Chiral equations and fiber bundles
Mateos, T.; Becerril, R.
1992-01-01
Using the hypothesis g = g (lambda i ), the chiral equations (rhog, z g -1 ), z -bar + (rhog, z -barg -1 ), z = 0 are reduced to a Killing equation of a p-dimensional space V p , being lambda i lambda i (z, z-bar) 'geodesic' parameters of V p . Supposing that g belongs to a Lie group G, one writes the corresponding Lie algebra elements (F) in terms of the Killing vectors of V p and the generators of the subalgebra of F of dimension d = dimension of the Killing space. The elements of the subalgebras belong to equivalence classes which in the respective group form a principal fiber bundle. This is used to integrate the matrix g in terms of the complex variables z and z-bar ( Author)
Cellulosic Fibers: Effect of Processing on Fiber Bundle Strength
Thygesen, Anders; Madsen, Bo; Thomsen, Anne Belinda
2011-01-01
A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding, and cotto......A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding...
Illustrative white matter fiber bundles
Otten, R.J.G.; Vilanova, A.; Wetering, van de H.M.M.
2010-01-01
Diffusion Tensor Imaging (DTI) has made feasible the visualization of the fibrous structure of the brain whitematter. In the last decades, several fiber-tracking methods have been developed to reconstruct the fiber tracts fromDTI data. Usually these fiber tracts are shown individually based on some
Fiber bundles in non-relativistic quantum mechanics
Moylan, P.
1979-11-01
The problem of describing a quantum-mechanical system with symmetry by a fiber bundle is considered. The quantization of a fiber bundle is introduced. Fiber bundles for the Kepler problem and the rotator are constructed. The fiber bundle concept provides a new model for a physical system: it provides a model for an elementary particle with extension having integral values of spin. 5 figures
Fiber Bundle Model Under Heterogeneous Loading
Roy, Subhadeep; Goswami, Sanchari
2018-03-01
The present work deals with the behavior of fiber bundle model under heterogeneous loading condition. The model is explored both in the mean-field limit as well as with local stress concentration. In the mean field limit, the failure abruptness decreases with increasing order k of heterogeneous loading. In this limit, a brittle to quasi-brittle transition is observed at a particular strength of disorder which changes with k. On the other hand, the model is hardly affected by such heterogeneity in the limit where local stress concentration plays a crucial role. The continuous limit of the heterogeneous loading is also studied and discussed in this paper. Some of the important results related to fiber bundle model are reviewed and their responses to our new scheme of heterogeneous loading are studied in details. Our findings are universal with respect to the nature of the threshold distribution adopted to assign strength to an individual fiber.
Local load-sharing fiber bundle model in higher dimensions.
Sinha, Santanu; Kjellstadli, Jonas T; Hansen, Alex
2015-08-01
We consider the local load-sharing fiber bundle model in one to five dimensions. Depending on the breaking threshold distribution of the fibers, there is a transition where the fracture process becomes localized. In the localized phase, the model behaves as the invasion percolation model. The difference between the local load-sharing fiber bundle model and the equal load-sharing fiber bundle model vanishes with increasing dimensionality with the characteristics of a power law.
Robust fiber clustering of cerebral fiber bundles in white matter
Yao, Xufeng; Wang, Yongxiong; Zhuang, Songlin
2014-11-01
Diffusion tensor imaging fiber tracking (DTI-FT) has been widely accepted in the diagnosis and treatment of brain diseases. During the rendering pipeline of specific fiber tracts, the image noise and low resolution of DTI would lead to false propagations. In this paper, we propose a robust fiber clustering (FC) approach to diminish false fibers from one fiber tract. Our algorithm consists of three steps. Firstly, the optimized fiber assignment continuous tracking (FACT) is implemented to reconstruct one fiber tract; and then each curved fiber in the fiber tract is mapped to a point by kernel principal component analysis (KPCA); finally, the point clouds of fiber tract are clustered by hierarchical clustering which could distinguish false fibers from true fibers in one tract. In our experiment, the corticospinal tract (CST) in one case of human data in vivo was used to validate our method. Our method showed reliable capability in decreasing the false fibers in one tract. In conclusion, our method could effectively optimize the visualization of fiber bundles and would help a lot in the field of fiber evaluation.
Fiber bundle geometry and space-time structure
Nascimento, J.C.
1977-01-01
Within the framework of the geometric formulation of Gauge theories in fiber bundles, the general relation between the bundle connection (Gauge field) and the geometry of the base space is obtained. A possible Gauge theory for gravitation is presented [pt
Catastrophic Failure and Critical Scaling Laws of Fiber Bundle Material
Shengwang Hao
2017-05-01
Full Text Available This paper presents a spring-fiber bundle model used to describe the failure process induced by energy release in heterogeneous materials. The conditions that induce catastrophic failure are determined by geometric conditions and energy equilibrium. It is revealed that the relative rates of deformation of, and damage to the fiber bundle with respect to the boundary controlling displacement ε0 exhibit universal power law behavior near the catastrophic point, with a critical exponent of −1/2. The proportion of the rate of response with respect to acceleration exhibits a linear relationship with increasing displacement in the vicinity of the catastrophic point. This allows for the prediction of catastrophic failure immediately prior to failure by extrapolating the trajectory of this relationship as it asymptotes to zero. Monte Carlo simulations are completed and these two critical scaling laws are confirmed.
Computational imaging through a fiber-optic bundle
Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.
2017-05-01
Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.
The avalanche process of the multilinear fiber bundles model
Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui
2012-01-01
In order to describe the smooth nonlinear constitutive behavior in the process of fracture of ductile micromechanics structures, the multilinear fiber bundle model was constructed, based on the bilinear fiber bundle model. In the multilinear fiber bundle model, the Young modulus of a fiber is assumed to decay K max times before the final failure occurs. For the large K max region, this model can describe the smooth nonlinear constitutive behavior well. By means of analytical approximation and numerical simulation, we show that the two critical parameters, i.e. the decay ratio of the Young modulus and the maximum number of decays, have substantial effects on the failure process of the bundle. From a macroscopic view, the model can provide various shapes of constitutive curves, which represent diverse kinds of tensile fracture processes. However, at the microscopic scale, the statistical properties of the model are in accord with the classical fiber bundle model. (paper)
Fiber bundle probes for interconnecting miniaturized medical imaging devices
Zamora, Vanessa; Hofmann, Jens; Marx, Sebastian; Herter, Jonas; Nguyen, Dennis; Arndt-Staufenbiel, Norbert; Schröder, Henning
2017-02-01
Miniaturization of medical imaging devices will significantly improve the workflow of physicians in hospitals. Photonic integrated circuit (PIC) technologies offer a high level of miniaturization. However, they need fiber optic interconnection solutions for their functional integration. As part of European funded project (InSPECT) we investigate fiber bundle probes (FBPs) to be used as multi-mode (MM) to single-mode (SM) interconnections for PIC modules. The FBP consists of a set of four or seven SM fibers hexagonally distributed and assembled into a holder that defines a multicore connection. Such a connection can be used to connect MM fibers, while each SM fiber is attached to the PIC module. The manufacturing of these probes is explored by using well-established fiber fusion, epoxy adhesive, innovative adhesive and polishing techniques in order to achieve reliable, low-cost and reproducible samples. An innovative hydrofluoric acid-free fiber etching technology has been recently investigated. The preliminary results show that the reduction of the fiber diameter shows a linear behavior as a function of etching time. Different etch rate values from 0.55 μm/min to 2.3 μm/min were found. Several FBPs with three different type of fibers have been optically interrogated at wavelengths of 630nm and 1550nm. Optical losses are found of approx. 35dB at 1550nm for FBPs composed by 80μm fibers. Although FBPs present moderate optical losses, they might be integrated using different optical fibers, covering a broad spectral range required for imaging applications. Finally, we show the use of FBPs as promising MM-to-SM interconnects for real-world interfacing to PIC's.
Simulation of finite size effects of the fiber bundle model
Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui
2018-01-01
In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.
Introduction to the theory of fiber bundles and connections I
Socolvsky, M.
1990-01-01
In lectures 1 and 2 we discuss basic concepts of topology and differential geometry: definition of a topological space and of Hausdorff, compact, connected and paracompact spaces; topological groups and actions of groups on spaces; differentiable manifolds, tangent vectors and 1 forms; partitions of unity and Lie groups. In lecture 3 we present the concept of a fiber bundle and discuss vector bundles and principal bundles. The concept of a connection on a smooth vector bundle is defined in lecture 4, together with the associated concepts of curvature and parallel transport; as an illustration we present the Levi-Civita connection on a Riemannian manifold. Finally, in lecture 5 we define connections on principal bundles and present examples with the Lie groups U(1) and SU(2). For reasons of space the present article only includes lectures 1, 2 and 3. Lectures 4 and 5 will be published in a forthcoming paper. (Author)
Vision, healing brush, and fiber bundles
Georgiev, Todor
2005-03-01
The Healing Brush is a tool introduced for the first time in Adobe Photoshop (2002) that removes defects in images by seamless cloning (gradient domain fusion). The Healing Brush algorithms are built on a new mathematical approach that uses Fibre Bundles and Connections to model the representation of images in the visual system. Our mathematical results are derived from first principles of human vision, related to adaptation transforms of von Kries type and Retinex theory. In this paper we present the new result of Healing in arbitrary color space. In addition to supporting image repair and seamless cloning, our approach also produces the exact solution to the problem of high dynamic range compression of17 and can be applied to other image processing algorithms.
Gauge theory and gravitation: an approach to a fiber bundle formalism
Mello, L.A. de.
1986-01-01
The thesis is composed of two different parts. A formal complete and rigorous mathematical part-of topics of differential manilfolds, exterior calculus, riemannian geometry, principal fiber bundle (p.f.) with connections and linear connections and a second part of application of this mathematical formalism concerning physical theories, particularly the Maxwell eletromagnetism (EM), gauge theory of Yang-Mills (Y-M), the GRT, and the gravitation theory of Einstein-Cartan. (E.C.) [pt
Fluorescence Endoscopy in vivo based on Fiber-bundle Measurements
Zufiria, B.; Gomez-Garcia, P.; Stamatakis, K.; Vaquero, J.J.; Fresno, M.; Desco, M.; Ripoll, J.; Arranz, A.
2016-07-01
High-resolution imaging techniques have become important for the determination of the cellular organization that is coupled to organ function. In many cases the organ can be viewed without the need of ionizing radiation techniques in an easier way. This is the case of the gastrointestinal tract, an organ that can be directly accessed with endoscopy avoiding any invasive procedure. Here we describe the design, assembly and testing of a fluorescence high-resolution endoscope intended for the study of the cellular organization of the colon in an experimental mouse model of colon carcinoma. Access to the colon of the mouse took place using a fiber-optic bundle that redirects the light coming from a LED to produce fluorescence and detect it back through the fiber bundle. Results from in vivo and ex-vivo test using our fluorescence fiber bundle endoscope show altered tissue structure and destruction of the intestinal crypts in tumor-bearing areas compared with healthy tissue. (Author)
Effect of the Maximum Dose on White Matter Fiber Bundles Using Longitudinal Diffusion Tensor Imaging
Zhu, Tong; Chapman, Christopher H. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Tsien, Christina [Department of Radiation Oncology, Washington University at St Louis, St Louis, Missouri (United States); Kim, Michelle; Spratt, Daniel E.; Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Cao, Yue, E-mail: yuecao@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan (United States)
2016-11-01
Purpose: Previous efforts to decrease neurocognitive effects of radiation focused on sparing isolated cortical structures. We hypothesize that understanding temporal, spatial, and dosimetric patterns of radiation damage to whole-brain white matter (WM) after partial-brain irradiation might also be important. Therefore, we carried out a study to develop the methodology to assess radiation therapy (RT)–induced damage to whole-brain WM bundles. Methods and Materials: An atlas-based, automated WM tractography analysis was implemented to quantify longitudinal changes in indices of diffusion tensor imaging (DTI) of 22 major WM fibers in 33 patients with predominantly low-grade or benign brain tumors treated by RT. Six DTI scans per patient were performed from before RT to 18 months after RT. The DTI indices and planned doses (maximum and mean doses) were mapped onto profiles of each of 22 WM bundles. A multivariate linear regression was performed to determine the main dose effect as well as the influence of other clinical factors on longitudinal percentage changes in axial diffusivity (AD) and radial diffusivity (RD) from before RT. Results: Among 22 fiber bundles, AD or RD changes in 12 bundles were affected significantly by doses (P<.05), as the effect was progressive over time. In 9 elongated tracts, decreased AD or RD was significantly related to maximum doses received, consistent with a serial structure. In individual bundles, AD changes were up to 11.5% at the maximum dose locations 18 months after RT. The dose effect on WM was greater in older female patients than younger male patients. Conclusions: Our study demonstrates for the first time that the maximum dose to the elongated WM bundles causes post-RT damage in WM. Validation and correlative studies are necessary to determine the ability and impact of sparing these bundles on preserving neurocognitive function after RT.
Evaluation of the linear power of HANARO test fuel bundles
Lee, Choong Sung; Seo, C. G.; Lee, B. C.; Kim, H. R
2001-02-01
The HANARO fuel was developed by AECL and it is configured in a bundle of rods containing uranium silicide. AECL has conducted a variety of tests using specimen in order to achieve its qualification and licensing and the highest linear power was evaluated to be 112.8kW/m. In design stage of HANARO, the best estimated maximum linear power at hot spot was found to occur in the transition core from the initial to the equilibrium and its value was 108kW/m, which exceeds 112.8kW/m if the physics uncertainty of the HANARO nuclear design model is taken into account. Consequently, the licensing body issued the conditional permit to operate HANARO and the fuel integrity at the linear power higher than 112.8kW/m was requested to be confirmed through irradiation tests by realizing its repeatability. Hereby, KAERI designed uninstrumented and instrumented test fuel bundles and conducted their burnup tests. In parallel with the tests, the nuclear design model has been revised and updated to enable us to pursue the pin-by-pin power history. This report describes the best estimated power history of the test fuel bundles using the revised model. In conclusion, HANARO fuel keeps its integrity at power condition greater than 120kW/m.
Time-dependent fiber bundles with local load sharing. II. General Weibull fibers.
Phoenix, S Leigh; Newman, William I
2009-12-01
Fiber bundle models (FBMs) are useful tools in understanding failure processes in a variety of material systems. While the fibers and load sharing assumptions are easily described, FBM analysis is typically difficult. Monte Carlo methods are also hampered by the severe computational demands of large bundle sizes, which overwhelm just as behavior relevant to real materials starts to emerge. For large size scales, interest continues in idealized FBMs that assume either equal load sharing (ELS) or local load sharing (LLS) among fibers, rules that reflect features of real load redistribution in elastic lattices. The present work focuses on a one-dimensional bundle of N fibers under LLS where life consumption in a fiber follows a power law in its load, with exponent rho , and integrated over time. This life consumption function is further embodied in a functional form resulting in a Weibull distribution for lifetime under constant fiber stress and with Weibull exponent, beta. Thus the failure rate of a fiber depends on its past load history, except for beta=1 . We develop asymptotic results validated by Monte Carlo simulation using a computational algorithm developed in our previous work [Phys. Rev. E 63, 021507 (2001)] that greatly increases the size, N , of treatable bundles (e.g., 10(6) fibers in 10(3) realizations). In particular, our algorithm is O(N ln N) in contrast with former algorithms which were O(N2) making this investigation possible. Regimes are found for (beta,rho) pairs that yield contrasting behavior for large N. For rho>1 and large N, brittle weakest volume behavior emerges in terms of characteristic elements (groupings of fibers) derived from critical cluster formation, and the lifetime eventually goes to zero as N-->infinity , unlike ELS, which yields a finite limiting mean. For 1/21 but with 0
The fiber bundle formalism for the quantization in curved spaces
Wyrozumski, T.
1989-01-01
We set up a geometrical formulation of the canonical quantization of free Klein-Gordon field on a gravitational background. We introduce the notion of the Bogolubov bundle as the principal fiber bundle over the space of all Cauchy surfaces belonging to some fixed foliation of space-time, with the Bogolubov group as the structure group, as a tool in considering local Bogolubov transformations. Sections of the associated complex structure bundle have the meaning of attaching Hilbert spaces to Cauchy surfaces. We single out, as physical, sections defined by the equation of parallel transport on the Bogolubov bundle. The connection is then subjected to a certain nonlinear differential equation. We find a particular solution, which happens to coincide with a formula given by L.Parker for Robertson-Walker space-times. Finally, we adopt the adiabatic hypothesis as the physical input to the formalism and fix in this way a free parameter in the connection. Concluding, we comment on a possible geometrical interpretation of the regularization of stress-energy tensor and on generalizations of the formalism toward quantum gravity. 14 refs. (Author)
An improved partial bundle method for linearly constrained minimax problems
Chunming Tang
2016-02-01
Full Text Available In this paper, we propose an improved partial bundle method for solving linearly constrained minimax problems. In order to reduce the number of component function evaluations, we utilize a partial cutting-planes model to substitute for the traditional one. At each iteration, only one quadratic programming subproblem needs to be solved to obtain a new trial point. An improved descent test criterion is introduced to simplify the algorithm. The method produces a sequence of feasible trial points, and ensures that the objective function is monotonically decreasing on the sequence of stability centers. Global convergence of the algorithm is established. Moreover, we utilize the subgradient aggregation strategy to control the size of the bundle and therefore overcome the difficulty of computation and storage. Finally, some preliminary numerical results show that the proposed method is effective.
Guan-Yu Zheng
2014-01-01
Full Text Available Natural fiber bundle like hemp fiber bundle usually includes many small lumens embedded in solid region; thus, it can present lower thermal conduction than that of conventional fibers. In the paper, characteristic of anisotropic transverse thermal conductivity of unidirectional natural hemp fiber bundle was numerically studied to determine the dependence of overall thermal property of the fiber bundle on that of the solid region phase. In order to efficiently predict its thermal property, the fiber bundle was embedded into an imaginary matrix to form a unit composite cell consisting of the matrix and the fiber bundle. Equally, another unit composite cell including an equivalent solid fiber was established to present the homogenization of the fiber bundle. Next, finite element thermal analysis implemented by ABAQUS was conducted in the two established composite cells by applying proper thermal boundary conditions along the boundary of unit cell, and influences of the solid region phase and the equivalent solid fiber on the composites were investigated, respectively. Subsequently, an optional relationship of thermal conductivities of the natural fiber bundle and the solid region was obtained by curve fitting technique. Finally, numerical results from the obtained fitted curves were compared with the analytic Hasselman-Johnson’s results and others to verify the present numerical model.
An estimation of the fine structure constant using fiber bundles
Ross, D.K.
1986-01-01
Ross calculates g 0 /e, where g 0 is the strength of an elementary magnetic monopole and e is the charge on the electron, in terms of a ratio of loop sizes in the twisted and untwisted principal fiber bundles with U (1) the structure group and R 3 -(0) the base space. The result involves the present distance around the U (1) space and, rather surprisingly, the structure of the quantum gravitational vacuum. Combining this result with the expression for eg 0 from the Dirac quantization conditions gives a final estimate for the fine structure constant, alpha, near 1/100
A compressed sensing approach for resolution improvement in fiber-bundle based endomicroscopy
Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.
2018-02-01
Endomicroscopy techniques such as confocal, multi-photon, and wide-field imaging have all been demonstrated using coherent fiber-optic imaging bundles. While the narrow diameter and flexibility of fiber bundles is clinically advantageous, the number of resolvable points in an image is conventionally limited to the number of individual fibers within the bundle. We are introducing concepts from the compressed sensing (CS) field to fiber bundle based endomicroscopy, to allow images to be recovered with more resolvable points than fibers in the bundle. The distal face of the fiber bundle is treated as a low-resolution sensor with circular pixels (fibers) arranged in a hexagonal lattice. A spatial light modulator is located conjugate to the object and distal face, applying multiple high resolution masks to the intermediate image prior to propagation through the bundle. We acquire images of the proximal end of the bundle for each (known) mask pattern and then apply CS inversion algorithms to recover a single high-resolution image. We first developed a theoretical forward model describing image formation through the mask and fiber bundle. We then imaged objects through a rigid fiber bundle and demonstrate that our CS endomicroscopy architecture can recover intra-fiber details while filling inter-fiber regions with interpolation. Finally, we examine the relationship between reconstruction quality and the ratio of the number of mask elements to the number of fiber cores, finding that images could be generated with approximately 28,900 resolvable points for a 1,000 fiber region in our platform.
A retracting wire knife for cutting fiber bundles and making sheet lesions of brain tissue.
Shibata, M; Russell, I S
1979-07-01
A retracting knife which has two cutting wires for the transection of fiber bundles is described. The knife holds the fiber bundles of the stria terminalis between the two cutting wires and transects them by a shearing movement as the wires close. In addition, the feasability of such a knife producing a sheet lesion around the n. caudatus is also described.
Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli
2016-09-01
A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.
Wave equations on a de Sitter fiber bundle. [Semiclassical wave function, bundle space, L-S coupling
Drechsler, W [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany)
1975-01-01
A gauge theory of strong interaction is developed based on fields defined on a fiber bundle. The structural group of the bundle is taken to be the Lsub(4,1) de Sitter group. An internal variable xi, varying in the fiber over a space-time point x, is introduced as a means to describe - with the help of a semiclassical wave function psi(x,xi) defined on the bundle space - the internal structure of extended hadrons in a framework using differential geometric techniques. Three basic nonlinear wave equations for psi(x,xi) are established which are of integro-differential type. The nonlinear coupling terms in these de Sitter gauge invariant equations represent physically a generalized spin orbit coupling or a generalized spin coupling for the motion taking place in the fiber. The motivation for using a bigger space for the definition of hadronic matter wave functions as well as the implications of this geometric approach to strong interaction physics is discussed in detail, in particular with respect to the problem of hadronic constituents. The proposed fiber bundle formalism allows a dynamical description of extended structures for hadrons without implying the necessity of introducing any constituents.
Preliminary Study of Linear Density, Tenacity, and Crystallinity of Cotton Fibers
Yongliang Liu
2014-07-01
Full Text Available An investigation of the relationships among fiber linear density, tenacity, and structure is important to help cotton breeders modify varieties for enhanced fiber end-use qualities. This study employed the Stelometer instrument, which is the traditional fiber tenacity reference method and might still be an option as a rapid screening tool because of its low cost and portable attributes. In addition to flat bundle break force and weight variables from a routine Stelometer test, the number of fibers in the bundle were counted manually and the fiber crystallinity (CIIR was characterized by the previously proposed attenuated total reflection-sampling device based Fourier transform infrared (ATR-FTIR protocol. Based on the plots of either tenacity vs. linear density or fiber count vs. mass, the fibers were subjectively divided into fine or coarse sets, respectively. Relative to the distinctive increase in fiber tenacity with linear density, there was an unclear trend between the linear density and CIIR for these fibers. Samples with similar linear density were found to increase in tenacity with fiber CIIR. In general, Advanced Fiber Information System (AFIS fineness increases with fiber linear density.
3D interferometric shape measurement technique using coherent fiber bundles
Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen
2017-06-01
In-situ 3-D shape measurements with submicron shape uncertainty of fast rotating objects in a cutting lathe are expected, which can be achieved by simultaneous distance and velocity measurements. Conventional tactile methods, coordinate measurement machines, only support ex-situ measurements. Optical measurement techniques such as triangulation and conoscopic holography offer only the distance, so that the absolute diameter cannot be retrieved directly. In comparison, laser Doppler distance sensors (P-LDD sensor) enable simultaneous and in-situ distance and velocity measurements for monitoring the cutting process in a lathe. In order to achieve shape measurement uncertainties below 1 μm, a P-LDD sensor with a dual camera based scattered light detection has been investigated. Coherent fiber bundles (CFB) are employed to forward the scattered light towards cameras. This enables a compact and passive sensor head in the future. Compared with a photo detector based sensor, the dual camera based sensor allows to decrease the measurement uncertainty by the order of one magnitude. As a result, the total shape uncertainty of absolute 3-D shape measurements can be reduced to about 100 nm.
A fiber bundle-plastic chain model for quasi-brittle materials under uniaxial loading
Shan, Zhi; Yu, Zhiwu
2015-01-01
A fiber bundle-plastic chain model for quasi-brittle materials under both uniaxial compression and tension conditions is developed. By introducing a plastic chain model into the fiber bundle model, a bundle-chain model for quasi-brittle materials is proposed with physical considerations. The model achieves a novel and convenient approach to describe the stochastic effective stress-driven plasticity. It is found that the numerical solutions obtained with this model agree with experimental results when subjected to both monotonic and cyclic uniaxial loading. The model generates a numerical solution with higher accuracy than the present models, when compared with the experimental results on certain problems. An example is shown which utilizes this model to describe the stochastic properties of a constitutive model given as standard. Furthermore, the difference between the existing plastic fiber bundle models in the literature and this model is also obtained in this work. (paper)
Jansonius, N. M.; Nevalainen, J.; Selig, B.; Zangwill, L. M.; Sample, P. A.; Budde, W. M.; Jonas, J. B.; Lagreze, W. A.; Airaksinen, P. J.; Vonthein, R.; Levin, L. A.; Paetzold, J.; Schiefer, U.
2009-01-01
We developed a mathematical model wherein retinal nerve fiber trajectories can be described and the corresponding inter-subject variability analyzed. The model was based on traced nerve fiber bundle trajectories extracted from 55 fundus photographs of 55 human subjects. The model resembled the
The Atiyah bundle and connections on a principal bundle
be the fiber bundle constructed as in (1.1) for the universal principal G-bundle. In a work in progress, we hope to show that the universal G-connection can be realized as a fiber bundle over C(EG). Turning this ... a G-invariant vector field on EG|U . In other words, we get a bijective linear map between. A(EG)(U) (the space of ...
Gawali, Sandeep Babu; Leggio, Luca; Sánchez, Miguel; Rodríguez, Sergio; Dadrasnia, Ehsan; Gallego, Daniel C.; Lamela, Horacio
2016-05-01
Optoacoustic (OA) effect refers to the generation of the acoustic waves due to absorption of light energy in a biological tissue. The incident laser pulse is absorbed by the tissue, resulting in the generation of ultrasound that is typically detected by a piezoelectric detector. Compared to other techniques, the advantage of OA imaging (OAI) technique consists in combining the high resolution of ultrasound technique with the high contrast of optical imaging. Generally, Nd:YAG and OPO systems are used for the generation of OA waves but their use in clinical environment is limited for many aspects. On the other hand, high-power diode lasers (HPDLs) emerge as potential alternative. However, the power of HPDLs is still relatively low compared to solid-state lasers. We show a side-by-side combination of several HPDLs in an optical fiber bundle to increase the amount of power for OA applications. Initially, we combine the output optical power of several HPDLs at 905 nm using two 7 to 1 round optical fiber bundles featuring a 675 μm and 1.2 mm bundle aperture. In a second step, we couple the output light of these fiber bundles to a 600 μm core diameter endoscopic fiber, reporting the corresponding coupling efficiencies. The fiber bundles with reasonable small diameter are likely to be used for providing sufficient light energy to potential OA endoscopy (OAE) applications.
Heterotic line bundle models on elliptically fibered Calabi-Yau three-folds
Braun, Andreas P.; Brodie, Callum R.; Lukas, Andre
2018-04-01
We analyze heterotic line bundle models on elliptically fibered Calabi-Yau three-folds over weak Fano bases. In order to facilitate Wilson line breaking to the standard model group, we focus on elliptically fibered three-folds with a second section and a freely-acting involution. Specifically, we consider toric weak Fano surfaces as base manifolds and identify six such manifolds with the required properties. The requisite mathematical tools for the construction of line bundle models on these spaces, including the calculation of line bundle cohomology, are developed. A computer scan leads to more than 400 line bundle models with the right number of families and an SU(5) GUT group which could descend to standard-like models after taking the ℤ2 quotient. A common and surprising feature of these models is the presence of a large number of vector-like states.
Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle.
Andresen, Esben Ravn; Bouwmans, Géraud; Monneret, Serge; Rigneault, Hervé
2013-03-01
We report a step toward scanning endomicroscopy without distal optics. The focusing of the beam at the distal end of a fiber bundle is achieved by imposing a parabolic phase profile across the exit face with the aid of a spatial light modulator. We achieve video-rate images by galvanometric scanning of the phase tilt at the proximal end. The approach is made possible by the bundle, designed to have very low coupling between cores.
Rinaldi, Antonio
2011-04-01
Traditional fiber bundles models (FBMs) have been an effective tool to understand brittle heterogeneous systems. However, fiber bundles in modern nano- and bioapplications demand a new generation of FBM capturing more complex deformation processes in addition to damage. In the context of loose bundle systems and with reference to time-independent plasticity and soft biomaterials, we formulate a generalized statistical model for ductile fracture and nonlinear elastic problems capable of handling more simultaneous deformation mechanisms by means of two order parameters (as opposed to one). As the first rational FBM for coupled damage problems, it may be the cornerstone for advanced statistical models of heterogeneous systems in nanoscience and materials design, especially to explore hierarchical and bio-inspired concepts in the arena of nanobiotechnology. Applicative examples are provided for illustrative purposes at last, discussing issues in inverse analysis (i.e., nonlinear elastic polymer fiber and ductile Cu submicron bars arrays) and direct design (i.e., strength prediction).
Takayama, Kohei; Ooto, Sotaro; Hangai, Masanori; Ueda-Arakawa, Naoko; Yoshida, Sachiko; Akagi, Tadamichi; Ikeda, Hanako Ohashi; Nonaka, Atsushi; Hanebuchi, Masaaki; Inoue, Takashi; Yoshimura, Nagahisa
2013-05-01
To detect pathologic changes in retinal nerve fiber bundles in glaucomatous eyes seen on images obtained by adaptive optics (AO) scanning laser ophthalmoscopy (AO SLO). Prospective cross-sectional study. Twenty-eight eyes of 28 patients with open-angle glaucoma and 21 normal eyes of 21 volunteer subjects underwent a full ophthalmologic examination, visual field testing using a Humphrey Field Analyzer, fundus photography, red-free SLO imaging, spectral-domain optical coherence tomography, and imaging with an original prototype AO SLO system. The AO SLO images showed many hyperreflective bundles suggesting nerve fiber bundles. In glaucomatous eyes, the nerve fiber bundles were narrower than in normal eyes, and the nerve fiber layer thickness was correlated with the nerve fiber bundle widths on AO SLO (P fiber layer defect area on fundus photography, the nerve fiber bundles on AO SLO were narrower compared with those in normal eyes (P optic disc, the nerve fiber bundle width was significantly lower, even in areas without nerve fiber layer defect, in eyes with glaucomatous eyes compared with normal eyes (P = .026). The mean deviations of each cluster in visual field testing were correlated with the corresponding nerve fiber bundle widths (P = .017). AO SLO images showed reduced nerve fiber bundle widths both in clinically normal and abnormal areas of glaucomatous eyes, and these abnormalities were associated with visual field defects, suggesting that AO SLO may be useful for detecting early nerve fiber bundle abnormalities associated with loss of visual function. Copyright © 2013 Elsevier Inc. All rights reserved.
Development of a position sensor based on a four quadrant structured optic fiber bundle
Boukellal, Younes; Ducourtieux, Sebastien
2015-01-01
This article reports on the development of a new kind of 2D displacement sensor based on an optic fiber bundle whose fiber arrangement has been customized to provide an input sensitive surface with four quadrants. The fibers of each quadrant are regrouped to form four output arms. The aim is to reach behavior similar to that of a quad cell photodiode when illuminated by a laser spot. In this paper, we present the motivations for developing such a sensor and its design. Prior to the fabrication of a first prototype, the optic fiber bundle has been modelled and compared to a quad cell photodiode. It has an active surface which is 10 mm in diameter and which comprises 40 000 fibers of 50 µm core diameter. For this experimental test, a specific electronic conditioning circuit has been developed to process the signals. From both modelled and experimental results, fiber optic bundle and quad cell photodiode behavior has proved to be very similar, provided that the number of fibers is sufficient to achieve a statistical effect on the detected displacement, i.e. the laser spot diameter is rightly chosen as a function of the fiber diameter. For the use of the bundle as position sensor, a laser spot size of 5 mm has been fixed to achieve a good compromise between sensitivity and displacement range. With this spot size, sensitivity and displacement range have been experimentally evaluated to 2 mV µm −1 and 3.8 mm respectively with a corresponding displacement resolution of 5 nm in the best case. (paper)
Hierarchical composites: Analysis of damage evolution based on fiber bundle model
Mishnaevsky, Leon
2011-01-01
A computational model of multiscale composites is developed on the basis of the fiber bundle model with the hierarchical load sharing rule, and employed to study the effect of the microstructures of hierarchical composites on their damage resistance. Two types of hierarchical materials were consi...
Diffusion tensor imaging for nerve fiber bundles in the brain stem and spinocerebellar degeneration
Honma, Tsuguo
2009-01-01
Diffusion tensor imaging (DTI) can create an image of the anisotropic nature of diffusion and express it quantitatively. Nerve fibers have a large anisotropic diffusion, and it is possible to obtain images of the nerve fiber bundle. The purpose of this study is to observe the nerve fiber bundles in the brain stem using DTI and study its potential for diagnosing the type of spinocerebellar degeneration (SCD). Fractional anisotropy (FA) maps and 3D-tractography images were obtained for 41 subjects with no brain stem abnormalities. We created an apparent diffusion coefficient (ADC) map and an FA map using DTI for 16 subjects in the disease group (11 with hereditary SCD and 5 with non-hereditary SCD) and 25 in the control group. The diffusion value of the pons and middle cerebellar peduncle was measured using ADC, and the degree of anisotropic diffusion was measured using FA. The pyramidal tract, superior cerebellar peduncle, and inferior cerebellar peduncle were clearly demonstrated for all cases. ADC for the middle cerebellar peduncle in spinocerebellar ataxin (SCA)1 was significantly higher, similar to that for the pons in dentatorubro-pallidoluysian atrophy (DRPLA). In MSA-C, ADC for both the pons and middle cerebellar peduncle was significantly elevated and FA was significantly decreased. There were no significant changes in SCA3. We could observe the nerve fiber bundles in the brain stem using DTI. FA and ADC measurements with DTI can aid in diagnosing the type of SCD. (author)
Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI
Magro, Elsa; Moreau, Tristan; Gibaud, Bernard; Seizeur, Romuald; Morandi, Xavier
2012-01-01
Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness. Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness. The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers. These results raise questions about the functional role of these MRI tracks and their relation with laterality. (orig.)
Brittle-to-ductile transition in a fiber bundle with strong heterogeneity.
Kovács, Kornél; Hidalgo, Raul Cruz; Pagonabarraga, Ignacio; Kun, Ferenc
2013-04-01
We analyze the failure process of a two-component system with widely different fracture strength in the framework of a fiber bundle model with localized load sharing. A fraction 0≤α≤1 of the bundle is strong and it is represented by unbreakable fibers, while fibers of the weak component have randomly distributed failure strength. Computer simulations revealed that there exists a critical composition α(c) which separates two qualitatively different behaviors: Below the critical point, the failure of the bundle is brittle, characterized by an abrupt damage growth within the breakable part of the system. Above α(c), however, the macroscopic response becomes ductile, providing stability during the entire breaking process. The transition occurs at an astonishingly low fraction of strong fibers which can have importance for applications. We show that in the ductile phase, the size distribution of breaking bursts has a power law functional form with an exponent μ=2 followed by an exponential cutoff. In the brittle phase, the power law also prevails but with a higher exponent μ=9/2. The transition between the two phases shows analogies to continuous phase transitions. Analyzing the microstructure of the damage, it was found that at the beginning of the fracture process cracks nucleate randomly, while later on growth and coalescence of cracks dominate, which give rise to power law distributed crack sizes.
Stability in a fiber bundle model: Existence of strong links and the effect of disorder
Roy, Subhadeep
2018-05-01
The present paper deals with a fiber bundle model which consists of a fraction α of infinitely strong fibers. The inclusion of such an unbreakable fraction has been proven to affect the failure process in early studies, especially around a critical value αc. The present work has a twofold purpose: (i) a study of failure abruptness, mainly the brittle to quasibrittle transition point with varying α and (ii) variation of αc as we change the strength of disorder introduced in the model. The brittle to quasibrittle transition is confirmed from the failure abruptness. On the other hand, the αc is obtained from the knowledge of failure abruptness as well as the statistics of avalanches. It is observed that the brittle to quasibrittle transition point scales to lower values, suggesting more quasi-brittle-like continuous failure when α is increased. At the same time, the bundle becomes stronger as there are larger numbers of strong links to support the external stress. High α in a highly disordered bundle leads to an ideal situation where the bundle strength, as well as the predictability in failure process is very high. Also, the critical fraction αc, required to make the model deviate from the conventional results, increases with decreasing strength of disorder. The analytical expression for αc shows good agreement with the numerical results. Finally, the findings in the paper are compared with previous results and real-life applications of composite materials.
Lee, C. S.; Seo, C. K.; Lee, B. C.; Kim, H. N.; Kang, B. W. [KAERI, Taejon (Korea, Republic of)
2000-10-01
The HANARO fuel, U{sub 3}Si-Al, has been developed by AECL and tested in NRU reactor. Due to the lack of the data performed under the high power, the repetitive conduct of the irradiation test was required under the power greater than 108kW/m, which is the estimated maximum linear power in the design stage. Accordingly, the instrumented test bundle with SPND(Self Powered Neutron Detector) was fabricated and its irradiation test was performed in IR2 of HANARO. The measured thermal neutron flux with SPND is compared with calculation results by HANAFMS(HANARO Fuel Management System). The difference in the measured and calculated thermal flux values are below {+-}11% and the accuracy of the linear power predicted by HANAFMS is consequently accompanied. Therefore, it is believed that the maximum linear power above 120kW/m is achieved during the irradiation test of the test bundle.
Photoacoustic imaging of hidden dental caries by using a bundle of hollow optical fibers
Koyama, Takuya; Kakino, Satoko; Matsuura, Yuji
2018-02-01
Photoacoustic imaging system using a bundle of hollow-optical fibers to detect hidden dental caries is proposed. Firstly, we fabricated a hidden caries model with a brown pigment simulating a common color of caries lesion. It was found that high frequency ultrasonic waves are generated from hidden carious part when radiating Nd:YAG laser light with a 532 nm wavelength to occlusal surface of model tooth. We calculated by Fourier transform and found that the waveform from the carious part provides frequency components of approximately from 0.5 to 1.2 MHz. Then a photoacoustic imaging system using a bundle of hollow optical fiber was fabricated for clinical applications. From intensity map of frequency components in 0.5-1.2 MHz, photoacoustic images of hidden caries in the simulated samples were successfully obtained.
Schwalm, D.
1975-09-01
A concept is described how to use temperature noise for the detection and identification of a simulated malfunction (e.g. a blockage) in a heated linear bundle in the preboiling state. At first, methods are proposed how to find an optimal detector position down stream from the bundle exit in such a way that the detector sees the total bundle cross section. In addition some methods are proposed for the identification of the malfunction by making use of random data analysis
Michael Santiago Cintrón
2016-11-01
Full Text Available Infrared imaging is gaining attention as a technique used in the examination of cotton fibers. This type of imaging combines spectral analysis with spatial resolution to create visual images that examine sample composition and distribution. Herein, we report on the use of an infrared instrument equipped with a reflection accessory and an array detector system for the examination of cotton fiber bundles. Cotton vibrational spectra and chemical images were acquired by grouping pixels in the detector array. This technique reduced spectral noise and was employed to visualize cell wall development in cotton fibers bundles. Fourier transform infrared spectra reveal band changes in the C–O bending region that matched previous studies. Imaging studies were quick, relied on small amounts of sample and provided a distribution of the cotton fiber cell wall composition. Thus, imaging of cotton bundles with an infrared detector array has potential for use in cotton fiber examinations.
Sirel Gür Güngör
2016-12-01
Full Text Available Objectives: The presence of retinal nerve fiber layer (RNFL split bundles was recently described in normal eyes scanned using scanning laser polarimetry and by histologic studies. Split bundles may resemble RNFL loss in healthy eyes. The aim of our study was to determine the prevalence of nerve fiber layer split bundles in healthy people. Materials and Methods: We imaged 718 eyes of 359 healthy persons with the spectral domain optical coherence tomography in this cross-sectional study. All eyes had intraocular pressure of 21 mmHg or less, normal appearance of the optic nerve head, and normal visual fields (Humphrey Field Analyzer 24-2 full threshold program. In our study, a bundle was defined as ‘split’ when there is localized defect not resembling a wedge defect in the RNFL deviation map with a symmetrically divided RNFL appearance on the RNFL thickness map. The classification was performed by two independent observers who used an identical set of reference examples to standardize the classification. Results: Inter-observer consensus was reached in all cases. Bilateral superior split bundles were seen in 19 cases (5.29% and unilateral superior split was observed in 15 cases (4.16%. In 325 cases (90.52% there was no split bundle. Conclusion: Split nerve fiber layer bundles, in contrast to single nerve fiber layer bundles, are not common findings in healthy eyes. In eyes with normal optic disc appearance, especially when a superior RNFL defect is observed in RNFL deviation map, the RNLF thickness map and graphs should also be examined for split nerve fiber layer bundles.
Multiple Iterations of Bundle Adjustment for the Position Measurement of Fiber Tips on LAMOST
Feng Mingchi
2014-08-01
Full Text Available In the astronomical observation process of multi-object fiber spectroscopic telescope, the position measurement of fiber tips on the focal plane is difficult and critical, and is directly related to subsequent observation and ultimate data quality. The fibers should precisely align with the celestial target. Hence, the precise coordinates of the fiber tips are obligatory for tracking the celestial target. The accurate movement trajectories of the fiber tips on the focal surface of the telescope are the critical problem for the control of the fiber positioning mechanism. According to the special structure of the LAMOST telescope and the composition of the initial position error, this paper aims at developing a high precision and robust measurement method based on multiple iterations of bundle adjustment with a few control points. The measurement theory of the proposed methodology has been analyzed, and the measurement accuracy has been evaluated. The experimental results indicate that the new method is more accurate and more reliable than the polynomial fitting method. The maximum position error of the novel measurement algorithm of fiber tips with simulated and real data is 65.3 μm, and most of the position errors conform to the accuracy requirement (40 μm.
Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI
Magro, Elsa [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Cavale Blanche, Service de Neurochirurgie, Pole Neurolocomoteur, Brest (France); Moreau, Tristan; Gibaud, Bernard [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); Seizeur, Romuald [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Cavale Blanche, Service de Neurochirurgie, Pole Neurolocomoteur, Brest (France); INSERM UMR 1101 LaTIM, Brest (France); Morandi, Xavier [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Pontchaillou, Service de Neurochirurgie, Rennes (France)
2012-11-15
Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness. Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness. The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers. These results raise questions about the functional role of these MRI tracks and their relation with laterality. (orig.)
In-Situ Imaging and Quantification of Tritium Surface Contamination via Coherent Fiber Bundle
Gentile, Charles A.; Parker, John J.; Zweben, Stewart J.
2001-01-01
Princeton Plasma Physics Laboratory (PPPL) has developed a method of imaging tritium on in-situ surfaces for the purpose of real-time data collection. This method expands upon a previous tritium imaging concept, also developed at PPPL. Enhancements include an objective lens coupled to the entry aperture of a coherent fiber optic (CFO) bundle, and a relay lens connecting the exit aperture of the fiber bundle to an intensifier tube and a charge-coupled device (CCD) camera. The system has been specifically fabricated for use in determining tritium concentrations on first wall materials. One potential complication associated with the development of D-T [deuterium-tritium] fueled fusion reactors is the deposition of tritium (i.e., co-deposited layer) on the surface of the primary wall of the vacuum vessel. It would be advantageous to implement a process to accurately determine tritium distribution on these inner surfaces. This fiber optic imaging device provides a highly practical method for determining the location, concentration, and activity of surface tritium deposition. In addition, it can be employed for detection of tritium ''hot-spots'' and ''hide-out'' regions present on the surfaces being imaged
Nie, Shuai; Benito-Peña, Elena; Zhang, Huaibin; Wu, Yue; Walt, David R
2013-10-10
Herein, we describe a protocol for simultaneously measuring six proteins in saliva using a fiber-optic microsphere-based antibody array. The immuno-array technology employed combines the advantages of microsphere-based suspension array fabrication with the use of fluorescence microscopy. As described in the video protocol, commercially available 4.5 μm polymer microspheres were encoded into seven different types, differentiated by the concentration of two fluorescent dyes physically trapped inside the microspheres. The encoded microspheres containing surface carboxyl groups were modified with monoclonal capture antibodies through EDC/NHS coupling chemistry. To assemble the protein microarray, the different types of encoded and functionalized microspheres were mixed and randomly deposited in 4.5 μm microwells, which were chemically etched at the proximal end of a fiber-optic bundle. The fiber-optic bundle was used as both a carrier and for imaging the microspheres. Once assembled, the microarray was used to capture proteins in the saliva supernatant collected from the clinic. The detection was based on a sandwich immunoassay using a mixture of biotinylated detection antibodies for different analytes with a streptavidin-conjugated fluorescent probe, R-phycoerythrin. The microarray was imaged by fluorescence microscopy in three different channels, two for microsphere registration and one for the assay signal. The fluorescence micrographs were then decoded and analyzed using a homemade algorithm in MATLAB.
Jing Zhang
2016-08-01
Full Text Available The mechanical properties of natural fiber composites can be strengthened in the longitudinal direction if the fiber is formed in a parallel manner. Reconstituted cotton stalk lumber and mulberry branch lumber were fabricated using hot-press technology, and the effects of fiber morphology on their mechanical and bonding properties were investigated. The fiber bundle size had a great influence on the mechanical and bonding properties of the final products. The maximum specific modulus of rupture (MOR and specific modulus of elasticity (MOE of the reconstituted lumber were obtained for medium-size fiber bundles, and the maximum MOR and MOE of reconstituted cotton stalk lumber was 130.3 MPa·g-1·cm-3 and 12.9 GPa·g-1·cm-3, respectively. The maximum MOR and MOE of the mulberry branch lumber was 147.2 MPa·g-1·cm-3 and 14.7 GPa·g-1·cm-3, respectively. Mechanical interlocking structures in the lumber were observed via fluorescence microscopy, showing that phenol-formaldehyde adhesive had penetrated into several cell layers of the fiber bundle under heating and pressure. The adhesive penetration capacity was stronger when the fiber bundles were smaller in size and density. The reconstituted lumber fabricated from both materials exhibited excellent mechanical performance in the parallel direction. Therefore, reconstituted cotton stalk and mulberry branch lumber are attractive potential materials for the construction industry.
Turbine-blade tip clearance and tip timing measurements using an optical fiber bundle sensor
Garcia, Iker; Beloki, Josu; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon
2013-04-01
Traditional limitations of capacitive, inductive or discharging probe sensor for tip timing and tip clearance measurements are overcome by reflective intensity modulated optical fiber sensors. This paper presents the signals and results corresponding to a one stage turbine rig which rotor has 146 blades, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on turbine casing. It is composed of a central illuminating fiber that guides the light from a laser to the turbine blade, and two concentric rings of receiving fibers that collect the reflected light. Two photodetectors turn this reflected light signal from the receiving rings into voltage. The electrical signals are acquired and saved by a high-sample-rate oscilloscope. In tip clearance calculations the ratio of the signals provided by each ring of receiving fibers is evaluated and translated into distance. In the case of tip timing measurements, only one of the signals is considered to get the arrival time of the blade. The differences between the real and theoretical arrival times of the blades are used to obtain the deflections amplitude. The system provides the travelling wave spectrum, which presents the average vibration amplitude of the blades at a certain nodal diameter. The reliability of the results in the turbine rig testing facilities suggests the possibility of performing these measurements in real turbines under real working conditions.
Self-organized dynamics in local load-sharing fiber bundle models.
Biswas, Soumyajyoti; Chakrabarti, Bikas K
2013-10-01
We study the dynamics of a local load-sharing fiber bundle model in two dimensions under an external load (which increases with time at a fixed slow rate) applied at a single point. Due to the local load-sharing nature, the redistributed load remains localized along the boundary of the broken patch. The system then goes to a self-organized state with a stationary average value of load per fiber along the (increasing) boundary of the broken patch (damaged region) and a scale-free distribution of avalanche sizes and other related quantities are observed. In particular, when the load redistribution is only among nearest surviving fiber(s), the numerical estimates of the exponent values are comparable with those of the Manna model. When the load redistribution is uniform along the patch boundary, the model shows a simple mean-field limit of this self-organizing critical behavior, for which we give analytical estimates of the saturation load per fiber values and avalanche size distribution exponent. These are in good agreement with numerical simulation results.
TAO Xiao-feng; WANG Zhong-qiu; GONG Wan-qing; JIANG Qing-jun; SHI Zeng-ru
2009-01-01
Background With conventional imaging methods only the morphous of the visual nerve fiber bundles can be demonstrated, while the earlier period functional changes can not be demonstrated. We hypothesized that diffusion tensor imaging (DTI) would demonstrated the whole optic never fiber bundle and visual pathway and the earlier period functional changes. The purpose of the present study was to evaluate the application of DTI technique in the demonstration of the whole optic never fiber bundle and visual pathway, and the influence of orbital tumors on them. Methods GE 1.5T signa HD MR System, and the software package DTV2 were adopted. The total 45 subjects were enrolled, including 15 volunteers and 30 patients. All patients had ocular proptosis from minor to major. Seven patients had visual acuity decrescence. Results The nerve fiber bundles, e.g. optic chiasma, optic tract and optic radiation in posterior visual pathway were well demonstrated in all cases. Wherein, the intact whole visual pathway fiber bundles were clearly revealed in 10 volunteers and 17 patients, and optic nerve was not wholly revealed in the rest of the subjects. Shift of optic nerve caused by compression and partial deformation were seen in 7 patients with orbital tumor. In 6 of 7 patients, DTI displayed significant abscise and deformation of visual nerve. Chi-square test indicated significant correlation between visual acuity decrescence and DTI visual nerve non-display. Conclusions Visual nerve fiber bundles and the whole visual pathway were visualized in most of patients with DTI. It might be an effective method of providing imaging evidence for visual nerve fiber earlier period functional changes, and laid a foundation for the study in other cranial nerves.
Noncommutative generalization of SU(n)-principal fiber bundles: a review
Masson, T
2008-01-01
This is an extended version of a communication made at the international conference 'Noncommutative Geometry and Physics' held at Orsay in april 2007. In this proceeding, we make a review of some noncommutative constructions connected to the ordinary fiber bundle theory. The noncommutative algebra is the endomorphism algebra of a SU(n)-vector bundle, and its differential calculus is based on its Lie algebra of derivations. It is shown that this noncommutative geometry contains some of the most important constructions introduced and used in the theory of connections on vector bundles, in particular, what is needed to introduce gauge models in physics, and it also contains naturally the essential aspects of the Higgs fields and its associated mechanics of mass generation. It permits one also to extend some previous constructions, as for instance symmetric reduction of (here noncommutative) connections. From a mathematical point of view, these geometrico-algebraic considerations highlight some new point on view, in particular we introduce a new construction of the Chern characteristic classes
Amelink, A.; Hoy, C.L.; Gamm, U.A.; Sterenborg, H.J.C.M.; Robinson, D.J.
