible domain reached 80%. The TiO{sub 2}/COC hybrid appeared to be stable in most of the assessed polar solvents and acid/basic solutions. The new TiO{sub 2}/COC hybrid material and the robust fabrication method are expected to enable a variety of BioMEMS applications.

  6. Transiently chaotic neural networks with piecewise linear output functions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.-S. [Department of Mathematics, National Taiwan Normal University, Taipei, Taiwan (China); Shih, C.-W. [Department of Applied Mathematics, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan (China)], E-mail: cwshih@math.nctu.edu.tw

    2009-01-30

    Admitting both transient chaotic phase and convergent phase, the transiently chaotic neural network (TCNN) provides superior performance than the classical networks in solving combinatorial optimization problems. We derive concrete parameter conditions for these two essential dynamic phases of the TCNN with piecewise linear output function. The confirmation for chaotic dynamics of the system results from a successful application of the Marotto theorem which was recently clarified. Numerical simulation on applying the TCNN with piecewise linear output function is carried out to find the optimal solution of a travelling salesman problem. It is demonstrated that the performance is even better than the previous TCNN model with logistic output function.

  7. Synthesis and self-assembling of responsive polysaccharide-based copolymers in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Nivia do N.; Balaban, Rosangela de C. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Halila, Sami; Borsali, Redouane, E-mail: borsali@cermav.cnrs.fr, E-mail: halila@cermav.cnrs.fr [Centre de Recherche sur les Macromolecules Vegetales (CERMAV), Grenoble (France)

    2015-07-01

    This work reports the synthesis and the thermoresponsive self-assembly behavior of carboxymethylcellulose-g-JeffamineM2070 and carboxymethylcellulose-g-JeffamineM600 copolymers in aqueous media. They were prepared through the grafting of two different types of amino-terminated poly(ethylene oxide-co-propylene oxide) chains onto the carboxylate groups of carboxymethylcellulose, by using water-soluble carbodiimide derivative and N-hydroxysuccinimide as coupling reagents. The grafting efficiency was confirmed by infrared and the degree of substitution by {sup 1}H NMR integrations. The salt effect on cloud point temperature was evaluated into different solvents (Milli-Q water, 0.5M NaCl, synthetic sea water (SSW) and 0.5M K{sub 2}CO{sub 3}) by UV-Vis and dynamic light scattering (DLS) measurements. Both copolymers showed lower cloud point temperature in 0.5M K2CO3 than in 0.5M NaCl and in SSW, which was attributed to the higher ionic strength for K{sub 2}CO{sub 3} combined to the ability of CO{sub 3}{sup 2-} to decrease polymer-water interactions. Copolymers chains displayed higher hydrodynamic radii than CMC precursor at 25 and 60 °C in saline solutions, and self-associations changed as a function of the environment and copolymer composition. (author)

  8. Studies on microphase-separated structures of block copolymers by neutron reflectivity measurement

    International Nuclear Information System (INIS)

    Torikai, Naoya; Noda, Ichiro; Matsushita, Yushu; Karim, A.; Satija, S.K.; Han, C.C.; Ebisawa, Toru.

    1996-01-01

    Segmental distributions of block copolymer chains in lamellar microphase-separated structure and those of homopolymers in block copolymer/homopolymer blends also with lamellar structures were studied by neutron reflectivity measurements. It was revealed that polystyrene and poly(2-vinylpyridine) lamellae were alternately stacked within the thin films of pure block copolymers spin-coated on silicon wafers, and they were preferentially oriented along the direction parallel to film surface. Polystyrene lamella appeared at air surfaces of the films, while poly(2-vinylpyridine) lamella did on silicon surfaces. Segment distribution at lamellar interface was well described by an error function, and the width of the lamellar interface, defined by a full-width half-maximum value of interfacial profile, was estimated to be about 4.5 nm. Segments of block chains adjacent to the chemical junction points connecting different block chains were strongly localized near the lamellar interfaces, while those on the free ends of block chains were distributed all over the lamellar microdomains with their distribution maxima at the centers of lamellae. On the other hand, it was clarified that homopolymers dissolved in the corresponding lamellar microdomains of block copolymers were also distributed throughout the microdomains with their concentration maxima at the centers of the lamellae. (author)

  9. Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymers: Degradable Poloxamer Analogs.

    Science.gov (United States)

    Worm, Matthias; Kang, Biao; Dingels, Carsten; Wurm, Frederik R; Frey, Holger

    2016-05-01

    Poly ((ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)) triblock copolymers commonly known as poloxamers or Pluronics constitute an important class of nonionic, biocompatible surfactants. Here, a method is reported to incorporate two acid-labile acetal moieties in the backbone of poloxamers to generate acid-cleavable nonionic surfactants. Poly(propylene oxide) is functionalized by means of an acetate-protected vinyl ether to introduce acetal units. Three cleavable PEO-PPO-PEO triblock copolymers (Mn,total = 6600, 8000, 9150 g·mol(-1) ; Mn,PEO = 2200, 3600, 4750 g·mol(-1) ) have been synthesized using anionic ring-opening polymerization. The amphiphilic copolymers exhibit narrow molecular weight distributions (Ð = 1.06-1.08). Surface tension measurements reveal surface-active behavior in aqueous solution comparable to established noncleavable poloxamers. Complete hydrolysis of the labile junctions after acidic treatment is verified by size exclusion chromatography. The block copolymers have been employed as surfactants in a miniemulsion polymerization to generate polystyrene (PS) nanoparticles with mean diameters of ≈200 nm and narrow size distribution, as determined by dynamic light scattering and scanning electron microscopy. Acid-triggered precipitation facilitates removal of surfactant fragments from the nanoparticles, which simplifies purification and enables nanoparticle precipitation "on demand." © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis and self-assembling of responsive polysaccharide-based copolymers in aqueous media

    International Nuclear Information System (INIS)

    Marques, Nivia do N.; Balaban, Rosangela de C.; Halila, Sami; Borsali, Redouane

    2015-01-01

    This work reports the synthesis and the thermoresponsive self-assembly behavior of carboxymethylcellulose-g-JeffamineM2070 and carboxymethylcellulose-g-JeffamineM600 copolymers in aqueous media. They were prepared through the grafting of two different types of amino-terminated poly(ethylene oxide-co-propylene oxide) chains onto the carboxylate groups of carboxymethylcellulose, by using water-soluble carbodiimide derivative and N-hydroxysuccinimide as coupling reagents. The grafting efficiency was confirmed by infrared and the degree of substitution by "1H NMR integrations. The salt effect on cloud point temperature was evaluated into different solvents (Milli-Q water, 0.5M NaCl, synthetic sea water (SSW) and 0.5M K_2CO_3) by UV-Vis and dynamic light scattering (DLS) measurements. Both copolymers showed lower cloud point temperature in 0.5M K2CO3 than in 0.5M NaCl and in SSW, which was attributed to the higher ionic strength for K_2CO_3 combined to the ability of CO_3"2"- to decrease polymer-water interactions. Copolymers chains displayed higher hydrodynamic radii than CMC precursor at 25 and 60 °C in saline solutions, and self-associations changed as a function of the environment and copolymer composition. (author)

  11. Ultra-Fast RAFT-HDA Click Conjugation: An Efficient Route to High Molecular Weight Block Copolymers.

    Science.gov (United States)

    Inglis, Andrew J; Stenzel, Martina H; Barner-Kowollik, Christopher

    2009-11-02

    The use of the reversible addition fragmentation chain transfer-hetero Diels-Alder (RAFT-HDA) click reaction for the modular construction of block copolymers is extended to the generation of high molecular weight materials. Cyclopentadienyl end-functionalized polystyrene (PS-Cp) prepared via both atom transfer radical polymerization (ATRP) and the RAFT process are conjugated to poly(isobornyl acrylate) (PiBoA) (also prepared via RAFT polymerization) to achieve well-defined block copolymers with molecular weights ranging from 34 000 to over 100 000 g · mol(-1) and with small polydispersities (PDI HDA click chemistry can provide access to high molecular weight block copolymers in a simple and straight-forward fashion. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Phosphate functionalized and lactic acid containing graft copolymer: synthesis and evaluation as biomaterial for bone tissue engineering applications.

    Science.gov (United States)

    Datta, Pallab; Chatterjee, Jyotirmoy; Dhara, Santanu

    2013-01-01

    Polyvinyl alcohol (PVA) and polylactic acids (PLA) are biocompatible materials possessing some inherent contrasting limitations which have reduced the scope of their individual applicability. Specifically, overcoming strong hydrophobicity and introducing chemical groups for biofunctionalization are unmet challenges for PLA whilst chemical endeavors to render adequate aqueous stability and cell adhesion properties to PVA have not produced completely intended results. Objective of the present work is to explore synthesis of a graft polymer as an approach towards coupling biofunctional groups with PLA materials. In a two-step reaction, PPVA (phosphorylated polyvinyl alcohol or PVA pre-functionalized with phosphate) is esterified with lactic acid followed by polymerization into PLA in presence of stannous chloride as catalyst to obtain phosphorylated polyvinyl alcohol-graft-polylactic acid (PPVA-g-LA) copolymer. Product is characterized by nuclear magnetic resonance, X-ray diffraction, and thermogravimetric analysis. PPVA-g-LA shows an increase in uniaxial elongation compared to parent PPVA under condition of tensile loading. The graft copolymer also exhibits higher water contact angles compared to PPVA, but a more hydrophilic surface compared to PLA. Culture of MG-63 cells on solvent cast films of polymers demonstrates that PPVA-g-LA as a cell substrate can significantly (p acid-based biomaterials with subsequent improvement in cell response on the polymers. In this attempt, it also affords materials with tunable surface or bulk properties of relevance for tissue engineering applications.

  13. Block copolymer stabilized nonaqueous biocompatible sub-micron emulsions for topical applications.

    Science.gov (United States)

    Atanase, Leonard Ionut; Riess, Gérard

    2013-05-20

    Polyethylene glycol (PEG) 400/Miglyol 812 non-aqueous sub-micron emulsions were developed due to the fact that they are of interest for the design of drug-loaded biocompatible topical formulations. These types of emulsions were favourably stabilized by poly (2-vinylpyridine)-b-poly (butadiene) (P2VP-b-PBut) copolymer with DPBut>DP2VP, each of these sequences being well-adapted to the solubility parameters of PEG 400 and Miglyol 812, respectively. This type of block copolymers, which might limit the Ostwald ripening, appeared to be more efficient stabilizers than low molecular weight non-ionic surfactants. The emulsion characteristics, such as particle size, stability and viscosity at different shear rates were determined as a function of the phase ratio, the copolymer concentration and storage time. It was further shown that Acyclovir, as a model drug of low water solubility, could be incorporated into the PEG 400 dispersed phase, with no significant modification of the initial emulsion characteristics. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Theoretical and computational studies of entangled rod-coil block copolymer diffusion

    Science.gov (United States)

    Wang, Muzhou; Alexander-Katz, Alfredo; Olsen, B. D.

    2012-02-01

    Despite continued interest in the thermodynamics of rod-coil block copolymers for functional nanostructured materials in organic electronics and biomaterials, relatively few studies have investigated the dynamics of these systems which are important for understanding diffusion, mechanics, and self-assembly kinetics. Here, the diffusion of coil-rod-coil block copolymers through entangled melts is simulated using the Kremer-Grest molecular dynamics model, demonstrating that the mismatch between the curvature of the rod and coil blocks results in dramatically slower reptation through the entanglement tube. For rod lengths near the tube diameter, this hindered diffusion is explained by a local curvature-dependent free energy penalty produced by the curvature mismatch, resulting in a rough energy surface as the rod moves along the tube contour. Compared to coil homopolymers which reptate freely along the tube, rod-coil block copolymers undergo an activated diffusion process which is considerably slower as the rod length increases. For large rods, diffusion of the rod through the tube only occurs when the coil blocks occupy straight entanglement tubes, which requires ``arm retraction'' as the dominant relaxation mechanism.

  15. Amphiphilic Fluorinated Block Copolymer Synthesized by RAFT Polymerization for Graphene Dispersions

    Directory of Open Access Journals (Sweden)

    Hyang Moo Lee

    2016-03-01

    Full Text Available Despite the superior properties of graphene, the strong π–π interactions among pristine graphenes yielding massive aggregation impede industrial applications. For non-covalent functionalization of highly-ordered pyrolytic graphite (HOPG, poly(2,2,2-trifluoroethyl methacrylate-block-poly(4-vinyl pyridine (PTFEMA-b-PVP block copolymers were prepared by reversible addition-fragmentation chain transfer (RAFT polymerization and used as polymeric dispersants in liquid phase exfoliation assisted by ultrasonication. The HOPG graphene concentrations were found to be 0.260–0.385 mg/mL in methanolic graphene dispersions stabilized with 10 wt % (relative to HOPG PTFEMA-b-PVP block copolymers after one week. Raman and atomic force microscopy (AFM analyses revealed that HOPG could not be completely exfoliated during the sonication. However, on-line turbidity results confirmed that the dispersion stability of HOPG in the presence of the block copolymer lasted for one week and that longer PTFEMA and PVP blocks led to better graphene dispersibility. Force–distance (F–d analyses of AFM showed that PVP block is a good graphene-philic block while PTFEMA is methanol-philic.

  16. Nanostructured Polysulfone-Based Block Copolymer Membranes

    KAUST Repository

    Xie, Yihui

    2016-05-01

    The aim of this work is to fabricate nanostructured membranes from polysulfone-based block copolymers through self-assembly and non-solvent induced phase separation. Block copolymers containing polysulfone are novel materials for this purpose providing better mechanical and thermal stability to membranes than polystyrene-based copolymers, which have been exclusively used now. Firstly, we synthesized a triblock copolymer, poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) through polycondensation and reversible addition-fragmentation chain-transfer polymerization. The obtained membrane has a highly porous interconnected skin layer composed of elongated micelles with a flower-like arrangement, on top of the graded finger-like macrovoids. Membrane surface hydrolysis was carried out in a combination with metal complexation to obtain metal-chelated membranes. The copper-containing membrane showed improved antibacterial capability. Secondly, a poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) triblock copolymer obtained by hydrolyzing poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) formed a thin film with cylindrical poly(acrylic acid) microdomains in polysulfone matrix through thermal annealing. A phase inversion membrane was prepared from the same polymer via self-assembly and chelation-assisted non-solvent induced phase separation. The spherical micelles pre-formed in a selective solvent mixture packed into an ordered lattice in aid of metal-poly(acrylic acid) complexation. The space between micelles was filled with poly(acrylic acid)-metal complexes acting as potential water channels. The silver0 nanoparticle-decorated membrane was obtained by surface reduction, having three distinct layers with different particle sizes. Other amphiphilic copolymers containing polysulfone and water-soluble segments such as poly(ethylene glycol) and poly(N-isopropylacrylamide) were also synthesized through coupling reaction and copper0-mediated

  17. Barite formation in the presence of a commercial copolymer

    Science.gov (United States)

    Ruiz-Agudo, Cristina; Putnis, Christine; Ruiz-Agudo, Encarnacion; Putnis, Andrew

    2015-04-01

    Fluid composition can significantly modify the mechanisms of mineral formation. Particularly, the presence of organic additives in the aqueous media has been shown to alter the precipitation of minerals substantially (e.g. calcium carbonate, barium carbonate and barium sulfate). Despite the numerous studies dealing with barite precipitation and the influence of organic additives (e.g. Benton et al. 1993, Qi et al., 2000, Wang and Cölfen, 2006, Mavredaki et al., 2011), the details of the mechanism of barite formation in the presence of organic additives, particularly at the early stages of this process, are yet to be fully resolved. Here, we present observations on the initial stages of barite formation from aqueous solutions, as well as the alterations induced by a commercial copolymer (maleic acid/allyl sulfonic acid copolymer with phosphonate groups), commonly used as a scale inhibitor in oil recovery. Most synthetic commercial additives contain the same functional groups (e.g. carboxylate, phosphonate and/or sulfonate groups). Thus our work may help to understand the mechanism by which copolymers modify crystallization processes and aid in the selection of the most appropriate inhibitors for hindering or controlling barite scale formation. Barite scaling is one of the main problems in many industrial processes (such as, paper-making, chemical manufacturing, cement operations, off-shore oil extraction, geothermal energy production). Using Atomic Force Microscopy (AFM), we show that barite growth is significantly influenced by the presence of the copolymer. In its absence, barium sulfate growth occurs by 2D island nucleation and spreading. The addition of small amounts (0.1 ppm and 0.5 ppm) of the copolymer enhances 2D nucleation but blocks growth. Just 1 ppm of inhibitor is enough to block barite nucleation and growth by adsorption of a copolymer layer onto the barite surface. Transmission electron microscopy (TEM) was also used to gain better insights into the

  18. Supramolecular self-assembly and opto-electronic properties of semiconducting block copolymers

    NARCIS (Netherlands)

    Boer, Bert de; Stalmach, Ulf; Hutten, Paul F. van; Melzer, Christian; Krasnikov, Victor V.; Hadziioannou, Georges

    2001-01-01

    With continuous and nanometre-scale interpenetrating phases of electron donor and acceptor components, a novel diblock copolymer, in which one block is poly(p-phenylene vinylene) (PPV) and the other is a C60-functionalized polystyrene, is designed to be an efficient photovoltaic material. The

  19. Combinatorial Study of Surface Pattern Formation in Thin Block Copolymer Films

    International Nuclear Information System (INIS)

    Smith, Archie P.; Douglas, Jack F.; Meredith, J. Carson; Amis, Eric J.; Karim, Alamgir

    2001-01-01

    Surface pattern formation in diblock copolymer films is investigated as a function of film thickness h and molecular mass M . Smooth films are observed for certain h ranges centered about multiples of the lamellar thickness L 0 , and we attribute this effect to an increase in the surface chain density with h in the outer brushlike copolymer layer. We also observe apparently stable labyrinthine surface patterns for other h ranges, and the average size of these patterns is found to scale as λ∼L -2.5 0 . Hole and island patterns occur for h ranges between those of the labyrinthine patterns and the smooth regions, and their size similarly decreases with L 0 and M

  20. Styrene and methyl methacrylate copolymer synthesized by RF inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z; Gillon, X; Diallo, M; Houssiau, L; Pireaux, J-J, E-mail: zhiling.li@fundp.ac.be [University of Namur (FUNDP) Research Centre in Physics of Matter and Radiation (PMR), 61, Rue de Bruxelles, 5000 Namur (Belgium)

    2011-01-01

    A series of random copolymers of styrene and methyl methacrylate was prepared on a silicon substrate by RF pulsed inductively coupled plasma. The plasma gas phase was investigated by optical emission spectroscopy (OES). The physico-chemical characteristics of the deposited copolymer films were analyzed by several surface techniques: X-ray photoelectron spectroscopy (XPS), Fourier-Transform infrared absorption (FT-IR), Time-of-flight secondary ion mass spectrometry (ToF-SIMS), etc. OES of the plasma and FT-IR spectra of the films are predictive: plasma emitting a higher relative benzyl radical signal results in the deposition of a more aromatic plasma polymer. The functional thin films can be deposited by selection of the co-monomers.

  1. Impact of structural changes on dielectric and thermal properties of vinylidene fluoride–trifluoroethylene-based terpolymer/copolymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Casar, G. [Jožef Stefan Institute and Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana (Slovenia); Li, X. [Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Malič, B. [Jožef Stefan Institute and Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana (Slovenia); Zhang, Q.M. [Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Bobnar, V., E-mail: vid.bobnar@ijs.si [Jožef Stefan Institute and Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2015-03-15

    We report dielectric and thermal properties of the poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) terpolymer [P(VDF–TrFE–CFE), a member of the relaxor polymer family that exhibits fast response speeds, giant electrostriction, high electric energy density, and large electrocaloric effect] blended with the ferroelectric poly(vinylidene fluoride–trifluoroethylene) copolymer, P(VDF–TrFE). Although the differential scanning calorimetry (DSC) clearly reveals that both components form separate crystalline phases, at low copolymer content blends entirely exhibit a relaxorlike linear dielectric response, since the interfacial couplings to the bulky defects in the terpolymer convert the normal ferroelectric copolymer into a relaxor. On the other hand, dielectric experiments evidence that in blends with 20–50 wt% of P(VDF–TrFE) the ferroelectric and relaxor states coexist. This coexistence is confirmed by DSC results, which further reveal the influence of blending on the terpolymer crystallinity and melting point. At last, the crystallinity data appropriately explain the variation of the dielectric constant in P(VDF–TrFE–CFE)/P(VDF–TrFE) blends.

  2. A comprehensive structure-function analysis shed a new light on molecular mechanism by which a novel smart copolymer, NY-3-1, assists protein refolding.

    Science.gov (United States)

    Ye, Chaohui; Ilghari, Dariush; Niu, Jianlou; Xie, Yaoyao; Wang, Yan; Wang, Chao; Li, Xiaokun; Liu, Bailin; Huang, Zhifeng

    2012-08-31

    An in-depth understanding of molecular basis by which smart polymers assist protein refolding can lead us to develop a more effective polymer for protein refolding. In this report, to investigate structure-function relationship of pH-sensitive smart polymers, a series of poly(methylacrylic acid (MAc)-acrylic acid (AA))s with different MAc/AA ratios and molecular weights were synthesized and then their abilities in refolding of denatured lysozyme were compared by measuring the lytic activity of the refolded lysozyme. Based on our analysis, there were optimal MAc/AA ratio (44% MAc), M(w) (1700 Da), and copolymer concentration (0.1%, w/v) at which the highest yield of protein refolding was achieved. Fluorescence, circular dichroism, and RP-HPLC analysis reported in this study demonstrated that the presence of P(MAc-AA)s in the refolding buffer significantly improved the refolding yield of denatured lysozyme without affecting the overall structure of the enzyme. Importantly, our bioseparation analysis, together with the analysis of zeta potential and particle size of the copolymer in refolding buffers with different copolymer concentrations, suggested that the polymer provided a negatively charged surface for an electrostatic interaction with the denatured lysozyme molecules and thereby minimized the hydrophobic-prone aggregation of unfolded proteins during the process of refolding. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. The preparation of highly absorbing cellulosic copolymers -the cellulose acetate/propionate-g.co-acrylic acid system

    International Nuclear Information System (INIS)

    Bilgin, V.; Guthrie, J.T.

    1990-01-01

    A series of copolymers based on the cellulose acetate/propionate-g.co-acrylic acid system has been prepared under radiation-induced control. These copolymers have been assessed for their water-retention capacity both in an unmodified state and after ''decrystallization'' or ''neutralization'' treatments. The grafting of acrylic acid onto the cellulose acetate/propionate had little effect on the water retention power of the cellulose acetate/propionate. However, improvements to the water retentivity was obtained after ''decrystallization'' procedures had been carried out on the copolymers using selected alkali metal salts with methanol as the continuous medium. The water-retentivity of the copolymers increased with increase in the extent of grafting, though the effect is less pronounced at high graft levels. Neutralization of the functional groups of the grafted branches provided a route to obtaining a marked increase in the level of water retentivity. Excessive salt concentrations gave reduced levels of water retentivity. Cesium carbonate and sodium carbonate have been shown to be effective in providing marked improvements in the water-retaining capacity of the copolymers. Maxima in performance are shown with respect to the treatment conditions. (author)

  4. Amphiphilic brushes from metallo-supramolecular block copolymers

    NARCIS (Netherlands)

    Guillet, P.; Fustin, C.A.; Wouters, D.; Höppener, S.; Schubert, U.S.; Gohy, J.M.W.

    2009-01-01

    A novel strategy to control the formation of amphiphilic brushes from metallo-supramol. block copolymers is described. The investigated copolymer consists of a polystyrene block linked to a poly(ethylene oxide) one via a charged bis-terpyridine ruthenium(ii) complex (PS-[Ru]-PEO). The initial

  5. Radiochemical synthesis of copolymers of N-vinylpyrrolidone with undecylenic and oleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Ushakova, V.N.; Panarin, E.F.; Denisov, V.M.; Kol' tsov, A.I.; Persinen, A.A.

    1988-11-01

    Radiation copolymerization of N-vinylpyrrolidone with undecylenic and oleic acids was studied. It was shown that the yield of polymer and the rate of copolymerization are essentially a function of the composition of the starting mixture. The maximum molar concentration of carbonyl units in the copolymer is 30%. A random copolymer in which there is nothing next to the standing carboxylic acid units is formed. The relative reactivity of the acids is equal to zero; the reactivities of N-vinylpyrrolidone - 0.61 < r < 0.94 for undecylenic and 0.90 < r < 1.31 for oleic acids - were calculated in consideration of the effect of the next-to-last unit.

  6. Radiochemical synthesis of copolymers of N-vinylpyrrolidone with undecylenic and oleic acids

    International Nuclear Information System (INIS)

    Ushakova, V.N.; Panarin, E.F.; Denisov, V.M.; Kol'tsov, A.I.; Persinen, A.A.

    1988-01-01

    Radiation copolymerization of N-vinylpyrrolidone with undecylenic and oleic acids was studied. It was shown that the yield of polymer and the rate of copolymerization are essentially a function of the composition of the starting mixture. The maximum molar concentration of carbonyl units in the copolymer is 30%. A random copolymer in which there is nothing next to the standing carboxylic acid units is formed. The relative reactivity of the acids is equal to zero; the reactivities of N-vinylpyrrolidone - 0.61 < r < 0.94 for undecylenic and 0.90 < r < 1.31 for oleic acids - were calculated in consideration of the effect of the next-to-last unit

  7. Iodinated glycidyl methacrylate copolymer as a radiopaque material for biomedical applications.

    Science.gov (United States)

    Dawlee, S; Jayabalan, M

    2013-07-01

    Polymeric biomaterial was synthesized by copolymerizing 50:50 mol% of monomers, glycidyl methacrylate and methyl methacrylate. Iodine atoms were then grafted to the epoxide groups of glycidyl methacrylate units, rendering the copolymer radiopaque. The percentage weight of iodine in the present copolymer was found to be as high as 23%. The iodinated copolymer showed higher glass transition temperature and thermal stability in comparison with unmodified polymer. Radiographic analysis showed that the copolymer possessed excellent radiopacity. The iodinated copolymer was cytocompatible to L929 mouse fibroblast cells. The in vivo toxicological evaluation by intracutaneous reactivity test of the copolymer extracts has revealed that the material was nontoxic. Subcutaneous implantation of iodinated copolymer in rats has shown that the material was well tolerated. Upon explantation and histological examination, no hemorrhage, infection or necrosis was observed. The samples were found to be surrounded by a vascularized capsule consisting of connective tissue cells. The results indicate that the iodinated copolymer is biocompatible and may have suitable applications as implantable materials.

  8. A linear combination of modified Bessel functions

    Science.gov (United States)

    Shitzer, A.; Chato, J. C.

    1971-01-01

    A linear combination of modified Bessel functions is defined, discussed briefly, and tabulated. This combination was found to recur in the analysis of various heat transfer problems and in the analysis of the thermal behavior of living tissue when modeled by cylindrical shells.

  9. Synthesis and characterization of the polystyrene - asphaltene graft copolymer BY FT-IR spectroscopy

    International Nuclear Information System (INIS)

    Leo, Adan Yovani; Salazar Ramiro

    2008-01-01

    The creation of new polymer compounds to be added to asphalt has drawn considerable attention because these substances have succeeded in modifying the asphalt rheological characteristics and physical properties for the enhancement of its behavior during the time of use. This work explains the synthesis of a new graft copolymer based on an asphalt fraction called asphaltene, modified with maleic anhydride. Polystyrene functionalization is conducted in a parallel fashion in order to obtain polybenzylamine resin with an amine - NH2 free group that reacts with the anhydride graft groups in the asphaltene, thus obtaining the new Polystyrene/Asphaltene graft copolymer

  10. Diagnostics for Linear Models With Functional Responses

    OpenAIRE

    Xu, Hongquan; Shen, Qing

    2005-01-01

    Linear models where the response is a function and the predictors are vectors are useful in analyzing data from designed experiments and other situations with functional observations. Residual analysis and diagnostics are considered for such models. Studentized residuals are defined and their properties are studied. Chi-square quantile-quantile plots are proposed to check the assumption of Gaussian error process and outliers. Jackknife residuals and an associated test are proposed to det...

  11. Thresholding projection estimators in functional linear models

    OpenAIRE

    Cardot, Hervé; Johannes, Jan

    2010-01-01

    We consider the problem of estimating the regression function in functional linear regression models by proposing a new type of projection estimators which combine dimension reduction and thresholding. The introduction of a threshold rule allows to get consistency under broad assumptions as well as minimax rates of convergence under additional regularity hypotheses. We also consider the particular case of Sobolev spaces generated by the trigonometric basis which permits to get easily mean squ...

