Extrapolations of nuclear binding energies from new linear mass relations
DEFF Research Database (Denmark)
Hove, D.; Jensen, A. S.; Riisager, K.
2013-01-01
We present a method to extrapolate nuclear binding energies from known values for neighboring nuclei. We select four specific mass relations constructed to eliminate smooth variation of the binding energy as function nucleon numbers. The fast odd-even variations are avoided by comparing nuclei...
Uncertainty relations, zero point energy and the linear canonical group
Sudarshan, E. C. G.
1993-01-01
The close relationship between the zero point energy, the uncertainty relations, coherent states, squeezed states, and correlated states for one mode is investigated. This group-theoretic perspective enables the parametrization and identification of their multimode generalization. In particular the generalized Schroedinger-Robertson uncertainty relations are analyzed. An elementary method of determining the canonical structure of the generalized correlated states is presented.
International Nuclear Information System (INIS)
Hunter, Nezahat; Muirhead, Colin R
2009-01-01
Information on Japanese A-bomb survivors exposed to gamma radiation has been used to estimate cancer risks for the whole range of photon (x-rays) and electron energies which are commonly encountered by radiation workers in the work place or by patients and workers in diagnostic radiology. However, there is some uncertainty regarding the radiation effectiveness of various low-linear energy transfer (low-LET) radiations (x-rays, gamma radiation and electrons). In this paper we review information on the effectiveness of low-LET radiations on the basis of epidemiological and in vitro radiobiological studies. Data from various experimental studies for chromosome aberrations and cell transformation in human lymphocytes and from epidemiological studies of the Japanese A-bomb survivors, patients medically exposed to radiation for diagnostic and therapeutic procedures, and occupational exposures of nuclear workers are considered. On the basis of in vitro cellular radiobiology, there is considerable evidence that the relative biological effectiveness (RBE) of high-energy low-LET radiation (gamma radiation, electrons) is less than that of low-energy low-LET radiation (x-rays, betas). This is a factor of about 3 to 4 for 29 kVp x-rays (e.g. as in diagnostic radiation exposures of the female breast) and for tritium beta-rays (encountered in parts of the nuclear industry) relative to Co-60 gamma radiation and 2-5 MeV gamma-rays (as received by the Japanese A-bomb survivors). In epidemiological studies, although for thyroid and breast cancer there appears to be a small tendency for the excess relative risks to decrease as the radiation energy increases for low-LET radiations, it is not statistically feasible to draw any conclusion regarding an underlying dependence of cancer risk on LET for the nominally low-LET radiations. (review)
Classifying Linear Canonical Relations
Lorand, Jonathan
2015-01-01
In this Master's thesis, we consider the problem of classifying, up to conjugation by linear symplectomorphisms, linear canonical relations (lagrangian correspondences) from a finite-dimensional symplectic vector space to itself. We give an elementary introduction to the theory of linear canonical relations and present partial results toward the classification problem. This exposition should be accessible to undergraduate students with a basic familiarity with linear algebra.
International Nuclear Information System (INIS)
Levine, R.D.
1979-01-01
The reaction rate constant is expressed as Z exp(-G/sub a//RT). Z is the binary collision frequency. G/sub a/, the free energy of activation, is shown to be the difference between the free energy of the reactive reactants and the free energy of all reactants. The results are derived from both a statistical mechanical and a collision theoretic point of view. While the later is more suitable for an ab-initio computation of the reaction rate, it is the former that lends itself to the search of systematics and of correlations and to compaction of data. Different thermodynamic-like routes to the characterization of G/sub a/ are thus explored. The two most promising ones appear to be the use of thermodynamic type cycles and the changes of dependent variables using the Legendre transform technique. The dependence of G/sub a/ on ΔG 0 , the standard free energy change in the reaction, is examined from the later point of view. It is shown that one can rigorously express this dependence as G/sub a/ = αΔG 0 + G/sub a/ 0 M(α). Here α is the Bronsted slope, α = -par. delta ln k(T)/par. delta(ΔG 0 /RT), G/sub a/ 0 is independent of ΔG 0 and M(α), the Legendre transform of G/sub a/, is a function only of α. For small changes in ΔG 0 , the general result reduces to the familiar ''linear'' free energy relation delta G/sub a/ = α delta ΔG 0 . It is concluded from general considerations that M(α) is a symmetric, convex function of α and hence that α is a monotonically increasing function of ΔG 0 . Experimental data appear to conform well to the form α = 1/[1 + exp(-ΔG 0 /G/sub s/ 0 )]. A simple interpretation of the ΔG 0 dependence of G/sub a/, based on an interpolation of the free energy from that of the reagents to that of the products, is offered. 4 figures, 69 references
Lee, Kyungtae; Gu, Geun Ho; Mullen, Charles A; Boateng, Akwasi A; Vlachos, Dionisios G
2015-01-01
Density functional theory is used to study the adsorption of guaiacol and its initial hydrodeoxygenation (HDO) reactions on Pt(111). Previous Brønsted-Evans-Polanyi (BEP) correlations for small open-chain molecules are inadequate in estimating the reaction barriers of phenolic compounds except for the side group (methoxy) carbon-dehydrogenation. New BEP relations are established using a select group of phenolic compounds. These relations are applied to construct a potential-energy surface of guaiacol-HDO to catechol. Analysis shows that catechol is mainly produced via dehydrogenation of the methoxy functional group followed by the CHx (x<3) removal of the functional group and hydrogenation of the ring carbon, in contrast to a hypothesis of a direct demethylation path. Dehydroxylation and demethoxylation are slow, implying that phenol is likely produced from catechol but not through its direct dehydroxylation followed by aromatic carbon-ring hydrogenation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the rank 1 convexity of stored energy functions of physically linear stress-strain relations
Czech Academy of Sciences Publication Activity Database
Šilhavý, Miroslav; Bertram, A.; Böhlke, T.
2007-01-01
Roč. 86, č. 3 (2007), s. 235-243 ISSN 0374-3535 Institutional research plan: CEZ:AV0Z10190503 Keywords : generalized linear elastic law s * generalized strain measures * rank 1 convexity Subject RIV: BA - General Mathematics Impact factor: 0.743, year: 2007
International Nuclear Information System (INIS)
Blasone, Massimo; Jizba, Petr
2004-01-01
By using the Feynman-Hibbs prescription for the evolution amplitude, we quantize the system of a damped harmonic oscillator coupled to its time-reversed image, known as Bateman's dual system. The time-dependent quantum states of such a system are constructed and discussed entirely in the framework of the classical theory. The corresponding geometric (Pancharatnam) phase is calculated and found to be directly related to the ground-state energy of the 1D linear harmonic oscillator to which the 2D system reduces under appropriate constraint
The energy and the linear momentum of space-times in general relativity
International Nuclear Information System (INIS)
Schoen, R.; Yau, S.T.
1981-01-01
We extend our previous proof of the positive mass conjecture to allow a more general asymptotic condition proposed by York. Hence we are able to prove that for an isolated physical system, the energy momentum four vector is a future timelike vector unless the system is trivial. Furthermore, we allow singularities of the type of black holes. (orig.)
International Nuclear Information System (INIS)
Sethi, Roshan V.; Giantsoudi, Drosoula; Raiford, Michael; Malhi, Imran; Niemierko, Andrzej; Rapalino, Otto; Caruso, Paul; Yock, Torunn I.; Tarbell, Nancy J.; Paganetti, Harald; MacDonald, Shannon M.
2014-01-01
Purpose: The pattern of failure in medulloblastoma patients treated with proton radiation therapy is unknown. For this increasingly used modality, it is important to ensure that outcomes are comparable to those in modern photon series. It has been suggested this pattern may differ from photons because of variations in linear energy transfer (LET) and relative biological effectiveness (RBE). In addition, the use of matching fields for delivery of craniospinal irradiation (CSI) may influence patterns of relapse. Here we report the patterns of failure after the use of protons, compare it to that in the available photon literature, and determine the LET and RBE values in areas of recurrence. Methods and Materials: Retrospective review of patients with medulloblastoma treated with proton radiation therapy at Massachusetts General Hospital (MGH) between 2002 and 2011. We documented the locations of first relapse. Discrete failures were contoured on the original planning computed tomography scan. Monte Carlo calculation methods were used to estimate the proton LET distribution. Models were used to estimate RBE values based on the LET distributions. Results: A total of 109 patients were followed for a median of 38.8 months (range, 1.4-119.2 months). Of the patients, 16 experienced relapse. Relapse involved the supratentorial compartment (n=8), spinal compartment (n=11), and posterior fossa (n=5). Eleven failures were isolated to a single compartment; 6 failures in the spine, 4 failures in the supratentorium, and 1 failure in the posterior fossa. The remaining patients had multiple sites of disease. One isolated spinal failure occurred at the spinal junction of 2 fields. None of the 70 patients treated with an involved-field-only boost failed in the posterior fossa outside of the tumor bed. We found no correlation between Monte Carlo-calculated LET distribution and regions of recurrence. Conclusions: The most common site of failure in patients treated with protons for
Energy of linear quasineutral electrostatic drift waves
International Nuclear Information System (INIS)
Pfirsch, D.; Correa-Restrepo, D.
1993-01-01
Certain kinds of nonlinear instabilities are related to the existence of negative-energy perturbations. In this paper, an exact energy expression for linear quasineutral electrostatic perturbations is derived within the framework of dissipationless multifluid theory that is valid for any geometry. Taking the mass formally as a tensor with, in general, different masses parallel and perpendicular to an ambient magnetic field allows one to treat in a convenient way different approximations such as the full dynamics and restriction to parallel dynamics or the completely adiabatic case. Application to slab configurations yields the result that the adiabatic approximation does not allow negative energy for perturbations which are perfectly localized at a mode resonant surface, whereas inclusion of the parallel dynamics does. This is in agreement with a recent numerical study of drift-wave turbulence within the framework of collisional two-fluid theory by B. Scott [Phys. Rev. Lett. 65, 3289 (1990); Phys. Fluids B 4, 2468 (1992)]. A dissipationless theory can be formulated in terms of a Lagrangian, from which the energy is immediately obtained. We start with the nonlinear theory. The theory is formulated via a Lagrangian which is written in terms of displacement vectors ξ ν (x,t) such that all constraints are taken into account. The nonlinear energy is obtained from the Lagrangian by standard methods. The procedure used is the same as that developed in a forthcoming paper by Pfirsch and Sudan [Phys. Fluids B (to be published)] for ideal nonlinear magnetohydrodynamics theory. From the exact Lagrangian one obtains the Lagrangian of the linearized theory by simple expansion to second order in ξ ν . This Lagrangian then yields the energy of the linearized theory
Linear energy divergences in Coulomb gauge QCD
Andrasi, A.
2011-01-01
The structure of linear energy divergences is analysed on the example of one graph to 3-loop order. Such dangerous divergences do cancel when all graphs are added, but next to leading divergences do not cancel out.
Velazquez-Marti, B.; Annevelink, E.
2008-01-01
Many linear programming models have been developed to model the logistics of bio-energy chains. These models help to determine the best set-up of bio-energy chains. Most of them use network structures built up from nodes with one or more depots, and arcs connecting these depots. Each depot is source
Integrodifferential relations in linear elasticity
Kostin, Georgy V
2012-01-01
This work treats the elasticity of deformed bodies, including the resulting interior stresses and displacements.It also takes into account that some of constitutive relations can be considered in a weak form. To discuss this problem properly, the method of integrodifferential relations is used, and an advanced numerical technique for stress-strain analysis is presented and evaluated using various discretization techniques. The methods presented in this book are of importance for almost all elasticity problems in materials science and mechanical engineering.
Gravitational Wave in Linear General Relativity
Cubillos, D. J.
2017-07-01
General relativity is the best theory currently available to describe the interaction due to gravity. Within Albert Einstein's field equations this interaction is described by means of the spatiotemporal curvature generated by the matter-energy content in the universe. Weyl worked on the existence of perturbations of the curvature of space-time that propagate at the speed of light, which are known as Gravitational Waves, obtained to a first approximation through the linearization of the field equations of Einstein. Weyl's solution consists of taking the field equations in a vacuum and disturbing the metric, using the Minkowski metric slightly perturbed by a factor ɛ greater than zero but much smaller than one. If the feedback effect of the field is neglected, it can be considered as a weak field solution. After introducing the disturbed metric and ignoring ɛ terms of order greater than one, we can find the linearized field equations in terms of the perturbation, which can then be expressed in terms of the Dalambertian operator of the perturbation equalized to zero. This is analogous to the linear wave equation in classical mechanics, which can be interpreted by saying that gravitational effects propagate as waves at the speed of light. In addition to this, by studying the motion of a particle affected by this perturbation through the geodesic equation can show the transversal character of the gravitational wave and its two possible states of polarization. It can be shown that the energy carried by the wave is of the order of 1/c5 where c is the speed of light, which explains that its effects on matter are very small and very difficult to detect.
Compact multi-energy electron linear accelerators
International Nuclear Information System (INIS)
Tanabe, E.; Hamm, R.W.
1985-01-01
Two distinctly different concepts that have been developed for compact multi-energy, single-section, standing-wave electron linear accelerator structures are presented. These new concepts, which utilize (a) variable nearest neighbor couplings and (b) accelerating field phase switching, provide the capability of continuously varying the electron output energy from the accelerator without degrading the energy spectrum. These techniques also provide the means for continuously varying the energy spectrum while maintaining a given average electron energy, and have been tested successfully with several accelerators of length from 0.1 m to 1.9 m. Theoretical amd experimental results from these accelerators, and demonstrated applications of these techniques to medical and industrial linear accelerator technology will be described. In addition, possible new applications available to research and industry from these techniques are presented. (orig.)
Linear motor with contactless energy transfer
2014-01-01
An integrated electromagnetic energy conversions device is provided that includes a synchronous or brushless linear (SoBL) motor, and a transformer, where the transformer is integrated electromagnetically and topologically with the SoBL motor, where an electromagnetic field orientation of the
International Nuclear Information System (INIS)
Li, Mei-syue; Wu, Siang Chen; Shih, Yang-hsin
2016-01-01
Highlights: • LSER equations successfully predicted VOC sorption on MCNT at different humidity. • The five parameters in LSER could be narrowed down to three ones. • Main interaction is dispersion and partly dipolarity as well as hydrogen-bonds. • With increasing RH, it changes to cavity formation and hydrogen-bond basicity. • This approach can facilitate the VOC control design and the fate prediction. - Abstract: Multiwall carbon nanotubes (MWCNTs) have been used as an adsorbent for evaluating the gas/solid partitioning of selected volatile organic compounds (VOCs). In this study, 15 VOCs were probed to determine their gas/solid partitioning coefficient (Log K d ) using inverse gas chromatography at different relative humidity (RH) levels. Interactions between MWCNTs and VOCs were analyzed by regressing the observed Log K d with the linear solvation energy relationship (LSER). The results demonstrate that the MWCNT carbonyl and carboxyl groups provide high adsorption capacity for the VOCs (Log K d 3.72–5.24 g/kg/g/L) because of the π-/n-electron pair interactions and hydrogen-bond acidity. The increasing RH gradually decreased the Log K d and shifted the interactions to dipolarity/polarizability, hydrogen-bond basicity, and cavity formation. The derived LSER equations provided adequate fits of Log K d , which is useful for VOC-removal processes and fate prediction of VOC contaminants by MWCNT adsorption in the environment.
Energy Technology Data Exchange (ETDEWEB)
Li, Mei-syue; Wu, Siang Chen; Shih, Yang-hsin, E-mail: yhs@ntu.edu.tw
2016-09-05
Highlights: • LSER equations successfully predicted VOC sorption on MCNT at different humidity. • The five parameters in LSER could be narrowed down to three ones. • Main interaction is dispersion and partly dipolarity as well as hydrogen-bonds. • With increasing RH, it changes to cavity formation and hydrogen-bond basicity. • This approach can facilitate the VOC control design and the fate prediction. - Abstract: Multiwall carbon nanotubes (MWCNTs) have been used as an adsorbent for evaluating the gas/solid partitioning of selected volatile organic compounds (VOCs). In this study, 15 VOCs were probed to determine their gas/solid partitioning coefficient (Log K{sub d}) using inverse gas chromatography at different relative humidity (RH) levels. Interactions between MWCNTs and VOCs were analyzed by regressing the observed Log K{sub d} with the linear solvation energy relationship (LSER). The results demonstrate that the MWCNT carbonyl and carboxyl groups provide high adsorption capacity for the VOCs (Log K{sub d} 3.72–5.24 g/kg/g/L) because of the π-/n-electron pair interactions and hydrogen-bond acidity. The increasing RH gradually decreased the Log K{sub d} and shifted the interactions to dipolarity/polarizability, hydrogen-bond basicity, and cavity formation. The derived LSER equations provided adequate fits of Log K{sub d}, which is useful for VOC-removal processes and fate prediction of VOC contaminants by MWCNT adsorption in the environment.
International Nuclear Information System (INIS)
Petrila, Iulian; Bodale, Ilie; Rotarescu, Cristian; Stancu, Alexandru
2011-01-01
A comparative analysis between linear and non-linear energy barriers used for modeling statistical thermally-excited ferromagnetic systems is presented. The linear energy barrier is obtained by new symmetry considerations about the anisotropy energy and the link with the non-linear energy barrier is also presented. For a relevant analysis we compare the effects of linear and non-linear energy barriers implemented in two different models: Preisach-Neel and Ising-Metropolis. The differences between energy barriers which are reflected in different coercive field dependence of the temperature are also presented. -- Highlights: → The linear energy barrier is obtained from symmetry considerations. → The linear and non-linear energy barriers are calibrated and implemented in Preisach-Neel and Ising-Metropolis models. → The temperature and time effects of the linear and non-linear energy barriers are analyzed.
Relative ultrasound energy measurement circuit
Gustafsson, E.Martin I.; Johansson, Jonny; Delsing, Jerker
2005-01-01
A relative ultrasound energy estimation circuit has been designed in a standard 0.35-μm CMOS process, to be a part of a thumb size internet connected wireless ultrasound measurement system. This circuit measures the relative energy between received ultrasound pulses, and presents an output signal that is linear to the received energy. Post-layout simulations indicate 7 bit linearity for 500 mV input signals, 5 μsec startup and stop times, 2.6 mW power consumption during active state. The acti...
Ascent, descent, nullity, defect, and related notions for linear relations in linear spaces
Sandovici, Adrian; de Snoo, Henk; Winkler, Henrik
2007-01-01
For a linear relation in a linear space the concepts of ascent, descent, nullity, and defect are introduced and studied. It is shown that the results of A.E. Taylor and M.A. Kaashoek concerning the relationship between ascent, descent, nullity, and defect for the case of linear operators remain
Linear rate-equilibrium relations arising from ion channel-bilayer energetic coupling
DEFF Research Database (Denmark)
Greisen, Per Junior; Lum, Kevin; Ashrafuzzaman, Md
2011-01-01
Linear rate-equilibrium (RE) relations, also known as linear free energy relations, are widely observed in chemical reactions, including protein folding, enzymatic catalysis, and channel gating. Despite the widespread occurrence of linear RE relations, the principles underlying the linear relatio...