2014-01-01
We have recently demonstrated a means for quantifying the absorption and scattering properties of biological tissue through multidiameter single-fiber reflectance (MDSFR) spectroscopy. These measurements can be used to correct single-fiber fluorescence (SFF) spectra for the influence of optical
An Optical Fiber Bundle Sensor for Tip Clearance and Tip Timing Measurements in a Turbine Rig
María Asunción Illarramendi
2013-06-01
Full Text Available When it comes to measuring blade-tip clearance or blade-tip timing in turbines, reflective intensity-modulated optical fiber sensors overcome several traditional limitations of capacitive, inductive or discharging probe sensors. This paper presents the signals and results corresponding to the third stage of a multistage turbine rig, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on the turbine casing. To eliminate the influence of light source intensity variations and blade surface reflectivity, the sensing principle is based on the quotient of the voltages obtained from the two receiving bundle legs. A discrepancy lower than 3% with respect to a commercial sensor was observed in tip clearance measurements. Regarding tip timing measurements, the travel wave spectrum was obtained, which provides the average vibration amplitude for all blades at a particular nodal diameter. With this approach, both blade-tip timing and tip clearance measurements can be carried out simultaneously. The results obtained on the test turbine rig demonstrate the suitability and reliability of the type of sensor used, and suggest the possibility of performing these measurements in real turbines under real working conditions.
Mihelc, Kevin M; Frankowski, Brian J; Lieber, Samuel C; Moore, Nathan D; Hattler, Brack G; Federspiel, William J
2009-01-01
Respiratory assist using an intravenous catheter may be a potential treatment for patients suffering from acute or acute-on-chronic lung failure. The objective of this study was to evaluate a novel respiratory catheter that uses an impeller within the fiber bundle to enhance gas exchange efficiency, thus requiring a smaller fiber bundle and insertional size (25 Fr) and permitting simple percutaneous insertion. Bench testing of gas exchange in deionized water was used to evaluate eight impeller designs. The three best performing impeller designs were evaluated in acute studies in four calves (122 + or - 10 kg). Gas exchange increased significantly with increasing impeller rotation rate. The degree of enhancement varied with impeller geometry. The maximum gas exchange efficiency (exchange per unit surface area) for the catheter with the best performing impeller was 529 + or - 20 ml CO(2)/min/m(2) and 513 + or - 21 ml CO(2)/min/m(2) for bench and animal studies, respectively, at a rotation rate of 20,000 rpm. Absolute CO(2) exchange was 37 and 36 ml CO(2)/min, respectively. Active mixing by rotating impellers produced 70% higher gas exchange efficiency than pulsating balloon catheters. The sensitivity of gas exchange to impeller design suggests that further improvements can be made by computational fluid dynamics-based optimization of the impeller.
Laser scanning endoscope via an imaging fiber bundle for fluorescence imaging
Yeboah, Lorenz D.; Nestler, Dirk; Steiner, Rudolf W.
1994-12-01
Based on a laser scanning endoscope via an imaging fiber bundle, a new approach for a tumor diagnostic system has been developed to assist physicians in the diagnosis before the actual PDT is carried out. Laser induced, spatially resolved fluorescence images of diseased tissue can be compared with images received by video endoscopy using a white light source. The set- up is required to produce a better contrast between infected and healthy tissue and might serve as a constructive diagnostic help for surgeons. The fundamental idea is to scan a low-power laser beam on an imaging fiber bundle and to achieve a spatially resolved projection on the tissue surface. A sufficiently high laser intensity from the diode laser is concentrated on each single spot of the tissue exciting fluorescence when a dye has previously been accumulated. Subsequently, video image of the tissue is recorded and stored. With an image processing unit, video and fluorescence images are overlaid producing a picture of the fluorescence intensity in the environment of the observed tissue.
Linear study and bundle adjustment data fusion; Application to vision localization
Michot, J.
2010-01-01
The works presented in this manuscript are in the field of computer vision, and tackle the problem of real-time vision based localization and 3D reconstruction. In this context, the trajectory of a camera and the 3D structure of the filmed scene are initially estimated by linear algorithms and then optimized by a nonlinear algorithm, bundle adjustment. The thesis first presents a new technique of line search, dedicated to the nonlinear minimization algorithms used in Structure-from-Motion. The proposed technique is not iterative and can be quickly installed in traditional bundle adjustment frameworks. This technique, called Global Algebraic Line Search (G-ALS), and its two-dimensional variant (Two way-ALS), accelerate the convergence of the bundle adjustment algorithm. The approximation of the re-projection error by an algebraic distance enables the analytical calculation of an effective displacement amplitude (or two amplitudes for the Two way-ALS variant) by solving a degree 3 (G-ALS) or 5 (Two way-ALS) polynomial. Our experiments, conducted on simulated and real data, show that this amplitude, which is optimal for the algebraic distance, is also efficient for the Euclidean distance and reduces the convergence time of minimizations. One difficulty of real-time tracking algorithms (monocular SLAM) is that the estimated trajectory is often affected by drifts: on the absolute orientation, position and scale. Since these algorithms are incremental, errors and approximations are accumulated throughout the trajectory and cause global drifts. In addition, a tracking vision system can always be dazzled or used under conditions which prevented temporarily to calculate the location of the system. To solve these problems, we propose to use an additional sensor measuring the displacement of the camera. The type of sensor used will vary depending on the targeted application (an odometer for a vehicle, a lightweight inertial navigation system for a person). We propose to
Kinematics of semiclassical spin and spin fiber bundle associated with so(n) Lie-Poisson manifold
Deriglazov, A A
2013-01-01
We describe geometric construction underlying the Lagrangian actions for non-Grassmann spinning particles proposed in our recent works. If we discard the spatial variables (the case of frozen spin), the problem reduces to formulation of a variational problem for Hamiltonian system on a manifold with so(n) Lie-Poisson bracket. To achieve this, we identify dynamical variables of the problem with coordinates of the base of a properly constructed fiber bundle. In turn, the fiber bundle is embedded as a surface into the phase space equipped with canonical Poisson bracket. This allows us to formulate the variational problem using the standard methods of Dirac theory for constrained systems.
Henneberg, Kaj-åge; F.A., Roberge
1997-01-01
source current (I-ma) enters the passive tissue as a radial load current (I-ep) while the rest flows longitudinally in the cleft between the active and adjacent passive fibers. The conduction velocity of 1.32 m/s was about 30% lower than on an isolated fiber in a Ringer bath, in close agreement...... rate of rise of the action potential upstroke (V-max) from 512 to 503 V/s. Increasing the phase angle of the passive fiber membrane impedence (Z(m)) increases the phase delay between I-ma and I-ep, thereby increasing phi(epp) which in turn slows down propagation and increases V-max....
Size Scaling and Bursting Activity in Thermally Activated Breakdown of Fiber Bundles
Yoshioka, Naoki
2008-10-03
We study subcritical fracture driven by thermally activated damage accumulation in the framework of fiber bundle models. We show that in the presence of stress inhomogeneities, thermally activated cracking results in an anomalous size effect; i.e., the average lifetime tf decreases as a power law of the system size tf ∼L-z, where the exponent z depends on the external load σ and on the temperature T in the form z∼f(σ/T3/2). We propose a modified form of the Arrhenius law which provides a comprehensive description of thermally activated breakdown. Thermal fluctuations trigger bursts of breakings which have a power law size distribution. © 2008 The American Physical Society.
Ultra-high Frequency Linear Fiber Optic Systems
Lau, Kam
2011-01-01
This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...
Ling, Xu; Zhang, Wenpeng; Chen, Zilin
2016-01-01
The authors show that carbon fiber bundles electrochemically modified with the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is a viable sorbent for online solid-phase microextraction (SPME) of the sulfonamides (sulfadiazine, sulfadimidine and sulfamethoxazole) prior to their determination by HPLC. The fibers were packed in a tube loop made from polyether ether ketone (PEEK) that was coupled to the HPLC system for online SPME. Preconcentration factors can reach values of up to 300, and the limit of detection (at an S/N ration of 3) can be as low as 0.05 ng⋅mL −1 . The method was applied to the analysis of the sulfonamides in spiked rat plasma with intra-day and inter-day RSDs of <3.33 and <4.57 %, and with recoveries in the range from 91.7 to 97.8 % in spiked plasma. The in-tube SPME was also applied to the determination of the 3 sulfonamides in rat plasma after oral administration (tablet powder) with high sensitivity. In addition to its efficient extraction, the PEEK tube based SPME has chemical and mechanical stability under even harsh conditions. (author)
Linearization Technologies for Broadband Radio-Over-Fiber Transmission Systems
Xiupu Zhang
2014-11-01
Full Text Available Linearization technologies that can be used for linearizing RoF transmission are reviewed. Three main linearization methods, i.e. electrical analog linearization, optical linearization, and electrical digital linearization are presented and compared. Analog linearization can be achieved using analog predistortion circuits, and can be used for suppression of odd order nonlinear distortion components, such as third and fifth order. Optical linearization includes mixed-polarization, dual-wavelength, optical channelization and the others, implemented in optical domain, to suppress both even and odd order nonlinear distortion components, such as second and third order. Digital predistortion has been a widely used linearization method for RF power amplifiers. However, digital linearization that requires analog to digital converter is severely limited to hundreds of MHz bandwidth. Instead, analog and optical linearization provide broadband linearization with up to tens of GHz. Therefore, for broadband radio over fiber transmission that can be used for future broadband cloud radio access networks, analog and optical linearization are more appropriate than digital linearization. Generally speaking, both analog and optical linearization are able to improve spur-free dynamic range greater than 10 dB over tens of GHz. In order for current digital linearization to be used for broadband radio over fiber transmission, the reduced linearization complexity and increased linearization bandwidth are required. Moreover, some digital linearization methods in which the complexity can be reduced, such as Hammerstein type, may be more promising and require further investigation.
Kamali, Tahereh; Stashuk, Daniel
2016-10-01
Robust and accurate segmentation of brain white matter (WM) fiber bundles assists in diagnosing and assessing progression or remission of neuropsychiatric diseases such as schizophrenia, autism and depression. Supervised segmentation methods are infeasible in most applications since generating gold standards is too costly. Hence, there is a growing interest in designing unsupervised methods. However, most conventional unsupervised methods require the number of clusters be known in advance which is not possible in most applications. The purpose of this study is to design an unsupervised segmentation algorithm for brain white matter fiber bundles which can automatically segment fiber bundles using intrinsic diffusion tensor imaging data information without considering any prior information or assumption about data distributions. Here, a new density based clustering algorithm called neighborhood distance entropy consistency (NDEC), is proposed which discovers natural clusters within data by simultaneously utilizing both local and global density information. The performance of NDEC is compared with other state of the art clustering algorithms including chameleon, spectral clustering, DBSCAN and k-means using Johns Hopkins University publicly available diffusion tensor imaging data. The performance of NDEC and other employed clustering algorithms were evaluated using dice ratio as an external evaluation criteria and density based clustering validation (DBCV) index as an internal evaluation metric. Across all employed clustering algorithms, NDEC obtained the highest average dice ratio (0.94) and DBCV value (0.71). NDEC can find clusters with arbitrary shapes and densities and consequently can be used for WM fiber bundle segmentation where there is no distinct boundary between various bundles. NDEC may also be used as an effective tool in other pattern recognition and medical diagnostic systems in which discovering natural clusters within data is a necessity. Copyright
Chen, Monica F; Chui, Toco Y P; Alhadeff, Paula; Rosen, Richard B; Ritch, Robert; Dubra, Alfredo; Hood, Donald C
2015-01-08
To better understand the nature of glaucomatous damage of the macula, especially the structural changes seen between relatively healthy and clearly abnormal (AB) retinal regions, using an adaptive optics scanning light ophthalmoscope (AO-SLO). Adaptive optics SLO images and optical coherence tomography (OCT) vertical line scans were obtained on one eye of seven glaucoma patients, with relatively deep local arcuate defects on the 10-2 visual field test in one (six eyes) or both hemifields (one eye). Based on the OCT images, the retinal nerve fiber (RNF) layer was divided into two regions: (1) within normal limits (WNL), relative RNF layer thickness within mean control values ±2 SD; and (2) AB, relative thickness less than -2 SD value. As seen on AO-SLO, the pattern of AB RNF bundles near the border of the WNL and AB regions differed across eyes. There were normal-appearing bundles in the WNL region of all eyes and AB-appearing bundles near the border with the AB region. This region with AB bundles ranged in extent from a few bundles to the entire AB region in the case of one eye. All other eyes had a large AB region without bundles. However, in two of these eyes, a few bundles were seen within this region of otherwise missing bundles. The AO-SLO images revealed details of glaucomatous damage that are difficult, if not impossible, to see with current OCT technology. Adaptive optics SLO may prove useful in following progression in clinical trials, or in disease management, if AO-SLO becomes widely available and easy to use. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
Hood, Donald C; Chen, Monica F; Lee, Dongwon; Epstein, Benjamin; Alhadeff, Paula; Rosen, Richard B; Ritch, Robert; Dubra, Alfredo; Chui, Toco Y P
2015-04-01
To improve our understanding of glaucomatous damage as seen on circumpapillary disc scans obtained with frequency-domain optical coherence tomography (fdOCT), fdOCT scans were compared to images of the peripapillary retinal nerve fiber (RNF) bundles obtained with an adaptive optics-scanning light ophthalmoscope (AO-SLO). The AO-SLO images and fdOCT scans were obtained on 6 eyes of 6 patients with deep arcuate defects (5 points ≤-15 db) on 10-2 visual fields. The AO-SLO images were montaged and aligned with the fdOCT images to compare the RNF bundles seen with AO-SLO to the RNF layer thickness measured with fdOCT. All 6 eyes had an abnormally thin (1% confidence limit) RNF layer (RNFL) on fdOCT and abnormal (hyporeflective) regions of RNF bundles on AO-SLO in corresponding regions. However, regions of abnormal, but equal, RNFL thickness on fdOCT scans varied in appearance on AO-SLO images. These regions could be largely devoid of RNF bundles (5 eyes), have abnormal-appearing bundles of lower contrast (6 eyes), or have isolated areas with a few relatively normal-appearing bundles (2 eyes). There also were local variations in reflectivity of the fdOCT RNFL that corresponded to the variations in AO-SLO RNF bundle appearance. Relatively similar 10-2 defects with similar fdOCT RNFL thickness profiles can have very different degrees of RNF bundle damage as seen on fdOCT and AO-SLO. While the results point to limitations of fdOCT RNFL thickness as typically analyzed, they also illustrate the potential for improving fdOCT by attending to variations in local intensity.
Khoobehi, Bahram; Khoobehi, Aurash; Fournier, Paul
2012-03-01
We have developed a snapshot fiber bundle technique that circumvents the issue of saccades of the non-immobilized eye. In this technology, 458 individual fibers are assembled in a two-dimensional array where each fiber represents a portion of the image. These fibers are redistributed into two separate one-dimensional fiber rows interfaced into a two-slit spectrometer. The light from each fiber is decomposed into its spectral components by the spectrometer. Using this innovative technology, we have been able to detect the whole spectrum of hemoglobin using the single light exposure capabilities of a fundus camera. The hemoglobin signature of the retinal arteries, veins, and retina tissue can be recorded. The final result is a complete, 3-dimensional representation of the spectral and spatial information from a single exposure of the patient. By adjusting the field of view on the imaging portion of the fundus camera, the fiber optic cable may encompass a larger area. However, this causes a decrease in spatial resolution, so we increased the area of the fiber array by increasing the number of the fibers from 458 to 648, increased the size of each individual fiber from 10 μm to 20 &μm, and increased the number of slits to four.
Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics.
Kocaoglu, Omer P; Cense, Barry; Jonnal, Ravi S; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T
2011-08-15
Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3μm(3) resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29-62years). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a 7month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30-50μm, thickness: 10-15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30-45μm, thickness: 20-40μm). Width and thickness RNFB measurements taken 7months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were -0.1±4.0μm (width) and 0.3±1.5μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fiber optic spectrophotometer with photodiode linear array
Blanc, F.; Vernet, P.
1988-01-01
Spectrophotometric measurements are used in a great number of industrial processes, in nuclear environment and with optical precision components. Especially the evolution of a chemical process or of an optical coating could be followed by these measurements. Spectrophotometers, using optical fibers to transport the signal out of the instrument make possible the measurement ''in-situ'' and in real time. The advantage of using a diode array to detect the signal is an instantaneous measurement all over the spectral range without moving parts. It allows an excellent reproductibility. The instrument is controlled by a micro computer. The spectrophotometer is described and technical performance presented. An extension using optical fibers on a ''classical'' spectrophotometer (a H.P. one) is also described and technical performance presented
Simulation of spatial and temporal properties of aftershocks by means of the fiber bundle model
Monterrubio-Velasco, Marisol; Zúñiga, F. R.; Márquez-Ramírez, Victor Hugo; Figueroa-Soto, Angel
2017-11-01
The rupture processes of any heterogeneous material constitute a complex physical problem. Earthquake aftershocks show temporal and spatial behaviors which are consequence of the heterogeneous stress distribution and multiple rupturing following the main shock. This process is difficult to model deterministically due to the number of parameters and physical conditions, which are largely unknown. In order to shed light on the minimum requirements for the generation of aftershock clusters, in this study, we perform a simulation of the main features of such a complex process by means of a fiber bundle (FB) type model. The FB model has been widely used to analyze the fracture process in heterogeneous materials. It is a simple but powerful tool that allows modeling the main characteristics of a medium such as the brittle shallow crust of the earth. In this work, we incorporate spatial properties, such as the Coulomb stress change pattern, which help simulate observed characteristics of aftershock sequences. In particular, we introduce a parameter ( P) that controls the probability of spatial distribution of initial loads. Also, we use a "conservation" parameter ( π), which accounts for the load dissipation of the system, and demonstrate its influence on the simulated spatio-temporal patterns. Based on numerical results, we find that P has to be in the range 0.06 sequences. This means that the system requires a small difference in the spatial distribution of initial stress, and a very particular fraction of load transfer in order to generate realistic aftershocks.
Maier, M; Müller, K W; Heussinger, C; Köhler, S; Wall, W A; Bausch, A R; Lieleg, O
2015-05-01
Actin binding proteins (ABPs) not only set the structure of actin filament assemblies but also mediate the frequency-dependent viscoelastic moduli of cross-linked and bundled actin networks. Point mutations in the actin binding domain of those ABPs can tune the association and dissociation dynamics of the actin/ABP bond and thus modulate the network mechanics both in the linear and non-linear response regime. We here demonstrate how the exchange of a single charged amino acid in the actin binding domain of the ABP fascin triggers such a modulation of the network rheology. Whereas the overall structure of the bundle networks is conserved, the transition point from strain-hardening to strain-weakening sensitively depends on the cross-linker off-rate and the applied shear rate. Our experimental results are consistent both with numerical simulations of a cross-linked bundle network and a theoretical description of the bundle network mechanics which is based on non-affine bending deformations and force-dependent cross-link dynamics.
Ultra-high Frequency Linear Fiber Optic Systems
Lau, Kam Y
2009-01-01
Designed for a one-semester course on fiber-optics systems and communication links, this book provides a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers.
Soo Y. Kim
2015-01-01
Full Text Available Supraspinatus tendon tears are common and lead to changes in the muscle architecture. To date, these changes have not been investigated for the distinct regions and parts of the pathologic supraspinatus. The purpose of this study was to create a novel three-dimensional (3D model of the muscle architecture throughout the supraspinatus and to compare the architecture between muscle regions and parts in relation to tear severity. Twelve cadaveric specimens with varying degrees of tendon tears were used. Three-dimensional coordinates of fiber bundles were collected in situ using serial dissection and digitization. Data were reconstructed and modeled in 3D using Maya. Fiber bundle length (FBL and pennation angle (PA were computed and analyzed. FBL was significantly shorter in specimens with large retracted tears compared to smaller tears, with the deeper fibers being significantly shorter than other parts in the anterior region. PA was significantly greater in specimens with large retracted tears, with the superficial fibers often demonstrating the largest PA. The posterior region was absent in two specimens with extensive tears. Architectural changes associated with tendon tears affect the regions and varying depths of supraspinatus differently. The results provide important insights on residual function of the pathologic muscle, and the 3D model includes detailed data that can be used in future modeling studies.
Robustness of power systems under a democratic-fiber-bundle-like model.
Yağan, Osman
2015-06-01
We consider a power system with N transmission lines whose initial loads (i.e., power flows) L(1),...,L(N) are independent and identically distributed with P(L)(x)=P[L≤x]. The capacity C(i) defines the maximum flow allowed on line i and is assumed to be given by C(i)=(1+α)L(i), with α>0. We study the robustness of this power system against random attacks (or failures) that target a p fraction of the lines, under a democratic fiber-bundle-like model. Namely, when a line fails, the load it was carrying is redistributed equally among the remaining lines. Our contributions are as follows. (i) We show analytically that the final breakdown of the system always takes place through a first-order transition at the critical attack size p(☆)=1-(E[L]/max(x)(P[L>x](αx+E[L|L>x])), where E[·] is the expectation operator; (ii) we derive conditions on the distribution P(L)(x) for which the first-order breakdown of the system occurs abruptly without any preceding diverging rate of failure; (iii) we provide a detailed analysis of the robustness of the system under three specific load distributions-uniform, Pareto, and Weibull-showing that with the minimum load L(min) and mean load E[L] fixed, Pareto distribution is the worst (in terms of robustness) among the three, whereas Weibull distribution is the best with shape parameter selected relatively large; (iv) we provide numerical results that confirm our mean-field analysis; and (v) we show that p(☆) is maximized when the load distribution is a Dirac delta function centered at E[L], i.e., when all lines carry the same load. This last finding is particularly surprising given that heterogeneity is known to lead to high robustness against random failures in many other systems.
Nie, Shuai; Benito-Peña, Elena; Zhang, Huaibin; Wu, Yue; Walt, David R
2013-10-01
Over the past 40 years, the incidence and prevalence of respiratory diseases have increased significantly throughout the world, damaging economic productivity and challenging health care systems. Current diagnoses of different respiratory diseases generally involve invasive sampling methods such as induced sputum or bronchoalveolar lavage that are uncomfortable, or even painful, for the patient. In this paper, we present a platform incorporating fiber-optic bundles and antibody-based microarrays to perform multiplexed protein profiling of a panel of six salivary biomarkers for asthma and cystic fibrosis (CF) diagnosis. The platform utilizes an optical fiber bundle containing approximately 50,000 individual 4.5 μm diameter fibers that are chemically etched to create microwells in which modified microspheres decorated with monoclonal capture antibodies can be deposited. On the basis of a sandwich immunoassay format, the array quantifies human vascular endothelial growth factor (VEGF), interferon gamma-induced protein 10 (IP-10), interleukin-8 (IL-8), epidermal growth factor (EGF), matrix metalloproteinase 9 (MMP-9), and interleukin-1 beta (IL-1β) salivary biomarkers in the subpicomolar range. Saliva supernatants collected from 291 individuals (164 asthmatics, 71 CF patients, and 56 healthy controls (HC)) were analyzed on the platform to profile each group of patients using this six-analyte suite. It was found that four of the six proteins were observed to be significantly elevated (p < 0.01) in asthma and CF patients compared with HC. These results demonstrate the potential to use the multiplexed protein array platform for respiratory disease diagnosis.
Single-shot T1 mapping of the corpus callosum: A rapid characterization of fiber bundle anatomy
Sabine eHofer
2015-05-01
Full Text Available Using diffusion-tensor MRI and fiber tractography the topographic organization of the corpus callosum (CC has been described to comprise 5 segments with fibers projecting into prefrontal (I, premotor and supplementary motor (II, primary motor (III, and primary sensory areas (IV, as well as into parietal, temporal, and occipital cortical areas (V. In order to more rapidly characterize the underlying anatomy of these segments, this study used a novel single-shot T1 mapping method to quantitatively determine T1 relaxation times in the human CC. A region-of-interest analysis revealed a tendency for the lowest T1 relaxation times in the genu and the highest T1 relaxation times in the somatomotor region of the CC. This observation separates regions dominated by myelinated fibers with large diameters (somatomotor area from densely packed smaller axonal bundles (genu with less myelin. The results indicate that characteristic T1 relaxation times in callosal profiles provide an additional means to monitor differences in fiber anatomy, fiber density, and gray matter in respective neocortical areas. In conclusion, rapid T1 mapping allows for a characterization of the axonal architecture in an individual CC in less than 10 s. The approach emerges as a valuable means for studying neocortical brain anatomy with possible implications for the diagnosis of neurodegenerative processes.
Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level
Guan, Kang; Wu, Jianqing; Cheng, Laifei
2016-01-01
The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration) process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites’ thermal conductivity is matrix cracking’s density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites. PMID:28774130
Weng, Sheng; Chen, Xu; Xu, Xiaoyun; Wong, Kelvin K.; Wong, Stephen T. C.
2016-01-01
In coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) imaging, backward and forward generated photons exhibit different image patterns and thus capture salient intrinsic information of tissues from different perspectives. However, they are often mixed in collection using traditional image acquisition methods and thus are hard to interpret. We developed a multimodal scheme using a single central fiber and multimode fiber bundle to simultaneously collect and differentiate images formed by these two types of photons and evaluated the scheme in an endomicroscopy prototype. The ratio of these photons collected was calculated for the characterization of tissue regions with strong or weak epi-photon generation while different image patterns of these photons at different tissue depths were revealed. This scheme provides a new approach to extract and integrate information captured by backward and forward generated photons in dual CARS/SHG imaging synergistically for biomedical applications. PMID:27375938
Lee, Jae Yong; Na, Man Gyun
2011-01-01
Diametral creep of the pressure tube (PT) is one of the principal aging mechanisms governing the heat transfer and hydraulic degradation of a heat transport system. PT diametral creep leads to diametral expansion that affects the thermal hydraulic characteristics of the coolant channels and the critical heat flux. Therefore, it is essential to predict the PT diametral creep in CANDU reactors, which is caused mainly by fast neutron irradiation, reactor coolant temperature and so forth. The currently used PT diametral creep prediction model considers the complex interactions between the effects of temperature and fast neutron flux on the deformation of PT zirconium alloys. The model assumes that long-term steady-state deformation consists of separable, additive components from thermal creep, irradiation creep and irradiation growth. This is a mechanistic model based on measured data. However, this model has high prediction uncertainty. Recently, a statistical error modeling method was developed using plant inspection data from the Bruce B CANDU reactor. The aim of this study was to develop a bundle position-wise linear model (BPLM) to predict PT diametral creep employing previously measured PT diameters and HTS operating conditions. There are twelve bundles in a fuel channel and for each bundle, a linear model was developed by using the dependent variables, such as the fast neutron fluxes and the bundle temperatures. The training data set was selected using the subtractive clustering method. The data of 39 channels that consist of 80 percent of a total of 49 measured channels from Units 2, 3 and 4 were used to develop the BPLM models. The remaining 10 channels' data were used to test the developed BPLM models. The BPLM was optimized by the maximum likelihood estimation method. The developed BPLM to predict PT diametral creep was verified using the operating data gathered from the Units 2,3 and 4 in Korea. Two error components for the BPLM, which are the epistemic
Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao; Ou, Shaowu
2016-01-01
The cingulum bundle (CB) is a critical white matter fiber tract in the brain, which forms connections between the frontal lobe, parietal lobe and temporal lobe. In non-human primates, the CB is actually divided into distinct subcomponents on the basis of corticocortical connections. However, at present, no study has verified similar distinct subdivisions in the human brain. In this study, we reconstructed these distinct subdivisions in the human brain, and determined their exact cortical connections using high definition fiber tracking (HDFT) technique on 10 healthy adults and a 488-subject template from the Human Connectome Project (HCP-488). Fiber dissections were performed to verify tractography results. Five CB segments were identified. CB-I ran from the subrostral areas to the precuneus and splenium, encircling the corpus callosum (CC). CB-II arched around the splenium and extended anteriorly above the CC to the medial aspect of the superior frontal gyrus (SFG). CB-III connected the superior parietal lobule (SPL) and precuneus with the medial aspect of the SFG. CB-IV was a relatively minor subcomponent from the SPL and precuneus to the frontal region. CB-V, the para-hippocampal cingulum, stemmed from the medial temporal lobe and fanned out to the occipital lobes. Our findings not only provide a more accurate and detailed description on the associated architecture of the subcomponents within the CB, but also offer new insights into the functional role of the CB in the human brain.
Yupeng Wu
2016-09-01
Full Text Available The cingulum bundle (CB is a critical white matter fiber tract in the brain, which forms connections between the frontal lobe, parietal lobe, and temporal lobe. In non-human primates, the CB is actually divided into distinct subcomponents on the basis of corticocortical connections. However, at present, no study has verified similar distinct subdivisions in the human brain. In this study, we reconstructed these distinct subdivisions in the human brain, and determined their exact cortical connections using high definition fiber tracking (HDFT technique on 10 healthy adults and a 488-subject template from the Human Connectome Project (HCP-488. Fiber dissections were performed to verify tractography results. Five CB segments were identified. CB-I ran from the subrostral areas to the precuneus and splenium, encircling the corpus callosum. CB-II arched around the splenium and extended anteriorly above the corpus callosum to the medial aspect of the superior frontal gyrus. CB-III connected the superior parietal lobule and precuneus with the medial aspect of the superior frontal gyrus. CB-IV was a relatively minor subcomponent from the superior parietal lobule and precuneus to the frontal region. CB-V, the para-hippocampal cingulum, stemmed from the medial temporal lobe and fanned out to the occipital lobes. Our findings not only provide a more accurate and detailed description on the associated architecture of the subcomponents within the CB, but also offer new insights into the functional role of the CB in the human brain.
Linear all-fiber temperature sensor based on macro-bent erbium doped fiber
Hajireza, P; Cham, C L; Kumar, D; Abdul-Rashid, H A; Emami, S D; Harun, S W
2010-01-01
A new all fiber temperature sensor is proposed and demonstrated based on a pair of 1 meter erbium-doped fiber (EDF), which are respectively macro-bent and straight. The sensor has a linear normalized loss (dB) response to temperature at 6.5 mm bending radius and 1580 nm input wavelength. The main advantage of this sensor is high temperature resolution (less than 1°C) and sensitivity (0.03 dB/°C) due to combination of temperature dependence of EDF and bending loss. The proposed silica based sensor, has the potential for wide range and high temperature applications in harsh environments
Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8
Yang, Ren; Soper, Steven A.; Wang, Wanjun
2006-01-01
This paper describes the design, microfabrication and testing of a pre-aligned array of fiber couplers using direct UV-lithography of SU-8. The fiber coupler array includes an out-of-plane refractive microlens array and two fiberport collimator arrays. With the optical axis of the pixels parallel to the substrate, each pixel of the microlens array can be pre-aligned with the corresponding pixels of the fiberport collimator array as defined by the lithography mask design. This out-of-plane pol...
Split bundle detection in polarimetric images of the human retinal nerve fiber layer
Vermeer, K. A.; Reus, N. J.; Vos, F. M.; Lemij, H. G.; Vossepoel, A. M.
2007-01-01
One method for assessing pathological retinal nerve fiber layer (NFL) appearance is by comparing the NFL to normative values, derived from healthy subjects. These normative values will be more specific when normal physiological differences are taken into account. One common variation is a split
Mode-field adapter for tapered-fiber-bundle signal and pump combiners
Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Bohata, J.; Písařík, M.
2015-01-01
Roč. 54, č. 4 (2015), s. 751-756 ISSN 1559-128X R&D Projects: GA ČR(CZ) GAP205/11/1840; GA MPO FR-TI4/734 Institutional support: RVO:67985882 Keywords : Fiber s * Dopant diffusion * Input and outputs Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.598, year: 2015
Linear position sensitive neutron detector using fiber optic encoded scintillators
Davidson, P.L.; Wroe, H.
1983-01-01
A linear position sensitive slow neutron detector with 3 mm resolution is described. It uses the fiber optic coding principle in which the resolution elements are separate pieces of lithium loaded glass scintillator each coupled by means of flexible polymer optical fibers to a unique combination of 3 photo multipliers (PM's) out of a bank of 12. A decoder circuit repsponds to a triple coincidence between PM outputs and generates a 12 bit work which identifies the scintillator element which stopped the incident neutron. Some details of the construction and decoding electronics are given together with test results obtained using a laboratory isotope neutron source and a monochomated, collimated neutron beam from a reactor. The count rate in the absence of neutron sources is 2 to 3 c min - 1 per element; the element to element variation in response to a uniform flux is a few percent for 95% of the elements; the resolution as measured by a 1 mm wide prode neutron beam is 3 mm; the relative long term stability is about 0.1% over 3 days and the detection efficiency measured by comparison with an end windowed, high pressure gas counter is about 65% at a neutron wavelength of 0.9A 0
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2017-06-01
Hyperspectral imaging was first used in remote sensing and since then, it has been used in many other applications such as cancer diagnosis, precision farming and assessment of the level of flaking in ancient murals. In order to make hyperspectral imaging available for a wide variety of applications, its imagers can be made to operate using different methods and developed into different configurations. This leads to each variant having a set of specifications suitable for certain applications. The many variants of hyperspectral imager produce a set of three-dimensional spatial-spatialspectral datacube, which is made up of hundreds of spectral images of one scene. A snapshot hyperspectral imaging probe has recently been developed by integrating a fiber bundle, which is made up of specially-arranged optical fibers, with a spectrograph-based hyperspectral imager. The snapshot method is able to produce a datacube using the information from each scan. The fiber bundle has 100 fiberlets which are arranged in a row in the one-dimensional proximal end, and are rearranged into a 10×10 hexagonal array in the two-dimensional distal end. The image captured by the two-dimensional end of the fiber bundle is reduced from two to one spatial dimension at the one-dimensional end. The raw data acquired from each scan has to be remapped into a datacube with the correct representation of the spectral and spatial features of the captured scene. This paper reports the spatial calibrations of both ends of the fiber bundle and image processing that have to be performed for such a remapping.
Zhu, T; Chapman, C; Lawrence, T; Cao, Y [University of Michigan, Ann Arbor, MI (United States); Tsien, C [Washington University at St. Louis, St. Louis, MO (United States)
2015-06-15
Purpose: To develop an automated and scalable approach and identify temporal, spatial and dosimetric patterns of radiation damage of white matter (WM) fibers following partial brain irradiation. Methods: An automated and scalable approach was developed to extract DTI features of 22 major WM fibers from 33 patients with low-grade/benign tumors treated by radiation therapy (RT). DTI scans of the patients were performed pre-RT, 3- and 6-week during RT, and 1, 6 and 18 months after RT. The automated tractography analysis was applied to 198 datasets as: (1) intra-subject registration of longitudinal DTI, (2) spatial normalization of individual-patient DTI to the Johns Hopkins WM Atlas, (3) automatic fiber tracking regulated by the WM Atlas, and (4) segmentation of WM into 22 major tract profiles. Longitudinal percentage changes in fractional anisotropy (FA), and mean, axial and radial diffusivity (MD/AD/RD) of each tract from pre-RT were quantified and correlated to 95%, 90% and 80% percentiles of doses and mean doses received by the tract. Heatmaps were used to identify clusters of significant correlation and reveal temporal, spatial and dosimetric signatures of WM damage. A multivariate linear regression was further carried out to determine influence of clinical factors. Results: Of 22 tracts, AD/MD changes in 12 tracts had significant correlation with doses, especially at 6 and 18 months post-RT, indicating progressive radiation damage after RT. Most interestingly, the DTI-index changes in the elongated tracts were associated with received maximum doses, suggesting a serial-structure behavior; while short association fibers were affected by mean doses, indicating a parallel-structure response. Conclusion: Using an automated DTI-tractography analysis of whole brain WM fibers, we reveal complex radiation damage patterns of WM fibers. Damage in WM fibers that play an important role in the neural network could be associated with late neurocognitive function declines
Non-linear vibrations induced by fluidelastic forces in tube bundles
Langre, E. de; Hadj-Sadok, C.; Beaufils, B.
1992-01-01
We present in this paper computations of the response of a loosely supported tube to fluid elastic forces. Several models of forces are considered, including negative damping, coupling forces and Price and Paidoussis' model. Unidirectional and bidirectional motions are studied, special attention being paid to the evolution of dynamic parameters influencing wear and to the changes in the dynamic regimes. The influence of the coefficient of friction is also analysed. A corrective methodology is proposed for the use of the negative damping model in non-linear computations
An automated repair method of water pipe infrastructure using carbon fiber bundles
Wisotzkey, Sean; Carr, Heath; Fyfe, Ed
2011-04-01
The United States water pipe infrastructure is made up of over 2 million miles of pipe. Due to age and deterioration, a large portion of this pipe is in need of repair to prevent catastrophic failures. Current repair methods generally involve intrusive techniques that can be time consuming and costly, but also can cause major societal impacts. A new automated repair method incorporating innovative carbon fiber technology is in development. This automated method would eliminate the need for trenching and would vastly cut time and labor costs, providing a much more economical pipe repair solution.
1986-12-01
strength critical application for modern composites were filament-wound pressure vessels using glass fibers. What has highly motivated the effort of...stiffness to weight ratios the use of which is of cruisial importance in the aerospace industry. Another highly motivating aspect was the very high...single filament r’iber testing and can become more 29 3> C o - Pwo PwS ?w4 Pw3 Pw2 Pwl PSD Ps5 PS4 Ps3 Ps2 PS! homoiogous correspondence t ~ to Life ( Laqt
Kang, H.G.; Hong, S.J.; Ko, G.B.; Yoon, H.S.; Lee, J.S.; Song, I.C.; Rhee, J.T.
2015-01-01
Simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) can provide new perspectives in human disease research because of their complementary in-vivo imaging techniques. Previously, we have developed an MR-compatible PET insert based on optical fibers using silicon photomultipliers (SiPM). However when echo planar imaging (EPI) sequence was performed, signal intensity was slowly decreased by −0.9% over the 5.5 minutes and significant geometrical distortion was observed as the PET insert was installed inside an MRI bore, indicating that the PET electronics and its shielding boxes might have been too close to an MR imaging object. In this paper, optical fiber bundles with a length of 54 mm instead of 31 mm were employed to minimize PET interference on MR images. Furthermore, the LYSO crystals with a size of 1.5 × 1.5 × 7.0 mm 3 were used instead of 2.47 × 2.74 × 20.0 mm 3 for preclinical PET/MR applications. To improve the MR image quality, two receive-only loop coils were used. The effects of the PET insert on the SNR of the MR image either for morphological or advanced MR pulse sequences such as diffusion weighted imaging (DWI), functional MRI (fMRI), and magnetic resonance spectroscopy (MRS) were investigated. The quantitative MR compatibility such as B 0 and B 1 field homogeneity without PET, with 'PET OFF', and with 'PET ON' was also evaluated. In conclusion, B 0 maps were not affected by the proposed PET insert whereas B 1 maps were significantly affected by the PET insert. The advanced MRI sequences such as DWI, EPI, and MRS can be performed without a significant MR image quality degradation
Advances in high power linearly polarized fiber laser and its application
Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin
2017-10-01
Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.
Malykin, G. B.; Pozdnyakova, V. I.
2018-03-01
A linear transformation of orthogonal polarization modes in coiled optical spun-fibers with strong unperturbed linear birefringence, which causes the emergence of the dependences of the integrated elliptical birefringence and the ellipticity and azimuth of the major axis of the ellipse, as well as the polarization state of radiation (PSR), on the length of optical fiber has been considered. Optical spun-fibers are subjected to a strong mechanical twisting, which is frozen into the structure of the optical fiber upon cooling, in the process of being drawn out from the workpiece. Since the values of the local polarization parameters of coiled spunwaveguides vary according to a rather complex law, the calculations were carried out by numerical modeling of the parameters of the Jones matrices. Since the rotation speed of the axes of the birefringence is constant on a relatively short segment of a coiled optical spun-fiber in the accompanying torsion (helical) coordinate system, the so-called "Ginzburg helical polarization modes" (GHPMs)—two mutually orthogonal ellipses with the opposite directions of traversal, the axis of which rotate relative to the fixed coordinate system uniformly and unidirectionally—are approximately the local normal polarization modes of such optical fiber. It has been shown that, despite the fact that the unperturbed linear birefringence of the spun-fibers significantly exceeds the linear birefringence, which is caused by the winding on a coil, the integral birefringence of an extended segment of such a fiber coincides in order of magnitude with the linear birefringence, which is caused by the winding on the coil, and the integral polarization modes tend asymptotically to circular ones. It has been also shown that the values of the circular birefringence of twisted single-mode fibers, which were calculated in a nonrotating and torsion helical coordinate systems, differ significantly. It has been shown that the polarization phenomena occur
Rozite, L; Joffe, R; Varna, J; Nyström, B
2012-01-01
The behaviour of highly non-linear cellulosic fibers and their composite is characterized. Micro-mechanisms occurring in these materials are identified. Mechanical properties of regenerated cellulose fibers and composites are obtained using simple tensile test. Material visco-plastic and visco-elastic properties are analyzed using creep tests. Two bio-based resins are used in this study – Tribest and EpoBioX. The glass and flax fiber composites are used as reference materials to compare with Cordenka fiber laminates.
Rozite, L.; Joffe, R.; Varna, J.; Nyström, B.
2012-02-01
The behaviour of highly non-linear cellulosic fibers and their composite is characterized. Micro-mechanisms occurring in these materials are identified. Mechanical properties of regenerated cellulose fibers and composites are obtained using simple tensile test. Material visco-plastic and visco-elastic properties are analyzed using creep tests. Two bio-based resins are used in this study - Tribest and EpoBioX. The glass and flax fiber composites are used as reference materials to compare with Cordenka fiber laminates.
Implementation of a controller for linear positioners applicable in optical fiber stretching
Castrillo Piedra, Andres Rodolfo
2014-01-01
A low cost controller is implemented for linear positioners applicable in optic fiber stretching. The possibility of using a donated equipment is evaluated by the Escuela de Ingenieria Mecanica. The equipment is required by the non-linear photonic research laboratory (NLPR-LAB) for stretching of micro structured fiber. The process has required a slow and precise stretching, so the controllers must be precisely programmed to rotate the motors at different speeds. Donated equipment is evaluated to see if it is possible to use for fiber stretching [es
Jansonius, Nomdo M.; Schiefer, Julia; Nevalainen, Jukka; Paetzold, Jens; Schiefer, Ulrich
2012-01-01
Previously we developed a mathematical model for describing the retinal nerve fiber bundle trajectories in the superior-temporal and inferior-temporal regions of the human retina, based on traced trajectories extracted from fundus photographs. Aims of the current study were to (i) validate the
Ravichandiran, Kajeandra; Ravichandiran, Mayoorendra; Oliver, Michele L; Singh, Karan S; McKee, Nancy H; Agur, Anne M R
2009-09-01
Architectural parameters and physiological cross-sectional area (PCSA) are important determinants of muscle function. Extensor carpi radialis longus (ECRL) and brevis (ECRB) are used in muscle transfers; however, their regional architectural differences have not been investigated. The aim of this study is to develop computational algorithms to quantify and compare architectural parameters (fiber bundle length, pennation angle, and volume) and PCSA of ECRL and ECRB. Fiber bundles distributed throughout the volume of ECRL (75+/-20) and ECRB (110+/-30) were digitized in eight formalin embalmed cadaveric specimens. The digitized data was reconstructed in Autodesk Maya with computational algorithms implemented in Python. The mean PCSA and fiber bundle length were significantly different between ECRL and ECRB (p < or = 0.05). Superficial ECRL had significantly longer fiber bundle length than the deep region, whereas the PCSA of superficial ECRB was significantly larger than the deep region. The regional quantification of architectural parameters and PCSA provides a framework for the exploration of partial tendon transfers of ECRL and ECRB.
A Linear Birefringence Measurement Method for an Optical Fiber Current Sensor.
Xu, Shaoyi; Shao, Haiming; Li, Chuansheng; Xing, Fangfang; Wang, Yuqiao; Li, Wei
2017-07-03
In this work, a linear birefringence measurement method is proposed for an optical fiber current sensor (OFCS). First, the optical configuration of the measurement system is presented. Then, the elimination method of the effect of the azimuth angles between the sensing fiber and the two polarizers is demonstrated. Moreover, the relationship of the linear birefringence, the Faraday rotation angle and the final output is determined. On these bases, the multi-valued problem on the linear birefringence is simulated and its solution is illustrated when the linear birefringence is unknown. Finally, the experiments are conducted to prove the feasibility of the proposed method. When the numbers of turns of the sensing fiber in the OFCS are about 15, 19, 23, 27, 31, 35, and 39, the measured linear birefringence obtained by the proposed method are about 1.3577, 1.8425, 2.0983, 2.5914, 2.7891, 3.2003 and 3.5198 rad. Two typical methods provide the references for the proposed method. The proposed method is proven to be suitable for the linear birefringence measurement in the full range without the limitation that the linear birefringence must be smaller than π/2.
Donagi, Ron; Pantev, Tony; Waldram, Dan; Donagi, Ron; Ovrut, Burt; Pantev, Tony; Waldram, Dan
2002-01-01
We describe a family of genus one fibered Calabi-Yau threefolds with fundamental group ${\\mathbb Z}/2$. On each Calabi-Yau $Z$ in the family we exhibit a positive dimensional family of Mumford stable bundles whose symmetry group is the Standard Model group $SU(3)\\times SU(2)\\times U(1)$ and which have $c_{3} = 6$. We also show that for each bundle $V$ in our family, $c_{2}(Z) - c_{2}(V)$ is the class of an effective curve on $Z$. These conditions ensure that $Z$ and $V$ can be used for a phenomenologically relevant compactification of Heterotic M-theory.
Modulational Instability in Linearly Coupled Asymmetric Dual-Core Fibers
Arjunan Govindarajan
2017-06-01
Full Text Available We investigate modulational instability (MI in asymmetric dual-core nonlinear directional couplers incorporating the effects of the differences in effective mode areas and group velocity dispersions, as well as phase- and group-velocity mismatches. Using coupled-mode equations for this system, we identify MI conditions from the linearization with respect to small perturbations. First, we compare the MI spectra of the asymmetric system and its symmetric counterpart in the case of the anomalous group-velocity dispersion (GVD. In particular, it is demonstrated that the increase of the inter-core linear-coupling coefficient leads to a reduction of the MI gain spectrum in the asymmetric coupler. The analysis is extended for the asymmetric system in the normal-GVD regime, where the coupling induces and controls the MI, as well as for the system with opposite GVD signs in the two cores. Following the analytical consideration of the MI, numerical simulations are carried out to explore nonlinear development of the MI, revealing the generation of periodic chains of localized peaks with growing amplitudes, which may transform into arrays of solitons.
Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength
Tao, Rumao; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin
2015-01-01
We investigated the effect of pump wavelength on the modal instabilities (MI) in high-power linearly polarized Yb-doped fiber amplifiers. We built a novel semi-analytical model to determine the frequency coupling characteristics and power threshold of MI, which indicates promising MI suppression through pumping at an appropriate wavelength. By pumping at 915 nm, the threshold can be enhanced by a factor of 2.1 as compared to that pumped at 976 nm. Based on a high-power linearly polarized fiber amplifier platform, we studied the influence of pump wavelength experimentally. A maximal enhancement factor of 1.9 has been achieved when pumped at 915 nm, which agrees with the theoretical calculation and verified our theoretical model. Furthermore, we show that MI suppression by detuning the pump wavelength is weakened for fiber with a large core-to-cladding ratio. (paper)
Multi-wavelength Brillouin Raman erbium-doped fiber laser generation in a linear cavity
Shirazi, M R; Harun, S W; Ahmad, H
2014-01-01
A multi-wavelength Brillouin Raman erbium-doped fiber laser is proposed and demonstrated. The setup uses a 7.7 km dispersion compensating fiber simultaneously as the Brillouin and Raman nonlinear gain media and operates in conjunction with a 3 m erbium-doped fiber as the linear gain medium. At a Brillouin pump (BP) wavelength of 1530 nm, where Raman and erbium gains overlap each other, 34 Brillouin Stokes lines having line spacing of 0.075 nm are created by using a Raman pump power of only 24.1 dBm, an erbium pump power of about 22.1 dBm, and a BP power of 6.5 dBm in the proposed linear cavity. The system is highly efficient and is able to generate many comparable peak-power lines at a low pump power. (paper)
Szunerits, Sabine; Walt, David R
2002-02-15
The localized corrosion behavior of a galvanic aluminum copper couple was investigated by in situ fluorescence imaging with a fiber-optic imaging sensor. Three different, but complementary methods were used for visualizing remote corrosion sites, mapping the topography of the metal surface, and measuring local chemical concentrations of H+, OH-, and Al3+. The first method is based on a pH-sensitive imaging fiber, where the fluorescent dye SNAFL was covalently attached to the fiber's distal end. Fluorescence images were acquired as a function of time at different areas of the galvanic couple. In a second method, the fluorescent dye morin was immobilized on the fiber-optic imaging sensor, which allowed the in situ localization of corrosion processes on pure aluminum to be visualized over time by monitoring the release of Al3+. The development of fluorescence on the aluminum surface defined the areas associated with the anodic dissolution of aluminum. We also investigated the inhibition of corrosion of pure aluminum by CeCl3 and 8-hydroxyquinoline. The decrease in current, the decrease in the number of active sites on the aluminum surface, and the faster surface passivation are all consistent indications that cerium chloride and 8-hydroxyquinoline inhibit corrosion effectively. From the number and extent of corrosion sites and the release of aluminum ions monitored with the fiber, it was shown that 8-hydroxyquinoline is a more effective inhibitor than cerium chloride.
Linearization of Positional Response Curve of a Fiber-optic Displacement Sensor
Babaev, O. G.; Matyunin, S. A.; Paranin, V. D.
2018-01-01
Currently, the creation of optical measuring instruments and sensors for measuring linear displacement is one of the most relevant problems in the area of instrumentation. Fiber-optic contactless sensors based on the magneto-optical effect are of special interest. They are essentially contactless, non-electrical and have a closed optical channel not subject to contamination. The main problem of this type of sensors is the non-linearity of their positional response curve due to the hyperbolic nature of the magnetic field intensity variation induced by moving the magnetic source mounted on the controlled object relative to the sensing element. This paper discusses an algorithmic method of linearizing the positional response curve of fiber-optic displacement sensors in any selected range of the displacements to be measured. The method is divided into two stages: 1 - definition of the calibration function, 2 - measurement and linearization of the positional response curve (including its temperature stabilization). The algorithm under consideration significantly reduces the number of points of the calibration function, which is essential for the calibration of temperature dependence, due to the use of the points that randomly deviate from the grid points with uniform spacing. Subsequent interpolation of the deviating points and piecewise linear-plane approximation of the calibration function reduces the microcontroller storage capacity for storing the calibration function and the time required to process the measurement results. The paper also presents experimental results of testing real samples of fiber-optic displacement sensors.