  12. Solid polymer electrolytes based on alternating copolymers of vinyl ethers with methoxy oligo(ethyleneoxy)ethyl groups and vinylene carbonate

    International Nuclear Information System (INIS)

    Itoh, Takahito; Fujita, Katsuhito; Inoue, Kentaro; Iwama, Hiroki; Kondoh, Kensaku; Uno, Takahiro; Kubo, Masataka

    2013-01-01

    Graphical abstract: - Highlights: • Synthesis of alternating copolymers of vinyl ethers and vinylene carbonate. • Preparation of polymer electrolytes based on the alternating copolymers with LiTFSI. • Structure-property relationship for alternating copolymers-based electrolytes. • Interfacial stability between polymer electrolytes with lithium metal electrode. - Abstract: Alternating copolymers (poly(1a-g-alt-VC)) of vinyl ethers with various methoxy oligo(ethyleneoxy)ethyl groups and vinylene carbonate (VC) were prepared, and the thermal and electrochemical properties of their polymer electrolytes with LiTFSI and interfacial stability between the polymer electrolyte and Li metal electrode were investigated. T g 's increased linearly with salt contents, and decreased with an increase in the chain length of methoxy oligo(ethyleneoxy)ethyl groups in the vinyl ethers at constant salt concentration. The slopes of T g vs. [Li]/[O] were identical, independent of the polymer structure. The ionic conductivities of the polymer electrolytes increased with increasing the side-chain ethyleneoxy (EO) unit length of the vinyl ether unit in the alternating copolymers, and also their temperature dependences became relatively smaller in the polymer electrolytes having longer EO units in the vinyl ethers. The highest ionic conductivity, 1.2 × 10 −4 S/cm at 30 °C, was obtained in the alternating copolymer with a side-chain EO unit length of 23.5 in the vinyl ether unit. Ion transport coupled with the segmental motion of the polymer is dominant in these polymer electrolytes. Interfacial resistance increased gradually with contact time, indicative of the formation of passivation films on the Li metal electrode. These polymer electrolytes are thermally stable and have large electrochemical windows of use

  13. 78 FR 20032 - Styrene-Ethylene-Propylene Block Copolymer; Tolerance Exemption

    Science.gov (United States)

    2013-04-03

    ...-Ethylene-Propylene Block Copolymer; Tolerance Exemption AGENCY: Environmental Protection Agency (EPA... for residues of styrene-ethylene-propylene block copolymer (CAS Reg. No. 108388-87-0) when used as an...-ethylene-propylene block copolymer on food or feed commodities. DATES: This regulation is effective April 3...

  14. Polyamide copolymers having 2,5-furan dicarboxamide units

    Science.gov (United States)

    Chisholm, Bret Ja; Samanta, Satyabrata

    2017-09-19

    Polyamide copolymers, and methods of making and using polyamide copolymers, having 2,5-furan dicarboxamide units are disclosed herein. Such polymers can be useful for engineering thermoplastics having advantageous physical and/or chemical properties.

  15. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may be...

  16. Renewable Pentablock Copolymers Containing Bulky Natural Rosin for Tough Bioplastics

    Science.gov (United States)

    Rahman, Md Anisur; Ganewatta, Mitra S.; Lokupitiya, Hasala N.; Liang, Yuan; Stefik, Morgan; Tang, Chuanbing

    Renewable polymers have received significant attention due to environmental concerns on petrochemical counterparts. One of the most abundant natural biomass is resin acids. However, most polymers derived from resin acids are low molecular weight and brittle because of the high chain entanglement molecular weight resulted from the bulky hydrophenanthrene pendant group. It is well established that the brittleness can be overcome by synthesizing multi-block copolymers with low entanglement molecular weight components. We investigated the effects of chain architecture and microdomain orientation on mechanical properties of both tri and pentablock copolymers. We synthesized rosin-containing A-B-A-B-A type pentablock and A-B-A type triblock copolymers to improve their mechanical properties. Pentablock copolymers showed higher strength and better toughness as compared to triblock copolymers, both superior to homopolymers. The greater toughness of pentablock copolymers is due to the presence of the rosin based midblock chains that act as bridging chains between two polynorbornene blocks.

  17. Conjugated Polymer Chains Confined in Vertical Nanocylinders of a Block-Copolymer Film: Preparation, Characterization, and Optoelectronic Function

    KAUST Repository

    Dong, Ban Xuan; Honmou, Yoshihiro; Komiyama, Hideaki; Furumaki, Shu; Iyoda, Tomokazu; Vacha, Martin

    2013-01-01

    Hybrid materials composed of phase-separated block copolymer films and conjugated polymers of the phenylenevinylene family (PPV) are prepared. The PPV chains are embedded in vertical cylinders of nanometer diameter in the block-copolymer films. The cylinders span continuously the whole film thickness of 70 nm. Incorporation of the PPV chains into the one-dimensional cylinders leads to modified photoluminescence spectra and to large absorption anisotropy. The hybrid films show electroluminescence from the PPV chains in a simple light-emitting device at minute doping concentrations, and also exhibit a factor of 19 increase in electron transport efficiency along the single PPV chains. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Conjugated Polymer Chains Confined in Vertical Nanocylinders of a Block-Copolymer Film: Preparation, Characterization, and Optoelectronic Function

    KAUST Repository

    Dong, Ban Xuan

    2013-01-15

    Hybrid materials composed of phase-separated block copolymer films and conjugated polymers of the phenylenevinylene family (PPV) are prepared. The PPV chains are embedded in vertical cylinders of nanometer diameter in the block-copolymer films. The cylinders span continuously the whole film thickness of 70 nm. Incorporation of the PPV chains into the one-dimensional cylinders leads to modified photoluminescence spectra and to large absorption anisotropy. The hybrid films show electroluminescence from the PPV chains in a simple light-emitting device at minute doping concentrations, and also exhibit a factor of 19 increase in electron transport efficiency along the single PPV chains. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    OpenAIRE

    Hoarfrost, Megan Lane

    2012-01-01

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the additio...

  20. Incorporation of Amphipathic Diblock Copolymer in Lipid Bilayer for Improving pH Responsiveness

    Directory of Open Access Journals (Sweden)

    Tian Xia

    2016-01-01

    Full Text Available Diblock copolymers (mPEG-b-PDPA, which were designed to possess pH-sensitivity as well as amphipathy, were used as an intelligent lock in the liposomal membrane. The so-called pH-sensitive liposomes were prepared by simple mixing of the synthesized mPEG-b-PDPA with phospholipids and cholesterol. Fluorescence polarization at pH 7.4 showed that the membrane stability of the hybrid liposome was significantly increased compared with the pure liposome. Therefore, in the neutral environment, the leakage of doxorubicin (DOX was inhibited. However, when pH decreased to 6.0, DOX release rate increased by 60% due to the escape of copolymer. The effects of the membrane composition and the PDPA segment length on bilayer membrane functions were investigated. These results revealed that the synthesized copolymers increased the difference in DOX cumulative release between pH 7.4 and 6.0, that is, improved the pH-controllability of the drug release from hybrid liposomes.

  1. Rheological Properties of Hydrophobically Associative Copolymers Prepared in a Mixed Micellar Method Based on Methacryloxyethyl-dimethyl Cetyl Ammonium Chloride as Surfmer

    Directory of Open Access Journals (Sweden)

    Rui Liu

    2014-01-01

    Full Text Available A novel cationic surfmer, methacryloxyethyl-dimethyl cetyl ammonium chloride (DMDCC, is synthesized. The micellar properties, including critical micelle concentration and aggregation number, of DMDCC-SDS mixed micelle system are studied using conductivity measurement and a steady-state fluorescence technique. A series of water-soluble associative copolymers with acrylamide and DMDCC are prepared using the mixed micellar polymerization. Compared to conventional micellar polymerization, this new method could not only reasonably adjust the length of the hydrophobic microblock, that is, NH, but also sharply reduce the amount of surfactant. Their rheological properties related to hydrophobic microblock and stickers are studied by the combination of steady flow and linear viscoelasticity experiments. The results indicate that both the hydrophobic content and, especially the length of the hydrophobic microblock are the dominating factors effecting the intermolecular hydrophobic association. The presence of salt influences the dynamics of copolymers, resulting in the variation of solution characters. Viscosity measurement indicates that mixed micelles between the copolymer chain and SDS molecules serving as junction bridges for transitional network remarkably enhance the viscosity. Moreover, the microscopic structures of copolymers at different experimental conditions are conducted by ESEM. This method gives us an insight into the preparation of hydrophobically associative water-soluble copolymers by cationic surfmer-anionic surfactant mixed micellar polymerization with good performance.

  2. Influence of copolymer architectures on adhesion and compatibilization of polymers at interfaces

    Science.gov (United States)

    Guo, Lantao

    -bonding mechanism than using a pure physical entanglement. In addition, the graft copolymer is directly in the interfacial region where its effectiveness is optimized. In chapter 4, it was shown that it is possible to improve the adhesive strength of the interface between blends of styrene-co-acrylonitrile (SAN) of differing AN content and polycarbonate. The segregation depends upon AN content and can lead to a component migrating to the interface which provides enhanced adhesive strength. In this way, one may maximize both the mechanical properties and the adhesion of the SAN. In Chapter 5, micromechanical behavior of the interface between polystyrene(PS) and polymethyl methacrylate(PMMA) is investigated experimentally. The interface is formed by adding a properly chosen PS-PMMA copolymer between two homopolymers. It is a very sharp interface due to the polymer chainlike structures. The glass transition temperatures of PS and PMMA differ by only 5% so that residual stresses produced by the bonding process are minimal. The Young's moduli and Poisson's ratios of these two polymers are approximately the same. However, their fracture behaviors are very different. This gives rise to a strong mode mixity effect due to different fracture processes. The interfacial fracture toughness of this material system under tension-dominated load states was measured. Fracture surfaces were examined by scanning electron microscope (SEM). In situ observation on the local failure behavior was performed by utilizing SEM's environmental function. The deformation field at small scale near the interface crack tip is mapped by an experimental micromechanics technique, speckle interferomtry with electron microscopy (SIEM).

  3. TRANSFER-FUNCTIONS OF A LINEARIZED MULTI-REGION REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Thomas J.

    1963-09-15

    The development of the transfer functions for a linearized multi-region reactor is studied, and an illustration is made of application of the corresponding theory by a numerical illustrative example. (auth)

  4. Effect of norbornene content on laser ablation of cyclic olefin copolymers

    International Nuclear Information System (INIS)

    Leech, Patrick W.

    2010-01-01

    The ablation of cyclic olefin copolymers (COC) by 5 ns/248 nm laser has been examined as a function of norbornene content (61-82 wt.%). The dependence of ablation rate on laser fluence, repetition rate and pulse number has been determined over the range of composition of the copolymers. The ablation rate has increased logarithmically with laser fluence in accordance with the Beer-Lambert relationship. An increase in norbornene content has resulted in an increase in ablation rate and a decrease in threshold fluence. These trends have been attributed to a higher intramolecular rigidity of the chain structure in COC with increasing norbornene content. The morphology of the ablated surfaces was characterised by the formation of voids at high norbornene contents.

  5. Bactericidal and Hemocompatible Coating via the Mixed-Charged Copolymer.

    Science.gov (United States)

    Fan, Xiao-Li; Hu, Mi; Qin, Zhi-Hui; Wang, Jing; Chen, Xia-Chao; Lei, Wen-Xi; Ye, Wan-Ying; Jin, Qiao; Ren, Ke-Feng; Ji, Jian

    2018-03-28

    Cationic antibacterial coating based on quaternary ammonium compounds, with an efficient and broad spectrum bactericidal property, has been widely used in various fields. However, the high density of positive charges tends to induce weak hemocompatibility, which hinders the application of the cationic antibacterial coating in blood-contacting devices and implants. It has been reported that a negatively charged surface can reduce blood coagulation, showing improved hemocompatibility. Here, we describe a strategy to combine the cationic and anionic groups by using mixed-charged copolymers. The copolymers of poly (quaternized vinyl pyridine- co- n-butyl methacrylate- co-methacrylate acid) [P(QVP- co- nBMA- co-MAA)] were synthesized through free radical copolymerization. The cationic group of QVP, the anionic group of MAA, and the hydrophobic group of nBMA were designed to provide bactericidal capability, hemocompatibility, and coating stability, respectively. Our findings show that the hydrophilicity of the copolymer coating increased, and its zeta potential decreased from positive charge to negative charge with the increase of the anionic/cationic ratio. Meanwhile, the bactericidal property of the copolymer coating was kept around a similar level compared with the pure quaternary ammonium copolymer coating. Furthermore, the coagulation time, platelet adhesion, and hemolysis tests revealed that the hemocompatibility of the copolymer coating improved with the addition of the anionic group. The mixed-charged copolymer combined both bactericidal property and hemocompatibility and has a promising potential in blood-contacting antibacterial devices and implants.

  6. SYNTHESIS OF STYRENE-METHYL METHACRYLATE BLOCK COPOLYMER BY POLYAZOAMIDE AS INITIATOR

    Institute of Scientific and Technical Information of China (English)

    WANG Zhongyi; WEI Jeqing

    1996-01-01

    Polyazoamide(PAA) was used as initiator to prepare block copolymer P(MMA-b-St) by free radical polymerization. The fraction of block copolymer was about 50%. The structure of the block-copolymer was characterized by IR and the results of 1H-NMR and GPC showed that the content of the block and the molecular weight (-Mw) of the prepolymer and block copolymer could be controlled by varying the mol ratio of styrene/PAA and MMA/prepolymer. DSC and TEM results revealed that the block copolymer has two separated glass transition temperatures and phase separation within the domain structure.

  7. Microtome Sliced Block Copolymers and Nanoporous Polymers as Masks for Nanolithography

    DEFF Research Database (Denmark)

    Shvets, Violetta; Schulte, Lars; Ndoni, Sokol

    2014-01-01

    Introduction. Block copolymers self-assembling properties are commonly used for creation of very fine nanostructures [1]. Goal of our project is to test new methods of the block-copolymer lithography mask preparation: macroscopic pieces of block-copolymers or nanoporous polymers with cross...... PDMS can be chemically etched from the PB matrix by tetrabutylammonium fluoride in tetrahydrofuran and macroscopic nanoporous PB piece is obtained. Both block-copolymer piece and nanoporous polymer piece were sliced with cryomicrotome perpendicular to the axis of cylinder alignment and flakes...... of etching patterns appear only under the certain parts of thick flakes and are not continuous. Although flakes from block copolymer are thinner and more uniform in thickness than flakes from nanoporous polymer, quality of patterns under nanoporous flakes appeared to be better than under block copolymer...

  8. Impact of molecular weight and degree of conjugation on the thermodynamics of DNA complexation and stability of polyethylenimine-graft-poly(ethylene glycol) copolymers.

    Science.gov (United States)

    Smith, Ryan J; Beck, Rachel W; Prevette, Lisa E

    2015-01-01

    Poly(ethylene glycol) (PEG) is often conjugated to polyethylenimine (PEI) to provide colloidal stability to PEI-DNA polyplexes and shield charge leading to toxicity. Here, a library of nine cationic copolymers was synthesized by grafting three molecular weights (750, 2000, 5000Da) of PEG to linear PEI at three conjugation ratios. Using isothermal titration calorimetry, we have quantified the thermodynamics of the associations between the copolymers and DNA and determined the extent to which binding is hindered as a function of PEG molecular weight and conjugation ratio. Low conjugation ratios of 750Da PEG to PEI resulted in little decrease in DNA affinity, but a significant decrease-up to two orders of magnitude-was found for the other copolymers. We identified limitations in determination of affinity using indirect assays (electrophoretic mobility shift and ethidium bromide exclusion) commonly used in the field. Dynamic light scattering of the DNA complexes at physiological ionic strength showed that PEI modifications that did not reduce DNA affinity also did not confer significant colloidal stability, a finding that was supported by calorimetric data on the aggregation process. These results quantify the DNA interaction thermodynamics of PEGylated polycations for the first time and indicate that there is an optimum PEG chain length and degree of substitution in the design of agents that have desirable properties for effective in vivo gene delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Poly-1-butene resins and butene/ethylene copolymers... resins and butene/ethylene copolymers. The poly-1-butene resins and butene/ethylene copolymers identified... the catalytic polymerization of 1-butene liquid monomer. Butene/ethylene copolymers are produced by...

  10. Oracle Inequalities for Convex Loss Functions with Non-Linear Targets

    DEFF Research Database (Denmark)

    Caner, Mehmet; Kock, Anders Bredahl

    This paper consider penalized empirical loss minimization of convex loss functions with unknown non-linear target functions. Using the elastic net penalty we establish a finite sample oracle inequality which bounds the loss of our estimator from above with high probability. If the unknown target...... of the same order as that of the oracle. If the target is linear we give sufficient conditions for consistency of the estimated parameter vector. Next, we briefly discuss how a thresholded version of our estimator can be used to perform consistent variable selection. We give two examples of loss functions...

  11. One-Pot Synthesis of Charged Amphiphilic Diblock and Triblock Copolymers Via High-Throughput Cu(0-Mediated Polymerization

    Directory of Open Access Journals (Sweden)

    Lenny Voorhaar

    2017-07-01

    Full Text Available Block copolymers containing functionalized monomers, for example those containing charged groups, can be used for many purposes, one of which is the design of polymeric supramolecular materials based on electrostatic interactions. In this paper the synthesis of diblock copolymers and ABA-triblock copolymers containing poly(n-butyl acrylate as a first or middle block and poly(2-(dimethylaminoethyl acrylate, poly(1-ethoxyethyl acrylate and poly(1-ethoxyethyl-2-carboxyethyl acrylate as second or outer blocks, resulting in block copolymers that can contain positive or negative charges, is reported. The polymerizations were performed and optimized via one-pot sequential monomer addition reactions via Cu(0-mediated polymerization using an automated parallel synthesizer. Different initiators, monomer concentrations and polymerization times were tested. While a bromide-containing initiator led to the best results for most monomers, when polymerizing 2-(dimethylaminoethyl acrylate the use of a chloride-containing initiator was necessary. Due to the slower polymerization using this initiator, a longer polymerization time was needed before addition of the second monomer. Using the optimized conditions, the diblock and triblock copolymers could be synthesized with good control over molecular weight and dispersities around 1.1 were obtained.

  12. Nanostructure of self-assembled rod-coil block copolymer films for photovoltaic applications

    International Nuclear Information System (INIS)

    Heiser, T.; Adamopoulos, G.; Brinkmann, M.; Giovanella, U.; Ould-Saad, S.; Brochon, C.; Wetering, K. van de; Hadziioannou, G.

    2006-01-01

    The nanostructures of a series of rod-coil block copolymers, designed for photovoltaic applications, are studied by atomic force microscopy and transmission electron microscopy. The copolymers are composed of a semiconducting poly-p-phenylenevinylene rod with (2'-ethyl)-hexyloxy side chains and a functionalized coil block of various length and flexibility. Both, as deposited and annealed block copolymer films were investigated. The results show that highly ordered structures are only obtained if the coil block is characterized by a glass transition temperature which is significantly lower than the melting temperature of the alkyl side chains. For this material a high molecular mobility and strong driving force for crystallization of the rigid block can be achieved simultaneously. For the smallest coil to rod length ratio, we found a lamellar morphology with perpendicularly oriented lamellae with respect to the substrate. Electron diffraction data show the presence of a periodical molecular arrangement with a characteristic distance of 0.94 nm that is attributed to the distance between conjugated chains separated by the layers of alkyl sidechains

  13. Nanostructure of self-assembled rod-coil block copolymer films for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, T. [Institut d' Electronique du Solide et des Systemes (InESS), CNRS/ULP, 23, rue du Loess, F-67037 Strasbourg Cedex 2 (France)]. E-mail: Thomas.Heiser@iness.c-strasbourg.fr; Adamopoulos, G. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (LIPHT), Ecole Europeenne de Chimie Polymeres et Materiaux (ECPM), 25, rue Becquerel, F-67087 Strasbourg Cedex 2 (France); Brinkmann, M. [Institut Charles Sadron (ICS), CNRS, 6, rue Boussingault, F-67083 Strasbourg Cedex (France); Giovanella, U. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (LIPHT), Ecole Europeenne de Chimie Polymeres et Materiaux (ECPM), 25, rue Becquerel, F-67087 Strasbourg Cedex 2 (France); Ould-Saad, S. [Institut d' Electronique du Solide et des Systemes (InESS), CNRS/ULP, 23, rue du Loess, F-67037 Strasbourg Cedex 2 (France); Brochon, C. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (LIPHT), Ecole Europeenne de Chimie Polymeres et Materiaux (ECPM), 25, rue Becquerel, F-67087 Strasbourg Cedex 2 (France); Wetering, K. van de [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (LIPHT), Ecole Europeenne de Chimie Polymeres et Materiaux (ECPM), 25, rue Becquerel, F-67087 Strasbourg Cedex 2 (France); Hadziioannou, G. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (LIPHT), Ecole Europeenne de Chimie Polymeres et Materiaux (ECPM), 25, rue Becquerel, F-67087 Strasbourg Cedex 2 (France)

    2006-07-26

    The nanostructures of a series of rod-coil block copolymers, designed for photovoltaic applications, are studied by atomic force microscopy and transmission electron microscopy. The copolymers are composed of a semiconducting poly-p-phenylenevinylene rod with (2'-ethyl)-hexyloxy side chains and a functionalized coil block of various length and flexibility. Both, as deposited and annealed block copolymer films were investigated. The results show that highly ordered structures are only obtained if the coil block is characterized by a glass transition temperature which is significantly lower than the melting temperature of the alkyl side chains. For this material a high molecular mobility and strong driving force for crystallization of the rigid block can be achieved simultaneously. For the smallest coil to rod length ratio, we found a lamellar morphology with perpendicularly oriented lamellae with respect to the substrate. Electron diffraction data show the presence of a periodical molecular arrangement with a characteristic distance of 0.94 nm that is attributed to the distance between conjugated chains separated by the layers of alkyl sidechains.

  14. Solution Construction of Multigeometry Nanoparticles and Multicompartment Superstructures from Block Copolymer Mixtures

    Science.gov (United States)

    Zhu, Jiahua; Zhang, Shiyi; Wooley, Karen; Pochan, Darrin

    2013-03-01

    Novel soft objects with both compositional and geometric complexity at nanoscale have been constructed through solution supramolecular assembly from block copolymer mixtures due to their non-ergodic character. The mixture is composed of two block copolymers with distinctive hydrophobic blocks but the same poly(acrylic acid) hydrophilic block. First, multigeometry nanoparticles, due to segregation of unlike block copolymer molecules into multiple subdomains trapped within the same micelle-like structures, have been assembled in tetrahydrofuran/water solution. Through carefully designed molecular architecture, mixing ratio and pathway kinetics, both size and shape of subdomains can be controlled to produce a novel class of multigeometry nanoparticles, including sphere-sphere, sphere-cylinder, cylinder-cylinder, cylinder-disk, and sphere-disk hybrid nanoparticles. Second, hierarchical multicompartment superstructures including particle chains, rings and other nano to micro cluster formations, have been built up from pre-formed multigeometry nanoparticles by taking advantage of their surface anisotropy and the controlled particle-particle association. The interparticle association can be achieved via either covalent or non-covalent bindings due to different post-polymerization chemical modifications with hydroxyethyl acrylate or crown ether functionalities, respectively.

  15. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation.

    Science.gov (United States)

    Xie, Meihua; Wang, Ling; Guo, Baolin; Wang, Zhong; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Myotube formation is crucial to restoring muscular functions, and biomaterials that enhance the myoblast differentiation into myotubes are highly desirable for muscular repair. Here, we report the synthesis of electroactive, ductile, and degradable copolymers and their application in enhancing the differentiation of myoblasts to myotubes. A hyperbranched ductile polylactide (HPLA) was synthesized and then copolymerized with aniline tetramer (AT) to produce a series of electroactive, ductile and degradable copolymers (HPLAAT). The HPLA and HPLAAT showed excellent ductility with strain to failure from 158.9% to 42.7% and modulus from 265.2 to 758.2 MPa. The high electroactivity of the HPLAAT was confirmed by UV spectrometer and cyclic voltammogram measurements. These HPLAAT polymers also showed improved thermal stability and controlled biodegradation rate compared to HPLA. Importantly, when applying these polymers for myotube formation, the HPLAAT significantly improved the proliferation of C2C12 myoblasts in vitro compared to HPLA. Furthermore, these polymers greatly promoted myogenic differentiation of C2C12 cells as measured by quantitative analysis of myotube number, length, diameter, maturation index, and gene expression of MyoD and TNNT. Together, our study shows that these electroactive, ductile and degradable HPLAAT copolymers represent significantly improved biomaterials for muscle tissue engineering compared to HPLA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Co-polymer Films for Sensors

    Science.gov (United States)

    Ryan, Margaret A. (Inventor); Jewell, April D. (Inventor); Taylor, Charles (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Manatt, Kenneth S. (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor); Homer, Margie L. (Inventor); Shevade, Abhijit V. (Inventor)

    2012-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  17. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate-vinyl alcohol copolymers... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1360 Ethylene-vinyl acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No. 26221-27-2...

  18. HPMA and HEMA copolymer bead interactions with eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Cristina D. Vianna-Soares

    2004-09-01

    Full Text Available Two different hydrophilic acrylate beads were prepared via aqueous suspension polymerization. Beads produced of a hydroxypropyl methacrylate (HPMA and ethyleneglycol methacrylate (EDMA copolymer were obtained using a polyvinyl alcohol suspending medium. Copolymers of 2hydroxyethyl methacrylate (HEMA, methyl methacrylate (MMA and ethyleneglycol methacrylate (EDMA beads were obtained using magnesium hydroxide as the suspending agent. Following characterization by scanning electron microscopy (SEM, nitrogen sorption analysis (NSA and mercury intrusion porosimetry (MIP, the beads were cultured with monkey fibroblasts (COS7 to evaluate their ability to support cell growth, attachment and adhesion. Cell growth behavior onto small HPMA/EDMA copolymer beads and large HEMA/MMA/EDMA copolymer beads is evaluated regarding their hidrophilicity/hidrophobicity and surface roughness.

  19. Directed Self-assembly of Block Copolymer with Sub-15 nm Domain Spacing Using Nanoimprinted Photoresist Templates

    Science.gov (United States)

    Sun, Zhiwei; Chen, Zhenbin; Zhang, Wenxu; Coughlin, E. Bryan; Xiao, Shuaigang; Russell, Thomas

    There has been increasing interest in preparing block copolymer thin films with ultra-small domain spacings for use as etching masks for ultra-high resolution nanolithography. One method to prepare block copolymer materials with small feature sizes is salt doping, increasing the Flory-Huggins interaction and allowing microphase separation to be maintained at lower molecular weights. Lamellae-forming P2VP- b-PS- b-P2VP block copolymer with various molecular weight was synthesized using RAFT polymerization with a dual functional chain transfer agent. Copper (II) Chloride or Gold (III) chloride was found to be selectively associated with P2VP block and increase the unfavorable interactions between PS and P2VP blocks, driving the disordered block copolymer into the ordered state. A 14 nm lamellar spacing of P2VP- b-PS- b-P2VP thin film was prepared using copper (II) Chloride doping after acetone vapor annealing on neutral brushes. Metallic nano-wire arrays were prepared after selective infiltration of platinum salt into the P2VP domain and oxygen plasma treatment. The directed self-assembly of salt doped P2VP- b-PS- b-P2VP triblock copolymer having long-rang lateral order on nanoimprinted photoresist templates with shallow trenches was also studied.

  20. Three-dimensional block copolymer nanostructures by the solvent-annealing-induced wetting in anodic aluminum oxide templates.

    Science.gov (United States)

    Chu, Chiang-Jui; Chung, Pei-Yun; Chi, Mu-Huan; Kao, Yi-Huei; Chen, Jiun-Tai

    2014-09-01

    Block copolymers have been extensively studied over the last few decades because they can self-assemble into well-ordered nanoscale structures. The morphologies of block copolymers in confined geometries, however, are still not fully understood. In this work, the fabrication and morphologies of three-dimensional polystyrene-block-polydimethylsiloxane (PS-b-PDMS) nanostructures confined in the nanopores of anodic aluminum oxide (AAO) templates are studied. It is discovered that the block copolymers can wet the nanopores using a novel solvent-annealing-induced nanowetting in templates (SAINT) method. The unique advantage of this method is that the problem of thermal degradation can be avoided. In addition, the morphologies of PS-b-PDMS nanostructures can be controlled by changing the wetting conditions. Different solvents are used as the annealing solvent, including toluene, hexane, and a co-solvent of toluene and hexane. When the block copolymer wets the nanopores in toluene vapors, a perpendicular morphology is observed. When the block copolymer wets the nanopores in co-solvent vapors (toluene/hexane = 3:2), unusual circular and helical morphologies are obtained. These three-dimensional nanostructures can serve as naontemplates for refilling with other functional materials, such as Au, Ag, ZnO, and TiO2 . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Lee D. Wilson

    2011-08-01

    Full Text Available Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid have been evaluated. The sorption properties of granular activated carbon (GAC were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (< 101 m2/g, CDI-X copolymers (< 101 m2/g, and granular activated carbon (GAC ~103 m2/g. The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i surface area of the sorbent; (ii CD content and accessibility; and (iii and the chemical nature of the sorbent material.

  2. Self-assembled Block Copolymer Membranes with Bioinspired Artificial Channels

    KAUST Repository

    Sutisna, Burhannudin

    2018-04-01

    Nature is an excellent design that inspires scientists to develop smart systems. In the realm of separation technology, biological membranes have been an ideal model for synthetic membranes due to their ultrahigh permeability, sharp selectivity, and stimuliresponse. In this research, fabrications of bioinspired membranes from block copolymers were studied. Membranes with isoporous morphology were mainly prepared using selfassembly and non-solvent induced phase separation (SNIPS). An effective method that can dramatically shorten the path for designing new isoporous membranes from block copolymers via SNIPS was first proposed by predetermining a trend line computed from the solvent properties, interactions and copolymer block sizes of previously-obtained successful systems. Application of the method to new copolymer systems and fundamental studies on the block copolymer self-assembly were performed. Furthermore, the manufacture of bioinspired membranes was explored using (1) poly(styrene-b-4-hydroxystyrene-b-styrene) (PS-b-PHS-b-PS), (2) poly(styrene-bbutadiene- b-styrene) (PS-b-PB-b-PS) and (3) poly(styrene-b-γ-benzyl-L-glutamate) (PSb- PBLG) copolymers via SNIPS. The structure formation was investigated using smallangle X-ray scattering (SAXS) and time-resolved grazing-Incidence SAXS. The PS-b- PHS-b-PS membranes showed preferential transport for proteins, presumably due to the hydrogen bond interactions within the channels, electrostatic attraction, and suitable pore dimension. Well-defined nanochannels with pore sizes of around 4 nm based on PS-b- PB-b-PS copolymers could serve as an excellent platform to fabricate bioinspired channels due to the modifiable butadiene blocks. Photolytic addition of thioglycolic acid was demonstrated without sacrificing the self-assembled morphology, which led to a five-fold increase in water permeance compared to that of the unmodified. Membranes with a unique feather-like structure and a lamellar morphology for dialysis and

  3. Process of irradiating an ethylene-vinyl acetate copolymer to produce low melt index copolymers, and products of said process

    International Nuclear Information System (INIS)

    Potts, J.E.