Linear time relational prototype based learning.
Gisbrecht, Andrej; Mokbel, Bassam; Schleif, Frank-Michael; Zhu, Xibin; Hammer, Barbara
2012-10-01
Prototype based learning offers an intuitive interface to inspect large quantities of electronic data in supervised or unsupervised settings. Recently, many techniques have been extended to data described by general dissimilarities rather than Euclidean vectors, so-called relational data settings. Unlike the Euclidean counterparts, the techniques have quadratic time complexity due to the underlying quadratic dissimilarity matrix. Thus, they are infeasible already for medium sized data sets. The contribution of this article is twofold: On the one hand we propose a novel supervised prototype based classification technique for dissimilarity data based on popular learning vector quantization (LVQ), on the other hand we transfer a linear time approximation technique, the Nyström approximation, to this algorithm and an unsupervised counterpart, the relational generative topographic mapping (GTM). This way, linear time and space methods result. We evaluate the techniques on three examples from the biomedical domain.
Montoye, Alexander H K; Begum, Munni; Henning, Zachary; Pfeiffer, Karin A
2017-02-01
This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r = 0.71-0.88, RMSE: 1.11-1.61 METs; p > 0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r = 0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r = 0.88, RMSE: 1.10-1.11 METs; p > 0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r = 0.88, RMSE: 1.12 METs. Linear models-correlations: r = 0.86, RMSE: 1.18-1.19 METs; p linear models for the wrist-worn accelerometers (ANN-correlations: r = 0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r = 0.71-0.73, RMSE: 1.55-1.61 METs; p models offer a significant improvement in EE prediction accuracy over linear models. Conversely, linear models showed similar EE prediction accuracy to machine learning models for hip- and thigh
Economic MPC for a linear stochastic system of energy units
DEFF Research Database (Denmark)
Jørgensen, John Bagterp; Sokoler, Leo Emil; Standardi, Laura
2016-01-01
This paper summarizes comprehensively the work in four recent PhD theses from the Technical University of Denmark related to Economic MPC of future power systems. Future power systems will consist of a large number of decentralized power producers and a large number of controllable power consumers...... in addition to stochastic power producers such as wind turbines and solar power plants. Control of such large scale systems requires new control algorithms. In this paper, we formulate the control of such a system as an Economic Model Predictive Control (MPC) problem. When the power producers and controllable...... power consumers have linear dynamics, the Economic MPC may be expressed as a linear program. We provide linear models for a number of energy units in an energy system, formulate an Economic MPC for coordination of such a system. We indicate how advances in computational MPC makes the solutions...
Non-linear and signal energy optimal asymptotic filter design
Directory of Open Access Journals (Sweden)
Josef Hrusak
2003-10-01
Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.
Non-linear absorption for concentrated solar energy transport
Energy Technology Data Exchange (ETDEWEB)
Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)
2000-07-01
In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es
Novel ocean energy permanent magnet linear generator buoy
Energy Technology Data Exchange (ETDEWEB)
Rhinefrank, K.; Agamloh, E.B.; Jouanne, A. von; Wallace, A.K.; Prudell, J.; Kimble, K.; Aills, J.; Schmidt, E.; Schacher, A. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-3211 (United States); Chan, P.; Sweeny, B. [Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331-3211 (United States)
2006-07-15
This paper describes the research, design, construction and prototype testing process of a novel ocean energy direct drive permanent magnet linear generator buoy. The buoy employs the vertical component of the motion of ocean waves to power a linear generator. The generator consists of a permanent magnet field system (mounted on the central translator shaft) and an armature, in which the power is generated (mounted on the buoy). The translator shaft is anchored to the sea floor, and the buoy/floater moves armature coils relative to the permanent magnet translator to induce voltages. The electrical and mechanical structures of the buoy generator are provided, along with performance characteristics, including voltage, current and developed power. (author)
Energy in one-dimensional linear waves
International Nuclear Information System (INIS)
Repetto, C E; Roatta, A; Welti, R J
2011-01-01
This work is based on propagation phenomena that conform to the classical wave equation. General expressions of power, the energy conservation equation in continuous media and densities of the kinetic and potential energies are presented. As an example, we study the waves in a string and focused attention on the case of standing waves. The treatment is applicable to introductory science textbooks. (letters and comment)
Spectral analysis of linear relations and degenerate operator semigroups
International Nuclear Information System (INIS)
Baskakov, A G; Chernyshov, K I
2002-01-01
Several problems of the spectral theory of linear relations in Banach spaces are considered. Linear differential inclusions in a Banach space are studied. The construction of the phase space and solutions is carried out with the help of the spectral theory of linear relations, ergodic theorems, and degenerate operator semigroups
Nuclear energy related research
International Nuclear Information System (INIS)
Toerroenen, K.; Kilpi, K.
1985-01-01
This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT
Nuclear energy related research
International Nuclear Information System (INIS)
Salminen, Pertti
1989-03-01
This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself
Nuclear energy related research
International Nuclear Information System (INIS)
Salminen, P.; Mattila, L.
1990-08-01
The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects
Nuclear energy related research
International Nuclear Information System (INIS)
Mattila, L.; Vanttola, T.
1991-10-01
The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects
Nuclear energy related research
International Nuclear Information System (INIS)
Rintamaa, R.
1992-05-01
The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects
Nuclear energy related research
International Nuclear Information System (INIS)
Salminen, P.
1988-02-01
This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself
Energy balance in a system with quasispherical linear compression
International Nuclear Information System (INIS)
Es'kov, A.G.; Kozlov, N.P.; Kurtmullaev, R.K.; Semenov, V.N.; Khvesyuk, V.I.; Yaminskii, A.V.
1983-01-01
This letter reports the resists of some experimental studies and a numerical simulation of the Tor-linear fusion system, 1 in which a heavy plasma shell with a closed magnetic structure is compressed in a quasispherical manner. The parameters of the Tor-Linear, at the Kurchatov Institute of Atomic Energy in Moscow are as follows: The energy stored in the system which accelerates the linear is E = 0.5 MJ; the linear mass is m = 0.2 kg; the working volume of the linear module is 1.5 x 10 -3 m 3 ; the linear velocity is approx.10 3 m/s; the guiding field in the toriod in the linear is 1--10 x 10 21 m -3 ; and the intial volume of the plasma in the linear chamber is 2.5 x 10 -4 m 3 . In this series of experiments, new solutions were developed for all the systems of the plasma--linear complex of the Tor-Linear: to produce a plasma toroid, to transport it, and to trap it in the linear cavity
Variable-energy drift-tube linear accelerator
Swenson, Donald A.; Boyd, Jr., Thomas J.; Potter, James M.; Stovall, James E.
1984-01-01
A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.
Power Take-Off with Integrated Resonator for Energy Extraction from Linear Motions
DEFF Research Database (Denmark)
2014-01-01
The invention relates to a magnetic gear for converting linear motion into rotational motion and vice versa. The present invention converts slow linear irregular oscillating motion of wave energy devices into torque on a high speed shaft for powering a generator while making the wave energy device...... of sea or ocean waves into useful energy, such as electricity. The invention relates to the control and operation of a magnetic gear based motor/generator system. The invention provides a high force density electric powered linear actuator....... resonate with the waves. The invention relates to the field of energy-harvesting from energy sources, where the energy-harvesting requires the extraction of energy from slow and often irregular reciprocating motion of bodies. The present invention relates to a wave power apparatus for converting power...
Linear free energy relationships in glass corrosion
International Nuclear Information System (INIS)
Abrajano, T.A. Jr.; Bates, J.K.; Bohlke, J.K.
1988-01-01
Various theoretical models that have been proposed to correlate glass durability to their composition for a wide variety of silicate, borosilicate, and aluminosilicate glasses are examined. Comparisons are made between the predictions of these models and those of an empirical formulation extracted from existing data in the present work. The empirical approach provides independent confirmation of the relative accuracy of the silica release rate predictions of the different theoretical models in static leaching systems. Extension of the empirical approach used in this work are discussed. 23 refs., 2 figs., 1 tab
The mathematical structure of the approximate linear response relation
International Nuclear Information System (INIS)
Yasuda, Muneki; Tanaka, Kazuyuki
2007-01-01
In this paper, we study the mathematical structures of the linear response relation based on Plefka's expansion and the cluster variation method in terms of the perturbation expansion, and we show how this linear response relation approximates the correlation functions of the specified system. Moreover, by comparing the perturbation expansions of the correlation functions estimated by the linear response relation based on these approximation methods with exact perturbative forms of the correlation functions, we are able to explain why the approximate techniques using the linear response relation work well
Multibunch beam breakup in high energy linear colliders
International Nuclear Information System (INIS)
Thompson, K.A.; Ruth, R.D.
1989-03-01
The SLAC design for a next-generation linear collider with center-of-mass energy of 0.5 to 1.0 TeV requires that multiple bunches (/approximately/10) be accelerated on each rf fill. At the beam intensity (/approximately/10 10 particles per bunch) and rf frequency (11--17 GHz) required, the beam would be highly unstable transversely. Using computer simulation and analytic models, we have studied several possible methods of controlling the transverse instability: using damped cavities to damp the transverse dipole modes; adjusting the frequency of the dominant transverse mode relative to the rf frequency, so that bunches are placed near zero crossings of the wake; introducing a cell-to-cell spread in the transverse dipole mode frequencies; and introducing a bunch-to-bunch variation in the transverse focusing. The best cure(s) to use depend on the bunch spacing, intensity, and other features of the final design. 8 refs., 3 figs
Electromagnetic Energy Converters - Rotating Motors and Linear Generators
Energy Technology Data Exchange (ETDEWEB)
Ekergaard, Boel
2011-07-01
This licentiate thesis presents a study of the electromagnetic properties of linear synchronous permanent magnet generators, utilized in wave energy converters, and a two pole permanent magnet motor for an electrical vehicle. Both machine topologies are presented, designed with a numerical simulation tool, based on a model derived from Maxwell's equations. Full scale prototypes of both the machines are under construction. A continued study about the impact on the magnetic circuit caused by the longitudinal ends of a linear generator is performed. The results present significant core losses in the translator and an increased cogging force caused by the longitudinal ends. Further, a new electric conversion circuit based on the electric resonance phenomena is presented. Experimental results indicate that a successful electric resonance between the generator and external circuit has been achieved. Finally, detailed analytical and numerical methods are utilized to investigate the losses in the two pole permanent magnet motor over a wide frequency interval. The results indicate that the efficiency of electrical motors in electrical vehicle system can be increased relative existing designs and argue for limiting of the gearbox. The system total efficiency and mechanical stability can thereby be increased. The work concerning the wave energy converter is a part of a larger project, the so called Lysekil Wave Power Project, whereas the work concerning the electric motor so far has been carried out as an individual project. However, a future goal is to integrate the research on the electric motor for electrical vehicle with closely related ongoing research regarding a flywheel based electric driveline for an All Electric Propulsion System
Energy entanglement relation for quantum energy teleportation
Energy Technology Data Exchange (ETDEWEB)
Hotta, Masahiro, E-mail: hotta@tuhep.phys.tohoku.ac.j [Department of Physics, Faculty of Science, Tohoku University, Sendai 980-8578 (Japan)
2010-07-26
Protocols of quantum energy teleportation (QET), while retaining causality and local energy conservation, enable the transportation of energy from a subsystem of a many-body quantum system to a distant subsystem by local operations and classical communication through ground-state entanglement. We prove two energy-entanglement inequalities for a minimal QET model. These relations help us to gain a profound understanding of entanglement itself as a physical resource by relating entanglement to energy as an evident physical resource.
Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.
Cawkwell, M J; Niklasson, Anders M N
2012-10-07
Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.
Low-energy limit of the extended Linear Sigma Model
Energy Technology Data Exchange (ETDEWEB)
Divotgey, Florian [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Kovacs, Peter [Wigner Research Center for Physics, Hungarian Academy of Sciences, Institute for Particle and Nuclear Physics, Budapest (Hungary); GSI Helmholtzzentrum fuer Schwerionenforschung, ExtreMe Matter Institute, Darmstadt (Germany); Giacosa, Francesco [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Jan-Kochanowski University, Institute of Physics, Kielce (Poland); Rischke, Dirk H. [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); University of Science and Technology of China, Interdisciplinary Center for Theoretical Study and Department of Modern Physics, Hefei, Anhui (China)
2018-01-15
The extended Linear Sigma Model is an effective hadronic model based on the linear realization of chiral symmetry SU(N{sub f}){sub L} x SU(N{sub f}){sub R}, with (pseudo)scalar and (axial-)vector mesons as degrees of freedom. In this paper, we study the low-energy limit of the extended Linear Sigma Model (eLSM) for N{sub f} = flavors by integrating out all fields except for the pions, the (pseudo-)Nambu-Goldstone bosons of chiral symmetry breaking. The resulting low-energy effective action is identical to Chiral Perturbation Theory (ChPT) after choosing a representative for the coset space generated by chiral symmetry breaking and expanding it in powers of (derivatives of) the pion fields. The tree-level values of the coupling constants of the effective low-energy action agree remarkably well with those of ChPT. (orig.)
Time signal filtering by relative neighborhood graph localized linear approximation
DEFF Research Database (Denmark)
Sørensen, John Aasted
1994-01-01
A time signal filtering algorithm based on the relative neighborhood graph (RNG) used for localization of linear filters is proposed. The filter is constructed from a training signal during two stages. During the first stage an RNG is constructed. During the second stage, localized linear filters...
Relation of deformed nonlinear algebras with linear ones
International Nuclear Information System (INIS)
Nowicki, A; Tkachuk, V M
2014-01-01
The relation between nonlinear algebras and linear ones is established. For a one-dimensional nonlinear deformed Heisenberg algebra with two operators we find the function of deformation for which this nonlinear algebra can be transformed to a linear one with three operators. We also establish the relation between the Lie algebra of total angular momentum and corresponding nonlinear one. This relation gives a possibility to simplify and to solve the eigenvalue problem for the Hamiltonian in a nonlinear case using the reduction of this problem to the case of linear algebra. It is demonstrated in an example of a harmonic oscillator. (paper)
Dark energy cosmology with generalized linear equation of state
International Nuclear Information System (INIS)
Babichev, E; Dokuchaev, V; Eroshenko, Yu
2005-01-01
Dark energy with the usually used equation of state p = wρ, where w const 0 ), where the constants α and ρ 0 are free parameters. This non-homogeneous linear equation of state provides the description of both hydrodynamically stable (α > 0) and unstable (α < 0) fluids. In particular, the considered cosmological model describes the hydrodynamically stable dark (and phantom) energy. The possible types of cosmological scenarios in this model are determined and classified in terms of attractors and unstable points by using phase trajectories analysis. For the dark energy case, some distinctive types of cosmological scenarios are possible: (i) the universe with the de Sitter attractor at late times, (ii) the bouncing universe, (iii) the universe with the big rip and with the anti-big rip. In the framework of a linear equation of state the universe filled with a phantom energy, w < -1, may have either the de Sitter attractor or the big rip
International Nuclear Information System (INIS)
Yamamoto, K; Fujita, T; Kanda, K; Maenaka, K; Badel, A; Formosa, F
2014-01-01
In this study, the improvement of energy harvesting from wideband vibration with random change by using a combination of linear and nonlinear spring system is investigated. The system consists of curved beam spring for non-linear buckling, which supports the linear mass-spring resonator. Applying shock acceleration generates a snap through action to the buckling spring. From the FEM analysis, we showed that the snap through acceleration from the buckling action has no relationship with the applied shock amplitude and duration. We use this uniform acceleration as an impulse shock source for the linear resonator. It is easy to obtain the maximum shock response from the uniform snap through acceleration by using a shock response spectrum (SRS) analysis method. At first we investigated the relationship between the snap-through behaviour and an initial curved deflection. Then a time response result for non-linear springs with snap through and minimum force that makes a buckling behaviour were obtained by FEM analysis. By obtaining the optimum SRS frequency for linear resonator, we decided its resonant frequency with the MATLAB simulator
Effect of Integral Non-Linearity on Energy Calibration of ...
African Journals Online (AJOL)
The integral non-linearity (INL) of four spectroscopy systems, two integrated (A1 and A2) and two classical (B1 and B2) systems was determined using pulses from a random pulse generator. The effect of INL on the system's energy calibration was also determined. The effect is minimal in the classical system at high ...
Bistable energy harvesting enhancement with an auxiliary linear oscillator
Harne, R. L.; Thota, M.; Wang, K. W.
2013-12-01
Recent work has indicated that linear vibrational energy harvesters with an appended degree-of-freedom (DOF) may be advantageous for introducing new dynamic forms to extend the operational bandwidth. Given the additional interest in bistable harvester designs, which exhibit a propitious snap through effect from one stable state to the other, it is a logical extension to explore the influence of an added DOF to a bistable system. However, bistable snap through is not a resonant phenomenon, which tempers the presumption that the dynamics induced by an additional DOF on bistable designs would inherently be beneficial as for linear systems. This paper presents two analytical formulations to assess the fundamental and superharmonic steady-state dynamics of an excited bistable energy harvester to which is attached an auxiliary linear oscillator. From an energy harvesting perspective, the model predicts that the additional linear DOF uniformly amplifies the bistable harvester response magnitude and generated power for excitation frequencies less than the attachment’s resonance while improved power density spans a bandwidth below this frequency. Analyses predict bandwidths having co-existent responses composed of a unique proportion of fundamental and superharmonic dynamics. Experiments validate key analytical predictions and observe the ability for the coupled system to develop an advantageous multi-harmonic interwell response when the initial conditions are insufficient for continuous high-energy orbit at the excitation frequency. Overall, the addition of an auxiliary linear oscillator to a bistable harvester is found to be an effective means of enhancing the energy harvesting performance and robustness.
Heavy ion mutagenesis: linear energy transfer effects and genetic linkage
Kronenberg, A.; Gauny, S.; Criddle, K.; Vannais, D.; Ueno, A.; Kraemer, S.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)
1995-01-01
We have characterized a series of 69 independent mutants at the endogenous hprt locus of human TK6 lymphoblasts and over 200 independent S1-deficient mutants of the human x hamster hybrid cell line AL arising spontaneously or following low-fluence exposures to densely ionizing Fe ions (600 MeV/amu, linear energy transfer = 190 keV/microns). We find that large deletions are common. The entire hprt gene (> 44 kb) was missing in 19/39 Fe-induced mutants, while only 2/30 spontaneous mutants lost the entire hprt coding sequence. When the gene of interest (S1 locus = M1C1 gene) is located on a nonessential human chromosome 11, multilocus deletions of several million base pairs are observed frequently. The S1 mutation frequency is more than 50-fold greater than the frequency of hprt mutants in the same cells. Taken together, these results suggest that low-fluence exposures to Fe ions are often cytotoxic due to their ability to create multilocus deletions that may often include the loss of essential genes. In addition, the tumorigenic potential of these HZE heavy ions may be due to the high potential for loss of tumor suppressor genes. The relative insensitivity of the hprt locus to mutation is likely due to tight linkage to a gene that is required for viability.