Linear and nonlinear modeling of light propagation in hollow-core photonic crystal fiber
Roberts, John; Lægsgaard, Jesper
2009-01-01
Hollow core photonic crystal fibers (HC-PCFs) find applications which include quantum and non-linear optics, gas detection and short high-intensity laser pulse delivery. Central to most applications is an understanding of the linear and nonlinear optical properties. These require careful modeling....... The intricacies of modeling various forms of HC-PCF are reviewed. An example of linear dispersion engineering, aimed at reducing and flattening the group velocity dispersion, is then presented. Finally, a study of short high intensity pulse delivery using HC-PCF in both dispersive and nonlinear (solitonic...
Karimi, Samaneh; Abdulkhani, Ali; Tahir, Paridah Md; Dufresne, Alain
2016-10-01
Cellulosic nanofibers (NFs) from kenaf bast were used to reinforce glycerol plasticized thermoplastic starch (TPS) matrices with varying contents (0-10wt%). The composites were prepared by casting/evaporation method. Raw fibers (RFs) reinforced TPS films were prepared with the same contents and conditions. The aim of study was to investigate the effects of filler dimension and loading on linear and non-linear mechanical performance of fabricated materials. Obtained results clearly demonstrated that the NF-reinforced composites had significantly greater mechanical performance than the RF-reinforced counterparts. This was attributed to the high aspect ratio and nano dimension of the reinforcing agents, as well as their compatibility with the TPS matrix, resulting in strong fiber/matrix interaction. Tensile strength and Young's modulus increased by 313% and 343%, respectively, with increasing NF content from 0 to 10wt%. Dynamic mechanical analysis (DMA) revealed an elevational trend in the glass transition temperature of amylopectin-rich domains in composites. The most eminent record was +18.5°C shift in temperature position of the film reinforced with 8% NF. This finding implied efficient dispersion of nanofibers in the matrix and their ability to form a network and restrict mobility of the system. Copyright © 2016 Elsevier B.V. All rights reserved.
Limbach, H J; Sayar, M; Holm, C [Max-Planck-Institut fuer Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany)
2004-06-09
Using extensive molecular dynamics simulations we study the behaviour of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction and the bundle size. We show that for the parameter range relevant for sulfonated poly(para-phenylenes) (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting at the possibility that the size of DNA aggregates is, under certain circumstances, thermodynamically limited.
Limbach, H J; Sayar, M; Holm, C
2004-01-01
Using extensive molecular dynamics simulations we study the behaviour of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction and the bundle size. We show that for the parameter range relevant for sulfonated poly(para-phenylenes) (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting at the possibility that the size of DNA aggregates is, under certain circumstances, thermodynamically limited
Limbach, H. J.; Sayar, M.; Holm, C.
2004-06-01
Using extensive Molecular Dynamics simulations we study the behavior of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction, and the bundle size. We show that for the parameter range relevant for sulfonated poly-para-phenylenes (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting to the possibility that the size of DNA aggregates is under certain circumstances thermodynamically limited.
Melek Usal
2010-01-01
Full Text Available The linear thermoelastic behavior of a composite material reinforced by two independent and inextensible fiber families has been analyzed theoretically. The composite material is assumed to be anisotropic, compressible, dependent on temperature gradient, and showing linear elastic behavior. Basic principles and axioms of modern continuum mechanics and equations belonging to kinematics and deformation geometries of fibers have provided guidance and have been determining in the process of this study. The matrix material is supposed to be made of elastic material involving an artificial anisotropy due to fibers reinforcing by arbitrary distributions. As a result of thermodynamic constraints, it has been determined that the free energy function is dependent on a symmetric tensor and two vectors whereas the heat flux vector function is dependent on a symmetric tensor and three vectors. The free energy and heat flux vector functions have been represented by a power series expansion, and the type and the number of terms taken into consideration in this series expansion have determined the linearity of the medium. The linear constitutive equations of the stress and heat flux vector are substituted in the Cauchy equation of motion and in the equation of conservation of energy to obtain the field equations.
Time-Frequency (Wigner Analysis of Linear and Nonlinear Pulse Propagation in Optical Fibers
José Azaña
2005-06-01
Full Text Available Time-frequency analysis, and, in particular, Wigner analysis, is applied to the study of picosecond pulse propagation through optical fibers in both the linear and nonlinear regimes. The effects of first- and second-order group velocity dispersion (GVD and self-phase modulation (SPM are first analyzed separately. The phenomena resulting from the interplay between GVD and SPM in fibers (e.g., soliton formation or optical wave breaking are also investigated in detail. Wigner analysis is demonstrated to be an extremely powerful tool for investigating pulse propagation dynamics in nonlinear dispersive systems (e.g., optical fibers, providing a clearer and deeper insight into the physical phenomena that determine the behavior of these systems.
Relativistic rotators: a quantum mechanical de Sitter bundle
Boehm, A.
1976-02-01
If de Sitter fiber bundle over space time is the classical picture of hadrons then for a quantum mechanical description one has to generalize the concept of a principal fiber bundle to a bundle that contains the representation of the group of motion. This idea is related to the relativistic rotator model, and the radius of the de Sitter fiber is determined from the experimental hadron spectrum
Holomorphic bundles over elliptic manifolds
Morgan, J.W.
2000-01-01
In this lecture we shall examine holomorphic bundles over compact elliptically fibered manifolds. We shall examine constructions of such bundles as well as (duality) relations between such bundles and other geometric objects, namely K3-surfaces and del Pezzo surfaces. We shall be dealing throughout with holomorphic principal bundles with structure group GC where G is a compact, simple (usually simply connected) Lie group and GC is the associated complex simple algebraic group. Of course, in the special case G = SU(n) and hence GC = SLn(C), we are considering holomorphic vector bundles with trivial determinant. In the other cases of classical groups, G SO(n) or G = Sympl(2n) we are considering holomorphic vector bundles with trivial determinant equipped with a non-degenerate symmetric, or skew symmetric pairing. In addition to these classical cases there are the finite number of exceptional groups. Amazingly enough, motivated by questions in physics, much interest centres around the group E8 and its subgroups. For these applications it does not suffice to consider only the classical groups. Thus, while often first doing the case of SU(n) or more generally of the classical groups, we shall extend our discussions to the general semi-simple group. Also, we shall spend a good deal of time considering elliptically fibered manifolds of the simplest type, namely, elliptic curves
Michot, J.
2010-12-09
The works presented in this manuscript are in the field of computer vision, and tackle the problem of real-time vision based localization and 3D reconstruction. In this context, the trajectory of a camera and the 3D structure of the filmed scene are initially estimated by linear algorithms and then optimized by a nonlinear algorithm, bundle adjustment. The thesis first presents a new technique of line search, dedicated to the nonlinear minimization algorithms used in Structure-from-Motion. The proposed technique is not iterative and can be quickly installed in traditional bundle adjustment frameworks. This technique, called Global Algebraic Line Search (G-ALS), and its two-dimensional variant (Two way-ALS), accelerate the convergence of the bundle adjustment algorithm. The approximation of the re-projection error by an algebraic distance enables the analytical calculation of an effective displacement amplitude (or two amplitudes for the Two way-ALS variant) by solving a degree 3 (G-ALS) or 5 (Two way-ALS) polynomial. Our experiments, conducted on simulated and real data, show that this amplitude, which is optimal for the algebraic distance, is also efficient for the Euclidean distance and reduces the convergence time of minimizations. One difficulty of real-time tracking algorithms (monocular SLAM) is that the estimated trajectory is often affected by drifts: on the absolute orientation, position and scale. Since these algorithms are incremental, errors and approximations are accumulated throughout the trajectory and cause global drifts. In addition, a tracking vision system can always be dazzled or used under conditions which prevented temporarily to calculate the location of the system. To solve these problems, we propose to use an additional sensor measuring the displacement of the camera. The type of sensor used will vary depending on the targeted application (an odometer for a vehicle, a lightweight inertial navigation system for a person). We propose to
Jansonius, Nomdo M; Schiefer, Julia; Nevalainen, Jukka; Paetzold, Jens; Schiefer, Ulrich
2012-12-01
Previously we developed a mathematical model for describing the retinal nerve fiber bundle trajectories in the superior-temporal and inferior-temporal regions of the human retina, based on traced trajectories extracted from fundus photographs. Aims of the current study were to (i) validate the existing model, (ii) expand the model to the entire retina and (iii) determine the influence of refraction, optic disc size and optic disc position on the trajectories. A new set of fundus photographs was collected comprising 28 eyes of 28 subjects. From these 28 photographs, 625 trajectories were extracted. Trajectories in the temporal region of the retina were compared to the existing model. In this region, 347 of 399 trajectories (87%) were within the 95% central range of the existing model. The model was extended to the nasal region. With this extension, the model can now be applied to the entire retina that corresponds to the visual field as tested with standard automated perimetry (up to approximately 30° eccentricity). There was an asymmetry between the superior and inferior hemifields and a considerable location-specific inter-subject variability. In the nasal region, we found two "singularities", located roughly at the one and five o'clock positions for the right optic disc. Here, trajectories from relatively widespread areas of the retina converge. Associations between individual deviations from the model and refraction, optic disc size and optic disc position were studied with multiple linear regression. Refraction (P = 0.021) and possibly optic disc inclination (P = 0.09) influenced the trajectories in the superior-temporal region. Copyright © 2012 Elsevier Ltd. All rights reserved.
Linearized Optically Phase-Modulated Fiber Optic Links for Microwave Signal Transport
2009-03-03
detectors (with internal 50- Ohm resistors) capable of 40-mA dc current per detector. With this link, the linearized SFDR would improve to 133 dB/Hz4/5...the IF) limitation on the signal. All calculations consider the 3dB power loss from the hybrid combiner and 6dB loss from parallel 50- Ohm resistors...283. [25] M. Nazarathy, J. Berger, A. Ley , I. Levi, and Y. Kagan, “Externally Modulated 80 Channel Am Catv Fiber-to-feeder Distribution System Over
Radio-over-fiber linearization with optimized genetic algorithm CPWL model.
Mateo, Carlos; Carro, Pedro L; García-Dúcar, Paloma; De Mingo, Jesús; Salinas, Íñigo
2017-02-20
This article proposes an optimized version of a canonical piece-wise-linear (CPWL) digital predistorter in order to enhance the linearity of a radio-over-fiber (RoF) LTE mobile fronthaul. In this work, we propose a threshold allocation optimization process carried out by a genetic algorithm (GA) in order to optimize the CPWL model (GA-CPWL). Firstly, experiments show how the CPWL model outperforms the classical memory polynomial DPD in an intensity modulation/direct detection (IM/DD) RoF link. Then, the GA-CPWL predistorter is compared with the CPWL model in several scenarios, in order to verify that the proposed DPD offers better performance in different optical transmission conditions. Experimental results reveal that with a proper threshold allocation, the GA-CPWL predistorter offers very promising outcomes.
Probabilistic model of ligaments and tendons: Quasistatic linear stretching
Bontempi, M.
2009-03-01
Ligaments and tendons have a significant role in the musculoskeletal system and are frequently subjected to injury. This study presents a model of collagen fibers, based on the study of a statistical distribution of fibers when they are subjected to quasistatic linear stretching. With respect to other methodologies, this model is able to describe the behavior of the bundle using less ad hoc hypotheses and is able to describe all the quasistatic stretch-load responses of the bundle, including the yield and failure regions described in the literature. It has two other important results: the first is that it is able to correlate the mechanical behavior of the bundle with its internal structure, and it suggests a methodology to deduce the fibers population distribution directly from the tensile-test data. The second is that it can follow fibers’ structure evolution during the stretching and it is possible to study the internal adaptation of fibers in physiological and pathological conditions.
Thibault, S; Lauzon, J; Cliche, J F; Martin, J; Duguay, M A; Têtu, M
1995-03-15
We propose a theoretical investigation of the length and coupling profile of a linearly chirped fiber Bragg grating for maximum dispersion compensation in a repeaterless optical communication system. The system consists of 100 km of standard optical fiber in which a 1550-nm signal, directly modulated at 2.5 Gbits/s, is launched. We discuss the results obtained with 6-, 4.33-, and 1-cm-long linearly chirped fiber Bragg gratings having Gaussian and uniform coupling profiles. We numerically show that a 4.33-cm-long chirped fiber Bragg grating having a uniform coupling profile is capable of compensating efficiently for the dispersion of our optical communication system.
He, Xiaoying; Fang, Xia; Liao, Changrui; Wang, D N; Sun, Junqiang
2009-11-23
A simple linear cavity erbium-doped fiber laser based on a Fabry-Perot filter which consists of a pair of fiber Bragg gratings is proposed for tunable and switchable single-longitudinal-mode dual-wavelength operation. The single-longitudinal-mode is obtained by the saturable absorption of an unpumed erbium-doped fiber together with a narrow-band fiber Bragg grating. Under the high pump power (>166 mW) condition, the stable dual-wavelength oscillation with uniform amplitude can be realized by carefully adjusting the polarization controller in the cavity. Wavelength selection and switching are achieved by tuning the narrow-band fiber Bragg grating in the system. The spacing of the dual-wavelength can be selected at 0.20 nm (approximately 25.62 GHz), 0.22 nm (approximately 28.19 GHz) and 0.54 nm (approximately 69.19 GHz).
Liao, Ruolin; Wu, Zhichao; Fu, Songnian; Zhu, Shengnan; Yu, Zhe; Tang, Ming; Liu, Deming
2018-02-01
Although the linear optical sampling (LOS) technique is powerful enough to characterize various advanced modulation formats with high symbol rates, the central wavelength of a pulsed local oscillator (LO) needs to be carefully set according to that of the signal under test, due to the coherent mixing operation. Here, we experimentally demonstrate wideband LOS enabled by a fiber optics frequency comb (FOFC). Meanwhile, when the broadband FOFC acts as the pulsed LO, we propose a scheme to mitigate the enhanced sampling error arising in the non-ideal response of a balanced photodetector. Finally, precise characterizations of arbitrary 128 Gbps PDM-QPSK wavelength channels from 1550 to 1570 nm are successfully achieved, when a 101.3 MHz frequency spaced comb with a 3 dB spectral power ripple of 20 nm is used.
Tapanuli Organoclay Addition Into Linear Low Density Polyethylene-Pineapple Fiber Composites
Adawiyah, Robiatul; Juwono, Ariadne L.; Roseno, Seto
2010-01-01
Linear low density polyethylene-Tapanuli organoclay-pineapple fiber composites were succesfully synthesized by a melt intercalation method. The clay was modified as an organoclay by a cation exchange reaction using hexadecyl trimethyl ammonium bromide (HDTMABr) surfactant. The X-ray diffraction results of the organoclay exhibited a higher basal spacing of 1.87 nm compared to the unmodified clay of 1.46 nm. The composite tensile strength was enhanced up to 46.4% with the 1 wt% organoclay addition. Both tensile and flexural moduli increased up to 150.6% and 43% with the 3 wt% organoclay addition to the composites. However, the flexural strength of the composites was not improved with the organoclay addition. The addition of organoclay has also decreased the heat deflection temperature of the composites.
Fiber-wise linear Poisson structures related to W∗-algebras
Odzijewicz, Anatol; Jakimowicz, Grzegorz; Sliżewska, Aneta
2018-01-01
In the framework of Banach differential geometry we investigate the fiber-wise linear Poisson structures as well as the Lie groupoid and Lie algebroid structures which are defined in the canonical way by the structure of a W∗-algebra (von Neumann algebra) M. The main role in this theory is played by the complex Banach-Lie groupoid G(M) ⇉ L(M) of partially invertible elements of M over the lattice L(M) of orthogonal projections of M. The Atiyah sequence and the predual Atiyah sequence corresponding to this groupoid are investigated from the point of view of Banach Poisson geometry. In particular we show that the predual Atiyah sequence fits in a short exact sequence of complex Banach sub-Poisson V B-groupoids with G(M) ⇉ L(M) as the side groupoid.
Tapanuli Organoclay Addition Into Linear Low Density Polyethylene-Pineapple Fiber Composites
Adawiyah, Robiatul; Juwono, Ariadne L.; Roseno, Seto
2010-12-01
Linear low density polyethylene-Tapanuli organoclay-pineapple fiber composites were succesfully synthesized by a melt intercalation method. The clay was modified as an organoclay by a cation exchange reaction using hexadecyl trimethyl ammonium bromide (HDTMABr) surfactant. The X-ray diffraction results of the organoclay exhibited a higher basal spacing of 1.87 nm compared to the unmodified clay of 1.46 nm. The composite tensile strength was enhanced up to 46.4% with the 1 wt% organoclay addition. Both tensile and flexural moduli increased up to 150.6% and 43% with the 3 wt% organoclay addition to the composites. However, the flexural strength of the composites was not improved with the organoclay addition. The addition of organoclay has also decreased the heat deflection temperature of the composites.
Effect of the new carbon fiber board of Elekta Precise linear accelerator on the radiation dose
Gan Jiaying; Hu Yinxiang; Luo Yuanqiang; Hong Wei; Wang Zhiyong; Lu Bing; Jin Feng
2012-01-01
Objective: To investigate the dosimetric influence of pure carbon fiber treatment tabletop of Elekta Precise new linear accelerator in radiotherapy. Methods: Surface-axis distance (SAD) technology was employed for the measurement. Two groups of fields were set and both of them were SAD opposed portals (one of them went through the tabletop,while the other did not). A PTW electrometer and a 0.6 cm 3 Farmer ionization chamber were utilized for comparison measurement. Then dose attenuation of the main table board, extended body board, the extended board for head, neck and shoulders, and the joints of these boards were calculated. Results: Under the energy of 6 MV,the dose attenuations of the following locations were: 1.4% - 7.2% at the main treatment table board; 2.8% - 38.7%, 1.4% -30.1%, 1.5% -20.8% and 1.4% - 11.2%, respectively at distances of 1, 4, 7 and 8 cm from the joint of the main table board; 0.5% - 5.0% at the extended body board; 4.7% - 15.4% at distance of 1 cm from the joint of the extended body board; 0.5% -3.3% at the neck position of the extended board for head, neck and shoulders; 5.3% - 16.7% at the shoulder positions; and 6.8% -30.4% at the joint between the extended boards and the main table board. Conclusions: The dose attenuations of the new linear accelerator pure carbon fiber treatment tabletop vary at different locations. Considerable higher attenuations are observed at the table board joints than other locations. (authors)
PENNING, JP; LAGCHER, R; PENNINGS, AJ
The mechanical properties of amorphous carbon fibers, derived from linear low density polyethylene strongly depend on the fibre diameter, which may be attributed to the presence of a skin/core structure in these fibres. High strength carbon fibres could thus be prepared by using thin precursor
Clustering of Whole-Brain White Matter Short Association Bundles Using HARDI Data
Claudio Román
2017-12-01
Full Text Available Human brain connectivity is extremely complex and variable across subjects. While long association and projection bundles are stable and have been deeply studied, short association bundles present higher intersubject variability, and few studies have been carried out to adequately describe the structure, shape, and reproducibility of these bundles. However, their analysis is crucial to understand brain function and better characterize the human connectome. In this study, we propose an automatic method to identify reproducible short association bundles of the superficial white matter, based on intersubject hierarchical clustering. The method is applied to the whole brain and finds representative clusters of similar fibers belonging to a group of subjects, according to a distance metric between fibers. We experimented with both affine and non-linear registrations and, due to better reproducibility, chose the results obtained from non-linear registration. Once the clusters are calculated, our method performs automatic labeling of the most stable connections based on individual cortical parcellations. We compare results between two independent groups of subjects from a HARDI database to generate reproducible connections for the creation of an atlas. To perform a better validation of the results, we used a bagging strategy that uses pairs of groups of 27 subjects from a database of 74 subjects. The result is an atlas with 44 bundles in the left hemisphere and 49 in the right hemisphere, of which 33 bundles are found in both hemispheres. Finally, we use the atlas to automatically segment 78 new subjects from a different HARDI database and to analyze stability and lateralization results.
Jurco, Branislav
2009-01-01
We define 2-crossed module bundle 2-gerbes related to general Lie 2-crossed modules and discuss their properties. A 2-crossed module bundle 2-gerbe over a manifold is defined in terms of a so called 2-crossed module bundle gerbe, which is a crossed module bundle gerbe equipped with an extra sructure. It is shown that string structures can be described and classified using 2-crossed module bundle 2-gerbes.
Pan, Minqiang; Zhong, Yujian
2018-01-01
Porous structure can effectively enhance the heat transfer efficiency. A kind of micro vaporizer using the oriented linear cutting copper fiber sintered felt is proposed in this work. Multiple long cutting copper fibers are firstly fabricated with a multi-tooth tool and then sintered together in parallel to form uniform thickness metal fiber sintered felts that provided a characteristic of oriented microchannels. The temperature rise response and thermal conversion efficiency are experimentally investigated to evaluate the influences of porosity, surface structure, feed flow rate and input power on the evaporation characteristics. It is indicated that the temperature rise response of water is mainly affected by input power and feed flow rate. High input power and low feed flow rate present better temperature rise response of water. Porosity rather than surface structure plays an important role in the temperature rise response of water at a relatively high input power. The thermal conversion efficiency is dominated by the input power and surface structure. The oriented linear cutting copper fiber sintered felts for three kinds of porosities show better thermal conversion efficiency than that of the oriented linear copper wire sintered felt when the input power is less than 115 W. All the sintered felts have almost the same performance of thermal conversion at a high input power.
Dafforn, Timothy R; Rajendra, Jacindra; Halsall, David J; Serpell, Louise C; Rodger, Alison
2004-01-01
High-resolution structure determination of soluble globular proteins relies heavily on x-ray crystallography techniques. Such an approach is often ineffective for investigations into the structure of fibrous proteins as these proteins generally do not crystallize. Thus investigations into fibrous protein structure have relied on less direct methods such as x-ray fiber diffraction and circular dichroism. Ultraviolet linear dichroism has the potential to provide additional information on the structure of such biomolecular systems. However, existing systems are not optimized for the requirements of fibrous proteins. We have designed and built a low-volume (200 microL), low-wavelength (down to 180 nm), low-pathlength (100 microm), high-alignment flow-alignment system (couette) to perform ultraviolet linear dichroism studies on the fibers formed by a range of biomolecules. The apparatus has been tested using a number of proteins for which longer wavelength linear dichroism spectra had already been measured. The new couette cell has also been used to obtain data on two medically important protein fibers, the all-beta-sheet amyloid fibers of the Alzheimer's derived protein Abeta and the long-chain assemblies of alpha1-antitrypsin polymers.
Miguel A. Hidalgo-Salazar
2018-03-01
Full Text Available In this work Linear Low Density Polyethylene-nonwoven industrial Fique fiber mat (LLDPE-Fique and Epoxy Resin-nonwoven industrial Fique fiber mat (EP-Fique biocomposites were prepared using thermocompression and resin film infusion processes. Neat polymeric matrices and its biocomposites were tested following ASTM standards in order to evaluate tensile and flexural mechanical properties. Also, thermal behavior of these materials has been studied by differential scanning calorimetry (DSC and thermogravimetric analysis (TGA. Tensile and flexural test revealed that nonwoven Fique reinforced composites exhibited higher modulus and strength but lower deformation capability as compared with LLDPE and EP neat matrices. TG thermograms showed that nonwoven Fique fibers incorporation has an effect on the thermal stability of the composites. On the other hand, Fique fibers did not change the crystallization and melting processes of the LLDPE matrix but restricts the motion of EP macromolecules chains thus increases the Tg of the EP-Fique composite. Finally, this work opens the possibility of considering non-woven Fique fibers as a reinforcement material with a high potential for the manufacture of biocomposites for automotive applications. In addition to the processing test specimens, it was also possible to manufacture a part of LLDPE-Fique, and one part of EP-Fique. Keywords: Biocomposites, Natural materials, Nonwoven Fique fiber mat, LLDPE, Epoxy Resin
Podesta, Marion
2008-01-01
The increase of bundle supply has become widespread in several sectors (for instance in telecommunications and energy fields). This paper review relates strategic aspects of bundling. The main purpose of this paper is to analyze profitability of bundling strategies according to the degree of competition and the characteristics of goods. Moreover, bundling can be used as price discrimination tool, screening device or entry barriers. In monopoly case bundling strategy is efficient to sort consumers in different categories in order to capture a maximum of surplus. However, when competition increases, the profitability on bundling strategies depends on correlation of consumers' reservations values. (author)
Poggiolini, P; Bosco, G; Carena, A; Curri, V; Forghieri, F
2010-05-24
Coherent-detection (CoD) permits to fully exploit the four-dimensional (4D) signal space consisting of the in-phase and quadrature components of the two fiber polarizations. A well-known and successful format exploiting such 4D space is Polarization-multiplexed QPSK (PM-QPSK). Recently, new signal constellations specifically designed and optimized in 4D space have been proposed, among which polarization-switched QPSK (PS-QPSK), consisting of a 8-point constellation at the vertices of a 4D polychoron called hexadecachoron. We call it HEXA because of its geometrical features and to avoid acronym mix-up with PM-QPSK, as well as with other similar acronyms. In this paper we investigate the performance of HEXA in direct comparison with PM-QPSK, addressing non-linear propagation over realistic links made up of 20 spans of either standard single mode fiber (SSMF) or non-zero dispersion-shifted fiber (NZDSF). We show that HEXA not only confirms its theoretical sensitivity advantage over PM-QPSK in back-to-back, but also shows a greater resilience to non-linear effects, allowing for substantially increased span loss margins. As a consequence, HEXA appears as an interesting option for dual-format transceivers capable to switch on-the-fly between PM-QPSK and HEXA when channel propagation degrades. It also appears as a possible direct competitor of PM-QPSK, especially over NZDSF fiber and uncompensated links.
Su, Rongtao; Tao, Rumao; Wang, Xiaolin; Zhang, Hanwei; Ma, Pengfei; Zhou, Pu; Xu, Xiaojun
2017-08-01
We demonstrate an experimental study on scaling mode instability (MI) threshold in fiber amplifiers based on fiber coiling. The experimental results show that coiling the active fiber in the cylindrical spiral shape is superior to the coiling in the plane spiral shape. When the polarization maintained Yb-doped fiber (PM YDF: with a core/inner-cladding diameter of 20/400 µm) is coiled on an aluminous plate with a bend diameter of 9-16 cm, the MI threshold is ~1.55 kW. When such a PM YDF is coiled on an aluminous cylinder with diameter of 9 cm, no MI is observed at the output power of 2.43 kW, which is limited by the available pump power. The spectral width and polarization extinction ratio is 0.255 nm and 18.3 dB, respectively, at 2.43 kW. To the best of our knowledge, this is the highest output power from a linear polarized narrow linewidth all-fiberized amplifier. By using a theoretical model, the potential MI-free scaling capability in such an amplifier is estimated to be 3.5 kW.
Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Tan Si-Yu; Wen Xiao-Dong
2013-01-01
We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber (EDF) to form an asymmetric three-cavity structure. The stable SLM operation at a wavelength of 1545.112 nm with a 3-dB bandwidth of 0.012 nm and an optical signal-to-noise ratio (OSNR) of about 60 dB is verified experimentally. Under laboratory conditions, the performance of a power fluctuation of less than 0.05 dB observed from the power meter for 6 h and a wavelength variation of less than 0.01 nm obtained from the optical spectrum analyzer (OSA) for about 1.5 h are demonstrated. The gain fiber length is no longer limited to only several centimeters for SLM operation because of the excellent mode-selecting ability of the asymmetric three-cavity structure. The proposed scheme provides a simple and cost-effective approach to realizing a stable SLM fiber laser. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Hidalgo-Salazar, Miguel A.; Correa, Juan P.
2018-03-01
In this work Linear Low Density Polyethylene-nonwoven industrial Fique fiber mat (LLDPE-Fique) and Epoxy Resin-nonwoven industrial Fique fiber mat (EP-Fique) biocomposites were prepared using thermocompression and resin film infusion processes. Neat polymeric matrices and its biocomposites were tested following ASTM standards in order to evaluate tensile and flexural mechanical properties. Also, thermal behavior of these materials has been studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Tensile and flexural test revealed that nonwoven Fique reinforced composites exhibited higher modulus and strength but lower deformation capability as compared with LLDPE and EP neat matrices. TG thermograms showed that nonwoven Fique fibers incorporation has an effect on the thermal stability of the composites. On the other hand, Fique fibers did not change the crystallization and melting processes of the LLDPE matrix but restricts the motion of EP macromolecules chains thus increases the Tg of the EP-Fique composite. Finally, this work opens the possibility of considering non-woven Fique fibers as a reinforcement material with a high potential for the manufacture of biocomposites for automotive applications. In addition to the processing test specimens, it was also possible to manufacture a part of LLDPE-Fique, and one part of EP-Fique.
Dafforn, Tim; Rajendra, Jacindra; Halsall, David J.; Serpell, Louise C.; Rodger, Alison
2004-01-01
High-resolution structure determination of soluble globular proteins relies heavily on x-ray crystallography techniques. Such an approach is often ineffective for investigations into the structure of fibrous proteins as these proteins generally do not crystallize. Thus investigations into fibrous protein structure have relied on less direct methods such as x-ray fiber diffraction and circular dichroism. Ultraviolet linear dichroism has the potential to provide additional information on the st...
... known cause. Causes can include: Left bundle branch block Heart attacks (myocardial infarction) Thickened, stiffened or weakened ... myocarditis) High blood pressure (hypertension) Right bundle branch block A heart abnormality that's present at birth (congenital) — ...
Horiuchi, Toshiyuki; Watanabe, Jun; Suzuki, Yuta; Iwasaki, Jun-ya
2017-05-01
Two dimensional code marks are often used for the production management. In particular, in the production lines of liquid-crystal-display panels and others, data on fabrication processes such as production number and process conditions are written on each substrate or device in detail, and they are used for quality managements. For this reason, lithography system specialized in code mark printing is developed. However, conventional systems using lamp projection exposure or laser scan exposure are very expensive. Therefore, development of a low-cost exposure system using light emitting diodes (LEDs) and optical fibers with squared ends arrayed in a matrix is strongly expected. In the past research, feasibility of such a new exposure system was demonstrated using a handmade system equipped with 100 LEDs with a central wavelength of 405 nm, a 10×10 matrix of optical fibers with 1 mm square ends, and a 10X projection lens. Based on these progresses, a new method for fabricating large-scale arrays of finer fibers with squared ends was developed in this paper. At most 40 plastic optical fibers were arranged in a linear gap of an arraying instrument, and simultaneously squared by heating them on a hotplate at 120°C for 7 min. Fiber sizes were homogeneous within 496+/-4 μm. In addition, average light leak was improved from 34.4 to 21.3% by adopting the new method in place of conventional one by one squaring method. Square matrix arrays necessary for printing code marks will be obtained by piling the newly fabricated linear arrays up.
Analytical Approach to Polarization Mode Dispersion in Linearly Spun Fiber with Birefringence
Vinod K. Mishra
2016-01-01
Full Text Available The behavior of Polarization Mode Dispersion (PMD in spun optical fiber is a topic of great interest in optical networking. Earlier work in this area has focused more on approximate or numerical solutions. In this paper we present analytical results for PMD in spun fibers with triangular spin profile function. It is found that in some parameter ranges the analytical results differ from the approximations.
Kleyn, Aleks
2007-01-01
The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.
Lee, Hyung-Seok; Lee, Hwi Don; Kim, Hyo Jin; Cho, Jae Du; Jeong, Myung Yung; Kim, Chang-Seok
2014-01-01
A linearized wavelength-swept thermo-optic laser chip was applied to demonstrate a fiber Bragg grating (FBG) sensor interrogation system. A broad tuning range of 11.8 nm was periodically obtained from the laser chip for a sweep rate of 16 Hz. To measure the linear time response of the reflection signal from the FBG sensor, a programmed driving signal was directly applied to the wavelength-swept laser chip. The linear wavelength response of the applied strain was clearly extracted with an R-squared value of 0.99994. To test the feasibility of the system for dynamic measurements, the dynamic strain was successfully interrogated with a repetition rate of 0.2 Hz by using this FBG sensor interrogation system. PMID:25177803
Competitive nonlinear pricing and bundling
Armstrong, Mark; Vickers, John
2006-01-01
We examine the impact of multiproduct nonlinear pricing on profit, consumer surplus and welfare in a duopoly. When consumers buy all their products from one firm (the one-stop shopping model), nonlinear pricing leads to higher profit and welfare, but often lower consumer surplus, than linear pricing. By contrast, in a unit-demand model where consumers may buy one product from one firm and another product from another firm, bundling generally acts to reduce profit and welfare and to boost cons...
Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid
2015-08-05
A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r(2)=0.998) in the range of 3.0-85.0 μg L(-1) with a detection limit of 0.7 μg L(-1) for preconcentration of 25.0 mL of the sample and the relative standard deviation (n=6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments. Copyright © 2015 Elsevier B.V. All rights reserved.
Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid
2015-08-01
A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r2 = 0.998) in the range of 3.0-85.0 μg L-1 with a detection limit of 0.7 μg L-1 for preconcentration of 25.0 mL of the sample and the relative standard deviation (n = 6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments.
Textile composites based on natural fibers
Li, Yan
2009-04-01
Full Text Available . The two kinds of fiber surface treatment methods were permanganate treatment and silane treatment. Vinyl ester was used as the matrix. The permeability values of sisal textile before and after fiber surface treatments are listed in Table 3. Comparisons... and more liquid resin flow through inter-bundles. Figure 4. Intra-bundle and inter-bundle flows As reported, permanganate, as an oxidant, can etch sisal fiber surface [20]. Scanning electronic micrograph of a permanganate treated sisal fiber...
Bechert, M.; Scheid, B.
2017-11-01
The draw resonance effect appears in fiber spinning processes if the ratio of take-up to inlet velocity, the so-called draw ratio, exceeds a critical value and manifests itself in steady oscillations of flow velocity and fiber diameter. We study the effect of surface tension on the draw resonance behavior of Newtonian fiber spinning in the presence of inertia and gravity. Utilizing an alternative scaling makes it possible to visualize the results in stability maps of highly practical relevance. The interplay of the destabilizing effect of surface tension and the stabilizing effects of inertia and gravity lead to nonmonotonic stability behavior and local stability maxima with respect to the dimensionless fluidity and the dimensionless inlet velocity. A region of unconditional instability caused by the influence of surface tension is found in addition to the region of unconditional stability caused by inertia, which was described in previous works [M. Bechert, D. W. Schubert, and B. Scheid, Eur. J. Mech B 52, 68 (2015), 10.1016/j.euromechflu.2015.02.005; Phys. Fluids 28, 024109 (2016), 10.1063/1.4941762]. Due to its importance for a particular group of fiber spinning applications, a viscous-gravity-surface-tension regime, i.e., negligible effect of inertia, is analyzed separately. The mechanism underlying the destabilizing effect of surface tension is discussed and established stability criteria are tested for validity in the presence of surface tension.
Li Qi; Yan Feng-Ping; Peng Wan-Jing; Feng Su-Chun; Feng Ting; Tan Si-Yu; Liu Peng
2013-01-01
A simple approach for stable single polarization, single frequency, and linear cavity erbium doped fiber laser is proposed and demonstrated. A Fabry—Pérot filter, polarizer and saturable absorber are used together to ensure stable single frequency, single polarization operation. The optical signal-to-noise ratio of the laser is approximately 57 dB, and the Lorentz linewidth is 13.9 kHz. The polarization state of the laser with good stability is confirmed and the degree of polarization is >99%
Polycation induced actin bundles
Muhlrad, Andras; Grintsevich, Elena E.; Reisler, Emil
2011-01-01
Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations an...
Polycation induced actin bundles.
Muhlrad, Andras; Grintsevich, Elena E; Reisler, Emil
2011-04-01
Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4Å) MTS-1 (1,1-methanedyl bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder. Copyright © 2011 Elsevier B.V. All rights reserved.
Matrix remodeling between cells and cellular interactions with collagen bundle
Kim, Jihan; Sun, Bo
When cells are surrounded by complex environment, they continuously probe and interact with it by applying cellular traction forces. As cells apply traction forces, they can sense rigidity of their local environment and remodel the matrix microstructure simultaneously. Previous study shows that single human carcinoma cell (MDA-MB-231) remodeled its surrounding extracellular matrix (ECM) and the matrix remodeling was reversible. In this study we examined the matrix microstructure between cells and cellular interaction between them using quantitative confocal microscopy. The result shows that the matrix microstructure is the most significantly remodeled between cells consisting of aligned, and densified collagen fibers (collagen bundle)., the result shows that collagen bundle is irreversible and significantly change micromechanics of ECM around the bundle. We further examined cellular interaction with collagen bundle by analyzing dynamics of actin and talin formation along with the direction of bundle. Lastly, we analyzed dynamics of cellular protrusion and migrating direction of cells along the bundle.
Principal noncommutative torus bundles
Echterhoff, Siegfried; Nest, Ryszard; Oyono-Oyono, Herve
2008-01-01
of bivariant K-theory (denoted RKK-theory) due to Kasparov. Using earlier results of Echterhoff and Williams, we shall give a complete classification of principal non-commutative torus bundles up to equivariant Morita equivalence. We then study these bundles as topological fibrations (forgetting the group...
Howard Parker
2013-12-01
Full Text Available In Norway the Eurasian beaver Castor fiber harvest is quota-regulated. Once the annual quota for each municipality has been determined it is distributed to landowner-organized beaver management units. Municipal wildlife managers can choose between two distributional models: the traditional “areal model” whereby each management unit receives its portion of the municipal quota based on the relative area of beaver habitat within the township that it contains, or the more recently developed “linear model” based on the relative length of beaver-utilized shoreline it contains. The linear model was developed in an attempt to increase the precision of the quota distribution process and is based on the fact that beaver occupy landscapes in a linear fashion along strips of shoreline rather than exploiting extensive areas. The assumption was that the linear model would provide a more precise and just method of distributing the municipal quota among landowners. Here we test the hypothesis that the length of beaverutilized shoreline is a better predictor of beaver colony density than the area of beaver habitat on 13 beaver management units of typical size (794 – 2200 hectares in Bø Township, Norway, during 2 years. As hypothesized, the number of beaver occupied sites on management units correlated significantly (p≤ 0.001 with the length of beaver-utilized shoreline, but not with the area of beaver habitat. Therefore municipalities should employ the linear model when a precise distribution of quotas is necessary. The density of Eurasian beaver colonies at the landscape scale (>100 km2 in south-central Scandinavia averages approximately 1 occupied site per 4 km2. This figure can be employed by municipal wildlife managers to estimate the colony density in their townships, and to calculate municipal quotas, when more precise census information is lacking.
Kuindersma, P.I.; Leijtens, X.J.M.; Zantvoort, van J.H.C.; Waardt, de H.
2012-01-01
We characterize integrated InP circuits for high speed ‘all-optical’ signal processing. Single chip circuits act as optical transistors. Transmodulation is performed by non-linear gain sections. Integrated tunable filters give signal equalization in time domain.
Schuecker, Clara; Davila, Carlos G.; Pettermann, Heinz E.
2008-01-01
The present work is concerned with modeling the non-linear response of fiber reinforced polymer laminates. Recent experimental data suggests that the non-linearity is not only caused by matrix cracking but also by matrix plasticity due to shear stresses. To capture the effects of those two mechanisms, a model combining a plasticity formulation with continuum damage has been developed to simulate the non-linear response of laminates under plane stress states. The model is used to compare the predicted behavior of various laminate lay-ups to experimental data from the literature by looking at the degradation of axial modulus and Poisson s ratio of the laminates. The influence of residual curing stresses and in-situ effect on the predicted response is also investigated. It is shown that predictions of the combined damage/plasticity model, in general, correlate well with the experimental data. The test data shows that there are two different mechanisms that can have opposite effects on the degradation of the laminate Poisson s ratio which is captured correctly by the damage/plasticity model. Residual curing stresses are found to have a minor influence on the predicted response for the cases considered here. Some open questions remain regarding the prediction of damage onset.
... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, cooked artichokes, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...
Fiber optical asssembly for fluorescence spectrometry
Piltch, Martin S.; Gray, Perry Clayton; Rubenstein, Richard
2015-08-18
System is provided for detecting the presence of an analyte of interest in a sample, said system comprising an elongated, transparent container for a sample; an excitation source in optical communication with the sample, wherein radiation from the excitation source is directed along the length of the sample, and wherein the radiation induces a signal which is emitted from the sample; and, at least two linear arrays disposed about the sample holder, each linear array comprising a plurality of optical fibers having a first end and a second end, wherein the first ends of the fibers are disposed along the length of the container and in proximity thereto; the second ends of the fibers of each array are bundled together to form a single end port.
Chen, S.S.
1975-06-01
Several mathematical models have been proposed for calculating fuel rod responses in axial flows based on a single rod consideration. The spacing between fuel rods in liquid metal fast breeder reactors is small; hence fuel rods will interact with one another due to fluid coupling. The objective of this paper is to study the coupled vibration of fuel bundles. To account for the fluid coupling, a computer code, AMASS, is developed to calculate added mass coefficients for a group of circular cylinders based on the potential flow theory. The equations of motion for rod bundles are then derived including hydrodynamic forces, drag forces, fluid pressure, gravity effect, axial tension, and damping. Based on the equations, a method of analysis is presented to study the free and forced vibrations of rod bundles. Finally, the method is applied to a typical LMFBR fuel bundle consisting of seven rods
Optimization of a bundle divertor for FED
Hively, L.M.; Rothe, K.E.; Minkoff, M.
1982-01-01
Optimal double-T bundle divertor configurations have been obtained for the Fusion Engineering Device (FED). On-axis ripple is minimized, while satisfying a series of engineering constraints. The ensuing non-linear optimization problem is solved via a sequence of quadratic programming subproblems, using the VMCON algorithm. The resulting divertor designs are substantially improved over previous configurations
CFD modeling of secondary flows in fuel rod bundles
Baglietto, Emilio; Ninokata, Hisashi
2004-01-01
An optimized non-linear eddy viscosity model is introduced, for calculations of detailed coolant velocity distribution in a tight lattice fuel bundle. The low Reynolds formulation has been optimized based on DNS data for channel flow. The non-linear stress-strain relationship has been modified in the coefficients to model the flow anisotropy, which causes the formation of turbulence driven secondary flows inside the bundle subchannels. Predictions of the model are first compared to experimental measurements of secondary flows in a triangularly arrayed rod bundle with p/d=1.3. Subsequently wall shear stress and velocity predictions are compared with different experimental data for a rod bundle with p/d=1.17. The model shows to be able to correctly reproduce the scale of the secondary motion, and to accurately reproduce both wall shear stress and velocity distributions inside the rod bundle subchannels. (author)
Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Wen Xiao-Dong; Tan Si-Yu; Liu Peng
2012-01-01
We propose a stable and high optical signal-to-noise ratio (OSNR) compound linear-cavity single-longitudinal-mode (SLM) erbium-doped silica fiber laser. It consists of three uniform fiber Bragg gratings (FBGs) and two fiber couplers to form a simple asymmetric four-cavity structure to select the longitudinal mode. The stable SLM operation at the wavelength of 1544.053 nm with a 3 dB bandwidth of 0.014 nm and an OSNR of ∼60 dB was verified experimentally. Under laboratory conditions, a power fluctuation performance of less than 0.05 dB for 5 h and wavelength variation of less than 0.01 nm for about 150 min is demonstrated. Finally, the characteristic of laser output power as a function of pump power is investigated. The proposed system provides a simple and cost-effective approach to realize a stable SLM fiber laser
Fiber optic vibration sensor using bifurcated plastic optical fiber
Abdullah, M.; Bidin, N.; Yasin, M.
2016-11-01
An extrinsic fiber optic vibration sensor is demonstrated for a fiber optic displacement sensor based on a bundled multimode fiber to measure a vibration frequency ranging from 100 until 3000 Hz. The front slope has a sensitivity of 0.1938mV/mm and linearity of 99.7% within a measurement range between 0.15-3.00 mm. By placing the diaphragm of the concave load-speaker within the linear range from the probe, the frequency of the vibration can be measured with error percentage of less than 1.54%. The graph of input against output frequency for low, medium and high frequency range show very high linearity up to 99%. Slope for low, medium, and high frequency range are calculated as 1.0026, 0.9934, and 1.0007 respectively. Simplicity, long term stability, low power consumption, wide dynamic and frequency ranges, noise reduction, ruggedness, linearity and light weight make it promising alternative to other well-establish methods for vibration frequency measurement.
Warps, grids and curvature in triple vector bundles
Flari, Magdalini K.; Mackenzie, Kirill
2018-06-01
A triple vector bundle is a cube of vector bundle structures which commute in the (strict) categorical sense. A grid in a triple vector bundle is a collection of sections of each bundle structure with certain linearity properties. A grid provides two routes around each face of the triple vector bundle, and six routes from the base manifold to the total manifold; the warps measure the lack of commutativity of these routes. In this paper we first prove that the sum of the warps in a triple vector bundle is zero. The proof we give is intrinsic and, we believe, clearer than the proof using decompositions given earlier by one of us. We apply this result to the triple tangent bundle T^3M of a manifold and deduce (as earlier) the Jacobi identity. We further apply the result to the triple vector bundle T^2A for a vector bundle A using a connection in A to define a grid in T^2A . In this case the curvature emerges from the warp theorem.
Yu, Xiangzhi; Gillmer, Steven R.; Woody, Shane C.; Ellis, Jonathan D.
2016-01-01
A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented. The novel design has the advantages of simplicity, compactness, and relatively low cost. This proposed sensor can simultaneously measure displacement, two straightness errors, and changes in pitch, yaw, and roll using a single optical beam traveling between the measurement system and a small target. The optical configuration of the system and the working principle for all degrees-of-freedom are presented along with the influence and compensation of crosstalk motions in roll and straightness measurements. Several comparison experiments are conducted to investigate the feasibility and performance of the proposed system in each degree-of-freedom independently. Comparison experiments to a commercial interferometer demonstrate error standard deviations of 0.33 μm in straightness, 0.14 μrad in pitch, 0.44 μradin yaw, and 45.8 μrad in roll.
Yu, Xiangzhi, E-mail: xiangzhi.yu@rochester.edu; Gillmer, Steven R. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); Woody, Shane C. [InSituTec Incorporated, 7140 Weddington Road, Concord, North Carolina 28027 (United States); Ellis, Jonathan D. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); The Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)
2016-06-15
A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented. The novel design has the advantages of simplicity, compactness, and relatively low cost. This proposed sensor can simultaneously measure displacement, two straightness errors, and changes in pitch, yaw, and roll using a single optical beam traveling between the measurement system and a small target. The optical configuration of the system and the working principle for all degrees-of-freedom are presented along with the influence and compensation of crosstalk motions in roll and straightness measurements. Several comparison experiments are conducted to investigate the feasibility and performance of the proposed system in each degree-of-freedom independently. Comparison experiments to a commercial interferometer demonstrate error standard deviations of 0.33 μm in straightness, 0.14 μrad in pitch, 0.44 μradin yaw, and 45.8 μrad in roll.
Hazi, G.; Mayer, G.
2005-01-01
For power upgrading VVER-440 reactors we need to know exactly how the temperature measured by the thermocouples is related to the average outlet temperature of the fuel assemblies. Accordingly, detailed knowledge on mixing process in the rod bundles and in the fuel assembly head have great importance. Here we study the hydrodynamics of rod bundles based on the results of direct numerical and large eddy simulation of flows in subchannels. It is shown that secondary flow and flow pulsation phenomena can be observed using both methodologies. Some consequences of these observations are briefly discussed. (author)
Leandro Vanalli
2010-12-01
Full Text Available This paper proposes a physical non-linear formulation to deal with steel fiber reinforced concrete by the finite element method. The proposed formulation allows the consideration of short or long fibers placed arbitrarily inside a continuum domain (matrix. The most important feature of the formulation is that no additional degree of freedom is introduced in the pre-existent finite element numerical system to consider any distribution or quantity of fiber inclusions. In other words, the size of the system of equations used to solve a non-reinforced medium is the same as the one used to solve the reinforced counterpart. Another important characteristic of the formulation is the reduced work required by the user to introduce reinforcements, avoiding "rebar" elements, node by node geometrical definitions or even complex mesh generation. Bounded connection between long fibers and continuum is considered, for short fibers a simplified approach is proposed to consider splitting. Non-associative plasticity is adopted for the continuum and one dimensional plasticity is adopted to model fibers. Examples are presented in order to show the capabilities of the formulation.
Safety assessment for the CANFLEX-NU fuel bundles with respect to the 37-element fuel bundles
Suk, H. C.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea)
1999-11-01
The KAERI and AECL have jointly developed an advanced CANDU fuel, called CANFLEX-NU fuel bundle. CANFLEX 43-element bundle has some improved features of increased operating margin and enhanced safety compared to the existing 37-element bundle. Since CANFLEX fuel bundle is designed to be compatible with the CANDU-6 reactor design, the behaviour in the thermalhydraulic system will be nearly identical with 37-element bundle. But due to different element design and linear element power distribution between the two bundles, it is expected that CANFLEX fuel behaviour would be different from the behaviour of the 37-element fuel. Therefore, safety assessments on the design basis accidents which result if fuel failures are performed. For all accidents selected, it is observed that the loading of CANFLEX bundle in an existing CANDU-6 reactor would not worsen the reactor safety. It is also predicted that fission product release for CANFLEX fuel bundle generally is lower than that for 37-element bundle. 3 refs., 2 figs., 2 tabs. (Author)
Irradiated fuel bundle counter
Campbell, J.W.; Todd, J.L.
1975-01-01
The design of a prototype safeguards instrument for determining the number of irradiated fuel assemblies leaving an on-power refueled reactor is described. Design details include radiation detection techniques, data processing and display, unattended operation capabilities and data security methods. Development and operating history of the bundle counter is reported. (U.S.)
Irradiated fuel bundle counter
Campbell, J.W.; Todd, J.L.
1975-01-01
The design of a prototype safeguards instrument for determining the number of irradiated fuel assemblies leaving an on-power refueled reactor is described. Design details include radiation detection techniques, data processing and display, unattended operation capabilities and data security methods. Development and operating history of the bundle counter is reported
Iosif DUMITRESCU
2015-05-01
Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.
Sommer, Stefan Horst; Lauze, Francois Bernard; Nielsen, Mads
2011-01-01
In the LDDMM framework, optimal warps for image registration are found as end-points of critical paths for an energy functional, and the EPDiff equations describe the evolution along such paths. The Large Deformation Diffeomorphic Kernel Bundle Mapping (LDDKBM) extension of LDDMM allows scale space...
Ji, Wei; Chang, Jun
2013-07-01
In this paper, we design a WDM-RoF-PON based on linearly-polarized dual-wavelength fiber laser and CSRZ-DPSK, which can achieve wire-line and wireless access synchronously. With the CSRZ-DPSK modulation, the wireless access in ONU can save RF source and the frequency of radio carrier can be controlled by OLT. The dual-wavelength fiber laser is the union light source of WDM-PON with polarization multiplexing. By the RSOA and downstream light source reusing, the ONU can save omit laser source and makes the WDM-PON to be colorless. The networking has the credible transmission property, including wireless access and fiber transmission. The networking also has excellent covering range.
Patel, Paras R.; Na, Kyounghwan; Zhang, Huanan; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Yoon, Euisik; Chestek, Cynthia A.