    1976-01-01

    Application of ionizing radiation in a dose between 0.5 and 1.5 megareps to copolymers of ethylene and vinyl acetate lowers the melt index and increases the toughness and flexibility of the copolymers without substantially decreasing solubility or thermoplasticity. The increased toughness and flexibility carries over into blends with wax or polyethylene. (author)

  4. Microbial production of polyhydroxyalkanoate block copolymer by recombinant Pseudomonas putida.

    Science.gov (United States)

    Li, Shi Yan; Dong, Cui Ling; Wang, Shen Yu; Ye, Hai Mu; Chen, Guo-Qiang

    2011-04-01

    Polyhydroxyalkanoate (PHA) synthesis genes phaPCJ(Ac) cloned from Aeromonas caviae were transformed into Pseudomonas putida KTOY06ΔC, a mutant of P. putida KT2442, resulting in the ability of the recombinant P. putida KTOY06ΔC (phaPCJ(A.c)) to produce a short-chain-length and medium-chain-length PHA block copolymer consisting of poly-3-hydroxybutyrate (PHB) as one block and random copolymer of 3-hydroxyvalerate (3HV) and 3-hydroxyheptanoate (3HHp) as another block. The novel block polymer was studied by differential scanning calorimetry (DSC), nuclear magnetic resonance, and rheology measurements. DSC studies showed the polymer to possess two glass transition temperatures (T(g)), one melting temperature (T(m)) and one cool crystallization temperature (T(c)). Rheology studies clearly indicated a polymer chain re-arrangement in the copolymer; these studies confirmed the polymer to be a block copolymer, with over 70 mol% homopolymer (PHB) of 3-hydroxybutyrate (3HB) as one block and around 30 mol% random copolymers of 3HV and 3HHp as the second block. The block copolymer was shown to have the highest tensile strength and Young's modulus compared with a random copolymer with similar ratio and a blend of homopolymers PHB and PHVHHp with similar ratio. Compared with other commercially available PHA including PHB, PHBV, PHBHHx, and P3HB4HB, the short-chain- and medium-chain-length block copolymer PHB-b-PHVHHp showed differences in terms of mechanical properties and should draw more attentions from the PHA research community. © Springer-Verlag 2010

  5. Polyether based segmented copolymers with uniform aramid units

    NARCIS (Netherlands)

    Niesten, M.C.E.J.

    2000-01-01

    Segmented copolymers with short, glassy or crystalline hard segments and long, amorphous soft segments (multi-block copolymers) are thermoplastic elastomers (TPE’s). The hard segments form physical crosslinks for the amorphous (rubbery) soft segments. As a result, this type of materials combines

  6. Influence of chemical crosslinks on the elastic behavior of segmented block copolymers

    NARCIS (Netherlands)

    van der Schuur, J.M.; Gaymans, R.J.

    2005-01-01

    Polyether(ester–amide)s (PEEA) segmented block copolymers with di- and tri-functional poly(propylene oxide)s and amide segments were synthesized and the elastic properties studied. The difunctional polyether used had a molecular weight of 2300 g/mol end capped with 20 wt% ethylene oxide. The

  7. Meromorphic functions and linear algebra

    CERN Document Server

    Nevanlinna, Olavi

    2003-01-01

    This volume describes for the first time in monograph form important applications in numerical methods of linear algebra. The author presents new material and extended results from recent papers in a very readable style. The main goal of the book is to study the behavior of the resolvent of a matrix under the perturbation by low rank matrices. Whereas the eigenvalues (the poles of the resolvent) and the pseudospectra (the sets where the resolvent takes large values) can move dramatically under such perturbations, the growth of the resolvent as a matrix-valued meromorphic function remains essen

  8. Inhomogeneity of block copolymers at the interface of an immiscible polymer blend

    Science.gov (United States)

    Ryu, Ji Ho; Kim, YongJoo; Lee, Won Bo

    2018-04-01

    We present the effects of structure and stiffness of block copolymers on the interfacial properties of an immiscible homopolymer blend. Diblock and two-arm grafted copolymers with variation in stiffness are modeled using coarse-grained molecular dynamics to compare the compatibilization efficiency, i.e., reduction of interfacial tension. Overall, grafted copolymers are located more compactly at the interface and show better compatibilization efficiency than diblock copolymers. In addition, an increase in the stiffness for one of the blocks of the diblock copolymers causes unusual inhomogeneous interfacial coverage due to bundle formation. However, an increase in the stiffness for one of blocks of the grafted copolymers prevents the bundle formation due to the branched chain. As a result, homogeneous interfacial coverage of homopolymer blends is realized with significant reduction of interfacial tension which makes grafted copolymer a better candidate for the compatibilizer of immiscible homopolymer blend.

  9. Simulation study on the effects of chemical structure and molecular size on the acceptor strength in poly(3-hexylthiophene)-based copolymer with alternating donor and acceptor for photovoltaic applications

    Science.gov (United States)

    Rassamesard, Areefen; Pengpan, Teparksorn

    2017-02-01

    This research assessed the effects of various chemical structures and molecular sizes on the simulated geometric parameters, electron structures, and spectroscopic properties of single-chain complex alternating donor-acceptor (D-A) monomers and copolymers that are intended for use as photoactive layer in a polymer solar cell by using Kohn-Sham density functional theory with B3LYP exchange-correlation functional. The 3-hexylthiophene (3HT) was selected for electron donor, while eight chemicals, namely thiazole (Z), thiadiazole (D), thienopyrazine (TP), thienothiadiazole (TD), benzothiadiazole (BT), thiadiazolothieno-pyrazine (TPD), oxadiazole (OXD) and 5-diphenyl-1,2,4-triazole (TAZ), were employed as electron acceptor functional groups. The torsional angle, bridge bond length, intramolecular charge transfer, energy levels, and molecular orbitals were analyzed. The simulation results reveal that the geometry and electron structure of donor-acceptor monomer and copolymer are significantly impacted by heterocyclic rings, heteroatoms, fused rings, degree of steric hindrance and coplanarity of the acceptor molecular structure. Planar conformation was obtained from the D copolymer, and a pseudo-planar structure with the TD copolymer. The TAZ acceptor exhibited strong steric hindrance due to its bulky structure and non-planarity of its structure. An analysis of the electron structures indicated that the degree of intramolecular electron-withdrawing capability had the rank order TAZ  gaps of TD as well as TPD copolymer indicate that these two copolymers can be used in transparent conducting materials. The copolymer based on BT acceptor exhibited good intramolecular charge transfer and absorbed at 656 nm wavelength which is close to the maximum flux of solar spectrum. Hence, the BT acceptor functional group provides a compromise in the characteristics of a donor-acceptor copolymer, useful in a polymeric candidate material for the photoactive layer in a polymer solar

  10. Surface morphology of PS-PDMS diblock copolymer films

    DEFF Research Database (Denmark)

    Andersen, T.H.; Tougaard, S.; Larsen, N.B.

    2001-01-01

    Spin coated thin films (∼400 Å) of poly(styrene)–poly(dimethylsiloxane) (PS–PDMS) diblock copolymers have been investigated using X-ray Photoelectron Spectroscopy and Atomic Force Microscopy. Surface segregation of the poly(dimethylsiloxane) blocks was studied for five diblock copolymers which ra...

  11. Reactivity Ratios for Organotin Copolymer Systems

    Directory of Open Access Journals (Sweden)

    Mohamed H. El-Newehy

    2010-04-01

    Full Text Available Di(tri-n-butyltin itaconate (DTBTI and monoethyl tributyltin fumarate (METBTF were synthesized as organotin monomers. The organotin monomers were copolymerized with styrene (ST and methyl methacrylate (MMA via a free radical polymerization technique. The overall conversion was kept low (£15% wt/wt for all studied samples and the copolymer composition was determined from tin analysis. The synthesized monomers and copolymers were characterized by elemental analysis, 1H- and 13C-NMR, and FTIR spectroscopy.

  12. SANS and SAXS study of block copolymer/homopolymer mixtures

    International Nuclear Information System (INIS)

    Hasegawa, Hirokazu; Tanaka, Hideaki; Hashimoto, Takeji; Han, C.C.

    1991-01-01

    The lateral and vertical components of the radius of gyration for a single block copolymer chain and those of a single homopolymer chain in the lamellar microdomain space formed by a mixture of diblock copolymers and homopolymers were investigated by means of small-angle neutron scattering (SANS) and the microdomain structures by small-angle X-ray scattering (SAXS). The homopolymers whose molecular weights are much smaller than that of the corresponding chains of the block copolymers were used so that the homopolymers were uniformly solubilized in the corresponding microdomains. The SANS result suggests that the homopolymer chains in the microdomain space as well as the block copolymer chains are more compressed in the direction parallel to the interface and more stretched in the direction perpendicular to the interface than the corresponding unperturbed polymer chains with the same molecular weight. On increasing the volume fraction of the homopolymers the thickness of the lamellar microdomains increases. The block copolymer chains were found to undergo an isochoric affine deformation on addition of the homopolymers or with the change of the thickness of the lamellar microdomains. (orig.)

  13. Thermoreversible cross-linking of maleated ethylene/propylene copolymers with diamines and amino-alcohols

    NARCIS (Netherlands)

    Mee, van der M.A.J.; Goossens, J.G.P.; Duin, van M.

    2008-01-01

    Maleated ethylene/propylene copolymers (MAn-g-EPM) were thermoreversibly cross-linked using diamines and amino-alcohols. Covalent cross-links are formed via the equilibrium reaction of the grafted anhydride groups with di-functional cross-linkers containing combinations of primary (1°) and secondary

  14. A Trivial Linear Discriminant Function

    Directory of Open Access Journals (Sweden)

    Shuichi Shinmura

    2015-11-01

    Full Text Available In this paper, we focus on the new model selection procedure of the discriminant analysis. Combining re-sampling technique with k-fold cross validation, we develop a k-fold cross validation for small sample method. By this breakthrough, we obtain the mean error rate in the validation samples (M2 and the 95\\% confidence interval (CI of discriminant coefficient. Moreover, we propose the model  selection  procedure  in  which  the model having a minimum M2 was  chosen  to  the  best  model.  We  apply  this  new  method and procedure to the pass/ fail determination of  exam  scores.  In  this  case,  we  fix  the constant =1 for seven linear discriminant  functions  (LDFs  and  several  good  results  were obtained as follows: 1 M2 of Fisher's LDF are over 4.6\\% worse than Revised IP-OLDF. 2 A soft-margin  SVM  for  penalty c=1  (SVM1  is  worse  than  another  mathematical  programming (MP based LDFs and logistic regression . 3 The 95\\% CI of the best discriminant coefficients was obtained. Seven LDFs except for Fisher's LDF are almost the same as a trivial LDF for the linear separable model. Furthermore, if we choose the median of the coefficient of seven LDFs except for Fisher's LDF,  those are almost the same as the trivial LDF for the linear separable model.

  15. Fuzzy optimization of primal-dual pair using piecewise linear membership functions

    Directory of Open Access Journals (Sweden)

    Pandey D.

    2012-01-01

    Full Text Available Present paper improves the model of Bector and Chandra [Fuzzy Sets and Systems, 125 (2002 317-325] on duality in fuzzy linear programming by using non-linear membership functions. Numerical problem discussed by these authors has also been worked out through our non-linear model to demonstrate improved optimality of the results.

  16. Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin.

    Science.gov (United States)

    Wilson, Lee D; Mohamed, Mohamed H; Berhaut, Christopher L

    2011-08-29

    Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD) have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid) have been evaluated. The sorption properties of granular activated carbon (GAC) were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (granular activated carbon (GAC ~10³ m²/g). The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i) surface area of the sorbent; (ii) CD content and accessibility; and (iii) and the chemical nature of the sorbent material.

  17. Diblock Copolymer/Layered Silicate Nanocomposite Thin Film Stability

    Science.gov (United States)

    Limary, Ratchana; Green, Peter

    2000-03-01

    The stability of thin film symmetric diblock copolymers blended with layered silicate nanocomposites were examined using a combination of optical microscopy, atomic force microscopy (AFM), and X-ray diffraction (XRD). Two cases were examined PS-b-PMMA (polystyrene-b-polymethylacrylate) blended with montmorillonite stoichiometrically loaded with alkyl ammonium ions, OLS(S), and PS-b-PMMA blended with montmorillonite loaded with excess alkyl ammonium ions, OLS(E). XRD spectra show an increase in the gallery spacing of the OLSs, indicating that the copolymer chains have intercalated the layered silicates. AFM images reveal a distinct difference between the two nanocomposite thin films: regions in the vicinity of OLS(S) aggregates were depleted of material, while in the vicinity of OLS(E) aggregates, dewetting of the substrate occurred. We show that the stability of the copolymer/OLS nanocomposite films is determined by the enthalpic driving force associated with intercalation of the copolymer chains into the galleries of the modified OLS layers and by the substrate/organic modifier interactions.

  18. Influence of Chirality in Ordered Block Copolymer Phases

    Science.gov (United States)

    Prasad, Ishan; Grason, Gregory

    2015-03-01

    Block copolymers are known to assemble into rich spectrum of ordered phases, with many complex phases driven by asymmetry in copolymer architecture. Despite decades of study, the influence of intrinsic chirality on equilibrium mesophase assembly of block copolymers is not well understood and largely unexplored. Self-consistent field theory has played a major role in prediction of physical properties of polymeric systems. Only recently, a polar orientational self-consistent field (oSCF) approach was adopted to model chiral BCP having a thermodynamic preference for cholesteric ordering in chiral segments. We implement oSCF theory for chiral nematic copolymers, where segment orientations are characterized by quadrupolar chiral interactions, and focus our study on the thermodynamic stability of bi-continuous network morphologies, and the transfer of molecular chirality to mesoscale chirality of networks. Unique photonic properties observed in butterfly wings have been attributed to presence of chiral single-gyroid networks, this has made it an attractive target for chiral metamaterial design.

  19. Amphiphilic copolymers based on polyoxazoline and grape seed vegetable oil derivatives: self-assemblies and dynamic light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Travelet, Christophe, E-mail: Christophe.Travelet@cermav.cnrs.fr [Universite Joseph Fourier (UJF), Institut de Chimie Moleculaire de Grenoble (ICMG-FR 2607 CNRS), PolyNat Carnot institute, Arcane LabEx, domaine universitaire de Grenoble, Centre de Recherches sur les Macromolecules Vegetales - CERMAV-UPR 5301 CNRS (France); Stemmelen, Mylene; Lapinte, Vincent [Universite de Montpellier II, Institut Charles Gerhardt Montpellier (UMR 5253 CNRS-UM2-UM1-ENSCM), equipe ingenierie et architectures macromoleculaires (France); Dubreuil, Frederic [Universite Joseph Fourier (UJF), Institut de Chimie Moleculaire de Grenoble (ICMG-FR 2607 CNRS), PolyNat Carnot institute, Arcane LabEx, domaine universitaire de Grenoble, Centre de Recherches sur les Macromolecules Vegetales - CERMAV-UPR 5301 CNRS (France); Robin, Jean-Jacques [Universite de Montpellier II, Institut Charles Gerhardt Montpellier (UMR 5253 CNRS-UM2-UM1-ENSCM), equipe ingenierie et architectures macromoleculaires (France); and others

    2013-06-15

    The self-assembly in solution of original structures of amphiphilic partially natural copolymers based on polyoxazoline [more precisely poly(2-methyl-2-oxazoline) (POx)] and grape seed vegetable oil derivatives (linear, T-, and trident-structure) is investigated. The results show that such systems are found, using dynamic light scattering (DLS), to spontaneously self-organize into monomodal, narrow-size, and stable nanoparticles in aqueous medium. The obtained hydrodynamic diameters (D{sub h}) range from 8.6 to 32.5 nm. Specifically, such size increases strongly with increasing natural block (i.e., lipophilic species) length due to higher hydrophobic interactions (from 10.1 nm for C{sub 19} to 19.2 nm for C{sub 57}). Furthermore, increasing the polyoxazoline (i.e., hydrophilic block) length leads to a moderate linear increase of the D{sub h}-values. Therefore, the first-order size effect comes from the natural lipophilic block, whereas the characteristic size can be tuned more finely (i.e., in a second-order) by choosing appropriately the polyoxazoline length. The DLS results in terms of characteristic size are corroborated using nanoparticle tracking analysis (NTA), and also by atomic force microscopy (AFM) and transmission electron microscopy (TEM) imaging where well-defined spherical and individual nanoparticles exhibit a very good mechanical resistance upon drying. Moreover, changing the lipophilic block architecture from linear to T-shape, while keeping the same molar mass, generates a branching and thus a shrinking by a factor of 2 of the nanoparticle volume, as observed by DLS. In this paper, it is clearly shown that the self-assemblies of amphiphilic block copolymer obtained from grape seed vegetable oil derivatives (sustainable renewable resources) as well as their tunability are of great interest for biomass valorization at the nanoscale level [continuation of the article by Stemmelen et al. (Polym Chem 4:1445-1458, 2013)].Graphical Abstract

  20. Amphiphilic copolymers based on polyoxazoline and grape seed vegetable oil derivatives: self-assemblies and dynamic light scattering

    International Nuclear Information System (INIS)

    Travelet, Christophe; Stemmelen, Mylène; Lapinte, Vincent; Dubreuil, Frédéric; Robin, Jean-Jacques

    2013-01-01

    The self-assembly in solution of original structures of amphiphilic partially natural copolymers based on polyoxazoline [more precisely poly(2-methyl-2-oxazoline) (POx)] and grape seed vegetable oil derivatives (linear, T-, and trident-structure) is investigated. The results show that such systems are found, using dynamic light scattering (DLS), to spontaneously self-organize into monomodal, narrow-size, and stable nanoparticles in aqueous medium. The obtained hydrodynamic diameters (D h ) range from 8.6 to 32.5 nm. Specifically, such size increases strongly with increasing natural block (i.e., lipophilic species) length due to higher hydrophobic interactions (from 10.1 nm for C 19 to 19.2 nm for C 57 ). Furthermore, increasing the polyoxazoline (i.e., hydrophilic block) length leads to a moderate linear increase of the D h -values. Therefore, the first-order size effect comes from the natural lipophilic block, whereas the characteristic size can be tuned more finely (i.e., in a second-order) by choosing appropriately the polyoxazoline length. The DLS results in terms of characteristic size are corroborated using nanoparticle tracking analysis (NTA), and also by atomic force microscopy (AFM) and transmission electron microscopy (TEM) imaging where well-defined spherical and individual nanoparticles exhibit a very good mechanical resistance upon drying. Moreover, changing the lipophilic block architecture from linear to T-shape, while keeping the same molar mass, generates a branching and thus a shrinking by a factor of 2 of the nanoparticle volume, as observed by DLS. In this paper, it is clearly shown that the self-assemblies of amphiphilic block copolymer obtained from grape seed vegetable oil derivatives (sustainable renewable resources) as well as their tunability are of great interest for biomass valorization at the nanoscale level [continuation of the article by Stemmelen et al. (Polym Chem 4:1445–1458, 2013)].Graphical AbstractAmphiphilic copolymers based

  1. Melt-processable, radiation cross-linkable E--CTFE copolymer compositions

    International Nuclear Information System (INIS)

    Robertson, A.B.; Schaffhauser, R.J.

    1976-01-01

    Melt-processable, radiation cross-linkable ethylene/chlorotrifluoroethylene copolymer compositions are provided which contain about 0.1 to 5 percent by weight of the copolymer of a radiation cross-linking promoter, about 0.01 to 5 percent by weight of an anti-oxidant and about 0.1 to 30 precent by weight of an acid scavenger. Such compositions do not give off odors when irradiated to cross-link the copolymer and do not develop bubbles after irradiation. 15 claims, no drawings

  2. Synthesis of Norbornene Derived Helical Copolymer by Simple Molecular Marriage Approach to Produce Smart Nanocarrier.

    Science.gov (United States)

    Mane, Shivshankar R; Sathyan, Ashlin; Shunmugam, Raja

    2017-03-22

    A novel library of norbornene derived helical copolymer has been synthesized through the coupling of two homopolymers via Molecular Marriage Approach. The helicity is governed by the non-covalent interactions like hydrogen bonding, π-π stacking and the influence of hydrophobic and hydrophilic motifs. The detailed characterization of the copolymer (Copoly 1) has been provided and the super structures are confirmed through dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The observed size of the aggregates was about 200 nm. The density functional theory (DFT) is favorably supported for the formation of proposed structure of Copoly 1. Circular dichroism (CD) measurement has confirmed the one handed helical structure of the copolymer. Reservoir capability of this pH responsive polymer (Copoly 1) to encapsulate anti-cancer drug doxorubicin (DOX) warrants its potential applications in the field of bio-medical sciences.

  3. Controlling sub-microdomain structure in microphase-ordered block copolymers and their nanocomposites

    Science.gov (United States)

    Bowman, Michelle Kathleen

    Block copolymers exhibit a wealth of morphologies that continue to find ubiquitous use in a diverse variety of mature and emergent (nano)technologies, such as photonic crystals, integrated circuits, pharmaceutical encapsulents, fuel cells and separation membranes. While numerous studies have explored the effects of molecular confinement on such copolymers, relatively few have examined the sub-microdomain structure that develops upon modification of copolymer molecular architecture or physical incorporation of nanoscale objects. This work will address two relevant topics in this vein: (i) bidisperse brushes formed by single block copolymer molecules and (ii) copolymer nanocomposites formed by addition of molecular or nanoscale additives. In the first case, an isomorphic series of asymmetric poly(styrene-b -isoprene-b-styrene) (S1IS2) triblock copolymers of systematically varied chain length has been synthesized from a parent SI diblock copolymer. Small-angle x-ray scattering, coupled with dynamic rheology and self-consistent field theory (SCFT), reveals that the progressively grown S2 block initially resides in the I-rich matrix and effectively reduces the copolymer incompatibility until a critical length is reached. At this length, the S2 block co-locates with the S1 block so that the two blocks generate a bidisperse brush (insofar as the S1 and S2 lengths differ). This single-molecule analog to binary block copolymer blends affords unique opportunities for materials design at sub-microdomain length scales and provides insight into the transition from diblock to triblock copolymer (and thermoplastic elastomeric nature). In the second case, I explore the distribution of molecular and nanoscale additives in microphase-ordered block copolymers and demonstrate via SCFT that an interfacial excess, which depends strongly on additive concentration, selectivity and relative size, develops. These predictions are in agreement with experimental findings. Moreover, using a

  4. Responsive Copolymers for Enhanced Petroleum Recovery

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    2001-02-27

    The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.

  5. Tuning the Optoelectronic Properties of Vinylene-Linked Donor−Acceptor Copolymers for Organic Photovoltaics

    KAUST Repository

    Ko, Sangwon

    2010-08-24

    Five new donor-acceptor copolymers containing the electron acceptor benzothiadiazole (BTZ) linked to the electron donors fluorene (FL) or cyclopentadithiophene (CPDT) via vinylene units were synthesized to study polymer structure-property relationships in organic photovoltaic devices. Both alternating (P) and random copolymers (P1-P4) were prepared via Suzuki and Stille polycondensations, respectively. The cyclopentadithiophene copolymers (P2 and P4) have smaller electrochemical band gaps (1.79 and 1.64 eV) compared to the fluorene-containing copolymers (2.08 and 1.95 eV for P1 and P3). However, the presence of CPDT raises the electrochemical HOMO energy levels (-4.83 and-4.91 eV for P2 and P4) compared to the FL copolymers (-5.06 and-5.15 eV for P1 and P3) leading to small open circuit voltages (Voc) in solar cells. The primary solution and thin-film UV-vis absorption peaks of P3 and P4, which do not contain alkylated thiophenes appended to the BTZ unit, are at lower energy and have larger absorption coefficients than their P1 and P2 counterparts. Detailed theoretical analyses of the geometric structure, electronic structure, and excited-state vertical transitions using density functional theory provide direct insight into the interplay between the structural modifications and resulting electronic and optical changes. A high molecular weight (Mn = 25 kg/mol) polymer with a large degree of polymerization (DPn = 21) was easily achieved for the random copolymer P1, leading to thin films with both a larger absorption coefficient and a larger hole mobility compared to the analogous alternating polymer P (Mn = 22 kg/mol, DPn = 18). An improved short circuit current and a power conversion efficiency up to 1.42% (Jsc = 5.82 mA/cm2, Voc = 0.765 V, and FF = 0.32) were achieved in bulk heterojunction solar cells based on P1. © 2010 American Chemical Society.

  6. Linearization of non-commuting operators in the partition function

    International Nuclear Information System (INIS)

    Ahmed, M.

    1983-06-01

    A generalization of the Stratonovich-Hubbard scheme for evaluating the grand canonical partition function is given. The scheme involves linearization of products of non-commuting operators using the functional integral method. The non-commutivity of the operators leads to an additional term which can be absorbed in the single-particle Hamiltonian. (author)

  7. Study of crystalline morphology and phase structure in poly(styrene-b-ethylene oxide-b-styrene) triblock copolymers bu solid state RMN spin diffusion

    International Nuclear Information System (INIS)

    Mantovani, Gerson L.; Phan, Trang; Bertin, Denis; Azevedo, Eduardo R. de; Bonagamba, Tito J.

    2009-01-01

    The phase structure and crystalline morphology of a series of polystyrene-b-polyethylene oxide-b-polystyrene (PS-b- PEO-b-PS) triblock copolymers, with different compositions and molecular weights, has been studied by solid-state NMR. WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethylene oxide (PEO) blocks at room temperature as a function of the copolymer composition. 1 H NMR spin diffusion analyses provided an estimation of the size of the dispersed phases of the nano structured copolymers. (author)

  8. Phase behavior of model ABC triblock copolymers

    Science.gov (United States)

    Chatterjee, Joon

    The phase behavior of poly(isoprene-b-styrene- b-ethylene oxide) (ISO), a model ABC triblock copolymer has been studied. This class of materials exhibit self-assembly, forming a large array of ordered morphologies at length scales of 5-100 nm. The formation of stable three-dimensionally continuous network morphologies is of special interest in this study. Since these nanostructures considerably impact the material properties, fundamental knowledge for designing ABC systems have high technological importance for realizing applications in the areas of nanofabrication, nanoporous media, separation membranes, drug delivery and high surface area catalysts. A comprehensive framework was developed to describe the phase behavior of the ISO triblock copolymers at weak to intermediate segregation strengths spanning a wide range of composition. Phases were characterized through a combination of characterization techniques, including small angle x-ray scattering, dynamic mechanical spectroscopy, transmission electron microscopy, and birefringence measurements. Combined with previous investigations on ISO, six different stable ordered state symmetries have been identified: lamellae (LAM), Fddd orthorhombic network (O70), double gyroid (Q230), alternating gyroid (Q214), hexagonal (HEX), and body-centered cubic (BCC). The phase map was found to be somewhat asymmetric around the fI = fO isopleth. This work provides a guide for theoretical studies and gives insight into the intricate effects of various parameters on the self-assembly of ABC triblock copolymers. Experimental SAXS data evaluated with a simple scattering intensity model show that local mixing varies continuously across the phase map between states of two- and three-domain segregation. Strategies of blending homopolymers with ISO triblock copolymer were employed for studying the swelling properties of a lamellar state. Results demonstrate that lamellar domains swell or shrink depending upon the type of homopolymer that

  9. Ion Correlation Effects in Salt-Doped Block Copolymers

    Science.gov (United States)

    Brown, Jonathan R.; Seo, Youngmi; Hall, Lisa M.

    2018-03-01

    We apply classical density functional theory to study how salt changes the microphase morphology of diblock copolymers. Polymers are freely jointed and one monomer type favorably interacts with ions, to account for the selective solvation that arises from different dielectric constants of the microphases. By including correlations from liquid state theory of an unbound reference fluid, the theory can treat chain behavior, microphase separation, ion correlations, and preferential solvation, at the same coarse-grained level. We show good agreement with molecular dynamics simulations.

  10. Effect of Grafting Density of Random Copolymer Brushes on Perpendicular Alignment in PS-b-PMMA Thin Films

    KAUST Repository

    Lee, Wooseop; Park, Sungmin; Kim, Yeongsik; Sethuraman, Vaidyanathan; Rebello, Nathan; Ganesan, Venkat; Ryu, Du Yeol

    2017-01-01

    We modulated the grafting density (σ) of a random copolymer brush of poly(styrene-r-methyl methacrylate) on substrates to probe its effect on the formation of perpendicularly aligned lamellae of polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA). Supported by coarse-grained simulation results, we hypothesized that an increase in σ will allow us to systematically tune the block copolymer interfacial interactions with the substrates from being preferential to one of the blocks to being neutral toward both blocks and will thereby facilitate enhanced regimes of perpendicularly aligned lamellae. We verified such a hypothesis by using a simple grafting-to approach to modify the substrates and characterized the thickness window for perpendicular lamellae as a function of brush thickness (or σ) on the grafted substrates using scanning force microscopy (SFM) images and grazing incidence small-angle X-ray scattering (GISAXS) measurements. The experimental results validated our hypothesis and suggested that the σ of random copolymer brushes can be used as an additional versatile parameter to modulate the interfacial interactions and the resulting alignment of block copolymer films.