Separated-orbit bisected energy-recovered linear accelerator
Douglas, David R.
2015-09-01
A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.
Linear relations in microbial reaction systems: a general overview of their origin, form, and use.
Noorman, H J; Heijnen, J J; Ch A M Luyben, K
1991-09-01
In microbial reaction systems, there are a number of linear relations among net conversion rates. These can be very useful in the analysis of experimental data. This article provides a general approach for the formation and application of the linear relations. Two type of system descriptions, one considering the biomass as a black box and the other based on metabolic pathways, are encountered. These are defined in a linear vector and matrix algebra framework. A correct a priori description can be obtained by three useful tests: the independency, consistency, and observability tests. The independency are different. The black box approach provides only conservations relations. They are derived from element, electrical charge, energy, and Gibbs energy balances. The metabolic approach provides, in addition to the conservation relations, metabolic and reaction relations. These result from component, energy, and Gibbs energy balances. Thus it is more attractive to use the metabolic description than the black box approach. A number of different types of linear relations given in the literature are reviewed. They are classified according to the different categories that result from the black box or the metabolic system description. Validation of hypotheses related to metabolic pathways can be supported by experimental validation of the linear metabolic relations. However, definite proof from biochemical evidence remains indispensable.
Local energy decay for linear wave equations with variable coefficients
Ikehata, Ryo
2005-06-01
A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].
Maximization of energy in the output of a linear system
International Nuclear Information System (INIS)
Dudley, D.G.
1976-01-01
A time-limited signal which, when passed through a linear system, maximizes the total output energy is considered. Previous work has shown that the solution is given by the eigenfunction associated with the maximum eigenvalue in a Hilbert-Schmidt integral equation. Analytical results are available for the case where the transfer function is a low-pass filter. This work is extended by obtaining a numerical solution to the integral equation which allows results for reasonably general transfer functions
Jackson, A. T.
1973-01-01
Reviews theoretical and experimental fundamentals of Einstein's theory of general relativity. Indicates that recent development of the theory of the continually expanding universe may lead to revision of the space-time continuum of the finite and unbounded universe. (CC)
A linearized dispersion relation for orthorhombic pseudo-acoustic modeling
Song, Xiaolei; Alkhalifah, Tariq Ali
2012-01-01
Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen's parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.
Directory of Open Access Journals (Sweden)
Zanxiang Nie
2017-01-01
Full Text Available Linear wave energy converters generate intrinsically intermittent power with variable frequency and amplitude. A composite energy storage system consisting of batteries and super capacitors has been developed and controlled by buck-boost converters. The purpose of the composite energy storage system is to handle the fluctuations and intermittent characteristics of the renewable source, and hence provide a steady output power. Linear wave energy converters working in conjunction with a system composed of various energy storage devices, is considered as a microsystem, which can function in a stand-alone or a grid connected mode. Simulation results have shown that by applying a boost H-bridge and a composite energy storage system more power could be extracted from linear wave energy converters. Simulation results have shown that the super capacitors charge and discharge often to handle the frequent power fluctuations, and the batteries charge and discharge slowly for handling the intermittent power of wave energy converters. Hardware systems have been constructed to control the linear wave energy converter and the composite energy storage system. The performance of the composite energy storage system has been verified in experiments by using electronics-based wave energy emulators.
Nuclear energy related research
International Nuclear Information System (INIS)
Salminen, Pertti
1987-02-01
This annual Research Programme Plan covers the nuclear related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1987 and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT itself
Modeling patterns in data using linear and related models
International Nuclear Information System (INIS)
Engelhardt, M.E.
1996-06-01
This report considers the use of linear models for analyzing data related to reliability and safety issues of the type usually associated with nuclear power plants. The report discusses some of the general results of linear regression analysis, such as the model assumptions and properties of the estimators of the parameters. The results are motivated with examples of operational data. Results about the important case of a linear regression model with one covariate are covered in detail. This case includes analysis of time trends. The analysis is applied with two different sets of time trend data. Diagnostic procedures and tests for the adequacy of the model are discussed. Some related methods such as weighted regression and nonlinear models are also considered. A discussion of the general linear model is also included. Appendix A gives some basic SAS programs and outputs for some of the analyses discussed in the body of the report. Appendix B is a review of some of the matrix theoretic results which are useful in the development of linear models
Relative controllability and null controllability of linear delay systems ...
African Journals Online (AJOL)
Necessary and sufficient conditions are established for the relative, absolute controllability and null controllability of the generalized linear delay system and its discrete prototype. The paper presents illuminating examples on previous controllability results by Manitius and Olbrot [7] and carries over the results of Onwuatu [8] ...
Dispersion relation of linearly polarized strong electromagnetic waves
Energy Technology Data Exchange (ETDEWEB)
Ferrari, A; Massaglia, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Dobrowolny, M [Comitato Nazionale per l' Energia Nucleaire, Frascati (Italy). Lab. Plasma Spazio
1975-12-15
A numerical study is presented of the dispersion relation of linearly polarized strong electromagnetic waves in a cold electron plasma. The nonlinear effects introduced by the relativistic motion of electrons are: (1) the dispersion relation depends explicitly on the field strength ..cap alpha..=eE/sub 0//mc..omega../sub 0/, and (2) the propagation of modes with frequencies below the formal electron plasma frequency is allowed.
Relative Importance for Linear Regression in R: The Package relaimpo
Groemping, Ulrike
2006-01-01
Relative importance is a topic that has seen a lot of interest in recent years, particularly in applied work. The R package relaimpo implements six different metrics for assessing relative importance of regressors in the linear model, two of which are recommended - averaging over orderings of regressors and a newly proposed metric (Feldman 2005) called pmvd. Apart from delivering the metrics themselves, relaimpo also provides (exploratory) bootstrap confidence intervals. This paper offers a b...
Energy of linear quasi-neutral electrostatic drift waves
International Nuclear Information System (INIS)
Pfirsch, D.; Correa-Restrepo, D.
1992-01-01
An exact energy expression for linear quasi-neutral electrostatic perturbations is derived within the framework of dissipationless multi-fluid theory, valid for any geometry. Taking the mass as a tensor with, in general, different masses parallel and perpendicular to an ambient magnetic field allows one to treat the full dynamics and also to restrict consideration to parallel dynamics or to the completely adiabatic case. Application to slab configurations yields the result that in plane geometry the adiabatic approximation does not allow negative-energy perturbations, whereas inclusion of the parallel dynamics does. This is in agreement with a numerical study of drift-wave turbulence within the framework of collisional two-fluid theory by B. Scott. Unlike Scott, we consider a dissipationless theory. Whereas the nonlinear energy is just kinetic plus potential plus thermal energy, the energy of perturbations depends on constraints. In a multi-fluid quasi-neutral electrostatic theory, from which we start, such constraints are mass conservation and entropy conservation. The latter is violated if heat conduction, heat sources (e.g. Joule heating) and heat sinks play a role. Hence, the energy expressions obtained are, valid only when situations where this is not the case or where these phenomena do not influence the entropy constraint. The latter is the case if the heat conduction is infinitely large such that the equilibrium temperature profiles T ν (x) of the various particle species ν are independent of x and δT ν =0. A vanishing temperature perturbation results in an entropy-conserving theory if one takes the adiabatic coefficients γ ν =1. This is possible, however, only for the perturbations; the equilibrium energy would diverge. When we consider this case, we do it in the way that the γs are put equal to 1 only after having obtained the perturbed energy for general γs. (author) 7 refs
Feedback Linearization Controller for a Wind Energy Power System
Directory of Open Access Journals (Sweden)
Muthana Alrifai
2016-09-01
Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.
Linear energy transfer incorporated intensity modulated proton therapy optimization
Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe
2018-01-01
The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the
Relative Importance for Linear Regression in R: The Package relaimpo
Directory of Open Access Journals (Sweden)
Ulrike Gromping
2006-09-01
Full Text Available Relative importance is a topic that has seen a lot of interest in recent years, particularly in applied work. The R package relaimpo implements six different metrics for assessing relative importance of regressors in the linear model, two of which are recommended - averaging over orderings of regressors and a newly proposed metric (Feldman 2005 called pmvd. Apart from delivering the metrics themselves, relaimpo also provides (exploratory bootstrap confidence intervals. This paper offers a brief tutorial introduction to the package. The methods and relaimpo’s functionality are illustrated using the data set swiss that is generally available in R. The paper targets readers who have a basic understanding of multiple linear regression. For the background of more advanced aspects, references are provided.
A linearized dispersion relation for orthorhombic pseudo-acoustic modeling
Song, Xiaolei
2012-11-04
Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen\\'s parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.
Modelling non-linear effects of dark energy
Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis
2018-04-01
We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.
[Relations between biomedical variables: mathematical analysis or linear algebra?].
Hucher, M; Berlie, J; Brunet, M
1977-01-01
The authors, after a short reminder of one pattern's structure, stress on the possible double approach of relations uniting the variables of this pattern: use of fonctions, what is within the mathematical analysis sphere, use of linear algebra profiting by matricial calculation's development and automatiosation. They precise the respective interests on these methods, their bounds and the imperatives for utilization, according to the kind of variables, of data, and the objective for work, understanding phenomenons or helping towards decision.
Canonical perturbation theory in linearized general relativity theory
International Nuclear Information System (INIS)
Gonzales, R.; Pavlenko, Yu.G.
1986-01-01
Canonical perturbation theory in linearized general relativity theory is developed. It is shown that the evolution of arbitrary dynamic value, conditioned by the interaction of particles, gravitation and electromagnetic fields, can be presented in the form of a series, each member of it corresponding to the contribution of certain spontaneous or induced process. The main concepts of the approach are presented in the approximation of a weak gravitational field
An exact linear dispersion relation for CRM instability
International Nuclear Information System (INIS)
Choyal, Y; Minami, K
2011-01-01
An exact self-consistent linear dispersion relation of a large orbit electron beam including two principles of cyclotron emission with oscillation frequencies above and below the relativistic electron frequency is derived and analyzed numerically for the first time in the literature. The two principles are cyclotron resonance maser (CRM) instability and Cherenkov instability in the azimuthal direction. Self-consistency in the formulation and inclusion of proper boundary conditions have removed the unphysical instability existing for infinitely large k z observed in conventional dispersion relations of CRM instability.
Energy efficient downlink MIMO transmission with linear precoding
Institute of Scientific and Technical Information of China (English)
XU Jie; LI ShiChao; QIU Ling; SLIMANE Ben S.; YU ChengWen
2013-01-01
Energy efficiency （EE） is becoming increasingly important for wireless cellular networks. This paper addresses EE optimization problems in downlink multiuser MIMO systems with linear precoding. Referring to different active transmit/receive antenna sets and transmission schemes as different modes, we propose a joint bandwidth/power optimization and mode switching scheme to maximize EE. With a specific mode, we prove that the optimal bandwidth and transmit power is either full transmit power or full bandwidth. After deriving the optimal bandwidth and transmit power, we further propose mode switching to select the mode with optimal EE. Since the optimal mode switching, i.e. exhaustive search, is too complex to implement, an alternative heuristic method is developed to decrease the complexity through reducing the search size and avoiding the EE calculation during each search. Through simulations, we demonstrate that the proposed methods can significantly improve EE and the performance is similar to the optimal exhaustive search.
Effect of high linear energy transfer radiation on biological membranes
International Nuclear Information System (INIS)
Choudhary, D.; Srivastava, M.; Kale, R.K.; Sarma, A.
1998-01-01
Cellular membranes are vital elements, and their integrity is extremely essential for the viability of the cells. We studied the effects of high linear energy transfer (LET) radiation on the membranes. Rabbit erythrocytes (1 x 10 7 cells/ml) and microsomes (0.6 mg protein/ml) prepared from liver of rats were irradiated with 7 Li ions of energy 6.42 MeV/u and 16 O ions of energy 4.25 MeV/u having maximum LET values of 354 keV/μm and 1130 keV/μm, respectively. 7 Li- and 16 O-induced microsomal lipid peroxidation was found to increase with fluence. The 16 O ions were more effective than 7 Li ions, which could be due to the denser energy distribution in the track and the yield of free radicals. These findings suggested that the biological membranes could be peroxidized on exposure to high-LET radiation. Inhibition of the lipid peroxidation was observed in the presence of a membrane-active drug, chlorpromazine (CPZ), which could be due to scavenging of free radicals (mainly HO. and ROO.), electron donation, and hydrogen transfer reactions. The 7 Li and 16 O ions also induced hemolysis in erythrocytes. The extent of hemolysis was found to be a function of time and fluence, and showed a characteristic sigmoidal pattern. The 16 O ions were more effective in the lower fluence range than 7 Li ions. These results were compared with lipid peroxidation and hemolysis induced by gamma-radiation. (orig.)
Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber
Energy Technology Data Exchange (ETDEWEB)
Shin, Jae-ik [Proton Therapy Center, National Cancer Center (Korea, Republic of); Division of Heavy Ion Clinical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul (Korea, Republic of); Park, Seyjoon [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul (Korea, Republic of); Kim, Haksoo; Kim, Meyoung [Proton Therapy Center, National Cancer Center (Korea, Republic of); Jeong, Chiyoung [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Cho, Sungkoo [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul (Korea, Republic of); Lim, Young Kyung; Shin, Dongho [Proton Therapy Center, National Cancer Center (Korea, Republic of); Lee, Se Byeong, E-mail: sblee@ncc.re.kr [Proton Therapy Center, National Cancer Center (Korea, Republic of); Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu [Department of Physics, Nagoya University, Nagoya (Japan); Kwak, Jungwon [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sung Hyun [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon (Korea, Republic of); Cho, Jung Sook [Department of refinement education, Dongseo University, Busan (Korea, Republic of); Ahn, Jung Keun [Department of Physics, Korea University, Seoul (Korea, Republic of); Kim, Ji Hyun; Yoon, Chun Sil [Gyeongsang National University, Jinju (Korea, Republic of); Incerti, Sebastien [CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Université Bordeaux 1, CENBG, UMR 5797, F-33170 Gradignan (France)
2015-04-15
This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the ‘NETSCAN’ method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.
Internal high linear energy transfer (LET) targeted radiotherapy for cancer
International Nuclear Information System (INIS)
Allen, Barry J
2006-01-01
High linear energy transfer (LET) radiation for internal targeted therapy has been a long time coming on to the medical therapy scene. While fundamental principles were established many decades ago, the clinical implementation has been slow. Localized neutron capture therapy, and more recently systemic targeted alpha therapy, are at the clinical trial stage. What are the attributes of these therapies that have led a band of scientists and clinicians to dedicate so much of their careers? High LET means high energy density, causing double strand breaks in DNA, and short-range radiation, sparing adjacent normal tissues. This targeted approach complements conventional radiotherapy and chemotherapy. Such therapies fail on several fronts. Foremost is the complete lack of progress for the control of primary GBM, the holy grail for cancer therapies. Next is the inability to regress metastatic cancer on a systemic basis. This has been the task of chemotherapy, but palliation is the major application. Finally, there is the inability to inhibit the development of lethal metastatic cancer after successful treatment of the primary cancer. This review charts, from an Australian perspective, the developing role of local and systemic high LET, internal radiation therapy. (review)
Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber
International Nuclear Information System (INIS)
Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien
2015-01-01
This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the ‘NETSCAN’ method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion
Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber
Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien
2015-04-01
This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the 'NETSCAN' method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.
SYMMETRY PROPERTIES OF THE COULOMB POTENTIAL WITH A LINEAR DEPENDENCE ON ENERGY
Directory of Open Access Journals (Sweden)
Radu Budaca
2017-12-01
Full Text Available The D-dimensional Schr ̈odinger equation for a Coulomb potential with a coupling constant depending linearly on energy is analytically solved. The energy spectrum in the asymptotic regime of the slope parameter is found to be fully determined up to a scale only by its quantum numbers. The raising and lowering operators for this limiting model are determined from the recurrence properties of the associated solutions. It is shown that they satisfy the commutation relations of an SU(1,1 algebra and act on wave-functions which are normalized differently from the case of the usual bound state problem for an energy independent Coulomb potential.
Some computer simulations based on the linear relative risk model
International Nuclear Information System (INIS)
Gilbert, E.S.
1991-10-01
This report presents the results of computer simulations designed to evaluate and compare the performance of the likelihood ratio statistic and the score statistic for making inferences about the linear relative risk mode. The work was motivated by data on workers exposed to low doses of radiation, and the report includes illustration of several procedures for obtaining confidence limits for the excess relative risk coefficient based on data from three studies of nuclear workers. The computer simulations indicate that with small sample sizes and highly skewed dose distributions, asymptotic approximations to the score statistic or to the likelihood ratio statistic may not be adequate. For testing the null hypothesis that the excess relative risk is equal to zero, the asymptotic approximation to the likelihood ratio statistic was adequate, but use of the asymptotic approximation to the score statistic rejected the null hypothesis too often. Frequently the likelihood was maximized at the lower constraint, and when this occurred, the asymptotic approximations for the likelihood ratio and score statistics did not perform well in obtaining upper confidence limits. The score statistic and likelihood ratio statistics were found to perform comparably in terms of power and width of the confidence limits. It is recommended that with modest sample sizes, confidence limits be obtained using computer simulations based on the score statistic. Although nuclear worker studies are emphasized in this report, its results are relevant for any study investigating linear dose-response functions with highly skewed exposure distributions. 22 refs., 14 tabs
Relating Reasoning Methodologies in Linear Logic and Process Algebra
Directory of Open Access Journals (Sweden)
Yuxin Deng
2012-11-01
Full Text Available We show that the proof-theoretic notion of logical preorder coincides with the process-theoretic notion of contextual preorder for a CCS-like calculus obtained from the formula-as-process interpretation of a fragment of linear logic. The argument makes use of other standard notions in process algebra, namely a labeled transition system and a coinductively defined simulation relation. This result establishes a connection between an approach to reason about process specifications and a method to reason about logic specifications.
Relatively Inexact Proximal Point Algorithm and Linear Convergence Analysis
Directory of Open Access Journals (Sweden)
Ram U. Verma
2009-01-01
Full Text Available Based on a notion of relatively maximal (m-relaxed monotonicity, the approximation solvability of a general class of inclusion problems is discussed, while generalizing Rockafellar's theorem (1976 on linear convergence using the proximal point algorithm in a real Hilbert space setting. Convergence analysis, based on this new model, is simpler and compact than that of the celebrated technique of Rockafellar in which the Lipschitz continuity at 0 of the inverse of the set-valued mapping is applied. Furthermore, it can be used to generalize the Yosida approximation, which, in turn, can be applied to first-order evolution equations as well as evolution inclusions.