2016-01-01
Objective Single carbon fiber electrodes (d=8.4 μm) insulated with parylene-c and functionalized with PEDOT:pTS have been shown to record single unit activity but manual implantation of these devices with forceps can be difficult. Without an improvement in the insertion method any increase in the channel count by fabricating carbon fiber arrays would be impractical. In this study, we utilize a water soluble coating and structural backbones that allow us to create, implant, and record from fully functionalized arrays of carbon fibers with ~150 μm pitch. Approach Two approaches were tested for the insertion of carbon fiber arrays. The first method used a PEG coating that temporarily stiffened the fibers while leaving a small portion at the tip exposed. The small exposed portion (500 μm – 1 mm) readily penetrated the brain allowing for an insertion that did not require the handling of each fiber by forceps. The second method involved the fabrication of silicon support structures with individual shanks spaced 150 μm apart. Each shank consisted of a small groove that held an individual carbon fiber. Main results Our results showed that the PEG coating allowed for the chronic implantation of carbon fiber arrays in 5 rats with unit activity detected at 31 days post-implant. The silicon support structures recorded single unit activity in 3 acute rat surgeries. In one of those surgeries a stacked device with 3 layers of silicon support structures and carbon fibers was built and shown to readily insert into the brain with unit activity on select sites. Significance From these studies we have found that carbon fibers spaced at ~150 μm readily insert into the brain. This greatly increases the recording density of chronic neural probes and paves the way for even higher density devices that have a minimal scarring response. PMID:26035638
These are sample fibre optic cables which are used for networking. Optical fibers are widely used in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data rates) than wire cables. Fibers are used instead of metal wires because signals travel along them with less loss and are also immune to electromagnetic interference. This is useful for somewhere like CERN where magnets with their highly powerful magnetic fields could pose a problem.
Lee, Ju Han; Chang, You; Han, Young-Geun; Kim, Sang; Lee, Sang
2004-08-23
We experimentally demonstrate a simple scheme for the tunable pulse repetition-rate multiplication based on the fractional Talbot effect in a linearly tunable, chirped fiber Bragg grating (FBG). The key component in this scheme is our linearly tunable, chirped FBG with no center wavelength shift, which was fabricated with the S-bending method using a uniform FBG. By simply tuning the group velocity dispersion of the chirped FBG, we readily multiply an original 8.5 ps, 10 GHz soliton pulse train by a factor of 2 ~ 5 to obtain high quality pulses at repetition-rates of 20 ~ 50 GHz without significantly changing the system configuration.
Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse
2013-01-01
AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included...... in the Copenhagen City Heart Study examined in 1976-2003 free from previous myocardial infarction (MI), chronic heart failure, and left bundle branch block through registry linkage until 2009 for all-cause mortality and cardiovascular outcomes. The prevalence of RBBB/IRBBB was higher in men (1.4%/4.7% in men vs. 0.......5%/2.3% in women, P block was associated with significantly...
Bundling harvester; Nippukorjausharvesteri
Koponen, K. [Eko-Log Oy, Kuopio (Finland)
1996-12-31
The staring point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automatizing of the harvester, and automatized loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilization of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilized without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilization of wood-energy
Bundling harvester; Nippukorjausharvesteri
Koponen, K [Eko-Log Oy, Kuopio (Finland)
1997-12-31
The staring point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automatizing of the harvester, and automatized loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilization of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilized without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilization of wood-energy
Han, Ya; Liu, Yan-Ge; Huang, Wei; Wang, Zhi; Guo, Jun-Qi; Luo, Ming-Ming
2016-07-25
A refractive index (RI) tunable functional materials infiltrated side-hole ring fiber (SHRF) is proposed to generate 10 LP OAM states with 6 topology numbers. On the basis of perturbation theory, the basis of the SHRF is demonstrated to be the LP modes. After a fixed propagation distance of 0.03 m, 0.009 m and 0.012 m, the phase difference between the odd and even LP11x, LP21x,y, LP31x,y modes in the SHRF accumulate to ± π/2 respectively with na ranging from 1.412 to 1.44. Correspondingly, the output states are OAM ± 1x, OAM ± 2x,y, OAM ± 3x,y with a bandwidth of 380 nm, 100 nm and 80 nm respectively. The proposed fiber is easy to be fabricated with the mature fiber drawing technology and could facilitate the realization of all fiber based OAM system.
Zia, Haider
2015-12-15
Compact and stable ultrafast laser sources for electron diffraction experiments are the first step in accomplishing the dream experiment of producing a molecular movie. This thesis work focuses on developing new robust laser sources to enable arbitrary scaling in laser repetition rate, pulse energy, duration and stability as needed to provide sufficient integrated detected electrons for high quality diffraction patterns that can be inverted to real space movies. In chapter 2, the construction of a novel stable and high power stretched pulse fiber oscillator outputting 300 mW at 31 MHz and compressible pulses to below 90 fs will be described. Chapter 3 describes the construction of a solid-state regenerative amplifier that was developed to achieve pulse energies above 1mJ with 0.40 mJ already achieved at 1 kHz. Novel simulation techniques were explored that aided the construction of the amplifier. Chapter 4 derives a new, fast and powerful numerical theory that is implemented for generalized non-linear Schrodinger equations in all spatial dimensions and time. This new method can model complicated terms in these equations that outperforms other numerical methods with respect to minimizing numerical error and increased speed. These advantages are due to this method's Fourier nature. A simulation tool was created, employing this numerical technique to simulate white-light generation in bulk media. The simulation matches extremely well with published experimental data, and is superior to the original simulation method used to match the experiment. The use of this tool enables accurate calculations of continuum or white light generation as needed for different experimental protocols and serves as the primary input to generate wide bandwidth coherent light.This work has solved the problem of predictably designing continuum generation within targeted wavelength ranges. This information is needed as part of an overall scheme in laser source development to coherently
Zia, Haider
2015-12-01
Compact and stable ultrafast laser sources for electron diffraction experiments are the first step in accomplishing the dream experiment of producing a molecular movie. This thesis work focuses on developing new robust laser sources to enable arbitrary scaling in laser repetition rate, pulse energy, duration and stability as needed to provide sufficient integrated detected electrons for high quality diffraction patterns that can be inverted to real space movies. In chapter 2, the construction of a novel stable and high power stretched pulse fiber oscillator outputting 300 mW at 31 MHz and compressible pulses to below 90 fs will be described. Chapter 3 describes the construction of a solid-state regenerative amplifier that was developed to achieve pulse energies above 1mJ with 0.40 mJ already achieved at 1 kHz. Novel simulation techniques were explored that aided the construction of the amplifier. Chapter 4 derives a new, fast and powerful numerical theory that is implemented for generalized non-linear Schrodinger equations in all spatial dimensions and time. This new method can model complicated terms in these equations that outperforms other numerical methods with respect to minimizing numerical error and increased speed. These advantages are due to this method's Fourier nature. A simulation tool was created, employing this numerical technique to simulate white-light generation in bulk media. The simulation matches extremely well with published experimental data, and is superior to the original simulation method used to match the experiment. The use of this tool enables accurate calculations of continuum or white light generation as needed for different experimental protocols and serves as the primary input to generate wide bandwidth coherent light.This work has solved the problem of predictably designing continuum generation within targeted wavelength ranges. This information is needed as part of an overall scheme in laser source development to coherently
Saccomandi, Paola; Varalda, Ambra; Gassino, Riccardo; Tosi, Daniele; Massaroni, Carlo; Caponero, Michele A.; Pop, Raoul; Korganbayev, Sanzhar; Perrone, Guido; Diana, Michele; Vallan, Alberto; Costamagna, Guido; Marescaux, Jacques; Schena, Emiliano
2017-09-01
The response of a fiber optic sensor [linearly chirped fiber Bragg grating (LCFBG)] to a linear thermal gradient applied on its sensing length (i.e., 1.5 cm) has been investigated. After these bench tests, we assessed their feasibility for temperature monitoring during thermal tumor treatment. In particular, we performed experiments during ex vivo laser ablation (LA) in pig liver and in vivo thermal ablation in animal models (pigs). We investigated the following: (i) the relationship between the full width at half maximum of the LCFBG spectrum and the temperature difference among the extremities of the LCFBG and (ii) the relationship between the mean spectrum wavelength and the mean temperature acting on the LCFBG sensing area. These relationships showed a linear trend during both bench tests and LA in animal models. Thermal sensitivity was significant although different values were found with regards to bench tests and animal experiments. The linear trend and significant sensitivity allow hypothesizing a future use of this kind of sensor to monitor both temperature gradient and mean temperature within a tissue undergoing thermal treatment.
Aleksandrov, V. V.; Mitrofanov, K. N.; Gritsuk, A. N.; Frolov, I. N.; Grabovski, E. V.; Laukhin, Ya. N.
2013-01-01
Results are presented from experimental studies on the implosion of arrays made of wires and metalized fibers under the action of current pulses with an amplitude of up to 3.5 MA at the Angara-5-1 facility. The effect of the parameters of an additional linear mass of bismuth and gold deposited on the wires/fibers is investigated. It is examined how the material of the wires/fibers and the metal coating deposited on them affect the penetration of the plasma with the frozen-in magnetic field into a cylindrical array. Information on the plasma production rate for different metals is obtained by analyzing optical streak images of imploding arrays. The plasma production rate m-dot m for cylindrical arrays made of the kapron fibers coated with bismuth is determined. For the initial array radius of R 0 = 1 cm and discharge current of I = 1 MA, the plasma production rate is found to be m-dot m approx. 0.095 ± 0.015 μg/(cm 2 ns)
Feng, T; Yan, F P; Li, Q; Peng, W J; Tan, S Y; Feng, S C; Wen, X D; Liu, P
2013-01-01
We report the configuration and operation of a wavelength-tunable single frequency and single polarization erbium-doped fiber laser (EDFL) with a stable and high optical signal to noise ratio (OSNR) laser output. A narrow-band fiber Bragg grating (NBFBG), a FBG-based Fabry–Perot (FP) filter, a polarization controller (PC) and an unpumped erbium-doped fiber (EDF) as a saturable absorber (SA) are employed to realize stable single frequency lasing operation. An all-fiber polarizer (AFP) is introduced to suppress mode hopping and ensure the single polarization mode operation. By adjusting the length of the NBFBG using a stress adjustment module (SAM), four stable single frequency and single polarization laser outputs at wavelengths of 1544.946, 1545.038, 1545.118 and 1545.182 nm are obtained. At room temperature, performance with an OSNR of larger than 60 dB, power fluctuation of less than 0.04 dB, wavelength variation of less than 0.01 nm for about 5 h measurement, and degree of polarization (DOP) of close to 100% has been experimentally demonstrated for the fiber laser operating at these four wavelengths. (paper)
Draper, Andrew
2011-04-01
Results of Medicare's ACE demonstration project and Geisinger Health System's ProvenCare initiative provide insight into the challenges hospitals will face as bundled payment proliferates. An early analysis of these results suggests that hospitals would benefit from bringing full automation using clinical IT tools to bear in their efforts to meet these challenges. Other important factors contributing to success include board and physician leadership, organizational structure, pricing methodology for bidding, evidence-based medical practice guidelines, supply cost management, process efficiency management, proactive and aggressive case management, business development and marketing strategy, and the financial management system.
Muon bundles from the Universe
Kankiewicz P.
2018-01-01
Full Text Available Recently the CERN ALICE experiment, in its dedicated cosmic ray run, observed muon bundles of very high multiplicities, thereby confirming similar findings from the LEP era at CERN (in the CosmoLEP project. Significant evidence for anisotropy of arrival directions of the observed high multiplicity muonic bundles is found. Estimated directionality suggests their possible extragalactic provenance. We argue that muonic bundles of highest multiplicity are produced by strangelets, hypothetical stable lumps of strange quark matter infiltrating our Universe.
Infinitesimal bundles and projective relativity
Evans, G.T.
1973-01-01
An intrinsic and global presentation of five-dimensional relativity theory is developed, in which special coordinate conditions are replaced by conditions of Lie invariance. The notion of an infinitesimal bundle is introduced, and the theory of connexions on principal bundles is extended to infinitesimal bundles. Global aspects of projective relativity are studied: it is shown that projective relativity can describe almost any space-time. In particular, it is not necessary to assume that the electromagnetic field have a global potential. (author)
15 W high OSNR kHz-linewidth linearly-polarized all-fiber single-frequency MOPA at 1.6 μm.
Yang, Changsheng; Guan, Xianchao; Zhao, Qilai; Lin, Wei; Li, Can; Gan, Jiulin; Qian, Qi; Feng, Zhouming; Yang, Zhongmin; Xu, Shanhui
2018-05-14
A 1603 nm high optical signal-to-noise ratio (OSNR) kHz-linewidth linearly-polarized all-fiber single-frequency master-oscillator power amplifier (MOPA) is demonstrated. To suppress the amplified spontaneous emission from Yb 3+ /Er 3+ ions with the customized filters and optimize the length of the double cladding active fiber, an over 15 W stable single-longitudinal-mode laser is achieved with an OSNR of >70 dB. A measured laser linewidth of 4.5 kHz and a polarization-extinction ratio of >23 dB are obtained at the full output power. This L-band high-power single-frequency MOPA is promising for high-resolution molecular spectroscopy and pumping of Tm 3+ -doped or Tm 3+ /Ho 3+ co-doped laser.
Sommer, Stefan Horst; Svane, Anne Marie
2017-01-01
distributions. We discuss a factorization of the frame bundle projection map through this bundle, the natural sub-Riemannian structure of the frame bundle, the effect of holonomy, and the existence of subbundles where the Hormander condition is satisfied such that the Brownian motions have smooth transition......We discuss the geometric foundation behind the use of stochastic processes in the frame bundle of a smooth manifold to build stochastic models with applications in statistical analysis of non-linear data. The transition densities for the projection to the manifold of Brownian motions developed...... in the frame bundle lead to a family of probability distributions on the manifold. We explain how data mean and covariance can be interpreted as points in the frame bundle or, more precisely, in the bundle of symmetric positive definite 2-tensors analogously to the parameters describing Euclidean normal...
SIKAP KONSUMEN TERHADAP PRODUK BUNDLING AGRIBISNIS
Didi Junaedi
2017-04-01
implementation to Dekalb brand hybrid corn and Round-up brand herbicide. By analyzes how consumer attitudes toward buying intention in this regard farmers as buyer and retailers as products services. The data used is primary data. Primary data is obtained using 2 kind of respondents are retailers and farmers. The data obtained by distributed 30 questionnaires for retailers and 110 farmers in Grobogan. The descriptive statistic employed to analyzed data by using multiple linear regressions with t test, F test and coefficient of determination. The result showed that on retailers respondents attribute the product bundling has no significant influence to consumer buying intention but consumer attitudes significantly influence the buying intention. On the farmers respondents showed that attributes of the product bundling and consumer attitudes positive and significant influence to buying intention.
Ding, Hai-Yan; Li, Gai-Ru; Yu, Ying-Ge; Guo, Wei; Zhi, Ling; Li, Xin-Xia
2014-04-01
A method for on-line monitoring the dissolution of Valsartan and hydrochlorothiazide tablets assisted by mathematical separation model of linear equations was established. UV spectrums of valsartan and hydrochlorothiazide were overlapping completely at the maximum absorption wavelength respectively. According to the Beer-Lambert principle of absorbance additivity, the absorptivity of Valsartan and hydrochlorothiazide was determined at the maximum absorption wavelength, and the dissolubility of Valsartan and hydrochlorothiazide tablets was detected by fiber-optic dissolution test (FODT) assisted by the mathematical separation model of linear equations and compared with the HPLC method. Results show that two ingredients were real-time determined simultaneously in given medium. There was no significant difference for FODT compared with HPLC (p > 0.05). Due to the dissolution behavior consistency, the preparation process of different batches was stable and with good uniformity. The dissolution curves of valsartan were faster and higher than hydrochlorothiazide. The dissolutions at 30 min of Valsartan and hydrochlorothiazide were concordant with US Pharmacopoeia. It was concluded that fiber-optic dissolution test system assisted by the mathematical separation model of linear equations that can detect the dissolubility of Valsartan and hydrochlorothiazide simultaneously, and get dissolution profiles and overall data, which can directly reflect the dissolution speed at each time. It can provide the basis for establishing standards of the drug. Compared to HPLC method with one-point data, there are obvious advantages to evaluate and analyze quality of sampling drug by FODT.
Wiehr, K.
1988-05-01
This report is a summary of experimental investigations describing the fuel rod behavior in the refilling and reflooding phase of a loss-of-coolant accident of a PWR. The experiments were performed with 5x5 and 7x7 rod bundles, using indirectly electrically heated fuel rod simulators of full length with original PWR-KWU-geometry, original grid spacers and Zircaloy-4-claddings (Type Biblis B). The fuel rod simulators showed a cosine shaped axial power profile in 7 steps and continuous, respectively. The results describe the influence of the different parameters such as bundle size on the maximum coolant channel blockage, that of the cooling on the size of the circumferential strain of the cladding (azimuthal temperature distribution) a cold control rod guide thimble and the flow direction (axial temperature distribution) on the resulting coolant channel blockage. The rewetting behavior of different fuel rod simulators including ballooned and burst Zircaloy claddings is discussed as well as the influence of thermocouples on the cladding temperature history and the rewetting behavior. All results prove the coolability of a PWR in the case of a LOCA. Therefore, it can be concluded that the ECC-criteria established by licensing authorities can be fulfilled. (orig./HP) [de
Nefness of adjoint bundles for ample vector bundles
Hidetoshi Maeda
1995-11-01
Full Text Available Let E be an ample vector bundle of rank >1 on a smooth complex projective variety X of dimension n. This paper gives a classification of pairs (X,E whose adjoint bundles K_X+det E are not nef in the case when r=n-2.
Bundle Security Protocol for ION
Burleigh, Scott C.; Birrane, Edward J.; Krupiarz, Christopher
2011-01-01
This software implements bundle authentication, conforming to the Delay-Tolerant Networking (DTN) Internet Draft on Bundle Security Protocol (BSP), for the Interplanetary Overlay Network (ION) implementation of DTN. This is the only implementation of BSP that is integrated with ION.
CANFLEX fuel bundle impact test
Chang, Seok Kyu; Chung, C. H.; Park, J. S.; Hong, S. D.; Kim, B. D.
1997-08-01
This document outlines the test results for the impact test of the CANFLEX fuel bundle. Impact test is performed to determine and verify the amount of general bundle shape distortion and defect of the pressure tube that may occur during refuelling. The test specification requires that the fuel bundles and the pressure tube retain their integrities after the impact test under the conservative conditions (10 stationary bundles with 31kg/s flow rate) considering the pressure tube creep. The refuelling simulator operating with pneumatic force and simulated shield plug were fabricated and the velocity/displacement transducer and the high speed camera were also used in this test. The characteristics of the moving bundle (velocity, displacement, impacting force) were measured and analyzed with the impact sensor and the high speed camera system. The important test procedures and measurement results were discussed as follows. 1) Test bundle measurements and the pressure tube inspections 2) Simulated shield plug, outlet flange installation and bundle loading 3) refuelling simulator, inlet flange installation and sensors, high speed camera installation 4) Perform the impact test with operating the refuelling simulator and measure the dynamic characteristics 5) Inspections of the fuel bundles and the pressure tube. (author). 8 refs., 23 tabs., 13 figs
Connections on discrete fibre bundles
Manton, N.S.; Cambridge Univ.
1987-01-01
A new approach to gauge fields on a discrete space-time is proposed, in which the fundamental object is a discrete version of a principal fibre bundle. If the bundle is twisted, the gauge fields are topologically non-trivial automatically. (orig.)
Sasakian and Parabolic Higgs Bundles
Biswas, Indranil; Mj, Mahan
2018-03-01
Let M be a quasi-regular compact connected Sasakian manifold, and let N = M/ S 1 be the base projective variety. We establish an equivalence between the class of Sasakian G-Higgs bundles over M and the class of parabolic (or equivalently, ramified) G-Higgs bundles over the base N.
Upper-bound fission product release assessment for large break LOCA in CANFLEX bundle reactor core
Oh, Duk Ju; Lee, Kang Moon
1996-07-01
Quarter-core gap inventory assessment for CANDU-6 reactor core loaded with CANFLEX fuel bundles has been performed as one of the licensing safety analyses required for 24 natural uranium CANFLEX bundle irradiation in CANDU-6 reactor. The quarter-core gap inventory for the CANFLEX bundle core is 5 - 10 times lower than that for the standard bundle core, depending on the half-life of the isotope. The lower gap inventory of the CANFLEX bundle core is attributed to the lower linear power of the CANFLEX bundle compared with the standard bundle. However, the whole core total inventories for both the CANFLEX and standard bundle cores are nearly the same. The 6 - 8 times lower upper-bound fission product releases of the CANFLEX bundle core for large break LOCA than those of the standard bundle core imply that the loading of 24 natural uranium CANFLEX bundles would improve the predicted consequences of the postulated accident described in the Wolsung 2 safety report. 2 tabs., 6 figs., 3 refs. (Author)
Twisted Vector Bundles on Pointed Nodal Curves
Abstract. Motivated by the quest for a good compactification of the moduli space of -bundles on a nodal curve we establish a striking relationship between Abramovich's and Vistoli's twisted bundles and Gieseker vector bundles.
Yang, T.F.; Wan, A.; Gierszewski, P.; Rapperport, E.; Montgomery, D.B.
1982-01-01
This report presents a preliminary bundle divertor conceptual design for installation on the TEXTOR tokamak. An advanced cascade T-shaped coil configuration is used. This divertor design has the following important characteristics: (1) the current density in the conductor is less than 6 kAmp/cm 2 , and the maximum field is less than 6 Tesla; (2) the divertor can be operated at steady-state either for copper or superconducting conductors; (3) the power consumption is about 7 MW for a normal conductor; (4) the divertor can be inserted into the existing geometry of TEXTOR; (5) the ripple on axis is only 0.3% and the mirror ratio is 2 to 4; (6) the stagnation axis is concave toward the plasma, therefore q/sub D/ is smaller, the acceptance angle is larger, and the efficiency may be better than the conventional circular coil design
Yang, T.F.; Wan, A.; Gierszewski, P.; Rapperport, E.; Montgomery, D.B.
1982-01-01
This report presents a preliminary bundle divertor conceptual design for installation on the TEXTOR tokamak. An advanced cascade T-shaped coil configuration is used. This divertor design has the following important characteristics: (1) the current density in the conductor is less than 6 kAmp/cm 2 , and the maximum field is less than 6 Tesla; (2) the divertor can be operated at steady-state either for copper or superconducting conductors; (3) the power consumption is about 7 MW for a normal conductor; (4) the divertor can be inserted into the existing geometry of TEXTOR; (5) the ripple on axis is only 0.3% and the mirror ratio is 2 to 4; (6) the stagnation axis is concave toward the plasma, therefore q/sub D/ is smaller, the acceptance angle is larger, and the efficiency may be better than the conventional circular coil design
Jong Won Kim
2017-01-01
Full Text Available Polyethylene is one of the most commonly used polymer materials. Even though linear low density polyethylene (LLDPE has better mechanical properties than other kinds of polyethylene, it is not used as a textile material because of its plastic behavior that is easy to break at the die during melt spinning. In this study, LLDPE fibers were successfully produced with a new approach using a dry-jet wet spinning and a heat drawing process. The fibers were filled with carbon nanotubes (CNTs to improve the strength and reduce plastic deformation. The crystallinity, degree of orientation, mechanical properties (strength to yield, strength to break, elongation at break, and initial modulus, electrical conductivity, and thermal properties of LLDPE fibers were studied. The results show that the addition of CNTs improved the tensile strength and the degree of crystallinity. The heat drawing process resulted in a significant increase in the tensile strength and the orientation of the CNTs and polymer chains. In addition, this study demonstrates that the heat drawing process effectively decreases the plastic deformation of LLDPE.
Kumar, Saurabh; Amrutur, Bharadwaj; Asokan, Sundarrajan
2018-02-01
Fiber Bragg Grating (FBG) sensors have become popular for applications related to structural health monitoring, biomedical engineering, and robotics. However, for successful large scale adoption, FBG interrogation systems are as important as sensor characteristics. Apart from accuracy, the required number of FBG sensors per fiber and the distance between the device in which the sensors are used and the interrogation system also influence the selection of the interrogation technique. For several measurement devices developed for applications in biomedical engineering and robotics, only a few sensors per fiber are required and the device is close to the interrogation system. For these applications, interrogation systems based on InGaAs linear detector arrays provide a good choice. However, their resolution is dependent on the algorithms used for curve fitting. In this work, a detailed analysis of the choice of algorithm using the Gaussian approximation for the FBG spectrum and the number of pixels used for curve fitting on the errors is provided. The points where the maximum errors occur have been identified. All comparisons for wavelength shift detection have been made against another interrogation system based on the tunable swept laser. It has been shown that maximum errors occur when the wavelength shift is such that one new pixel is included for curve fitting. It has also been shown that an algorithm with lower computation cost compared to the more popular methods using iterative non-linear least squares estimation can be used without leading to the loss of accuracy. The algorithm has been implemented on embedded hardware, and a speed-up of approximately six times has been observed.
Highly thermal conductive carbon fiber/boron carbide composite material
Chiba, Akio; Suzuki, Yasutaka; Goto, Sumitaka; Saito, Yukio; Jinbo, Ryutaro; Ogiwara, Norio; Saido, Masahiro.
1996-01-01
In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)
Fiber Optic Displacement Sensor for Measuring Cholesterol Concentration
Moh. Budiyanto
2017-11-01
Full Text Available A simple design of a cholesterol concentration detection is proposed and demonstrated using a fiber optic displacement sensor based on an intensity modulation technique. The proposed sensor uses a bundled plastic optical fiber (POF as a probe in conjunction with a flat mirror as a target. It is obtained that the peak voltage reduces with increasing cholesterol concentration. The sensor is capable of measuring the cholesterol concentration ranging from 0 to 300 ppm in a distilled water with a measured sensitivity of 0.01 mV/ppm, a linearity of more than 99.62 % and a resolution of 3.9188 ppm. The proposed sensor also shows a high degree of stability and good repeatability. The simplicity of design, accuracy, flexible dynamic range, and the low cost of fabrication are favorable attributes of the sensor and beneficial for real- field applications. Fiber optic sensors
Betti numbers of graded modules and cohomology of vector bundles
Eisenbud, David; Schreyer, Frank-Olaf
2009-07-01
In the remarkable paper Graded Betti numbers of Cohen-Macaulay modules and the multiplicity conjecture, Mats Boij and Jonas Soederberg conjectured that the Betti table of a Cohen-Macaulay module over a polynomial ring is a positive linear combination of Betti tables of modules with pure resolutions. We prove a strengthened form of their conjectures. Applications include a proof of the Multiplicity Conjecture of Huneke and Srinivasan and a proof of the convexity of a fan naturally associated to the Young lattice. With the same tools we show that the cohomology table of any vector bundle on projective space is a positive rational linear combination of the cohomology tables of what we call supernatural vector bundles. Using this result we give new bounds on the slope of a vector bundle in terms of its cohomology.
Evaluating big deal journal bundles.
Bergstrom, Theodore C; Courant, Paul N; McAfee, R Preston; Williams, Michael A
2014-07-01
Large commercial publishers sell bundled online subscriptions to their entire list of academic journals at prices significantly lower than the sum of their á la carte prices. Bundle prices differ drastically between institutions, but they are not publicly posted. The data that we have collected enable us to compare the bundle prices charged by commercial publishers with those of nonprofit societies and to examine the types of price discrimination practiced by commercial and nonprofit journal publishers. This information is of interest to economists who study monopolist pricing, librarians interested in making efficient use of library budgets, and scholars who are interested in the availability of the work that they publish.
Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor
Zhu Zhigang; Burugapalli, Krishna; Moussy, Francis; Song, Wenhui; Li Yali; Zhong Xiaohua
2010-01-01
A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 μm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 deg. C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 μM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.
Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor
Zhu, Zhigang; Song, Wenhui; Burugapalli, Krishna; Moussy, Francis; Li, Ya-Li; Zhong, Xiao-Hua
2010-04-01
A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 µm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 °C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 µM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.
The performance of a fiber optic displacement sensor for different types of probes and targets
Yasin, M; Harun, S W; Abdul-Rashid, H A; Kusminarto; Karyono; Ahmad, H
2008-01-01
A simple fiber optic displacement sensor is presented using a multimode plastic bundled fiber and the intensity modulation technique. The performance of the sensor is compared for different types of probes and targets. The probe with the largest receiving core diameter demonstrates the highest linearity range, and increasing the number of receiving cores increases the sensitivity of the sensor. With a stainless steel target and the concentric bundled fiber with 16 receiving fibers as a probe, the sensitivity of the sensor is found to be 0.0220 mV/μm over 150 to 550 μm range and – 0.0061 mV/μm over 1100 to 2000 μm range. The target with a higher reflectivity shows a higher sensitivity. The linearity range for the front slope is almost similar for all targets tested. However, for the back slope, lower reflectivity objects have a relatively higher linearity range with the highest range of 1600 μm being obtained using plastic and aluminum targets. The simplicity of the design, high degree of sensitivity, dynamic range, non-contact measurement and low cost of the fabrication make it suitable for applications in industries for position control and micro displacement measurement in the hazardous regions
Risum, Niels; Strauss, David; Sogaard, Peter
2013-01-01
The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...
MAVEN EUV Modelled Data Bundle
National Aeronautics and Space Administration — This bundle contains solar irradiance spectra in 1-nm bins from 0-190 nm. The spectra are generated based upon the Flare Irradiance Spectra Model - Mars (FISM-M)...
MAVEN SEP Calibrated Data Bundle
National Aeronautics and Space Administration — The maven.sep.calibrated Level 2 Science Data Bundle contains fully calibrated SEP data, as well as the raw count data from which they are derived, and ancillary...
Bundling ecosystem services in Denmark
Turner, Katrine Grace; Odgaard, Mette Vestergaard; Bøcher, Peder Klith
2014-01-01
We made a spatial analysis of 11 ecosystem services at a 10 km × 10 km grid scale covering most of Denmark. Our objective was to describe their spatial distribution and interactions and also to analyze whether they formed specific bundle types on a regional scale in the Danish cultural landscape....... We found clustered distribution patterns of ecosystem services across the country. There was a significant tendency for trade-offs between on the one hand cultural and regulating services and on the other provisioning services, and we also found the potential of regulating and cultural services...... to form synergies. We identified six distinct ecosystem service bundle types, indicating multiple interactions at a landscape level. The bundle types showed specialized areas of agricultural production, high provision of cultural services at the coasts, multifunctional mixed-use bundle types around urban...
Line bundles and flat connections
1School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, .... sequence for complex analytic bundles, Appendix to Topological Methods ... Society of Japan 15 (1987) (Iwanami Shoten Publishers and Princeton ...
Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring
Zelepouga, Serguei A [Hoffman Estates, IL; Rue, David M [Chicago, IL; Saveliev, Alexei V [Chicago, IL
2011-03-15
A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.
Paimushin, V. N.; Kholmogorov, S. A.; Gazizullin, R. K.
2018-01-01
One-dimensional linearized problems on the possible buckling modes of an internal or peripheral layer of unidirectional multilayer composites with rectilinear fibers under compression in the fiber direction are considered. The investigations are carried out using the known Kirchhoff-Love and Timoshenko models for the layers. The binder, modeled as an elastic foundation, is described by the equations of elasticity theory, which are simplified in accordance to the model of a transversely soft layer and are integrated along the transverse coordinate considering the kinematic coupling relations for a layer and foundation layers. Exact analytical solutions of the problems formulated are found, which are used to calculate a composite made of an HSE 180 REM prepreg based on a unidirectional carbon fiber tape. The possible buckling modes of its internal and peripheral layers are identified. Calculation results are compared with experimental data obtained earlier. It is concluded that, for the composite studied, the flexural buckling of layers in the uniform axial compression of specimens along fibers is impossible — the failure mechanism is delamination with buckling of a fiber bundle according to the pure shear mode. It is realized (due to the low average transverse shear modulus) at the value of the ultimate compression stress equal to the average shear modulus. It is shown that such a shear buckling mode can be identified only on the basis of equations constructed using the Timoshenko shear model to describe the deformation process of layers.
Symmetries of the Space of Linear Symplectic Connections
Fox, Daniel J. F.
2017-01-01
There is constructed a family of Lie algebras that act in a Hamiltonian way on the symplectic affine space of linear symplectic connections on a symplectic manifold. The associated equivariant moment map is a formal sum of the Cahen-Gutt moment map, the Ricci tensor, and a translational term. The critical points of a functional constructed from it interpolate between the equations for preferred symplectic connections and the equations for critical symplectic connections. The commutative algebra of formal sums of symmetric tensors on a symplectic manifold carries a pair of compatible Poisson structures, one induced from the canonical Poisson bracket on the space of functions on the cotangent bundle polynomial in the fibers, and the other induced from the algebraic fiberwise Schouten bracket on the symmetric algebra of each fiber of the cotangent bundle. These structures are shown to be compatible, and the required Lie algebras are constructed as central extensions of their! linear combinations restricted to formal sums of symmetric tensors whose first order term is a multiple of the differential of its zeroth order term.
10D massive type IIA supergravities as the uplift of parabolic M2-brane torus bundles
Garcia del Moral, Maria Pilar [Universidad de Antofagasta (Chile). Dept. de Fisica; Restuccia, Alvaro [Universidad de Antofagasta (Chile). Dept. de Fisica; Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of). Dept. de Fisica
2016-04-15
We remark that the two 10D massive deformations of the N = 2 maximal type IIA supergravity (Romans and HLW supergravity) are associated to the low energy limit of the uplift to 10D of M2-brane torus bundles with parabolic monodromy linearly and non-linearly realized respectively. Romans supergravity corresponds to M2-brane compactified on a twice-punctured torus bundle. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Oh, Dirk Joo; Jeong, Chang Joon; Lee, Kang Moon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
Fission product release (FPR) assessment for End Fitting Failure (EFF) in CANDU reactor loaded with CANFLEX-natural uranium (NU) fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The total channel I-131 release at the end of transient for EFF accident is calculated to be 380.8 TBq and 602.9 TBq for the CANFLEX bundle and standard bundle channel cases, respectively. They are 4.9% and 7.9% of total inventory, respectively. The lower total releases of the CANFLEX bundle O6 channel are attributed to the lower initial fuel temperatures caused by the lower linear element power of the CANFLEX bundle compared with the standard bundle. 4 refs., 1 fig., 4 tabs. (Author)
Oh, Dirk Joo; Jeong, Chang Joon; Lee, Kang Moon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
Fission product release (FPR) assessment for End Fitting Failure (EFF) in CANDU reactor loaded with CANFLEX-natural uranium (NU) fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The total channel I-131 release at the end of transient for EFF accident is calculated to be 380.8 TBq and 602.9 TBq for the CANFLEX bundle and standard bundle channel cases, respectively. They are 4.9% and 7.9% of total inventory, respectively. The lower total releases of the CANFLEX bundle O6 channel are attributed to the lower initial fuel temperatures caused by the lower linear element power of the CANFLEX bundle compared with the standard bundle. 4 refs., 1 fig., 4 tabs. (Author)
Rus, Dorin; Florescu, Virgil; Bausic, Florin; Ursache, Robert; Sasu, Anca
2018-01-01
In this paper we have tried to present the influence of the metal surface wear and of the contact temperature on the evolution of the sliding speed, of the normal load and of the friction coefficient. We have performed numerous experimental trials that have highlighted the dependency between load and wear in relation to the friction coefficient. A dry linear friction couple was used with a large range of loads and speeds, simulating real-life working conditions: temperature, sliding speed, contact pressure. We have made a connection between the theoretical case and the experimental results arising from the use of the “wear imprint method” for the volume and depth of wear.
Demonstrating the compatibility of Canflex fuel bundles with a CANDU 6 fuelling machine
Alavi, P; Oldaker, I E [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Suk, H C; Choi, C B [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)
1997-12-31
CANFLEX is a new 43-element fuel bundle, designed for high operating margins. It has many small-diameter elements in its two outer rings, and large-diameter elements in its centre rings. By this means, the linear heat ratings are lower than those of standard 37-element bundles for similar power outputs. A necessary part of the out-reactor qualification program for the CANFLEX fuel bundle design, is a demonstration of the bundle`s compatibility with the mechanical components in a CANDU 6 Fuelling Machine (FM) under typical conditions of pressure, flow and temperature. The diameter of the CANFLEX bundle is the same as that of a 37-element bundle, but the smaller-diameter elements in the outer ring result in a slightly larger end-plate diameter. Therefore, to minimize any risk of unanticipated damage to the CANDU 6 FM sidestops, a series of measurements and static laboratory tests were undertaken prior to the fuelling machine tests. The tests and measurements showed that; a) the CANFLEX bundle end plate is compatible with the FM sidestops, b) all the dimensions of the CANFLEX fuel bundle are within the specified limits. (author). 3 tabs., 3 figs.
Global properties of systems quantized via bundles
Doebner, H.D.; Werth, J.E.
1978-03-01
Take a smooth manifold M and a Lie algebra action (g-ation) theta on M as the geometrical arena of a physical system moving on M with momenta given by theta. It is proposed to quantize the system with a Mackey-like method via the associated vector bundle xisub(rho) of a principal bundle xi=(P,π,M,H) with model dependent structure group H and with g-action phi on P lifted from theta on M. This (quantization) bundle xisub(rho) gives the Hilbert space equal to L 2 (xisub(rho),ω) of the system as the linear space of sections in xisub(rho) being square integrable with respect to a volume form ω on M; the usual position operators are obtained; phi leads to a vector field representation D(phisub(rho),theta) of g in an hence Hilbert space to momentum operators. So Hilbert space carries the quantum kinematics. In this quantuzation the physically important connection between geometrical properties of the system, e.g. quasi-completeness of theta and G-maximality of phisub(rho), and global properties of its quantized kinematics, e.g. skew-adjointness of the momenta and integrability of D(phisub(rho), theta) can easily be studied. The relation to Nelson's construction of a skew-adjoint non-integrable Lie algebra representation and to Palais' local G-action is discussed. Finally the results are applied to actions induced by coverings as examples of non-maximal phisub(rho) on Esub(rho) lifted from maximal theta on M which lead to direct consequences for the corresponding quantum kinematics
GPU Parallel Bundle Block Adjustment
ZHENG Maoteng
2017-09-01
Full Text Available To deal with massive data in photogrammetry, we introduce the GPU parallel computing technology. The preconditioned conjugate gradient and inexact Newton method are also applied to decrease the iteration times while solving the normal equation. A brand new workflow of bundle adjustment is developed to utilize GPU parallel computing technology. Our method can avoid the storage and inversion of the big normal matrix, and compute the normal matrix in real time. The proposed method can not only largely decrease the memory requirement of normal matrix, but also largely improve the efficiency of bundle adjustment. It also achieves the same accuracy as the conventional method. Preliminary experiment results show that the bundle adjustment of a dataset with about 4500 images and 9 million image points can be done in only 1.5 minutes while achieving sub-pixel accuracy.
Principal bundles the classical case
Sontz, Stephen Bruce
2015-01-01
This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles. While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics communities, providing each with an understanding and appreciation of the language and ideas of the other.
Craig, E M; Dey, S; Mogilner, A
2011-01-01
We use linear stability analysis and numerical solutions of partial differential equations to investigate pattern formation in the one-dimensional system of short dynamic polymers and one (plus-end directed) or two (one is plus-end, another minus-end directed) molecular motors. If polymer sliding and motor gliding rates are slow and/or the polymer turnover rate is fast, then the polymer-motor bundle has mixed polarity and homogeneous motor distribution. However, if motor gliding is fast, a sarcomeric pattern with periodic bands of alternating polymer polarity separated by motor aggregates evolves. On the other hand, if polymer sliding is fast, a graded-polarity bundle with motors at the center emerges. In the presence of the second, minus-end directed motor, the sarcomeric pattern is more ubiquitous, while the graded-polarity pattern is destabilized. However, if the minus-end motor is weaker than the plus-end directed one, and/or polymer nucleation is autocatalytic, and/or long polymers are present in the bundle, then a spindle-like architecture with a sorted-out polarity emerges with the plus-end motors at the center and minus-end motors at the edges. We discuss modeling implications for actin-myosin fibers and in vitro and meiotic spindles.
PDS4 Bundle Creation Governance Using BPMN
Radulescu, C.; Levoe, S. R.; Algermissen, S. S.; Rye, E. D.; Hardman, S. H.
2015-06-01
The AMMOS-PDS Pipeline Service (APPS) provides a Bundle Builder tool, which governs the process of creating, and ultimately generates, PDS4 bundles incrementally, as science products are being generated.
Exploring Bundling Theory with Geometry
Eckalbar, John C.
2006-01-01
The author shows how instructors might successfully introduce students in principles and intermediate microeconomic theory classes to the topic of bundling (i.e., the selling of two or more goods as a package, rather than separately). It is surprising how much students can learn using only the tools of high school geometry. To be specific, one can…
Episodic payments (bundling): PART I.
Jacofsky, D J
2017-10-01
Episodic, or bundled payments, is a concept now familiar to most in the healthcare arena, but the models are often misunderstood. Under a traditional fee-for-service model, each provider bills separately for their services which creates financial incentives to maximise volumes. Under a bundled payment, a single entity, often referred to as a convener (maybe the hospital, the physician group, or a third party) assumes the risk through a payer contract for all services provided within a defined episode of care, and receives a single (bundled) payment for all services provided for that episode. The time frame around the intervention is variable, but defined in advance, as are included and excluded costs. Timing of the actual payment in a bundle may either be before the episode occurs (prospective payment model), or after the end of the episode through a reconciliation (retrospective payment model). In either case, the defined costs over the defined time frame are borne by the convener. Cite this article: Bone Joint J 2017;99-B:1280-5. ©2017 The British Editorial Society of Bone & Joint Surgery.
Deformation quantization of principal fibre bundles
Weiss, S.
2007-01-01
Deformation quantization is an algebraic but still geometrical way to define noncommutative spacetimes. In order to investigate corresponding gauge theories on such spaces, the geometrical formulation in terms of principal fibre bundles yields the appropriate framework. In this talk I will explain what should be understood by a deformation quantization of principal fibre bundles and how associated vector bundles arise in this context. (author)
Output commitment through product bundling : Experimental evidence
Hinloopen, Jeroen; Mueller, Wieland; Normann, Hans-Theo
We analyze the impact of product bundling in experimental markets. One firm has monopoly power in a first market but competes with another firm la Cournot in a second market. We compare treatments where the multi-product firm (i) always bundles, (ii) never bundles, and (iii) chooses whether to
Out-of-pile bundle temperature escalation under severe fuel damage conditions
Hagen, S.; Peck, S.O.
1983-08-01
This report provides an overview of the test conduct, results, and posttest appearance of bundle test ESBU-1. The purpose of the test was to investigate fuel rod temperature escalation due to the exothermal zircaloy/steam reaction in a bundle geometry. The 3x3 bundle was surrounded by a zircaloy shroud and 6 mm of fiber ceramic insulation. The center rod escalated to a maximum of 2,250 0 C. Runoff of the melt apparently limited the escalation. Posttest visual examination of the bundle showed that cladding from every rod had melted, liquefied some fuel, flowed down the rod, and frozen in a solid mass that substantially blocked all flow channels. A large amount of powdery rubble, probably fuel that fractured during cooldown, was found on top of the blockage. Metallographic, EMP, and SEM examinations showed that the melt had dissolved both fuel and oxidized cladding, and had itself been oxidized by steam. (orig.) [de
Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan
2006-08-01
It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4
Birefringence of single and bundled microtubules.
Oldenbourg, R; Salmon, E D; Tran, P T
1998-01-01
We have measured the birefringence of microtubules (MTs) and of MT-based macromolecular assemblies in vitro and in living cells by using the new Pol-Scope. A single microtubule in aqueous suspension and imaged with a numerical aperture of 1.4 had a peak retardance of 0.07 nm. The peak retardance of a small bundle increased linearly with the number of MTs in the bundle. Axonemes (prepared from sea urchin sperm) had a peak retardance 20 times higher than that of single MTs, in accordance with the nine doublets and two singlets arrangement of parallel MTs in the axoneme. Measured filament retardance decreased when the filament was defocused or the numerical aperture of the imaging system was decreased. However, the retardance "area," which we defined as the image retardance integrated along a line perpendicular to the filament axis, proved to be independent of focus and of numerical aperture. These results are in good agreement with a theory that we developed for measuring retardances with imaging optics. Our theoretical concept is based on Wiener's theory of mixed dielectrics, which is well established for nonimaging applications. We extend its use to imaging systems by considering the coherence region defined by the optical set-up. Light scattered from within that region interferes coherently in the image point. The presence of a filament in the coherence region leads to a polarization dependent scattering cross section and to a finite retardance measured in the image point. Similar to resolution measurements, the linear dimension of the coherence region for retardance measurements is on the order lambda/(2 NA), where lambda is the wavelength of light and NA is the numerical aperture of the illumination and imaging lenses.
Patel, Dhananjay; Singh, Vinay Kumar; Dalal, U. D.
2017-01-01
Single mode fibers (SMF) are typically used in Wide Area Networks (WAN), Metropolitan Area Networks (MAN) and also find applications in Radio over Fiber (RoF) architectures supporting data transmission in Fiber to the Home (FTTH), Remote Antenna Units (RAUs), in-building networks etc. Multi-mode fibers (MMFs) with low cost, ease of installation and low maintenance are predominantly (85-90%) deployed in-building networks providing data access in local area networks (LANs). The transmission of millimeter wave signals through the SMF in WAN and MAN, along with the reuse of MMF in-building networks will not levy fiber reinstallation cost. The transmission of the millimeter waves experiences signal impairments due to the transmitter non-linearity and modal dispersion of the MMF. The MMF exhibiting large modal dispersion limits the bandwidth-length product of the fiber. The second and higher-order harmonics present in the optical signal fall within the system bandwidth. This causes degradation in the received signal and an unwanted radiation of power at the RAU. The power of these harmonics is proportional to the non-linearity of the transmitter and the modal dispersion of the MMF and should be maintained below the standard values as per the international norms. In this paper, a mathematical model is developed for Second-order Harmonic Distortion (HD2) generated due to non-linearity of the transmitter and chromatic-modal dispersion of the SMF-MMF optic link. This is also verified using a software simulation. The model consists of a Mach Zehnder Modulator (MZM) that generates two m-QAM OFDM Single Sideband (SSB) signals based on phase shift of the hybrid coupler (90° and 120°). Our results show that the SSB signal with 120° hybrid coupler has suppresses the higher-order harmonics and makes the system more robust against the HD2 in the SMF-MMF optic link.
Higher order jet prolongations type gauge natural bundles over vector bundles
Jan Kurek
2004-05-01
Full Text Available Let $rgeq 3$ and $mgeq 2$ be natural numbers and $E$ be a vector bundle with $m$-dimensional basis. We find all gauge natural bundles ``similar" to the $r$-jet prolongation bundle $J^rE$ of $E$. We also find all gauge natural bundles ``similar" to the vector $r$-tangent bundle $(J^r_{fl}(E,R_0^*$ of $E$.
Rayan, Steven
2010-01-01
Co-Higgs bundles are Higgs bundles in the sense of Simpson, but with Higgs fields that take values in the tangent bundle instead of the cotangent bundle. Given a vector bundle on P^1, we find necessary and sufficient conditions on its Grothendieck splitting for it to admit a stable Higgs field. We characterize the rank-2, odd-degree moduli space as a universal elliptic curve with a globally-defined equation. For ranks r=2,3,4, we explicitly verify the conjectural Betti numbers emerging from t...
Ephaptic coupling of myelinated nerve fibers
Binczak, S.; Eilbeck, J. C.; Scott, Alwyn C.
2001-01-01
Numerical predictions of a simple myelinated nerve fiber model are compared with theoretical results in the continuum and discrete limits, clarifying the nature of the conduction process on an isolated nerve axon. Since myelinated nerve fibers are often arranged in bundles, this model is used...
Boiling heat transfer on horizontal tube bundles
Anon.
1987-01-01
Nucleate boiling heat transfer characteristics for a tube in a bundle differ from that for a single tube in a pool and this difference is known as 'tube bundle effect.' There exist two bundle effects, positive and negative. The positive bundle effect enhances heat transfer due to convective flow induced by rising bubbles generated from the lower tubes, while the negative bundle effect deteriorates heat transfer due to vapor blanketing caused by accumulation of bubbles. Staggered tube bundles tested and found that the upper tubes in bundles have higher heat transfer coefficients than the lower tubes. The effects of various parameters such as pressure, tube geometry and oil contamination on heat transfer have been examined. Some workers attempted to clarify the mechanism of occurrence of 'bundle effect' by testing tube arrangements of small scale. All reported only enhancement in heat transfer but results showed the symptom of heat transfer deterioration at higher heat fluxes. As mentioned above, it has not been clarified so far even whether the 'tube bundle effect' should serve as enhancement or deterioration of heat transfer in nucleate boiling. In this study, experiments are performed in detail by using bundles of small scale, and effects of heat flux distribution, pressure and tube location are clarified. Furthermore, some consideration on the mechanisms of occurrence of 'tube bundle effect' is made and a method for prediction of heat transfer rate is proposed
Fluid structure interaction in tube bundles
Brochard, D.; Jedrzejewski, F.; Gibert, R.J.
1995-01-01
A lot of industrial components contain tube bundles immersed in a fluid. The mechanical analysis of such systems requires the study of the fluid structure interaction in the tube bundle. Simplified methods, based on homogenization methods, have been developed to analyse such phenomenon and have been validated through experimental results. Generally, these methods consider only the fluid motion in a plan normal to the bundle axis. This paper will analyse, in a first part, the fluid structure interaction in a tube bundle through a 2D finite element model representing the bundle cross section. The influence of various parameters like the bundle size, and the bundle confinement will be studied. These results will be then compared with results from homogenization methods. Finally, the influence of the 3D fluid motion will be investigated, in using simplified methods. (authors). 11 refs., 12 figs., 2 tabs
Development of CANFLEX fuel bundle
Suk, Ho Chun; Hwang, Woan; Jeong, Young Hwan
1991-12-01
This research project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle(so-called CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactors for 1996 and 1997, and consequently will be used in the existing and future reactors in Korea. The research activities during this year include the basic design of CANFLEX fuel with slightly enriched uranium(CANFLEX-SEU), with emphasis on the extension of fuel operation limit. Based on this basic design, CANFLEX fuel was mocked up. Out-of-pile hydraulic scoping tests were conducted with the fuel. (Author)
A comprehensive in-pile test of PWR fuel bundle
Kang Rixin; Zhang Shucheng; Chen Dianshan (Academia Sinica, Beijing (China). Inst. of Atomic Energy)
1991-02-01
An in-pile test of PWR fuel bundle has been conducted in HWRR at IAE of China. This paper describes the structure of the test bundle (3x3-2), fabrication process and quality control of the fuel rod, irradiation conditions and the main Post Irradiation Examination (PIE) results. The test fuel bundle was irradiated under the PWR operation and water chemistry conditions with an average linear power of 381 W/cm and reached an average burnup of 25010 MWd/tU of the fuel bundle. After the test, destructive and non-destructive examination of the fuel rods was conducted at hot laboratories. The fission gas release was 10.4-23%. The ridge height of cladding was 3 to 8 {mu}m. The hydrogen content of the cladding was 80 to 140 ppm. The fuel stack height was increased by 2.9 to 3.3 mm. The relative irradiation growth was about 0.11 to 0.17% of the fuel rod length. During the irradiation test, no fuel rod failure or other abnormal phenomena had been found by the on-line fuel failure monitoring system of the test loop and water sampling analysis. The structure of the test fuel assembly was left undamaged without twist and detectable deformation. (orig.).