  11. Effect of Grafting Density of Random Copolymer Brushes on Perpendicular Alignment in PS-b-PMMA Thin Films

    KAUST Repository

    Lee, Wooseop

    2017-07-18

    We modulated the grafting density (σ) of a random copolymer brush of poly(styrene-r-methyl methacrylate) on substrates to probe its effect on the formation of perpendicularly aligned lamellae of polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA). Supported by coarse-grained simulation results, we hypothesized that an increase in σ will allow us to systematically tune the block copolymer interfacial interactions with the substrates from being preferential to one of the blocks to being neutral toward both blocks and will thereby facilitate enhanced regimes of perpendicularly aligned lamellae. We verified such a hypothesis by using a simple grafting-to approach to modify the substrates and characterized the thickness window for perpendicular lamellae as a function of brush thickness (or σ) on the grafted substrates using scanning force microscopy (SFM) images and grazing incidence small-angle X-ray scattering (GISAXS) measurements. The experimental results validated our hypothesis and suggested that the σ of random copolymer brushes can be used as an additional versatile parameter to modulate the interfacial interactions and the resulting alignment of block copolymer films.

  12. Synthesis and Performance of an Acrylamide Copolymer Containing Nano-SiO2 as Enhanced Oil Recovery Chemical

    Directory of Open Access Journals (Sweden)

    Zhongbin Ye

    2013-01-01

    Full Text Available A novel copolymer containing nano-SiO2 was synthesized by free radical polymerization using acrylamide (AM, acrylic acid (AA, and nano-SiO2 functional monomer (NSFM as raw materials under mild conditions. The AM/AA/NSFM copolymer was characterized by infrared (IR spectroscopy, 1H NMR spectroscopy, elemental analysis, and scanning electron microscope (SEM. It was found that the AM/AA/NSFM copolymer exhibited higher viscosity than the AM/AA copolymer at 500 s−1 shear rate (18.6 mPa·s versus 8.7 mPa·s. It was also found that AM/AA/NSFM could achieve up to 43.7% viscosity retention rate at 95°C. Mobility control results indicated that AM/AA/NSFM could establish much higher resistance factor (RF and residual resistance factor (RRF than AM/AA under the same conditions (RF: 16.52 versus 12.17, RRF: 3.63 versus 2.59. At last, the enhanced oil recovery (EOR of AM/AA/NSFM was up to 20.10% by core flooding experiments at 65°C.

  13. Construction of hydroxypropyl-{beta}-cyclodextrin copolymer nanoparticles and targeting delivery of paclitaxel

    Energy Technology Data Exchange (ETDEWEB)

    Miao Qinghua; Li Suping; Han Siyuan [National Center for Nanoscience and Technology of China, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (China); Wang Zhi, E-mail: wangzhi@jlu.edu.cn [Jilin University, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education (China); Wu Yan, E-mail: wuy@nanoctr.cn; Nie Guangjun, E-mail: niegj@nanoctr.cn [National Center for Nanoscience and Technology of China, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (China)

    2012-08-15

    A novel amphiphilic copolymer with p-maleimidophenyl isocyanate-hydroxypropyl-{beta}-cyclodextrin-polylactide-1, 2-dipalmitoyl-sn-glycero-3-phosphoethanolamine to generate copolymer nanoparticles (NPs) has been designed. In order to develop an active targeting system, integrin {alpha}{sub v}{beta}{sub 3}-specific targeting peptide cyclo(Arg-Gly-Asp-D-Phe-Cys), cRGD, was conjugated to the surface of NPs (NPs-RGD). These NPs were used to encapsulate anti-tumor drug, paclitaxel. The resulting NPs exhibited high drug-loading capacity and controlled drug release in vitro at acidic pH. In vitro cytotoxicity assay demonstrates that paclitaxel-loaded NPs-RGD significantly inhibited B16 tumor cell (high {alpha}{sub v}{beta}{sub 3}) proliferation relative to free paclitaxel and paclitaxel-loaded NPs at high concentrations. Paclitaxel-loaded NPs-RGD localized mainly in lysosomes in B16 cells as revealed by confocal microscopy. These results suggest a novel strategy for fabrication-functionalizing hydroxypropyl-{beta}-cyclodextrin copolymer nanoparticles for targeting delivery of paclitaxel to integrin {alpha}{sub v}{beta}{sub 3}-rich tumor cells. These nanocarriers can be readily extended to couple other bioactive molecules for active targeting and delivery of various chemotherapeutic drugs.

  14. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    Science.gov (United States)

    Nykaza, Jacob Richard

    In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk

  15. Functional porous structures based on the pyrolysis of cured templates of block copolymer and phenolic resin

    NARCIS (Netherlands)

    Kosonen, H; Valkama, S; Nykanen, A; Toivanen, M; ten Brinke, G; Ruokolainen, J; Ikkala, O; Nykänen, Antti

    2006-01-01

    Porous materials with controlled pore size and large surface area (see Figure) have been prepared by crosslinking phenolic resin in the presence of a self-assembled block-copolymer template, followed by pyrolysis. Many phenolic hydroxyl groups remain at the matrix and pore walls, which can be used

  16. Topology and Shape Control for Assemblies of Block Copolymer Blends in Solution

    KAUST Repository

    Moreno Chaparro, Nicolas; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor; Calo, Victor M.

    2015-01-01

    We study binary blends of asymmetric diblock copolymers (AB/AC) in selective solvents with a mesoscale model. We investigate the morphological transitions induced by the concentration of the AC block copolymer and the difference in molecular weight between the AB and AC copolymers, when segments B and C exhibit hydrogen-bonding interactions. To the best of our knowledge, this is the first work modeling mixtures of block copolymers with large differences in molecular weight. The coassembly mechanism localizes the AC molecules at the interface of A and B domains and induces the swelling of the B-rich domains. The coil size of the large molecular weight block copolymer depends only on the concentration of the short block copolymer (AC or AB), regardless of the B–C interactions. However, the B–C interactions control the morphological transitions that occur in these blends.

  17. Topology and Shape Control for Assemblies of Block Copolymer Blends in Solution

    KAUST Repository

    Moreno Chaparro, Nicolas

    2015-10-27

    We study binary blends of asymmetric diblock copolymers (AB/AC) in selective solvents with a mesoscale model. We investigate the morphological transitions induced by the concentration of the AC block copolymer and the difference in molecular weight between the AB and AC copolymers, when segments B and C exhibit hydrogen-bonding interactions. To the best of our knowledge, this is the first work modeling mixtures of block copolymers with large differences in molecular weight. The coassembly mechanism localizes the AC molecules at the interface of A and B domains and induces the swelling of the B-rich domains. The coil size of the large molecular weight block copolymer depends only on the concentration of the short block copolymer (AC or AB), regardless of the B–C interactions. However, the B–C interactions control the morphological transitions that occur in these blends.

  18. In-vitro cytotoxic activities of poly(2-ethyl-2-oxazoline-based amphiphilic block copolymers prepared by CuAAC click chemistry

    Directory of Open Access Journals (Sweden)

    S. Gulyuz

    2018-02-01

    Full Text Available Synthesis and characterization of well-defined amphiphilic block copolymers containing poly(2-ethyl-2-oxazoline as hydrophilic block and poly(ε-caprolactone or poly(L-lactide as hydrophobic block is achieved by copper-catalyzed azide-alkyne cycloaddition (CuAAC click chemistry. The clickable precursors, α-alkyne-functionalized poly(ε-caprolactone and poly(L-lactide and ω-azido-functionalized poly(2-ethyl-2-oxazoline are simply prepared and joined using copper sulfate/ascorbic acid catalyst system at room temperature. The structures of precursors and amphiphilic block copolymers are characterized by spectroscopic, chromatographic and thermal analyses. The cytotoxic activities of resulting amphiphilic block copolymers and their precursors are investigated in the prostate epithelial and cancer cells under in-vitro conditions. The treatment of the healthy prostate epithelial cell line PNT1A reveals that no significant cytotoxicity, whereas some significant toxic effects on the prostate cancer cell lines are observed.

  19. Non-linear variation of the beta function with momentum

    International Nuclear Information System (INIS)

    Parzen, G.

    1983-07-01

    A theory is presented for computing the non-linear dependence of the β-functions on momentum. Results are found for the quadratic term. The results of the theory are compared with computed results. A procedure is proposed for computing the strengths of the sextupole correctors to correct the dependence of the β-function on momentum

  20. Filtering Non-Linear Transfer Functions on Surfaces.

    Science.gov (United States)

    Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

    2014-07-01

    Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few

  1. Geometrically non linear analysis of functionally graded material ...

    African Journals Online (AJOL)

    user

    when compared to the other engineering materials (Akhavan and Hamed, 2010). However, FGM plates under mechanical loading may undergo elastic instability. Hence, the non-linear behavior of functionally graded plates has to be understood for their optimum design. Reddy (2000) proposed the theoretical formulation ...

  2. Incorporation of fluconazole in copolymer PMMA-g-PEG derivatives

    International Nuclear Information System (INIS)

    Silveira, B.M.; Santos, V.M.R. dos; Novack, K.M.; Lopes, S.A.

    2014-01-01

    The graft copolymer PMMA-g-PEG went through chemical transformations in its chain through acetylation, halogenation, methylation and esterification followed by hydrolysis reactions. Subsequently, the copolymer PMMA-g-PEG derivatives passed through the process of emulsification and incorporation of the drug fluconazole. Derivatives copolymers were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) after incorporation in order to evaluate their effectiveness. The efficiency of incorporation was observed and it was also verified that the complexity of polymer chain influence in the incorporated fluconazole content. (author)

  3. Characterization of Comb-Shaped Copolymers by Multidetection SEC, DLS and SANS

    Directory of Open Access Journals (Sweden)

    Giulia Gelardi

    2017-02-01

    Full Text Available PolyCarboxylate ether-based superplasticizers (PCEs are a type of comb-shaped copolymers used as polymeric dispersants in cementitious materials. PCEs have a high degree of dispersity, which limits the suitability of conventional characterization techniques, such as Size Exclusion Chromatography (SEC. Properties of PCEs strongly depend on their molecular structure and a comprehensive characterization is needed to fully understand the structure–property relationships. PCEs with well-defined molecular structures were synthesized to study their solution conformation by SEC and scattering techniques. The combined use of SEC, dynamic light scattering and small-angle neutron scattering allowed us to demonstrate the validity of a scaling law describing the radius of gyration of comb-shaped copolymers as a function of their molecular structure. Moreover, we show that the use of SEC with standard calibration, although widely spread, is not adequate for PCEs.

  4. Preparation, characterization, and in vitro activity evaluation of triblock copolymer-based polymersomes for drugs delivery

    Science.gov (United States)

    Besada, Lucas N.; Peruzzo, Pablo; Cortizo, Ana M.; Cortizo, M. Susana

    2018-03-01

    Polymersomes are polymer-based vesicles that form upon hydration of amphiphilic block copolymers and display high stability and durability, due to their mechanical and physical properties. They have hydrophilic reservoirs as well as thick hydrophobic membranes; allowing to encapsulate both water-soluble bioactive agent and hydrophobic drugs. In this study, poly ethylene glycol (PEG3350 and PEG6000) were used as hydrophilic part and poly(vinyl benzoate) (PVBz) as hydrophobic block to synthesize amphiphilic triblock copolymers (PVBz- b-PEG- b-PVBz). Different proportions of hydrophilic/hydrophobic part were assayed in order to obtain polymersomes by solvent injection method. For the synthesis of the copolymers, the initial block of PEG was derived to obtain a macroinitiator through a xanthate functional group (PEGX3 or PEGX6) and the polymerization of vinyl benzoate was carried out through reversible addition-fragmentation chain transfer polymerization (RAFT). The structure of PEGX and copolymers was confirmed by Infrared, 1H-NMR and UV-Vis spectrometry, while the average molecular weight (Mw) and polydispersity index (PI) were determined by size exclusion chromatography (SEC). The structures adopted by the copolymers in aqueous solution by self-assembly were investigated using transmission electron microscopy (TEM), dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). Both techniques confirm that polymersomes were obtained for a fraction of hydrophilic block ( f) ≈ 35 ± 10%, with a diameter of 38.3 ± 0.3 nm or 22.5 ± 0.7 nm, as determined by TEM and according to the M w of the precursor block copolymer. In addition, we analyzed the possible cytotoxicity in view of its potential application as biomedical nanocarrier. The results suggest that polymersomes seem not induce cytotoxicity during the periods of time tested.

  5. Poly(Acrylic Acid-b-Styrene) Amphiphilic Multiblock Copolymers as Building Blocks for the Assembly of Discrete Nanoparticles

    Science.gov (United States)

    Greene, Anna C.; Zhu, Jiahua; Pochan, Darrin J.; Jia, Xinqiao; Kiick, Kristi L.

    2011-01-01

    In order to expand the utility of current polymeric micellar systems, we have developed amphiphilic multiblock copolymers containing alternating blocks of poly(acrylic acid) and poly(styrene). Heterotelechelic poly(tert-butyl acrylate-b-styrene) diblock copolymers containing an α-alkyne and an ω-azide were synthesized by atom transfer radical polymerization (ATRP), allowing control over the molecular weight while maintaining narrow polydispersity indices. The multiblock copolymers were constructed by copper-catalyzed azide-alkyne cycloaddition of azide-alkyne end functional diblock copolymers which were then characterized by 1H NMR, FT-IR and SEC. The tert-butyl moieties of the poly(tert-butyl acrylate-b-styrene) multiblock copolymers were easily removed to form the poly(acrylic acid-b-styrene) multiblock copolymer ((PAA-PS)9), which contained up to 9 diblock repeats. The amphiphilic multiblock (PAA-PS)9 (Mn = 73.3 kg/mol) was self-assembled by dissolution into tetrahydrofuran and extensive dialysis against deionized water for 4 days. The critical micelle concentration (CMC) for (PAA-PS)9 was determined by fluorescence spectroscopy using pyrene as a fluorescent probe and was found to be very low at 2 × 10-4 mg/mL. The (PAA-PS)9 multiblock was also analyzed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter of the particles was found to be 11 nm. Discrete spherical particles were observed by TEM with an average particle diameter of 14 nm. The poly(acrylic acid) periphery of the spherical particles should allow for future conjugation of biomolecules. PMID:21552373

  6. Linear functional analysis for scientists and engineers

    CERN Document Server

    Limaye, Balmohan V

    2016-01-01

    This book provides a concise and meticulous introduction to functional analysis. Since the topic draws heavily on the interplay between the algebraic structure of a linear space and the distance structure of a metric space, functional analysis is increasingly gaining the attention of not only mathematicians but also scientists and engineers. The purpose of the text is to present the basic aspects of functional analysis to this varied audience, keeping in mind the considerations of applicability. A novelty of this book is the inclusion of a result by Zabreiko, which states that every countably subadditive seminorm on a Banach space is continuous. Several major theorems in functional analysis are easy consequences of this result. The entire book can be used as a textbook for an introductory course in functional analysis without having to make any specific selection from the topics presented here. Basic notions in the setting of a metric space are defined in terms of sequences. These include total boundedness, c...

  7. About morphology in ethylene-propylene(-diene) copolymers-based latexes

    NARCIS (Netherlands)

    Tillier, D.L.; Meuldijk, J.; Hoehne, G.W.H.; Frederik, P.M.; Regev, O.; Koning, C.E.

    2005-01-01

    Coatings and engineering plastics often require high impact strength. This property can be achieved with tougheners. For the present paper, core-shell impact modifiers were synthesized using ethylene–propylene copolymers (EPM), ethylene–propylene-diene copolymers (EPDM) or a mixture of both types

  8. Adsorption of charged diblock copolymers : effect on colloidal stability

    NARCIS (Netherlands)

    Israels, R.

    1994-01-01

    In this thesis we present Scheutjens-Fleer (SF) calculations on the adsorption of diblock copolymers. More specifically, we restrict ourselves to adsorption at uncharged surfaces, while the specific type of block copolymers we consider have one uncharged adsorbing "anchor" block and one

  9. Synthesis of amphiphilic poly(ε-caprolactone)-b-poly( N-vinylcaprolactam) block copolymers via the combination of RAFT polymerization and click chemistry

    International Nuclear Information System (INIS)

    Assis, Paulo Henrique; Aguiar, Graziele Aparecida de Jesus; Moraes, Rodolfo Minto de; Medeiros, Simone de Fatima; Santos, Amilton Martins

    2016-01-01

    Full text: In recent years, well-defined block copolymers composed of a hydrophilic and hydrophobic segments have gained much interest as drug carriers, because of their enhanced solubility and sustained release of the drug in controlled delivery systems [1]. The development of strategies to obtain block copolymers has attracted considerable attention, due to the possibility to combine characteristic properties of the homopolymers. A wide variety of well-defined block copolymers have been successfully synthesized by combining the efficiency and selectivity of click chemistry with the powerful RAFT polymerization mechanism. In the present work, well-defined amphiphilic, biocompatible, partially biodegradable, and thermosensitive poly(ε-caprolactone)-b-poly(N-vinylcaprolactam) (PCL-b-PNVCL) block copolymers were synthesized by combining ring opening polymerization (ROP), reversible addition-fragmentation chain transfer (RAFT) polymerization and subsequent click chemistry reaction. Alkyne-terminated poly(ε-caprolactone) (alkyne-PCL) was obtained by the ring opening polymerization of ε-caprolactone (ε-CL) using propargyl alcohol as initiator and stannous-2-ethylhexanoate [Sn(Oct) 2 ] as catalyst. The azide end-capped-poly(N-vinylcaprolactam) (PNVCL-N 3 ) was synthesized by reversible addition-fragmentation chain transfer/macromolecular design via interchange of xanthates (RAFT/MADIX) polymerization of the N-vinylcaprolactam (NVCL) mediated by a novel chain transfer agent comprising an azide function , 2-azidoethyl[(ethoxycarbonothioyl)thio](phenyl)acetate. These functionalized homopolymers, alkyne-PCL and PNVCL-N 3 , were coupled by the 1,3 dipolar cycloaddition reaction in order to obtain the corresponding block copolymers. These (co)polymers were characterized by FTIR, 1 H NMR and GPC measurements. Reference: 1. RAMESH, K., SINGH, S., MITRA, K., CHATTOPADHYAY, D., MISRA, N., & RAY, B. (2015). Colloid and Polymer Science, 1-9. (author)

  10. Monte Carlo simulations of the phase separation of a copolymer blend in a thin film

    KAUST Repository

    Wang, Zhexiao

    2014-12-11

    Monte Carlo simulations were carried out to study the phase separation of a copolymer blend comprising an alternating copolymer and/or block copolymer in a thin film, and a phase diagram was constructed with a series of composed recipes. The effects of composition and segregation strength on phase separation were discussed in detail. The chain conformation of the block copolymer and alternating copolymer were investigated with changes of the segregation strength. Our simulations revealed that the segment distribution along the copolymer chain and the segregation strength between coarse-grained beads are two important parameters controlling phase separation and chain conformation in thin films of a copolymer blend. A well-controlled phase separation in the copolymer blend can be used to fabricate novel nanostructures.

  11. Mechanically compliant electrodes and dielectric elastomers from PEG-PDMS copolymers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    2016-01-01

    Soft conducting elastomers have been prepared from polydimethylsiloxane-polyethyleneglycol (PDMS-PEG) copolymer and surfactant-stabilized multi-walled carbon nanotubes (MWCNTs). The copolymer was chain-extended with PDMS of molecular weight 17.2 kg mol-1 in order to obtain a crosslinkable PDMS...... showed high conductivity combined with inherent softness. The high conductivity and softness, PDMS-PEG copolymers with incorporated MWCNTs hold great promises as compliant and highly stretchable electrodes for stretchable devices such as electro-mechanical transducers....

  12. Preparation and icephobic properties of polymethyltrifluoropropylsiloxane–polyacrylate block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaohui; Zhao, Yunhui [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Li, Hui [School of Chemistry and Chemical Engineering, Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022 (China); Yuan, Xiaoyan, E-mail: xyuan28@yahoo.com [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2014-10-15

    Highlights: • PMTFPS–b-polyacrylate copolymers in five different compositions were synthesized. • Enrichment of PMTFPS amounts at the surface made high F/Si value. • Icing delay time was related to the surface roughness. • Ice shear strength was decreased by the synergistic effect of silicone and fluorine. - Abstract: Five polymethyltrifluoropropylsiloxane (PMTFPS)–polyacrylate block copolymers (PMTFPS–b-polyacrylate) were synthesized by free radical polymerization of methyl methacrylate, n-butyl acrylate and hydroxyethyl methacrylate using PMTFPS macroazoinitiator (PMTFPS-MAI) in range of 10–50 mass percentages. The morphology, surface chemical composition and wettability of the prepared copolymer films were investigated by transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and water contact angle measurement. Delayed icing time and ice shear strength of the films were also detected for the icephobic purpose. The surface morphologies of the copolymers were different from those of the bulk because of the migration of the PMTFPS segments to the air interface during the film formation. Maximal delayed icing time (186 s at −15 °C) and reduction of the ice shear strength (301 ± 10 kPa) which was significantly lower than that of polyacrylates (804 ± 37 kPa) were achieved when the content of PMTFPS-MAI was 20 wt%. The icephobicity of the copolymers was attributed primarily to the enrichment of PMTFPS on the film surface and synergistic effect of both silicone and fluorine. Thus, the results show that the PMTFPS–b-polyacrylate copolymer can be used as icephobic coating materials potentially.

  13. Realization of an integrated VDF/TrFE copolymer-on-silicon pyroelectric sensor

    NARCIS (Netherlands)

    Setiadi, D.; Setiadi, D.; Regtien, Paulus P.L.; Sarro, P.M.

    1995-01-01

    An integrated pyroelectric sensor based on a vinylidene fluoride trifluoroethylene (VDF/TrFE) copolymer is presented. A silicon substrate that contains FET readout electronics is coated with the VDF/TrFE copolymer film using a spin-coating technique. On-chip poling of the copolymer has been applied

  14. Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series

    Science.gov (United States)

    Gnoffo, Peter A.

    2015-01-01

    Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.

  15. Rheological Behavior of Entangled Polystyrene-Polyhedral Oligosilsesquioxane (POSS) Copolymer

    National Research Council Canada - National Science Library

    Wu, Jian; Mather, Patrick T; Haddad, Timothy S; Kim, Gyeong-Man

    2006-01-01

    ...: random copolymers of polystyrene (PS) and styryl-based polyhedral oligosilsesquioxane (POSS), R7(Si8O12)(C6H4CH=CH2), with R = isobutyl (iBu). A series of styrene-styryl POSS random copolymers with 0, 6, 15, 30, 50 wt...

  16. Radiation crosslinked block copolymer blends with improved impact resistance

    International Nuclear Information System (INIS)

    Saunders, F.L.; Pelletier, R.R.

    1976-01-01

    Polymer blends having high impact resistance after mechanical working are produced by blending together a non-elastomeric monovinylidene aromatic polymer such as polystyrene with an elastomeric copolymer, such as a block copolymer of styrene and butadiene, in the form of crosslinked, colloidal size particles

  17. Block copolymer battery separator

    Science.gov (United States)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  18. Weighted functional linear regression models for gene-based association analysis.

    Science.gov (United States)

    Belonogova, Nadezhda M; Svishcheva, Gulnara R; Wilson, James F; Campbell, Harry; Axenovich, Tatiana I

    2018-01-01

    Functional linear regression models are effectively used in gene-based association analysis of complex traits. These models combine information about individual genetic variants, taking into account their positions and reducing the influence of noise and/or observation errors. To increase the power of methods, where several differently informative components are combined, weights are introduced to give the advantage to more informative components. Allele-specific weights have been introduced to collapsing and kernel-based approaches to gene-based association analysis. Here we have for the first time introduced weights to functional linear regression models adapted for both independent and family samples. Using data simulated on the basis of GAW17 genotypes and weights defined by allele frequencies via the beta distribution, we demonstrated that type I errors correspond to declared values and that increasing the weights of causal variants allows the power of functional linear models to be increased. We applied the new method to real data on blood pressure from the ORCADES sample. Five of the six known genes with P models. Moreover, we found an association between diastolic blood pressure and the VMP1 gene (P = 8.18×10-6), when we used a weighted functional model. For this gene, the unweighted functional and weighted kernel-based models had P = 0.004 and 0.006, respectively. The new method has been implemented in the program package FREGAT, which is freely available at https://cran.r-project.org/web/packages/FREGAT/index.html.

  19. Highly conductive side chain block copolymer anion exchange membranes.

    Science.gov (United States)

    Wang, Lizhu; Hickner, Michael A

    2016-06-28

    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days.

  20. Sustainable Triblock Copolymers for Application as Thermoplastic Elastomers

    Science.gov (United States)

    Ding, Wenyue; Wang, Shu; Ganewatta, Mitra; Tang, Chuanbing; Robertson, Megan

    Thermoplastic elastomers (TPEs), combining the processing advantages of thermoplastics with the flexibility and extensibility of elastomeric materials, have found versatile applications in industry, including electronics, clothing, adhesives, and automotive components. ABA triblock copolymers, in which A represents glassy endblocks and B the rubbery midblock, are commercially available as TPEs, such as poly(styrene-b-butadiene-b-styrene) (SBS) or poly(styrene-b-isoprene-b-styrene) (SIS). However, the commercial TPEs are derived from fossil fuels. The finite availability of fossil fuels and the environmental impact of the petroleum manufacturing have led to the increased interest in the development of alternative polymeric materials from sustainable sources. Rosin acids are promising replacement for the petroleum source due to their abundance in conifers, rigid molecular structures, and ease of functionalization. In this study, we explored the utilization of a rosin acid derivative, poly(dehydroabietic ethyl methacrylate) (PDAEMA), as a sustainable alternative for the glassy domain. The triblock copolymer poly(dehydroabietic ethyl methacrylate-b-n-butyl acylate-b-dehydroabietic ethyl methacrylate) (DnBD) was synthesized and characterized. DnBD exhibited tunable morphological and thermal properties. Tensile testing revealed elastomeric behavior.

  1. Oriented Structure of Pentablock Copolymers Induced by Solution Extrusion

    Science.gov (United States)

    Harada, Tamotsu; Bates, Frank S.; Lodge, Timothy P.

    2002-03-01

    Highly oriented structure of a poly(styrene-co-butadiene) pentablock copolymer (Mw; 104,700 g/mol, weight percentage of polybutadiene blocks; 29 wt of concentrated solutions. The pentablock copolymer was dissolved into mixtures of toluene and heptane, and the polymer concentration ranged from 40 wt extrusion, the pentablock copolymer was solidified either by coagulation in methanol or by evaporation of the solvent. Interestingly, a highly oriented lamellar structure was confirmed through the small angle X-ray scattering over a specific range of heptane composition, which is a good solvent for polybutadiene, although the hexagonal cylinder morphology was identified for the melt sample. The transition from the oriented lamellar to highly oriented cylinder structure was observed by annealing the samples at temperatures above the glass transition temperature of polystyrene. Moreover, a transition from parallel to perpendicular orientation in the lamellar state was observed with an increase of the extrusion shear rate. A comparison between pentablock and triblock copolymers will be also discussed.

  2. Resonant soft x-ray GISAXS on block copolymer films

    Science.gov (United States)

    Wang, Cheng; Araki, T.; Watts, B.; Ade, H.; Hexemer, A.; Park, S.; Russell, T. P.; Schlotter, W. F.; Stein, G. E.; Tang, C.; Kramer, E. J.

    2008-03-01

    Ordered block copolymer thin films may have important applications in modern device fabrication. Current characterization methods such as conventional GISAXS have fixed electron density contrast that can be overwhelmed by surface scattering. However, soft x-rays have longer wavelength, energy dependent contrast and tunable penetration, making resonant GISAXS a very promising tool for probing nanostructured polymer thin films. Our preliminary investigation was performed using PS-b-P2VP block copolymer films on beam-line 5-2 SSRL, and beam-line 6.3.2 at ALS, LBNL. The contrast/sensitivity of the scattering pattern varies significantly with photon energy close to the C K-edge (˜290 eV). Also, higher order peaks are readily observed, indicating hexagonal packing structure in the sample. Comparing to the hard x-ray GISAXS data of the same system, it is clear that resonant GISAXS has richer data and better resolution. Beyond the results on the A-B diblock copolymers, results on ABC block copolymers are especially interesting.

  3. Modification of ethylene-norbornene copolymer by Gamma irradiation

    Directory of Open Access Journals (Sweden)

    Kačarević-Popović Zorica M.

    2006-01-01

    Full Text Available The possibility of modifying polyethylene and many other polymers with high energy radiation has led to many useful applications. Due to their new combination of properties and the shortage of experimental data, the radiolysis of a new class of materials, cyclo-olefin copolymers (COC, polymerised from norbornene and ethylene using metallocene catalysts, is of great interest to the study of radiation chemistry and the physics of polymeric systems. Ethylenenorbornene copolymer, pristine and containing an antioxidant were subjected to gamma irradiation in the presence of air and in water. The irradiated copolymer was studied using IR and UV-vis spectrophotometric analysis. The radiation-induced changes in the molecular structure were correlated to changes in the glass transition temperature measured by the DSC method.

  4. ABC triblock copolymer vesicles with mesh-like morphology.

    Science.gov (United States)

    Zhao, Wei; Chen, Dian; Hu, Yunxia; Grason, Gregory M; Russell, Thomas P

    2011-01-25

    Polymer vesicles made from poly(isoprene-b-styrene-b-2-vinyl pyridine) (PI-b-PS-b-P2VP) triblock copolymer confined within the nanopores of an anodic aluminum oxide (AAO) membrane are studied. It was found that these vesicles have well-defined, nanoscopic size, and complex microphase-separated hydrophobic membranes, comprised of the PS and PI blocks, while the coronas are formed by the P2VP block. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the membrane at a well-defined composition of the three blocks that can be tuned by changing the copolymer composition. The nanoscale confinement, copolymer composition, and subtle molecular interactions contribute to the generation of these vesicles with such unusual morphologies.