Galerkin projection methods for solving multiple related linear systems
Energy Technology Data Exchange (ETDEWEB)
Chan, T.F.; Ng, M.; Wan, W.L.
1996-12-31
We consider using Galerkin projection methods for solving multiple related linear systems A{sup (i)}x{sup (i)} = b{sup (i)} for 1 {le} i {le} s, where A{sup (i)} and b{sup (i)} are different in general. We start with the special case where A{sup (i)} = A and A is symmetric positive definite. The method generates a Krylov subspace from a set of direction vectors obtained by solving one of the systems, called the seed system, by the CG method and then projects the residuals of other systems orthogonally onto the generated Krylov subspace to get the approximate solutions. The whole process is repeated with another unsolved system as a seed until all the systems are solved. We observe in practice a super-convergence behaviour of the CG process of the seed system when compared with the usual CG process. We also observe that only a small number of restarts is required to solve all the systems if the right-hand sides are close to each other. These two features together make the method particularly effective. In this talk, we give theoretical proof to justify these observations. Furthermore, we combine the advantages of this method and the block CG method and propose a block extension of this single seed method. The above procedure can actually be modified for solving multiple linear systems A{sup (i)}x{sup (i)} = b{sup (i)}, where A{sup (i)} are now different. We can also extend the previous analytical results to this more general case. Applications of this method to multiple related linear systems arising from image restoration and recursive least squares computations are considered as examples.
Derivation of linear attenuation coefficients from CT numbers for low-energy photons
International Nuclear Information System (INIS)
Watanabe, Y.
1999-01-01
One can estimate photon attenuation properties from the CT number. In a standard method one assumes that the linear attenuation coefficient is proportional to electron density and ignores its nonlinear dependence on atomic number. When the photon energy is lower than about 50 keV, such as for brachytherapy applications, however, photoelectric absorption and Rayleigh scattering become important. Hence the atomic number must be explicitly considered in estimating the linear attenuation coefficient. In this study we propose a method to more accurately estimate the linear attenuation coefficient of low-energy photons from CT numbers. We formulate an equation that relates the CT number to the electron density and the effective atomic number. We use a CT calibration phantom to determine unknown coefficients in the equation. The equation with a given CT number is then solved for the effective atomic number, which in turn is used to calculate the linear attenuation coefficient for low-energy photons. We use the CT phantom to test the new method. The method significantly improves the standard method in estimating the attenuation coefficient at low photon energies (20keV≤E≤40keV) for materials with high atomic numbers. (author)
International Nuclear Information System (INIS)
Shweikani, R.; Anjak, O.
2014-03-01
Radiotherapy represents the most widely spread technique to control and treat cancer. To increase the treatment efficiency, high-energy linear accelerators are used. However, applying high energy photon beams leads to a non-negligible dose of neutrons contaminating therapeutic beams. A high-energy (23 MV) linear accelerator (Varian 21EX) was studied. The CR-39 nuclear track detectors (NTDs) were used to study the variation of fast neutron relative intensities around a linear accelerator high energy photon beam and to determined the its variation on the patient plane at 0, 50, 100, 150 and 200 cm from the center of the photon beam was. By increasing the distance from the center of the X-ray beam towards the periphery, the photoneutron dose equivalent decreased rapidly for the fields. Photoneutron intensity and distributions at isocenter level with the field sizes of 40*40 cm'2 at SSD=100cm around 23 MV photon beam using Nuclear Track Detectors were determined. The advantages of CR-39 NTD s over active detectors: 1- there is no pulse pileup problem. 2- no photon interference with neutron measurement. 3- no electronics are required. 4 - less prone to noise and interference. The photoneutron intensities were rapidly decreased as we move away from the isocenter of linear accelerators. As the use of simulation software MCNP match in the results we have obtained through direct measurements and the modeling results using the code MCNP (author).
Anderson, Emma L; Tilling, Kate; Fraser, Abigail; Macdonald-Wallis, Corrie; Emmett, Pauline; Cribb, Victoria; Northstone, Kate; Lawlor, Debbie A; Howe, Laura D
2013-07-01
Methods for the assessment of changes in dietary intake across the life course are underdeveloped. We demonstrate the use of linear-spline multilevel models to summarize energy-intake trajectories through childhood and adolescence and their application as exposures, outcomes, or mediators. The Avon Longitudinal Study of Parents and Children assessed children's dietary intake several times between ages 3 and 13 years, using both food frequency questionnaires (FFQs) and 3-day food diaries. We estimated energy-intake trajectories for 12,032 children using linear-spline multilevel models. We then assessed the associations of these trajectories with maternal body mass index (BMI), and later offspring BMI, and also their role in mediating the relation between maternal and offspring BMIs. Models estimated average and individual energy intake at 3 years, and linear changes in energy intake from age 3 to 7 years and from age 7 to 13 years. By including the exposure (in this example, maternal BMI) in the multilevel model, we were able to estimate the average energy-intake trajectories across levels of the exposure. When energy-intake trajectories are the exposure for a later outcome (in this case offspring BMI) or a mediator (between maternal and offspring BMI), results were similar, whether using a two-step process (exporting individual-level intercepts and slopes from multilevel models and using these in linear regression/path analysis), or a single-step process (multivariate multilevel models). Trajectories were similar when FFQs and food diaries were assessed either separately, or when combined into one model. Linear-spline multilevel models provide useful summaries of trajectories of dietary intake that can be used as an exposure, outcome, or mediator.
Non-Linear Numerical Modeling and Experimental Testing of a Point Absorber Wave Energy Converter
DEFF Research Database (Denmark)
Zurkinden, Andrew Stephen; Ferri, Francesco; Beatty, S.
2014-01-01
the calculation of the non-linear hydrostatic restoring moment by a cubic polynomial function fit to laboratory test results. Moreover, moments due to viscous drag are evaluated on the oscillating hemisphere considering the horizontal and vertical drag force components. The influence on the motions of this non.......e. H/λ≤0.02. For steep waves, H/λ≥0.04 however, the relative velocities between the body and the waves increase thus requiring inclusion of the non-linear hydrostatic restoring moment to effectively predict the dynamics of the wave energy converter. For operation of the device with a passively damping...
Investigation of incomplete linear momentum transfer in heavy ion reactions at intermediate energies
International Nuclear Information System (INIS)
Leray, S.
1986-07-01
At intermediate energies, heavy ion central collisions lead to the incomplete fusion of the incident nuclei while part of the initial linear momentum is carried away by fast light particles. Experiments were performed with 30 MeV per nucleon neon and 20, 35 and 44 MeV per nucleon argon projectiles bombarding heavy targets. Results obtained with 30 MeV per nucleon neon and 20 MeV per nucleon argon beams are in good agreement with an empirical law established with lighter projectiles. On the contrary, 35 and 44 MeV per nucleon argon projectiles do not follow the same law and fission fragments progressively disappear. A simple model explains the evolution of the amount of transferred linear momentum versus incident energy. The disappearance of the fusion products of the composite system observed with argon projectiles beyond 35 MeV per nucleon is explained by a limitation of the excitation energy per nucleon which can be deposited in a nucleus. The limit is evaluated from nucleon binding energy in nuclei and probability to emit clusters and is in good agreement with experimental data. Because of the coupling between intrinsic motion of nucleons and relative motion of nuclei, some nucleons have a kinetic energy high enough to be emitted: a theoretical model is proposed which rather well fits the data concerning fast nucleons but cannot explain the measured amounts of transferred linear momentum. This is attributed to the existence of other mechanisms [fr
Relative null controllability of linear systems with multiple delays in ...
African Journals Online (AJOL)
varying multiple delays in state and control are developed. If the uncontrolled system is uniformly asymptotically stable, and if the linear system is controllable, then the linear system is null controllable. Journal of the Nigerian Association of ...
Reconstructing the long-term cosmic ray intensity: linear relations do not work
Directory of Open Access Journals (Sweden)
K. Mursula
2003-04-01
Full Text Available It was recently suggested (Lockwood, 2001 that the cosmic ray intensity in the neutron monitor energy range is linearly related to the coronal source flux, and can be reconstructed for the last 130 years using the long-term coronal flux estimated earlier. Moreover, Lockwood (2001 reconstructed the coronal flux for the last 500 years using a similar linear relation between the flux and the concentration of cosmogenic 10 Be isotopes in polar ice. Here we show that the applied linear relations are oversimplified and lead to unphysical results on long time scales. In particular, the cosmic ray intensity reconstructed by Lockwood (2001 for the last 130 years has a steep trend which is considerably larger than the trend estimated from observations during the last 65 years. Accordingly, the reconstructed cosmic ray intensity reaches or even exceeds the local interstellar cosmic ray flux around 1900. We argue that these unphysical results obtained when using linear relations are due to the oversimplified approach which does not take into account the complex and essentially nonlinear nature of long-term cosmic ray modulation in the heliosphere. We also compare the long-term cosmic ray intensity based on a linear treatment with the reconstruction based on a recent physical model which predicts a considerably lower cosmic ray intensity around 1900.Key words. Interplanetary physics (cosmic rays; heliopause and solar wind termination – Geomagnetism and paleomagnetism (time variations, secular and long-term
New Inequalities and Uncertainty Relations on Linear Canonical Transform Revisit
Directory of Open Access Journals (Sweden)
Xu Guanlei
2009-01-01
Full Text Available The uncertainty principle plays an important role in mathematics, physics, signal processing, and so on. Firstly, based on definition of the linear canonical transform (LCT and the traditional Pitt's inequality, one novel Pitt's inequality in the LCT domains is obtained, which is connected with the LCT parameters a and b. Then one novel logarithmic uncertainty principle is derived from this novel Pitt's inequality in the LCT domains, which is associated with parameters of the two LCTs. Secondly, from the relation between the original function and LCT, one entropic uncertainty principle and one Heisenberg's uncertainty principle in the LCT domains are derived, which are associated with the LCT parameters a and b. The reason why the three lower bounds are only associated with LCT parameters a and b and independent of c and d is presented. The results show it is possible that the bounds tend to zeros.
Econometrics analysis of consumer behaviour: a linear expenditure system applied to energy
International Nuclear Information System (INIS)
Giansante, C.; Ferrari, V.
1996-12-01
In economics literature the expenditure system specification is a well known subject. The problem is to define a coherent representation of consumer behaviour through functional forms easy to calculate. In this work it is used the Stone-Geary Linear Expenditure System and its multi-level decision process version. The Linear Expenditure system is characterized by an easy calculating estimation procedure, and its multi-level specification allows substitution and complementary relations between goods. Moreover, the utility function separability condition on which the Utility Tree Approach is based, justifies to use an estimation procedure in two or more steps. This allows to use an high degree of expenditure categories disaggregation, impossible to reach the Linear Expediture System. The analysis is applied to energy sectors
Further development of a track detector as the spectrometer of linear energy transfer
International Nuclear Information System (INIS)
Spurny, F.; Bednar, J.; Vlcek, B.; Botollier-Depois, J.F.
1998-01-01
Track revealing in a track etch detector is a phenomenon related to the linear energy transfer (LET) of the particle registered. The measurements of track parameters permit to determine the LET corresponding to each revealed track, i.e. LET spectrum. We have recently developed a spectrometer of LET based on the chemically etched polyallyldiglycolcarbonate (PADC). In this contribution the results obtained with such spectrometer in some neutron fields are presented, analyzed and discussed. Several radionuclide neutron sources have been used, LET spectrometer has been also exposed in high energy neutron reference fields at CERN and JINR Dubna, and on board aircraft. (author)
High energy X-ray CT system using a linear accelerator for automobile parts inspection
International Nuclear Information System (INIS)
Kanamori, T.; Sukita, T.
1995-01-01
A high energy X-ray CT system (maximum photon energy: 0.95 MeV) has been developed for industrial use. This system employs a linear accelerator as an X-ray source. It is able to image the cross section of automobile parts and can be applied to a solidification analysis study of the cylinder head in an automobile. This paper describes the features of the system and application results which can be related to solidification analysis of the cylinder head when fabricated from an aluminum casting. Some cross-sectional images are also presented as evidence for nondestructive inspection of automobile parts. (orig.)
El Aroudi, Abdelali
2014-05-01
Recently, nonlinearities have been shown to play an important role in increasing the extracted energy of vibration-based energy harvesting systems. In this paper, we study the dynamical behavior of a piecewise linear (PWL) spring-mass-damper system for vibration-based energy harvesting applications. First, we present a continuous time single degree of freedom PWL dynamical model of the system. Different configurations of the PWL model and their corresponding state-space regions are derived. Then, from this PWL model, extensive numerical simulations are carried out by computing time-domain waveforms, state-space trajectories and frequency responses under a deterministic harmonic excitation for different sets of system parameter values. Stability analysis is performed using Floquet theory combined with Filippov method, Poincaré map modeling and finite difference method (FDM). The Floquet multipliers are calculated using these three approaches and a good concordance is obtained among them. The performance of the system in terms of the harvested energy is studied by considering both purely harmonic excitation and a noisy vibrational source. A frequency-domain analysis shows that the harvested energy could be larger at low frequencies as compared to an equivalent linear system, in particular, for relatively low excitation intensities. This could be an advantage for potential use of this system in low frequency ambient vibrational-based energy harvesting applications. © 2014 World Scientific Publishing Company.
Energy storage and transfer with homopolar machine for a linear theta-pinch hybrid reactor
International Nuclear Information System (INIS)
Vogel, H.F.; Brennan, M.; Dase, W.G.; Tolk, K.M.; Weldon, W.F.
1975-12-01
This report describes the energy storage and transfer system for the compression coil system of a linear theta-pinch hybrid reactor (LTPHR). High efficiency and low cost are the principal requirements for the energy storage and transfer of 25 MJ/m or 25 GJ for a 1-km LTPHR. The circuit efficiency must be approximately 90 percent, and the cost for the circuit 5 to 6 cents/J. Scaling laws and simple relationships between circuit efficiency and cost per unit energy as a function of the half cycle time are presented. Capacitors and homopolor machines are considered as energy storage elements with both functioning basically as capacitors. The advantage of the homopolar machine in this application is its relatively low cost, whereas that of capacitors is better efficiency
A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.
Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S
2017-06-01
The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were
DEFF Research Database (Denmark)
Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian
2014-01-01
In the paper, three frequently used operation optimisation methods are examined with respect to their impact on operation management of the combined utility technologies for electric power and DH (district heating) of eastern Denmark. The investigation focusses on individual plant operation...... differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used...... as a benchmark, as this type is frequently used, and has the lowest amount of constraints of the three. A comparison of the optimised operation of a number of units shows significant differences between the three methods. Compared to the reference, the use of binary integer variables, increases operation...
DEFF Research Database (Denmark)
Kiani, Alishir; Chwalibog, André; Nielsen, Mette O
2007-01-01
Late gestation energy expenditure (EE(gest)) originates from energy expenditure (EE) of development of conceptus (EE(conceptus)) and EE of homeorhetic adaptation of metabolism (EE(homeorhetic)). Even though EE(gest) is relatively easy to quantify, its partitioning is problematic. In the present...... study metabolizable energy (ME) intake ranges for twin-bearing ewes were 220-440, 350- 700, 350-900 kJ per metabolic body weight (W0.75) at week seven, five, two pre-partum respectively. Indirect calorimetry and a linear regression approach were used to quantify EE(gest) and then partition to EE......(conceptus) and EE(homeorhetic). Energy expenditure of basal metabolism of the non-gravid tissues (EE(bmng)), derived from the intercept of the linear regression equation of retained energy [kJ/W0.75] and ME intake [kJ/W(0.75)], was 298 [kJ/ W0.75]. Values of the intercepts of the regression equations at week seven...
Cross-beam energy transfer: On the accuracy of linear stationary models in the linear kinetic regime
Debayle, A.; Masson-Laborde, P.-E.; Ruyer, C.; Casanova, M.; Loiseau, P.
2018-05-01
We present an extensive numerical study by means of particle-in-cell simulations of the energy transfer that occurs during the crossing of two laser beams. In the linear regime, when ions are not trapped in the potential well induced by the laser interference pattern, a very good agreement is obtained with a simple linear stationary model, provided the laser intensity is sufficiently smooth. These comparisons include different plasma compositions to cover the strong and weak Landau damping regimes as well as the multispecies case. The correct evaluation of the linear Landau damping at the phase velocity imposed by the laser interference pattern is essential to estimate the energy transfer rate between the laser beams, once the stationary regime is reached. The transient evolution obtained in kinetic simulations is also analysed by means of a full analytical formula that includes 3D beam energy exchange coupled with the ion acoustic wave response. Specific attention is paid to the energy transfer when the laser presents small-scale inhomogeneities. In particular, the energy transfer is reduced when the laser inhomogeneities are comparable with the Landau damping characteristic length of the ion acoustic wave.
International Nuclear Information System (INIS)
Saito, Kenji; Furuta, Fumio; Saeki, Takayuki
2009-01-01
Superconducting radio frequency (SRF) cavities were used for storage rings like TRISTAN at KEK, HERA at DESY and LEP-II at CERN in 1990-2000. This technology has been accepted as a common accelerator technology. In August 2004, ITPR recommended an electron/positron linear collider based on SRF technology for the future high energy physics. ICFA accepted the recommendation and named it ILC (International Linear Collider). SRF cavities have a very unique feature due to its very small surface resistance. Energy recovery is another very exciting application. Many laboratories are proposing ERL (Energy Recovery LINAC) as a next bright photon source. In these accelerators, production of SRF cavities with reliably high performance is the most important issue. In this paper the activities of ILC high gradient cavities will be introduced. ERL activity will be briefly presented. (author)
Saito, Kenji; Furuta, Fumio; Saeki, Takayuki
Superconducting radio frequency (SRF) cavities were used for storage rings like TRISTAN at KEK, HERA at DESY and LEP-II at CERN in 1990-2000. This technology has been accepted as a common accelerator technology. In August 2004, ITPR recommended an electron/positron linear collider based on SRF technology for the future high energy physics. ICFA accepted the recommendation and named it ILC (International Linear Collider). SRF cavities have a very unique feature due to its very small surface resistance. Energy recovery is another very exciting application. Many laboratories are proposing ERL (Energy Recovery LINAC) as a next bright photon source. In these accelerators, production of SRF cavities with reliably high performance is the most important issue. In this paper the activities of ILC high gradient cavities will be introduced. ERL activity will be briefly presented.
Linear momentum, angular momentum and energy in the linear collision between two balls
Hanisch, C.; Hofmann, F.; Ziese, M.
2018-01-01
In an experiment of the basic physics laboratory, kinematical motion processes were analysed. The motion was recorded with a standard video camera having frame rates from 30 to 240 fps the videos were processed using video analysis software. Video detection was used to analyse the symmetric one-dimensional collision between two balls. Conservation of linear and angular momentum lead to a crossover from rolling to sliding directly after the collision. By variation of the rolling radius the system could be tuned from a regime in which the balls move away from each other after the collision to a situation in which they re-collide.