Signal detection by active, noisy hair bundles
O'Maoiléidigh, Dáibhid; Salvi, Joshua D.; Hudspeth, A. J.
2018-05-01
Vertebrate ears employ hair bundles to transduce mechanical movements into electrical signals, but their performance is limited by noise. Hair bundles are substantially more sensitive to periodic stimulation when they are mechanically active, however, than when they are passive. We developed a model of active hair-bundle mechanics that predicts the conditions under which a bundle is most sensitive to periodic stimulation. The model relies only on the existence of mechanotransduction channels and an active adaptation mechanism that recloses the channels. For a frequency-detuned stimulus, a noisy hair bundle's phase-locked response and degree of entrainment as well as its detection bandwidth are maximized when the bundle exhibits low-amplitude spontaneous oscillations. The phase-locked response and entrainment of a bundle are predicted to peak as functions of the noise level. We confirmed several of these predictions experimentally by periodically forcing hair bundles held near the onset of self-oscillation. A hair bundle's active process amplifies the stimulus preferentially over the noise, allowing the bundle to detect periodic forces less than 1 pN in amplitude. Moreover, the addition of noise can improve a bundle's ability to detect the stimulus. Although, mechanical activity has not yet been observed in mammalian hair bundles, a related model predicts that active but quiescent bundles can oscillate spontaneously when they are loaded by a sufficiently massive object such as the tectorial membrane. Overall, this work indicates that auditory systems rely on active elements, composed of hair cells and their mechanical environment, that operate on the brink of self-oscillation.
Buckling Modes of Structural Elements of Off-Axis Fiber-Reinforced Plastics
Paimushin, V. N.; Polyakova, N. V.; Kholmogorov, S. A.; Shishov, M. A.
2018-05-01
The structures of two types of unidirectional fiber-reinforced composites — with an ELUR-P carbon fiber tape, an XT-118 cold-cure binder with an HSE 180 REM prepreg, and a hot-cure binder — were investigated. The diameters of fibers and fiber bundles (threads) of both the types of composites were measured, and their mutual arrangement was examined both in the semifinished products (in the uncured state) and in the finished composites. The defects characteristic of both the types of binder and manufacturing technique were detected in the cured composites. Based on an analysis of the results obtained, linearized problems on the internal multiscale buckling modes of an individual fiber (with and without account of its interaction with the surrounding matrix) or of a fiber bundle are formulated. In the initial atate, these structural elements of the fibrous composites are in a subcritical (unperturbed) state under the action of shear stresses and tension (compression) in the transverse direction. Such an initial stress state is formed in them in tension and compression tests on flat specimens made of off-axis-reinforced composites with straight fibers. To formulate the problems, the equations derived earlier from a consistent variant of geometrically nonlinear equations of elasticity theory by reducing them to the one-dimensional equations of the theory of straight rods on the basis of a refined Timoshenko shear model with account of tensile-compressive strains in the transverse direction are used. It is shown that, in loading test specimens, a continuous rearrangement of composite structure can occur due to the realization and continuous change of internal buckling modes as the wave-formation parameter varies continuously, which apparently explain the decrease revealed in the tangential shear modulus of the fibrous composites with increasing shear strains.
Job Management and Task Bundling
Berkowitz, Evan; Jansen, Gustav R.; McElvain, Kenneth; Walker-Loud, André
2018-03-01
High Performance Computing is often performed on scarce and shared computing resources. To ensure computers are used to their full capacity, administrators often incentivize large workloads that are not possible on smaller systems. Measurements in Lattice QCD frequently do not scale to machine-size workloads. By bundling tasks together we can create large jobs suitable for gigantic partitions. We discuss METAQ and mpi_jm, software developed to dynamically group computational tasks together, that can intelligently backfill to consume idle time without substantial changes to users' current workflows or executables.
Job Management and Task Bundling
Berkowitz Evan
2018-01-01
Full Text Available High Performance Computing is often performed on scarce and shared computing resources. To ensure computers are used to their full capacity, administrators often incentivize large workloads that are not possible on smaller systems. Measurements in Lattice QCD frequently do not scale to machine-size workloads. By bundling tasks together we can create large jobs suitable for gigantic partitions. We discuss METAQ and mpi_jm, software developed to dynamically group computational tasks together, that can intelligently backfill to consume idle time without substantial changes to users’ current workflows or executables.
Fuel bundle for nuclear reactor
Long, J.W.; Flora, B.S.; Ford, K.L.
1977-01-01
The invention concerns a new, simple and inexpensive system for assembling and dismantling a nuclear reactor fuel bundle. Several fuel rods are fitted in parallel rows between two retaining plates which secure the fuel rods in position and which are maintained in an assembled position by means of several stays fixed to the two end plates. The invention particularly refers to an improved apparatus for fixing the stays to the upper plate by using locking fittings secured to rotating sleeves which are applied against this plate [fr
Reduction of symplectic principal R-bundles
Lacirasella, Ignazio; Marrero, Juan Carlos; Padrón, Edith
2012-01-01
We describe a reduction process for symplectic principal R-bundles in the presence of a momentum map. These types of structures play an important role in the geometric formulation of non-autonomous Hamiltonian systems. We apply this procedure to the standard symplectic principal R-bundle associated with a fibration π:M→R. Moreover, we show a reduction process for non-autonomous Hamiltonian systems on symplectic principal R-bundles. We apply these reduction processes to several examples. (paper)
ACM Bundles on Del Pezzo surfaces
Joan Pons-Llopis
2009-11-01
Full Text Available ACM rank 1 bundles on del Pezzo surfaces are classified in terms of the rational normal curves that they contain. A complete list of ACM line bundles is provided. Moreover, for any del Pezzo surface X of degree less or equal than six and for any n ≥ 2 we construct a family of dimension ≥ n − 1 of non-isomorphic simple ACM bundles of rank n on X.
Bundling and mergers in energy markets
Granier, Laurent; Podesta, Marion
2010-01-01
Does bundling trigger mergers in energy industries? We observe mergers between firms belonging to various energy markets, for instance between gas and electricity providers. These mergers enable firms to bundle. We consider two horizontally differentiated markets. In this framework, we show that bundling strategies in energy markets create incentives to form multi-market firms in order to supply bi-energy packages. Moreover, we find that this type of merger is detrimental to social welfare. (author)
Entropy for frame bundle systems and Grassmann bundle systems induced by a diffeomorphism
SUN; Weniang(孙文祥)
2002-01-01
ALiao hyperbolic diffeomorphism has equal measure entropy and topological entropy to that ofits induced systems on frame bundles and Grassmann bundles. This solves a problem Liao posed in 1996 forLiao hyperbolic diffeomorphisms.
Hydraulic characteristics of HANARO fuel bundles
Cho, S.; Chung, H. J.; Chun, S. Y.; Yang, S. K.; Chung, M. K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)
Hydraulic characteristics of HANARO fuel bundles
Cho, S; Chung, H J; Chun, S Y; Yang, S K; Chung, M K [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)
Cotangent bundle approach to noninertial frames
DeFacio, B.; Retzloff, D.
1980-01-01
The most general possible noninertial acceleration in special relativity is formulated with differential forms in the cotangent bundle. We show that the Lie derivative plays the same role in the cotangent bundle that the covariant derivative plays in the tangent bundle. We also show that a cotangent bundle analog of Fermi--Walker transport can be based upon the, ''cotangent-geodesic'' equation, L/sub u/ω=0. This gives a generalization of the work by Kiehn on classical Hamiltonian mechanics to special relativity
Doebner, H.; Mann, H.
1997-01-01
We consider configuration spaces of nonidentical pointlike particles. The physically motivated assumption that any two particles cannot be located at the same point in space endash time leads to nontrivial topological structure of the configuration space. For a quantum mechanical description of such a system, we classify complex vector bundles over the configuration space and obtain potentials of topological origin, similar to those that occur in the fiber bundle approach to Dirac close-quote s magnetic monopole or in Yang endash Mills theory. copyright 1997 American Institute of Physics
Optical fiber array for the delivery of high peak-power laser pulses for fluid flow measurements
Parry, Jonathan P.; Shephard, Jonathan D.; Thomson, Martin J.; Taghizadeh, Mohammad R.; Jones, Julian D. C.; Hand, Duncan P.
2007-01-01
Fiber delivery of 64.7 mJ laser pulses (∼6 ns duration) from a Q-switched Nd:YAG laseroperating at532 nm is demonstrated. A custom diffractive optical element was used toshape the laser beam and facilitate coupling into a linear fiber array. This launcharrangement achieves an improvement in launch efficiency compared with a circular fiberbundle evaluated in previous work and the delivery of higher pulse energies isdemonstrated. The bundle is capable of delivering light of sufficient pulse energy and,importantly, with suitable focusability, to generate a thin light sheet for the fluid flowmeasurement technique of particle image velocimetry (PIV). Fiber delivery offers anadvantage, in terms of optical access, for the application of PIV to enclosed measurementvolumes, such as the cylinder of a combustion engine
Jradi, Muhyiddine; Riffat, Saffa
2016-01-01
In this study, an innovative heat and mass transfer core is proposed to provide thermal comfort and humidity control using a hollow fiber contactor with multiple bundles of micro-porous hollow fibers. The hollow fiberbased core utilizes 12 bundles aligned vertically, each with 1,000 packed...
Radiation distribution sensor with optical fibers for high radiation fields
Takada, Eiji; Kimura, Atsushi; Hosono, Yoneichi; Takahashi, Hiroyuki; Nakazawa, Masaharu
1999-01-01
Radiation distribution sensors with their feasibilities have been described in earlier works. However, due to large radiation induced transmission losses in optical fibers, especially in the visible wavelength region, it has been difficult to apply these techniques to high radiation fields. In this study, we proposed a new concept of optical fiber based radiation distribution measurements with near infrared (IR) emission. Near IR scintillators were attached to the ends of optical fibers, where the fibers were bundled and connected to an N-MOS line sensor or a cooled CCD camera. From the measurements of each area density, the radiation levels at the positions of the scintillators can be known. The linearity between the gamma dose rate at each scintillator and the registered counts has been examined. For correcting the radiation induced loss effects, we applied the Optical Time Domain Reflectometry technique to measure the loss distribution and from the results, a possibility for correction of the loss effect has been demonstrated. The applicable dose rate range was evaluated to be from 0.1 to 10 3 Gy/h. This system can be a promising tool as a flexible dose rate distribution monitor in radiation facilities like nuclear plants and accelerator facilities. (author)
CANFLEX fuel bundle junction pressure drop
Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.
1996-11-01
This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs
Anatomic Double-bundle ACL Reconstruction
Schreiber, Verena M.; van Eck, Carola F.; Fu, Freddie H.
2010-01-01
Rupture of the anterior cruciate ligament (ACL) is one of the most frequent forms of knee trauma. The traditional surgical treatment for ACL rupture is single-bundle reconstruction. However, during the past few years there has been a shift in interest toward double-bundle reconstruction to closely
CANFLEX fuel bundle strength tests (test report)
Chang, Seok Kyu; Chung, C. H.; Kim, B. D.
1997-08-01
This document outlines the test results for the strength tests of the CANFLEX fuel bundle. Strength tests are performed to determine and verify the amount of the bundle shape distortion which is against the side-stops when the bundles are refuelling. There are two cases of strength test; one is the double side-stop test which simulates the normal bundle refuelling and the other is the single side-stop test which simulates the abnormal refuelling. the strength test specification requires that the fuel bundle against the side-stop(s) simulators for this test were fabricated and the flow rates were controlled to provide the required conservative hydraulic forces. The test rig conditions of 120 deg C, 11.2 MPa were retained for 15 minutes after the flow rate was controlled during the test in two cases, respectively. The bundle loading angles of number 13- number 15 among the 15 bundles were 67.5 deg CCW and others were loaded randomly. After the tests, the bundle shapes against the side-stops were measured and inspected carefully. The important test procedures and measurements were discussed as follows. (author). 5 refs., 22 tabs., 5 figs
CANFLEX fuel bundle junction pressure drop
Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.
1996-11-01
This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs.
Output commitment through product bundling: experimental evidence
Hinloopen, J.; Mueller, W.; Normann, H.T.
2011-01-01
We analyze the impact of product bundling in experimental markets. A firm has monopoly power in one market but faces competition by a second firm in another market. We compare treatments where the monopolist can bundle its two products to treatments where it cannot, and we contrast simultaneous and
Drechsler, W.
1977-01-01
A Lagrangian formalism invariant under the gauge group U 1 xUSpsub(2.2) is set up in terms of spinor fields defined on a fiber bundle with Cartan connexion. The fiber of the Cartan bundle over space-time associated with strong interactions is characterized by an elementary length parameter R related to the range of the strong forces, and the structural group USpsub(2.2) of the bundle (being the covering group of the SOsub(4.1) de Sitter group) implies a gauge description of strong interactions based on the noncompact gauge group USpsub(2.2). The U 1 factor in the total gauge group corresponds to the usual gauge formulation for the electromagnetic interactions. The positivity of the energy associated with stable extended one-particle states in this dualistic description of charged hadronic matter immersed in the fiber geometry (this dualism is called strong fiber dynamics (SFD)) requires hadrons to be assigned to representations of the compact subgroup SU 2 xSU 2 of the strong-interaction gauge group USpsub(2.2). A brief discussion of the point-particle limit R→O is given by linking the presented SFD formalism for extended hadrons to an idealized description in terms of operators in a local quantum field theory
The Influence of Motion and Stress on Optical Fibers
Murphy, Jeremy D.; Hill, Gary J.; MacQueen, Phillip J.; Taylor, Trey; Soukup, Ian; Moreira, Walter; Cornell, Mark E.; Good, John; Anderson, Seth; Fuller, Lindsay; Lee, Hanshin; Kelz, Andreas; Rafal, Marc; Rafferty, Tom; Tuttle, Sarah
2013-01-01
We report on extensive testing carried out on the optical fibers for the VIRUS instrument. The primary result of this work explores how 10+ years of simulated wear on a VIRUS fiber bundle affects both transmission and focal ratio degradation (FRD) of the optical fibers. During the accelerated lifetime tests we continuously monitored the fibers for signs of FRD. We find that transient FRD events were common during the portions of the tests when motion was at telescope slew rates, but dropped t...
Fuel bundle movement due to reverse flow
Wahba, N N; Akalin, O [Ontario Hydro, Toronto, ON (Canada)
1996-12-31
When a break occurs in the inlet feeder or inlet header, the rapid depressurization will cause the channel flow to reverse forcing the string of bundles to accelerate and impact with upstream shield plug. A model has been developed to predict the bundle motion due to the channel flow reversal. The model accounts for various forces acting on the bundle. A series of five reverse flow, bundle acceleration experiments have been conducted simulating a break in the inlet feeder of a CANDU fuel channel. The model has been validated against the experiments. The predicted impact velocities are in good agreement with the measured values. It is demonstrated that the model may be successfully used in predicting bundle relocation timing following a large LOCA (loss of coolant). (author). 7 refs., 3 tabs., 11 figs.
Compactifications of the Heterotic string with unitary bundles
Weigand, T.
2006-05-23
In this thesis we investigate a large new class of four-dimensional supersymmetric string vacua defined as compactifications of the E{sub 8} x E{sub 8} and the SO(32) heterotic string on smooth Calabi-Yau threefolds with unitary gauge bundles and heterotic five-branes. The first part of the thesis discusses the implementation of this idea into the E{sub 8} x E{sub 8} heterotic string. After specifying a large class of group theoretic embeddings featuring unitary bundles, we analyse the effective four-dimensional N=1 supergravity upon compactification. From the gauge invariant Kaehler potential for the moduli fields we derive a modification of the Fayet-Iliopoulos D-terms arising at one-loop in string perturbation theory. From this we conjecture a one-loop deformation of the Hermitian Yang-Mills equation and introduce the idea of {lambda}-stability as the perturbatively correct stability concept generalising the notion of Mumford stability valid at tree-level. We then proceed to a definition of SO(32) heterotic vacua with unitary gauge bundles in the presence of heterotic five-branes and find agreement of the resulting spectrum with the S-dual framework of Type I/Type IIB orientifolds. A similar analysis of the effective four-dimensional supergravity is performed. Further evidence for the proposed one-loop correction to the stability condition is found by identifying the heterotic corrections as the S-dual of the perturbative part of {pi}-stability as the correct stability concept in Type IIB theory. After reviewing the construction of holomorphic stable vector bundles on elliptically fibered Calabi-Yau manifolds via spectral covers, we provide semi-realistic examples for SO(32) heterotic vacua with Pati-Salam and MSSM-like gauge sectors. We finally discuss the construction of realistic vacua with flipped SU(5) GUT and MSSM gauge group within the E{sub 8} x E{sub 8} framework, based on the embedding of line bundles into both E{sub 8} factors. Some of the appealing
Constructing co-Higgs bundles on CP^2
Rayan, Steven
2013-01-01
On a complex manifold, a co-Higgs bundle is a holomorphic vector bundle with an endomorphism twisted by the tangent bundle. The notion of generalized holomorphic bundle in Hitchin's generalized geometry coincides with that of co-Higgs bundle when the generalized complex manifold is ordinary complex. Schwarzenberger's rank-2 vector bundle on the projective plane, constructed from a line bundle on the double cover CP^1 \\times CP^1 \\to CP^2, is naturally a co-Higgs bundle, with the twisted endom...
Real-time fiber selection using the Wii remote
Klein, Jan; Scholl, Mike; Köhn, Alexander; Hahn, Horst K.
2010-02-01
In the last few years, fiber tracking tools have become popular in clinical contexts, e.g., for pre- and intraoperative neurosurgical planning. The efficient, intuitive, and reproducible selection of fiber bundles still constitutes one of the main issues. In this paper, we present a framework for a real-time selection of axonal fiber bundles using a Wii remote control, a wireless controller for Nintendo's gaming console. It enables the user to select fiber bundles without any other input devices. To achieve a smooth interaction, we propose a novel spacepartitioning data structure for efficient 3D range queries in a data set consisting of precomputed fibers. The data structure which is adapted to the special geometry of fiber tracts allows for queries that are many times faster compared with previous state-of-the-art approaches. In order to extract reliably fibers for further processing, e.g., for quantification purposes or comparisons with preoperatively tracked fibers, we developed an expectationmaximization clustering algorithm that can refine the range queries. Our initial experiments have shown that white matter fiber bundles can be reliably selected within a few seconds by the Wii, which has been placed in a sterile plastic bag to simulate usage under surgical conditions.
Metric Structures on Fibered Manifolds Through Partitions of Unity
Hulya Kadioglu
2016-05-01
Full Text Available The notion of partitions of unity is extremely useful as it allows one to extend local constructions on Euclidean patches to global ones. It is widely used in many fields in mathematics. Therefore, prolongation of this useful tool to another manifold may help constructing many geometric structures. In this paper, we construct a partition of unity on a fiber bundle by using a given partition of unity on the base manifold. On the other hand we show that the converse is also possible if it is a vector bundle. As an application, we define a Riemannian metric on the fiber bundle by using induced partition of unity on the fiber bundle.
Simulation of Compressive Failure in Fiber Composites
Veluri, Badrinath; Jensen, Henrik Myhre
Kinkband formation is a non-linear phenomenon involving interacting effects of non-linear material behavior of the matrix materials and fiber buckling including fiber misalignment in fiber composites under compressive loading. Taking into account the non-linearties of the constituents a constitut......Kinkband formation is a non-linear phenomenon involving interacting effects of non-linear material behavior of the matrix materials and fiber buckling including fiber misalignment in fiber composites under compressive loading. Taking into account the non-linearties of the constituents...
Evaluation of droplet deposition in rod bundle
Ji, W.; Gu, C.Y.; Anglart, H.
1997-01-01
Deposition model for droplets in gas droplet two-phase flow in rod bundle is developed in this work using the Lagrangian method. The model is evaluated in a 9-rod bundle geometry. The deposition coefficient in the bundle geometry are compared with that in round tube. The influences of the droplet size and gas mass flow rate on deposition coefficient are investigated. Furthermore, the droplet motion is studied in more detail by dividing the bundle channel into sub-channels. The results show that the overall deposition coefficient in the bundle geometry is close to that in the round tube with the diameter equal to the bundle hydraulic diameter. The calculated deposition coefficient is found to be higher for higher gas mass flux and smaller droplets. The study in the sub-channels show that the ratio between the local deposition coefficient for a sub-channel and the averaged value for the whole bundle is close to a constant value, deviations from the mean value for all the calculated cases being within the range of ±13%. (author)
Preliminary report: NIF laser bundle review
Tietbohl, G.L.; Larson, D.W.; Erlandson, A.C.
1995-01-01
As requested in the guidance memo 1 , this committe determined whether there are compelling reasons to recommend a change from the NIF CDR baseline laser. The baseline bundle design based on a tradeoff between cost and technical risk, which is replicated four times to create the required 192 beams. The baseline amplifier design uses bottom loading 1x4 slab and flashlamp cassettes for amplifier maintenance and large vacuum enclosures (2.5m high x 7m wide in cross-section for each of the two spatial filters in each of the four bundles. The laser beams are arranged in two laser bays configured in a u-shape around the target area. The entire bundle review effort was performed in a very short time (six weeks) and with limited resources (15 personnel part-time). This should be compared to the effort that produced the CDR design (12 months, 50 to 100 personnel). This committee considered three alternate bundle configurations (2x2, 4x2, and 4x4 bundles), and evaluated each bundle against the baseline design using the seven requested issues in the guidance memo: Cost; schedule; performance risk; maintainability/operability; hardware failure cost exposure; activation; and design flexibility. The issues were reviewed to identify differences between each alternate bundle configuration and the baseline
HLM fuel pin bundle experiments in the CIRCE pool facility
Martelli, Daniele, E-mail: daniele.martelli@ing.unipi.it [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Forgione, Nicola [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Di Piazza, Ivan; Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone (Italy)
2015-10-15
Highlights: • The experimental results represent the first set of values for LBE pool facility. • Heat transfer is investigated for a 37-pin electrical bundle cooled by LBE. • Experimental data are presented together with a detailed error analysis. • Nu is computed as a function of the Pe and compared with correlations. • Experimental Nu is about 25% lower than Nu derived from correlations. - Abstract: Since Lead-cooled Fast Reactors (LFR) have been conceptualized in the frame of GEN IV International Forum (GIF), great interest has focused on the development and testing of new technologies related to HLM nuclear reactors. In this frame the Integral Circulation Experiment (ICE) test section has been installed into the CIRCE pool facility and suitable experiments have been carried out aiming to fully investigate the heat transfer phenomena in grid spaced fuel pin bundles providing experimental data in support of European fast reactor development. In particular, the fuel pin bundle simulator (FPS) cooled by lead bismuth eutectic (LBE), has been conceived with a thermal power of about 1 MW and a uniform linear power up to 25 kW/m, relevant values for a LFR. It consists of 37 fuel pins (electrically simulated) placed on a hexagonal lattice with a pitch to diameter ratio of 1.8. The FPS was deeply instrumented by several thermocouples. In particular, two sections of the FPS were instrumented in order to evaluate the heat transfer coefficient along the bundle as well as the cladding temperature in different ranks of sub-channels. Nusselt number in the central sub-channel was therefore calculated as a function of the Peclet number and the obtained results were compared to Nusselt numbers obtained from convective heat transfer correlations available in literature on Heavy Liquid Metals (HLM). Results reported in the present work, represent the first set of experimental data concerning fuel pin bundle behaviour in a heavy liquid metal pool, both in forced and
Surin, A A; Borisenko, T E; Larin, S V
2016-06-01
We introduce an efficient, single-mode, linearly polarized continuous wave (CW) Raman fiber laser (RFL), operating at 1178 nm, with 65 W maximum output power and a narrow linewidth of 0.1 nm. Single-pass second-harmonic generation was demonstrated using a 20 mm long MgO-doped stoichiometric periodically polled lithium tantalate (MgO:sPPLT) crystal pumped by RFL radiation. Output power of 14 W at 589 nm with 22% conversion efficiency was achieved. The possibility of further power scaling is considered, as no crystal degradation was observed at these power levels.
Thoresen, Todd; Lenz, Martin; Gardel, Margaret L
2013-02-05
Diverse myosin II isoforms regulate contractility of actomyosin bundles in disparate physiological processes by variations in both motor mechanochemistry and the extent to which motors are clustered into thick filaments. Although the role of mechanochemistry is well appreciated, the extent to which thick filament length regulates actomyosin contractility is unknown. Here, we study the contractility of minimal actomyosin bundles formed in vitro by mixtures of F-actin and thick filaments of nonmuscle, smooth, and skeletal muscle myosin isoforms with varied length. Diverse myosin II isoforms guide the self-organization of distinct contractile units within in vitro bundles with shortening rates similar to those of in vivo myofibrils and stress fibers. The tendency to form contractile units increases with the thick filament length, resulting in a bundle shortening rate proportional to the length of constituent myosin thick filament. We develop a model that describes our data, providing a framework in which to understand how diverse myosin II isoforms regulate the contractile behaviors of disordered actomyosin bundles found in muscle and nonmuscle cells. These experiments provide insight into physiological processes that use dynamic regulation of thick filament length, such as smooth muscle contraction. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Bundle duct interaction studies for fuel assemblies
Hsia, H.T.S.; Kaplan, S.
1981-06-01
It is known that the wire-wrapped rods and duct in an LMFBR are undergoing a gradual structural distortion from the initially uniform geometry under the combined effects of thermal expansion and irradiation induced swelling and creep. These deformations have a significant effect on flow characteristics, thus causing changes in thermal behavior such as cladding temperature and temperature distribution within a bundle. The temperature distribution may further enhance or retard irradiation induced deformation of the bundle. This report summarizes the results of the continuing effort in investigating the bundle-duct interaction, focusing on the need for the large development plant
Geometry of Quantum Principal Bundles. Pt. 1
Durdevic, M.
1996-01-01
A theory of principal bundles possessing quantum structure groups and classical base manifolds is presented. Structural analysis of such quantum principal bundles is performed. A differential calculus is constructed, combining differential forms on the base manifold with an appropriate differential calculus on the structure quantum group. Relations between the calculus on the group and the calculus on the bundle are investigated. A concept of (pseudo)tensoriality is formulated. The formalism of connections is developed. In particular, operators of horizontal projection, covariant derivative and curvature are constructed and analyzed. Generalizations of the first Structure Equation and of the Bianchi identity are found. Illustrative examples are presented. (orig.)
Bundles of C*-categories and duality
Vasselli, Ezio
2005-01-01
We introduce the notions of multiplier C*-category and continuous bundle of C*-categories, as the categorical analogues of the corresponding C*-algebraic notions. Every symmetric tensor C*-category with conjugates is a continuous bundle of C*-categories, with base space the spectrum of the C*-algebra associated with the identity object. We classify tensor C*-categories with fibre the dual of a compact Lie group in terms of suitable principal bundles. This also provides a classification for ce...
Tanaka, Kosuke; Yamamoto, Yuji; Nagamine, Tsuyoshi; Maeda, Koji [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center
2000-10-01
Bundle duct interaction (BDI) caused by expansion of fuel pin bundle becomes one of the main limiting factors for fuel life times. Then, it is important for the design of fast reactor fuel assembly to understand the BDI behavior in detail. In order to understand the BDI behavior, out of pile compressive tests were conducted for FFTF type bundle by use of X-ray CT equipment. In these compressive tests, two type bundles with different accuracy of initial wire position were conducted. The objective of this test is to evaluate the influence of the initial error from standard position of wire at the same axial position. The locations of the pins and the duct flats are analyzed from CT image data. Quantitative evaluation was performed at the CT image data and discussed the bundle deformation status under BDI condition. Following results are obtained. 1) The accuracy of initial wire position is strongly depends on the pin-to-duct contact behavior. In the case of bundle with large error from standard position, pin-to-duct contact is delayed. 2) The BDI mitigation of the bundle with small error from standard wire position is following: The elastic ovality is the dominant deformation in mild BDI condition, then the wire dispersion and pin dispersion are occurred in severe BDI condition. 3) The BDI mitigation of the bundle with large error from standard wire position is following: The elastic ovality and local bowing of pins with large error from standard wire position are occurred in mild BDI condition, then pin dispersion is occurred around pins with large error from standard wire position, finally wire dispersion is occurred in severe BDI condition. 4) The existence of pins with large error from standard wire position is effective to delay the pin-to-duct contact, but the existence of these pins is possible to contact of pin- to- pin. (author)
Hatamleh, Muhanad M; Watts, David C
2010-07-01
The purpose of this study was to test the effect of different periods of accelerated artificial daylight aging on bond strength of glass fiber bundles embedded into maxillofacial silicone elastomer and on bending strength of the glass fiber bundles. Forty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer. Specimens were randomly allocated into four groups, and each group was subjected to different periods of accelerated daylight aging as follows (in hours); 0, 200, 400, and 600. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2)) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. Also a three-point bending test was performed to evaluate bending strength of the fiber bundles. One-way ANOVA and Bonferroni post hoc tests were carried out to detect statistical significance (p aging only. After 200 hours of exposure to artificial daylight and moisture conditions, bond strength between glass fibers and heat-cured silicones is optimal, and the bending strength of the glass fiber bundles is enhanced.
Nuclear fuel bundle disassembly and assembly tool
Yates, J.; Long, J.W.
1975-01-01
A nuclear power reactor fuel bundle is described which has a plurality of tubular fuel rods disposed in parallel array between two transverse tie plates. It is secured against disassembly by one or more locking forks which engage slots in tie rods which position the transverse plates. Springs mounted on the fuel and tie rods are compressed when the bundle is assembled thereby maintaining a continual pressure against the locking forks. Force applied in opposition to the springs permits withdrawal of the locking forks so that one tie plate may be removed, giving access to the fuel rods. An assembly and disassembly tool facilitates removal of the locking forks when the bundle is to be disassembled and the placing of the forks during assembly of the bundle. (U.S.)
In-pool damaged fuel bundle recovery
Piascik, T.G.; Patenaude, R.S.
1988-01-01
While preparing to rerack the Oyster Creek Nuclear Generating Station, GPU Nuclear had need to move a damaged fuel bundle. This bundle had no upper tie plate and could not be moved in the normal manner. GPU Nuclear formed a small, dedicated project team to disassemble, package and move this damaged bundle. The team was composed of key personnel from GPU Nuclear Fuels Projects, OCNGS Operations and Proto-Power / Bisco, a specialty contractor who has fuel bundle reconstitution and rod consolidation experience, remote tooling, underwater video systems and experienced technicians. Proven tooling, clear procedures and a simple approach were important, but the key element was the spirit of teamwork and leadership exhibited by the people involved
In-pool damaged fuel bundle recovery
Piascik, T.G.; Patenaude, R.S.
1988-01-01
While preparing to rerack the Oyster Creek Nuclear Generating Station, GPU Nuclear had need to move a damaged fuel bundle. This bundle had no upper tie plate and could not be moved in the normal manner. GPU Nuclear formed a small, dedicated project team to disassemble, package, and move this damaged bundle. The team was composed of key personnel from GPU Nuclear Fuels Projects, OCNGS Operations and Proto-Power/Bisco, a specialty contractor who has fuel bundle reconstitution and rod consolidation experience, remote tooling, underwater video systems and experienced technicians. Proven tooling, clear procedures and a simple approach were important, but the key element was the spirit of teamwork and leadership exhibited by the people involved. In spite of several emergent problems which a task of this nature presents, this small, close knit utility/vendor team completed the work on schedule and within the exposure and cost budgets
Section sigma models coupled to symplectic duality bundles on Lorentzian four-manifolds
Lazaroiu, C. I.; Shahbazi, C. S.
2018-06-01
We give the global mathematical formulation of a class of generalized four-dimensional theories of gravity coupled to scalar matter and to Abelian gauge fields. In such theories, the scalar fields are described by a section of a surjective pseudo-Riemannian submersion π over space-time, whose total space carries a Lorentzian metric making the fibers into totally-geodesic connected Riemannian submanifolds. In particular, π is a fiber bundle endowed with a complete Ehresmann connection whose transport acts through isometries between the fibers. In turn, the Abelian gauge fields are "twisted" by a flat symplectic vector bundle defined over the total space of π. This vector bundle is endowed with a vertical taming which locally encodes the gauge couplings and theta angles of the theory and gives rise to the notion of twisted self-duality, of crucial importance to construct the theory. When the Ehresmann connection of π is integrable, we show that our theories are locally equivalent to ordinary Einstein-Scalar-Maxwell theories and hence provide a global non-trivial extension of the universal bosonic sector of four-dimensional supergravity. In this case, we show using a special trivializing atlas of π that global solutions of such models can be interpreted as classical "locally-geometric" U-folds. In the non-integrable case, our theories differ locally from ordinary Einstein-Scalar-Maxwell theories and may provide a geometric description of classical U-folds which are "locally non-geometric".
Franciosi, Patrick; Spagnuolo, Mario; Salman, Oguz Umut
2018-04-01
Composites comprising included phases in a continuous matrix constitute a huge class of meta-materials, whose effective properties, whether they be mechanical, physical or coupled, can be selectively optimized by using appropriate phase arrangements and architectures. An important subclass is represented by "network-reinforced matrices," say those materials in which one or more of the embedded phases are co-continuous with the matrix in one or more directions. In this article, we present a method to study effective properties of simple such structures from which more complex ones can be accessible. Effective properties are shown, in the framework of linear elasticity, estimable by using the global mean Green operator for the entire embedded fiber network which is by definition through sample spanning. This network operator is obtained from one of infinite planar alignments of infinite fibers, which the network can be seen as an interpenetrated set of, with the fiber interactions being fully accounted for in the alignments. The mean operator of such alignments is given in exact closed form for isotropic elastic-like or dielectric-like matrices. We first exemplify how these operators relevantly provide, from classic homogenization frameworks, effective properties in the case of 1D fiber bundles embedded in an isotropic elastic-like medium. It is also shown that using infinite patterns with fully interacting elements over their whole influence range at any element concentration suppresses the dilute approximation limit of these frameworks. We finally present a construction method for a global operator of fiber networks described as interpenetrated such bundles.
Group Coupons: Interpersonal Bundling on the Internet
Yongmin Chen; Tianle Zhang
2012-01-01
Sellers sometimes offer goods for sale under both a regular price and a discount for group purchase if the consumer group reaches some minimum size. This selling practice, which we term interpersonal bundling, has been popularized on the Internet by companies such as Groupon. We explain why interpersonal bundling is a profitable strategy in the presence of demand uncertainty, and how it may further boost profits by stimulating product information dissemination. Other reasons for its profitabi...
A Brief Survey of Higgs Bundles
Zúñiga-Rojas, Ronald Alberto
2018-01-01
Considering a compact Riemann surface of genus greater than two, a Higgs~bundle is a pair composed of a holomorphic bundle over the Riemann surface, joint with an auxiliar vector field, so-called Higgs field. This theory started around thirty years ago, with Hitchin's work, when he reduced the self-duality equations from dimension four to dimension two, and so, studied those equations over Riemann surfaces. Hitchin baptized those fields as "Higgs fields" beacuse in the context of physics and ...
Frobenius splitting of projective toric bundles
He Xin
2018-03-19
Mar 19, 2018 ... Firstly it is easy to see that the image of s under the restriction map (2.5) falls in the χ-isotypical component of (Uσ , E), i.e. for all t ∈ T .... σ falls in the χ-isotypical component of (E,Uσ ). D. As mentioned in Remark 2.3, for a vector v .... The determinant of a toric bundle. LetE be a toric bundle on a toric variety X ...
Ugurlu, Devran; Firat, Zeynep; Türe, Uğur; Unal, Gozde
2018-05-01
Accurate digital representation of major white matter bundles in the brain is an important goal in neuroscience image computing since the representations can be used for surgical planning, intra-patient longitudinal analysis and inter-subject population connectivity studies. Reconstructing desired fiber bundles generally involves manual selection of regions of interest by an expert, which is subject to user bias and fatigue, hence an automation is desirable. To that end, we first present a novel anatomical representation based on Neighborhood Resolved Fiber Orientation Distributions (NRFOD) along the fibers. The resolved fiber orientations are obtained by generalized q-sampling imaging (GQI) and a subsequent diffusion decomposition method. A fiber-to-fiber distance measure between the proposed fiber representations is then used in a density-based clustering framework to select the clusters corresponding to the major pathways of interest. In addition, neuroanatomical priors are utilized to constrain the set of candidate fibers before density-based clustering. The proposed fiber clustering approach is exemplified on automation of the reconstruction of the major fiber pathways in the brainstem: corticospinal tract (CST); medial lemniscus (ML); middle cerebellar peduncle (MCP); inferior cerebellar peduncle (ICP); superior cerebellar peduncle (SCP). Experimental results on Human Connectome Project (HCP)'s publicly available "WU-Minn 500 Subjects + MEG2 dataset" and expert evaluations demonstrate the potential of the proposed fiber clustering method in brainstem white matter structure analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
Dynamic behaviour of FBR fuel pin bundles
Martin, P.H.; Van Dorsselaere, J.P.; Ravenet, A.
1990-01-01
A programme of shock tests on a fast neutron reactor subassembly model (SPX1 geometry) including a complete bundle of fuel pins (dummy elements) is being carried out in the BELIER test facility at Cadarache. The purpose of these tests is: to determine the distribution of dynamic forces applied to the fuel rod clads under the impact conditions encountered in a reactor during a earthquake; to reduce as much as possible the conservatism of the methods presently used for the calculation of those forces. The test programme, now being completed, consists of the following steps: impacts on the mock-up in air with an non-compact bundle (situation of the subassembly at beginning of life (BOL) with clearances within the bundle); impacts under the same conditions but with fluid (water) in the subassembly; impacts on the mock-up in air and with a compacted bundle (simulating the conditions of an end-of-life (EOL) bundle with no clearance within the bundle). The accelerations studied in these tests cover the range encountered in design calculations for the subassembly frequencies in beam mode. (author)
Two-tensor streamline tractography through white matter intra-voxel fiber crossings
Qazi, Arish Asif; Kindlmann, G; O'Donnell, L
2008-01-01
An inherent drawback of the traditional diffusion tensor model is its limited ability to provide detailed information about multidirectional fiber architecture within a voxel. This leads to erroneous fiber tractography results in locations where fiber bundles cross each other. In this paper, we p...
Naveen Kumar
2018-01-01
Full Text Available Background. Difference in scar formation at different sites, in different directions at the same site, but with changes in the elasticity of skin with age, sex, and race or in some pathological conditions, is well known to clinicians. The inappropriate collagen syntheses and delayed or lack of epithelialization are known to induce scar formation with negligible elasticity at the site of damage. Changes in the elasticity of scars may be due to an unequal distribution of dermal collagen (C and elastic (E fibers. Materials and Methods. Spearman correlation coefficients (r of collagen and elastic fibers in horizontal (H and in vertical (V directions (variables CV, CH, EV, and EH were measured from the respective quantitative fraction data in 320 skin samples from 32 human cadavers collected at five selected sites over extremities. Results. Spearman’s correlation analysis revealed the statistically significant (p<0.01 strong positive correlation between CH and CV in all the areas, that is, shoulder joint area (r=0.66, wrist (r=0.75, forearm (r=0.75, and thigh (r=0.80, except at the ankle (r=0.26, p=0.14 region. Similarly, positive correlation between EH and EV has been observed at the forearm (r=0.65, moderate and thigh (r=0.42, low regions. However, a significant moderate negative correlation was observed between CV and EV at the forearm (r=-0.51 and between CH and EH at the thigh region (r=-0.65. Conclusion. Significant differences of correlations of collagen and elastic fibers in different directions from different areas of extremities were noted. This may be one of the possible anatomical reasons of scar behavior in different areas and different directions of the same area.
Kumar, Naveen; Kumar, Pramod; Badagabettu, Satheesha Nayak; Lewis, Melissa Glenda; Adiga, Murali; Padur, Ashwini Aithal
2018-01-01
Difference in scar formation at different sites, in different directions at the same site, but with changes in the elasticity of skin with age, sex, and race or in some pathological conditions, is well known to clinicians. The inappropriate collagen syntheses and delayed or lack of epithelialization are known to induce scar formation with negligible elasticity at the site of damage. Changes in the elasticity of scars may be due to an unequal distribution of dermal collagen (C) and elastic (E) fibers. Spearman correlation coefficients ( r ) of collagen and elastic fibers in horizontal (H) and in vertical (V) directions (variables CV, CH, EV, and EH) were measured from the respective quantitative fraction data in 320 skin samples from 32 human cadavers collected at five selected sites over extremities. Spearman's correlation analysis revealed the statistically significant ( p < 0.01) strong positive correlation between C H and C V in all the areas, that is, shoulder joint area ( r = 0.66), wrist ( r = 0.75), forearm ( r = 0.75), and thigh ( r = 0.80), except at the ankle ( r = 0.26, p = 0.14) region. Similarly, positive correlation between E H and E V has been observed at the forearm ( r = 0.65, moderate) and thigh ( r = 0.42, low) regions. However, a significant moderate negative correlation was observed between C V and E V at the forearm ( r = -0.51) and between C H and E H at the thigh region ( r = -0.65). Significant differences of correlations of collagen and elastic fibers in different directions from different areas of extremities were noted. This may be one of the possible anatomical reasons of scar behavior in different areas and different directions of the same area.
Roger M. Rowell; James S. Han; Von L. Byrd
2005-01-01
Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...
Design and impact of bundled payment for detox and follow-up care.
Quinn, Amity E; Hodgkin, Dominic; Perloff, Jennifer N; Stewart, Maureen T; Brolin, Mary; Lane, Nancy; Horgan, Constance M
2017-11-01
Recent payment reforms promote movement from fee-for-service to alternative payment models that shift financial risk from payers to providers, incentivizing providers to manage patients' utilization. Bundled payment, an episode-based fixed payment that includes the prices of a group of services that would typically treat an episode of care, is expanding in the United States. Bundled payment has been recommended as a way to pay for comprehensive SUD treatment and has the potential to improve treatment engagement after detox, which could reduce detox readmissions, improve health outcomes, and reduce medical care costs. However, if moving to bundled payment creates large losses for some providers, it may not be sustainable. The objective of this study was to design the first bundled payment for detox and follow-up care and to estimate its impact on provider revenues. Massachusetts Medicaid beneficiaries' behavioral health, medical, and pharmacy claims from July 2010-April 2013 were used to build and test a detox bundled payment for continuously enrolled adults (N=5521). A risk adjustment model was developed using general linear modeling to predict beneficiaries' episode costs. The projected payments to each provider from the risk adjustment analysis were compared to the observed baseline costs to determine the potential impact of a detox bundled payment reform on organizational revenues. This was modeled in two ways: first assuming no change in behavior and then assuming a supply-side cost sharing behavioral response of a 10% reduction in detox readmissions and an increase of one individual counseling and one group counseling session. The mean total 90-day detox episode cost was $3743. Nearly 70% of the total mean cost consists of the index detox, psychiatric inpatient care, and short-term residential care. Risk mitigation, including risk adjustment, substantially reduced the variation of the mean episode cost. There are opportunities for organizations to gain revenue
Deformations of the generalised Picard bundle
Biswas, I.; Brambila-Paz, L.; Newstead, P.E.
2004-08-01
Let X be a nonsingular algebraic curve of genus g ≥ 3, and let Mξ denote the moduli space of stable vector bundles of rank n ≥ 2 and degree d with fixed determinant ξ over X such that n and d are coprime. We assume that if g = 3 then n ≥ 4 and if g = 4 then n ≥ 3, and suppose further that n 0 , d 0 are integers such that n 0 ≥ 1 and nd 0 + n 0 d > nn 0 (2g - 2). Let E be a semistable vector bundle over X of rank n 0 and degree d 0 . The generalised Picard bundle W ξ (E) is by definition the vector bundle over M ξ defined by the direct image p M ξ *(U ξ x p X * E) where U ξ is a universal vector bundle over X x M ξ . We obtain an inversion formula allowing us to recover E from W ξ (E) and show that the space of infinitesimal deformations of W ξ (E) is isomorphic to H 1 (X, End(E)). This construction gives a locally complete family of vector bundles over M ξ parametrised by the moduli space M(n 0 ,d 0 ) of stable bundles of rank n 0 and degree d 0 over X. If (n 0 ,d 0 ) = 1 and W ξ (E) is stable for all E is an element of M(n 0 ,d 0 ), the construction determines an isomorphism from M(n 0 ,d 0 ) to a connected component M 0 of a moduli space of stable sheaves over M ξ . This applies in particular when n 0 = 1, in which case M 0 is isomorphic to the Jacobian J of X as a polarised variety. The paper as a whole is a generalisation of results of Kempf and Mukai on Picard bundles over J, and is also related to a paper of Tyurin on the geometry of moduli of vector bundles. (author)
NIF laser bundle review. Final report
Tietbohl, G.L.; Larson, D.W.; Erlandson, A.C.
1995-01-01
We performed additional bundle review effort subsequent to the completion of the preliminary report and are revising our original recommendations. We now recommend that the NIF baseline laser bundle size be changed to the 4x2 bundle configuration. There are several 4x2 bundle configurations that could be constructed at a cost similar to that of the baseline 4x12 (from $11M more to about $11M less than the baseline; unescalated, no contingency) and provide significant system improvements. We recommend that the building cost estimates (particularly for the in-line building options) be verified by an architect/engineer (A/E) firm knowledgeable about building design. If our cost estimates of the in-line building are accurate and therefore result in a change from the baseline U-shaped building layout, the acceptability of the in-line configuration must be reviewed from an operations viewpoint. We recommend that installation, operation, and maintenance of all laser components be reviewed to better determine the necessity of aisles, which add to the building cost significantly. The need for beam expansion must also be determined since it affects the type of bundle packing that can be used and increases the minimum laser bay width. The U-turn laser architecture (if proven viable) offers a reduction in building costs since this laser design is shorter than the baseline switched design and requires a shorter laser bay
The design, calibration, and use of a water microjet for stimulating hair cell sensory hair bundles.
Saunders, J C; Szymko, Y M
1989-11-01
The design, calibration, and use of a noninvasive, noncontact device for stimulating hair cell hair bundles in vitro are described. This device employed a piezoelectric crystal, driven at high frequencies, to generate sinusoidal pressure in a contained fluid volume. The pressure was propagated to the tip of a glass micropipette and the oscillating water jet stimulus produced at the tip was used to stimulate sensory hair bundles. The movements of glass microbeads, caught in the oscillating pressure field of the water jet, provided a means of calibrating this stimulus. The linearity of the jet, its waveform and frequency response, the influence of pipette shape and tip diameter, as well as models to explain the operation of the water jet, are described. The use of this stimulus for measuring hair bundle micromechanics at high frequencies is then demonstrated.
Catheter Associated Urinary Tract Infection Prevention bundle
O. Zarkotou
2017-01-01
Full Text Available Catheter-associated urinary tract infections (CAUTI are among the most common healthcare-associated infections, and potentially lead to significant morbidity and mortality. Multifaceted infection control strategies implemented as bundles can prevent nosocomial infections associated with invasive devices such as CAUTIs. The components of the CAUTI bundle proposed herein, include appropriate indications for catheterization and recommendations for the procedures of catheter insertion and catheter maintenance and care. Avoiding unnecessary urinary catheter use is the most effective measure for their prevention. To minimize the risk of CAUTI, urinary catheters should be placed only when a clinical valid indication is documented and they should be removed as soon as possible; alternatives to catheterization should also be considered. Aseptic insertion technique, maintenance of closed drainage system and strict adherence to hand hygiene are essential for preventing CAUTI. The successful implementation of the bundle requires education and training for all healthcare professionals and evaluation of surveillance data.
Development of CANDU advanced fuel bundle
Suk, H. C.; Hwang, W.; Rhee, B. W.; Jung, S. H.; Chung, C. H.
1992-05-01
This research project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle (so-called, CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactor for 1996 and 1997, and consequently will be used in the existing and future CANDU reactors in Korea. The research activities during this year include the detail design of CANFLEX fuel with natural enriched uranium (CANFLEX-NU). Based on this design, CANFLEX fuel was mocked up. Out-of-pile hydraulic scoping tests were conducted with the fuel in the CANDU Cold Test Loop to investigate the condition under which maximum pressure drop occurs and the maximum value of the bundle pressure drop. (Author)
Ultrastructure of striated muscle fibers in the middle third of the human esophagus
Faussone-Pellegrini, M.S; Cortesini, C.
1986-01-01
Striated muscle fibers and .their spatial relationship to smooth muscle cells have been studied in the middle third of human esophagus. Biopsies were obtained from 3 patients during surgery. In both the circular and longitudinal layers, the muscle coat of this transition zone was composed of fascicles of uniform dimensioi~ (100-200 pm of diameter); some of these bundles were made up of striated muscle fibers, others were pure bundles of smooth muscle cells and ...
Sun Xuejin; Dai Jianping; Gao Peiyi; Li Shaowu; Ai Lin; Chen Hongyan; Tian Shengyong; Pang Ruilin
2006-01-01
Objective: To exhibit the fibers of association fascicules, aims at demonstrating the association fibers of brain with diffusion tensor fiber tracking technique. Methods: Conventionality MRI, diffusion tensor imaging (DTI) and diffusion tensor fiber tractography (DT-FT) were performed in twenty healthy subjects, including eighteen right-handed (sixteen men and four women) and two left-handed (one male and one female) by 3 T Siemens Trio 2003 T MRI. To select arcuate fascicules, inferior longitudinal fascicules, frontalwoceipital fascicules, corpus callosum, posterior limb of internal capsule and external capsule as seeds used to track fibers. Results: Diffusion tensor fiber tracking exhibited bundles of external capsule left mean fibers were 308 bundles, right fibers were 307 bundles (t=0.138, P>0.05), frontal-occipital tracks left mean fibers were 115 bundles, right fibers were 110 bundles(t=1.174, P>0.05), and their fractional anisotropy (FA) valueexternal capsule mean FA left was 0.361, the right was 0.362 (t=-0.184, P>0.05). Frontal-occipital tracks mean fractional anisotropy left was 0.352, the right was 0.351 (t=-0.816, P>0.05). The difference between both sides were statistically insignificant (P>0.05). The posterior limb of internal capsule left mean fibers were 249 bundles, right fibers were 257 bundles (t=-0.818, P>0.05), arcuate fascietfiesleft mean fibers were 198 bundles, right fibers were 204 bundles (t=-0.465, P>0.05 ) fibers difference between both sides were statistically insignificant (P>0.05), but the individual difference was significant, and their fractional anisotropy difference between both sides (posterior limb of internal capsule mean FA left was 0.450, the right was 0.444 (t=2.771, P 0.05). Mean FA left was 0.369, the right was 0.370(t=-0.178, P>0.05) ,difference between both sides was statistically insignificant (P>0.05). But the individual difference was significant. Some of them were the left larger than the right side. The frontal
Timo Maier
Full Text Available Filamentous actin is one of the most important cytoskeletal elements. Not only is it responsible for the elastic properties of many cell types, but it also plays a vital role in cellular adhesion and motility. Understanding the bundling kinetics of actin filaments is important in the formation of various cytoskeletal structures, such as filopodia and stress fibers. Utilizing a unique pillar-structured microfluidic device, we investigated the time dependence of bundling kinetics of pillar supported free-standing actin filaments. Microparticles attached to the filaments allowed the measurement of thermal motion, and we found that bundling takes place at lower concentrations than previously found in 3-dimensional actin gels, i.e. actin filaments formed bundles in the presence of 5-12 mM of magnesium chloride in a time-dependent manner. The filaments also displayed long term stability for up to hours after removing the magnesium ions from the buffer, which suggests that there is an extensive hysteresis between cation induced crosslinking and decrosslinking.