  5. Multifunctional triblock co-polymer mP3/4HB-b-PEG-b-lPEI for efficient intracellular siRNA delivery and gene silencing.

    Science.gov (United States)

    Zhou, Li; Chen, Zhifei; Wang, Feifei; Yang, Xiuqun; Zhang, Biliang

    2013-04-01

    A non-viral siRNA carrier composed of mono-methoxy-poly (3-hydroxybutyrate-co-4-hydroxybutyrate)-block-polyethylene glycol-block-linear polyethyleneimine (mP3/4HB-b-PEG-b-lPEI) was synthesized using 1800 Da linear polyethyleneimine and evaluated for siRNA delivery. Our study demonstrated that siRNA could be efficiently combined with mP3/4HB-b-PEG-b-lPEI (mAG) co-polymer and was protected from nuclease degradation. The combined siRNA were released from the complexes easily under heparin competition. The particle size of the mAG/siRNA complexes was 158 nm, with a ζ-potential of around 28 mV. Atomic force microscopy images displayed spherical and homogeneously distributed complexes. The mAG block co-polymer displayed low cytotoxicity and efficient cellular uptake of Cy3-siRNA in A549 cells by flow cytometry and confocal microscopy. In vitro transfection efficiency of the block co-polymer was assessed using siRNA against luciferase in cultured A549-Luc, HeLa-Luc, HLF-Luc, A375-Luc and MCF-7-Luc cells. A higher transfection efficiency and lower cytotoxicity was obtained by mAG block co-polymer in five cell lines. Furthermore, a remarkable improvement in luciferase gene silencing efficiency of the mAG complex (up to 90-95%) over that of Lipofectamine™ 2000 (70-82%) was observed in HLF-Luc and A375-Luc cells. Additionally, a mAG/p65-siRNA complex also showed a better capability than Lipofectamine™ 2000/p65-siRNA complex to drastically reduce the p65 mRNA level down to 10-16% in HeLa, U251 and HUVEC cells at an N/P ratio of 70. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  6. Linear circuit transfer functions an introduction to fast analytical techniques

    CERN Document Server

    Basso, Christophe P

    2016-01-01

    Linear Circuit Transfer Functions: An introduction to Fast Analytical Techniques teaches readers how to determine transfer functions of linear passive and active circuits by applying Fast Analytical Circuits Techniques. Building on their existing knowledge of classical loop/nodal analysis, the book improves and expands their skills to unveil transfer functions in a swift and efficient manner. Starting with simple examples, the author explains step-by-step how expressing circuits time constants in different configurations leads to writing transfer functions in a compact and insightful way. By learning how to organize numerators and denominators in the fastest possible way, readers will speed-up analysis and predict the frequency resp nse of simple to complex circuits. In some cases, they will be able to derive the final expression by inspection, without writing a line of algebra. Key features: * Emphasizes analysis through employing time constant-based methods discussed in other text books but not widely us...

  7. Proof of concept for molecular velcro based on the attractive interaction between porphyrin and pyridine containing copolymers

    Directory of Open Access Journals (Sweden)

    M. Sievers

    2018-06-01

    Full Text Available In this short communication, we investigated the synthesis and mixing of porphyrin and pyridine functionalized copolymers as a proof of concept for a velcro-like interaction. A functionalized porphyrin monomer with one polymerizable side chain was synthesized following a rational synthetic pathway. Subsequent copolymerization and careful removal of residual free porphyrin led to poly(n-butyl acrylate-co-5,10,15-triphenyl-20-(3-vinylphenylporphyrin. The immobilized porphyrin was transformed into the corresponding zinc(II complex, which is capable of the coordinative binding of one pyridine moiety. Complete metallation was proven by absorption spectroscopy. 4-Vinylpyridine was immobilized by copolymerization with n-butyl acrylate, too. Via controlled radical polymerization conditions, the molecular weight of poly(n-butyl acrylate-co-4-vinylpyridine was limited to one tenth of the molecular weight of the porphyrin containing copolymer. This large difference in the molecular weight easily allowed identifying the polymers in the mixture of both. With the help of diffusion ordered nuclear magnetic resonance spectroscopy, the complete and temperature-stable precipitation of the porphyrin containing copolymer was observed, proving the expected attractive interaction and supramolecular network formation.

  8. Differentiability of Palmer's linearization Theorem and converse result for density functions

    OpenAIRE

    Castañeda, Alvaro; Robledo, Gonzalo

    2014-01-01

    We study differentiability properties in a particular case of the Palmer's linearization Theorem, which states the existence of an homeomorphism $H$ between the solutions of a linear ODE system having exponential dichotomy and a quasilinear system. Indeed, if the linear system is uniformly asymptotically stable, sufficient conditions ensuring that $H$ is a $C^{2}$ preserving orientation diffeomorphism are given. As an application, we generalize a converse result of density functions for a non...

  9. Loess clay based copolymer for removing Pb(II) ions

    International Nuclear Information System (INIS)

    He, Yu-Feng; Zhang, Ling; Wang, Rong-Min; Li, Hui-Ru; Wang, Yan

    2012-01-01

    Highlights: ► The loess clay based copolymer was prepared using functional monomers. ► Characterization of the polymer adsorbent and the raw material were carried out. ► The adsorption behavior of the complex for Pb(II) ions was evaluated. ► The removal rate of Pb(II) got to 99% and the adsorption capacity got to 356.9 mg/g. - Abstract: Functional monomers, such as acrylic acid and 2-hydroxyethyl methacrylate were supported into loess clay in situ polymerization, which afforded loess clay based copolymer (LC/PAAHM), a new kind of polymer adsorbent for removing Pb(II) ions from aqueous solution. Characterization of the polymer adsorbent was carried out by different sophisticated methods, such as Fourier transformation infrared spectrometry (FTIR), scanning electron microscopy (SEM), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), and Zetasizer. Batch experiments were carried out to evaluate the factors affecting the removal efficiency, in which the pH, the adsorbent dosage, temperature and initial Pb(II) concentration all found in positive relevance to the increase of Pb(II) removal efficiency. The removal rate of Pb(II) got to 99% at room temperature and the adsorption capacity got to 356.9 mg/g. The pseudo-first-order and pseudo-second-order kinetic models were applied to test the experimental data, and Langmuir and Freundlich models have been applied to study the adsorption equilibrium, respectively.

  10. Rotational partition functions for linear molecules

    International Nuclear Information System (INIS)

    McDowell, R.S.

    1988-01-01

    An accurate closed-form expression for the rotational partition function of linear polyatomic molecules in 1 summation electronic states is derived, including the effect of nuclear spin (significant at very low temperatures) and of quartic and sextic centrifugal distortion terms (significant at moderate and high temperatures). The proper first-order quantum correction to the classical rigid-rotator partition function is shown to yield Q/sub r/ ≅β -1 exp(β/3), where βequivalenthcB/kT and B is the rotational constant in cm -1 ; for β≥0.2 additional power-series terms in β are necessary. Comparison between the results of this treatment and exact summations are made for HCN and C 2 H 2 at temperatures from 2 to 5000 K, including separate evaluation of the contributions of nuclear spin and centrifugal distortion

  11. Effects of nanoparticles on the compatibility of PEO-PMMA block copolymers.

    Science.gov (United States)

    Mu, Dan; Li, Jian-Quan; Li, Wei-Dong; Wang, Song

    2011-12-01

    The compatibility of six kinds of designed poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) copolymers was studied at 270, 298 and 400 K via mesoscopic modeling. The values of the order parameters depended on both the structures of the block copolymers and the simulation temperature, while the values of the order parameters of the long chains were higher than those of the short ones; temperature had a more obvious effect on long chains than on the short ones. Plain copolymers doped with poly(ethylene oxide) (PEO) or poly(methyl methacrylate) (PMMA) homopolymer showed different order parameter values. When a triblock copolymer had the same component at both ends and was doped with one of its component polymers as a homopolymer (such as A5B6A5 doped with B6 or A5 homopolymer), the value of its order parameter depended on the simulation temperature. The highest order parameter values were observed for A5B6A5 doped with B6 at 400 K and for A5B6A5 doped with A5 at 270 K. A study of copolymers doped with nanoparticles showed that the mesoscopic phase was influenced by not only the properties of the nanoparticles, such as the size and density, but also the compositions of the copolymers. Increasing the size of the nanoparticles used as a dopant had the most significant effect on the phase morphologies of the copolymers.

  12. Three-Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self-Assembled Chiral Gyroid Networks

    KAUST Repository

    Hur, Kahyun

    2011-10-17

    Metamaterials are engineered artificial materials that offer new functionalities such as super-resolution imaging and cloaking. Calculations of the photonic properties of three-dimensionally isotropic metamaterials with cubic double gyroid and alternating gyroid morphologies from block copolymer self-assembly are presented.

  13. Use of linear discriminant function analysis in seed morphotype ...

    African Journals Online (AJOL)

    Use of linear discriminant function analysis in seed morphotype relationship study in 31 ... Data were collected on 100-seed weight, seed length and seed width. ... to the Mesoamerican gene pool, comprising the cultigroups Sieva-Big Lima, ...

  14. Anomalous Behaviors of Block Copolymers at the Interface of an Immiscible Polymer Blend

    Science.gov (United States)

    Ryu, Ji Ho; Lee, Won Bo

    We investigate the effects of structure and stiffness of block copolymers on the interface of an immiscible polymer blend using coarse-grained molecular dynamics (CGMD) simulation. The diblock and grafted copolymers, which are described by Kremer and Grest bead spring model, are used to compare the compatibilization efficiency, that is, reduction of the interfacial tension. It is found that, overall, the grafted copolymers are located more compactly at the interface and show better compatibilization efficiency than diblock copolymers. In addition, it is noted that an increase in the stiffness of one block of diblock copolymer causes inhomogeneous interfacial coverage due to bundle formation among the stiff blocks and orientational constraint on bundled structures near the interface, which makes copolymers poor compatibilizers. The dependence of anomalous orientational constraint on the chain length of homopolymers is also investigated. Theoretical and Computational Soft Matters Lab.

  15. Responsive copolymers for enhanced petroleum recovery. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    1994-08-01

    A coordinated research program involving synthesis, characterization, and rheology has been undertaken to develop advanced polymer system which should be significantly more efficient than polymers presently used for mobility control and conformance. Unlike the relatively inefficient, traditional EOR polymers, these advanced polymer systems possess microstructural features responsive to temperature, electrolyte concentration, and shear conditions. Contents of this report include the following chapters. (1) First annual report responsive copolymers for enhanced oil recovery. (2) Copolymers of acrylamide and sodium 3-acrylamido-3-methylbutanoate. (3) Terpolymers of NaAMB, Am, and n-decylacrylamide. (4) Synthesis and characterization of electrolyte responsive terpolymers of acrylamide, N-(4-butyl)phenylacrylamide, and sodium acrylate, sodium-2-acrylamido-2-methylpropanesulphonate or sodium-3-acrylamido-3-methylbutanoate. (5) Synthesis and solution properties of associative acrylamido copolymers with pyrensulfonamide fluorescence labels. (6) Photophysical studies of the solution behavior of associative pyrenesulfonamide-labeled polyacrylamides. (7) Ampholytic copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate with [2-(acrylamido)-2-methypropyl]trimethylammonium chloride. (8) Ampholytic terpolymers of acrylamide with sodium 2-acrylamido-2-methylpropanesulphoante and 2-acrylamido-2-methylpropanetrimethyl-ammonium chloride and (9) Polymer solution extensional behavior in porous media.

  16. SYNTHESIS OF pH-RESPONSIVE AMPHIPHILIC DIBLOCK COPOLYMERS CONTAINING POLYISOBUTYLENE via OXYANION-INITIATED POLYMERIZATION AND THEIR MULTIPLE SELF-ASSEMBLY MORPHOLOGIES

    Institute of Scientific and Technical Information of China (English)

    Huai-chao Wang; Ming-zu Zhang; Pei-hong Ni; Jin-lin He; Ying Hao; Yi-xian Wu

    2013-01-01

    Two pH-responsive amphiphilic diblock copolymers,namely polyisobutylene-block-poly[2-(N,N-dimethylamino)ethyl methacrylate] (PIB-b-PDMAEMA) and polyisobutylene-block-poly(metharylic acid) (PIB-b-PMAA),were synthesized via oxyanion-initiated polymerization,and their multiple self-assembly behaviors have been studied.An exo-o1efin-terminated highly reactive polyisobutylene (HRPIB) was first changed to hydroxyl-terminated PIB (PIB-OH) via hydroboration-oxidation of C=C double bond in the chain end,and then reacted with KH to yield a potassium alcoholate of PIB (PIB-O-K+).PIB-O-K+ was immediately used as a macroinitiator to polymerize DMAEMA monomer,resulting in a cationic diblock copolymer PIB-b-PDMAEMA.With the similar synthesis procedure,the anionic diblock copolymer PIB-b-PMAA could be prepared via a combination of oxyanion-initiated polymerization of tert-butyl methacrylate (tBMA) and subsequent hydrolysis of tert-butyl ester groups in PtBMA block.The functional PIB and block copolymers have been fully characterized by 1H-NMR,FT-IR spectroscopy,and gel permeation chromatography (GPC).These samples allowed us to systematically investigate the effects of block composition on the pH responsivity and various self-assembled morphologies of the copolymers in THF/water mixed solvent.Transmission electron microscopy (TEM) images revealed that these diblock copolymers containing small amount of original PIB without exo-olefin-terminated group are able to self-assemble into micelles,vesicles with different particle sizes and cylindrical aggregates,depending on various factors including block copolymer composition,solvent polarity and pH value.

  17. Preservation of beech and spruce wood by allyl alcohol-based copolymers

    International Nuclear Information System (INIS)

    Solpan, Dilek; Gueven, Olgun

    1999-01-01

    Allyl alcohol (AA), acrylonitrile (AN), methyl methacrylate (MMA), monomers and monomer mixtures AA+AN, AA+MMA were used to conserve and consolidate Beech and Spruce. After impregnation, copolymerisation and polymerisation were accomplished by gamma irradiation. The fine structure of wood+polymer(copolymer) composites was investigated by Scanning Electron Microscopy (SEM). It was observed that copolymer obtained from AA+MMA monomer mixture showed the optimum compatibility. The compressional strength and Brinell Hardness Numbers determined for untreated and treated wood samples indicated that the mechanical strength of wood+copolymer composites was increased. It was found that the mechanical strength of the wood samples containing the AA+MMA copolymer was higher than the others. In the presence of P(AA/MMA), at highest conversion, the compressive strength perpendicular to the fibres in Beech and Spruce increased approximately 100 times. The water uptake capacity of wood+copolymer composites was observed to decrease by more than 50% relative to the original samples, and biodegradation did not take place

  18. Fluctuations of two-time quantities and non-linear response functions

    International Nuclear Information System (INIS)

    Corberi, F; Lippiello, E; Sarracino, A; Zannetti, M

    2010-01-01

    We study the fluctuations of the autocorrelation and autoresponse functions and, in particular, their variances and covariance. In a first general part of the paper, we show the equivalence of the variance of the response function to the second-order susceptibility of a composite operator, and we derive an equilibrium fluctuation-dissipation theorem beyond linear order, relating it to the other variances. In a second part of the paper we apply the formalism in the study of non-disordered ferromagnets, in equilibrium or in the coarsening kinetics following a critical or sub-critical quench. We show numerically that the variances and the non-linear susceptibility obey scaling with respect to the coherence length ξ in equilibrium, and with respect to the growing length L(t) after a quench, similar to what is known for the autocorrelation and the autoresponse functions

  19. Thermo-responsive block copolymers

    NARCIS (Netherlands)

    Mocan Cetintas, Merve

    2017-01-01

    Block copolymers (BCPs) are remarkable materials because of their self-assembly behavior into nano-sized regular structures and high tunable properties. BCPs are in used various applications such as surfactants, nanolithography, biomedicine and nanoporous membranes. In these thesis, we aimed to

  20. Molecular architecture of electroactive and biodegradable copolymers composed of polylactide and carboxyl-capped aniline trimer.

    Science.gov (United States)

    Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann-Christine

    2010-04-12

    Two-, four-, and six-armed branched copolymers with electroactive and biodegradable properties were synthesized by coupling reactions between poly(l-lactides) (PLLAs) with different architecture and carboxyl-capped aniline trimer (CCAT). The aniline oligomer CCAT was prepared from amino-capped aniline trimer and succinic anhydride. FT-IR, NMR, and SEC analyses confirmed the structure of the branched copolymers. UV-vis spectra and cyclic voltammetry of CCAT and copolymer solution showed good electroactive properties, similar to those of polyaniline. The water contact angle of the PLLAs was the highest, followed by the undoped copolymer and the doped copolymers. The values of doped four-armed copolymers were 54-63 degrees . Thermal properties of the polymers were studied by DSC and TGA. The copolymers had better thermal stability than the pure PLLAs, and the T(g) between 48-58 degrees C and T(m) between 146-177 degrees C of the copolymers were lower than those of the pure PLLA counterparts. This kind of electroactive and biodegradable copolymer has a great potential for applications in cardiovascular or neuronal tissue engineering.

  1. KEELE, Minimization of Nonlinear Function with Linear Constraints, Variable Metric Method

    International Nuclear Information System (INIS)

    Westley, G.W.

    1975-01-01

    1 - Description of problem or function: KEELE is a linearly constrained nonlinear programming algorithm for locating a local minimum of a function of n variables with the variables subject to linear equality and/or inequality constraints. 2 - Method of solution: A variable metric procedure is used where the direction of search at each iteration is obtained by multiplying the negative of the gradient vector by a positive definite matrix which approximates the inverse of the matrix of second partial derivatives associated with the function. 3 - Restrictions on the complexity of the problem: Array dimensions limit the number of variables to 20 and the number of constraints to 50. These can be changed by the user

  2. New thiol-responsive mono-cleavable block copolymer micelles labeled with single disulfides.

    Science.gov (United States)

    Sourkohi, Behnoush Khorsand; Schmidt, Rolf; Oh, Jung Kwon

    2011-10-18

    Thiol-responsive symmetric triblock copolymers having single disulfide linkages in the middle blocks (called mono-cleavable block copolymers, ss-ABP(2)) were synthesized by atom transfer radical polymerization in the presence of a disulfide-labeled difunctional Br-initiator. These brush-like triblock copolymers consist of a hydrophobic polyacrylate block having pendent oligo(propylene oxide) and a hydrophilic polymethacrylate block having pendent oligo(ethylene oxide). Gel permeation chromatography and (1)H NMR results confirmed the synthesis of well-defined mono-cleavable block copolymers and revealed that polymerizations were well controlled. Because of amphiphilic nature, these copolymers self-assembled to form colloidally stable micelles above critical micellar concentration of 0.032 mg · mL(-1). In response to reductive reactions, disulfides in thiol-responsive micelles were cleaved. Atomic force microscopy and dynamic light scattering analysis suggested that the cleavage of disulfides caused dissociation of micelles to smaller-sized assembled structures in water. Moreover, in a biomedical perspective, the mono-cleavable block copolymer micelles are not cytotoxic and thus biocompatible. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Time-resolved GISAXS and cryo-microscopy characterization of block copolymer membrane formation

    KAUST Repository

    Marques, Debora S.; Dorin, Rachel Mika; Wiesner, Ulrich B.; Smilgies, Detlef Matthias; Behzad, Ali Reza; Vainio, Ulla; Peinemann, Klaus-Viktor; Nunes, Suzana Pereira

    2014-01-01

    Time-resolved grazing-incidence small-angle X-ray scattering (GISAXS) and cryo-microscopy were used for the first time to understand the pore evolution by copolymer assembly, leading to the formation of isoporous membranes with exceptional porosity and regularity. The formation of copolymer micelle strings in solution (in DMF/DOX/THF and DMF/DOX) was confirmed by cryo field emission scanning electron microscopy (cryo-FESEM) with a distance of 72 nm between centers of micelles placed in different strings. SAXS measurement of block copolymer solutions in DMF/DOX indicated hexagonal assembly with micelle-to-micelle distance of 84-87 nm for 14-20 wt% copolymer solutions. GISAXS in-plane peaks were detected, revealing order close to hexagonal. The d-spacing corresponding to the first peak in this case was 100-130 nm (lattice constant 115-150 nm) for 17 wt% copolymer solutions evaporating up to 100 s. Time-resolved cryo-FESEM showed the formation of incipient pores on the film surface after 4 s copolymer solution casting with distances between void centers of 125 nm. © 2014 Elsevier Ltd. All rights reserved.

  4. Time-resolved GISAXS and cryo-microscopy characterization of block copolymer membrane formation

    KAUST Repository

    Marques, Debora S.

    2014-03-01

    Time-resolved grazing-incidence small-angle X-ray scattering (GISAXS) and cryo-microscopy were used for the first time to understand the pore evolution by copolymer assembly, leading to the formation of isoporous membranes with exceptional porosity and regularity. The formation of copolymer micelle strings in solution (in DMF/DOX/THF and DMF/DOX) was confirmed by cryo field emission scanning electron microscopy (cryo-FESEM) with a distance of 72 nm between centers of micelles placed in different strings. SAXS measurement of block copolymer solutions in DMF/DOX indicated hexagonal assembly with micelle-to-micelle distance of 84-87 nm for 14-20 wt% copolymer solutions. GISAXS in-plane peaks were detected, revealing order close to hexagonal. The d-spacing corresponding to the first peak in this case was 100-130 nm (lattice constant 115-150 nm) for 17 wt% copolymer solutions evaporating up to 100 s. Time-resolved cryo-FESEM showed the formation of incipient pores on the film surface after 4 s copolymer solution casting with distances between void centers of 125 nm. © 2014 Elsevier Ltd. All rights reserved.

  5. The linear potential propagator via wave function expansion

    International Nuclear Information System (INIS)

    Nassar, Antonio B.; Cattani, Mauro S.D.

    2002-01-01

    We evaluate the quantum propagator for the motion of a particle in a linear potential via a recently developed formalism [A.B. Nassar et al., Phys. Rev. E56, 1230, (1997)]. In this formalism, the propagator comes about as a type of expansion of the wave function over the space of the initial velocities. (author)

  6. Hydrophilic block copolymer-directed growth of lanthanum hydroxide nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Bouyer, F.; Sanson, N.; Gerardin, C. [Laboratoire de Materiaux Catalytiques et Catalyse en Chimie Organique, UMR 5618 CNRS-ENSCM-UM1, FR 1878, Institut Gerhardt, 34 - Montpellier (France); Destarac, M. [Centre de Recherches Rhodia Aubervilliers, 93 - Aubervilliers (France)

    2006-03-15

    Stable hairy lanthanum hydroxide nano-particles were synthesized in water by performing hydrolysis and condensation reactions of lanthanum cations in the presence of double hydrophilic poly-acrylic acid-b-polyacrylamide block copolymers (PAA-b-PAM). In the first step, the addition of asymmetric PAA-b-PAM copolymers (M{sub w,PAA} {<=} M{sub w,PAM}) to lanthanum salt solutions, both at pH = 5.5, induces the formation of monodispersed micellar aggregates, which are predominantly isotropic. The core of the hybrid aggregates is constituted of a lanthanum polyacrylate complex whose formation is due to bidentate coordination bonding between La{sup 3+} and acrylate groups, as shown by ATR-FTIR experiments and pH measurements. The size of the micellar aggregates depends on the molecular weight of the copolymer but is independent of the copolymer to metal ratio in solution. In the second step, the hydrolysis of lanthanum ions is induced by addition of a strong base such as sodium hydroxide. Either flocculated suspensions or stable anisotropic or spherical nano-particles of lanthanum hydrolysis products were obtained depending on the metal complexation ratio [acrylate]/[La]. The variation of that parameter also enables the control of the size of the core-corona nano-particles obtained by lanthanum hydroxylation. The asymmetry degree of the copolymer was shown to influence both the size and the shape of the particles. Elongated particles with a high aspect ratio, up to 10, were obtained with very asymmetric copolymers (M{sub w,PAM}/M{sub w,PAA}{>=}10) while shorter rice grain-like particles were obtained with a less asymmetric copolymer. The asymmetry degree also influences the value of the critical metal complexation degree required to obtain stable colloidal suspensions of polymer-stabilized lanthanum hydroxide. (authors)

  7. Self-oscillating AB diblock copolymer developed by post modification strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Takeshi, E-mail: ueki@cross.t.u-tokyo.ac.jp, E-mail: ryo@cross.t.u-tokyo.ac.jp; Onoda, Michika; Tamate, Ryota; Yoshida, Ryo, E-mail: ueki@cross.t.u-tokyo.ac.jp, E-mail: ryo@cross.t.u-tokyo.ac.jp [Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shibayama, Mitsuhiro [Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa, Chiba 277-8581 (Japan)

    2015-06-15

    We prepared AB diblock copolymer composed of hydrophilic poly(ethylene oxide) segment and self-oscillating polymer segment. In the latter segment, ruthenium tris(2,2′-bipyridine) (Ru(bpy){sub 3}), a catalyst of the Belousov-Zhabotinsky reaction, is introduced into the polymer architecture based on N-isopropylacrylamide (NIPAAm). The Ru(bpy){sub 3} was introduced into the polymer segment by two methods; (i) direct random copolymerization (DP) of NIPAAm and Ru(bpy){sub 3} vinyl monomer and (ii) post modification (PM) of Ru(bpy){sub 3} with random copolymer of NIPAAm and N-3-aminopropylmethacrylamide. For both the diblock copolymers, a bistable temperature region (the temperature range; ΔT{sub m}), where the block copolymer self-assembles into micelle at reduced Ru(bpy){sub 3}{sup 2+} state whereas it breaks-up into individual polymer chain at oxidized Ru(bpy){sub 3}{sup 3+} state, monotonically extends as the composition of the Ru(bpy){sub 3} increases. The ΔT{sub m} of the block copolymer prepared by PM is larger than that by DP. The difference in ΔT{sub m} is rationalized from the statistical analysis of the arrangement of the Ru(bpy){sub 3} moiety along the self-oscillating segments. By using the PM method, the well-defined AB diblock copolymer having ΔT{sub m} (ca. 25 °C) large enough to cause stable self-oscillation can be prepared. The periodic structural transition of the diblock copolymer in a dilute solution ([Polymer] = 0.1 wt. %) is closely investigated in terms of the time-resolved dynamic light scattering technique at constant temperature in the bistable region. A macroscopic viscosity oscillation of a concentrated polymer solution (15 wt. %) coupled with the periodic microphase separation is also demonstrated.

  8. Onion-like microspheres with tricomponent from gelable triblock copolymers.

    Science.gov (United States)

    Zhang, Ke; Gao, Lei; Chen, Yongming; Yang, Zhenzhong

    2010-06-01

    Onion-like functional microspheres with three alternate layers were obtained by aerosol-assisted self-assembly of a functional block copolymer, poly(3-(triethoxysilyl)propyl methacrylate)-block-polystyrene-block-poly(2-vinylpyridine) (PTEPM-b-PS-b-P2VP). Through self-gelation reaction occurred in the PTEPM layers, organic/inorganic hybrid functional spheres with highly ordered concentric curved lamellar structure were prepared. Using these hybrid onion-like microspheres as templates, gold ions were entrapped into the P2VP layers and then gold nanoparticles located in each P2VP layers were formed by a reduction. By dispersing in acidic water, the onion-like polymeric spheres were broken and, as a result, sandwich-like nanoplates with curved morphology were obtained. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Multiblock copolymers synthesized in aqueous dispersions using multifunctional RAFT agents

    NARCIS (Netherlands)

    Bussels, R.; Bergman-Göttgens, C.M.; Meuldijk, J.; Koning, C.E.

    2005-01-01

    Triblock copolymers were synthesized in aqueous dispersions in two polymerization steps using a low molar mass difunctional dithiocarbamate-based RAFT agent, and in merely one polymerization step using a macromolecular difunctional dithiocarbamate-based RAFT agent. Segmented block copolymers

  10. Rapid Ordering in "Wet Brush" Block Copolymer/Homopolymer Ternary Blends.

    Science.gov (United States)

    Doerk, Gregory S; Yager, Kevin G

    2017-12-26

    The ubiquitous presence of thermodynamically unfavored but kinetically trapped topological defects in nanopatterns formed via self-assembly of block copolymer thin films may prevent their use for many envisioned applications. Here, we demonstrate that lamellae patterns formed by symmetric polystyrene-block-poly(methyl methacrylate) diblock copolymers self-assemble and order extremely rapidly when the diblock copolymers are blended with low molecular weight homopolymers of the constituent blocks. Being in the "wet brush" regime, the homopolymers uniformly distribute within their respective self-assembled microdomains, preventing increases in domain widths. An order-of-magnitude increase in topological grain size in blends over the neat (unblended) diblock copolymer is achieved within minutes of thermal annealing as a result of the significantly higher power law exponent for ordering kinetics in the blends. Moreover, the blends are demonstrated to be capable of rapid and robust domain alignment within micrometer-scale trenches, in contrast to the corresponding neat diblock copolymer. These results can be attributed to the lowering of energy barriers associated with domain boundaries by bringing the system closer to an order-disorder transition through low molecular weight homopolymer blending.