International Nuclear Information System (INIS)
Gao Song; Balter, Peter A.; Rose, Mark; Simon, William E.
2013-01-01
Purpose: To compare the use of flatness versus percent depth dose (PDD) for determining changes in photon beam energy for a megavoltage linear accelerator. Methods: Energy changes were accomplished by adjusting the bending magnet current by up to ±15% in 5% increments away from the value used clinically. Two metrics for flatness, relative flatness in the central 80% of the field (Flat) and average maximum dose along the diagonals normalized by central axis dose (F DN ), were measured using a commercially available planner ionization chamber array. PDD was measured in water at depths of 5 and 10 cm in 3 × 3 cm 2 and 10 × 10 cm 2 fields using a cylindrical chamber. Results: PDD was more sensitive to changes in energy when the beam energy was increased than when it was decreased. For the 18-MV beam in particular, PDD was not sensitive to energy reductions below the nominal energy. The value of Flat was found to be more sensitive to decreases in energy than to increases, with little sensitivity to energy increases above the nominal energy for 18-MV beams. F DN was the only metric that was found to be sensitive to both increases and reductions of energy for both the 6- and 18-MV beams. Conclusions: Flatness based metrics were found to be more sensitive to energy changes than PDD, In particular, F DN was found to be the most sensitive metric to energy changes for photon beams of 6 and 18 MV. The ionization chamber array allows this metric to be conveniently measured as part of routine accelerator quality assurance.
Quantum energy teleportation with a linear harmonic chain
International Nuclear Information System (INIS)
Nambu, Yasusada; Hotta, Masahiro
2010-01-01
A protocol of quantum energy teleportation is proposed for a one-dimensional harmonic chain. A coherent-state positive operator-valued measure (POVM) measurement is performed on coupled oscillators of the chain in the ground state accompanied by energy infusion to the system. This measurement consumes a part of the ground-state entanglement. Depending on the measurement result, a displacement operation is performed on a distant oscillator accompanied by energy extraction from the zero-point fluctuation of the oscillator. We find that the amount of consumed entanglement is bounded from below by a positive value that is proportional to the amount of teleported energy.
International Nuclear Information System (INIS)
Yamamoto, T.; Nakasaku, S.; Kawanishi, M.
1986-01-01
The response of the exoelectron dosemeter to the absorbed dose has been investigated with the LiF sample irradiated with high energy electrons from a linear accelerator and γ rays from a 60 Co source. The energy absorbed in the thin surface layer, which can be related to the origins of exoelectron emission, is, in general, smaller than the energy liberated there by primary radiation. In this paper the surface dose is calculated by the Monte Carlo Code EGS4. It is pointed out that the air layer in front of the sample also plays an important role by supplying secondary electrons to the surface region of the sample. The emission density of exoelectrons from a LiF single crystal for unit absorbed dose is found to be 5 x 10 4 electrons.cm -2 .Gy -1 , and nearly constant independent of the low LET radiation type. (author)
Atomic core-ionization energies; approximately piecewise-linear and linear relationships
DEFF Research Database (Denmark)
Avery, James Emil; Avery, John Scales
2008-01-01
as to make all of the members of the basis set correspond to the energy of the state being represented. In this paper we apply the method to core ionization in atoms and atomic ions, using a basis where $\\op{V}_0(\\xx)$ is chosen to be the nuclear attraction potential. We make use of a large...
Effects of energy chirp on bunch length measurement in linear accelerator beams
Sabato, L.; Arpaia, P.; Giribono, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Vaccarezza, C.; Variola, A.
2017-08-01
The effects of assumptions about bunch properties on the accuracy of the measurement method of the bunch length based on radio frequency deflectors (RFDs) in electron linear accelerators (LINACs) are investigated. In particular, when the electron bunch at the RFD has a non-negligible energy chirp (i.e. a correlation between the longitudinal positions and energies of the particle), the measurement is affected by a deterministic intrinsic error, which is directly related to the RFD phase offset. A case study on this effect in the electron LINAC of a gamma beam source at the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) is reported. The relative error is estimated by using an electron generation and tracking (ELEGANT) code to define the reference measurements of the bunch length. The relative error is proved to increase linearly with the RFD phase offset. In particular, for an offset of {{7}\\circ} , corresponding to a vertical centroid offset at a screen of about 1 mm, the relative error is 4.5%.
Linearization effect in multifractal analysis: Insights from the Random Energy Model
Angeletti, Florian; Mézard, Marc; Bertin, Eric; Abry, Patrice
2011-08-01
The analysis of the linearization effect in multifractal analysis, and hence of the estimation of moments for multifractal processes, is revisited borrowing concepts from the statistical physics of disordered systems, notably from the analysis of the so-called Random Energy Model. Considering a standard multifractal process (compound Poisson motion), chosen as a simple representative example, we show the following: (i) the existence of a critical order q∗ beyond which moments, though finite, cannot be estimated through empirical averages, irrespective of the sample size of the observation; (ii) multifractal exponents necessarily behave linearly in q, for q>q∗. Tailoring the analysis conducted for the Random Energy Model to that of Compound Poisson motion, we provide explicative and quantitative predictions for the values of q∗ and for the slope controlling the linear behavior of the multifractal exponents. These quantities are shown to be related only to the definition of the multifractal process and not to depend on the sample size of the observation. Monte Carlo simulations, conducted over a large number of large sample size realizations of compound Poisson motion, comfort and extend these analyses.
International Nuclear Information System (INIS)
Yamashita, Osamu
2009-01-01
The new thermal rate equations were built up by taking the linear and non-linear components in the temperature dependences of the Seebeck coefficient α, the electrical resistivity ρ and thermal conductivity κ of a thermoelectric (TE) material into the thermal rate equations on the assumption that their temperature dependences are expressed by a quadratic function of temperature T. The energy conversion efficiency η for a single TE element was formulated using the new thermal rate ones proposed here. By applying it to the high-performance half-Heusler compound, the non-linear component in the temperature dependence of α among those of the TE properties has the greatest effect on η, so that η/η 0 was increased by 11% under the condition of T = 510 K and ΔT = 440 K, where η 0 is a well-known conventional energy conversion efficiency. It was thus found that the temperature dependences of TE properties have a significant influence on η. When one evaluates the accurate achievement rate of η exp obtained experimentally for a TE generator, therefore, η exp should be compared with η the estimated from the theoretical expression proposed here, not with η 0 , particularly when there is a strong non-linearity in the temperature dependence of TE properties.
Energy in one-dimensional linear waves in a string
International Nuclear Information System (INIS)
Burko, Lior M
2010-01-01
We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus-based physics course. (letters and comments)
Energy Recovery from a Non-Linear Electromagnetic System
Directory of Open Access Journals (Sweden)
Kęcik Krzysztof
2018-03-01
Full Text Available The paper presents study of a pseudo-magnetic levitation system (pseudo-maglev dedicated for energy harvesting. The idea rely on motion of a pseudo-levitating magnet in a coil’s terminal. The study based on real prototype harvester system, which in the pendulum dynamic vibration absorber is applied. For some parameters, the stability loss caused by the period doubling bifurcation is detected. The coexistence of two stable solutions, one of which is much better for energy harvesting is observed. The influence of the pseudo-maglev parameters on the recovered current and stability of the periodic solutions is presented in detail. The obtained results show, that the best energy recovery occurs for the high pseudo-maglev stiffness and close to the coil resistance. The amplitude’s excitation, the load resistances and the coupling coefficient strongly influence on the system’s response.
Routing versus energy optimization in a linear network
Coenen, Tom Johannes Maria; van Ommeren, Jan C.W.; de Graaf, Maurits
In wireless networks, devices (or nodes) often have a limited battery supply to use for the sending and reception of transmissions. By allowing nodes to relay messages for other nodes, the distance that needs to be bridged can be reduced, thus limiting the energy needed for a transmission. However,
RF emittance in a low energy electron linear accelerator
Sanaye Hajari, Sh.; Haghtalab, S.; Shaker, H.; Kelisani, M. Dayyani
2018-04-01
Transverse beam dynamics of an 8 MeV low current (10 mA) S-band traveling wave electron linear accelerator has been studied and optimized. The main issue is to limit the beam emittance, mainly induced by the transverse RF forces. The linac is being constructed at Institute for Research in Fundamental Science (IPM), Tehran Iran Labeled as Iran's First Linac, nearly all components of this accelerator are designed and constructed within the country. This paper discusses the RF coupler induced field asymmetry and the corresponding emittance at different focusing levels, introduces a detailed beam dynamics design of a solenoid focusing channel aiming to reduce the emittance growth and studies the solenoid misalignment tolerances. In addition it has been demonstrated that a prebuncher cavity with appropriate parameters can help improving the beam quality in the transverse plane.
Awad, E M
1999-01-01
In this work, we have studied the effect of the radiation damage caused by the incident particles on the activation energy of etching for CR-39 samples. The damage produced by the incident particle is expressed in terms of the linear energy transfer (LET). CR-39 samples from American Acrylic were irradiated to three different LET particles. These are N (LET sub 2 sub 0 sub 0 = 20 KeV/mu m) as a light particle, Fe (LET sub 2 sub 0 sub 0 = 110 KeV/mu m) as a medium particle and fission fragments (ff) from a sup 2 sup 5 sup 2 Cf source as heavy particles. In general the bulk etch rate was calculated using the weight difference method and the track etch rate was determined using the track geometry at various temperatures (50-90 deg. C) and concentrations (4-9 N) of the NaOH etchant. The average activation energy E sub b related to the bulk etch rate v sub b was calculated from 1n v sub b vs. 1/T. The average activation energy E sub t related to the track etch rate v sub t was estimated from 1n v sub t vs. 1/T. It...
A statistical theory of cell killing by radiation of varying linear energy transfer
International Nuclear Information System (INIS)
Hawkins, R.B.
1994-01-01
A theory is presented that provides an explanation for the observed features of the survival of cultured cells after exposure to densely ionizing high-linear energy transfer (LET) radiation. It starts from a phenomenological postulate based on the linear-quadratic form of cell survival observed for low-LET radiation and uses principles of statistics and fluctuation theory to demonstrate that the effect of varying LET on cell survival can be attributed to random variation of dose to small volumes contained within the nucleus. A simple relation is presented for surviving fraction of cells after exposure to radiation of varying LET that depends on the α and β parameters for the same cells in the limit of low-LET radiation. This relation implies that the value of β is independent of LET. Agreement of the theory with selected observations of cell survival from the literature is demonstrated. A relation is presented that gives relative biological effectiveness (RBE) as a function of the α and β parameters for low-LET radiation. Measurements from microdosimetry are used to estimate the size of the subnuclear volume to which the fluctuation pertains. 11 refs., 4 figs., 2 tabs
International Congress on Energy Efficiency and Energy Related Materials
Bahsi, Zehra; Ozer, Mehmet; ENEFM2013
2014-01-01
The International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013) was held on 9-12 October, 2013. This three-day congress focused on the latest developments of sustainable energy technologies, materials for sustainable energy applications and environmental & economic perspectives of energy. These proceedings include 63 peer reviewed technical papers, submitted from leading academic and research institutions from over 23 countries, representing some of the most cutting edge research available. The papers included were presented at the congress in the following sessions: General Issues Wind Energy Solar Energy Nuclear Energy Biofuels and Bioenergy Energy Storage Energy Conservation and Efficiency Energy in Buildings Economical and Environmental Issues Environment Energy Requirements Economic Development Materials for Sustainable Energy Hydrogen Production and Storage Photovoltaic Cells Thermionic Converters Batteries and Superconductors Phase Change Materials Fuel Cells Supercon...
Design and analysis of an unconventional permanent magnet linear machine for energy harvesting
Zeng, Peng
This Ph.D. dissertation proposes an unconventional high power density linear electromagnetic kinetic energy harvester, and a high-performance two-stage interface power electronics to maintain maximum power abstraction from the energy source and charge the Li-ion battery load with constant current. The proposed machine architecture is composed of a double-sided flat type silicon steel stator with winding slots, a permanent magnet mover, coil windings, a linear motion guide and an adjustable spring bearing. The unconventional design of the machine is that NdFeB magnet bars in the mover are placed with magnetic fields in horizontal direction instead of vertical direction and the same magnetic poles are facing each other. The derived magnetic equivalent circuit model proves the average air-gap flux density of the novel topology is as high as 0.73 T with 17.7% improvement over that of the conventional topology at the given geometric dimensions of the proof-of-concept machine. Subsequently, the improved output voltage and power are achieved. The dynamic model of the linear generator is also developed, and the analytical equations of output maximum power are derived for the case of driving vibration with amplitude that is equal, smaller and larger than the relative displacement between the mover and the stator of the machine respectively. Furthermore, the finite element analysis (FEA) model has been simulated to prove the derived analytical results and the improved power generation capability. Also, an optimization framework is explored to extend to the multi-Degree-of-Freedom (n-DOF) vibration based linear energy harvesting devices. Moreover, a boost-buck cascaded switch mode converter with current controller is designed to extract the maximum power from the harvester and charge the Li-ion battery with trickle current. Meanwhile, a maximum power point tracking (MPPT) algorithm is proposed and optimized for low frequency driving vibrations. Finally, a proof
Patt, P. J.
1985-01-01
The design of a coaxial linear magnetic spring which incorporates a linear motor to control axial motion and overcome system damping is presented, and the results of static and dynamic tests are reported. The system has nominal stiffness 25,000 N/m and is designed to oscillate a 900-g component over a 4.6-mm stroke in a Stirling-cycle cryogenic refrigerator being developed for long-service (5-10-yr) space applications (Stolfi et al., 1983). Mosaics of 10 radially magnetized high-coercivity SmCO5 segments enclosed in Ti cans are employed, and the device is found to have quality factor 70-100, corresponding to energy-storage efficiency 91-94 percent. Drawings, diagrams, and graphs are provided.
Neutrino mass, dark energy, and the linear growth factor
International Nuclear Information System (INIS)
Kiakotou, Angeliki; Lahav, Ofer; Elgaroey, Oystein
2008-01-01
We study the degeneracies between neutrino mass and dark energy as they manifest themselves in cosmological observations. In contradiction to a popular formula in the literature, the suppression of the matter power spectrum caused by massive neutrinos is not just a function of the ratio of neutrino to total mass densities f ν =Ω ν /Ω m , but also each of the densities independently. We also present a fitting formula for the logarithmic growth factor of perturbations in a flat universe, f(z,k;f ν ,w,Ω DE )≅[1-A(k)Ω DE f ν +B(k)f ν 2 -C(k)f ν 3 ]Ω m α (z), where α depends on the dark energy equation of state parameter w. We then discuss cosmological probes where the f factor directly appears: peculiar velocities, redshift distortion, and the integrated Sachs-Wolfe effect. We also modify the approximation of Eisenstein and Hu [Astrophys. J. 511, 5 (1999)] for the power spectrum of fluctuations in the presence of massive neutrinos and provide a revised code [http://www.star.ucl.ac.uk/∼lahav/nu m atter p ower.f].
Shielding calculation for treatment rooms of high energy linear accelerator
International Nuclear Information System (INIS)
Elleithy, M.A.
2006-01-01
A review of German Institute of Standardization (DIN) scheme of the shielding calculation and the essential data required has been done for X-rays and electron beam in the energy range from 1 MeV to 50 MeV. Shielding calculation was done for primary and secondary radiations generated during X-ray operation of Linac. In addition, shielding was done against X-rays generated (Bremsstrahlung) by useful electron beams. The calculations also covered the neutrons generated from the interactions of useful X-rays (at energies above 8 MeV) with the surrounding. The present application involved the computation of shielding against the double scattered components of X-rays and neutrons in the maze area and the thickness of the paraffin wax of the room door. A new developed computer program was designed to assist shielding thickness calculations for a new Linac installation or in replacing an existing machine. The program used a combination of published tables and figures in computing the shielding thickness at different locations for all possible radiation situations. The DIN published data of 40 MeV accelerator room was compared with the program calculations. It was found that there is good agreement between both calculations. The developed program improved the accuracy and speed of calculation
Dual-Source Linear Energy Prediction (LINE-P) Model in the Context of WSNs.
Ahmed, Faisal; Tamberg, Gert; Le Moullec, Yannick; Annus, Paul
2017-07-20
Energy harvesting technologies such as miniature power solar panels and micro wind turbines are increasingly used to help power wireless sensor network nodes. However, a major drawback of energy harvesting is its varying and intermittent characteristic, which can negatively affect the quality of service. This calls for careful design and operation of the nodes, possibly by means of, e.g., dynamic duty cycling and/or dynamic frequency and voltage scaling. In this context, various energy prediction models have been proposed in the literature; however, they are typically compute-intensive or only suitable for a single type of energy source. In this paper, we propose Linear Energy Prediction "LINE-P", a lightweight, yet relatively accurate model based on approximation and sampling theory; LINE-P is suitable for dual-source energy harvesting. Simulations and comparisons against existing similar models have been conducted with low and medium resolutions (i.e., 60 and 22 min intervals/24 h) for the solar energy source (low variations) and with high resolutions (15 min intervals/24 h) for the wind energy source. The results show that the accuracy of the solar-based and wind-based predictions is up to approximately 98% and 96%, respectively, while requiring a lower complexity and memory than the other models. For the cases where LINE-P's accuracy is lower than that of other approaches, it still has the advantage of lower computing requirements, making it more suitable for embedded implementation, e.g., in wireless sensor network coordinator nodes or gateways.
Evaluation of non-linear blending in dual-energy computed tomography
International Nuclear Information System (INIS)
Holmes, David R.; Fletcher, Joel G.; Apel, Anja; Huprich, James E.; Siddiki, Hassan; Hough, David M.; Schmidt, Bernhard; Flohr, Thomas G.; Robb, Richard; McCollough, Cynthia; Wittmer, Michael; Eusemann, Christian
2008-01-01
Dual-energy CT scanning has significant potential for disease identification and classification. However, it dramatically increases the amount of data collected and therefore impacts the clinical workflow. One way to simplify image review is to fuse CT datasets of different tube energies into a unique blended dataset with desirable properties. A non-linear blending method based on a modified sigmoid function was compared to a standard 0.3 linear blending method. The methods were evaluated in both a liver phantom and patient study. The liver phantom contained six syringes of known CT contrast which were placed in a bovine liver. After scanning at multiple tube currents (45, 55, 65, 75, 85, 95, 105, and 115 mAs for the 140-kV tube), the datasets were blended using both methods. A contrast-to-noise (CNR) measure was calculated for each syringe. In addition, all eight scans were normalized using the effective dose and statistically compared. In the patient study, 45 dual-energy CT scans were retrospectively mixed using the 0.3 linear blending and modified sigmoid blending functions. The scans were compared visually by two radiologists. For the 15, 45, and 64 HU syringes, the non-linear blended images exhibited similar CNR to the linear blended images; however, for the 79, 116, and 145 HU syringes, the non-linear blended images consistently had a higher CNR across dose settings. The radiologists qualitatively preferred the non-linear blended images of the phantom. In the patient study, the radiologists preferred non-linear blending in 31 of 45 cases with a strong preference in bowel and liver cases. Non-linear blending of dual energy data can provide an improvement in CNR over linear blending and is accompanied by a visual preference for non-linear blended images. Further study on selection of blending parameters and lesion conspicuity in non-linear blended images is being pursued
Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics
Wang, John T.