Polyelectrolyte Bundles: Finite size at thermodynamic equilibrium?
Sayar, Mehmet
2005-03-01
Experimental observation of finite size aggregates formed by polyelectrolytes such as DNA and F-actin, as well as synthetic polymers like poly(p-phenylene), has created a lot of attention in recent years. Here, bundle formation in rigid rod-like polyelectrolytes is studied via computer simulations. For the case of hydrophobically modified polyelectrolytes finite size bundles are observed even in the presence of only monovalent counterions. Furthermore, in the absence of a hydrophobic backbone, we have also observed formation of finite size aggregates via multivalent counterion condensation. The size distribution of such aggregates and the stability is analyzed in this study.
Bundled payment and enhanced recovery after surgery.
Huang, Jeffrey
2015-01-01
Medicare's fee-for-service (FFS) payment model may contribute to unsustainable spending growth. Payers are turning to alternative payment methods. The leading alternative payment model to the FFS problem is bundled payment. The Centers for Medicare & Medicaid Services (CMS) is taking another step to improve healthcare quality at lower cost. The CMS's Center for Medicare and Medicaid Innovation developed four models of bundled payments and 48 discrete clinical condition episodes. Many surgical care procedures are included in the 48 different clinical condition episodes.
Direct His bundle pacing post AVN ablation.
Lakshmanadoss, Umashankar; Aggarwal, Ashim; Huang, David T; Daubert, James P; Shah, Abrar
2009-08-01
Atrioventricular nodal (AVN) ablation with concomitant pacemaker implantation is one of the strategies that reduce symptoms in patients with atrial fibrillation (AF). However, the long-term adverse effects of right ventricular (RV) apical pacing have led to the search for alternating sites of pacing. Biventricular pacing produces a significant improvement in functional capacity over RV pacing in patients undergoing AVN ablation. Another alternative site for pacing is direct His bundle to reduce the adverse outcome of RV pacing. Here, we present a case of direct His bundle pacing using steerable lead delivery system in a patient with symptomatic paroxysmal AF with concurrent AVN ablation.
Recovery of uranium from seawater using amidoxime hollow fibers
Saito, K.; Uezu, K.; Hori, T.; Furusaki, S.; Sugo, T.; Okamoto, J.
1988-01-01
A novel amidoxime-group-containing adsorbent of hollow-fiber form (AO-H fiber) was prepared by radiation-induced graft polymerization of acrylonitrile onto a polyethylene hollow fiber, followed by chemical conversion of the produced cyano group to an amidoxime group. Distribution of the amidoxime group was uniform throughout hollow-fiber membrane. The fixed-bed adsorption column, 30 cm in length and charged with the bundle of AO-H fibers, was found to adsorb uranium from natural seawater at a sufficiently high rate: 0.66 mg uranium per g of adsorbent in 25 days
Characteristics of CANDU fuel bundles that caused pressure tube fretting at the bundle midplane
Dennier, D; Manzer, A M [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Koehn, E [Ontario Hydro, Toronto, ON (Canada)
1996-12-31
Detailed measurements on new bundles, and those that caused fretting during in- and out-reactor tests, have given insight into the factors responsible for fretting at the midplane of the inlet bundle. Bottom fuel elements that were attached near radial endplate spokes and had inboard bearing pads in the rolled joint cavity produced a significant portion of the observed fret marks. These elements are influenced by several driving forces that deflect the centre bearing pads towards the pressure tube surface. The evidence suggests that slight changes in bundle design may be possible to reduce pressure tube fretting. (author). 4 refs., 3 tabs., 8 figs.
Impact of bundle deformation on CHF: ASSERT-PV assessment of extended burnup Bruce B bundle G85159W
Rao, Y.F.; Manzer, A.M.
2005-01-01
This paper presents a subchannel thermalhydraulic analysis of the effect on critical heat flux (CHF) of bundle deformation such as element bow and diametral creep. The bundle geometry is based on the post-irradiation examination (PIE) data of a single bundle from the Bruce B Nuclear Generating Station, Bruce B bundle G85159W, which was irradiated for more than two years in the core during reactor commissioning. The subchannel code ASSERT-PV IST is used to assess changes in CHF and dryout power due to bundle deformation, compared to the reference, undeformed bundle. (author)
Calculation of fast neutron dose in plastic-coated optical fibers
Siebert, B.R.L.; Henschel, H.
1998-01-01
The dose of fast neutrons in optical fibers with hydrogen-containing coating materials is considerably increased by energetic recoil protons. Their contribution to the dose in a SiO 2 fiber core is calculated by the Monte Carlo method for different fiber geometries and a fiber optic cable. With 14 MeV neutrons the dose in a single fiber is increased by about 21%, whereas in fiber bundles the dose increase can reach about 170%. Maximum dose enhancement in fiber bundles (about 610%) occurs at neutron energies around 5.5 MeV. The dose increase caused by 14 MeV neutrons in the fiber of a typical laboratory cable is about 124%
Automated negotiation and bundling of information goods
Somefun, D.J.A.; Gerding, E.H.; Bohté, S.M.; Poutré, la J.A.; Faratin, P.; Parkes, D.; Rodriquez-Aguilar, J.
2004-01-01
In this paper, we present a novel system for selling bundles of news items. Through the system, customers bargain with the seller over the price and quality of the delivered goods. The advantage of the developed system is that it allows for a high degree of flexibility in the price, quality, and
Jacobi bundles and the BFV-complex
Le, Hong-Van; Tortorella, A. G.; Vitagliano, L.
2017-01-01
Roč. 121, November (2017), s. 347-377 ISSN 0393-0440 Institutional support: RVO:67985840 Keywords : Jacobi manifold * Jacobi bundle * coisotropic submanifolds Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.819, year: 2016 http://www.sciencedirect.com/science/article/pii/S0393044017301948
Large eddy simulation of bundle turbulent flows
Hassan, Y.A.; Barsamian, H.R.
1995-01-01
Large eddy simulation may be defined as simulation of a turbulent flow in which the large scale motions are explicitly resolved while the small scale motions are modeled. This results into a system of equations that require closure models. The closure models relate the effects of the small scale motions onto the large scale motions. There have been several models developed, the most popular is the Smagorinsky eddy viscosity model. A new model has recently been introduced by Lee that modified the Smagorinsky model. Using both of the above mentioned closure models, two different geometric arrangements were used in the simulation of turbulent cross flow within rigid tube bundles. An inlined array simulations was performed for a deep bundle (10,816 nodes) as well as an inlet/outlet simulation (57,600 nodes). Comparisons were made to available experimental data. Flow visualization enabled the distinction of different characteristics within the flow such as jet switching effects in the wake of the bundle flow for the inlet/outlet simulation case, as well as within tube bundles. The results indicate that the large eddy simulation technique is capable of turbulence prediction and may be used as a viable engineering tool with the careful consideration of the subgrid scale model. (author)
Laughter-induced left bundle branch block.
Chow, Grant V; Desai, Dipan; Spragg, David D; Zakaria, Sammy
2012-10-01
We present the case of a patient with ischemic heart disease and intermittent left bundle branch block, reproducibly induced by laughter. Following treatment of ischemia with successful deployment of a drug-eluting stent, no further episodes of inducible LBBB were seen. Transient ischemia, exacerbated by elevated intrathoracic pressure during laughter, may have contributed to onset of this phenomenon. © 2012 Wiley Periodicals, Inc.
Diffusion tensor imaging fiber tracking with reliable tracking orientation and flexible step size☆
Yao, Xufeng; Wang, Manning; Chen, Xinrong; Nie, Shengdong; Li, Zhexu; Xu, Xiaoping; Zhang, Xuelong; Song, Zhijian
2013-01-01
We propose a method of reliable tracking orientation and flexible step size fiber tracking. A new directional strategy was defined to select one optimal tracking orientation from each directional set, which was based on the single-tensor model and the two-tensor model. The directional set of planar voxels contained three tracking directions: two from the two-tensor model and one from the single-tensor model. The directional set of linear voxels contained only one principal vector. In addition, a flexible step size, rather than fixable step sizes, was implemented to improve the accuracy of fiber tracking. We used two sets of human data to assess the performance of our method; one was from a healthy volunteer and the other from a patient with low-grade glioma. Results verified that our method was superior to the single-tensor Fiber Assignment by Continuous Tracking and the two-tensor eXtended Streamline Tractography for showing detailed images of fiber bundles. PMID:25206444
Kuzyk, Mark G
2003-01-01
... scope of the project. In addition to our work in optical limiting fibers, spillover results included making fiber-based light-sources, writing holograms in fibers, and developing the theory of the limits of the nonlinear...
Shinyama, Y.; Yamaji, T.; Hatsukade, Y.; Takai, Y.; Aly-Hassan, M.S.; Nakai, A.; Hamada, H.; Tanaka, S.
2011-01-01
We applied a current-injection-based NDE method using a HTS-SQUID gradiometer to a braided CFRP with artificial cracks. Current distributions in the braided CFRP were estimated from measured field gradient distributions. A small crack, in which a few carbon-fiber bundles were cut, was well detected from the current distributions. A cross-section of the CFRP showed that a density of the bundles at edges is higher than the other part. The experimental results demonstrated the capability of the method to detect sub-mm cracks. Braided carbon fiber reinforced plastics (CFRPs) are one of multifunctional materials with superior properties such as mechanical strength to normal CFRPs since the braided CFRPs have continuous fiber bundles. In this paper, we applied the current-injection-based nondestructive evaluation (NDE) method using a HTS-SQUID gradiometer to the braided CFRP for the detection of the breakage of the bundles. We prepared planar braided CFRP samples with and without artificial cracks of 1 and 2 mm lengths, and measured the current density distribution above the samples using the NDE method. In the measurement results, not only a few completely-cut bundles but also the additional partially-cut bundles were detected from decrease in the measured current density along the cut bundle around the cracks. From these results, we showed that it is possible to inspect a few partially-cut bundles in the braided CFRPs by the NDE method.
Interplanetary Overlay Network Bundle Protocol Implementation
Burleigh, Scott C.
2011-01-01
The Interplanetary Overlay Network (ION) system's BP package, an implementation of the Delay-Tolerant Networking (DTN) Bundle Protocol (BP) and supporting services, has been specifically designed to be suitable for use on deep-space robotic vehicles. Although the ION BP implementation is unique in its use of zero-copy objects for high performance, and in its use of resource-sensitive rate control, it is fully interoperable with other implementations of the BP specification (Internet RFC 5050). The ION BP implementation is built using the same software infrastructure that underlies the implementation of the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP) built into the flight software of Deep Impact. It is designed to minimize resource consumption, while maximizing operational robustness. For example, no dynamic allocation of system memory is required. Like all the other ION packages, ION's BP implementation is designed to port readily between Linux and Solaris (for easy development and for ground system operations) and VxWorks (for flight systems operations). The exact same source code is exercised in both environments. Initially included in the ION BP implementations are the following: libraries of functions used in constructing bundle forwarders and convergence-layer (CL) input and output adapters; a simple prototype bundle forwarder and associated CL adapters designed to run over an IPbased local area network; administrative tools for managing a simple DTN infrastructure built from these components; a background daemon process that silently destroys bundles whose time-to-live intervals have expired; a library of functions exposed to applications, enabling them to issue and receive data encapsulated in DTN bundles; and some simple applications that can be used for system checkout and benchmarking.
Leandro Vanalli
2010-10-01
Full Text Available This paper proposes a physical non-linear formulation to deal with steel fiber reinforced concrete by the finite element method. The proposed formulation allows the consideration of short or long fibers placed arbitrarily inside a continuum domain (matrix. The most important feature of the formulation is that no additional degree offreedom is introduced in the pre-existent finite element numerical system to consider any distribution or quantity of fiber inclusions. In other words, the size of the system of equations used to solve a non-reinforced medium is the same as the one used to solve thereinforced counterpart. Another important characteristic of the formulation is the reduced work required by the user to introduce reinforcements, avoiding "rebar" elements, node by node geometrical definitions or even complex mesh generation. Bounded connectionbetween long fibers and continuum is considered, for short fibers a simplified approach is proposed to consider splitting. Non-associative plasticity is adopted for the continuum and one dimensional plasticity is adopted to model fibers. Examples are presented in order to show the capabilities of the formulation.Este artigo apresenta uma formulação baseada no Método dos Elementos Finitos (MEF, para a análise física não-linear de estruturas de concreto reforçadas com fibras de aço. A formulação proposta permite a consideração de fibras curtas e longas inseridas num meio contínuo. A mais importante característica da formulação é que nenhum grau de liberdade adicional é introduzido no sistema de equações que modela oproblema, independente da quantidade e da forma de distribuição das fibras. Em outras palavras, o tamanho do sistema de equações para resolver o problema de reforço com fibras é o mesmo do problema sem reforço. Uma outra importante característica da formulação é o reduzido trabalho requerido para a inserção das fibras, evitando-se o uso de elementos rebar
Deformation quantization with separation of variables of an endomorphism bundle
Karabegov, Alexander
2013-01-01
Given a holomorphic Hermitian vector bundle and a star-product with separation of variables on a pseudo-Kaehler manifold, we construct a star product on the sections of the endomorphism bundle of the dual bundle which also has the appropriately generalized property of separation of variables. For this star product we prove a generalization of Gammelgaard's graph-theoretic formula.
Image-Based Edge Bundles : Simplified Visualization of Large Graphs
Telea, A.; Ersoy, O.
2010-01-01
We present a new approach aimed at understanding the structure of connections in edge-bundling layouts. We combine the advantages of edge bundles with a bundle-centric simplified visual representation of a graph's structure. For this, we first compute a hierarchical edge clustering of a given graph
Collisionless magnetic reconnection associated with coalescence of flux bundles
Tanaka, Motohiko.
1994-11-01
The basic process of collisionless reconnection is studied in terms of coalescence of magnetized flux bundles using an implicit particle simulation of two-dimensions. The toroidal electric field that directly relates to magnetic reconnection is generated solenoidally in a region much broader than the current sheet whose width is a few electron skin depths. The reconnected flux increases linearly in time, but it is insensitive to finite Larmor radii of the ions in this Sweet-Parker regime. The toroidal electric field is controlled by a balance of transit acceleration of finite-mass electrons and their removal by sub-Alfvenic E x B drift outflow. The simulation results supports the collisionless Ohm's law E t ≅η eq J t with η eq the inertia resistivity. (author)
Ion-irradiation-induced defects in bundles of carbon nanotubes
Salonen, E.; Krasheninnikov, A.V.; Nordlund, K.
2002-01-01
We study the structure and formation yields of atomic-scale defects produced by low-dose Ar ion irradiation in bundles of single-wall carbon nanotubes. For this, we employ empirical potential molecular dynamics and simulate ion impact events over an energy range of 100-1000 eV. We show that the most common defects produced at all energies are vacancies on nanotube walls, which at low temperatures are metastable but long-lived defects. We further calculate the spatial distribution of the defects, which proved to be highly non-uniform. We also show that ion irradiation gives rise to the formations of inter-tube covalent bonds mediated by carbon recoils and nanotube lattice distortions due to dangling bond saturation. The number of inter-tube links, as well as the overall damage, linearly grows with the energy of incident ions
Diversity in the organization of elastin bundles and intramembranous muscles in bat wings.
Cheney, Jorn A; Allen, Justine J; Swartz, Sharon M
2017-04-01
Unlike birds and insects, bats fly with wings composed of thin skin that envelops the bones of the forelimb and spans the area between the limbs, digits, and sometimes the tail. This skin is complex and unusual; it is thinner than typical mammalian skin and contains organized bundles of elastin and embedded skeletal muscles. These elements are likely responsible for controlling the shape of the wing during flight and contributing to the aerodynamic capabilities of bats. We examined the arrangement of two macroscopic architectural elements in bat wings, elastin bundles and wing membrane muscles, to assess the diversity in bat wing skin morphology. We characterized the plagiopatagium and dactylopatagium of 130 species from 17 families of bats using cross-polarized light imaging. This method revealed structures with distinctive relative birefringence, heterogeneity of birefringence, variation in size, and degree of branching. We used previously published anatomical studies and tissue histology to identify birefringent structures, and we analyzed their architecture across taxa. Elastin bundles, muscles, neurovasculature, and collagenous fibers are present in all species. Elastin bundles are oriented in a predominantly spanwise or proximodistal direction, and there are five characteristic muscle arrays that occur within the plagiopatagium, far more muscle than typically recognized. These results inform recent functional studies of wing membrane architecture, support the functional hypothesis that elastin bundles aid wing folding and unfolding, and further suggest that all bats may use these architectural elements for flight. All species also possess numerous muscles within the wing membrane, but the architecture of muscle arrays within the plagiopatagium varies among families. To facilitate present and future discussion of these muscle arrays, we refine wing membrane muscle nomenclature in a manner that reflects this morphological diversity. The architecture of the
Safety analysis report of the irradiation test of Type-B bundle
Lee, Choong Sung; Lim, I. C.; Lee, B. C.; Ryu, J. S.; Kim, H. R
2000-06-01
The HANARO fuel, U{sub 3}Si-A1, has been developed by AECL and tested in NRU reactor. In the course of the fuel qualification tests, only one case was performed under the higher power condition than maximum linear power which was expected in the design stage. The Korea regulatory body, KINS imposed that HANARO shall be operated at the power level less than 24MW which is 80% of the design full power until HANARO shows the repetitive performance of the fuel at the power condition abov e 112.8KW/m. To resolve this imposition, KAERI designed two types of special test bundles: two non-instrumented(Type-A) and one instrumented(Type-B) test bundles. Two Type-A bundles were irradiated in HANARO: one of them has finished PIE and the other is under PIE. Type-B bundle was loaded in the core during 1.32 day at 1996, but outstanding FIV(flow induced vibration) was observed at the pool top because of long guide tube attached to the top of the bundle. The successful installation of the chimney fastener to fix the guide tube resulted in conducting the irradiation test of Type-B bundle again. The test will start at mid- July, 2000. In order to safely do the Type-B irradiation test, the safety analysis for the nuclear, mechanical and thermal-hydraulic aspects was performed. The reactivity worth and the maximum 1 near power predicted by VENTURE are 6.3mk/k and 121.6kW/m, respectively. Thermal margins for normal and transient conditions using MATRA-h, are assessed to satisfy the safety criteria.
Kaipainen, H; Seppaenen, V; Rinne, S
1997-12-31
The conditions on which the bundling of the harvesting residues from spruce regeneration fellings would become profitable were studied. The calculations showed that one of the most important features was sufficient compaction of the bundle, so that the portion of the wood in the unit volume of the bundle has to be more than 40 %. The tests showed that the timber grab loader of farm tractor was insufficient for production of dense bundles. The feeding and compression device of the prototype bundler was constructed in the research and with this device the required density was obtained.The rate of compaction of the dry spruce felling residues was about 40 % and that of the fresh residues was more than 50 %. The comparison between the bundles showed that the calorific value of the fresh bundle per unit volume was nearly 30 % higher than that of the dry bundle. This means that the treatment of the bundles should be done of fresh felling residues. Drying of the bundles succeeded well, and the crushing and chipping tests showed that the processing of the bundles at the plant is possible. The treatability of the bundles was also excellent. By using the prototype, developed in the research, it was possible to produce a bundle of the fresh spruce harvesting residues, the diameter of which was about 50 cm and the length about 3 m, and the rate of compaction over 50 %. By these values the reduction target of the costs is obtainable
Kaipainen, H.; Seppaenen, V.; Rinne, S.
1996-12-31
The conditions on which the bundling of the harvesting residues from spruce regeneration fellings would become profitable were studied. The calculations showed that one of the most important features was sufficient compaction of the bundle, so that the portion of the wood in the unit volume of the bundle has to be more than 40 %. The tests showed that the timber grab loader of farm tractor was insufficient for production of dense bundles. The feeding and compression device of the prototype bundler was constructed in the research and with this device the required density was obtained.The rate of compaction of the dry spruce felling residues was about 40 % and that of the fresh residues was more than 50 %. The comparison between the bundles showed that the calorific value of the fresh bundle per unit volume was nearly 30 % higher than that of the dry bundle. This means that the treatment of the bundles should be done of fresh felling residues. Drying of the bundles succeeded well, and the crushing and chipping tests showed that the processing of the bundles at the plant is possible. The treatability of the bundles was also excellent. By using the prototype, developed in the research, it was possible to produce a bundle of the fresh spruce harvesting residues, the diameter of which was about 50 cm and the length about 3 m, and the rate of compaction over 50 %. By these values the reduction target of the costs is obtainable
Diffusion tensor tractography of language functional areas and fiber pathways in normal human brain
Sun Xuejin; Dai Jianping; Chen Hongyan; Gao Peiyi; Ai Lin; Tian Shengyong; Pang Ruilin
2007-01-01
Objective: To demonstrate the fiber pathways of Broca area to the other functional brain areas with diffusion tensor imaging and fiber tracking. Methods: Conventionality MRI, diffusion tensor imaging (DTI) and fiber tracking were performed using 3.0 T MRI in 20 healthy person. The fiber bundles and tracts were analyzed in Broca area and contralateral normal area. Results: The left-side fiber bundles were 428 and the right-side were 416 in B45 area, there were no statistically significant differences between both sides (t=0.216, P>0.05). The left-side fiber bundles were 432 and the right-side were 344 in B44 area,there were statistically significant (t=2.314, P 0.05). Differences of the arcuate fascicule between both sides were not statistically significant (t=-0.465, P>0.05), the mean FA on the left was higher than the right (t=1.912, P<0.05). DTI and fiber tracking exhibited that the fiber bundles from Broca area were distributed superoanteriorly to the lateral foreside of the frontal lobe, lateroinferiorly to the occipital lobe through external capsule, and went down through globus pallidus and internal capsule. Conclusion: The fiber tracts bewteen Broca area and other brain areas were the fundamental structures for performing language function of the human brain. (authors)
Comparison of ASSERT subchannel code with Marviken bundle data
Tahir, A.; Carver, M.B.
1984-04-01
In this paper ASSERT predictions are compared with the Marviken 6-rod bundle and 36+1 rod bundle. The predictions are presented for two experiments in the 6-rod bundle and four experiments in the 36+1 rod bundle. For low inlet subcooling, the void predictions are in good agreement with the experimental data. For high inlet subcooling, however, the agreement is not as good. This is attributed to the fact that in the high inlet subcooling experiments, single phase turbulent mixing plays a more important role in determining flow conditions in the bundle
Triviality and Split of Vector Bundles on Rationally Connected Varieties
Pan, Xuanyu
2013-01-01
In this paper, we give a simple proof of a triviality criterion due to I.Biswas and J.Pedro and P.Dos Santos. We also prove a vector bundle on a homogenous space is trivial if and only if the restrictions of the vector bundle to Schubert lines are trivial. Using this result and Chern classes of vector bundles, we give a general criterion of a uniform vector bundle on a homogenous space to be splitting. As an application, we prove a uniform vector bundle on classical Grassmannians and quadrics...
Yamauchi, Toshihiko; Nakazawa, Ichiro; Matoba, Tohru; Ogura, Yoshiaki.
1987-11-01
The characteristics of fiber bundles for Thomson scattering optics are studied, whose fibers are made of multi-mode optical fibers. The variety of output patterns were observed by weighting on the fiber as well as by bending it after passing a He-Ne laser through a fiber bundle. This variety influenced the matching loss considerably. Then, the effect of former is larger than the latter, which is caused by the micro bending. And also, the spread of pulse width by weighting is connected with the spread of output pattern. The spread of pulse width was about 3ns at the most in a 2.3 m length of fiber bundle. (author)
Lipowicz, P.J.; Yeh, H.C.
1988-01-01
Dielectrophoresis is the motion of uncharged particles in nonuniform electric fields. We find that the theoretical dielectrophoretic velocity of a conducting fiber in an insulating medium is proportional to the square of the fiber length, and is virtually independent of fiber diameter. This prediction has been verified experimentally. The results point to the development of a fiber length classifier based on dielectrophoresis. (author)
Polymer coated fiber Bragg grating thermometry for microwave hyperthermia.
Saxena, Indu Fiesler; Hui, Kaleo; Astrahan, Melvin
2010-09-01
Measuring tissue temperature distribution during electromagnetically induced hyperthermia (HT) is challenging. High resistance thermistors with nonmetallic leads have been used successfully in commercial HT systems for about three decades. The single 1 mm thick temperature sensing element is mechanically moved to measure tissue temperature distributions. By employing a single thermometry probe containing a fixed linear sensor array temperature, distributions during therapy can be measured with greater ease. While the first attempts to use fiber Bragg grating (FBG) technology to obtain multiple temperature points along a single fiber have been reported, improvement in the detection system's stability were needed for clinical applications. The FBG temperature sensing system described here has a very high temporal stability detection system and an order of magnitude faster readout than commercial systems. It is shown to be suitable for multiple point fiber thermometry during microwave hyperthermia when compared to conventional mechanically scanning probe HT thermometry. A polymer coated fiber Bragg grating (PFBG) technology is described that provides a number of FBG thermometry locations along the length of a single optical fiber. The PFBG probe developed is tested under simulated microwave hyperthermia treatment to a tissue equivalent phantom. Two temperature probes, the multiple PFBG sensor and the Bowman probe, placed symmetrically with respect to a microwave antenna in a tissue phantom are subjected to microwave hyperthermia. Measurements are made at start of HT and 85 min later, when a 6 degrees C increase in temperature is registered by both probes, as is typical in clinical HT therapy. The optical fiber multipoint thermometry probe performs highly stable, real-time thermometry updating each multipoint thermometry scan over a 5 cm length every 2 s. Bowman probe measurements are acquired simultaneously for comparison. In addition, the PFBG sensor's detection
Rod bundle burnout data and correlation comparisons
Yoder, G.L.; Morris, D.G.; Mullins, C.B.
1985-01-01
Rod bundle burnout data from 30 steady-state and 3 transient tests were obtained from experiments performed in the Thermal Hydraulic Test Facility at the Oak Ridge National Laboratory. The tests covered a parameter range relevant to intact core reactor accidents ranging from large break to small break loss-ofcoolant conditions. Instrumentation within the 64-rod test section indicated that burnout occurred over an axial range within the bundle. The distance from the point where the first dry rod was detected to the point where all rods were dry was up to 60 cm in some of the tests. The burnout data should prove useful in developing new correlations for use in reactor thermalhydraulic codes. Evaluation of several existing critical heat flux correlations using the data show that three correlations, the Barnett, Bowring, and Katto correlations, perform similarly and correlate the data better than the Biasi correlation
The turbulent flow in rod bundles
Moeller, S.V.
1989-01-01
Experimental studies have shown that the axial and azimuthal turbulence intensities in the gap regions of rod bundles increase strongly with decreasing rod spacing; the fluctuating velocities in the axial and azimuthal directions have a quasi-periodic behaviour. To determine the origin of this phenomenon, an its characteristics as a function of the geometry and the Reynolds number, an experimental investigation was performed on the turbulent in several rod bundles with different aspect ratios (P/D, W/D). Hot-wires and microsphones were used for the measurements of velocity and wall pressure fluctuations. The data were evaluated to obtain spectra as well as auto and cross correlations. Based on the results, a phenomenological model is presented to explain this phenomenon. By means of the model, the mass exchange between neighbouring subchannels is explained [pt
Reactor application of an improved bundle divertor
Yang, T.F.; Ruck, G.W.; Lee, A.Y.; Smeltzer, G.; Prevenslik, T.
1978-11-01
A Bundle Divertor was chosen as the impurity control and plasma exhaust system for the beam driven Demonstration Tokamak Hybrid Reactor - DTHR. In the context of a preconceptual design study of the reactor and associated facility a bundle divertor concept was developed and integrated into the reactor system. The overall system was found feasible and scalable for reactors with intermediate torodial field strengths on axis. The important design characteristics are: the overall average current density of the divertor coils is 0.73 kA for each tesla of toroidal field on axis; the divertor windings are made from super-conducting cables supported by steel structures and are designed to be maintainable; the particle collection assembly and auxiliary cryosorption vacuum pump are dual systems designed such that they can be reactivated alterntively to allow for continuous reactor operation; and the power requirement for energizing and operating the divertor is about 5 MW
On stability of Kummer surfaces' tangent bundle
Bozhkov, Y.D.
1988-10-01
In this paper we propose an explicit approximation of the Kaehler-Einstein-Calabi-Yau metric on the Kummer surfaces, which are manifolds of type K3. It is constructed by gluing 16 pieces of the Eguchi-Hanson metric and 16 pieces of the Euclidean metric. Two estimates on its curvature are proved. Then we prove an estimate on the first eigenvalue of a covariant differential operator of second order. This enables us to apply Taubes' iteration procedure to obtain that there exists an anti-self-dual connection on the considered Kummer surface. In fact, it is a Hermitian-Einstein connection from which we conclude that Kummer surfaces' co-tangent bundle is stable and therefore their tangent bundle is stable too. (author). 40 refs
Tube bundle vibrations in transversal flow
Gibert, R.J.; Sagner, M.
1978-01-01
This study gives important information concerning characteristic parameters about lock-in and whirling instability phenomena, in the case of tube arrays. The work is mainly an experimental one though models are also developed: 1) an equilateral pitch bundle (p=1,5 D with D=tube diameter) is tested. Tube damping (epsilon) and first eigenfrequency (f), flow velocity are explored in a large domain. Vibratory level of the tubes are measured and critical points are ploted on the fluidelastic parameters diagram. Several bundles with various usual pitches and arrangements (in line or staggered) are tested. Critical velocities are measured and the whirling instability characteristic coefficient is tabulated. A complementary experiment is made on tube rows with various pitches. This gives valuable informations concerning the look-in domain in VR and A'R diagram. Furthermore this puts in evidence the important effect of a frequency difference between two adjacent tubes on the whirling critical velocity
Constrained ripple optimization of Tokamak bundle divertors
Hively, L.M.; Rome, J.A.; Lynch, V.E.; Lyon, J.F.; Fowler, R.H.; Peng, Y-K.M.; Dory, R.A.
1983-02-01
Magnetic field ripple from a tokamak bundle divertor is localized to a small toroidal sector and must be treated differently from the usual (distributed) toroidal field (TF) coil ripple. Generally, in a tokamak with an unoptimized divertor design, all of the banana-trapped fast ions are quickly lost due to banana drift diffusion or to trapping between the 1/R variation in absolute value vector B ω B and local field maxima due to the divertor. A computer code has been written to optimize automatically on-axis ripple subject to these constraints, while varying up to nine design parameters. Optimum configurations have low on-axis ripple ( 0 ) are lost. However, because finite-sized TF coils have not been used in this study, the flux bundle is not expanded
Uncovering ecosystem service bundles through social preferences.
Berta Martín-López
Full Text Available Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain. We conducted 3,379 direct face-to-face questionnaires in eight different case study sites from 2007 to 2011. Overall, 90.5% of the sampled population recognized the ecosystem's capacity to deliver services. Formal studies, environmental behavior, and gender variables influenced the probability of people recognizing the ecosystem's capacity to provide services. The ecosystem services most frequently perceived by people were regulating services; of those, air purification held the greatest importance. However, statistical analysis showed that socio-cultural factors and the conservation management strategy of ecosystems (i.e., National Park, Natural Park, or a non-protected area have an effect on social preferences toward ecosystem services. Ecosystem service trade-offs and bundles were identified by analyzing social preferences through multivariate analysis (redundancy analysis and hierarchical cluster analysis. We found a clear trade-off among provisioning services (and recreational hunting versus regulating services and almost all cultural services. We identified three ecosystem service bundles associated with the conservation management strategy and the rural-urban gradient. We conclude that socio-cultural preferences toward ecosystem services can serve as a tool to identify relevant services for people, the factors underlying these social preferences, and emerging ecosystem service bundles and trade-offs.
Principal bundles on the projective line
M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22
LetX be a complete nonsingular curve over the algebraic closurek ofk andGa reductive group over k. Let E → X be a principal G-bundle on X. E is said to be semistable if, for every reduction of structure group EP ⊂ E to a maximal parabolic subgroup P of G, we have degree EP (p) ≤ 0, where p is the Lie algebra of P and EP ...
Spanning forests and the vector bundle Laplacian
Kenyon, Richard
2011-01-01
The classical matrix-tree theorem relates the determinant of the combinatorial Laplacian on a graph to the number of spanning trees. We generalize this result to Laplacians on one- and two-dimensional vector bundles, giving a combinatorial interpretation of their determinants in terms of so-called cycle rooted spanning forests (CRSFs). We construct natural measures on CRSFs for which the edges form a determinantal process. ¶ This theory gives a natural generalization of the spanning tre...
Uncovering Ecosystem Service Bundles through Social Preferences
Martín-López, Berta; Iniesta-Arandia, Irene; García-Llorente, Marina; Palomo, Ignacio; Casado-Arzuaga, Izaskun; Amo, David García Del; Gómez-Baggethun, Erik; Oteros-Rozas, Elisa; Palacios-Agundez, Igone; Willaarts, Bárbara; González, José A.; Santos-Martín, Fernando; Onaindia, Miren; López-Santiago, Cesar; Montes, Carlos
2012-01-01
Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain. We conducted 3,379 direct face-to-face questionnaires in eight different case study sites from 2007 to 2011. Overall, 90.5% of the sampled population recognized the ecosystem’s capacity to deliver services. Formal studies, environmental behavior, and gender variables influenced the probability of people recognizing the ecosystem’s capacity to provide services. The ecosystem services most frequently perceived by people were regulating services; of those, air purification held the greatest importance. However, statistical analysis showed that socio-cultural factors and the conservation management strategy of ecosystems (i.e., National Park, Natural Park, or a non-protected area) have an effect on social preferences toward ecosystem services. Ecosystem service trade-offs and bundles were identified by analyzing social preferences through multivariate analysis (redundancy analysis and hierarchical cluster analysis). We found a clear trade-off among provisioning services (and recreational hunting) versus regulating services and almost all cultural services. We identified three ecosystem service bundles associated with the conservation management strategy and the rural-urban gradient. We conclude that socio-cultural preferences toward ecosystem services can serve as a tool to identify relevant services for people, the factors underlying these social preferences, and emerging ecosystem service bundles and trade-offs. PMID:22720006
Propagation velocity profile in a cross-section of a cardiac muscle bundle from PSpice simulation
Sperelakis Nicholas
2006-08-01
Full Text Available Abstract Background The effect of depth on propagation velocity within a bundle of cardiac muscle fibers is likely to be an important factor in the genesis of some heart arrhythmias. Model and methods The velocity profile of simulated action potentials propagated down a bundle of parallel cardiac muscle fibers was examined in a cross-section of the bundle using a PSpice model. The model (20 × 10 consisted of 20 chains in parallel, each chain being 10 cells in length. All 20 chains were stimulated simultaneously at the left end of the bundle using rectangular current pulses (0.25 nA, 0.25 ms duration applied intracellularly. The simulated bundle was symmetrical at the top and bottom (including two grounds, and voltage markers were placed intracellularly only in cells 1, 5 and 10 of each chain to limit the total number of traces to 60. All electrical parameters were standard values; the variables were (1 the number of longitudinal gap-junction (G-j channels (0, 1, 10, 100, (2 the longitudinal resistance between the parallel chains (Rol2 (reflecting the closeness of the packing of the chains, and (3 the bundle termination resistance at the two ends of the bundle (RBT. The standard values for Rol2 and RBT were 200 KΩ. Results The velocity profile was bell-shaped when there was 0 or only 1 gj-channel. With standard Rol2 and RBT values, the velocity at the surface of the bundle (θ1 and θ20 was more than double (2.15 × that at the core of the bundle (θ10, θ11. This surface:core ratio of velocities was dependent on the values of Rol2 and RBT. When Rol2 was lowered 10-fold, θ1 increased slightly and θ2decreased slightly. When there were 100 gj-channels, the velocity profile was flat, i.e. the velocity at the core was about the same as that at the surface. Both velocities were more than 10-fold higher than in the absence of gj-channels. Varying Rol2 and RBT had almost no effect. When there were 10 gj-channels, the cross-sectional velocity profile
Bundling harvester; Harvennuspuun automaattisen nippukorjausharvesterin kehittaeminen
Koponen, K [Eko-Log Oy, Kuopio (Finland)
1997-12-01
The starting point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automating of the harvester, and automated loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilisation of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilised without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilisation of wood-energy. (orig.)
Experimental heat transfer in tube bundle
Khattab, M.; Mariy, A.; Habib, M.
1983-01-01
Previous work has looked for the problem of heat transfer with flow parallel to rod bundle either by treating each rod individually as a separate channel or by treating the bundle as one unit. The present work will consider the existence of both the central and corner rods simultaneously inside the cluster itself under the same working conditions. The test section is geometrically similar to the fuel assembly of the Egyptian Research Reactor-1. The hydro-thermal performance of bundle having 16 - stainless steel tubes arranged in square array of 1.5 pitch to diameter ratio is investigated. Surface temperature and pressure distributions are determined. Average heat transfer coefficient for both central and corner tubes are correlated. Also, pressure drop and friction factor correlations are predicted. The maximum experimental range of the measured parameters are determined in the nonboiling region at 1400 Reynolds number and 3.64 W/cm 2 . It is found that the average heat transfer coefficient of the central tube is higher than that of the corner tube by 27%. Comparison with the previous work shows satisfactory agreement particularly with the circular tubes correlation - Dittus et al. - at 104 Reynolds number
Rottwitt, Karsten
2017-01-01
The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....
Study of fuel bundle geometry on inter subchannel flow in a 19 pin wire wrapped bundle
Naveen Raj, M.; Velusamy, D.K.
2015-01-01
In typical sodium cooled fast reactor (SFR) fuel pin bundle, gap between the pins is maintained by helically wound wire wrap around each pin. The presence of wire induces large inter-subchannel transverse flow, eventually promoting mixing and heat transfer. The magnitude of the transverse flow is highly dependent on the various pin-bundle dimensions. Appropriate modeling of these transverse flows in subchannel codes is necessary to predict realistic temperature distribution in pin bundle. Hence, detailed parametric study of transverse flow on pin-bundle geometric parameters has been conducted. The parameters taken for the present study are pin diameter, wire diameter, helical wire pitch and edge gap. Towards this 3-D computational fluid dynamic analysis on a structured mesh of 19 pin bundle is carried out using k-epsilon turbulence model. Periodic oscillations along the primacy flow direction were found in subchannel transverse flow and peripheral pin clad temperatures with periodicity over one pitch length. Based on parametric studies, correlations for transverse flow in central subchannels are proposed. (author)
Experimental study of laminar mixed convection in a rod bundle with mixing vane spacer grids
Mohanta, Lokanath, E-mail: lxm971@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Cheung, Fan-Bill [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Bajorek, Stephen M.; Tien, Kirk; Hoxie, Chris L. [Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)
2017-02-15
Highlights: • Investigated the heat transfer during mixed laminar convection in a rod bundle with linearly varying heat flux. • The Nusselt number increases downstream of the inlet with increasing Richardson number. • Developed an enhancement factor to account for the effects of mixed convection over the forced laminar heat transfer. - Abstract: Heat transfer by mixed convection in a rod bundle occurs when convection is affected by both the buoyancy and inertial forces. Mixed convection can be assumed when the Richardson number (Ri = Gr/Re{sup 2}) is on the order of unity, indicating that both forced and natural convection are important contributors to heat transfer. In the present study, data obtained from the Rod Bundle Heat Transfer (RBHT) facility was used to determine the heat transfer coefficient in the mixed convection regime, which was found to be significantly larger than those expected assuming purely forced convection based on the inlet flow rate. The inlet Reynolds (Re) number for the tests ranged from 500 to 1300, while the Grashof (Gr) number varied from 1.5 × 10{sup 5} to 3.8 × 10{sup 6} yielding 0.25 < Ri < 4.3. Using results from RBHT test along with the correlation from the FLECHT-SEASET test program for laminar forced convection, a new correlation is proposed for mixed convection in a rod bundle. The new correlation accounts for the enhancement of heat transfer relative to laminar forced convection.
Ridgely, M Susan; de Vries, David; Bozic, Kevin J; Hussey, Peter S
2014-08-01
To determine whether bundled payment could be an effective payment model for California, the Integrated Healthcare Association convened a group of stakeholders (health plans, hospitals, ambulatory surgery centers, physician organizations, and vendors) to develop, through a consensus process, the methods and means of implementing bundled payment. In spite of a high level of enthusiasm and effort, the pilot did not succeed in its goal to implement bundled payment for orthopedic procedures across multiple payers and hospital-physician partners. An evaluation of the pilot documented a number of barriers, such as administrative burden, state regulatory uncertainty, and disagreements about bundle definition and assumption of risk. Ultimately, few contracts were signed, which resulted in insufficient volume to test hypotheses about the impact of bundled payment on quality and costs. Although bundled payment failed to gain a foothold in California, the evaluation provides lessons for future bundled payment initiatives. Project HOPE—The People-to-People Health Foundation, Inc.
Assembly of Huntingtin headpiece into α-helical bundles.
Ozgur, Beytullah; Sayar, Mehmet
2017-05-24
Protein aggregation is a hallmark of neurodegenerative disorders. In this group of brain-related disorders, a disease-specific "host" protein or fragment misfolds and adopts a metastatic, aggregate-prone conformation. Often, this misfolded conformation is structurally and thermodynamically different from its native state. Intermolecular contacts, which arise in this non-native state, promote aggregation. In this regard, understanding the molecular principles and mechanisms that lead to the formation of such a non-native state and further promote the formation of the critical nucleus for fiber growth is essential. In this study, the authors analyze the aggregation propensity of Huntingtin headpiece (htt NT ), which is known to facilitate the polyQ aggregation, in relation to the helix mediated aggregation mechanism proposed by the Wetzel group. The authors demonstrate that even though htt NT displays a degenerate conformational spectrum on its own, interfaces of macroscopic or molecular origin can promote the α-helix conformation, eliminating all other alternatives in the conformational phase space. Our findings indicate that htt NT molecules do not have a strong orientational preference for parallel or antiparallel orientation of the helices within the aggregate. However, a parallel packed bundle of helices would support the idea of increased polyglutamine concentration, to pave the way for cross-β structures.
Visualization of Fiber Structure in the Left and Right Ventricle of a Human Heart
Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.
2006-01-01
The human heart is composed of a helical network of muscle fibers. Anisotropic least squares filtering followed by fiber tracking techniques were applied to Diffusion Tensor Magnetic Resonance Imaging(DTMRI) data of the excised human heart. The fiber configuration was visualized by using thin tubes to increase 3-dimensional visual perception of the complex structure. All visualizations were performed using the high-quality ray-tracing software POV-Ray. The fibers are shown within the left and right ventricles. Both ventricles exhibit similar fiber architecture and some bundles of fibers are shown linking right and left ventricles on the posterior region of the heart
Miyanaga, N.; Ohba, N.; Fujimoto, K.
1997-01-01
To measure the burn history in an inertial confinement fusion experiment, we have developed a new neutron detector based on plastic scintillation fibers. Twenty-five fiber scintillators were arranged in a geometry compensation configuration by which the time-of-flight difference of the neutrons is compensated by the transit time difference of light passing through the fibers. Each fiber scintillator is spliced individually to an ultraviolet optical fiber that is coupled to a streak camera. We have demonstrated a significant improvement of sensitivity compared with the usual bulk scintillator coupled to a bundle of the same ultraviolet fibers. copyright 1997 American Institute of Physics
Single-shot polarimetry imaging of multicore fiber.
Sivankutty, Siddharth; Andresen, Esben Ravn; Bouwmans, Géraud; Brown, Thomas G; Alonso, Miguel A; Rigneault, Hervé
2016-05-01
We report an experimental test of single-shot polarimetry applied to the problem of real-time monitoring of the output polarization states in each core within a multicore fiber bundle. The technique uses a stress-engineered optical element, together with an analyzer, and provides a point spread function whose shape unambiguously reveals the polarization state of a point source. We implement this technique to monitor, simultaneously and in real time, the output polarization states of up to 180 single-mode fiber cores in both conventional and polarization-maintaining fiber bundles. We demonstrate also that the technique can be used to fully characterize the polarization properties of each individual fiber core, including eigen-polarization states, phase delay, and diattenuation.
Nanotube bundle oscillators: Carbon and boron nitride nanostructures
Thamwattana, Ngamta; Hill, James M.
2009-01-01
In this paper, we investigate the oscillation of a fullerene that is moving within the centre of a bundle of nanotubes. In particular, certain fullerene-nanotube bundle oscillators, namely C 60 -carbon nanotube bundle, C 60 -boron nitride nanotube bundle, B 36 N 36 -carbon nanotube bundle and B 36 N 36 -boron nitride nanotube bundle are studied using the Lennard-Jones potential and the continuum approach which assumes a uniform distribution of atoms on the surface of each molecule. We address issues regarding the maximal suction energies of the fullerenes which lead to the generation of the maximum oscillation frequency. Since bundles are also found to comprise double-walled nanotubes, this paper also examines the oscillation of a fullerene inside a double-walled nanotube bundle. Our results show that the frequencies obtained for the oscillation within double-walled nanotube bundles are slightly higher compared to those of single-walled nanotube bundle oscillators. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures.
Dimensional measurement of fresh fuel bundle for CANDU reactor
Jo, Chang Keun; Cho, Moon Sung; Suk, Ho Chun; Koo, Dae Seo; Jun, Ji Su; Jung, Jong Yeob
2005-01-01
This report describes the results of the dimensional measurement of fresh fuel bundles for the CANDU reactor in order to estimate the integrity of fuel bundle in two-phase flow in the CANDU-6 fuel channel. The dimensional measurements of fuel bundles are performed by using the 'CANDU Fuel In-Bay Inspection and Dimensional Measurement System', which was developed by this project. The dimensional measurements are done from February 2004 to March 2004 in the CANDU fuel storage of KNFC for the 36 fresh fuel bundles, which are produced by KNFC and are waiting for the delivery to the Wolsong-3 plant. The detail items of dimensional measurements are included fuel rod and bearing pad profiles of the outer ring in fuel bundle, diameter of fuel bundle, bowing of fuel bundle, fuel rod length, and surface profile of end plate profile. The measurement data will be compared with those of the post-irradiated bundles cooled in Wolsong-3 NPP spent fuel pool by using the same bundles and In-Bay Measurement System. So, this analysis of data will be applied for the evaluation of fuel bundle integrity in two-phase flow of the CANDU-6 fuel channel
Fuel bundle examination techniques for the Phebus fission product test
Blanc, J.Y.; Clement, B.; Hardt, P. von der
1996-01-01
The paper develops the non-destructive examinations, with a special emphasis on transmission tomography, performed in the Phebus facility, using a linear accelerator associated with a line scan camera based on PCD components. This particular technique enabled the high level of penetration to be obtained, necessary for this high density application. Spatial resolution is not far from the theoretical limit and the density resolution is often adequate. This technique permitted: 1) to define beforehand the cuts on a precise basis, avoiding a long step-by-step choice as in previous in-pile tests; 2) to determine, at an early stage, mass balance, material relocations (in association with axial gamma spectrometry), and FP distribution, as an input into re-calculations of the bundle events. However, classical cuttings, periscopic visual examinations, macrographies, micrographies and EPMA analyses remain essential to give oxidation levels (in the less degraded zones), phase aspect and composition, to distinguish between materials of identical density, and, if possible, to estimate temperatures. Oxidation resistance of sensors (thermocouples or ultrasonic thermometers) is also traced. The EPMA gives access to the molten material chemical analyses, especially in the molten fuel blockage area. The first results show that an important part of the fuel bundle melted (which was one of the objectives of this test) and that the degradation level is close to TIMI-2 with a molten plug under a cavity surrounded by an uranium-rich crust. In lower and upper areas fuel rods are less damaged. Complementaries between these examination techniques and between international teams involved will be major advantages in the Phebus FPT0 test comprehension. 3 refs, 9 figs
Hammond, Nathan A; Kamm, Roger D
2008-07-01
The synthetic peptide RAD16-II has shown promise in tissue engineering and drug delivery. It has been studied as a vehicle for cell delivery and controlled release of IGF-1 to repair infarcted cardiac tissue, and as a scaffold to promote capillary formation for an in vitro model of angiogenesis. The structure of RAD16-II is hierarchical, with monomers forming long beta-sheets that pair together to form filaments; filaments form bundles approximately 30-60 nm in diameter; branching networks of filament bundles form macroscopic gels. We investigate the mechanics of shearing between the two beta-sheets constituting one filament, and between cohered filaments of RAD16-II. This shear loading is found in filament bundle bending or in tensile loading of fibers composed of partial-length filaments. Molecular dynamics simulations show that time to failure is a stochastic function of applied shear stress, and that for a given loading time behavior is elastic for sufficiently small shear loads. We propose a coarse-grained model based on Langevin dynamics that matches molecular dynamics results and facilities extending simulations in space and time. The model treats a filament as an elastic string of particles, each having potential energy that is a periodic function of its position relative to the neighboring filament. With insight from these simulations, we discuss strategies for strengthening RAD16-II and similar materials.
Stability of Picard bundle over moduli space of stable vector bundles ...
Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45
Since the morphism ϕ is given by the universal property of the moduli space, the pullback of the universal bundle E on X × M to X × P by the map idX × ϕ is isomorphic (up to a twist by a line bundle coming from P) to ˜E. In other words, there is an integer k such that. 0 −→ (idX × ϕ)∗E −→ W ⊠ OP (k) −→ Ox×P (k + 1) −→ 0.
Clad fiber capacitor and method of making same
Tuncer, Enis
2012-12-11
A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; and a ductile, electrically conductive sleeve positioned over the cladding. One or more preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.
Oh Soo Kwon
2014-01-01
Full Text Available A protocol to choose the graft diameter attachment point of each bundle has not yet been determined since they are usually dependent on a surgeon’s preference. Therefore, the influence of bundle diameters and attachment points on the kinematics of the knee joint needs to be quantitatively analyzed. A three-dimensional knee model was reconstructed with computed tomography images of a 26-year-old man. Based on the model, models of double bundle anterior cruciate ligament (ACL reconstruction were developed. The anterior tibial translations for the anterior drawer test and the internal tibial rotation for the pivot shift test were investigated according to variation of bundle diameters and attachment points. For the model in this study, the knee kinematics after the double bundle ACL reconstruction were dependent on the attachment point and not much influenced by the bundle diameter although larger sized anterior-medial bundles provided increased stability in the knee joint. Therefore, in the clinical setting, the bundle attachment point needs to be considered prior to the bundle diameter, and the current selection method of graft diameters for both bundles appears justified.