  11. The spin polarized linear response from density functional theory: Theory and application to atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fias, Stijn, E-mail: sfias@vub.ac.be; Boisdenghien, Zino; De Proft, Frank; Geerlings, Paul [General Chemistry (ALGC), Vrije Universiteit Brussel (Free University Brussels – VUB), Pleinlaan 2, 1050 Brussels (Belgium)

    2014-11-14

    Within the context of spin polarized conceptual density functional theory, the spin polarized linear response functions are introduced both in the [N, N{sub s}] and [N{sub α}, N{sub β}] representations. The mathematical relations between the spin polarized linear response functions in both representations are examined and an analytical expression for the spin polarized linear response functions in the [N{sub α}, N{sub β}] representation is derived. The spin polarized linear response functions were calculated for all atoms up to and including argon. To simplify the plotting of our results, we integrated χ(r, r′) to a quantity χ(r, r{sup ′}), circumventing the θ and ϕ dependence. This allows us to plot and to investigate the periodicity throughout the first three rows in the periodic table within the two different representations. For the first time, χ{sub αβ}(r, r{sup ′}), χ{sub βα}(r, r{sup ′}), and χ{sub SS}(r, r{sup ′}) plots have been calculated and discussed. By integration of the spin polarized linear response functions, different components to the polarisability, α{sub αα}, α{sub αβ}, α{sub βα}, and α{sub ββ} have been calculated.

  12. Oxidation effect on templating of metal oxide nanoparticles within block copolymers

    International Nuclear Information System (INIS)

    Akcora, Pinar; Briber, Robert M.; Kofinas, Peter

    2009-01-01

    Amphiphilic norbornene-b-(norbornene dicarboxylic acid) diblock copolymers with different block ratios were prepared as templates for the incorporation of iron ions using an ion exchange protocol. The disordered arrangement of iron oxide particles within these copolymers was attributed to the oxidation of the iron ions and the strong interactions between iron oxide nanoparticles, particularly at high iron ion concentrations, which was found to affect the self-assembly of the block copolymer morphologies.

  13. Low Molecular Weight pDMAEMA-block-pHEMA Block-Copolymers Synthesized via RAFT-Polymerization: Potential Non-Viral Gene Delivery Agents?

    Directory of Open Access Journals (Sweden)

    Thomas Kissel

    2011-03-01

    Full Text Available The aim of this study was to investigate non-viral pDNA carriers based on diblock-copolymers consisting of poly(2-(dimethyl aminoethyl methacrylate (pDMAEMA and poly(2-hydroxyethyl methacrylate (pHEMA. Specifically the block-lengths and molecular weights were varied to determine the minimal requirements for transfection. Such vectors should allow better transfection at acceptable toxicity levels and the entire diblock-copolymer should be suitable for renal clearance. For this purpose, a library of linear poly(2-(dimethyl aminoethyl methacrylate-block-poly(2-hydroxyl methacrylate (pDMAEMA-block-pHEMA copolymers was synthesized via RAFT (reversible addition-fragmentation chain transfer polymerization in a molecular weight (Mw range of 17–35.7 kDa and analyzed using 1H and 13C NMR (nuclear magnetic resonance, ATR (attenuated total reflectance, GPC (gel permeation chromatography and DSC (differential scanning calorimetry. Copolymers possessing short pDMAEMA-polycation chains were 1.4–9.7 times less toxic in vitro than polyethylenimine (PEI 25 kDa, and complexed DNA into polyplexes of 100–170 nm, favorable for cellular uptake. The DNA-binding affinity and polyplex stability against competing polyanions was comparable with PEI 25 kDa. The zeta-potential of polyplexes of pDMAEMA-grafted copolymers remained positive (+15–30 mV. In comparison with earlier reported low molecular weight homo pDMAEMA vectors, these diblock-copolymers showed enhanced transfection efficacy under in vitro conditions due to their lower cytotoxicity, efficient cellular uptake and DNA packaging. The homo pDMAEMA115 (18.3 kDa self-assembled with DNA into small positively charged polyplexes, but was not able to transfect cells. The grafting of 6 and 57 repeating units of pHEMA (0.8 and 7.4 kDa to pDMAEMA115 increased the transfection efficacy significantly, implying a crucial impact of pHEMA on vector-cell interactions. The intracellular trafficking, in vivo transfection

  14. Adsorption of copolymers at polymer/air and polymer/solid interfaces

    Science.gov (United States)

    Oslanec, Robert

    Using mainly low-energy forward recoil spectrometry (LE-FRES) and neutron reflectivity (NR), copolymer behavior at polymer/air and polymer/solid interfaces is investigated. For a miscible blend of poly(styrene-ran-acrylonitrile) copolymers, the volume fraction profile of the copolymer with lower acrylonitrile content is flat near the surface in contrast to mean field predictions. Including copolymer polydispersity into a self consistent mean field (SCMF) model does not account for this profile shape. LE-FRES and NR is also used to study poly(deuterated styrene-block-methyl-methacrylate) (dPS-b-PMMA) adsorption from a polymer matrix to a silicon oxide substrate. The interfacial excess, zsp*, layer thickness, L, and layer-matrix width, w, depend strongly on the number of matrix segments, P, for P 2N, the matrix chains are repelled from the adsorbed layer and the layer characteristics become independent of P. An SCMF model of block copolymer adsorption is developed. SCMF predictions are in qualitative agreement with the experimental behavior of zsp*, L, and w as a function of P. Using this model, the interaction energy of the MMA block with the oxide substrate is found to be -8ksb{B}T. In a subsequent experiment, the matrix/dPS interaction is made increasingly unfavorable by increasing the 4-bromostyrene mole fraction, x, in a poly(styrene-ran-4-bromostyrene) (PBrsbxS) matrix. Whereas experiments show that zsp* slightly decreases as x increases, the SCMF model predicts that zsp* should increase as the matrix becomes more unfavorable. Upon including a small matrix attraction for the substrate, the SCMF model shows that zsp* decreases with x because of competition between PBrsbxS and dPS-b-PMMA for adsorbing sites. In thin film dewetting experiments on silicon oxide, the addition of dPS-b-PMMA to PS coatings acts to slow hole growth and prevent holes from impinging. Dewetting studies show that longer dPS-b-PMMA chains are more effective stabilizing agents than shorter

  15. Non-Linear Back-propagation: Doing Back-Propagation withoutDerivatives of the Activation Function

    DEFF Research Database (Denmark)

    Hertz, John; Krogh, Anders Stærmose; Lautrup, Benny

    1997-01-01

    The conventional linear back-propagation algorithm is replaced by a non-linear version, which avoids the necessity for calculating the derivative of the activation function. This may be exploited in hardware realizations of neural processors. In this paper we derive the non-linear back...

  16. Microstructural Analysis of Carbonyl Signal in the 13C NMR Spectra of Methyl Methacrylate - n-Butyl Acrylate Copolymer

    International Nuclear Information System (INIS)

    Bujak, P.; Matlengiewicz, M.

    2005-01-01

    incremental method, already applied to a similar copolymer. In this approach the influences of neighboring units on the chemical shift of the carbonyl signal are considered as additive and a set of incremental parameters can be determined. The chemical shifts of individual pentads can be calculated in this way as a linear combination of respective increments. Having both intensities and chemical shifts of individual sequences the copolymer spectrum can be simulated at the pentad level. (author)

  17. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers

    OpenAIRE

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N. V.; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-01-01

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affiniti...

  18. Ion transport mechanisms in lamellar phases of salt-doped PS–PEO block copolymer electrolytes

    KAUST Repository

    Sethuraman, Vaidyanathan; Mogurampelly, Santosh; Ganesan, Venkat

    2017-01-01

    We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene–polyethylene oxide (PS–PEO) block copolymer (BCP) electrolytes doped with LiPF6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.

  19. Ion transport mechanisms in lamellar phases of salt-doped PS–PEO block copolymer electrolytes

    KAUST Repository

    Sethuraman, Vaidyanathan

    2017-10-23

    We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene–polyethylene oxide (PS–PEO) block copolymer (BCP) electrolytes doped with LiPF6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.

  20. Solubilization of trace organics in block copolymer micelles for environmental separation using membrane extraction principles

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, T.A.

    1992-12-01

    The solubilization of a range of polycyclic aromatic hydrocarbons in block copolymer micelles has been studied as a function of polymer composition, architecture, and temperature. Micelle formation is favored at high temperatures, leading to significant enhancements in solubilization capacity. At low temperatures, however, micelles do not form and the solubilization capacity of the block copolymer solution for the organics is low; this provides a convenient method for the regeneration of micellar solutions used as solvents'' in the treatment of contaminated feed streams using membrane extraction principles. It has also been shown (in collaboration with K.P. Johnston of University of Texas, Austin) that supercritical CO[sub 2] can be used effectively for micelle regeneration. Theoretical calculations of the structure of block copolymer micelles in the presence and absence of solutes using self-consistent mean-field lattice theories have successfully captured the trends observed with changing polymer composition and architecture, often quantitatively. The temperature and composition dependence of the micellar properties were determined by allowing the individual polymer segments to assume both polar and non-polar conformations.

  1. Distributions of chain ends and junction points in ordered block copolymers

    International Nuclear Information System (INIS)

    Mayes, A.M.; Johnson, R.D.; Russell, T.P.; Smith, S.D.; Satija, S.K.; Majkrzak, C.F.

    1993-01-01

    Chain configurations in ordered symmetric poly(styrene-b-methyl methacrylate) diblock copolymers were examined by neutron reflectively. In a thin-film geometry the copolymers organize into lamellar microdomains oriented parallel to the substrate surface. The copolymers organize into lamellar microdomains oriented parallel to the substrate surface. The copolymers were synthesized with small fractions of deuterated segments at either the chain ends or centers. This selective labeling permitted characterization of the spatial distribution of chain ends and junction points normal to the plane of the film. From the reflectivity analysis, the junction points are found to be confined to the PS/PMMA interfacial regions. The chain ends, however, are well distributed through their respective domains, exhibiting only a weak maximum in concentration at the center of the domains

  2. Protein resistance of dextran and dextran-PEG copolymer films

    Science.gov (United States)

    Kozak, Darby; Chen, Annie; Bax, Jacinda; Trau, Matt

    2011-01-01

    The protein resistance of dextran and dextran-poly(ethylene glycol) (PEG) copolymer films was examined on an organosilica particle-based assay support. Comb-branched dextran-PEG copolymer films were synthesized in a two step process using the organosilica particle as a solid synthetic support. Particles modified with increasing amounts (0.1-1.2 mg m−2) of three molecular weights (10 000, 66 900, 400 000 g mol−1) of dextran were found to form relatively poor protein-resistant films compared to dextran-PEG copolymers and previously studied PEG films. The efficacy of the antifouling polymer films was found to be dependent on the grafted amount and its composition, with PEG layers being the most efficient, followed by dextran-PEG copolymers, and dextran alone being the least efficient. Immunoglobulin gamma (IgG) adsorption decreased from ~ 5 to 0.5 mg m−2 with increasing amounts of grafted dextran, but bovine serum albumin (BSA) adsorption increased above monolayer coverage (to ~2 mg m−2) indicating ternary adsorption of the smaller protein within the dextran layer. PMID:21614699

  3. Features of radiation chemical processes in ethylene-styrene copolymers

    International Nuclear Information System (INIS)

    Leshchenko, S.S.; Mal'tseva, A.P.; Iskakov, L.I.; Karpov, V.L.

    1976-01-01

    A study was made of statistical copolymers of ethylene with styrene to determine their structure and properties and radio-chemical transformations. The styrene content of the copolymers ranged from 1 to 85 mole%. The investigation covered non-irradiated copolymers and those irradiated with doses of 1-1000Mrad at room temperature and at liquid nitrogen temperature. It is shown that styrene units present in the CES inhibited all radio-chemical processes compared with PE irradiated under similar conditions. It is suggested that the radiation resistance of CES with styrene contents up to 10 mole % increases in the course of irradiation as a result of the formation of structures with a high degree of conjugation which are more capable of scattering absorbed energy than in the case of phenyl rings by themselves. The most promising of the CES examined is the one with a styrene content of 5 mole %. The mechanical properties of this copolymer are similar to those of PE, and its radiation resistance rises under service conditions in the presence of ionizing radiation

  4. Linear-dendritic supramolecular complexes as nanoscale reaction vessels for "green" chemistry. Diels-Alder reactions between fullerene C60 and polycyclic aromatic hydrocarbons in aqueous medium.

    Science.gov (United States)

    Simonyan, Arsen; Gitsov, Ivan

    2008-10-21

    This study describes the first Diels-Alder (DA) reaction performed in aqueous medium with highly hydrophobic compounds-fullerene (C 60) as the dienophile and anthracene (An) or tetracene (Tet) as the dienes, respectively. The reactions are performed in nanocontainers, constructed by self-assembly of linear-dendritic amphiphilic copolymers with poly(ethylene glycol), PEG or poly(ethylene oxide), PEO as the hydrophilic blocks and poly(benzyl ether) monodendrons as the hydrophobic fragments: G3PEO13k, dG3 and dG2. Comparative studies under identical conditions are carried out with an amphiphilic linear-linear copolymer, poly(styrene)1800- block-PEO2100, PSt-PEO, and the nonionic surfactant Igepal CO-720, IP720. The binding affinity of supermolecules built of these amphiphiles toward the DA reagents decreases in the following order: G3PEO13k > dG3 > PSt-PEO > dG2 > IP720. The kinetic constant of binding is evaluated for tetracene and decreases in a similar fashion: 5 x 10 (-7) M/min (G3PEO13k), through 4 x 10 (-7) M/min (PSt-PEO) down to 1.5 x 10 (-7) M/min for IP720. The mobility of substrates encapsulated in the micellar core, estimated by pyrene fluorescence decay, is 95-121 ns for the micelles of the linear-dendritic copolymers and notably higher for PSt-PEO (152 ns), revealing the much denser interior of the linear analogue. The apparent kinetic constant for the DA reaction of C 60 and Tet within the G3PEO13k supermolecule in aqueous medium is markedly higher than in organic solvent (toluene), 208 vs 1.82 M /min. With G3PEO13k the conversions reach 49% for the DA reaction between C 60 and An, and 55% for C 60 and Tet. Besides the monoadduct (26.5% yield) the reaction with An produces exclusively increasing amounts of D 2 h -symmetric antipodal bis-adduct, whose yield reaches up to 22.5% after 48 h. In addition to the environmentally friendly conditions notable advantages of the synthetic strategy described are the extended stability of the linear

  5. Solving polynomial differential equations by transforming them to linear functional-differential equations

    OpenAIRE

    Nahay, John Michael

    2008-01-01

    We present a new approach to solving polynomial ordinary differential equations by transforming them to linear functional equations and then solving the linear functional equations. We will focus most of our attention upon the first-order Abel differential equation with two nonlinear terms in order to demonstrate in as much detail as possible the computations necessary for a complete solution. We mention in our section on further developments that the basic transformation idea can be generali...

  6. Carboxylic Terminated Thermo-Responsive Copolymer Hydrogel and Improvement in Peptide Release Profile

    Directory of Open Access Journals (Sweden)

    Zi-Kun Rao

    2018-02-01

    Full Text Available To improve the release profile of peptide drugs, thermos-responsive triblock copolymer poly (ε-caprolactone-co-p-dioxanone-b-poly (ethylene glycol-b-poly (ε-caprolactone-co-p-dioxanone (PECP was prepared and end capped by succinic anhydride to give its carboxylic terminated derivative. Both PCEP block copolymer and its end group modified derivative showed temperature-dependent reversible sol-gel transition in water. The carboxylic end group could significantly decrease the sol-gel transition temperature by nearly 10 °C and strengthen the gel due to enhanced intermolecular force among triblock copolymer chains. Furthermore, compared with the original PECP triblock copolymer, HOOC–PECP–COOH copolymer displayed a retarded and sustained release profile for leuprorelin acetate over one month while effectively avoiding the initial burst. The controlled release was believed to be related to the formation of conjugated copolymer-peptide pair by ionic interaction and enhanced solubility of drug molecules into the hydrophobic domains of the hydrogel. Therefore, carboxyl terminated HOOC–PECP–COOH hydrogel was a promising and well-exhibited sustained release carrier for peptide drugs with the advantage of being able to develop injectable formulation by simple mixing.

  7. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland

    2014-12-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene and the selective layer with isopores was formed by micelle assembly of polystyrene-. b-poly-4-vinyl pyridine. The dual layers had an excellent interfacial adhesion and pore interconnectivity. The dual membranes showed pH response behavior like single layer block copolymer membranes with a low flux for pH values less than 3, a fast increase between pH4 and pH6 and a constant high flux level for pH values above 7. The dry/wet spinning process was optimized to produce dual layer hollow fiber membranes with polystyrene internal support layer and a shell block copolymer selective layer.

  8. Rheological Behavior of Entangled Polystyrene-Polyhedral Oligosilsesquioxane (POSS) Copolymer (Postprint)

    National Research Council Canada - National Science Library

    Wu, Jian; Mather, Patrick T; Haddad, Timothy S; Kim, Gyeong-Man

    2006-01-01

    ...: random copolymers of polystyrene (PS) and styryl-based polyhedral oligosilsesquioxane (POSS), R7(Si8O12)(C6H4CH=CH2), with R = isobutyl (iBu). A series of styrene-styryl POSS random copolymers with 0, 6, 15, 30, 50 wt...

  9. Diketopyrrolopyrrole-diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors

    KAUST Repository

    Kanimozhi, Catherine K.

    2012-10-10

    In this communication, we report the synthesis of a novel diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP)-based conjugated copolymer and its application in high-mobility organic field-effect transistors. Copolymerization of DPP with DPP yields a copolymer with exceptional properties such as extended absorption characteristics (up to ∼1100 nm) and field-effect electron mobility values of >1 cm 2 V -1 s -1. The synthesis of this novel DPP-DPP copolymer in combination with the demonstration of transistors with extremely high electron mobility makes this work an important step toward a new family of DPP-DPP copolymers for application in the general area of organic optoelectronics. © 2012 American Chemical Society.

  10. Study of the mechanical behavior of thermo reversible gels of PS-b-poly(ethylene/butylene)-b-PS triblock copolymers in a selective solvent for the middle block of the copolymer

    International Nuclear Information System (INIS)

    Hernaez, E.; Inchausti, I.; Quintana, J. R.; Katime, I.

    2001-01-01

    The thermo reversible gelation of three triblock copolymers polystyrene-b-poly(ethylene/butylene)-b-polystyrene, with different molar mass and a similar chemical composition, in n-octane was studied. The solvent is selective for the middle poly(ethylene/butylene) block of the copolymers. the influence of the molar mass of the three copolymers on the gelation and on the mechanical properties of the gels was analysed. The sol-gel transition temperatures. T g el have been determined and they increase with the copolymer concentration and the copolymer molar mass. On the other land, the mechanical properties of the different gels were examined through oscillatory shear and compressive stress relaxation measurements. The concentration dependence of the elastic storage modules, G' for the three copolymer studied fit a sole straight line in a double-logarithmic scale and its slope (2.22) is close to that expected for systems in good solvents (2.25). As the temperature is near to the sol-gel transition temperate, the elastic modulus are smaller and the relaxation rates are higher. (Author) 12 refs

  11. Some subclasses of multivalent functions involving a certain linear operator

    Science.gov (United States)

    Srivastava, H. M.; Patel, J.

    2005-10-01

    The authors investigate various inclusion and other properties of several subclasses of the class of normalized p-valent analytic functions in the open unit disk, which are defined here by means of a certain linear operator. Problems involving generalized neighborhoods of analytic functions in the class are investigated. Finally, some applications of fractional calculus operators are considered.

  12. Non-linear shape functions over time in the space-time finite element method

    Directory of Open Access Journals (Sweden)

    Kacprzyk Zbigniew

    2017-01-01

    Full Text Available This work presents a generalisation of the space-time finite element method proposed by Kączkowski in his seminal of 1970’s and early 1980’s works. Kączkowski used linear shape functions in time. The recurrence formula obtained by Kączkowski was conditionally stable. In this paper, non-linear shape functions in time are proposed.

  13. Ordering phenomena in ABA triblock copolymer gels

    DEFF Research Database (Denmark)

    Reynders, K.; Mischenko, N.; Kleppinger, R.

    1997-01-01

    Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network). The lat......Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network...

  14. Photoinitiated Polymerization-Induced Self-Assembly of Glycidyl Methacrylate for the Synthesis of Epoxy-Functionalized Block Copolymer Nano-Objects.

    Science.gov (United States)

    Tan, Jianbo; Liu, Dongdong; Huang, Chundong; Li, Xueliang; He, Jun; Xu, Qin; Zhang, Li

    2017-08-01

    Herein, a novel photoinitiated polymerization-induced self-assembly formulation via photoinitiated reversible addition-fragmentation chain transfer dispersion polymerization of glycidyl methacrylate (PGMA) in ethanol-water at room temperature is reported. It is demonstrated that conducting polymerization-induced self-assembly (PISA) at low temperatures is crucial for obtaining colloidal stable PGMA-based diblock copolymer nano-objects. Good control is maintained during the photo-PISA process with a high rate of polymerization. The polymerization can be switched between "ON" and "OFF" in response to visible light. A phase diagram is constructed by varying monomer concentration and degree of polymerization. The PGMA-based diblock copolymer nano-objects can be further cross-linked by using a bifunctional primary amine reagent. Finally, silver nanoparticles are loaded within cross-linked vesicles via in situ reduction, exhibiting good catalytic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Completeness, special functions and uncertainty principles over q-linear grids

    International Nuclear Information System (INIS)

    Abreu, LuIs Daniel

    2006-01-01

    We derive completeness criteria for sequences of functions of the form f(xλ n ), where λ n is the nth zero of a suitably chosen entire function. Using these criteria, we construct complete nonorthogonal systems of Fourier-Bessel functions and their q-analogues, as well as other complete sets of q-special functions. We discuss connections with uncertainty principles over q-linear grids and the completeness of certain sets of q-Bessel functions is used to prove that, if a function f and its q-Hankel transform both vanish at the points {q -n } ∞ n=1 , 0 n } ∞ n=-∞

  16. Ellipsometry measurements of glass transition breadth in bulk films of random, block, and gradient copolymers.

    Science.gov (United States)

    Mok, M M; Kim, J; Marrou, S R; Torkelson, J M

    2010-03-01

    Bulk films of random, block and gradient copolymer systems were studied using ellipsometry to demonstrate the applicability of the numerical differentiation technique pioneered by Kawana and Jones for studying the glass transition temperature (T (g)) behavior and thermal expansivities of copolymers possessing different architectures and different levels of nanoheterogeneity. In a series of styrene/n -butyl methacrylate (S/nBMA) random copolymers, T (g) breadths were observed to increase from approximately 17( degrees ) C in styrene-rich cases to almost 30( degrees ) C in nBMA-rich cases, reflecting previous observations of significant nanoheterogeneity in PnBMA homopolymers. The derivative technique also revealed for the first time a substantial increase in glassy-state expansivity with increasing nBMA content in S/nBMA random copolymers, from 1.4x10(-4) K-1 in PS to 3.5x10(-4) K-1 in PnBMA. The first characterization of block copolymer T (g) 's and T (g) breadths by ellipsometry is given, examining the impact of nanophase-segregated copolymer structure on ellipsometric measurements of glass transition. The results show that, while the technique is effective in detecting the two T (g) 's expected in certain block copolymer systems, the details of the glass transition can become suppressed in ellipsometry measurements of a rubbery minor phase under conditions where the matrix is glassy; meanwhile, both transitions are easily discernible by differential scanning calorimetry. Finally, broad glass transition regions were measured in gradient copolymers, yielding in some cases extraordinary T (g) breadths of 69- 71( degrees ) C , factors of 4-5 larger than the T (g) breadths of related homopolymers and random copolymers. Surprisingly, one gradient copolymer demonstrated a slightly narrower T (g) breadth than the S/nBMA random copolymers with the highest nBMA content. This highlights the fact that nanoheterogeneity relevant to the glass transition response in selected

  17. Transport of Water in Semicrystalline Block Copolymer Membranes

    Science.gov (United States)

    Hallinan, Daniel; Oparaji, Onyekachi

    Poly(styrene)-block-poly(ethylene oxide) (PS- b-PEO) is a semicrystalline block copolymer (BCP) with interesting properties. It is mechanically tough, amphiphilic, and has a polar phase. The mechanical toughness is due to the crystallinity of PEO and the high glass transition temperature of PS, as well as the morphological structure of the BCP. The polymer has high CO2, water, and salt solubility that derive from the polar PEO component. Potential applications include CO2 separation, water purification, and lithium air batteries. In all of the aforementioned applications, water transport is an important parameter. The presence of water can also affect thermal and mechanical properties. Water transport and thermal and mechanical properties of a lamellar PS- b-PEO copolymer have been measured as a function of water activity. Water transport can be affected by the heterogeneous nature of a semicrystalline BCP. Therefore, Fourier transform infrared - attenuated total reflectance (FTIR-ATR) spectroscopy has been employed, because water transport and polymer swelling can be measured simultaneously. The effect of BCP structure on transport has been investigated by comparing water transport in PS- b-PEO to a PEO homopolymer. The crystalline content of the PEO and the presence of glassy PS lamellae will be used to explain the transport results.

  18. Infrared and ultraviolet spectroscopic studies of low-temperature radiolysis of ethylene - styrene copolymers

    International Nuclear Information System (INIS)

    Mal'tseva, A.P.; Golikov, V.P.; Leshchenko, S.S.; Karpov, V.L.

    1977-01-01

    Certain features of low-temperature radiolysis of statistic ethylene-styrene copolymers have been studied by infrared and ultraviolet spectroscopy. It is shown that the nature of the accumulation and decay of trans-vinylene, vinyl and vinylidene double bonds in an ethylene-styrene copolymer is essentially influenced by both the dose absorbed and copolymer composition. A suggestion is made that the ethylene-styrene copolymer is formed when structures are irradiated containing double bonds conjugated with the phenyl rings of styrene groups - which more effectively dissipate the absorbed energy than solitary phenyl rings

  19. PREPARATION AND PROPERTIES OF MMA/1-PROPYLMETHACRYLATE-POSS COPOLYMER WITH ATOM TRANSFER RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    He-xin Zhang; Ho-young Lee; Young-jun Shin; Dong-ho Lee; Seok Kyun Noh

    2008-01-01

    The methyl methacrylate(MMA)/1-propylmethacrylate-polyhedral oligomeric silsesquioxane(PM-POSS) copolymers were synthesized via atom transfer radical polymerization with CuBr as catalyst.The unreacted PM-POSS monomer could be removed completely by washing the copolymerization product with n-hexane.The copolymers were characterized with 1H-NMR,X-ray diffraction,difierential scanning calorimetry,thermogravimetric analysis and gel permeatlon chromatography.With increasing PM-POSS feed ratio.the total conversion increased while the glass transition temperatures of copolymer decreased.The thermogravimetric analysis demonstrated that the thermal stability of copolymer improved slightly with PM-POSS addition.The molecular weight of copolymers increased with incorporation of PM-POSS.

  20. Structural and rectifying junction properties of self-assembled ZnO nanoparticles in polystyrene diblock copolymers on (1 0 0)Si substrates

    Science.gov (United States)

    Ali, H. A.; Iliadis, A. A.; Martinez-Miranda, L. J.; Lee, U.

    2006-06-01

    The structural and electronic transport properties of self-assembled ZnO nanoparticles in polystyrene-acrylic acid, [PS] m/[PAA] n, diblock copolymer on p-type (1 0 0)Si substrates are reported for the first time. Four different block repeat unit ratios ( m/ n) of 159/63, 139/17,106/17, and 106/4, were examined in order to correlate the physical parameters (size, density) of the nanoparticles with the copolymer block lengths m and n. We established that the self-assembled ZnO nanoparticle average size increased linearly with minority block length n, while the average density decreased exponentially with majority block length m. Average size varied from 20 nm to 250 nm and average density from 3.5 × 10 7 cm -2 to 1 × 10 10 cm -2, depending on copolymer parameters. X-ray diffraction studies showed the particles to have a wurtzite crystal structure with the (1 0 0) being the dominant orientation. Room temperature current-voltage characteristics measured for an Al/ZnO-nanocomposite/Si structure exhibited rectifying junction properties and indicated the formation of Al/ZnO-nanocomposite Schottky type junction with a barrier height of 0.7 V.

  1. Synthesis and Characterization of Biodegradable Amphiphilic Star and Y-Shaped Block Copolymers as Potential Carriers for Vinorelbine

    Directory of Open Access Journals (Sweden)

    Fatemeh Bahadori

    2014-01-01

    Full Text Available Two amphiphilic block copolymers using hydrophobic poly(ε-caprolactone (PCL and hydrophilic poly(ethylene glycol (PEG were successfully synthesized. One of them is an (A-b-B4 type star polymer [(PCL-b-PEG4] and the other one is a Y-shaped PEG–(PCL2. A star-shaped polymer (PCL-b-PEG4 was prepared by ring-opening polymerization (ROP of ε-caprolactone continued by click reaction of (PCL-azide4 and PEG-alkyne. The synthesis of Y-shaped PEG–(PCL2 block copolymer was carried out via Diels-Alder click reaction of a furan protected maleimide end-functionalized PEG (PEG-MI with an anthracene end-functionalized PCL following the ROP of ε-caprolactone. The characterization of micelles is carried out using both materials in aqueous media as drug delivery vehicles, which showed satisfying results and enhanced the cytotoxic effect of the anti-cancer drug vinorelbine (VLB. However, micelles consisted of Y-shaped unimers were found to be more convenient for delivery of hydrophobic drugs such as VLB because they formed in lower concentration, carrying a higher amount of drugs and owing a monomodal distribution. We concluded that the free tails of hydrophobic chains in Y-shaped block copolymer facilitate the assembly of amphiphilic material in water to form micelles.