2010-01-01
The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.
Wideband energy harvesting for piezoelectric devices with linear resonant behavior.
Luo, Cheng; Hofmann, Heath F
2011-07-01
In this paper, an active energy harvesting technique for a spring-mass-damper mechanical resonator with piezoelectric electromechanical coupling is investigated. This technique applies a square-wave voltage to the terminals of the device at the same frequency as the mechanical excitation. By controlling the magnitude and phase angle of this voltage, an effective impedance matching can be achieved which maximizes the amount of power extracted from the device. Theoretically, the harvested power can be the maximum possible value, even at off-resonance frequencies. However, in actual implementation, the efficiency of the power electronic circuit limits the amount of power harvested. A power electronic full-bridge converter is built to implement the technique. Experimental results show that the active technique can increase the effective bandwidth by a factor of more than 2, and harvests significantly higher power than rectifier-based circuits at off-resonance frequencies.
Energy Technology Data Exchange (ETDEWEB)
Yavari, M., E-mail: yavari@iaukashan.ac.ir [Islamic Azad University, Kashan Branch (Iran, Islamic Republic of)
2016-06-15
We generalize the results of Nesterenko [13, 14] and Gogilidze and Surovtsev [15] for DNA structures. Using the generalized Hamiltonian formalism, we investigate solutions of the equilibrium shape equations for the linear free energy model.
Relation of wave energy and momentum with the plasma dispersion relation in an inhomogeneous plasma
International Nuclear Information System (INIS)
Berk, H.L.; Pfirsch, D.
1988-01-01
The expressions for wave energy and angular momentum commonly used in homogeneous and near-homogeneous media is generalized to inhomogeneous media governed by a nonlocal conductivity tensor. The expression for wave energy applies to linear excitations in an arbitrary three-dimensional equilibrium, while the expression for angular momentum applies to linear excitations of azimuthally symmetric equilibria. The wave energy E-script/sub wave/ is interpreted as the energy transferred from linear external sources to the plasma if there is no dissipation. With dissipation, such a simple interpretation is lacking as energy is also thermally absorbed. However, for azimuthally symmetric equilibria, the expression for the wave energy in a frame rotating with a frequency ω can be unambiguously separated from thermal energy. This expression is given by E-script/sub wave/ -ωL/sub wave/ l, where L/sub wave/ is the wave angular momentum defined in the text and l the azimuthal wavenumber and it is closely related to the real part of a dispersion relation for marginal stability. The imaginary part of the dispersion is closely related to the energy input into a system. Another useful quantity discussed is the impedance form, which can be used for three-dimensional equilibrium without an ignorable coordinate and the expression is closely related to the wave impedance used in antenna theory. Applications to stability theory are also discussed
Physics with linear colliders in the tev CM energy region
International Nuclear Information System (INIS)
Bulos, F.; Cook, V.; Hinchliffe, I.; Lane, K.; Pellet, D.; Perl, M.; Seiden, A.; Wiedemann, H.
1982-01-01
It may well be that the e/sup +/e/sup -/ physics beyond PEP and PETRA and up to 200 GeV CM energy will deal primarily with the verification of the standard model (SM) of weak and electromagnetic interactions. Various theoretical and experimental studies at workshops for contemplated accelerators (SLC, LEP I, Z 0 ) have assumed this. Beyond 200 GeV the picture is less clear. The absence of theoretical models with strong predictions comparable to the SM adds to the difficulty. In addition, the experimental verification of the SM itself is yet to come, and one is forced to make certain assumptions about the outcome. The following assumptions are made: Z 0 , W/sup +-/, light higgs (if M/sub H/ < 100 GeV) have all been discovered. The t quark has been discovered if its mass is < 100 GeV. QCD is basically the correct theory of the strong interactions. With these assumptions, the authors have produced an updated table of possible physics in the TeV region. This table was used as the basis for the study of specific physics. It contains best estimates of cross-section, promising signatures for final states, and some helpful comments
Kipka, Undine; Di Toro, Dominic M
2011-09-01
Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.
Energy markets and price relations
International Nuclear Information System (INIS)
Bergendahl, P.A.
1986-10-01
The aim of the report is to elucidate the way and extent of the dependence of the price of different energy species of one another and particularly of crude oil prices. Oil, coal and natural gas can substitute each other at many applications. The prices are dependent on mining, processing and transporting. Forecasting of prices and future trends are discussed
Design and Experiment Analysis of a Direct-Drive Wave Energy Converter with a Linear Generator
Jing Zhang; Haitao Yu; Zhenchuan Shi
2018-01-01
Coastal waves are an abundant nonpolluting and renewable energy source. A wave energy converter (WEC) must be designed for efficient and steady operation in highly energetic ocean environments. A direct-drive wave energy conversion (D-DWEC) system with a tubular permanent magnet linear generator (TPMLG) on a wind and solar photovoltaic complementary energy generation platform is proposed to improve the conversion efficiency and reduce the complexity and device volume of WECs. The operating pr...
International Nuclear Information System (INIS)
Neil Na, Y.C.; Siemann, R.H.; SLAC; Byer, R.L.; Stanford U., Phys. Dept.
2005-01-01
We calculate the optimum energy efficiency of a laser-driven linear accelerator by adopting a simple linear model. In the case of single bunch operation, the energy efficiency can be enhanced by incorporating the accelerator into a cavity that is pumped by an external laser. In the case of multiple bunch operation, the intracavity configuration is less advantageous because the strong wakefield generated by the electron beam is also recycled. Finally, the calculation indicates that the luminosity of a linear collider based on such a structure is comparably small if high efficiency is desired
Computer modelling of a linear turbine for extracting energy from slow-flowing waters
International Nuclear Information System (INIS)
Raykov, Plamen
2014-01-01
The aim of the paper is to describe the main relationships in the process of designing linear chain turbines with blades and their accompanying devices for obtaining energy from slow flowing waters. Based on the shortcomings of previous types of linear turbines a new concept for arrangement of the blades angles with respect to the flowing water was developed. The dependencies of the geometrical parameters of designed new type linear water turbine and the force applied by the flowing water to the blades are obtained. The optimal relationship between velocity of stream water and extracted power is calculated. The ratio between power characteristics of the extracted energy for different speeds of blades and inclination angle are presented. On the basis of the theoretical results a new linear turbine prototype with inclined blades was designed. Key words: water power system, blade-chain devices, linear turbines
Hot Brakes and Energy-Related Concepts: Is Energy Lost?
Lopez, V.; Pinto, R.
2012-01-01
This paper describes a secondary school experience which is intended to help students to think profoundly about some energy-related concepts. It is quite different to other experiences of mechanics because the focus is not on the quantitative calculation of energy conservation but on the qualitative understanding of energy degradation. We first…
Energy conditions and stability in general relativity
International Nuclear Information System (INIS)
Hall, G.S.
1982-01-01
The dominant energy condition in general relativity theory, which says that every observer measures a nonnegative local energy density and a nonspacelike local energy flow, is examined in connection with the types of energy-momentum tensor it permits. The condition that the energy-momentum tensor be ''stable'' in obeying the dominant energy conditions is then defined in terms of a suitable topology on the set of energy-momentum tensors on space-time and the consequences are evaluated and discussed. (author)
Vibration Energy Harvesting on Vehicle Suspension Using Rotary and Linear Electromagnetic Generator
Directory of Open Access Journals (Sweden)
Arif Indro Sultoni
2013-04-01
Full Text Available In this paper, we discuss comparation of vehicle vibration energy harvesting between rotary and linear electromagnetic generator. We construct the two model of energy harvester mechanism and then analyze both of energy absorbtion and vehicle comfortability. Furthermore, we analyze both of energy absorbtion and vehicle comfortability. Vehicle is modeled as quarter car. Rotarty generator harvests 2.5 x 10-4 Watt. The other hand, linear generator has viscous characteristic and capable to generates 90 Watts with 12 Volt power supply for 0.03 m amplitude of bumpy road input. Linear generator reduces oscillation with 1.2 sec settling time. It is more comfort than the angular which has 3 sec in settling time. With unnevenees road input, mean power of this generator is 64 Watt.
Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT
International Nuclear Information System (INIS)
Yu Lifeng; Primak, Andrew N.; Liu Xin; McCollough, Cynthia H.
2009-01-01
In dual-source dual-energy CT, the images reconstructed from the low- and high-energy scans (typically at 80 and 140 kV, respectively) can be mixed together to provide a single set of non-material-specific images for the purpose of routine diagnostic interpretation. Different from the material-specific information that may be obtained from the dual-energy scan data, the mixed images are created with the purpose of providing the interpreting physician a single set of images that have an appearance similar to that in single-energy images acquired at the same total radiation dose. In this work, the authors used a phantom study to evaluate the image quality of linearly mixed images in comparison to single-energy CT images, assuming the same total radiation dose and taking into account the effect of patient size and the dose partitioning between the low-and high-energy scans. The authors first developed a method to optimize the quality of the linearly mixed images such that the single-energy image quality was compared to the best-case image quality of the dual-energy mixed images. Compared to 80 kV single-energy images for the same radiation dose, the iodine CNR in dual-energy mixed images was worse for smaller phantom sizes. However, similar noise and similar or improved iodine CNR relative to 120 kV images could be achieved for dual-energy mixed images using the same total radiation dose over a wide range of patient sizes (up to 45 cm lateral thorax dimension). Thus, for adult CT practices, which primarily use 120 kV scanning, the use of dual-energy CT for the purpose of material-specific imaging can also produce a set of non-material-specific images for routine diagnostic interpretation that are of similar or improved quality relative to single-energy 120 kV scans.
Linear energy relationships for the octahedral preference of Mg, Ca and transition metal ions.
Pontikis, George; Borden, James; Martínek, Václav; Florián, Jan
2009-04-16
The geometry, atomic charges, force constants, and relative energies of the symmetric and distorted M(2+)(H(2)O)(4)(F(-))(2), M(3+)(H(2)O)(4)(F(-))(2), M(2+)(H(2)O)(3)(F(-))(2), and M(3+)(H(2)O)(3)(F(-))(2) metal complexes, M = Mg, Ca, Co, Cu, Fe, Mn, Ni, Zn, Cr, V, were calculated by using the B3LYP/TZVP density functional method in both gas phase and aqueous solution, modeled using the polarized continuum model. The deformation energy associated with moving one water ligand 12 degrees from the initial "octahedral" arrangement, in which all O-M-O, O-M-F, and F-M-F angles are either 90 degrees or 180 degrees, was calculated to examine the angular ligand flexibility. For all M(2+)(H(2)O)(4)(F(-))(2) complexes, this distortion increased the energy of the complex in proportion to the electrostatic potential-derived (ESP) charge of the metal, and in proportion to D(-10), where D is the distance from the distorted ligand to its closest neighbor. The octahedral stability was further examined by calculating the energies for the removal of a water ligand from the octahedral complex to form a square-pyramidal or trigonal-bipyramidal complex. The octahedral preference, defined as the negative of the corresponding binding energy of the ligand, was found to linearly correlate with the ESP charge of the metal in both the gas phase and aqueous solution. The obtained results indicate that quantum-mechanical covalent effects are of secondary importance for both the flexibility and the octahedral preference of M(2+)(H(2)O)(4)(F(-))(2) and M(3+)(H(2)O)(4)(F(-))(2) complexes. This conclusion and supporting data are important for the development of consistent molecular mechanical force fields of the studied metal ions.
Abrecht, David G; Schwantes, Jon M
2015-03-03
This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In χ = −α ((ΔGrxn°(TC))/(RTC)) + β were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn (TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, and 151Sm through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.
Zhang, X. F.; Hu, S. D.; Tzou, H. S.
2014-12-01
Converting vibration energy to useful electric energy has attracted much attention in recent years. Based on the electromechanical coupling of piezoelectricity, distributed piezoelectric zero-curvature type (e.g., beams and plates) energy harvesters have been proposed and evaluated. The objective of this study is to develop a generic linear and nonlinear piezoelectric shell energy harvesting theory based on a double-curvature shell. The generic piezoelectric shell energy harvester consists of an elastic double-curvature shell and piezoelectric patches laminated on its surface(s). With a current model in the closed-circuit condition, output voltages and energies across a resistive load are evaluated when the shell is subjected to harmonic excitations. Steady-state voltage and power outputs across the resistive load are calculated at resonance for each shell mode. The piezoelectric shell energy harvesting mechanism can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and non-shell (beam, plate, ring, arch, etc.) distributed harvesters using two Lamé parameters and two curvature radii of the selected harvester geometry. To demonstrate the utility and simplification procedures, the generic linear/nonlinear shell energy harvester mechanism is simplified to three specific structures, i.e., a cantilever beam case, a circular ring case and a conical shell case. Results show the versatility of the generic linear/nonlinear shell energy harvesting mechanism and the validity of the simplification procedures.
The relation between energy - ecology - economy
International Nuclear Information System (INIS)
Horn, J.
1977-01-01
In North America and Western Europe, supporters of zero growth think that economy and energy, on the one hand, and an intact ecology, on the other, are opposites or opposing tendencies which cannot go hand in hand. These people also contest the claim that there is a linear correlation between a developing ecology and technology and increased energy consumption. The author thinks that the above basic assumptions are wrong and not in agreement with either the laws of evolution of the geosphere or with the necessities of the present political and economic situation. Giving an outline of the history of evolution and the present situation, especially in the developing countries, he shows that there is a linear, self-strengthening correlation between economic growth and capital-intensive technological innovation on the one hand and environmental improvement on the other. (orig./GG) [de
Energy problem and harmony in international relations
International Nuclear Information System (INIS)
Ogata, Akira
1975-01-01
Energy problems and harmony in international relation are closely related with world politics. Oil is destined to remain as the primary energy source for the time being. The situation of oil has different implications to the U.S. and U.S.S.R., oil producing countries, and consumer countries. The hasty attitude in the past to attain energy sufficiency must be avoided by all means. Congenial harmony is to be established in international relation to meet world energy requirement. This also applies to the case of nuclear power in future. (Mori, K.)
Relating Financial and Energy Return on Investment
Directory of Open Access Journals (Sweden)
Carey W. King
2011-10-01
Full Text Available For many reasons, including environmental impacts and the peaking and depletion of the highest grades of fossil energy, it is very important to have sound methods for the evaluation of energy technologies and the profitability of the businesses that utilize them. In this paper we derive relations among the biophysical characteristic of an energy resource in relation to the businesses and technologies that exploit them. These relations include the energy return on energy investment (EROI, the price of energy, and the profit of an energy business. Our analyses show that EROI and the price of energy are inherently inversely related such that as EROI decreases for depleting fossil fuel production, the corresponding energy prices increase dramatically. Using energy and financial data for the oil and gas production sector, we demonstrate that the equations sufficiently describe the fundamental trends between profit, price, and EROI. For example, in 2002 an EROI of 11:1 for US oil and gas translates to an oil price of 24 $2005/barrel at a typical profit of 10%. This work sets the stage for proper EROI and price comparisons of individual fossil and renewable energy businesses as well as the electricity sector as a whole. Additionally, it presents a framework for incorporating EROI into larger economic systems models.
Kiang, N. Y.; Haralick, R. M.; Diky, A.; Kattge, J.; Su, X.
2016-12-01
Leaf mass per area (LMA) is a critical variable in plant carbon allocation, correlates with leaf activity traits (photosynthetic activity, respiration), and is a controller of litterfall mass and hence carbon substrate for soil biogeochemistry. Recent advances in understanding the leaf economics spectrum (LES) show that LMA has a strong correlation with leaf life span, a trait that reflects ecological strategy, whereas physiological traits that control leaf activity scale with each other when mass-normalized (Osnas et al., 2013). These functional relations help reduce the number of independent variables in quantifying leaf traits. However, LMA is an independent variable that remains a challenge to specify in dynamic global vegetation models (DGVMs), when vegetation types are classified into a limited number of plant functional types (PFTs) without clear mechanistic drivers for LMA. LMA can range orders of magnitude across plant species, as well as vary within a single plant, both vertically and seasonally. As climate relations in combination with alternative ecological strategies have yet to be well identified for LMA, we have assembled 22,000 records of LMA spanning 0.004 - 33 mg/m2 from the numerous contributors to the TRY database (Kattge et al., 2011), with observations distributed over several climate zones and plant functional categories (growth form, leaf type, phenology). We present linear relations between LMA and climate variables, including seasonal temperature, precipitation, and radiation, as derived through Linear Manifold Clustering (LMC). LMC is a stochastic search technique for identifying linear dependencies between variables in high dimensional space. We identify a set of parsimonious classes of LMA-climate groups based on a metric of minimum description to identify structure in the data set, akin to data compression. The relations in each group are compared to Köppen-Geiger climate classes, with some groups revealing continuous linear relations
International Nuclear Information System (INIS)
Antoniadis, I A; Venetsanos, D T; Papaspyridis, F G
2013-01-01
Dielectric elastomer based generators (DEGs) offer some unique properties over energy generators based on other materials. These properties include high energy density, high efficiency over a broad range of frequencies, low compliance, the ability to produce high strain, large area, low cost films with no toxic materials and wide range environmental tolerance. As further shown in this paper, DEG materials can also exhibit a non-linear dynamic behavior, enhancing broad-band energy transfer. More specifically, dielectric elastomer (DE) energy generating synergetic structures (DIESYS) are considered as dynamic energy absorbers. Two elementary characteristic DIESYS design concepts are examined, leading to a typical antagonistic configuration for in-plane oscillations and a typical synagonistic configuration for out-of-plane oscillations. Originally, all the DE elements of the structure are assumed to be always in tension during all the phases of the harvesting cycle, conforming to the traditional concept of operation of DE structures. As shown in this paper, the traditional always-in-tension concept results in a linear dynamic system response, despite the fact that the implemented (DE) parts are considered to have been made of a non-linear (hyperelastic) material. In contrast, the proposed loose-part concept ensures the appearance of a non-linear broad-band system response, enhancing energy transfer from the environmental source. (paper)
Manzoor, Ali; Rafique, Sajid; Usman Iftikhar, Muhammad; Mahmood Ul Hassan, Khalid; Nasir, Ali
2017-08-01
Piezoelectric vibration energy harvester (PVEH) consists of a cantilever bimorph with piezoelectric layers pasted on its top and bottom, which can harvest power from vibrations and feed to low power wireless sensor nodes through some power conditioning circuit. In this paper, a non-linear conditioning circuit, consisting of a full-bridge rectifier followed by a buck-boost converter, is employed to investigate the issues of electrical side of the energy harvesting system. An integrated mathematical model of complete electromechanical system has been developed. Previously, researchers have studied PVEH with sophisticated piezo-beam models but employed simplistic linear circuits, such as resistor, as electrical load. In contrast, other researchers have worked on more complex non-linear circuits but with over-simplified piezo-beam models. Such models neglect different aspects of the system which result from complex interactions of its electrical and mechanical subsystems. In this work, authors have integrated the distributed parameter-based model of piezo-beam presented in literature with a real world non-linear electrical load. Then, the developed integrated model is employed to analyse the stability of complete energy harvesting system. This work provides a more realistic and useful electromechanical model having realistic non-linear electrical load unlike the simplistic linear circuit elements employed by many researchers.