A Tannakian approach to dimensional reduction of principal bundles
Álvarez-Cónsul, Luis; Biswas, Indranil; García-Prada, Oscar
2017-08-01
Let P be a parabolic subgroup of a connected simply connected complex semisimple Lie group G. Given a compact Kähler manifold X, the dimensional reduction of G-equivariant holomorphic vector bundles over X × G / P was carried out in Álvarez-Cónsul and García-Prada (2003). This raises the question of dimensional reduction of holomorphic principal bundles over X × G / P. The method of Álvarez-Cónsul and García-Prada (2003) is special to vector bundles; it does not generalize to principal bundles. In this paper, we adapt to equivariant principal bundles the Tannakian approach of Nori, to describe the dimensional reduction of G-equivariant principal bundles over X × G / P, and to establish a Hitchin-Kobayashi type correspondence. In order to be able to apply the Tannakian theory, we need to assume that X is a complex projective manifold.
Analytical prediction of turbulent friction factor for a rod bundle
Bae, Jun Ho; Park, Joo Hwan
2011-01-01
An analytical calculation has been performed to predict the turbulent friction factor in a rod bundle. For each subchannel constituting a rod bundle, the geometry parameters are analytically derived by integrating the law of the wall over each subchannel with the consideration of a local shear stress distribution. The correlation equations for a local shear stress distribution are supplied from a numerical simulation for each subchannel. The explicit effect of a subchannel shape on the geometry parameter and the friction factor is reported. The friction factor of a corner subchannel converges to a constant value, while the friction factor of a central subchannel steadily increases with a rod distance ratio. The analysis for a rod bundle shows that the friction factor of a rod bundle is largely affected by the characteristics of each subchannel constituting a rod bundle. The present analytic calculations well predict the experimental results from the literature with rod bundles in circular, hexagonal, and square channels.
CFD in supercritical water-cooled nuclear reactor (SCWR) with horizontal tube bundles
Zhi Shang, E-mail: zhi.shang@stfc.ac.uk [Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Lo, Simon, E-mail: simon.lo@uk.cd-adapco.com [CD-adapco, Trident House, Basil Hill Road, Didcot OX11 7HJ (United Kingdom)
2011-11-15
The commercial CFD code STAR-CD 4.02 is used as a numerical simulation tool for flows in the supercritical water-cooled nuclear reactor (SCWR). The basic heat transfer element in the reactor core can be considered as round tubes and tube bundles. Reactors with vertical or horizontal flow in the core can be found. In a vertically oriented core, symmetric characters of flow and heat transfer can be found and two-dimensional analyses are often performed. However, in a horizontally oriented core the flow and heat transfer are fully three-dimensional due to the buoyancy effect. In this paper, horizontal tubes and tube bundles at SCWR conditions are studied. Special STAR-CD subroutines were developed by the authors to correctly represent the dramatic change in physical properties of the supercritical water with temperature. From the study of single round tubes, the Speziale quadratic non-linear high-Re k-{epsilon} turbulence model with the two-layer model for near wall treatment is found to produce the best results in comparison with experimental data. In tube bundle simulations, it is found that the temperature is higher in the top half of the bundle and the highest tube wall temperature is located at the outside tubes where the flow rate is the lowest. The secondary flows across the bundle are highly complex. Their main effect is to even out the temperature over the area within each individual recirculation region. Similar analysis could be useful in design and safety studies to obtain optimum fuel rod arrangement in a SCWR.
CFD in supercritical water-cooled nuclear reactor (SCWR) with horizontal tube bundles
Shang, Zhi; Lo, Simon
2009-01-01
The commercial CFD code STAR-CD 4.02 is used as a numerical simulation tool for flows in the supercritical water-cooled nuclear reactor (SCWR). The basic heat transfer element in the reactor core can be considered as round tubes and tube bundles. Reactors with vertical or horizontal flow in the core can be found. In vertically oriented core, symmetric characters of flow and heat transfer can be found and two-dimensional analyses are often performed. However, in horizontally oriented core the flow and heat transfer are fully three-dimensional due to the buoyancy effect. In this paper, horizontal tubes and tube bundles at SCWR conditions are studied. Special STAR-CD subroutines were developed by the authors to correctly represent the dramatic change in physical properties of the supercritical water with temperature. From the study of single round tubes, the Speziale quadratic non-linear high-Re k-ε turbulence model with the two-layer model for near wall treatment is found to produce the best results in comparison with experimental data. In tube bundle simulations, it is found that the temperature is higher in the top half of the bundle and the highest tube wall temperature is located at the outside tubes where the flow rate is the lowest. The secondary flows across the bundle are highly complex. Their main effect is to even out the temperature over the area within each individual recirculating region. Similar analysis could be useful in design and safety studies to obtain optimum fuel rod arrangement in a SCWR. (author)
MODULAR BUNDLE ADJUSTMENT FOR PHOTOGRAMMETRIC COMPUTATIONS
N. Börlin
2018-05-01
Full Text Available In this paper we investigate how the residuals in bundle adjustment can be split into a composition of simple functions. According to the chain rule, the Jacobian (linearisation of the residual can be formed as a product of the Jacobians of the individual steps. When implemented, this enables a modularisation of the computation of the bundle adjustment residuals and Jacobians where each component has limited responsibility. This enables simple replacement of components to e.g. implement different projection or rotation models by exchanging a module. The technique has previously been used to implement bundle adjustment in the open-source package DBAT (Börlin and Grussenmeyer, 2013 based on the Photogrammetric and Computer Vision interpretations of Brown (1971 lens distortion model. In this paper, we applied the technique to investigate how affine distortions can be used to model the projection of a tilt-shift lens. Two extended distortion models were implemented to test the hypothesis that the ordering of the affine and lens distortion steps can be changed to reduce the size of the residuals of a tilt-shift lens calibration. Results on synthetic data confirm that the ordering of the affine and lens distortion steps matter and is detectable by DBAT. However, when applied to a real camera calibration data set of a tilt-shift lens, no difference between the extended models was seen. This suggests that the tested hypothesis is false and that other effects need to be modelled to better explain the projection. The relatively low implementation effort that was needed to generate the models suggest that the technique can be used to investigate other novel projection models in photogrammetry, including modelling changes in the 3D geometry to better understand the tilt-shift lens.
Historical dynamics in ecosystem service bundles.
Renard, Delphine; Rhemtulla, Jeanine M; Bennett, Elena M
2015-10-27
Managing multiple ecosystem services (ES), including addressing trade-offs between services and preventing ecological surprises, is among the most pressing areas for sustainability research. These challenges require ES research to go beyond the currently common approach of snapshot studies limited to one or two services at a single point in time. We used a spatiotemporal approach to examine changes in nine ES and their relationships from 1971 to 2006 across 131 municipalities in a mixed-use landscape in Quebec, Canada. We show how an approach that incorporates time and space can improve our understanding of ES dynamics. We found an increase in the provision of most services through time; however, provision of ES was not uniformly enhanced at all locations. Instead, each municipality specialized in providing a bundle (set of positively correlated ES) dominated by just a few services. The trajectory of bundle formation was related to changes in agricultural policy and global trends; local biophysical and socioeconomic characteristics explained the bundles' increasing spatial clustering. Relationships between services varied through time, with some provisioning and cultural services shifting from a trade-off or no relationship in 1971 to an apparent synergistic relationship by 2006. By implementing a spatiotemporal perspective on multiple services, we provide clear evidence of the dynamic nature of ES interactions and contribute to identifying processes and drivers behind these changing relationships. Our study raises questions about using snapshots of ES provision at a single point in time to build our understanding of ES relationships in complex and dynamic social-ecological systems.
Hydrodynamic behavior of a bare rod bundle
Bartzis, J.G.; Todreas, N.E.
1977-06-01
The temperature distribution within the rod bundle of a nuclear reactor is of major importance in nuclear reactor design. However temperature information presupposes knowledge of the hydrodynamic behavior of the coolant which is the most difficult part of the problem due to complexity of the turbulence phenomena. In the present work a 2-equation turbulence model--a strong candidate for analyzing actual three dimensional turbulent flows--has been used to predict fully developed flow of infinite bare rod bundle of various aspect ratios (P/D). The model has been modified to take into account anisotropic effects of eddy viscosity. Secondary flow calculations have been also performed although the model seems to be too rough to predict the secondary flow correctly. Heat transfer calculations have been performed to confirm the importance of anisotropic viscosity in temperature predictions. All numerical calculations for flow and heat have been performed by two computer codes based on the TEACH code. Experimental measurements of the distribution of axial velocity, turbulent axial velocity, turbulent kinetic energy and radial Reynolds stresses were performed in the developing and fully developed regions. A 2-channel Laser Doppler Anemometer working on the Reference mode with forward scattering was used to perform the measurements in a simulated interior subchannel of a triangular rod array with P/D = 1.124. Comparisons between the analytical results and the results of this experiment as well as other experimental data in rod bundle array available in literature are presented. The predictions are in good agreement with the results for the high Reynolds numbers
Modular Bundle Adjustment for Photogrammetric Computations
Börlin, N.; Murtiyoso, A.; Grussenmeyer, P.; Menna, F.; Nocerino, E.
2018-05-01
In this paper we investigate how the residuals in bundle adjustment can be split into a composition of simple functions. According to the chain rule, the Jacobian (linearisation) of the residual can be formed as a product of the Jacobians of the individual steps. When implemented, this enables a modularisation of the computation of the bundle adjustment residuals and Jacobians where each component has limited responsibility. This enables simple replacement of components to e.g. implement different projection or rotation models by exchanging a module. The technique has previously been used to implement bundle adjustment in the open-source package DBAT (Börlin and Grussenmeyer, 2013) based on the Photogrammetric and Computer Vision interpretations of Brown (1971) lens distortion model. In this paper, we applied the technique to investigate how affine distortions can be used to model the projection of a tilt-shift lens. Two extended distortion models were implemented to test the hypothesis that the ordering of the affine and lens distortion steps can be changed to reduce the size of the residuals of a tilt-shift lens calibration. Results on synthetic data confirm that the ordering of the affine and lens distortion steps matter and is detectable by DBAT. However, when applied to a real camera calibration data set of a tilt-shift lens, no difference between the extended models was seen. This suggests that the tested hypothesis is false and that other effects need to be modelled to better explain the projection. The relatively low implementation effort that was needed to generate the models suggest that the technique can be used to investigate other novel projection models in photogrammetry, including modelling changes in the 3D geometry to better understand the tilt-shift lens.
Shilov, Georgi E
1977-01-01
Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.
Hagen, S.; Kapulla, H.; Malauschek, H.; Wallenfels, K.P.; Peck, S.O.
1984-07-01
This report describes the test conduct and results of the bundle test ESBU-2A, which was run to investigate the temperature escalation of zircaloy clad fuel rods. This investigation of temperature escalation is part of a series of out-of-pile experiments, performed within the framework of the PNS Severe Fuel Damage Program. The test bundle was of a 3 x 3 array of fuel rod simulators with a 0.4 m heated length. The fuel rod simulators were electrically heated and consisted of tungsten heaters, UO 2 annular pellets, and zircaloy cladding. A nominal steam flow of 0.7 g/s was inlet to the bundle. The bundle was surrounded by a zircaloy shroud which was insulated with ZrO 2 fiber ceramic wrap. The initial heatup rate of the bundle was 0.4 0 C/s. The temperature escalation began at the 255 mm elevation after 1200 0 C had been reached. At this elevation, the measured peak temperature was limited to 1500 0 C. It was concluded from different thermocouple results, that induced by this first escalation melt was formed in the lower part of the bundle. Consequently, the escalation in the lower part must be much higher, at least up to the melting temperature of zircaloy. Due to the failure in the steam production system, steam starvation in the upper region may explain the beginning of the escalation at the 255 mm elevation. The maximum temperature reached was 2175 0 C on the center rod at the end of the test. The unregularities in the steam supply may be the reason for less oxidation than expected. (orig./GL) [de
A Hodge dual for soldered bundles
Lucas, Tiago Gribl; Pereira, J G
2009-01-01
In order to account for all possible contractions allowed by the presence of the solder form, a generalized Hodge dual is defined for the case of soldered bundles. Although for curvature the generalized dual coincides with the usual one, for torsion it gives a completely new dual definition. Starting from the standard form of a gauge Lagrangian for the translation group, the generalized Hodge dual yields precisely the Lagrangian of the teleparallel equivalent of general relativity, and consequently also the Einstein-Hilbert Lagrangian of general relativity
Bundling Products and Services Through Modularization Strategies
Bask, Anu; Hsuan, Juliana; Rajahonka, Mervi
2012-01-01
Modularity has been recognized as a powerful tool in improving the efficiency and management of product design and manufacturing. However, the integrated view on covering both, product and service modularity for product-service systems (PSS), is under researched. Therefore, in this paper our...... objective is to contribute to the PSS modularity. Thus, we describe configurations of PSSs and the bundling of products and services through modularization strategies. So far there have not been tools to analyze and determine the correct combinations of degrees of product and service modularities....
SEU43 fuel bundles in CANDU 600
Catana, Alexandru; Prodea, Iosif; Danila, Nicolae; Prisecaru, Ilie; Dupleac, Daniel
2008-01-01
Cernavoda Unit 1 and Unit 2 are pressure tube 650 MWe nuclear stations moderated and cooled with heavy water, of Canada design, located in Romania. Fuelling is on-power and the plant is currently fuelled with natural uranium dioxide. Fuel is encapsulated in a 37 fuel rod assembly having a specific standard geometry (STD37). In order to reduce fuel cycle costs programs were initiated in Canada, South Korea and at SCN Pitesti, Romania for design and build of a new, improved geometry fuel bundle and some fuel compositions. Among fuel compositions, which are considered, is the slightly enriched uranium (SEU) fuel (0.96 w% U-235) with an associated burn-up increase from ∼7900 MWd/tU up to ∼15000 MWd/tU. Neutron analysis showed that the Canadian-Korean fuel bundle geometry with 43 rods called SEU (SEU43) can be used in already operated reactors. A new fuel bundle resulted. Extended, comprehensive analysis must be conducted in order to assess the TH behavior of SEU43 besides the neutron, mechanical (drag force, etc) analyses. In this paper, using the sub-channel approach, main thermal-hydraulic parameters were analyzed: pressure drop; fuel, sheath and coolant temperatures; coolant density; critical heat flux. Some significant differences versus standard fuel are outlined in the paper and some conclusions are drawn. While, by using this new fuel, there are many benefits to be attained like: fuel costs reduction, spent fuel waste minimization, increase in competitiveness of nuclear power generation against other sources of generation, etc., the safety margins must be, at least, conserved. The introduction of a new fuel bundle type, different in geometry and fuel composition, requires a detailed preparation, a testing program and a series of neutron and thermal-hydraulic analysis. The results reported by this paper is part of this effort. The feasibility to increase the enrichment from 0.71% U-235 (NU) to 0.96% U-235, with an estimated burn-up increase up to 14000 MWd
Vector bundles on complex projective spaces
Okonek, Christian; Spindler, Heinz
1980-01-01
This expository treatment is based on a survey given by one of the authors at the Séminaire Bourbaki in November 1978 and on a subsequent course held at the University of Göttingen. It is intended to serve as an introduction to the topical question of classification of holomorphic vector bundles on complex projective spaces, and can easily be read by students with a basic knowledge of analytic or algebraic geometry. Short supplementary sections describe more advanced topics, further results, and unsolved problems.
Differential geometry bundles, connections, metrics and curvature
Taubes, Clifford Henry
2011-01-01
Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the
Assembly mechanism for nuclear fuel bundles
Long, J.W.; Flora, B.S.; Ford, K.L.
1980-01-01
The invention relates to a nuclear power reactor fuel bundle of the type wherein several rods are mounted in parallel array between two tie plates which secure the fuel rods in place and are maintained in assembled position by means of a number of tie rods secured to both of the end plates. Improved apparatus is provided for attaching the tie rods to the upper tie plate by the use of locking lugs fixed to rotatable sleeves which engage the upper tie plate. (auth)
Deformation quantization with separation of variables of an endomorphism bundle
Karabegov, Alexander
2014-01-01
Given a holomorphic Hermitian vector bundle E and a star-product with separation of variables on a pseudo-Kähler manifold, we construct a star product on the sections of the endomorphism bundle of the dual bundle E∗ which also has the appropriately generalized property of separation of variables. For this star product we prove a generalization of Gammelgaard's graph-theoretic formula.
Crossed Module Bundle Gerbes; Classification, String Group and Differential Geometry
Jurco, Branislav
2005-01-01
We discuss nonabelian bundle gerbes and their differential geometry using simplicial methods. Associated to any crossed module there is a simplicial group NC, the nerve of the 1-category defined by the crossed module and its geometric realization |NC|. Equivalence classes of principal bundles with structure group |NC| are shown to be one-to-one with stable equivalence classes of what we call crossed module gerbes bundle gerbes. We can also associate to a crossed module a 2-category C'. Then t...
Analytic convergence of harmonic metrics for parabolic Higgs bundles
Kim, Semin; Wilkin, Graeme
2018-04-01
In this paper we investigate the moduli space of parabolic Higgs bundles over a punctured Riemann surface with varying weights at the punctures. We show that the harmonic metric depends analytically on the weights and the stable Higgs bundle. This gives a Higgs bundle generalisation of a theorem of McOwen on the existence of hyperbolic cone metrics on a punctured surface within a given conformal class, and a generalisation of a theorem of Judge on the analytic parametrisation of these metrics.
Early Results of Anatomic Double Bundle Anterior Cruciate Ligament Reconstruction
Demet Pepele
2014-01-01
Aim: The goal in anterior cruciate ligament reconstruction (ACLR) is to restore the normal anatomic structure and function of the knee. In the significant proportion of patients after the traditional single-bundle ACLR, complaints of instability still continue. Anatomic double bundle ACLR may provide normal kinematics in knees, much closer to the natural anatomy. The aim of this study is to clinically assess the early outcomes of our anatomical double bundle ACLR. Material and Method: In our ...
Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles
Rickman, S. L.; Iamello, C. J.
2016-01-01
Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.
Pulsed laser damage to optical fibers
Allison, S.W.; Gillies, G.T.; Magnuson, D.W.; Pagano, T.S.
1985-01-01
This paper describes some observations of pulsed laser damage to optical fibers with emphasis on a damage mode characterized as a linear fracture along the outer core of a fiber. Damage threshold data are presented which illustrate the effects of the focusing lens, end-surface preparation, and type of fiber. An explanation based on fiber-beam misalignment is given and is illustrated by a simple experiment and ray trace
Patterned functional carbon fibers from polyethylene
Hunt, Marcus A [ORNL; Saito, Tomonori [ORNL; Brown, Rebecca H [ORNL; Kumbhar, Amar S [University of North Carolina, Chapel Hill; Naskar, Amit K [ORNL
2012-01-01
Patterned, continuous carbon fibers with controlled surface geometry were produced from a novel melt-processible carbon precursor. This portends the use of a unique technique to produce such technologically innovative fibers in large volume for important applications. The novelties of this technique include ease of designing and fabricating fibers with customized surface contour, the ability to manipulate filament diameter from submicron scale to a couple of orders of magnitude larger scale, and the amenable porosity gradient across the carbon wall by diffusion controlled functionalization of precursor. The geometry of fiber cross-section was tailored by using bicomponent melt-spinning with shaped dies and controlling the melt-processing of the precursor polymer. Circular, trilobal, gear-shaped hollow fibers, and solid star-shaped carbon fibers of 0.5 - 20 um diameters, either in self-assembled bundle form, or non-bonded loose filament form, were produced by carbonizing functionalized-polyethylene fibers. Prior to carbonization, melt-spun fibers were converted to a char-forming mass by optimizing the sulfonation on polyethylene macromolecules. The fibers exhibited distinctly ordered carbon morphologies at the outside skin compared to the inner surface or fiber core. Such order in carbon microstructure can be further tuned by altering processing parameters. Partially sulfonated polyethylene-derived hollow carbon fibers exhibit 2-10 fold surface area (50-500 m2/g) compared to the solid fibers (10-25 m2/g) with pore sizes closer to the inside diameter of the filaments larger than the sizes on the outer layer. These specially functionalized carbon fibers hold promise for extraordinary performance improvements when used, for example, as composite reinforcements, catalyst support media, membranes for gas separation, CO2 sorbents, and active electrodes and current collectors for energy storage applications.
Du, Yicheng
Natural fibers have the potential to replace glass fibers in fiber-reinforced composite applications. However, the natural fibers' intrinsic properties cause these issues: (1) the mechanical property variation; (2) moisture uptake by natural fibers and their composites; (3) lack of sound, cost-effective, environment-friendly fiber-matrix compounding processes; (4) incompatibility between natural fibers and polymer matrices; and (5) low heat-resistance of natural fibers and their composites. This dissertation systematically studied the use of kenaf bast fiber bundles, obtained via a mechanical retting method, as a light-weight reinforcement material for fiber-reinforced thermoset polymer composites for automotive applications. Kenaf bast fiber bundle tensile properties were tested, and the effects of locations in the kenaf plant, loading rates, retting methods, and high temperature treatments and their durations on kenaf bast fiber bundle tensile properties were evaluated. A process has been developed for fabricating high fiber loading kenaf bast fiber bundle-reinforced unsaturated polyester composites. The generated composites possessed high elastic moduli and their tensile strengths were close to specification requirements for glass fiber-reinforced sheet molding compounds. Effects of fiber loadings and lengths on resultant composite's tensile properties were evaluated. Fiber loadings were very important for composite tensile modulus. Both fiber loadings and fiber lengths were important for composite tensile strengths. The distributions of composite tensile, flexural and impact strengths were analyzed. The 2-parameter Weibull model was found to be the most appropriate for describing the composite strength distributions and provided the most conservative design values. Kenaf-reinforced unsaturated polyester composites were also proved to be more cost-effective than glass fiber-reinforced SMCs at high fiber loadings. Kenaf bast fiber bundle-reinforced composite
Experimental and numerical investigations of BWR fuel bundle inlet flow
Hoashi, E; Morooka, S; Ishitori, T; Komita, H; Endo, T; Honda, H; Yamamoto, T; Kato, T; Kawamura, S
2009-01-01
We have been studying the mechanism of the flow pattern near the fuel bundle inlet of BWR using both flow visualization test and computational fluid dynamics (CFD) simulation. In the visualization test, both single- and multi-bundle test sections were used. The former test section includes only a corner orifice facing two support beams and the latter simulates 16 bundles surrounded by four beams. An observation window is set on the side of the walls imitating the support beams upstream of the orifices in both test sections. In the CFD simulation, as well as the visualization test, the single-bundle model is composed of one bundle with a corner orifice and the multi-bundle model is a 1/4 cut of the test section that includes 4 bundles with the following four orifices: a corner orifice facing the corner of the two neighboring support beams, a center orifice at the opposite side from the corner orifice, and two side orifices. Twin-vortices were observed just upstream of the corner orifice in the multi-bundle test as well as the single-bundle test. A single-vortex and a vortex filament were observed at the side orifice inlet and no vortex was observed at the center orifice. These flow patterns were also predicted in the CFD simulation using Reynolds Stress Model as a turbulent model and the results were in good agreement with the test results mentioned above. (author)
Enthalpy and void distributions in subchannels of PHWR fuel bundles
Park, J W; Choi, H; Rhee, B W [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1999-12-31
Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)
Enthalpy and void distributions in subchannels of PHWR fuel bundles
Park, J. W.; Choi, H.; Rhee, B. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)
Annular burnout data from rod-bundle experiments
Yoder, G.L.; Morris, D.G.; Mullins, C.B.
1983-01-01
Burnout data for annular flow in a rod bundle are presented for both transient and steady-state conditions. Tests were performed at the Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF), a pressurized-water loop containing an electrically heated 64-rod bundle. The bundle configuration is typical of later generation pressurized-water reactors with 17 x 17 fuel arrays. Both axial and radial power profiles are flat. All experiments were carried out in upflow with subcooled inlet conditions, insuring accurate flow measurement. Conditions within the bundle were typical of those which could be encountered during a nuclear reactor loss-of-coolant accident
The differential geometry of higher order jets and tangent bundles
De Leon, M.; Rodrigues, P.R.
1985-01-01
This chapter is devoted to the study of basic geometrical notions required for the development of the main object of the text. Some facts about Jet theory are reviewed. A particular case of Jet manifolds is considered: the tangent bundle of higher order. It is shown that this jet bundle possesses in a canonical way a certain kind of geometric structure, the so called almost tangent structure of higher order, and which is a generalization of the almost tangent geometry of the tangent bundle. Another important fact examined is the extension of the notion of 'spray' to higher order tangent bundles. (Auth.)
Restriction Theorem for Principal bundles in Arbitrary Characteristic
Gurjar, Sudarshan
2015-01-01
The aim of this paper is to prove two basic restriction theorem for principal bundles on smooth projective varieties in arbitrary characteristic generalizing the analogues theorems of Mehta-Ramanathan for vector bundles. More precisely, let G be a reductive algebraic group over an algebraically...... closed field k and let X be a smooth, projective variety over k together with a very ample line bundle O(1). The main result of the paper is that if E is a semistable (resp. stable) principal G-bundle on X w.r.t O(1), then the restriction of E to a general, high multi-degree, complete-intersection curve...
Nichita, E., E-mail: Eleodor.Nichita@uoit.ca; Haroon, J., E-mail: Jawad.Haroon@uoit.ca
2016-10-15
Highlights: • A 37-element fuel bundle modified for {sup 99}Mo production in CANDU reactors is presented. • The modified bundle is neutronically and thermal-hydraulically equivalent to the standard bundle. • The modified bundle satisfies all safety criteria satisfied by the standard bundle. - Abstract: {sup 99m}Tc, the most commonly used radioisotope in diagnostic nuclear medicine, results from the radioactive decay of {sup 99}Mo which is currently being produced at various research reactors around the globe. In this study, the potential use of CANDU power reactors for the production of {sup 99}Mo is investigated. A modified 37-element fuel bundle, suitable for the production of {sup 99}Mo in existing CANDU-type reactors is proposed. The new bundle is specifically designed to be neutronically and thermal-hydraulically equivalent to the standard 37-element CANDU fuel bundle in normal, steady-state operation and, at the same time, be able to produce significant quantities of {sup 99}Mo when irradiated in a CANDU reactor. The proposed bundle design uses fuel pins consisting of a depleted-uranium centre surrounded by a thin layer of low-enriched uranium. The new molybdenum-producing bundle is analyzed using the lattice transport code DRAGON and the diffusion code DONJON. The proposed design is shown to produce 4081 six-day Curies of {sup 99}Mo activity per bundle when irradiated in the peak-power channel of a CANDU core, while maintaining the necessary reactivity and power rating limits. The calculated {sup 99}Mo yield corresponds to approximately one third of the world weekly demand. A production rate of ∼3 bundles per week can meet the global demand of {sup 99}Mo.
Confinement-Dependent Friction in Peptide Bundles
Erbaş, Aykut; Netz, Roland R.
2013-01-01
Friction within globular proteins or between adhering macromolecules crucially determines the kinetics of protein folding, the formation, and the relaxation of self-assembled molecular systems. One fundamental question is how these friction effects depend on the local environment and in particular on the presence of water. In this model study, we use fully atomistic MD simulations with explicit water to obtain friction forces as a single polyglycine peptide chain is pulled out of a bundle of k adhering parallel polyglycine peptide chains. The whole system is periodically replicated along the peptide axes, so a stationary state at prescribed mean sliding velocity V is achieved. The aggregation number is varied between k = 2 (two peptide chains adhering to each other with plenty of water present at the adhesion sites) and k = 7 (one peptide chain pulled out from a close-packed cylindrical array of six neighboring peptide chains with no water inside the bundle). The friction coefficient per hydrogen bond, extrapolated to the viscous limit of vanishing pulling velocity V → 0, exhibits an increase by five orders of magnitude when going from k = 2 to k = 7. This dramatic confinement-induced friction enhancement we argue to be due to a combination of water depletion and increased hydrogen-bond cooperativity. PMID:23528088
Real-time wavelet-based inline banknote-in-bundle counting for cut-and-bundle machines
Petker, Denis; Lohweg, Volker; Gillich, Eugen; Türke, Thomas; Willeke, Harald; Lochmüller, Jens; Schaede, Johannes
2011-03-01
Automatic banknote sheet cut-and-bundle machines are widely used within the scope of banknote production. Beside the cutting-and-bundling, which is a mature technology, image-processing-based quality inspection for this type of machine is attractive. We present in this work a new real-time Touchless Counting and perspective cutting blade quality insurance system, based on a Color-CCD-Camera and a dual-core Computer, for cut-and-bundle applications in banknote production. The system, which applies Wavelet-based multi-scale filtering is able to count banknotes inside a 100-bundle within 200-300 ms depending on the window size.
Masataka Deie
2015-01-01
Full Text Available Background. Posterior cruciate ligament (PCL injuries are not rare in acute knee injuries, and several recent anatomical studies of the PCL and reconstructive surgical techniques have generated improved patient results. Now, we have evaluated PCL reconstructions performed by either the single-bundle or double-bundle technique in a patient group followed up retrospectively for more than 10 years. Methods. PCL reconstructions were conducted using the single-bundle (27 cases or double-bundle (13 cases method from 1999 to 2002. The mean age at surgery was 34 years in the single-bundle group and 32 years in the double-bundle group. The mean follow-up period was 12.5 years. Patients were evaluated by Lysholm scoring, the gravity sag view, and knee arthrometry. Results. The Lysholm score after surgery was 89.1±5.6 points for the single-bundle group and 91.9±4.5 points for the double-bundle group. There was no significant difference between the methods in the side-to-side differences by gravity sag view or knee arthrometer evaluation, although several cases in both groups showed a side-to-side difference exceeding 5 mm by the latter evaluation method. Conclusions. We found no significant difference between single- and double-bundle PCL reconstructions during more than 10 years of follow-up.
Hatamleh, Muhanad M; Watts, David C
2011-02-01
To evaluate the effect of three commonly used bond primers on the bending strength of glass fibers and their bond strength to maxillofacial silicone elastomer after 360 hours of accelerated daylight aging. Eighty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer M511 (Cosmesil). Twenty fiber bundles served as control and did not receive surface treatment with primers, whereas the remaining 60 fibers were treated with three primers (n = 20): G611 (Principality Medical), A-304 (Factor II), and A-330-Gold (Factor II). Forty specimens were dry stored at room temperature (23 ± 1°C) for 24 hours, and the remaining specimens were aged using an environmental chamber under accelerated exposure to artificial daylight for 360 hours. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2) ) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. A 3-point bending test was performed to evaluate the bending strength of the fiber bundles. One-way Analysis of Variance (ANOVA), Bonferroni post hoc test, and an independent t-test were carried out to detect statistical significances (p accelerated daylight aging. Treatment with primer and accelerated daylight aging increased bending strength of glass fibers. © 2011 by The American College of Prosthodontists.
Moduli of Parabolic Higgs Bundles and Atiyah Algebroids
Logares, Marina; Martens, Johan
2010-01-01
In this paper we study the geometry of the moduli space of (non-strongly) parabolic Higgs bundles over a Riemann surface with marked points. We show that this space possesses a Poisson structure, extending the one on the dual of an Atiyah algebroid over the moduli space of parabolic vector bundle...
Infinite Grassmannian and moduli space of G-bundles
Kumar, S.; Ramanathan, A.
1993-03-01
Let C be a smooth irreducible projective curve and G a simply connected simple affine algebraic group of C. We study in this paper the relationship between the space of vacua defined in Conformal Field Theory and the space of sections of a line bundle on the moduli space of G-bundles over C. (author). 33 refs
Monoubiquitination Inhibits the Actin Bundling Activity of Fascin.
Lin, Shengchen; Lu, Shuang; Mulaj, Mentor; Fang, Bin; Keeley, Tyler; Wan, Lixin; Hao, Jihui; Muschol, Martin; Sun, Jianwei; Yang, Shengyu
2016-12-30
Fascin is an actin bundling protein that cross-links individual actin filaments into straight, compact, and stiff bundles, which are crucial for the formation of filopodia, stereocillia, and other finger-like membrane protrusions. The dysregulation of fascin has been implicated in cancer metastasis, hearing loss, and blindness. Here we identified monoubiquitination as a novel mechanism that regulates fascin bundling activity and dynamics. The monoubiquitination sites were identified to be Lys 247 and Lys 250 , two residues located in a positive charge patch at the actin binding site 2 of fascin. Using a chemical ubiquitination method, we synthesized chemically monoubiquitinated fascin and determined the effects of monoubiquitination on fascin bundling activity and dynamics. Our data demonstrated that monoubiquitination decreased the fascin bundling EC 50 , delayed the initiation of bundle assembly, and accelerated the disassembly of existing bundles. By analyzing the electrostatic properties on the solvent-accessible surface of fascin, we proposed that monoubiquitination introduced steric hindrance to interfere with the interaction between actin filaments and the positively charged patch at actin binding site 2. We also identified Smurf1 as a E3 ligase regulating the monoubiquitination of fascin. Our findings revealed a previously unidentified regulatory mechanism for fascin, which will have important implications for the understanding of actin bundle regulation under physiological and pathological conditions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Monoubiquitination Inhibits the Actin Bundling Activity of Fascin*
Lin, Shengchen; Lu, Shuang; Mulaj, Mentor; Fang, Bin; Keeley, Tyler; Wan, Lixin; Hao, Jihui; Muschol, Martin; Sun, Jianwei; Yang, Shengyu
2016-01-01
Fascin is an actin bundling protein that cross-links individual actin filaments into straight, compact, and stiff bundles, which are crucial for the formation of filopodia, stereocillia, and other finger-like membrane protrusions. The dysregulation of fascin has been implicated in cancer metastasis, hearing loss, and blindness. Here we identified monoubiquitination as a novel mechanism that regulates fascin bundling activity and dynamics. The monoubiquitination sites were identified to be Lys247 and Lys250, two residues located in a positive charge patch at the actin binding site 2 of fascin. Using a chemical ubiquitination method, we synthesized chemically monoubiquitinated fascin and determined the effects of monoubiquitination on fascin bundling activity and dynamics. Our data demonstrated that monoubiquitination decreased the fascin bundling EC50, delayed the initiation of bundle assembly, and accelerated the disassembly of existing bundles. By analyzing the electrostatic properties on the solvent-accessible surface of fascin, we proposed that monoubiquitination introduced steric hindrance to interfere with the interaction between actin filaments and the positively charged patch at actin binding site 2. We also identified Smurf1 as a E3 ligase regulating the monoubiquitination of fascin. Our findings revealed a previously unidentified regulatory mechanism for fascin, which will have important implications for the understanding of actin bundle regulation under physiological and pathological conditions. PMID:27879315
An overview on rod-bundle thermal-hydraulic analyses
Sha, W.T.
1980-01-01
Three methods used in rod-bundle thermal-hydraulic analysis are summarized. These methods are: (1) subchannel analysis, (2) porous medium formulation with volume porosity, surface permeability, distributed resistance and distributed heat source (sink) and, (3) bench-mark rod-bundle thermal-hydraulic analysis using a boundary-fitted coordinate system. Basic limitations and merits of each method are delineated. (orig.)
The behaviour of Phenix fuel pin bundle under irradiation
Marbach, G.; Millet, P.; Blanchard, P.; Huillery, R.
1979-07-01
An entire Phenix sub-assembly has been mounted and sectioned after irradiation. The examination of cross-sections revealed the effects of mechanical interaction in the bundle (ovalisations and contacts between clads). According to analysis of the sodium channels, cooling of the pin bundle remained uniform. (author)
Smooth Bundling of Large Streaming and Sequence Graphs
Hurter, C.; Ersoy, O.; Telea, A.
2013-01-01
Dynamic graphs are increasingly pervasive in modern information systems. However, understanding how a graph changes in time is difficult. We present here two techniques for simplified visualization of dynamic graphs using edge bundles. The first technique uses a recent image-based graph bundling
Two-categorical bundles and their classifying spaces
Baas, Nils A.; Bökstedt, M.; Kro, T.A.
2012-01-01
-category is a classifying space for the associated principal 2-bundles. In the process of proving this we develop a lot of powerful machinery which may be useful in further studies of 2-categorical topology. As a corollary we get a new proof of the classification of principal bundles. A calculation based...
Multi-bundle shashlik calorimeter prototypes beam-test results
Badier, J.; Bloch, P.; Bityukov, S.; Bordalo, P.; Busson, P.; Charlot, C.; Dobrzynski, L.; Golutvin, I.; Guschin, E.; Issakov, V.; Ivanchenko, I.; Klimenko, V.; Marin, V.; Moissenz, P.; Obraztsov, V.; Ostankov, A.; Popov, V.; Puljak, I.; Ramos, S.; Seez, C.; Sergueev, S.; Soushkov, V.; Tanaka, R.; Varela, J.; Virdee, T.S.; Zaitchenko, A.; Zamiatin, N.
1995-01-01
The first beam-test results for two- and three-bundle shashlik tower prototypes are described. We found that the spatial resolution, the uniformity of energy response, the calorimeter reliability and hermeticity and also two showers separation are improved in multi-bundle design approach. ((orig.))
Stability of Picard Bundle Over Moduli Space of Stable Vector ...
Abstract. Answering a question of [BV] it is proved that the Picard bundle on the moduli space of stable vector bundles of rank two, on a Riemann surface of genus at least three, with fixed determinant of odd degree is stable.
Tokyo Guidelines 2018: management bundles for acute cholangitis and cholecystitis
Mayumi, Toshihiko; Okamoto, Kohji; Takada, Tadahiro; Strasberg, Steven M.; Solomkin, Joseph S.; Schlossberg, David; Pitt, Henry A.; Yoshida, Masahiro; Gomi, Harumi; Miura, Fumihiko; Garden, O. James; Kiriyama, Seiki; Yokoe, Masamichi; Endo, Itaru; Asbun, Horacio J.; Iwashita, Yukio; Hibi, Taizo; Umezawa, Akiko; Suzuki, Kenji; Itoi, Takao; Hata, Jiro; Han, Ho-Seong; Hwang, Tsann-Long; Dervenis, Christos; Asai, Koji; Mori, Yasuhisa; Huang, Wayne Shih-Wei; Belli, Giulio; Mukai, Shuntaro; Jagannath, Palepu; Cherqui, Daniel; Kozaka, Kazuto; Baron, Todd H.; de Santibañes, Eduardo; Higuchi, Ryota; Wada, Keita; Gouma, Dirk J.; Deziel, Daniel J.; Liau, Kui-Hin; Wakabayashi, Go; Padbury, Robert; Jonas, Eduard; Supe, Avinash Nivritti; Singh, Harjit; Gabata, Toshifumi; Chan, Angus C. W.; Lau, Wan Yee; Fan, Sheung Tat; Chen, Miin-Fu; Ker, Chen-Guo; Yoon, Yoo-Seok; Choi, In-Seok; Kim, Myung-Hwan; Yoon, Dong-Sup; Kitano, Seigo; Inomata, Masafumi; Hirata, Koichi; Inui, Kazuo; Sumiyama, Yoshinobu; Yamamoto, Masakazu
2018-01-01
Management bundles that define items or procedures strongly recommended in clinical practice have been used in many guidelines in recent years. Application of these bundles facilitates the adaptation of guidelines and helps improve the prognosis of target diseases. In Tokyo Guidelines 2013 (TG13),
Abdennadher, Ahmed; Vincent, Michel; Budtova, Tatiana
2016-01-01
The rheological properties of short fiber reinforced polypropylene were investigated. Flax and Tencel"® are two cellulose based fibers used in this study. Flax fibers are extracted from the bast of plants. They are composed of thin elementary fibers and rigid thick bundles made of elementary fibers “glued” together. Tencel"® is a man-made cellulosic fiber spun from cellulose solution, with a uniform diameter, thin, and flexible. First, fiber dimensions before and after compounding were analyzed. Both types of fibers were broken during compounding. Flax shows larger length and diameter than Tencel"®, but aspect ratio of flax is smaller. The reason is that after compounding flax remained in bundles. Dynamic viscosity, elastic and viscous moduli were studied as a function of fiber type, concentration (from 0 to 30 wt. %), and composite temperature (from 180 to 200 °C). All Tencel"®-based composites showed higher apparent yield stress, viscosity, and moduli compared to flax-based composites at the same fiber concentrations. The results are analyzed in terms of the influence of fiber type, aspect ratio, and flexibility. The importance of considering fiber morphology is demonstrated as far as it controls fiber flexibility and fiber-fiber interactions
Fabrication of highly conductive carbon nanotube fibers for electrical application
Guo, Fengmei; Li, Can; Wei, Jinquan; Xu, Ruiqiao; Zhang, Zelin; Cui, Xian; Wang, Kunlin; Wu, Dehai
2015-01-01
Carbon nanotubes (CNTs) have great potential for use as electrical wires because of their outstanding electrical and mechanical properties. Here, we fabricate lightweight CNT fibers with electrical conductivity as high as that of stainless steel from macroscopic CNT films by drawing them through diamond wire-drawing dies. The entangled CNT bundles are straightened by suffering tension, which improves the alignment of the fibers. The loose fibers are squeezed by the diamond wire-drawing dies, which reduces the intertube space and contact resistance. The CNT fibers prepared by drawing have an electrical conductivity as high as 1.6 × 10 6 s m −1 . The fibers are very stable when kept in the air and under cyclic tensile test. A prototype of CNT motor is demonstrated by replacing the copper wires with the CNT fibers. (paper)
Application technology for optical fiber in nuclear facilities
Lee, Jong Min; Kim, Chul Jung; Lee, Yong Bum; Kim, Woong Ki; Yoon, Tae Seob; Sohn, Surg Won; Kim, Chang Hoi; Hwang, Suk Yong; Baik, Sung Hum; Kwon, Seong Ouk
1987-12-01
Lately, the optical fiber increasingly used in such adverse environments as nuclear power plant, radiation facilities because of their endurant properties against heat, radiation, corrosion, etc. Moreover, the transmission of signal through optical fiber does not induce interference from the electromagnetic wave. Basic theory about the optical fiber technology was studied and the developed techniques for nuclear facilities were reviewed. Since the radiations change the characteristics of the optical fiber, the effects of γ-ray irradiation on single mode and multimode optical fiber were examined. The image transmission system through optical fiber bundle was designed, constructed, and tested. Its software system was also updated. It can be used for remote internal inspection in adverse environment. (Author)
Gallistel, C R; Leon, M; Lim, B T; Sim, J C; Waraczynski, M
1996-08-01
Rats with an electrode in the medial forebrain bundle (MFB) in or near the ventral tegmental area and another at the level of the rostral hypothalamus sustained large electrolytic lesions at either the rostral or the caudal electrode. The rewarding efficacy of stimulation through the other electrode was determined before and after the lesion. Massive damage to the MFB in the rostral lateral hypothalamus (LH) generally had little effect on the rewarding efficacy of more caudal stimulation, whereas large lesions in the caudal MFB generally reduced the rewarding efficacy of LH stimulation by 35-60%. Similar reductions were produced by knife cuts in the caudal MFB. These results appear to be inconsistent with the hypothesis that the reward fibers consist either of descending or ascending fibers coursing in or near the MFB. It is suggested that the reward fibers are collaterals from neurons with both their somata and their behaviorally significant terminals located primarily in the midbrain.
Bundles over Quantum RealWeighted Projective Spaces
Tomasz Brzeziński
2012-09-01
Full Text Available The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed. Principal U(1-bundles over quantum real weighted projective spaces are constructed. As the spaces in question fall into two separate classes, the negative or odd class that generalises quantum real projective planes and the positive or even class that generalises the quantum disc, so do the constructed principal bundles. In the negative case the principal bundle is proven to be non-trivial and associated projective modules are described. In the positive case the principal bundles turn out to be trivial, and so all the associated modules are free. It is also shown that the circle (coactions on the quantum Seifert manifold that define quantum real weighted projective spaces are almost free.
Development and Assessment of a Bundle Correction Method for CHF
Hwang, Dae Hyun; Chang, Soon Heung
1993-01-01
A bundle correction method, based on the conservation laws of mass, energy, and momentum in an open subchannel, is proposed for the prediction of the critical heat flux (CHF) in rod bundles from round tube CHF correlations without detailed subchannel analysis. It takes into account the effects of the enthalpy and mass velocity distributions at subchannel level using the first dericatives of CHF with respect to the independent parameters. Three different CHF correlations for tubes (Groeneveld's CHF table, Katto correlation, and Biasi correlation) have been examined with uniformly heated bundle CHF data collected from various sources. A limited number of GHE data from a non-uniformly heated rod bundle are also evaluated with the aid of Tong's F-factor. The proposed method shows satisfactory CHF predictions for rod bundles both uniform and non-uniform power distributions. (Author)
Development of nuclear fuel. Development of CANDU advanced fuel bundle
Suk, Ho Chun; Hwang, Woan; Jeong, Young Hwan; Jung, Sung Hoon
1991-07-01
In order to develop CANDU advanced fuel, the agreement of the joint research between KAERI and AECL was made on February 19, 1991. AECL conceptual design of CANFLEX bundle for Bruce reactors was analyzed and then the reference design and design drawing of the advanced fuel bundle with natural uranium fuel for CANDU-6 reactor were completed. The CANFLEX fuel cladding was preliminarily investigated. The fabricability of the advanced fuel bundle was investigated. The design and purchase of the machinery tools for the bundle fabrication for hydraulic scoping tests were performed. As a result of CANFLEX tube examination, the tubes were found to be meet the criteria proposed in the technical specification. The dummy bundles for hydraulic scoping tests have been fabricated by using the process and tools, where the process parameters and tools have been newly established. (Author)
Superconductivity in an Inhomogeneous Bundle of Metallic and Semiconducting Nanotubes
Ilya Grigorenko
2013-01-01
Full Text Available Using Bogoliubov-de Gennes formalism for inhomogeneous systems, we have studied superconducting properties of a bundle of packed carbon nanotubes, making a triangular lattice in the bundle's transverse cross-section. The bundle consists of a mixture of metallic and doped semiconducting nanotubes, which have different critical transition temperatures. We investigate how a spatially averaged superconducting order parameter and the critical transition temperature depend on the fraction of the doped semiconducting carbon nanotubes in the bundle. Our simulations suggest that the superconductivity in the bundle will be suppressed when the fraction of the doped semiconducting carbon nanotubes will be less than 0.5, which is the percolation threshold for a two-dimensional triangular lattice.
Wire-wrap bundle compression-characteristics study. Phase I
Chertock, A.J.
1974-06-01
An analytical computer comparison was made of the compression characteristics of proposed wire-wrap bundles. The study included analysis of 7- and 37-rod straight-start bundles (base configuration), and softened 37-rod configurations. The softened configurations analyzed were: straight-start with distributed wireless fuel rods, and the staggered wire-wrap start angles of 0 0 -30 0 -60 0 and 0 0 -45 0 -90 0 . The compression of the bundle simulates the bundle-to-channel interference at end-of-life conditions at which high differential swelling between the channel and bundle has been predicted. The computer results do not include the so-called dispersion effects. The effects of other variables such as pitch length, creep, axial variations in swelling, and degree of swelling were not studied. These analytic studies give an indication of trends only. No credence should be given to specific quantitative load or deflection results quoted in this report
Zhang, Sheng; Gao, Xiguang; Song, Yingdong
2018-04-01
A new in situ strength model of carbon fibers was developed based on the distribution of defects to predict the stress-strain response and the strength of C/SiC composites. Different levels of defects in the fibers were considered in this model. The defects in the fibers were classified by their effects on the strength of the fiber. The strength of each defect and the probability that the defect appears were obtained from the tensile test of single fibers. The strength model of carbon fibers was combined with the shear-lag model to predict the stress-strain responses and the strengths of fiber bundles and C/SiC minicomposites. To verify the strength model, tensile tests were performed on fiber bundles and C/SiC minicomposites. The predicted and experimental results were in good agreement. Effects of the fiber length, the fiber number and the heat treatment on the final strengths of fiber bundles and C/SiC minicomposites were also discussed.
Delisle, Dennis R
2013-01-01
With passage of the Affordable Care Act, the ever-evolving landscape of health care braces for another shift in the reimbursement paradigm. As health care costs continue to rise, providers are pressed to deliver efficient, high-quality care at flat to minimally increasing rates. Inherent systemwide inefficiencies between payers and providers at various clinical settings pose a daunting task for enhancing collaboration and care coordination. A change from Medicare's fee-for-service reimbursement model to bundled payments offers one avenue for resolution. Pilots using such payment models have realized varying degrees of success, leading to the development and upcoming implementation of a bundled payment initiative led by the Center for Medicare and Medicaid Innovation. Delivery integration is critical to ensure high-quality care at affordable costs across the system. Providers and payers able to adapt to the newly proposed models of payment will benefit from achieving cost reductions and improved patient outcomes and realize a competitive advantage.
Bundling of elastic filaments induced by hydrodynamic interactions
Man, Yi; Page, William; Poole, Robert J.; Lauga, Eric
2017-12-01
Peritrichous bacteria swim in viscous fluids by rotating multiple helical flagellar filaments. As the bacterium swims forward, all its flagella rotate in synchrony behind the cell in a tight helical bundle. When the bacterium changes its direction, the flagellar filaments unbundle and randomly reorient the cell for a short period of time before returning to their bundled state and resuming swimming. This rapid bundling and unbundling is, at its heart, a mechanical process whereby hydrodynamic interactions balance with elasticity to determine the time-varying deformation of the filaments. Inspired by this biophysical problem, we present in this paper what is perhaps the simplest model of bundling whereby two or more straight elastic filaments immersed in a viscous fluid rotate about their centerline, inducing rotational flows which tend to bend the filaments around each other. We derive an integrodifferential equation governing the shape of the filaments resulting from mechanical balance in a viscous fluid at low Reynolds number. We show that such equation may be evaluated asymptotically analytically in the long-wavelength limit, leading to a local partial differential equation governed by a single dimensionless bundling number. A numerical study of the dynamics predicted by the model reveals the presence of two configuration instabilities with increasing bundling numbers: first to a crossing state where filaments touch at one point and then to a bundled state where filaments wrap along each other in a helical fashion. We also consider the case of multiple filaments and the unbundling dynamics. We next provide an intuitive physical model for the crossing instability and show that it may be used to predict analytically its threshold and adapted to address the transition to a bundling state. We then use a macroscale experimental implementation of the two-filament configuration in order to validate our theoretical predictions and obtain excellent agreement. This long
Israelsen, Stine Møller
This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their excitation and characteristics. Within the last decades, HOMs have been applied both for space multiplexing in optical communications, group velocity dispersion management and sensing among others......-radial polarization as opposed to the linear polarization of the LP0X modes. The effect is investigated numerically in a double cladding fiber with an outer aircladding using a full vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating and their free space characteristics...... and polarization state are investigated. For this fiber, the onset of the bowtie effect is shown numerically to be LP011. The characteristics usually associated with Bessel-likes modes such as long diffraction free length and selfhealing are shown to be conserved despite the lack of azimuthal symmetry...