  2. Two-Dimensional Liquid Chromatography Analysis of Polystyrene/Polybutadiene Block Copolymers.

    Science.gov (United States)

    Lee, Sanghoon; Choi, Heejae; Chang, Taihyun; Staal, Bastiaan

    2018-05-15

    A detailed characterization of a commercial polystyrene/polybutadiene block copolymer material (Styrolux) was carried out using two-dimensional liquid chromatography (2D-LC). The Styrolux is prepared by statistical linking reaction of two different polystyrene- block-polybutadienyl anion precursors with a multivalent linking agent. Therefore, it is a mixture of a number of branched block copolymers different in molecular weight, composition, and chain architecture. While individual LC analysis, including size exclusion chromatography, interaction chromatography, or liquid chromatography at critical condition, is not good enough to resolve all the polymer species, 2D-LC separations coupling two chromatography methods were able to resolve all polymer species present in the sample; at least 13 block copolymer species and a homopolystyrene blended. Four different 2D-LC analyses combining a different pair of two LC methods provide their characteristic separation results. The separation characteristics of the 2D-LC separations are compared to elucidate the elution characteristics of the block copolymer species.

  3. Fast assembly of ordered block copolymer nanostructures through microwave annealing.

    Science.gov (United States)

    Zhang, Xiaojiang; Harris, Kenneth D; Wu, Nathanael L Y; Murphy, Jeffrey N; Buriak, Jillian M

    2010-11-23

    Block copolymer self-assembly is an innovative technology capable of patterning technologically relevant substrates with nanoscale precision for a range of applications from integrated circuit fabrication to tissue interfacing, for example. In this article, we demonstrate a microwave-based method of rapidly inducing order in block copolymer structures. The technique involves the usage of a commercial microwave reactor to anneal block copolymer films in the presence of appropriate solvents, and we explore the effect of various parameters over the polymer assembly speed and defect density. The approach is applied to the commonly used poly(styrene)-b-poly(methyl methacrylate) (PS-b-PMMA) and poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) families of block copolymers, and it is found that the substrate resistivity, solvent environment, and anneal temperature all critically influence the self-assembly process. For selected systems, highly ordered patterns were achieved in less than 3 min. In addition, we establish the compatibility of the technique with directed assembly by graphoepitaxy.

  4. Molecular weight and its distribution of tetrafluoroethylene and propylene copolymer

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Okamoto, Jiro; Yamaguchi, Koichi.

    1978-04-01

    In comparison of molecular structure of tetrafluoroethylene and propylene copolymer produced by radiation and chemical initiators respectively, both were fractionated by elution method and fine structure was examined. For the fractionated sample by radiation, the relation between molecular weight anti Mn and intrinsic viscosity ( eta] is ( eta] = 3.97 x 10 -4 anti Mnsup(0.630) The result is not in agreement with that of the unfractionated sample by radiation, and similar to those of samples by chemical initiators. There is no difference, however, in the elution method of GPC between both these copolymers; the elution behavior agrees with that of standard polystyrene. Long chain branching thus exists little in the copolymer of tetrafluoroethylene and propylene. To reveal the relations between reaction conditions and molecular weight and its distribution of the copolymer produced by flow apparatus, the molecular weight distribution was measured by GPC. The method of analysis could evaluate molecular weight distribution changing constantly. (auth.)

  5. Synthesis and self-assembly behavior of amphiphilic diblock copolymer dextran-block-poly(ε-caprolactone (DEX-b-PCL in aqueous media

    Directory of Open Access Journals (Sweden)

    2010-10-01

    Full Text Available An amphiphilic diblock copolymer, dextran-block-poly(ε-caprolactone (DEX-b-PCL, with a series of welldefined chain lengths of each block was prepared by conjugating a dextran chain with a PCL block via aza-Michael addition reaction under mild conditions. For the dextran block, samples with relatively uniform molecular weight, 3.5 and 6.0 kDa, were used, and the PCL blocks were prepared via ring-opening polymerization at defined ratios of ε-caprolactone to initiator in order to give copolymers with mass fraction of dextran (fDEX ranging from 0.16 to 0.45. When these copolymers were allowed to self-assemble in aqueous solution, the morphology of assembled aggregates varied as a function of fDEX when characterized by transmission electron microscope (TEM, fluorescence microscope (FM and dynamic laser scattering (DLS. As fDEX decreases gradually from 0.45 to 0.16, the morphology of the copolymer assembly changes from spherical micelles to worm-like micelles and eventually to polymersomes, together with an increase in particle sizes.

  6. Biointerfacial impedance characterization of reduced graphene oxide supported carboxyl pendant conducting copolymer based electrode

    International Nuclear Information System (INIS)

    Puri, Nidhi; Niazi, Asad; Srivastava, Avanish Kumar; Rajesh

    2014-01-01

    We report, a comprehensive physical and biointerfacial electrochemical characteristics of electrodeposited poly(pyrrole-co-pyrrolepropylic acid) (PPy-PPa) copolymer film on the reduced graphene oxide (RGO) sheets attached over a silane modified indium-tin-oxide coated glass, for biosensing applications. The highly specific cardiac myoglobin protein antibody, Ab-cMb, has been covalently immobilized on the copolymer film through its pendent carboxyl group by carbodiimide coupling reaction. The factor ‘n’ describing divergence of the system from ideal capacitor characteristics exhibits a low value (n = 0.59) in a constant phase element of the impedance. This low value of ‘n’ showing a porous rough microstructure of PPy-PPa film on RGO exhibiting a diffusive characteristic that has been replaced by dominant charge transfer characteristic (R et ) with n = 0.78 on biomolecular immobilization and subsequent immunoreaction. The bioelectrode exhibits a linear impedance response to human cardiac cMb marker in the range of 10 ng mL −1 to 1 μg mL −1 in phosphate buffer solution (PBS; pH 7.4) at a low frequency region of et sensitivity of 70.30 Ω cm 2 per decade

  7. Advanced analytical methods for the structure elucidation of polystyrene-b-poly(n-butyl acrylate) block copolymers prepared by reverse iodine transfer polymerisation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Trevor Gavin; Pfukwa, Helen; Pasch, Harald, E-mail: hpasch@sun.ac.za

    2015-09-10

    Reverse iodine transfer polymerisation (RITP) is a living radical polymerisation technique that has shown to be feasible in synthesising segmented styrene-acrylate copolymers. Polymers synthesised via RITP are typically only described regarding their bulk properties using nuclear magnetic resonance spectroscopy and size exclusion chromatography. To fully understand the complex composition of the polymerisation products and the RITP reaction mechanism, however, it is necessary to use a combination of advanced analytical methods. In the present RITP procedure, polystyrene was synthesised first and then used as a macroinitiator to synthesise polystyrene-block-poly(n-butyl acrylate) (PS-b-PBA) block copolymers. For the first time, these PS-b-PBA block copolymers were analysed by a combination of SEC, in situ{sup 1}H NMR and HPLC. {sup 1}H NMR was used to determine the copolymer composition and the end group functionality of the samples, while SEC and HPLC were used to confirm the formation of block copolymers. Detailed information on the living character of the RITP process was obtained. - Highlights: • Comprehensive analysis of novel block copolymers. • Polymers were prepared for the first time by reverse iodine transfer polymerisation. • Combination of SEC, NMR, kinetic NMR, HPLC and comprehensive 2D-HPLC was used. • Detailed information about complex molecular composition and polymerisation kinetics was obtained.

  8. Hydrogen bonding strength of diblock copolymers affects the self-assembled structures with octa-functionalized phenol POSS nanoparticles.

    Science.gov (United States)

    Lu, Yi-Syuan; Yu, Chia-Yu; Lin, Yung-Chih; Kuo, Shiao-Wei

    2016-02-28

    In this study, the influence of the functional groups by the diblock copolymers of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP), poly(styrene-b-2-vinylpyridine) (PS-b-P2VP), and poly(styrene-b-methyl methacrylate) (PS-b-PMMA) on their blends with octa-functionalized phenol polyhedral oligomeric silsesquioxane (OP-POSS) nanoparticles (NPs) was investigated. The relative hydrogen bonding strengths in these blends follow the order PS-b-P4VP/OP-POSS > PS-b-P2VP/OP-POSS > PS-b-PMMA/OP-POSS based on the Kwei equation from differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopic analyses. Small-angle X-ray scattering and transmission electron microscopic analyses show that the morphologies of the self-assembly structures are strongly dependent on the hydrogen bonding strength at relatively higher OP-POSS content. The PS-b-P4VP/OP-POSS hybrid complex system with the strongest hydrogen bonds shows the order-order transition from lamellae to cylinders and finally to body-centered cubic spheres upon increasing OP-POSS content. However, PS-b-P2VP/OP-POSS and PS-b-PMMA/OP-POSS hybrid complex systems, having relatively weaker hydrogen bonds, transformed from lamellae to cylinder structures at lower OP-POSS content (50 wt%).

  9. Multi-point boundary value problems for linear functional-differential equations

    Czech Academy of Sciences Publication Activity Database

    Domoshnitsky, A.; Hakl, Robert; Půža, Bedřich

    2017-01-01

    Roč. 24, č. 2 (2017), s. 193-206 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : boundary value problems * linear functional-differential equations * functional-differential inequalities Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0076/gmj-2016-0076. xml

  10. Multi-point boundary value problems for linear functional-differential equations

    Czech Academy of Sciences Publication Activity Database

    Domoshnitsky, A.; Hakl, Robert; Půža, Bedřich

    2017-01-01

    Roč. 24, č. 2 (2017), s. 193-206 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : boundary value problems * linear functional- differential equations * functional- differential inequalities Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0076/gmj-2016-0076.xml

  11. Polystyrene-b-polyethylene oxide block copolymer membranes, methods of making, and methods of use

    KAUST Repository

    Peinemann, Klaus-Viktor; Karunakaran, Madhavan

    2015-01-01

    Embodiments of the present disclosure provide for polystyrene-b-polyethylene oxide (PS-b-PEO) block copolymer nanoporous membranes, methods of making a PS-b-PEO block copolymer nanoporous membrane, methods of using PS-b-PEO block copolymer nanoporous membranes, and the like.

  12. Polystyrene-b-polyethylene oxide block copolymer membranes, methods of making, and methods of use

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-04-16

    Embodiments of the present disclosure provide for polystyrene-b-polyethylene oxide (PS-b-PEO) block copolymer nanoporous membranes, methods of making a PS-b-PEO block copolymer nanoporous membrane, methods of using PS-b-PEO block copolymer nanoporous membranes, and the like.

  13. Chain end distribution of block copolymer in two-dimensional microphase-separated structure studied by scanning near-field optical microscopy.

    Science.gov (United States)

    Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo

    2009-10-01

    The chain end distribution of a block copolymer in a two-dimensional microphase-separated structure was studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(octadecyl methacrylate)-block-poly(isobutyl methacrylate) (PODMA-b-PiBMA), the free end of the PiBMA subchain was directly observed by SNOM, and the spatial distributions of the whole block and the chain end are examined and compared with the convolution of the point spread function of the microscope and distribution function of the model structures. It was found that the chain end distribution of the block copolymer confined in two dimensions has a peak near the domain center, being concentrated in the narrower region, as compared with three-dimensional systems.

  14. Orientation phenomena in chromophore DR1-containing polymer films and their non-linear optical response

    International Nuclear Information System (INIS)

    Moencke, Doris; Mountrichas, Grigoris; Pispas, Stergios; Kamitsos, Efstratios I.

    2011-01-01

    The effectiveness of chromophore alignment in polymer films following corona poling can be assessed by the generated second harmonic signal. Optimization of the stability and strength of this nonlinear optical response may improve with a better understanding of the underlying principal order phenomena. Structural analysis by vibrational, optical, and 1 H NMR spectroscopy reveals side chain tacticity, aggregation effects, and changes in orientation as a function of temperature. Co-polymers with the functionalized chromophore Disperse Red 1 methacrylate (MDR1) were prepared for three different methacrylate types. High side chain polarity and short side chain length increase generally chromophore aggregation in films, whereas the very long poly-ether side chains in PMEO based co-polymers are wrapped separately around the DR1 entities. Side chain tacticity depends on space requirements, but also on the capacity of side groups to form OH-bridges. Side chain tacticity might present an additional parameter for the assessment of chromophore aggregation and poling induced alignments. Stepwise heating of co-polymer films causes an increase in the number of random over ordered side chain arrangements. Cross-linking by anhydride formation is observed after heating the methacrylic acid based co-polymer.

  15. Facile synthesis and characterization of novel biodegradable amphiphilic block copolymers bearing pendant hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Gaicen; Fan, Xiaoshan; Xu, Bingcan; Zhang, Delong; Hu, Zhiguo, E-mail: zghu@htu.cn

    2014-10-01

    Novel amphiphilic block copolymers bearing pendant hydroxyl groups polylactide-b–poly(3,3-bis(Hydroxymethyl–triazolylmethyl) oxetane)-b–polylactide (PLA-b–PHMTYO-b–PLA) were synthesized via a facile and efficient method. First, the block copolymer intermediates polylactide-b–poly(3,3-Diazidomethyloxetane)-b–polylactide (PLA-b–PBAMO-b–PLA) were synthesized through ring-opening polymerization of lactide using PBAMO as a macroinitiator. Following “Click” reaction of PLA-b–PBAMO-b–PLA with propargyl alcohol provided the targeted amphiphilic block copolymers PLA-b–PHMTYO-b–PLA with pendant hydroxyl groups. The composition and structure of prepared copolymers were characterized by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) spectroscopy, Fourier transform infrared (FT-IR) and gel permeation chromatography (GPC). The self-assembly behavior of the copolymers in water was investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and static light scattering (SLS). The results showed that the novel copolymers PLA-b–PHMTYO-b–PLA self-assembled into spherical micelles with diameters ranging from 100 nm to 200 nm in aqueous solution. These copolymers also exhibited low critical micellar concentrations (CMC: 6.9 × 10{sup −4} mg/mL and 3.9 × 10{sup −5} mg/mL, respectively). In addition, the in vitro cytotoxicity of these copolymers was determined in the presence of L929 cells. The results showed that the block copolymers PLA-b–PHMTYO-b–PLA exhibited better biocompatibility. Therefore, these well-defined copolymers are expected to find some applications in drug delivery or tissue engineering. - Highlights: • The method to synthesize PLA-b–PHMTYO-b–PLA is relatively facile and efficient. • PLA-b–PHMTYO-b–PLA self-assembles into spherical micelles with low CMC in water. • PLA-b–PHMTYO-b–PLA exhibits better biocompatibility and biodegradability.

  16. Facile synthesis and characterization of novel biodegradable amphiphilic block copolymers bearing pendant hydroxyl groups

    International Nuclear Information System (INIS)

    Hu, Gaicen; Fan, Xiaoshan; Xu, Bingcan; Zhang, Delong; Hu, Zhiguo

    2014-01-01

    Novel amphiphilic block copolymers bearing pendant hydroxyl groups polylactide-b–poly(3,3-bis(Hydroxymethyl–triazolylmethyl) oxetane)-b–polylactide (PLA-b–PHMTYO-b–PLA) were synthesized via a facile and efficient method. First, the block copolymer intermediates polylactide-b–poly(3,3-Diazidomethyloxetane)-b–polylactide (PLA-b–PBAMO-b–PLA) were synthesized through ring-opening polymerization of lactide using PBAMO as a macroinitiator. Following “Click” reaction of PLA-b–PBAMO-b–PLA with propargyl alcohol provided the targeted amphiphilic block copolymers PLA-b–PHMTYO-b–PLA with pendant hydroxyl groups. The composition and structure of prepared copolymers were characterized by 1 H nuclear magnetic resonance ( 1 H NMR) spectroscopy, Fourier transform infrared (FT-IR) and gel permeation chromatography (GPC). The self-assembly behavior of the copolymers in water was investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and static light scattering (SLS). The results showed that the novel copolymers PLA-b–PHMTYO-b–PLA self-assembled into spherical micelles with diameters ranging from 100 nm to 200 nm in aqueous solution. These copolymers also exhibited low critical micellar concentrations (CMC: 6.9 × 10 −4 mg/mL and 3.9 × 10 −5 mg/mL, respectively). In addition, the in vitro cytotoxicity of these copolymers was determined in the presence of L929 cells. The results showed that the block copolymers PLA-b–PHMTYO-b–PLA exhibited better biocompatibility. Therefore, these well-defined copolymers are expected to find some applications in drug delivery or tissue engineering. - Highlights: • The method to synthesize PLA-b–PHMTYO-b–PLA is relatively facile and efficient. • PLA-b–PHMTYO-b–PLA self-assembles into spherical micelles with low CMC in water. • PLA-b–PHMTYO-b–PLA exhibits better biocompatibility and biodegradability

  17. Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications.

    Science.gov (United States)

    Huang, Lihong; Zhuang, Xiuli; Hu, Jun; Lang, Le; Zhang, Peibiao; Wang, Yu; Chen, Xuesi; Wei, Yen; Jing, Xiabin

    2008-03-01

    To obtain one biodegradable and electroactive polymer as the scaffold for tissue engineering, the multiblock copolymer PLAAP was designed and synthesized with the condensation polymerization of hydroxyl-capped poly( l-lactide) (PLA) and carboxyl-capped aniline pentamer (AP). The PLAAP copolymer exhibited excellent electroactivity, solubility, and biodegradability. At the same time, as one scaffold material, PLAAP copolymer possesses certain mechanical properties with the tensile strength of 3 MPa, tensile Young 's modulus of 32 MPa, and breaking elongation rate of 95%. We systematically studied the compatibility of PLAAP copolymer in vitro and proved that the electroactive PLAAP copolymer was innocuous, biocompatible, and helpful for the adhesion and proliferation of rat C6 cells. Moreover, the PLAAP copolymer stimulated by electrical signals was demonstrated as accelerating the differentiation of rat neuronal pheochromocytoma PC-12 cells. This biodegradable and electroactive PLAAP copolymer thus possessed the properties in favor of the long-time application in vivo as nerve repair scaffold materials in tissue engineering.

  18. Copolymers based on N-acryloyl-L-leucine and urea methacrylate with pyridine moieties

    Directory of Open Access Journals (Sweden)

    Buruiana Emil C.

    2016-01-01

    Full Text Available By using free radical polymerization of (N-methacryloyloxyethyl-N′-4-picolyl-urea (MAcPU and N-acryloyl-L-leucine (AcLeu, an optically active copolymer, poly[(N-methacryloyloxyethyl-N′-4-picolyl-urea-co-N-acryloyl-L-leucine], MAcPU-co-AcLeu (1.86:1 molar ratio was prepared and subsequently functionalized at the pyridine-N with (1R/S-(−/+-10-camphorsulfonic acid (R/S-CSA and at carboxyl group with (R-(+-α-ethylbenzylamine (R-EBA or trans-4-stilbene methanol (t-StM. The structures, chemical composition and chiroptical activity of the monomers and the copolymers were characterized by spectral analysis (FTIR, 1H (13C-NMR, 1H,1H-COSY, UV/vis, thermal methods (TGA, DSC, fluorescence spectroscopy, gel permeation chromatography and specific rotation measurements. Influence of the optical activity of monomer and modifier on modified copolymers suggested a good correlation between the experimental data obtained (23[α]589=+12.5° for AcLeu and MAcPU-co-AcLeu, 23[α]589=0°+27.5° for (MAcPU-co-AcLeu-R/S-CSA, 23[α]589=+25° for (MAcPU-co-AcLeu-R-EBA, and 23[α]589 = 0° for (MAcPU-co-AcLeu-St. In addition, the photobehavior of the stilbene copolymer (MAcPU-co-AcLeu-St in film was investigated by UV-vis spectroscopy. The fluorescence quenching of the stilbene species in the presence of aliphatic/aromatic amine in DMF solution was evaluated, more efficiently being 4,4′−dipyridyl (detection limit: 7.2 x 10-6 mol/L.

  19. Effects of Electron Beam Irradiation on Binary Polyamide-6 Blends with Metallocene Copolymers

    International Nuclear Information System (INIS)

    Rosales, C.

    2006-01-01

    A versatile way to produce new materials with high Izod impact strength and reduced heat deformations is the irradiation of compatibilized blends. The effect of electron beam irradiation and different types of dispersed phase grafted copolymers on thermal and mechanical properties, and SEM morphology of polyamide-6 (PA-6) blends were investigated. Two metallocene copolymers (mEPDM and mPOE) grafted in-situ with maleic anhydride and two commercial maleated copolymers (EPDM-g-MA and mEPR-g-MA) were employed in binary blends with PA6 as matrix. The blends were prepared by extrusion with a composition of 80 wt. % of PA-6. The influence of the radical or functional groups generated in the grafting and the irradiation processes (25, 50, 100 and 200 kGy) was found by ATR-FTIR. The blends exhibited the characteristic thermal behavior of immiscible systems. All compatibilizers employed influenced the melting and crystallization behavior of the blend components without irradiation and an improvement in interface adhesion was clearly observed by SEM micrographs. The sizes of the dispersed phase in the non-irradiated reactive blends were in agreement with the viscosity ratios of the blend components. High toughness materials were obtained with ethylene-polypropylene-diene (mEPDM) grafted copolymers without significant variations in their thermal properties and Izod impact strength at room temperature and -30 degree with the irradiation doses. However, the toughness of the blends with grafted metallocene polyethylenes was affected by the irradiation doses employed. Therefore, the gel content and tensile properties of the samples depended on the chain scission, crosslinking and/or grafting reactions of the blend components

  20. High-Tg Polynorbornene-Based Block and Random Copolymers for Butanol Pervaporation Membranes

    Science.gov (United States)

    Register, Richard A.; Kim, Dong-Gyun; Takigawa, Tamami; Kashino, Tomomasa; Burtovyy, Oleksandr; Bell, Andrew

    Vinyl addition polymers of substituted norbornene (NB) monomers possess desirably high glass transition temperatures (Tg); however, until very recently, the lack of an applicable living polymerization chemistry has precluded the synthesis of such polymers with controlled architecture, or copolymers with controlled sequence distribution. We have recently synthesized block and random copolymers of NB monomers bearing hydroxyhexafluoroisopropyl and n-butyl substituents (HFANB and BuNB) via living vinyl addition polymerization with Pd-based catalysts. Both series of polymers were cast into the selective skin layers of thin film composite (TFC) membranes, and these organophilic membranes investigated for the isolation of n-butanol from dilute aqueous solution (model fermentation broth) via pervaporation. The block copolymers show well-defined microphase-separated morphologies, both in bulk and as the selective skin layers on TFC membranes, while the random copolymers are homogeneous. Both block and random vinyl addition copolymers are effective as n-butanol pervaporation membranes, with the block copolymers showing a better flux-selectivity balance. While polyHFANB has much higher permeability and n-butanol selectivity than polyBuNB, incorporating BuNB units into the polymer (in either a block or random sequence) limits the swelling of the polyHFANB and thereby improves the n-butanol pervaporation selectivity.

  1. Novel Pentablock Copolymers as Thermosensitive Self-Assembling Micelles for Ocular Drug Delivery

    Directory of Open Access Journals (Sweden)

    Mitra Alami-Milani

    2017-04-01

    Full Text Available Many studies have focused on how drugs are formulated in the sol state at room temperature leading to the formation of in situ gel at eye temperature to provide a controlled drug release. Stimuli-responsive block copolymer hydrogels possess several advantages including uncomplicated drug formulation and ease of application, no organic solvent, protective environment for drugs, site-specificity, prolonged and localized drug delivery, lower systemic toxicity, and capability to deliver both hydrophobic and hydrophilic drugs. Self-assembling block copolymers (such as diblock, triblock, and pentablock copolymers with large solubility variation between hydrophilic and hydrophobic segments are capable of making temperature-dependent micellar assembles, and with further increase in the temperature, of jellifying due to micellar aggregation. In general, molecular weight, hydrophobicity, and block arrangement have a significant effect on polymer crystallinity, micelle size, and in vitro drug release profile. The limitations of creature triblock copolymers as initial burst release can be largely avoided using micelles made of pentablock copolymers. Moreover, formulations based on pentablock copolymers can sustain drug release for a longer time. The present study aims to provide a concise overview of the initial and recent progresses in the design of hydrogel-based ocular drug delivery systems.

  2. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Science.gov (United States)

    2010-04-01

    ... methacrylate copolymer identified in this section may be safely used as an article or component of articles... monomer content of the finished copolymer articles is not more than 11 parts per million as determined by... available from the Center for Food Safety and Applied Nutrition (HFS-200), Food and Drug Administration...

  3. Investigation of some copolymers based on acrylic salts as circulation loss control agents

    Directory of Open Access Journals (Sweden)

    Ahmed Mohamed Alsabagh

    2013-12-01

    The prepared copolymers were investigated as loss circulation control materials by measuring different filtration parameters such as; spurt loss, fluid loss and permeability plugging tester value according to the American Petroleum Institute (API standard. From the obtained data, it was found that the 0.6% from the poly[PA-co-AM](0.4:0.6 exhibited the best results of the filtration parameters among the other copolymers. At the same time all the studied copolymers enhanced the rheological properties of the drilling mud. These results were discussed on the light of the swelling capacity of the copolymers.

  4. Application of the Ornstein-Zernike formalism to polymer and copolymer blends

    International Nuclear Information System (INIS)

    Benmouna, M.

    1988-09-01

    The Ornstein Zernike formalism is shown to be applicable to polymer and copolymer blends. Direct correlation functions are obtained from the solution problem by using a simple procedure which was suggested before (M. Benmouna, H. Benoit and W. Wu, to be published in Macromolecules). This procedure consists essentially of replacing the volume fraction of solvent by the quantity φ c N c P c (q) where φ c , N c and P c (q) are the volume fraction, the degree of polymerization and the form factor as a function of momentum transfer q, respectively. (author). 9 refs

  5. Approximation of functions in two variables by some linear positive operators

    Directory of Open Access Journals (Sweden)

    Mariola Skorupka

    1995-12-01

    Full Text Available We introduce some linear positive operators of the Szasz-Mirakjan type in the weighted spaces of continuous functions in two variables. We study the degree of the approximation of functions by these operators. The similar results for functions in one variable are given in [5]. Some operators of the Szasz-Mirakjan type are examined also in [3], [4].

  6. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    International Nuclear Information System (INIS)

    Zhang, Bo; Edwards, Brian J.

    2015-01-01

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes

  7. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes.

    Science.gov (United States)

    Zhang, Bo; Edwards, Brian J

    2015-06-07

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  8. Elucidation of the Structure Formation of Polymer-Conjugated Proteins in Solution and Block Copolymer Templates

    Science.gov (United States)

    Ferebee, Rachel L.

    The broader technical objective of this work is to contribute to the development of enzyme-functionalized nanoporous membranes that can function as autonomous and target selective dynamic separators. The scientific objective of the research performed within this thesis is to elucidate the parameters that control the mixing of proteins in organic host materials and in block copolymers templates in particular. A "biomimetic" membrane system that uses enzymes to selectively neutralize targets and trigger a change in permeability of nanopores lined with a pH-responsive polymer has been fabricated and characterized. Mechanical and functional stability, as well as scalability, have been demonstrated for this system. Additional research has focused on the role of polymeric ligands on the solubility characteristics of the model protein, Bovine Serum Albumin (BSA). For this purpose BSA was conjugated with poly(ethylene glycol) (PEG) ligands of varied degree of polymerization and grafting density. Combined static and dynamic light scattering was used (in conjunction with MALDI-TOF) to determine the second virial coefficient in PBS solutions. At a given mass fraction PEG or average number of grafts, the solubility of BSA-PEG conjugates is found to increase with the degree of polymerization of conjugated PEG. This result informs the synthesis of protein-conjugate systems that are optimized for the fabrication of block copolymer blend materials with maximum protein loading. Blends of BSA-PEG conjugates and block copolymer (BCP) matrices were fabricated to evaluate the dispersion morphology and solubility limits in a model system. Electron microscopy was used to evaluate the changes in lamellar spacing with increased filling fraction of BSA-PEG conjugates.