Improving the energy efficiency of sparse linear system solvers on multicore and manycore systems.
Anzt, H; Quintana-Ortí, E S
2014-06-28
While most recent breakthroughs in scientific research rely on complex simulations carried out in large-scale supercomputers, the power draft and energy spent for this purpose is increasingly becoming a limiting factor to this trend. In this paper, we provide an overview of the current status in energy-efficient scientific computing by reviewing different technologies used to monitor power draft as well as power- and energy-saving mechanisms available in commodity hardware. For the particular domain of sparse linear algebra, we analyse the energy efficiency of a broad collection of hardware architectures and investigate how algorithmic and implementation modifications can improve the energy performance of sparse linear system solvers, without negatively impacting their performance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Effect of linear energy on the properties of an AL alloy in DPMIG welding
Liao, Tianfa; Jin, Li; Xue, Jiaxiang
2018-01-01
The effect of different linear energy parameters on the DPMIG welding performance of AA1060 aluminium alloy is studied in this paper. The stability of the welding process is verified with a Labview electrical signal acquisition system, and the microstructure and tensile properties of the welded joint are studied via optical microscopy, scanning electron microscopy and electrical tensile tests. The test results show that the welding process for the DPMIG methods stable and that the weld beads appear as scales. Tensile strength results indicate that, with increasing linear energy, the tensile strength first increases and then decreases. The tensile strength of the joint is maximized when the linear energy is 120.5 J / mm-1.
Fitting and forecasting coupled dark energy in the non-linear regime
Energy Technology Data Exchange (ETDEWEB)
Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, Heidelberg, 69120 Germany (Germany); Baldi, Marco, E-mail: casas@thphys.uni-heidelberg.de, E-mail: l.amendola@thphys.uni-heidelberg.de, E-mail: mail@marcobaldi.it, E-mail: v.pettorino@thphys.uni-heidelberg.de, E-mail: vollmer@thphys.uni-heidelberg.de [Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Università di Bologna, viale Berti Pichat, 6/2, Bologna, I-40127 Italy (Italy)
2016-01-01
We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β{sup 2}, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.
Fitting and forecasting coupled dark energy in the non-linear regime
International Nuclear Information System (INIS)
Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian; Baldi, Marco
2016-01-01
We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β 2 , with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications
Statistical distributions of earthquakes and related non-linear features in seismic waves
International Nuclear Information System (INIS)
Apostol, B.-F.
2006-01-01
A few basic facts in the science of the earthquakes are briefly reviewed. An accumulation, or growth, model is put forward for the focal mechanisms and the critical focal zone of the earthquakes, which relates the earthquake average recurrence time to the released seismic energy. The temporal statistical distribution for average recurrence time is introduced for earthquakes, and, on this basis, the Omori-type distribution in energy is derived, as well as the distribution in magnitude, by making use of the semi-empirical Gutenberg-Richter law relating seismic energy to earthquake magnitude. On geometric grounds, the accumulation model suggests the value r = 1/3 for the Omori parameter in the power-law of energy distribution, which leads to β = 1,17 for the coefficient in the Gutenberg-Richter recurrence law, in fair agreement with the statistical analysis of the empirical data. Making use of this value, the empirical Bath's law is discussed for the average magnitude of the aftershocks (which is 1.2 less than the magnitude of the main seismic shock), by assuming that the aftershocks are relaxation events of the seismic zone. The time distribution of the earthquakes with a fixed average recurrence time is also derived, the earthquake occurrence prediction is discussed by means of the average recurrence time and the seismicity rate, and application of this discussion to the seismic region Vrancea, Romania, is outlined. Finally, a special effect of non-linear behaviour of the seismic waves is discussed, by describing an exact solution derived recently for the elastic waves equation with cubic anharmonicities, its relevance, and its connection to the approximate quasi-plane waves picture. The properties of the seismic activity accompanying a main seismic shock, both like foreshocks and aftershocks, are relegated to forthcoming publications. (author)
Complex energy eigenvalues of a linear potential with a parabolical barrier
International Nuclear Information System (INIS)
Malherbe, J.B.
1978-01-01
The physical meaning and restrictions of complex energy eigenvalues are briefly discussed. It is indicated that a quasi-stationary phase describes an idealised disintegration system. Approximate resonance-eigenvalues of the one dimensional Schrodinger equation with a linear potential and parabolic barrier are calculated by means of Connor's semiclassical method. This method is based on the generalized WKB-method of Miller and Good. The results obtained confirm the correctness of a model representation which explains the unusual distribution of eigenvalues by certain other linear potentials in a complex energy level [af
Effects of dual-energy CT with non-linear blending on abdominal CT angiography
International Nuclear Information System (INIS)
Li, Sulan; Wang, Chaoqin; Jiang, Xiao Chen; Xu, Ge
2014-01-01
To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning.
Effects of dual-energy CT with non-linear blending on abdominal CT angiography
Energy Technology Data Exchange (ETDEWEB)
Li, Sulan; Wang, Chaoqin; Jiang, Xiao Chen; Xu, Ge [Dept. of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)
2014-08-15
To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning.
A mechanical energy harvested magnetorheological damper with linear-rotary motion converter
Chu, Ki Sum; Zou, Li; Liao, Wei-Hsin
2016-04-01
Magnetorheological (MR) dampers are promising to substitute traditional oil dampers because of adaptive properties of MR fluids. During vibration, significant energy is wasted due to the energy dissipation in the damper. Meanwhile, for conventional MR damping systems, extra power supply is needed. In this paper, a new energy harvester is designed in an MR damper that integrates controllable damping and energy harvesting functions into one device. The energy harvesting part of this MR damper has a unique mechanism converting linear motion to rotary motion that would be more stable and cost effective when compared to other mechanical transmissions. A Maxon motor is used as a power generator to convert the mechanical energy into electrical energy to supply power for the MR damping system. Compared to conventional approaches, there are several advantages in such an integrated device, including weight reduction, ease in installation with less maintenance. A mechanical energy harvested MR damper with linear-rotary motion converter and motion rectifier is designed, fabricated, and tested. Experimental studies on controllable damping force and harvested energy are performed with different transmissions. This energy harvesting MR damper would be suitable to vehicle suspensions, civil structures, and smart prostheses.
Effect of linear temperature dependence of thermoelectric properties on energy conversion efficiency
International Nuclear Information System (INIS)
Yamashita, Osamu
2008-01-01
New thermal rate equations were developed by taking the temperature dependences of the electrical resistivity ρ and thermal conductivity κ of the thermoelectric (TE) materials into the thermal rate equations on the assumption that they vary linearly with temperature T. The relative energy conversion efficiency η/η 0 for a single TE element was formulated by approximate analysis, where η and η 0 are the energy conversion efficiencies derived from the new and conventional thermal rate equations, respectively. Applying it to Si-Ge alloys, the temperature dependence of ρ is stronger than that of κ, so the former has a more significant effect on η/η 0 than the latter. However, the degree of contribution from both of them to η/η 0 was a little lower than 1% at the temperature difference ΔT of 600 K. When the temperature dependence of κ was increased to become equal to that of ρ, however, it was found that η/η 0 is increased by about 10% at ΔT = 600 K. It is clarified here that the temperature dependences of ρ and κ are also important factors for an improvement in η
Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C
2014-12-02
Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.
Optimization of piezoelectric cantilever energy harvesters including non-linear effects
International Nuclear Information System (INIS)
Patel, R; McWilliam, S; Popov, A A
2014-01-01
This paper proposes a versatile non-linear model for predicting piezoelectric energy harvester performance. The presented model includes (i) material non-linearity, for both substrate and piezoelectric layers, and (ii) geometric non-linearity incorporated by assuming inextensibility and accurately representing beam curvature. The addition of a sub-model, which utilizes the transfer matrix method to predict eigenfrequencies and eigenvectors for segmented beams, allows for accurate optimization of piezoelectric layer coverage. A validation of the overall theoretical model is performed through experimental testing on both uniform and non-uniform samples manufactured in-house. For the harvester composition used in this work, the magnitude of material non-linearity exhibited by the piezoelectric layer is 35 times greater than that of the substrate layer. It is also observed that material non-linearity, responsible for reductions in resonant frequency with increases in base acceleration, is dominant over geometric non-linearity for standard piezoelectric harvesting devices. Finally, over the tested range, energy loss due to damping is found to increase in a quasi-linear fashion with base acceleration. During an optimization study on piezoelectric layer coverage, results from the developed model were compared with those from a linear model. Unbiased comparisons between harvesters were realized by using devices with identical natural frequencies—created by adjusting the device substrate thickness. Results from three studies, each with a different assumption on mechanical damping variations, are presented. Findings showed that, depending on damping variation, a non-linear model is essential for such optimization studies with each model predicting vastly differing optimum configurations. (paper)
Energy Technology Data Exchange (ETDEWEB)
Lee, Jeong Tae; Park, Jong Hwan; Kim, Gi Yoon [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of); Kim, Dong Geun [Medical Imaging Department, ASTEL Inc., Seongnam (Korea, Republic of); Park, Shin Woong; Yi, Yun [Dept. of Electronics and Information Eng, Korea University, Seoul (Korea, Republic of); Kim, Hyun Duk [Research Center, Luvantix ADM Co., Ltd., Daejeon (Korea, Republic of)
2016-11-15
A linear detector array unit (LdAu) was proposed and designed for the high energy X-ray 2-d and 3-d imaging systems for industrial non-destructive test. Specially for 3-d imaging, a helical CT with a 15 MeV linear accelerator and a curved detector is proposed. the arc-shape detector can be formed by many LdAus all of which are arranged to face the focal spot when the source-to-detector distance is fixed depending on the application. An LdAu is composed of 10 modules and each module has 48 channels of CdWO{sub 4} (CWO) blocks and Si PIn photodiodes with 0.4 mm pitch. this modular design was made for easy manufacturing and maintenance. through the Monte carlo simulation, the CWO detector thickness of 17 mm was optimally determined. the silicon PIn photodiodes were designed as 48 channel arrays and fabricated with NTD (neutron transmutation doping) wafers of high resistivity and showed excellent leakage current properties below 1 nA at 10 V reverse bias. to minimize the low-voltage breakdown, the edges of the active layer and the guard ring were designed as a curved shape. the data acquisition system was also designed and fabricated as three independent functional boards; a sensor board, a capture board and a communication board to a Pc. this paper describes the design of the detectors (CWO blocks and Si PIn photodiodes) and the 3-board data acquisition system with their simulation results.
Materials analysis using x-ray linear attenuation coefficient measurements at four photon energies
International Nuclear Information System (INIS)
Midgley, S M
2005-01-01
The analytical properties of an accurate parameterization scheme for the x-ray linear attenuation coefficient are examined. The parameterization utilizes an additive combination of N compositional- and energy-dependent coefficients. The former were derived from a parameterization of elemental cross-sections using a polynomial in atomic number. The compositional-dependent coefficients are referred to as the mixture parameters, representing the electron density and higher order statistical moments describing elemental distribution. Additivity is an important property of the parameterization, allowing measured x-ray linear attenuation coefficients to be written as linear simultaneous equations, and then solved for the unknown coefficients. The energy-dependent coefficients can be determined by calibration from measurements with materials of known composition. The inverse problem may be utilized for materials analysis, whereby the simultaneous equations represent multi-energy linear attenuation coefficient measurements, and are solved for the mixture parameters. For in vivo studies, the choice of measurement energies is restricted to the diagnostic region (approximately 20 keV to 150 keV), where the parameterization requires N ≥ 4 energies. We identify a mathematical pathology that must be overcome in order to solve the inverse problem in this energy regime. An iterative inversion strategy is presented for materials analysis using four or more measurements, and then tested against real data obtained at energies 32 keV to 66 keV. The results demonstrate that it is possible to recover the electron density to within ±4% and fourth mixture parameter. It is also a key finding that the second and third mixture parameters cannot be recovered, as they are of minor importance in the parameterization at diagnostic x-ray energies
On Energy Efficient Mobile Hydraulic Systems : with Focus on Linear Actuation
Heybroek, Kim
2017-01-01
In this dissertation, energy efficient hydraulic systems are studied. The research focuses on solutions for linear actuators in mobile applications, with emphasis on construction machines. Alongside the aspect of energy efficiency, the thesis deals with competing aspects in hydraulic system design found in the development of construction machines. Simulation models and controls for different concepts are developed, taking the whole machine into account. In line with this work, several proof o...
Energy Technology Data Exchange (ETDEWEB)
Langhamer, Olivia [Dept. of Animal Ecology, UU, Norbyvaegen 18D, S-75236 Uppsala (Sweden); Swedish Centre for Renewable Electric Energy Conversion, Division for Electricity, Aangstroem Laboratory, Uppsala University, Box 534, S-75121 Uppsala (Sweden); Haikonen, Kalle; Sundberg, Jan [Swedish Centre for Renewable Electric Energy Conversion, Division for Electricity, Aangstroem Laboratory, Uppsala University, Box 534, S-75121 Uppsala (Sweden)
2010-05-15
Generating electricity from waves is predicted to be a new source of renewable energy conversion expanding significantly, with a global potential in the range of wind and hydropower. Several wave power techniques are on the merge of commercialisation, and thus evoke questions of environmental concern. Conservation matters are to some extent valid independent of technique but we mainly focus on point absorbing linear generators. By giving examples from the Lysekil project, run by Uppsala University and situated on the Swedish west coast, we demonstrate ongoing and future environmental studies to be performed along with technical research and development. We describe general environmental aspects generated by wave power projects; issues also likely to appear in Environmental Impact Assessment studies. Colonisation patterns and biofouling are discussed with particular reference to changes of the seabed and alterations due to new substrates. A purposeful artificial reef design to specially cater for economically important or threatened species is also discussed. Questions related to fish, fishery and marine mammals are other examples of topics where, e.g. no-take zones, marine bioacoustics and electromagnetic fields are important areas. In this review we point out areas in which studies likely will be needed, as ventures out in the oceans also will give ample opportunities for marine environmental research in general and in areas not previously studied. Marine environmental and ecological aspects appear to be unavoidable for application processes and in post-deployment studies concerning renewable energy extraction. Still, all large-scale renewable energy conversion will cause some impact mainly by being area demanding. An early incorporation of multidisciplinary and high quality research might be a key for new ocean-based techniques. (author)
Modeling of non-linear CHP efficiency curves in distributed energy systems
DEFF Research Database (Denmark)
Milan, Christian; Stadler, Michael; Cardoso, Gonçalo
2015-01-01
Distributed energy resources gain an increased importance in commercial and industrial building design. Combined heat and power (CHP) units are considered as one of the key technologies for cost and emission reduction in buildings. In order to make optimal decisions on investment and operation...... for these technologies, detailed system models are needed. These models are often formulated as linear programming problems to keep computational costs and complexity in a reasonable range. However, CHP systems involve variations of the efficiency for large nameplate capacity ranges and in case of part load operation......, which can be even of non-linear nature. Since considering these characteristics would turn the models into non-linear problems, in most cases only constant efficiencies are assumed. This paper proposes possible solutions to address this issue. For a mixed integer linear programming problem two...
Electromagnetic response in kinetic energy driven cuprate superconductors: Linear response approach
International Nuclear Information System (INIS)
Krzyzosiak, Mateusz; Huang, Zheyu; Feng, Shiping; Gonczarek, Ryszard
2010-01-01
Within the framework of the kinetic energy driven superconductivity, the electromagnetic response in cuprate superconductors is studied in the linear response approach. The kernel of the response function is evaluated and employed to calculate the local magnetic field profile, the magnetic field penetration depth, and the superfluid density, based on the specular reflection model for a purely transverse vector potential. It is shown that the low temperature magnetic field profile follows an exponential decay at the surface, while the magnetic field penetration depth depends linearly on temperature, except for the strong deviation from the linear characteristics at extremely low temperatures. The superfluid density is found to decrease linearly with decreasing doping concentration in the underdoped regime. The problem of gauge invariance is addressed and an approximation for the dressed current vertex, which does not violate local charge conservation is proposed and discussed.
Derivative analyticity relations and asymptotic energies
International Nuclear Information System (INIS)
Fischer, J.
1976-01-01
On the basis of general principles of the S-matrix theory theorems are derived showing that derivative analyticity relations analogous to those of Bronzen, Kane and Sukhatme hold at asymptotic energies if the high-energy limits of certain physical quantities exist
Housing-related lifestyle and energy saving
DEFF Research Database (Denmark)
Thøgersen, John
2017-01-01
of relevant background characteristics. A multivariate GLM analysis reveals that when differences in housing-related lifestyles are controlled, neither country of residence nor the interaction between lifestyle and country of residence influence energy saving innovativeness or everyday energy-saving efforts...
Competition Experiments as a Means of Evaluating Linear Free Energy Relationships
Mullins, Richard J.; Vedernikov, Andrei; Viswanathan, Rajesh
2004-01-01
The use of competition experiments as a means of evaluating linear free energy relationship in the undergraduate teaching laboratory is reported. The use of competition experiments proved to be a reliable method for the construction of Hammett plots with good correlation providing great flexibility with regard to the compounds and reactions that…
Energy and luminosity requirements for the next generation of linear colliders
International Nuclear Information System (INIS)
Amaldi, U.
1987-01-01
In order to gain new knowledge ('new physics') from 'next generation' linear colliders energy and luminosity are important variables when considering the design of these new elementary particle probes. The standard model of the electroweak interaction is reviewed and stipulations for postulated Higgs particle, a new neutral Z particle, and a new quark and a neutral lepton searches with next generation colliders are given
Exact solutions of linearized Schwinger endash Dyson equation of fermion self-energy
International Nuclear Information System (INIS)
Zhou, B.
1997-01-01
The Schwinger endash Dyson equation of fermion self-energy in the linearization approximation is solved exactly in a theory with gauge and effective four-fermion interactions. Different expressions for the independent solutions, which, respectively, submit to irregular and regular ultraviolet boundary condition are derived and expounded. copyright 1997 American Institute of Physics
Using system theory and energy methods to prove existence of non-linear PDE's
Zwart, H.J.
2015-01-01
In this discussion paper we present an idea of combining techniques known from systems theory with energy estimates to show existence for a class of non-linear partial differential equations (PDE's). At the end of the paper a list of research questions with possible approaches is given.