Schalk, S.
1999-01-01
In contrast to the neo-classical theory of Arrow and Debreu, a model of a private ownership economy is presented, in which production and consumption bundles are treated separately. Each of the two types of bundles is assumed to establish a con- vex cone. Production technologies can convert
Kurosawa, H.; Becker, A. E.
1985-01-01
A stillborn baby girl was found to have an anomalous muscle bundle of the right ventricle, associated with a doubly committed subarterial ventricular septal defect. The latter was separated from the area of the atrioventricular conduction bundle by muscle. Serial histologic sectioning of the
Detection system using scintillating optical fibers and image tube readout
Alspector, J.; Borenstein, S.
1979-01-01
The hodoscope subgroup has studied a detection system consisting of bundles of optical fibers with readout via image tubes. The basic building block is an optical fiber with a scintillator inner core. The inner core has refractive index n/sub o/ (1.58 for plastic scintillator), and the outer sheath has a low index (approx. 1.4). Light is created in the core by passage of a particle track; if the light strikes the sheath at an angle greater than the critical angle phi/sub c/, it is trapped in the fiber until it finds its way to the photon detector
Air driven fiber optic coupled pulser system for ZT-40
Nunnally, W.C.; Brousseau, A.T.
1977-01-01
The design, construction, and operation of an air powered fiber optic coupled pulser system for initiating various high-voltage systems in the ZT-40 experiment is displayed. The air fiber optic system provides complete electrical isolation of the experimental high-voltage circuits from the digital timing and control circuits. In addition, this pulser system prevents cross talk between individual output channels and eliminates trigger system ground loops. The system uses an additional fiber optic bundle to confirm pulser output in the screen room
Optical Fiber Array Assemblies for Space Flight on the Lunar Reconnaissance Orbiter
Ott, Jelanie; Matuszeski, Adam
2011-01-01
Custom fiber optic bundle array assemblies developed by the Photonics Group at NASA Goddard Space Flight Center were an enabling technology for both the Lunar Orbiter Laser Altimeter (LOLA) and the Laser Ranging (LR) Investigation on the Lunar Reconnaissance Orbiter (LRO) currently in operation. The unique assembly array designs provided considerable decrease in size and weight and met stringent system level requirements. This is the first time optical fiber array bundle assemblies were used in a high performance space flight application. This innovation was achieved using customized Diamond Switzerland AVIM optical connectors. For LOLA, a five fiber array was developed for the receiver telescope to maintain precise alignment for each of the 200/220 micron optical fibers collecting 1,064 nm wavelength light being reflected back from the moon. The array splits to five separate detectors replacing the need for multiple telescopes. An image illustration of the LOLA instrument can be found at the top of the figure. For the laser ranging, a seven-optical-fiber array of 400/440 micron fibers was developed to transmit light from behind the LR receiver telescope located on the end of the high gain antenna system (HGAS). The bundle was routed across two moving gimbals, down the HGAS boom arm, over a deployable mandrel and across the spacecraft to a detector on the LOLA instrument. The routing of the optical fiber bundle and its end locations is identified in the figure. The Laser Ranging array and bundle is currently accepting light at a wavelength of 532 nm sent to the moon from laser stations at Greenbelt MD and other stations around the world to gather precision ranging information from the Earth to the LRO spacecraft. The LR bundle assembly is capable of withstanding temperatures down to -55 C at the connectors, and 20,000 mechanical gimbal cycles at temperatures as cold as -20 C along the length of the seven-fiber bundle (that is packaged into the gimbals). The total
Cost-effectiveness of a central venous catheter care bundle.
Kate A Halton
Full Text Available BACKGROUND: A bundled approach to central venous catheter care is currently being promoted as an effective way of preventing catheter-related bloodstream infection (CR-BSI. Consumables used in the bundled approach are relatively inexpensive which may lead to the conclusion that the bundle is cost-effective. However, this fails to consider the nontrivial costs of the monitoring and education activities required to implement the bundle, or that alternative strategies are available to prevent CR-BSI. We evaluated the cost-effectiveness of a bundle to prevent CR-BSI in Australian intensive care patients. METHODS AND FINDINGS: A Markov decision model was used to evaluate the cost-effectiveness of the bundle relative to remaining with current practice (a non-bundled approach to catheter care and uncoated catheters, or use of antimicrobial catheters. We assumed the bundle reduced relative risk of CR-BSI to 0.34. Given uncertainty about the cost of the bundle, threshold analyses were used to determine the maximum cost at which the bundle remained cost-effective relative to the other approaches to infection control. Sensitivity analyses explored how this threshold alters under different assumptions about the economic value placed on bed-days and health benefits gained by preventing infection. If clinicians are prepared to use antimicrobial catheters, the bundle is cost-effective if national 18-month implementation costs are below $1.1 million. If antimicrobial catheters are not an option the bundle must cost less than $4.3 million. If decision makers are only interested in obtaining cash-savings for the unit, and place no economic value on either the bed-days or the health benefits gained through preventing infection, these cost thresholds are reduced by two-thirds. CONCLUSIONS: A catheter care bundle has the potential to be cost-effective in the Australian intensive care setting. Rather than anticipating cash-savings from this intervention, decision
A thermal mixing model of crossflow in tube bundles for use with the porous body approximation
Ashcroft, J.; Kaminski, D.A.
1996-06-01
Diffusive thermal mixing in a heated tube bundle with a cooling fluid in crossflow was analyzed numerically. From the results of detailed two-dimensional models, which calculated the diffusion of heat downstream of one heated tube in an otherwise adiabatic flow field, a diffusion model appropriate for use with the porous body method was developed. The model accounts for both molecular and turbulent diffusion of heat by determining the effective thermal conductivity in the porous region. The model was developed for triangular shaped staggered tube bundles with pitch to diameter ratios between 1.10 and 2.00 and for Reynolds numbers between 1,000 and 20,000. The tubes are treated as nonconducting. Air and water were considered as working fluids. The effective thermal conductivity was found to be linearly dependent on the tube Reynolds number and fluid Prandtl number, and dependent on the bundle geometry. The porous body thermal mixing model was then compared against numerical models for flows with multiple heated tubes with very good agreement
Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Shakerian, Farid; Shiralian Esfahani, Golnaz
2013-01-01
Graphical abstract: Pass the sample through the basic alumina column ⇒ elute retained uranium along with the cations ⇒ convert the uranium to its anionic benzoate complex ⇒ extract its ion pair with malachite green into small volume of chloroform by DLLME ⇒ measure its absorption at 621 nm using fiber optic-linear array detection spectrophotometry. -- Highlights: • By combination of SPE and DDLME a high preconcentration factor of 2500 was obtained. • Development of SPE-DDLME-Spectrophotometric method for det. of trace amounts of uranium. • Ultra trace amount of uranium in water samples was det. by the proposed method. • The detection limit of the proposed method is comparable to the most sensitive method. • The proposed method is a free interference spectrophotometric method for uranium det. -- Abstract: A simple and sensitive method for the separation and preconcentration of the ultra trace amounts of uranium and its determination by spectrophotometry was developed. The method is based on the combination of solid phase extraction and dispersive liquid–liquid microextraction. Thus, by passing the sample through the basic alumina column, the uranyl ion and some cations are separated from the sample matrix. The retained uranyl ion along with the cations are eluted with 5 mL of nitric acid (2 mol L −1 ) and after neutralization of the eluent, the extracted uranyl ion is converted to its anionic benzoate complex and is separated from other cations by extraction of its ion pair with malachite green into small volume of chloroform using dispersive liquid–liquid microextraction. The amount of uranium is then determined by the absorption measurement of the extracted ion pair at 621 nm using flow injection spectrophotometry. Under the optimum conditions, with 500 mL of the sample, a preconcentration factor of 1980, a detection limit of 40 ng L −1 , and a relative standard deviation of 4.1% (n = 6) at 400 ng L −1 were obtained. The method was
Suwono.
1978-01-01
A linear gate providing a variable gate duration from 0,40μsec to 4μsec was developed. The electronic circuity consists of a linear circuit and an enable circuit. The input signal can be either unipolar or bipolar. If the input signal is bipolar, the negative portion will be filtered. The operation of the linear gate is controlled by the application of a positive enable pulse. (author)
Dubois, J.; Perrin, M.; Mangin, J.F.; Cointepas, Y.; Duchesnay, E.; Le Bihan, D.; Hertz-Pannier, L.; Dehaene-Lambertz, G.; Dubois, J.; Dehaene-Lambertz, G.; Perrin, M.; Mangin, J.F.; Cointepas, Y.; Duchesnay, E.; Le Bihan, D.; Hertz-Pannier, L.
2008-01-01
Normal cognitive development in infants follows a well-known temporal sequence, which is assumed to be correlated with the structural maturation of underlying functional networks. Postmortem studies and, more recently, structural MR imaging studies have described qualitatively the heterogeneous spatio-temporal progression of white matter myelination. However, in vivo quantification of the maturation phases of fiber bundles is still lacking. We used noninvasive diffusion tensor MR imaging and tractography in twenty-three 1-4-month-old healthy infants to quantify the early maturation of the main cerebral fascicles. A specific maturation model, based on the respective roles of different maturational processes on the diffusion phenomena, was designed to highlight asynchronous maturation across bundles by evaluating the time-course of mean diffusivity and anisotropy changes over the considered developmental period. Using an original approach, a progression of maturation in four relative stages was determined in each tract by estimating the maturation state and speed, from the diffusion indices over the infants group compared with an adults group on one hand, and in each tract compared with the average over bundles on the other hand. Results were coherent with, and extended previous findings in 8 of 11 bundles, showing the anterior limb of the internal capsule and cingulum as the most immature, followed by the optic radiations, arcuate and inferior longitudinal fascicles, then the spino-thalamic tract and fornix, and finally the cortico-spinal tract as the most mature bundle. Thus, this approach provides new quantitative landmarks for further noninvasive research on brain-behavior relationships during normal and abnormal development. (authors)
Vretenar, M
2014-01-01
The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics
Aligned Layers of Silver Nano-Fibers
Andrii B. Golovin
2012-02-01
Full Text Available We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.
Equilibrium polyelectrolyte bundles with different multivalent counterion concentrations
Sayar, Mehmet; Holm, Christian
2010-09-01
We present the results of molecular-dynamics simulations on the salt concentration dependence of the formation of polyelectrolyte bundles in thermodynamic equilibrium. Extending our results on salt-free systems we investigate here deficiency or excess of trivalent counterions in solution. Our results reveal that the trivalent counterion concentration significantly alters the bundle size and size distribution. The onset of bundle formation takes place at earlier Bjerrum length values with increasing trivalent counterion concentration. For the cases of 80%, 95%, and 100% charge compensation via trivalent counterions, the net charge of the bundles decreases with increasing size. We suggest that competition among two different mechanisms, counterion condensation and merger of bundles, leads to a nonmonotonic change in line-charge density with increasing Bjerrum length. The investigated case of having an abundance of trivalent counterions by 200% prohibits such a behavior. In this case, we find that the difference in effective line-charge density of different size bundles diminishes. In fact, the system displays an isoelectric point, where all bundles become charge neutral.
Single-phase convective heat transfer in rod bundles
Holloway, Mary V.; Beasley, Donald E.; Conner, Michael E.
2008-01-01
The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids
Single-phase convective heat transfer in rod bundles
Holloway, Mary V. [Mechanical Engineering Department, United States Naval Academy, 590 Holloway Rd., Annapolis, MD 21402 (United States)], E-mail: holloway@usna.edu; Beasley, Donald E. [Mechanical Engineering Department, Clemson University, Clemson, SC 29634 (United States); Conner, Michael E. [Westinghouse Nuclear Fuel, 5801 Bluff Road, Columbia, SC 29250 (United States)
2008-04-15
The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids.
Bundling Actin Filaments From Membranes: Some Novel Players
Clément eThomas
2012-08-01
Full Text Available Progress in live-cell imaging of the cytoskeleton has significantly extended our knowledge about the organization and dynamics of actin filaments near the plasma membrane of plant cells. Noticeably, two populations of filamentous structures can be distinguished. On the one hand, fine actin filaments which exhibit an extremely dynamic behavior basically characterized by fast polymerization and prolific severing events, a process referred to as actin stochastic dynamics. On the other hand, thick actin bundles which are composed of several filaments and which are comparatively more stable although they constantly remodel as well. There is evidence that the actin cytoskeleton plays critical roles in trafficking and signaling at both the cell cortex and organelle periphery but the exact contribution of actin bundles remains unclear. A common view is that actin bundles provide the long-distance tracks used by myosin motors to deliver their cargo to growing regions and accordingly play a particularly important role in cell polarization. However, several studies support that actin bundles are more than simple passive highways and display multiple and dynamic roles in the regulation of many processes, such as cell elongation, polar auxin transport, stomatal and chloroplast movement, and defense against pathogens. The list of identified plant actin-bundling proteins is ever expanding, supporting that plant cells shape structurally and functionally different actin bundles. Here I review the most recently characterized actin-bundling proteins, with a particular focus on those potentially relevant to membrane trafficking and/or signaling.
Linearization Method and Linear Complexity
Tanaka, Hidema
We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N(≅2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.
Detection of Beta-rays by using Plastic Scintillating Fibers
Park, Chan Hee
2005-02-01
Optical fibers have been used as sensing materials in various nuclear applications. Optical fiber sensors have proven to present several advantages as compared with other conventional sensors. They can be prepared in very small sizes and they are light enough to be easily put into very narrow channels such as between nuclear to be easily put into very narrow channels such as between nuclear fuel rods. No electrical power is needed to the sensor part so they are less susceptible to troubles in harsh environments such as underground and underwater. Optical fiber sensors cost relatively cheap to make, so that they are more suitable for multi-point radiation monitoring such as in nuclear power plants, accelerators, fusion study facilities. If one develops radiation sensors using scintillating optical fibers, that can directly measure the concentration of 3 H or 14 C in radioactive liquid, they can be useful tools to substitute the current liquid scintillation counters. They can be also used to measure the radioactivity of liquid radioactive wastes by dipping into the liquid wastes. Recently, several new scintillating materials of high density and low hygroscopicity have been found, and they can be transformed into good radiation-detection tools when they are combined with optical fibers. In this study, we have used commercially available plastic scintillating fibers of Bicron model BCF-12 (0.5mm, 1mm in diameter) to detect beta rays emitted from 3 H, 14 C. Several types of radiation sensors were constructed : each was constructed with thirty strands of the fibers being packed an aluminum tube. The optical signals generated inside the fiber bundle were converted into electrical pluses by a photomultiplier tube(PMT). The pulses were counted either through a non-coincidence circuit or a coincidence circuit. Two types of sensors were constructed for the non-coincidence counting. The open type (sensor A) is a sensor for which one end of the fibers is open and the other end
Jie Shen
2015-01-01
Full Text Available We describe an extension of the redistributed technique form classical proximal bundle method to the inexact situation for minimizing nonsmooth nonconvex functions. The cutting-planes model we construct is not the approximation to the whole nonconvex function, but to the local convexification of the approximate objective function, and this kind of local convexification is modified dynamically in order to always yield nonnegative linearization errors. Since we only employ the approximate function values and approximate subgradients, theoretical convergence analysis shows that an approximate stationary point or some double approximate stationary point can be obtained under some mild conditions.
Contribution at the vibrations study of tube bundles in a transversal flow
Antunes, J.
1986-03-01
The steam generators tubes bundles attended vibratory risks under flow. In this work we present the experimental and theoretical analysis which shows the necessary to approach this problem with taking into account the non-linear dynamic interaction between tubes and supports. An entirety of experiences put in clearness the importance of little clearance between the tubes and their supports. Methods for numerical simulation of the tubes vibratory response are proposed. Parametric analysis are presented, which permit to find simple laws concerning the influence of system parameters on its vibratory behaviour. This work is completed by analytical study of two unstable oscillators [fr
Sutton, Jacob O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-03-08
The principles used in fiber lasers have been around for a while but it is only within the past few years that fiber lasers have become commercially available and used in high power laser applications. This paper will focus on the basic design principles of fiber lasers, including fiber Bragg gratings, principles of operation, and forms of non-linear effects. It will describe the type and associated doping of the fiber used and difficult designs used to guide energy from the pump to the active medium. Topics covered include fiber laser design, fiber Bragg gratings, materials used, differences in quantum energy loss, thermo-optical effects, stimulated Raman scattering, Brillouin scattering, photonic crystal fibers and applications of gas filled Photonic Crystal Fibers (PCFs). Thanks to fiber lasers, the energy required to produce high power lasers has greatly dropped and as such we can now produce kW power using a standard 120V 15A circuit. High power laser applications are always requiring more power. The fiber laser can now deliver the greater power that these applications demand. Future applications requiring more power than can be combined using standard materials or configurations will need to be developed to overcome the high energy density and high non-linear optical scattering effects present during high power operations.
Nucleate boiling heat transfer on horizontal tubes in bundles
Fujital, Y.; Ohta, H.; Hidaka, S.; Nishikawa, K.
1986-01-01
In order to clarify the heat transfer mechanisms of the flooded type horizontal tube bundle evaporator, heat transfer characteristics of tube bundles of experimental scale which consist both of smooth and enhanced tubes were investigated in detail. The experiments of saturated nucleate boiling were performed by using Freon 113 under pressures 0.1 to 1 MPa, and the effects of various parameters, for example, bundle arrangement, heat flux, pressure on the characteristics of an individual tube are clarified. Experimental data is reproduced well by a proposed heat transfer model in which convective heat transfer coefficients due to rising bubbles are estimated as a function of their volumetric flow rate
Steady state heat transfer of helium cooled cable bundles
Khalil, A.
1982-01-01
In the present study nucleate and film boiling heat transfer characteristics of horizontal conductor bundles are investigated at steady state conditions. The effect of gaps between wires, number of wires, wire position, wire size and bundle orientation on the departure from nucleate boiling and transition to film boiling is studied. For gaps close to the bubble departure diameter, the critical heat flux can approach up to 90% of the single wire value. Consequently, the maximum stable current for a given bundle can be significantly increased above the single conductor value for the same cross-sectional area. (author)
On the existence of n-dimensional indecomposable vector bundles
Tan Xiaojiang.
1991-09-01
Let X be an arbitrary smooth irreducible complex projective curve of genus g with g ≥ 4. In this paper we extend the existence theorem of special divisors to high dimensional indecomposable vector bundles. We give a necessary and sufficient condition on the existence of n-dimensional indecomposable vector bundles E with deg(E) = d, dimH 0 (X,E) ≥ h. We also determine under what condition the set of all such vector bundles will be finite and how many elements it contains. (author). 9 refs
Said-Houari, Belkacem
2017-01-01
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...
In-Situ Three-Dimensional Shape Rendering from Strain Values Obtained Through Optical Fiber Sensors
Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)
2015-01-01
A method and system for rendering the shape of a multi-core optical fiber or multi-fiber bundle in three-dimensional space in real time based on measured fiber strain data. Three optical fiber cores arc arranged in parallel at 120.degree. intervals about a central axis. A series of longitudinally co-located strain sensor triplets, typically fiber Bragg gratings, are positioned along the length of each fiber at known intervals. A tunable laser interrogates the sensors to detect strain on the fiber cores. Software determines the strain magnitude (.DELTA.L/L) for each fiber at a given triplet, but then applies beam theory to calculate curvature, beading angle and torsion of the fiber bundle, and from there it determines the shape of the fiber in s Cartesian coordinate system by solving a series of ordinary differential equations expanded from the Frenet-Serrat equations. This approach eliminates the need for computationally time-intensive curve-tilting and allows the three-dimensional shape of the optical fiber assembly to be displayed in real-time.
Assembly mechanism for nuclear fuel bundles
Long, J.W.; Flora, B.S.
1977-01-01
A method of securing a fuel bundle to permit easy remote disassembly is described. Fuel rods are held loosely between end plates, each end of the rods fitting into holes in the end plates. At the upper end of each fuel rod there is a spring pressing against the end plate. Tie rods are used to hold the end plates together securely. The lower end of each tie rod is screwed into the lower end plate; the upper end of each tie rod is attached to the upper end plate by means of a locking assembly described in the patent. In order to remove the upper tie plate during the disassembly process, it is necessary only to depress the tie plate against the pressure of the springs surrounding the fuel rods and then to rotate each locking sleeve on the tie rods from its locked to its unlocked position. It is then possible to remove the tie plate without disassembling the locking assembly. (LL)
Two Fiber Optical Fiber Thermometry
Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.
2000-01-01
An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.
Liu, Ming; Fernando, Dinesh; Meyer, Anne S.
2015-01-01
The wide variation of mechanical properties of natural fibers limits their applications in matrix compos-ites. The aim of this study is to evaluate the properties of hemp fibers from different stem sections (top,middle and bottom) and to assess fungal retting pretreatment of hemp from different...... stem sections withthe white rot fungi Phlebia radiata Cel 26 and Ceriporiopsis subvermispora. For the untreated hemp fibers,no apparent difference in tensile behavior for fiber bundles from different stem sections was observed,and more than 90% tested samples demonstrated plastic flow behavior. Fiber...... strength and stiffness werehighest for the fibers from the top and middle stem sections. These properties were related to the compositional make up and morphological properties of hemp fibers, notably the secondary fiber cell contents.In fungal retting, there was a strong dependence of depectinization...
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Development of a new bundle welding technology for CANDU fuels
Kim, Soo Sung; Lee, D. Y.; Goo, D. S.
2010-01-01
The new technology of welding process for fuel bundle of CANDU nuclear fuels is considered important in respect to the soundness of weldments and the improvement of the performance of nuclear fuels during the operation in reactor. The probability of leakage of the fission products is mostly apt to occur at the weldments of fuel bundles, and it is connected directly with the safety and life prediction of the nuclear reactor in operation. The fuel bundles of CANDU nuclear fuels are welded by the electrical resistance method, connecting the endplates and endcaps with fuel rods. Therefore, the purpose of this study of the 2nd year is to select the proper welding parameters and to investigate the characteristics of the full-sized samples using the projection endplates and make some prototype samples for the endplate welding of CANDU nuclear fuels. This study will be also provide the fundamental data for the new design and fabrications of CANDU nuclear fuel bundles
Improved Conjugate Gradient Bundle Adjustment of Dunhuang Wall Painting Images
Hu, K.; Huang, X.; You, H.
2017-09-01
Bundle adjustment with additional parameters is identified as a critical step for precise orthoimage generation and 3D reconstruction of Dunhuang wall paintings. Due to the introduction of self-calibration parameters and quasi-planar constraints, the structure of coefficient matrix of the reduced normal equation is banded-bordered, making the solving process of bundle adjustment complex. In this paper, Conjugate Gradient Bundle Adjustment (CGBA) method is deduced by calculus of variations. A preconditioning method based on improved incomplete Cholesky factorization is adopt to reduce the condition number of coefficient matrix, as well as to accelerate the iteration rate of CGBA. Both theoretical analysis and experimental results comparison with conventional method indicate that, the proposed method can effectively conquer the ill-conditioned problem of normal equation and improve the calculation efficiency of bundle adjustment with additional parameters considerably, while maintaining the actual accuracy.
IMPROVED CONJUGATE GRADIENT BUNDLE ADJUSTMENT OF DUNHUANG WALL PAINTING IMAGES
K. Hu
2017-09-01
Full Text Available Bundle adjustment with additional parameters is identified as a critical step for precise orthoimage generation and 3D reconstruction of Dunhuang wall paintings. Due to the introduction of self-calibration parameters and quasi-planar constraints, the structure of coefficient matrix of the reduced normal equation is banded-bordered, making the solving process of bundle adjustment complex. In this paper, Conjugate Gradient Bundle Adjustment (CGBA method is deduced by calculus of variations. A preconditioning method based on improved incomplete Cholesky factorization is adopt to reduce the condition number of coefficient matrix, as well as to accelerate the iteration rate of CGBA. Both theoretical analysis and experimental results comparison with conventional method indicate that, the proposed method can effectively conquer the ill-conditioned problem of normal equation and improve the calculation efficiency of bundle adjustment with additional parameters considerably, while maintaining the actual accuracy.
Some applications on tangent bundle with Kaluza-Klein metric
Murat Altunbaş
2017-01-01
Full Text Available In this paper, differential equations of geodesics; parallelism, incompressibility and closeness conditions of the horizontal and complete lift of the vector fields are investigated with respect to Kaluza-Klein metric on tangent bundle.
Topological T-duality for torus bundles with monodromy
Baraglia, David
2015-05-01
We give a simplified definition of topological T-duality that applies to arbitrary torus bundles. The new definition does not involve Chern classes or spectral sequences, only gerbes and morphisms between them. All the familiar topological conditions for T-duals are shown to follow. We determine necessary and sufficient conditions for existence of a T-dual in the case of affine torus bundles. This is general enough to include all principal torus bundles as well as torus bundles with arbitrary monodromy representations. We show that isomorphisms in twisted cohomology, twisted K-theory and of Courant algebroids persist in this general setting. We also give an example where twisted K-theory groups can be computed by iterating T-duality.
Design and synthesis of DNA four-helix bundles
Rangnekar, Abhijit; Gothelf, Kurt V [Department of Chemistry, Centre for DNA Nanotechnology (CDNA) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C (Denmark); LaBean, Thomas H, E-mail: kvg@chem.au.dk, E-mail: thl@cs.duke.edu [Department of Chemistry, Duke University, Durham, NC 27708 (United States)
2011-06-10
The field of DNA nanotechnology has evolved significantly in the past decade. Researchers have succeeded in synthesizing tile-based structures and using them to form periodic lattices in one, two and three dimensions. Origami-based structures have also been used to create nanoscale structures in two and three dimensions. Design and construction of DNA bundles with fixed circumference has added a new dimension to the field. Here we report the design and synthesis of a DNA four-helix bundle. It was found to be extremely rigid and stable. When several such bundles were assembled using appropriate sticky-ends, they formed micrometre-long filaments. However, when creation of two-dimensional sheet-like arrays of the four-helix bundles was attempted, nanoscale rings were observed instead. The exact reason behind the nanoring formation is yet to be ascertained, but it provides an exciting prospect for making programmable circular nanostructures using DNA.
Design and synthesis of DNA four-helix bundles
Rangnekar, Abhijit; Gothelf, Kurt V; LaBean, Thomas H
2011-01-01
The field of DNA nanotechnology has evolved significantly in the past decade. Researchers have succeeded in synthesizing tile-based structures and using them to form periodic lattices in one, two and three dimensions. Origami-based structures have also been used to create nanoscale structures in two and three dimensions. Design and construction of DNA bundles with fixed circumference has added a new dimension to the field. Here we report the design and synthesis of a DNA four-helix bundle. It was found to be extremely rigid and stable. When several such bundles were assembled using appropriate sticky-ends, they formed micrometre-long filaments. However, when creation of two-dimensional sheet-like arrays of the four-helix bundles was attempted, nanoscale rings were observed instead. The exact reason behind the nanoring formation is yet to be ascertained, but it provides an exciting prospect for making programmable circular nanostructures using DNA.
Introductory lectures on fibre bundles and topology for physicists
Thomas, G.H.
1978-05-01
These lectures may provide useful background material for understanding gauge theories, particularly the nonperturbative effects such as instantons and monopoles. The mathematical language of topology and fibre bundles is introduced
Fuel rod bundles proposed for advanced pressure tube nuclear reactors
Prodea, Iosif; Catana, Alexandru
2010-01-01
The paper aims to be a general presentation for fuel bundles to be used in Advanced Pressure Tube Nuclear Reactors (APTNR). The characteristics of such a nuclear reactor resemble those of known advanced pressure tube nuclear reactors like: Advanced CANDU Reactor (ACR TM -1000, pertaining to AECL) and Indian Advanced Heavy Water Reactor (AHWR). We have also developed a fuel bundle proposal which will be referred as ASEU-43 (Advanced Slightly Enriched Uranium with 43 rods). The ASEU-43 main design along with a few neutronic and thermalhydraulic characteristics are presented in the paper versus similar ones from INR Pitesti SEU-43 and CANDU-37 standard fuel bundles. General remarks regarding the advantages of each fuel bundle and their suitability to be burned in an APTNR reactor are also revealed. (authors)
On the classification of complex vector bundles of stable rank
, the tuples of cohomology classes on a compact, complex manifold, corresponding to the Chern classes of a complex vector bundle of stable rank. This classification becomes more effective on generalized flag manifolds, where the Lie ...
Introductory lectures on fibre bundles and topology for physicists
Thomas, G.H.
1978-05-01
These lectures may provide useful background material for understanding gauge theories, particularly the nonperturbative effects such as instantons and monopoles. The mathematical language of topology and fibre bundles is introduced.
CANFLEX fuel bundle cross-flow endurance test (test report)
Hong, Sung Deok; Chung, C. H.; Chang, S. K.; Kim, B. D.
1997-04-01
As part of the normal refuelling sequence of CANDU nuclear reactor, both new and irradiated bundles can be parked in the cross-flow region of the liner tubes. This situation occurs normally for a few minutes. The fuel bundle which is subjected to the cross-flow should be capable of withstanding the consequences of cross flow for normal periods, and maintain its mechanical integrity. The cross-flow endurance test was conducted for CANFLEX bundle, latest developed nuclear fuel, at CANDU-Hot Test Loop. The test was carried out during 4 hours at the inlet cross-flow region. After the test, the bundle successfully met all acceptance criteria after the 4 hours cross-flow test. (author). 2 refs., 3 tabs
Broadband and flexible acoustic focusing by metafiber bundles
Sun, Hong-Xiang; Chen, Jia-He; Ge, Yong; Yuan, Shou-Qi; Liu, Xiao-Jun
2018-06-01
We report a broadband and flexible acoustic focusing through metafiber bundles in air, in which each metafiber consists of eight circular and narrow rectangular cavities. The fractional bandwidth of the acoustic focusing could reach about 0.2, which arises from the eigenmodes of the metafiber structure. Besides, owing to the flexible characteristic of the metafibers, the focus position can be manipulated by bending the metafiber bundles, and the metafiber bundles could bypass rigid scatterers inside the lens structure. More interestingly, the acoustic propagation and focusing directions can be changed by using a designed right-angled direction converter fabricated by the metafibers, and a waveform converter and a focusing lens of the cylindrical acoustic source are realized based on the metafiber bundles. The proposed focusing lens has the advantages of broad bandwidth, flexible structure, and high focusing performance, showing great potentials in versatile applications.
Bundles of Norms About Teen Sex and Pregnancy.
Mollborn, Stefanie; Sennott, Christie
2015-09-01
Teen pregnancy is a cultural battleground in struggles over morality, education, and family. At its heart are norms about teen sex, contraception, pregnancy, and abortion. Analyzing 57 interviews with college students, we found that "bundles" of related norms shaped the messages teens hear. Teens did not think their communities encouraged teen sex or pregnancy, but normative messages differed greatly, with either moral or practical rationalizations. Teens readily identified multiple norms intended to regulate teen sex, contraception, abortion, childbearing, and the sanctioning of teen parents. Beyond influencing teens' behavior, norms shaped teenagers' public portrayals and post hoc justifications of their behavior. Although norm bundles are complex to measure, participants could summarize them succinctly. These bundles and their conflicting behavioral prescriptions create space for human agency in negotiating normative pressures. The norm bundles concept has implications for teen pregnancy prevention policies and can help revitalize social norms for understanding health behaviors. © The Author(s) 2014.
Reactor physics assessment of modified 37-element CANDU fuel bundles
Pristavu, R.; Rizoiu, A.
2016-01-01
Reducing the central element diameter in order to improve the total flow area of CANDU fuel bundle and redistribute the power density of all remaining elements was studied in Canada and Korea when considering the effect of aging pressure tube diametral creep. The aim of this paper is to study the modified bundle behavior using the transport codes WIMS and DRAGON. In calculations, a WIMS nuclear data library on 172 energy groups was used. 2-D transport calculations were performed with WIMS and DRAGON, leading to similar results in estimated cell parameters. Additionally, 3-D DRAGON calculations were carried on in order to evaluate the local flux distribution shift, as well as the incremental cross sections for supercells containing modified CANDU bundles and reactivity devices. The overall effect of using modified fuel bundles was meaningless for both cell and supercell parameters, thus ensuring this possibility of fuel improvement for thermal-hydraulic purposes only. (authors)
National Partnership for Maternal Safety: Consensus Bundle on Obstetric Hemorrhage.
Main, Elliott K; Goffman, Dena; Scavone, Barbara M; Low, Lisa Kane; Bingham, Debra; Fontaine, Patricia L; Gorlin, Jed B; Lagrew, David C; Levy, Barbara S
2015-07-01
Hemorrhage is the most frequent cause of severe maternal morbidity and preventable maternal mortality and therefore is an ideal topic for the initial national maternity patient safety bundle. These safety bundles outline critical clinical practices that should be implemented in every maternity unit. They are developed by multidisciplinary work groups of the National Partnership for Maternal Safety under the guidance of the Council on Patient Safety in Women's Health Care. The safety bundle is organized into four domains: Readiness, Recognition and Prevention, Response, and Reporting and System Learning. Although the bundle components may be adapted to meet the resources available in individual facilities, standardization within an institution is strongly encouraged. References contain sample resources and "Potential Best Practices" to assist with implementation.
National Partnership for Maternal Safety Consensus Bundle on Obstetric Hemorrhage.
Main, Elliott K; Goffman, Dena; Scavone, Barbara M; Low, Lisa Kane; Bingham, Debra; Fontaine, Patricia L; Gorlin, Jed B; Lagrew, David C; Levy, Barbara S
2015-01-01
Hemorrhage is the most frequent cause of severe maternal morbidity and preventable maternal mortality and therefore is an ideal topic for the initial national maternity patient safety bundle. These safety bundles outline critical clinical practices that should be implemented in every maternity unit. They are developed by multidisciplinary work groups of the National Partnership for Maternal Safety under the guidance of the Council on Patient Safety in Women's Health Care. The safety bundle is organized into 4 domains: Readiness, Recognition and Prevention, Response, and Reporting and Systems Learning. Although the bundle components may be adapted to meet the resources available in individual facilities, standardization within an institution is strongly encouraged. References contain sample resources and "Potential Best Practices" to assist with implementation. © 2015 by the American College of Obstetricians and Gynecologists.
CANFLEX fuel bundle cross-flow endurance test (test report)
Hong, Sung Deok; Chung, C. H.; Chang, S. K.; Kim, B. D.
1997-04-01
As part of the normal refuelling sequence of CANDU nuclear reactor, both new and irradiated bundles can be parked in the cross-flow region of the liner tubes. This situation occurs normally for a few minutes. The fuel bundle which is subjected to the cross-flow should be capable of withstanding the consequences of cross flow for normal periods, and maintain its mechanical integrity. The cross-flow endurance test was conducted for CANFLEX bundle, latest developed nuclear fuel, at CANDU-Hot Test Loop. The test was carried out during 4 hours at the inlet cross-flow region. After the test, the bundle successfully met all acceptance criteria after the 4 hours cross-flow test. (author). 2 refs., 3 tabs.
Interactive hypermedia training manual for spent-fuel bundle counters
Basso, R.A.
1990-07-01
Spent-fuel bundle counters, developed by the Canadian Safeguards Support Program for the International Atomic Energy Agency, provide a secure and independent means of counting the number of irradiated fuel bundles discharged into the fuel storage bays at CANDU nuclear power stations. Paper manuals have been traditionally used to familiarize IAEA inspectors with the operation, maintenance and extensive reporting capabilities of the bundle counters. To further assist inspectors, an interactive training manual has been developed on an Apple Macintosh computer using hypermedia software. The manual uses interactive animation and sound, in conjunction with the traditional text and graphics, to simulate the underlying operation and logic of the bundle counters. This paper presents the key features of the interactive manual and highlights the advantages of this new technology for training
Investigations with diagnostic fuel rod bundles on Rheinsberg NPP
Krauze, F.; Rudolf, G.; Shajfler, V.; Tsimke, K.
1982-01-01
In 70MW pressurized water reactor of Rheinsberg NPP diagnostic fuel rod bundles have been installed: first of DK 1 type and then of DK 2 advanced type. Three rounds of measurement were run with DK 1 bundle and one with DK 2. The diagnostic bundles are equiped with various sensors for temperature, pressure, neutron flux and mechanical stress measurements as well as with special flow rate control system which allows to reach coolant boiling within the bundle. Qualitative and quantitative description of the sensors performance during reactor operation is given. The presented experimental results are connected with: 1) working capability of the measuring devices and their calibration; 2) throttling and boiling in two regimes: a) stationary and non-stationary flow rate throbgh DK during stationary reactor operation; b) various constant levels of flow rate through DK during non-stationary reactor operation regime [ru
Absorber rod bundle actuator in a pressurized water nuclear reactor
Martin, J.; Peletan, R.
1984-01-01
The invention concerns an absorber rod bundle actuator in a pressurized water reactor with spectral shift control. The device comprises two coaxial control bars. The inner bar is integral with the absorber rod bundle; it has an enlarged zone which acts as a proton under pressure difference across an annular seal which can be radially expanded, the pressure difference allowing to the absorber rod bundles actuating on the piston. When a pressure difference is applied, the seal expands radially by a sufficient amount to make sealing contact with the zone of larger diameter in the outer bar. The invention applies more particularly to reactors with spectral shift control using bundles of fertile rods [fr
Niu, Zhongwei; Bruckman, Michael A; Li, Siqi; Lee, L Andrew; Lee, Byeongdu; Pingali, Sai Venkatesh; Thiyagarajan, P; Wang, Qian
2007-06-05
One-dimensional (1D) polyaniline/tobacco mosaic virus (TMV) composite nanofibers and macroscopic bundles of such fibers were generated via a self-assembly process of TMV assisted by in-situ polymerization of polyaniline on the surface of TMV. At near-neutral reaction pH, branched polyaniline formed on the surface of TMV preventing lateral association. Therefore, long 1D nanofibers were observed with high aspect ratios and excellent processibility. At a lower pH, transmission electron microscopy (TEM) analysis revealed that initially long nanofibers were formed which resulted in bundled structures upon long-time reaction, presumably mediated by the hydrophobic interaction because of the polyaniline on the surface of TMV. In-situ time-resolved small-angle X-ray scattering study of TMV at different reaction conditions supported this mechanism. This novel strategy to assemble TMV into 1D and 3D supramolecular composites could be utilized in the fabrication of advanced materials for potential applications including electronics, optics, sensing, and biomedical engineering.
Two-Phase Flow Patterns in a Four by Four Rod Bundle
Yoshitaka Mizutani; Shigeo Hosokawa; Akio Tomiyama
2006-01-01
Air-water two-phase flow patterns in a four by four square lattice rod bundle consisting of an acrylic channel box of 68 mm in width and transparent rods of 12 mm in diameter were observed by utilizing a high speed video camera, FEP (fluorinated ethylene propylene) tubes for rods, and a fiber-scope inserted in a rod. The FEP possesses the same refractive index as water, and thereby, whole flow patterns in the bundle and local flow patterns in subchannels were successfully visualized with little optical distortion. The ranges of liquid and gas volume fluxes, G > and L >, in the present experiments were 0.1 L > G > G > - L > flow pattern diagram is so narrow that it can be regarded as a boundary between bubbly and churn flows, (2) the boundary between bubbly and churn flows is close to the boundary between bubbly and slug flows of the Mishima and Ishii's flow pattern transition model, and (3) the boundary between churn and annular flows is well predicted by the Mishima and Ishii's model. (authors)
CHF prediction in rod bundles using round tube data
Souza, Wallen F.; Veloso, Maria A.F.; Pereira, Cláubia; Costa, Antonella L., E-mail: wallenfds@yahoo.com.br, E-mail: mdora@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear
2017-07-01
The present work concerns the use of 1995 CHF table for uniformly heated round tubes, developed jointly by Canadian and Russian researchers, for the prediction of critical heat fluxes in rod bundles geometries. Comparisons between measured and calculated critical heat fluxes indicate that this table could be applied to rod bundles provided that a suitable correction factor is employed. The tolerance limits associated with the departure from nucleate boiling ratio (DNBR) are evaluated by using statistical analysis. (author)
On Chern ratios for surfaces with ample cotangent bundle
Denis Conduché
2006-10-01
Full Text Available In this paper we study the problem of density in (1, 3 for the Chern ratio of surfaces with ample cotangent bundle. In particular we prove density in (1, 2 by constructing a family of complete intersection surfaces in a product of varieties with big cotangent bundle. We also analyse the case of complete intersections in a product of curves of genus at least 2.
Bundle Pricing Decisions for Fresh Products with Quality Deterioration
Fang, Yan; Jiang, Yiping; Han, Xingxing
2018-01-01
How to sell fresh products quickly to decrease the storage cost and to meet customer quality requirement is of vital importance in the food supply chain. Bundling fresh products is an efficient strategy to promote sales and reduce storage pressure of retailers. In this paper, we consider the bundle pricing decisions for homogeneous fresh products with quality deterioration. The value of fresh products with quality deterioration is approximated as an exponential function based on which custome...
Design and verification of the 'GURI 01' bundle model
Benito, G.D.
1990-01-01
This work presents a general description of the 'GURI 01' bundle model, designed by INVAP S.E., under international radioactive material transportation regulations, as a B(U) type bundle for international transportation up to a maximum of 350000 Ci of Co60. Moreover, the methodologies used and the results obtained from the structural evaluation of the mechanic essay and from the evaluation of the thermal behaviour under normal or accident conditions are briefly discussed. (Author) [es
Fuel temperature characteristics of the 37-element and CANFLEX fuel bundle
Bae, Jun Ho; Rho, Gyu Hong; Park, Joo Hwan
2009-10-01
This report describes the fuel temperature characteristics of CANFLEX fuel bundles and 37-element fuel bundles for a different burnup of fuel. The program was consisted for seeking the fuel temperature of fuel bundles of CANFLEX fuel bundles and 37-element fuel bundles by using the method in NUCIRC. Fuel temperature has an increasing pattern with the burnup of fuel for CANFLEX fuel bundles and 37-element fuel bundles. For all the case of burnup, the fuel temperature of CANFLEX fuel bundles has a lower value than that of 37-element fuel bundles. Especially, for the high power channel, the CANFLEX fuel bundles show a lower fuel temperature as much as about 75 degree, and the core averaged fuel temperature has a lower fuel temperature of about 50 degree than that of 37-element fuel bundles. The lower fuel temperature of CANFLEX fuel bundles is expected to enhance the safety by reducing the fuel temperature coefficient. Finally, for each burnup of CANFLEX fuel bundles and 37-element fuel bundles, the equation was present for predicting the fuel temperature of a bundle in terms of a coolant temperature and bundle power
Solow, Daniel
2014-01-01
This text covers the basic theory and computation for a first course in linear programming, including substantial material on mathematical proof techniques and sophisticated computation methods. Includes Appendix on using Excel. 1984 edition.
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Berberian, Sterling K
2014-01-01
Introductory treatment covers basic theory of vector spaces and linear maps - dimension, determinants, eigenvalues, and eigenvectors - plus more advanced topics such as the study of canonical forms for matrices. 1992 edition.
Searle, Shayle R
2012-01-01
This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.
Vacaru, Sergiu I
2014-01-01
The fundamental field equations in modified gravity (including general relativity; massive and bimetric theories; Ho\\vrava-Lifshits, HL; Einstein--Finsler gravity extensions etc) posses an important decoupling property with respect to nonholonomic frames with 2 (or 3) +2+2+... spacetime decompositions. This allows us to construct exact solutions with generic off--diagonal metrics depending on all spacetime coordinates via generating and integration functions containing (un-) broken symmetry parameters. Such nonholonomic configurations/ models have a nice ultraviolet behavior and seem to be ghost free and (super) renormalizable in a sense of covariant and/or massive modifications of HL gravity. The apparent noncommutativity and breaking of Lorentz invariance by quantum effects can be encoded into fibers of noncommutative tangent Lorentz bundles for corresponding "partner" anisotropically induced theories. We show how the constructions can be extended to include conjectured covariant reonormalizable models with...
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
A directional fast neutron detector using scintillating fibers and an intensified CCD camera system
Holslin, Daniel; Armstrong, A.W.; Hagan, William; Shreve, David; Smith, Scott
1994-01-01
We have been developing and testing a scintillating fiber detector (SFD) for use as a fast neutron sensor which can discriminate against neutrons entering at angles non-parallel to the fiber axis (''directionality''). The detector/convertor component is a fiber bundle constructed of plastic scintillating fibers each measuring 10 cm long and either 0.3 mm or 0.5 mm in diameter. Extensive Monte Carlo simulations were made to optimize the bundle response to a range of fast neutron energies and to intense fluxes of high energy gamma-rays. The bundle is coupled to a set of gamma-ray insenitive electro-optic intensifiers whose output is viewed by a CCD camera directly coupled to the intensifiers. Two types of CCD cameras were utilized: 1) a standard, interline RS-170 camera with electronic shuttering and 2) a high-speed (up to 850 frame/s) field-transfer camera. Measurements of the neutron detection efficiency and directionality were made using 14 MeV neutrons, and the response to gamma-rays was performed using intense fluxes from radioisotopic sources (up to 20 R/h). Recently, the detector was constructed and tested using a large 10 cm by 10 cm square fiber bundle coupled to a 10 cm diameter GEN I intensifier tube. We present a description of the various detector systems and report the results of experimental tests. ((orig.))
Filament bundle location influence on coupling losses in superconducting composites
Ito, Daisuke; Koizumi, Misao; Hamajima, Takataro; Nakane, Fumoto.
1983-01-01
The ac losses in multifilamentary superconducting composites with different superconducting filament bundle positions have been measured using the magnetization method in order to reveal the relation between filament bundle position and coupling losses. Loss components depending on dB/dt in a mixed matrix superconducting composite, whose filament bundle is located in a central region surrounded by an outer stabilizing copper sheath, has been compared with another superconducting composite whose stabilizing copper is located in a central region surrounded by an outer filament bundle. In both conductors, key parameters, such as filament twistpitch, wire diameter and amount of copper stabilizer, were almost the same. Applied magnetic field is 2 Tesla with 0.05-2 Tesla/sec field change rate. Experimental results indicate that coupling losses between filaments in the composite with the filament bundle located in the central region is smaller than the composite with the filament bundle located in the outer region. A similar conclusion was reached theoretically by B. Truck. Coupling loss values obtained by the experiment show good agreement with calculated values with the equations proposed by B. Truck. It is also pointed out that a copper stabilizer, divided by the CuNi barrier into small regions, like a honeycomb, causes anomalous increasing in the copper resistivity due to Ni diffusion during heat treatment. (author)
Experimental investigation of the coolability of blocked hexagonal bundles
Hózer, Zoltán, E-mail: zoltan.hozer@energia.mta.hu; Nagy, Imre; Kunstár, Mihály; Szabó, Péter; Vér, Nóra; Farkas, Róbert; Trosztel, István; Vimi, András
2017-06-15
Highlights: • Experiments were performed with electrically heated hexagonal fuel bundles. • Coolability of ballooned VVER-440 type bundle was confirmed up to high blockage rate. • Pellet relocation effect causes delay in the cool-down of the bundle. • The bypass line does not prevent the reflood of ballooned fuel rods. - Abstract: The CODEX-COOL experimental series was carried out in order to evaluate the effect of ballooning and pellet relocation in hexagonal bundles on the coolability of fuel rods after a LOCA event. The effects of blockage geometry, coolant flowrate, initial temperature and axial profile were investigated. The experimental results confirmed that a VVER bundle up to 80% blockage rate remains coolable after a LOCA event under design basis conditions. The ballooned section creates some obstacles for the cooling water during reflood of the bundle, but this effect causes only a short delay in the cooling down of the hot fuel rods. The accumulation of fuel pellet debris in the ballooned volume results in a local power peak, which leads to further slowing down of quench front.
Palola, S.; Sarlin, E.; Kolahgar Azari, S.; Koutsos, V.; Vuorinen, J.
2017-01-01
Highlights: • A novel method for creating nanostructures to aramid fiber surface is proposed. • The nanostructures enable mechanical interlocking at fiber-matrix interface. • A ∼250% increase in adhesion can be created with this method. - Abstract: Several commercial surface treatments are used to increase the adhesion between aramid fibers and the matrix material in composite structures but each of these has some limitations. The aim of this study is to address some of these limitations by developing a surface treatment method for aramid fibers that would not affect mechanical properties of the fibers negatively, could be used with any matrix material and that could withstand handling of the fibers and ageing. The method used is microwave assisted surface treatment that uses microwave radiation together with dry reactive chemicals to create hierarchical structures to the fiber surface and so makes it possible to control the adhesion properties of the fibers. SEM and AFM imaging, fiber tensile tests and modified bundle pull-out test were used to investigate the outcome of the surface treatment and measure adhesion between aramid fiber bundles and rubber. SEM and AFM imaging revealed that nanoscale deposits are formed on to the fiber surface which enable mechanical interlocking between the fiber and the matrix material. Fiber tensile tests showed that the surface treatment does not influence the tensile properties of the fiber negatively. Results from the bundle pull-out tests confirmed that this kind of method can lead up to 259% improvement in adhesion when compared to untreated aramid fibers in the rubber matrix.
Palola, S., E-mail: sarianna.palola@tut.fi [Laboratory of Materials Science, Tampere University of Technology, P.O. Box 589, 33101, Tampere (Finland); Institute for Materials and Processes, School of Engineering, The University of Edinburgh, The King' s Buildings, Robert Stevenson Road, EH9 3FB Edinburgh (United Kingdom); Sarlin, E. [Laboratory of Materials Science, Tampere University of Technology, P.O. Box 589, 33101, Tampere (Finland); Kolahgar Azari, S.; Koutsos, V. [Institute for Materials and Processes, School of Engineering, The University of Edinburgh, The King' s Buildings, Robert Stevenson Road, EH9 3FB Edinburgh (United Kingdom); Vuorinen, J. [Laboratory of Materials Science, Tampere University of Technology, P.O. Box 589, 33101, Tampere (Finland)
2017-07-15
Highlights: • A novel method for creating nanostructures to aramid fiber surface is proposed. • The nanostructures enable mechanical interlocking at fiber-matrix interface. • A ∼250% increase in adhesion can be created with this method. - Abstract: Several commercial surface treatments are used to increase the adhesion between aramid fibers and the matrix material in composite structures but each of these has some limitations. The aim of this study is to address some of these limitations by developing a surface treatment method for aramid fibers that would not affect mechanical properties of the fibers negatively, could be used with any matrix material and that could withstand handling of the fibers and ageing. The method used is microwave assisted surface treatment that uses microwave radiation together with dry reactive chemicals to create hierarchical structures to the fiber surface and so makes it possible to control the adhesion properties of the fibers. SEM and AFM imaging, fiber tensile tests and modified bundle pull-out test were used to investigate the outcome of the surface treatment and measure adhesion between aramid fiber bundles and rubber. SEM and AFM imaging revealed that nanoscale deposits are formed on to the fiber surface which enable mechanical interlocking between the fiber and the matrix material. Fiber tensile tests showed that the surface treatment does not influence the tensile properties of the fiber negatively. Results from the bundle pull-out tests confirmed that this kind of method can lead up to 259% improvement in adhesion when compared to untreated aramid fibers in the rubber matrix.