  9. Synthesis and in vivo magnetic resonance imaging evaluation of biocompatible branched copolymer nanocontrast agents

    Directory of Open Access Journals (Sweden)

    Jackson AW

    2015-09-01

    Full Text Available Alexander W Jackson,1,* Prashant Chandrasekharan,2,* Jian Shi,3 Steven P Rannard,4 Quan Liu,5 Chang-Tong Yang,6 Tao He1,7 1Institute of Chemical and Engineering Sciences (ICES, 2Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A* STAR, 3Department of Biological Science, National University of Singapore, Singapore; 4Department of Chemistry, University of Liverpool, Liverpool, United Kingdom; 5School of Chemical and Biomedical Engineering, 6Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; 7School of Chemistry and Chemical Engineering, HeFei University of Technology, Anhui, People’s Republic of China *These authors contributed equally to this work Abstract: Branched copolymer nanoparticles (Dh =20–35 nm possessing 1,4,7, 10-tetraazacyclododecane-N,N',N",N'"-tetraacetic acid macrocycles within their cores have been synthesized and applied as magnetic resonance imaging (MRI nanosized contrast agents in vivo. These nanoparticles have been generated from novel functional monomers via reversible addition–fragmentation chain transfer polymerization. The process is very robust and synthetically straightforward. Chelation with gadolinium and preliminary in vivo experiments have demonstrated promising characteristics as MRI contrast agents with prolonged blood retention time, good biocompatibility, and an intravascular distribution. The ability of these nanoparticles to perfuse and passively target tumor cells through the enhanced permeability and retention effect is also demonstrated. These novel highly functional nanoparticle platforms have succinimidyl ester-activated benzoate functionalities within their corona, which make them suitable for future peptide conjugation and subsequent active cell-targeted MRI or the conjugation of fluorophores for bimodal imaging. We have also demonstrated that these branched copolymer nanoparticles are able to noncovalently

  10. Highly fluorinated comb-shaped copolymer as proton exchange membranes (PEMs): Fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Sik; Guiver, Michael D.; Ding, Jianfu [Institute for Chemical Process and Environmental Technology, National Research Council, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada); Kim, Yu.Seung; Pivovar, Bryan S. [Materials Physics and Applications, Sensors and Electrochemical Devices Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2008-07-15

    The fuel cell performance (DMFC and H{sub 2}/air) of highly fluorinated comb-shaped copolymer is reported. The initial performance of membrane electrode assemblies (MEAs) fabricated from comb-shaped copolymer containing a side-chain weight fraction of 22% are compared with those derived from Nafion and sulfonated polysulfone (BPSH-35) under DMFC conditions. The low water uptake of comb copolymer enabled an increase in proton exchange site concentrations in the hydrated polymer, which is a desirable membrane property for DMFC application. The comb-shaped copolymer architecture induces phase separated morphology between the hydrophobic fluoroaromatic backbone and the polysulfonic acid side chains. The initial performance of the MEAs using BPSH-35 and Comb 22 copolymer were comparable and higher than that of the Nafion MEA at all methanol concentrations. For example, the power density of the MEA using Comb 22 copolymer at 350 mA cm{sup -2} and 0.5 M methanol was 145 mW cm{sup -2}, whereas the power densities of MEAs using BPSH-35 were 136 mW cm{sup -2}. The power density of the MEA using Comb 22 copolymer at 350 mA cm{sup -2} and 2.0 M methanol was 144.5 mW cm{sup -2}, whereas the power densities of MEAs using BPSH-35 were 143 mW cm{sup -2}. (author)

  11. The Influence of Charged Species on the Phase Behavior, Self-Assembly, and Electrochemical Performance of Block Copolymer Electrolytes

    Science.gov (United States)

    Thelen, Jacob Lloyd

    One of the major barriers to expanding the capacity of large-scale electrochemical energy storage within batteries is the threat of a catastrophic failure. Catastrophic battery pack failure can be initiated by a defect within a single battery cell. If the failure of a defective battery cell is not contained, the damage can spread and subsequently compromise the integrity of the entire battery back, as well as the safety of those in its surroundings. Replacing the volatile, flammable liquid electrolyte components found in most current lithium ion batteries with a solid polymer electrolyte (SPE) would significantly improve the cell-level safety of batteries; however, poor ionic conductivity and restricted operating temperatures compared to liquid electrolytes have plagued the practical application of SPEs. Rather than competing with the performance of liquid electrolytes directly, our approach to developing SPEs relies on increasing electrolyte functionality through the use of block copolymer architectures. Block copolymers, wherein two or more chemically dissimilar polymer chains are covalently bound, have a propensity to microphase separate into nanoscale domains that have physical properties similar to those of each of the different polymer chains. For instance, the block copolymer, polystyrene-b-poly(ethylene oxide) (SEO), has often been employed as a solid polymer electrolyte because the nanoscale domains of polystyrene (PS) can provide mechanical reinforcement, while the poly(ethylene oxide) microphases can solvate and conduct lithium ions. Block copolymer electrolytes (BCEs) formed from SEO/salt mixtures result in a material with the bulk mechanical properties of a solid, but with the ion conducting properties of a viscoelastic fluid. The efficacy SEO-based BCEs has been demonstrated; the enhanced mechanical functionality provided by the PS domains resist the propagation of dendritic lithium structures during battery operation, thus enabling the use of a

  12. Ionic Liquids As Self-Assembly Guide for the Formation of Nanostructured Block Copolymer Membranes

    KAUST Repository

    Madhavan, Poornima

    2015-04-30

    Nanostructured block copolymer membranes were manufactured by water induced phase inversion, using ionic liquids (ILs) as cosolvents. The effect of ionic liquids on the morphology was investigated, by using polystyrene-b-poly(4-vinyl pyridine) (PS-b-PV4P) diblock as membrane copolymer matrix and imidazolium and pyridinium based ILs. The effect of IL concentration and chemical composition was evident with particular interaction with P4VP blocks. The order of block copolymer/ILs solutions previous to the membrane casting was confirmed by cryo scanning electron microscopy and the morphologies of the manufactured nanostructured membranes were characterized by transmission and scanning electron microscopy. Non-protic ionic liquids facilitate the formation of hexagonal nanoporous block copolymer structure, while protic ILs led to a lamella-structured membrane. The rheology of the IL/block copolymer solutions was investigated, evaluating the storage and loss moduli. Most membranes prepared with ionic liquid had higher water flux than pure block copolymer membranes without additives.

  13. Sliding mode control-based linear functional observers for discrete-time stochastic systems

    Science.gov (United States)

    Singh, Satnesh; Janardhanan, Sivaramakrishnan

    2017-11-01

    Sliding mode control (SMC) is one of the most popular techniques to stabilise linear discrete-time stochastic systems. However, application of SMC becomes difficult when the system states are not available for feedback. This paper presents a new approach to design a SMC-based functional observer for discrete-time stochastic systems. The functional observer is based on the Kronecker product approach. Existence conditions and stability analysis of the proposed observer are given. The control input is estimated by a novel linear functional observer. This approach leads to a non-switching type of control, thereby eliminating the fundamental cause of chatter. Furthermore, the functional observer is designed in such a way that the effect of process and measurement noise is minimised. Simulation example is given to illustrate and validate the proposed design method.

  14. Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes

    DEFF Research Database (Denmark)

    Zhang, H.W.; Schäffer, Hemming Andreas

    2007-01-01

    An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....

  15. Nanoporous Crosslinked Polyisoprene from Polyisoprene-Polydimethylsiloxane Block Copolymer

    DEFF Research Database (Denmark)

    Hansen, Michael Steffen; Vigild, Martin Etchells; Berg, Rolf Henrik

    2004-01-01

    The polyisoprene block of a polyisoprene-polydimethylsiloxane (PI-PDMS) diblock copolymer with 0.68 volume fraction of PI was tightly crosslinked with dicumylperoxide. The PDMS part of the obtained glassy material was subsequently quantitatively etched with anhydrous hydrogen fluoride or tetrabut......The polyisoprene block of a polyisoprene-polydimethylsiloxane (PI-PDMS) diblock copolymer with 0.68 volume fraction of PI was tightly crosslinked with dicumylperoxide. The PDMS part of the obtained glassy material was subsequently quantitatively etched with anhydrous hydrogen fluoride...

  16. Morphology evolution of PS-b-PDMS block copolymer and its hierarchical directed self-assembly on block copolymer templates

    DEFF Research Database (Denmark)

    Rasappa, Sozaraj; Schulte, Lars; Borah, Dipu

    2018-01-01

    Cylinder-forming polystyrene-block-polydimethylsiloxane (PS-b-PDMS, 27.2k-b-11.7k, SD39) block copolymer having a total molecular weight of 39 kg mol−1 was exploited to achieve in-plane morphologies of lines, dots and antidots. Brush-free self-assembly of the SD39 on silicon substrates was invest...... substrates provides a simplified method for surface nanopatterning, templated growth of nanomaterials and nanofabrication....... the pattern into the underlying substrate. Directed self-assembly and hierarchical directed self-assembly on block copolymer templates for confinement of dots was successfully demonstrated. The strategy for achieving multiple morphologies using one BCP by mere choice of the annealing solvents on unmodified...

  17. Argument estimates of certain multivalent functions involving a linear operator

    Directory of Open Access Journals (Sweden)

    Nak Eun Cho

    2002-01-01

    Full Text Available The purpose of this paper is to derive some argument properties of certain multivalent functions in the open unit disk involving a linear operator. We also investigate their integral preserving property in a sector.

  18. Overview on the Preparation and Characterization of some Itaconic Acid Chelating Copolymers

    International Nuclear Information System (INIS)

    Abd El-Ghaffar, M.A.; Youssef, E.A.; El-Halawany, N.R.

    2005-01-01

    Itaconic acid (IA) was copolymerised by an emulsion process with butyl acrylate (BuA), butyl methacrylate (BuMA) and styrene (St) using potassium persulphate/sodium meta bisulphite as a redox initiation system and sodium dodecyl benzene sulfonate as an emulsifier. The rate of copolymerization was found to decrease with increasing (IA) content . The prepared copolymers were characterized by spectrophotometric analysis (IR and lINMR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) . The monomer reactivity ratios (r1and r2) for the prepared copolymers were determined and discussed . The copolymers having the best properties were incorporated in latex paint formulations. The Ac.. conductivity of the binary itaconic copolymers have been investigated and studied at room temperature and showed semiconducting properties

  19. Comparative Study of the Physical, Topographical and Biological Properties of Electrospinning PCL, PLLA, their Blend and Copolymer Scaffolds

    Science.gov (United States)

    Bolbasov, E.; Goreninskii, S.; Tverdokhlebov, S.; Mishanin, A.; Viknianshchuk, A.; Bezuidenhout, D.; Golovkin, A.

    2018-05-01

    Biodegradable polymers (blends, copolymers) could be the ideal materials for manufacturing of scaffolds for small diameter vascular graft. Such material characteristics as mechanical properties, chemical structure, nano- and micro topography, surface charge, porosity, wettability etc. are becoming the most important aspects for effectiveness of prosthesis biofunctionalization because of their great impact on cell adhesion, spreading, cell proliferation, differentiation and cell function. The aim of the study is to compare physical, topographical and biological properties of polycaprolactone (PCL), poly-L-lactic acid (PLLA), polycaprolactone + poly-L-lactic acid blend (PCL PLLA), L-lactide/Caprolactone copolymer (PLC7015) scaffolds fabricated with the same fiber thickness using electrospun technology. PCL PLLA scaffolds had the highest average pore area (pactive phase of adhesion process. We propose that physical and topographical properties of PCL, PLLA, their blend and copolymer are of a great dependence of chemical structure but could be changed during the manufacturing process that will lead to changes in biological properties.

  20. An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery

    Science.gov (United States)

    Najer, Adrian; Wu, Dalin; Nussbaumer, Martin G.; Schwertz, Geoffrey; Schwab, Anatol; Witschel, Matthias C.; Schäfer, Anja; Diederich, François; Rottmann, Matthias; Palivan, Cornelia G.; Beck, Hans-Peter; Meier, Wolfgang

    2016-08-01

    Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL-1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (+/-)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block.Medical applications of anticancer and antimalarial drugs often suffer from low aqueous

  1. Adsorption of Poly(ethylene oxide)-Poly(lactide) Copolymers. Effects of Composition and Degradation.

    Science.gov (United States)

    Muller, Dries; Carlsson, Fredrik; Malmsten, Martin

    2001-04-01

    The effect of chemical degradation of two diblock copolymers of poly(ethylene oxide) (E) and poly(lactide) (L), E(39)L(5) and E(39)L(20), on their adsorption at silica and methylated silica was investigated with in situ ellipsometry. Steric stablization of polystyrene dispersions was investigated in relation to degradation. Hydrolysis of the poly(lactide) block of the copolymers was followed at different temperatures and pH by using HPLC to measure the occurrence of lactic acid in solution. The block copolymers were quite stable in pH-unadjusted solution at low temperature, whereas degradation was facilitated by increasing temperature or lowering of the pH. Lower degradation rates of E(39)L(20) where observed at low temperature in comparison with those of E(39)L(5), whereas the degradation rates of the copolymers were quantitatively similar at high temperature. The adsorption of the copolymers at methylated silica substrates decreased with increasing degree of degradation due to the reduction in the ability of hydrophobic block to anchor the copolymer layer at the surface. At silica the adsorption initially increased with increasing degradation, particularly for E(39)L(20) due to deposition of aggregates onto the surface. After extensive degradation the adsorption of the copolymers at both silica and methylated silica resembled that of the corresponding poly(ethylene oxide) homopolymer. Overall, it was found that the eventual reduction in adsorption occurred at a lower degree of degradation for E(39)L(5) than for E(39)L(20). Mean-field calculations showed a reduced anchoring for the block copolymers with decreasing poly(lactide) block length at hydrophobic surfaces. In accordance with this finding, it was observed that polystyrene dispersions were stabilized by E(39)L(20) or E(39)L(5) in a way that depended on both the lactide block length and the degree of degradation. Upon degradation of the hydrophobic block, stabilization of the polystyrene dispersions was

  2. Wigner weight functions and Weyl symbols of non-negative definite linear operators

    NARCIS (Netherlands)

    Janssen, A.J.E.M.

    1989-01-01

    In this paper we present several necessary and, for radially symmetric functions, necessary and sufficient conditions for a function of two variables to be a Wigner weight function (Weyl symbol of a non-negative definite linear operator of L2(R)). These necessary conditions are in terms of spread

  3. 21 CFR 177.1315 - Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-1, 4-cyclohexylene dimethylene... Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers. Ethylene-1, 4-cyclohexylene dimethylene... purposes of this section, ethylene-1,4-cyclohexylene dimethylene terephthalate copolymers (1,4-benzene...

  4. Novel fluorinated block copolymer architectures fuelled by atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Jankova, Katja; Hvilsted, Søren

    2005-01-01

    Block copolymers based on poly(pentafluorostyrene), PFS, in various numbers and of different lengths, and polystyrene are prepared by atom transfer radical polymerization (ATRP). Di- and triblock copolymers with varying amounts of PFS were synthesized employing either I phenylethylbromide or 1,4-...

  5. Synthesis and photooxidation of styrene copolymer bearing camphorquinone pendant groups

    Science.gov (United States)

    Moszner, Norbert; Lukáč, Ivan

    2012-01-01

    Summary (±)-10-Methacryloyloxycamphorquinone (MCQ) was synthesized from (±)-10-camphorsulfonic acid either by a known seven-step synthetic route or by a novel, shorter five-step synthetic route. MCQ was copolymerized with styrene (S) and the photochemical behavior of the copolymer MCQ/S was compared with that of a formerly studied copolymer of styrene with monomers containing the benzil (BZ) moiety (another 1,2-dicarbonyl). Irradiation (λ > 380 nm) of aerated films of styrene copolymers with monomers containing the BZ moiety leads to the insertion of two oxygen atoms between the carbonyl groups of BZ and to the formation of benzoyl peroxide (BP) as pendant groups on the polymer backbone. An equivalent irradiation of MCQ/S led mainly to the insertion of only one oxygen atom between the carbonyl groups of camphorquinone (CQ) and to the formation of camphoric anhydride (11) covalently bound to the polymer backbone. While the decomposition of pendant BP groups formed in irradiated films of styrene copolymers with pendant BZ groups leads to crosslinking, only small molecular-weight changes in irradiated MCQ/S were observed. PMID:22509202

  6. On nonnegative solutions of second order linear functional differential equations

    Czech Academy of Sciences Publication Activity Database

    Lomtatidze, Alexander; Vodstrčil, Petr

    2004-01-01

    Roč. 32, č. 1 (2004), s. 59-88 ISSN 1512-0015 Institutional research plan: CEZ:AV0Z1019905 Keywords : second order linear functional differential equations * nonnegative solution * two-point boundary value problem Subject RIV: BA - General Mathematics

  7. Thermal and radiochemical degradation of some PAN copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Jipa, S. [INCDIE, ICPE CA, 313 Splaiul Unirii, P.O. Box 149, Bucharest 030138 (Romania); ' Valachia' University of Targoviste, 18-22 Unirii Av., Targoviste 130082 (Romania); Zaharescu, T. [' Valachia' University of Targoviste, 18-22 Unirii Av., Targoviste 130082 (Romania)], E-mail: traian_zaharescu@yahoo.com; Setnescu, R. [INCDIE, ICPE CA, 313 Splaiul Unirii, P.O. Box 149, Bucharest 030138 (Romania); ' Valachia' University of Targoviste, 18-22 Unirii Av., Targoviste 130082 (Romania); Dragan, E.S.; Dinu, M.V. [' Petru Poni' Institute of Macromolecular Chemistry, Iasi 700487 (Romania)

    2008-12-01

    Polyacrylonitrile (PAN) and some copolymers of acrylonitrile with divinylbenzene (AN-DVB) were investigated by the characterization of their thermal and radiation stabilities. The contribution of DVB to the thermal stability of PAN by the modification in the amount of unsaturated hydrocarbon between 6 and 20% was revealed by the evaluation of oxidation induction periods and required activation energies. The exposure of these materials to the action of {gamma}-radiation points out the higher stability of copolymers (AN-DVB) in comparison to the relative stability of PAN.

  8. Functionalized linear poly(amidoamine)s are efficient vectors for intracellular protein delivery

    NARCIS (Netherlands)

    Coué, G.M.J.P.C.; Engbersen, Johannes F.J.

    2011-01-01

    An effective intracellular protein delivery system was developed based on functionalized linear poly(amidoamine)s (PAAs) that form self-assembled cationic nanocomplexes with oppositely charged proteins. Three differently functionalized PAAs were synthesized, two of these having repetitive disulfide

  9. 21 CFR 175.365 - Vinylidene chloride copolymer coatings for polycarbonate film.

    Science.gov (United States)

    2010-04-01

    ... polycarbonate film. 175.365 Section 175.365 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... chloride copolymer coatings for polycarbonate film. Vinylidene chloride copolymer coatings identified in this section and applied on polycarbonate film may be safely used as food-contact surfaces, in...

  10. [Prediction of Encapsulation Temperatures of Copolymer Films in Photovoltaic Cells Using Hyperspectral Imaging Techniques and Chemometrics].

    Science.gov (United States)

    Lin, Ping; Chen, Yong-ming; Yao, Zhi-lei

    2015-11-01

    A novel method of combination of the chemometrics and the hyperspectral imaging techniques was presented to detect the temperatures of Ethylene-Vinyl Acetate copolymer (EVA) films in photovoltaic cells during the thermal encapsulation process. Four varieties of the EVA films which had been heated at the temperatures of 128, 132, 142 and 148 °C during the photovoltaic cells production process were used for investigation in this paper. These copolymer encapsulation films were firstly scanned by the hyperspectral imaging equipment (Spectral Imaging Ltd. Oulu, Finland). The scanning band range of hyperspectral equipemnt was set between 904.58 and 1700.01 nm. The hyperspectral dataset of copolymer films was randomly divided into two parts for the training and test purpose. Each type of the training set and test set contained 90 and 10 instances, respectively. The obtained hyperspectral images of EVA films were dealt with by using the ENVI (Exelis Visual Information Solutions, USA) software. The size of region of interest (ROI) of each obtained hyperspectral image of EVA film was set as 150 x 150 pixels. The average of reflectance hyper spectra of all the pixels in the ROI was used as the characteristic curve to represent the instance. There kinds of chemometrics methods including partial least squares regression (PLSR), multi-class support vector machine (SVM) and large margin nearest neighbor (LMNN) were used to correlate the characteristic hyper spectra with the encapsulation temperatures of of copolymer films. The plot of weighted regression coefficients illustrated that both bands of short- and long-wave near infrared hyperspectral data contributed to enhancing the prediction accuracy of the forecast model. Because the attained reflectance hyperspectral data of EVA materials displayed the strong nonlinearity, the prediction performance of linear modeling method of PLSR declined and the prediction precision only reached to 95%. The kernel-based forecast models were

  11. Synthesis and controlled self-assembly of UV-responsive gold nanoparticles in block copolymer templates.

    Science.gov (United States)

    Song, Dong-Po; Wang, Xinyu; Lin, Ying; Watkins, James J

    2014-11-06

    We demonstrate the facile synthesis of gold nanoparticles (GNPs) functionalized by UV-responsive block copolymer ligands, poly(styrene)-b-poly(o-nitrobenzene acrylate)-SH (PS-b-PNBA-SH), followed by their targeted distribution within a lamellae-forming poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer. The multilayer, micelle-like structure of the GNPs consists of a gold core, an inner PNBA layer, and an outer PS layer. The UV-sensitive PNBA segment can be deprotected into a layer containing poly(acrylic acid) (PAA) when exposed to UV light at 365 nm, which enables the simple and precise tuning of GNP surface properties from hydrophobic to amphiphilic. The GNPs bearing ligands of different chemical compositions were successfully and selectively incorporated into the PS-b-P2VP block copolymer, and UV light showed a profound influence on the spatial distributions of GNPs. Prior to UV exposure, GNPs partition along the interfaces of PS and P2VP domains, while the UV-treated GNPs are incorporated into P2VP domains as a result of hydrogen bond interactions between PAA on the gold surface and P2VP domains. This provides an easy way of controlling the arrangement of nanoparticles in polymer matrices by tailoring the nanoparticle surface using UV light.

  12. Enabling high-mobility, ambipolar charge-transport in a DPP-benzotriazole copolymer by side-chain engineering

    DEFF Research Database (Denmark)

    Gruber, Mathias; Jung, Seok-Heon; Schott, Sam

    2015-01-01

    In this article we discuss the synthesis of four new low band-gap co-polymers based on the diketopyrrolopyrrole (DPP) and benzotriazole (BTZ) monomer unit. We demonstrate that the BTZ unit allows for additional solubilizing side-chains on the co-monomer and show that the introduction of a linear...... side-chain on the DPP-unit leads to an increase in thin-film order and charge-carrier mobility if a sufficiently solubilizing, branched, side chain is attached to the BTZ. We compare two different synthetic routes, direct arylation and Suzuki-polycondensation, by a direct comparison of polymers...

  13. Moessbauer spectroscopic study of Fe{sup II}-doped sulphonated poly(ether-urethane)-styrene-acrylate copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Kamnev, A. A. [Russian Academy of Sciences, Institute of Biochemistry and Physiology of Plants and Microorganisms (Russian Federation); Grigoryeva, O. P.; Fainleib, A. M. [National Academy of Sciences of Ukraine, Institute of Macromolecular Chemistry (Ukraine); Kuzmann, E., E-mail: kuzmann@ludens.elte.hu [Eoetvoes Lorand University, Institute of Chemistry (Hungary)

    2013-04-15

    Thermoplastic linear ionomer based on sulphonated poly(ether-urethane)-styrene-acrylate copolymer, doped with natural Fe{sup 2 + }, was studied by Moessbauer spectroscopy at T = 78 and 290 K to monitor the chemical state of Fe species. The Fe{sup 2 + } added to aqueous suspension of the system was only partly oxidised in the course of polymer film preparation and drying in air. The oxidised part comprised a magnetic phase ({approx}19 % of total Fe both at T = 78 and 298 K) and a quadrupole doublet ({approx}40 %), while Fe{sup II} (over 40 %) stabilised in two types of microenvironments.

  14. The lamellar period in symmetric diblock copolymer thin films studied by neutron reflectivity and AFM

    DEFF Research Database (Denmark)

    Gadegaard, N.; Almdal, K.; Larsen, N.B.

    1999-01-01

    The lamellar structure of a symmetric diblock copolymer was studied as a function of temperature. We used dPEP-PDMS with a molecular weight of 8.3 kg/mol as model system. The polymer was dissolved in chloroform and spin-casted on silicon wafers into thin uniform films. The degree and direction...

  15. Optimal Piecewise Linear Basis Functions in Two Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Brooks III, E D; Szoke, A

    2009-01-26

    We use a variational approach to optimize the center point coefficients associated with the piecewise linear basis functions introduced by Stone and Adams [1], for polygonal zones in two Cartesian dimensions. Our strategy provides optimal center point coefficients, as a function of the location of the center point, by minimizing the error induced when the basis function interpolation is used for the solution of the time independent diffusion equation within the polygonal zone. By using optimal center point coefficients, one expects to minimize the errors that occur when these basis functions are used to discretize diffusion equations, or transport equations in optically thick zones (where they approach the solution of the diffusion equation). Our optimal center point coefficients satisfy the requirements placed upon the basis functions for any location of the center point. We also find that the location of the center point can be optimized, but this requires numerical calculations. Curiously, the optimum center point location is independent of the values of the dependent variable on the corners only for quadrilaterals.

  16. Study of the Pyrrol/Diphenylamine Copolymer by FT-IR spectroscopy and conductivity

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Perez

    2004-01-01

    Full Text Available The main goal of this study was to analyze the physical properties of the copolymer formed by the electrochemical deposition of the polydiphenylamine (PDPA on polypyrrole (Ppy and Ppy on PDPA, in different conditions, through the characterization of the materials formed by the resonant Raman, FT-IR and conductivity techniques. The interactions among the species which are present in the new copolymer structure and the changes in electronic conductivity, were verified. The copolymer was also synthesized electrochemically in the presence of iodide species and the material was characterized by FT-IR spectroscopy and conductivity. The role of the dopant was studied in the process of charge transfer between the copolymer-dopant, acting in the stabilization of the species in the polymer backbone and the increase of the electronic conductivity.

  17. Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3,4-ethylenedioxythiophene

    International Nuclear Information System (INIS)

    Nie Guangming; Qu Liangyan; Xu Jingkun; Zhang Shusheng

    2008-01-01

    The copolymerization of 5-cyanoindole (CNIn) and 3,4-ethylenedioxythiophene (EDOT) was successfully performed electrochemically in acetonitrile containing tetrabutylammonium tetrafluoroborate by direct oxidation of monomer mixtures. The electrochemical properties of the copolymers were studied by cyclic voltammetry. The influence of applied polymerization potential on the synthesis of copolymer was investigated. This novel copolymer owns the advantages of poly(5-cyanoindole) (PCNIn) and poly(3,4-ethylenedioxythiophene) (PEDOT), i.e., good redox activity, good thermal stability and high conductivity. The copolymer was soluble in dimethyl sulfoxide. The fluorescence spectra indicate that the copolymer is a good blue-light emitter. The structure and morphology of the copolymers were investigated by UV-vis, infrared spectroscopy, 1 H NMR spectra and scanning electron microscopy (SEM), respectively

  18. Photodegradable neutral-cationic brush block copolymers for nonviral gene delivery.

    Science.gov (United States)

    Hu, Xianglong; Li, Yang; Liu, Tao; Zhang, Guoying; Liu, Shiyong

    2014-08-01

    We report on the fabrication of a photodegradable gene-delivery vector based on PEO-b-P(GMA-g-PDMAEMA) neutral-cationic brush block copolymers that possess cationic poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) brushes for DNA compaction, poly(ethylene oxide) (PEO) as a hydrophilic block, and poly(glycidyl methacrylate) (PGMA) as the backbone. The PEO-b-P(GMA-g-PDMAEMA) copolymers were synthesized through the combination of reversible addition-fragmentation transfer (RAFT) polymerization and postmodification. A photocleavable PEO-based macroRAFT agent was first synthesized; next, the PEO-b-PGMA block copolymer was prepared by RAFT polymerization of GMA; this was followed by a click reaction to introduce the RAFT initiators on the side chains of the PGMA block; then, RAFT polymerization of DMAEMA afforded the PEO-b-P(GMA-g-PDMAEMA) copolymer. The obtained neutral-cationic brush block copolymer could effectively complex plasmid DNA (pDNA) into nanoparticles at an N/P ratio (i.e., the number of nitrogen residues per DNA phosphate) of 4. Upon UV irradiation, pDNA could be released owing to cleavage of the pDNA-binding cationic PDMAEMA side chains as well as the nitrobenzyl ester linkages at the diblock junction point. In addition, in vitro gene transfection results demonstrated that the polyplexes could be effectively internalized by cells with good transfection efficiency, and the UV irradiation protocol could considerably enhance the efficiency of gene transfection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Relaxation processes in a lower disorder order transition diblock copolymer

    International Nuclear Information System (INIS)

    Sanz, Alejandro; Ezquerra, Tiberio A.; Nogales, Aurora; Hernández, Rebeca; Sprung, Michael

    2015-01-01

    The dynamics of lower disorder-order temperature diblock copolymer leading to phase separation has been observed by X ray photon correlation spectroscopy. Two different modes have been characterized. A non-diffusive mode appears at temperatures below the disorder to order transition, which can be associated to compositional fluctuations, that becomes slower as the interaction parameter increases, in a similar way to the one observed for diblock copolymers exhibiting phase separation upon cooling. At temperatures above the disorder to order transition T ODT , the dynamics becomes diffusive, indicating that after phase separation in Lower Disorder-Order Transition (LDOT) diblock copolymers, the diffusion of chain segments across the interface is the governing dynamics. As the segregation is stronger, the diffusive process becomes slower. Both observed modes have been predicted by the theory describing upper order-disorder transition systems, assuming incompressibility. However, the present results indicate that the existence of these two modes is more universal as they are present also in compressible diblock copolymers exhibiting a lower disorder-order transition. No such a theory describing the dynamics in LDOT block copolymers is available, and these experimental results may offer some hints to understanding the dynamics in these systems. The dynamics has also been studied in the ordered state, and for the present system, the non-diffusive mode disappears and only a diffusive mode is observed. This mode is related to the transport of segment in the interphase, due to the weak segregation on this system

  20. Low molecular weight block copolymers as plasticizers for polystyrene

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Karsten; Nielsen, Charlotte Juel; Hvilsted, Søren

    2005-01-01

    /mol and minimum polystyrene content of 50 w/w%, which by us is predicted as the limits for solubility of polystyrene-b-alkyl in polystyrene. DSC showed polystyrene was plasticized, as seen by a reduction in glass transition temperature, by block copolymers consisting of a polystyrene block with molecular weight...... of approximately 1 kg/mol and an alkyl block with a molecular weight of approximately of 0.3 kg/mol. The efficiency of the block copolymers as plasticizers increases with decreasing molecular weight and polystyrene content. In addition, polystyrene-b-alkyl is found to be an efficient plasticizer also...... for polystyrene-b-polyisoprene-b-polystyrene (SIS) block copolymers. The end use properties of SIS plasticized with polystyrene-b-alkyl, measured as tensile strength, is higher than for SIS plasticized with dioctyl adipate. The polystyrene-b-polybutadiene-b-polystyrene and polystyrene-bpoly(propylene glycol...