F. Grigoli; Simone Cesca; Torsten Dahm; L. Krieger
2012-01-01
Determining the relative orientation of the horizontal components of seismic sensors is a common problem that limits data analysis and interpretation for several acquisition setups, including linear arrays of geophones deployed in borehole installations or ocean bottom seismometers deployed at the seafloor. To solve this problem we propose a new inversion method based on a complex linear algebra approach. Relative orientation angles are retrieved by minimizing, in a least-squares sense, the l...
International Nuclear Information System (INIS)
Martínez-Orozco, J.C.; Mora-Ramos, M.E.; Duque, C.A.
2014-01-01
The conduction band states of GaAs-based vertically coupled double triangular quantum dots in two dimensions are investigated within the effective mass and parabolic approximation, using a diagonalization procedure to solve the corresponding Schrödinger-like equation. The effect of an externally applied static electric field is included in the calculation, and the variation of the lowest confined energy levels as a result of the change of the field strength is reported for different geometrical setups. The linear and nonlinear optical absorptions and the relative change of the refractive index, associated with the energy transition between the ground and the first excited state in the system, are studied as a function of the incident light frequency for distinct configurations of inter-dot distance and electric field intensities. The blueshift of the resonant absorption peaks is detected as a consequence of the increment in the field intensity, whereas the opposite effect is obtained from the increase of inter-dot vertical distance. It is also shown that for large enough values of the electric field there is a quenching of the optical absorption due to field-induced change of symmetry of the first excited state wavefunction, in the case of triangular dots of equal shape and size
Energy Technology Data Exchange (ETDEWEB)
Martínez-Orozco, J.C. [Unidad Académica de Física. Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060. Zacatecas, Zac. (Mexico); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2014-11-01
The conduction band states of GaAs-based vertically coupled double triangular quantum dots in two dimensions are investigated within the effective mass and parabolic approximation, using a diagonalization procedure to solve the corresponding Schrödinger-like equation. The effect of an externally applied static electric field is included in the calculation, and the variation of the lowest confined energy levels as a result of the change of the field strength is reported for different geometrical setups. The linear and nonlinear optical absorptions and the relative change of the refractive index, associated with the energy transition between the ground and the first excited state in the system, are studied as a function of the incident light frequency for distinct configurations of inter-dot distance and electric field intensities. The blueshift of the resonant absorption peaks is detected as a consequence of the increment in the field intensity, whereas the opposite effect is obtained from the increase of inter-dot vertical distance. It is also shown that for large enough values of the electric field there is a quenching of the optical absorption due to field-induced change of symmetry of the first excited state wavefunction, in the case of triangular dots of equal shape and size.
Russian- Chinese relations : towards an energy partnership
Garanina, Olga
2007-01-01
18 p.; This paper aims to investigate the Russian-Chinese energy relations in the context of evolution of bilateral strategic relations since 1991.The research is focused on Russia and encompasses three main aspects: strategic approach of Russian-Chinese relations, Russian hydrocarbons production and export potential and prospects for the Eastern Russia. The paper is based on qualitative analysis. It shows that the framework of bilateral relations is globally favourable for creation of costly...
Jacobsen, Joseph J.
One focal point of concern, policy and a new research will involve identifying individual and organizational facilitative and obstructive factors within the context of energy innovation diffusion in the U.S. This interdisciplinary intersection of people, technology and change is one of serious consequence and has broad implications that span national security, energy infrastructure, the economy, organizational change, education and the environment. This study investigates facilities and plant managers' energy innovation information seeking and energy adoption evolution. The participants are managers who consume more electrical energy than all other groups in the world and are among the top users of natural gas and oil in the United States. The research calls upon the Theory of Planned Behavior, the Diffusion of Innovations and nonlinear dynamics in a study of adoption patterns for 13 energy-related innovations. Cusp catastrophe models and power laws were compared to linear multiple regression to examine and characterize data. Findings reveal that innovation adoption and information seeking differences are slight between private and public sector facilities and plant managers and that the group as a whole may resist change. Of the 13 innovations, some exhibit very strong cusp catastrophe distributions while support for multiple linear regression and the power law were found.
An effective description of dark matter and dark energy in the mildly non-linear regime
Energy Technology Data Exchange (ETDEWEB)
Lewandowski, Matthew; Senatore, Leonardo [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94306 (United States); Maleknejad, Azadeh, E-mail: matthew.lewandowski@cea.fr, E-mail: azade@ipm.ir, E-mail: senatore@stanford.edu [School of Physics, Institute for Research in Fundamental Sciences (IPM), P. Code. 19538-33511, Tehran (Iran, Islamic Republic of)
2017-05-01
In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the information resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. The Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark energy both on the matter fields and on the biased tracers. For the specific case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear equations and construct the one-loop power spectrum of the total density contrast.
Precise and fast beam energy measurement at the international linear collider
International Nuclear Information System (INIS)
Viti, Michele
2010-02-01
The international Linear Collider (ILC) is an electron-positron collider with a center-of-mass energy between 200 and 500 GeV and a peak luminosity of 2 . 10 34 cm -2 s -1 . For the physics program at this machine, an excellent bunch-by-bunch control of the beam energy is mandatory. Several techniques are foreseen to be implemented at the ILC in order to achieve this request. Energy spectrometers upstream and downstream of the electron/positron interaction point were proposed and the present default option for the upstream spectrometer is a beam position monitor based (BPM-based) spectrometer. In 2006/2007, a prototype of such a device was commissioned at the End Station A beam line at the Stanford Linear Accelerator Center (SLAC) in order to study performance and reliability. In addition, a novel method based on laser Compton backscattering has been proposed, since as proved at the Large Electron-Positron Collider (LEP) and the Stanford Linear Collider (SLC), complementary methods are necessary to cross-check the results of the BPM-based spectrometer. In this thesis, an overview of the experiment at End Station A is given, with emphasis on the performance of the magnets in the chicane and first energy resolution estimations. Also, the novel Compton backscattering method is discussed in details and found to be very promising. It has the potential to bring the beam energy resolution well below the requirement of ΔE b /E b =10 -4 . (orig.)
Uncertainty in relative energy resolution measurements
International Nuclear Information System (INIS)
Volkovitsky, P.; Yen, J.; Cumberland, L.
2007-01-01
We suggest a new method for the determination of the detector relative energy resolution and its uncertainty based on spline approximation of experimental spectra and a statistical bootstrapping procedure. The proposed method is applied to the spectra obtained with NaI(Tl) scintillating detectors and 137 Cs sources. The spectrum histogram with background subtracted channel-by-channel is modeled by cubic spline approximation. The relative energy resolution (which is also known as pulse height resolution and energy resolution), defined as the full-width at half-maximum (FWHM) divided by the value of peak centroid, is calculated using the intercepts of the spline curve with the line of the half peak height. The value of the peak height is determined as the point where the value of the derivative goes to zero. The residuals, which are normalized over the square root of counts in a given bin (y-coordinate), obey the standard Gaussian distribution. The values of these residuals are randomly re-assigned to a different set of y-coordinates where a new 'pseudo-experimental' data set is obtained after 'de-normalization' of the old values. For this new data set a new spline approximation is found and the whole procedure is repeated several hundred times, until the standard deviation of relative energy resolution becomes stabilized. The standard deviation of relative energy resolutions calculated for each 'pseudo-experimental' data set (bootstrap uncertainty) is considered to be an estimate for relative energy resolution uncertainty. It is also shown that the relative bootstrap uncertainty is proportional to, and generally only two to three times bigger than, 1/√(N tot ), which is the relative statistical count uncertainty (N tot is the total number of counts under the peak). The newly suggested method is also applicable to other radiation and particle detectors, not only for relative energy resolution, but also for any of the other parameters in a measured spectrum, like
Beam-beam interaction in high energy linear electron-positron colliders
International Nuclear Information System (INIS)
Ritter, S.
1985-04-01
The interaction of high energy electron and positron beams in a linear collider has been investigated using a macroparticle Monte Carlo method based on a Cloud-In-Cells plasma simulation scheme. Density evolutions, luminosities, energy and angular distributions for electrons (positrons) and synchrotron photons are calculated. Beside beams with a symmetric transverse profile also flat beams are considered. A reasonably good agreement to alternative computer calculations as well as to an analytical approximation for the energy spectrum of synchrotron photons has been obtained. (author)
Online beam energy measurement of Beijing electron positron collider II linear accelerator
Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.
2016-02-01
This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.
Energy and Uncertainty in General Relativity
Cooperstock, F. I.; Dupre, M. J.
2018-03-01
The issue of energy and its potential localizability in general relativity has challenged physicists for more than a century. Many non-invariant measures were proposed over the years but an invariant measure was never found. We discovered the invariant localized energy measure by expanding the domain of investigation from space to spacetime. We note from relativity that the finiteness of the velocity of propagation of interactions necessarily induces indefiniteness in measurements. This is because the elements of actual physical systems being measured as well as their detectors are characterized by entire four-velocity fields, which necessarily leads to information from a measured system being processed by the detector in a spread of time. General relativity adds additional indefiniteness because of the variation in proper time between elements. The uncertainty is encapsulated in a generalized uncertainty principle, in parallel with that of Heisenberg, which incorporates the localized contribution of gravity to energy. This naturally leads to a generalized uncertainty principle for momentum as well. These generalized forms and the gravitational contribution to localized energy would be expected to be of particular importance in the regimes of ultra-strong gravitational fields. We contrast our invariant spacetime energy measure with the standard 3-space energy measure which is familiar from special relativity, appreciating why general relativity demands a measure in spacetime as opposed to 3-space. We illustrate the misconceptions by certain authors of our approach.
Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow
Kou, Jisheng
2017-12-06
In this paper, for the first time we propose two linear, decoupled, energy-stable numerical schemes for multi-component two-phase compressible flow with a realistic equation of state (e.g. Peng-Robinson equation of state). The methods are constructed based on the scalar auxiliary variable (SAV) approaches for Helmholtz free energy and the intermediate velocities that are designed to decouple the tight relationship between velocity and molar densities. The intermediate velocities are also involved in the discrete momentum equation to ensure a consistency relationship with the mass balance equations. Moreover, we propose a component-wise SAV approach for a multi-component fluid, which requires solving a sequence of linear, separate mass balance equations. We prove that the methods have the unconditional energy-dissipation feature. Numerical results are presented to verify the effectiveness of the proposed methods.
Iyyappan, I.; Ponmurugan, M.
2018-03-01
A trade of figure of merit (\\dotΩ ) criterion accounts the best compromise between the useful input energy and the lost input energy of the heat devices. When the heat engine is working at maximum \\dotΩ criterion its efficiency increases significantly from the efficiency at maximum power. We derive the general relations between the power, efficiency at maximum \\dotΩ criterion and minimum dissipation for the linear irreversible heat engine. The efficiency at maximum \\dotΩ criterion has the lower bound \
Linear growth of children on a ketogenic diet: does the protein-to-energy ratio matter?
Nation, Judy; Humphrey, Maureen; MacKay, Mark; Boneh, Avihu
2014-11-01
Ketogenic diet is a structured effective treatment for children with intractable epilepsy. Several reports have indicated poor linear growth in children on the diet but the mechanism of poor growth has not been elucidated. We aimed to explore whether the protein to energy ratio plays a role in linear growth of children on ketogenic diet. Data regarding growth and nutrition were, retrospectively, collected from the clinical histories of 35 children who were treated with ketogenic diet for at least 6 months between 2002 and 2010. Patients were stratified into groups according to periods of satisfactory or poor linear growth. Poor linear growth was associated with protein or caloric intake of <80% recommended daily intake, and with a protein-to-energy ratio consistently ≤1.4 g protein/100 kcal even when protein and caloric intakes were adequate. We recommend a protein-to-energy ratio of 1.5 g protein/100 kcal be prescribed to prevent growth retardation. © The Author(s) 2013.
Effect of Low-Energy Linear Shockwave Therapy on Erectile Dysfunction
DEFF Research Database (Denmark)
Fojecki, Grzegorz L; Thiessen, Stefan; Osther, Palle Jørn Sloth
2017-01-01
INTRODUCTION: Previous studies have shown that focal low-energy extracorporeal shockwave therapy (Li-ESWT) can have a positive effect in men with erectile dysfunction (ED). Linear Li-ESWT (LLi-ESWT) for ED has not been previously assessed in a randomized trial. AIM: To evaluate the treatment...... MEASURES: The primary outcome measurement was an increase of at least five points on the IIEF-EF score. The secondary outcome measurement was an increased EHS score to at least 3 in men with a score no higher than 2 at baseline. Data were analyzed by linear and logistic regression. RESULTS: Mean IIEF...
International Nuclear Information System (INIS)
Holmes, J.A.; Huntzinger, C.J.
1987-01-01
Radiation shielding considerations for a major high-energy physics and photonics research complex which comprise a 50 MeV electron linear accelerator injector, a 1.0 GeV electron linear accelerator and a 1.3 GeV storage ring are discussed. The facilities will be unique because of the close proximity of personnel to the accelerator beam lines, the need to adapt existing facilities and shielding materials and the application of strict ALARA dose guidelines while providing maximum access and flexibility during a phased construction program
Energy Vulnerability and EU-Russia Energy Relations
Directory of Open Access Journals (Sweden)
Edward Hunter Christie
2009-08-01
Full Text Available The concept of energy vulnerability is reviewed and discussed with a focus on Russia’s foreign energy relations, in particular those with European countries. A definition and a conceptual framework for quantifying energy vulnerability are proposed in the context of a review of recent research on energy vulnerability indices. In particular it is suggested that source country diversification should be reflected using the expected shortfall measure used in financial economics, rather than the Herfindahl-Hirschman or Shannon-Wiener indices, and that the former should then enter a calibrated function in order to yield expected economic loss. The issues of asymmetric failure probabilities and accidental versus intentional supply disruptions are then discussed with examples of recent Russian actions. Energy vulnerability measurement and modelling should ultimately inform policy. In particular, member states should legislate that no energy infrastructure project by one or more member states may increase the energy vulnerability of another member state. Additionally, European environmental policies, notably the EU ETS, should be amended so as to account for induced changes in energy vulnerability. Finally, member states should increase the level of transparency and disclosure with respect to gas import statistics and gas supply contracts.
Results from a prototype chicane-based energy spectrometer for a linear collider
Energy Technology Data Exchange (ETDEWEB)
Lyapin, A. [Univ. College London (United Kingdom); London Univ., Egham (United Kingdom). Royal Holloway; Schreiber, H.J.; Viti, M. [Deutsches Electronen Synchrotron DESY, Hamburg (Germany); Deutsches Electronen Synchrotron DESY, Zeuthen (DE)] (and others)
2010-11-15
The International Linear Collider (ILC) and other proposed high energy e{sup +}e{sup -} machines aim to measure with unprecedented precision Standard Model quantities and new, not yet discovered phenomena. One of the main requirements for achieving this goal is a measurement of the incident beam energy with an uncertainty close to 10{sup -4}. This article presents the analysis of data from a prototype energy spectrometer commissioned in 2006-2007 in SLAC's End Station A beamline. The prototype was a 4-magnet chicane equipped with beam position monitors measuring small changes of the beam orbit through the chicane at different beam energies. A single bunch energy resolution close to 5 . 10{sup -4} was measured, which is satisfactory for most scenarios. We also report on the operational experience with the chicane-based spectrometer and suggest ways of improving its performance. (orig.)
Linearity between temperature peak and bio-energy CO2 emission rates
International Nuclear Information System (INIS)
Cherubini, Francesco; Bright, Ryan M.; Stromman, Anders H.; Gasser, Thomas; Ciais, Philippe
2014-01-01
Many future energy and emission scenarios envisage an increase of bio-energy in the global primary energy mix. In most climate impact assessment models and policies, bio-energy systems are assumed to be carbon neutral, thus ignoring the time lag between CO 2 emissions from biomass combustion and CO 2 uptake by vegetation. Here, we show that the temperature peak caused by CO 2 emissions from bio-energy is proportional to the maximum rate at which emissions occur and is almost insensitive to cumulative emissions. Whereas the carbon-climate response (CCR) to fossil fuel emissions is approximately constant, the CCR to bio-energy emissions depends on time, biomass turnover times, and emission scenarios. The linearity between temperature peak and bio-energy CO 2 emission rates resembles the characteristic of the temperature response to short-lived climate forcers. As for the latter, the timing of CO 2 emissions from bio-energy matters. Under the international agreement to limit global warming to 2 C by 2100, early emissions from bio-energy thus have smaller contributions on the targeted temperature than emissions postponed later into the future, especially when bio-energy is sourced from biomass with medium (50-60 years) or long turnover times (100 years). (authors)
The low-energy constants of the extended linear sigma model
Energy Technology Data Exchange (ETDEWEB)
Divotgey, Florian; Giacosa, Francesco; Kovacs, Peter; Rischke, Dirk H. [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt am Main (Germany)
2016-07-01
The low-energy dynamics of Quantum Chromodynamics (QCD) is fully determined by the interactions of the (pseudo-) Nambu-Goldstone bosons of spontaneous chiral symmetry breaking, i.e., for two quark flavors, the pions. Pion dynamics is described by the low-energy effective theory of QCD, chiral perturbation theory (ChPT), which is based on the nonlinear realization of chiral symmetry. An alternative description is provided by the Linear Sigma Model, where chiral symmetry is linearly realized. An extended version of this model, the so-called extended Linear Sigma Model (eLSM) was recently developed which incorporates all J{sup P}=0{sup ±}, 1{sup ±} anti qq mesons up to 2 GeV in mass. A fit of the coupling constants of this model to experimentally measured masses and decay widths has a surprisingly good quality. In this talk, it is demonstrated that the low-energy limit of the eLSM, obtained by integrating out all fields which are heavier than the pions, assumes the same form as ChPT. Moreover, the low-energy constants (LECs) of the eLSM agree with those of ChPT.
Balancing Energy and Performance in Dense Linear System Solvers for Hybrid ARM+GPU platforms
Directory of Open Access Journals (Sweden)
Juan P. Silva
2016-04-01
Full Text Available The high performance computing community has traditionally focused uniquely on the reduction of execution time, though in the last years, the optimization of energy consumption has become a main issue. A reduction of energy usage without a degradation of performance requires the adoption of energy-efficient hardware platforms accompanied by the development of energy-aware algorithms and computational kernels. The solution of linear systems is a key operation for many scientific and engineering problems. Its relevance has motivated an important amount of work, and consequently, it is possible to find high performance solvers for a wide variety of hardware platforms. In this work, we aim to develop a high performance and energy-efficient linear system solver. In particular, we develop two solvers for a low-power CPU-GPU platform, the NVIDIA Jetson TK1. These solvers implement the Gauss-Huard algorithm yielding an efficient usage of the target hardware as well as an efficient memory access. The experimental evaluation shows that the novel proposal reports important savings in both time and energy-consumption when compared with the state-of-the-art solvers of the platform.
Physics with linear colliders in the TeV CM energy region
International Nuclear Information System (INIS)
Bulos, F.; Cook, V.; Hinchliffe, I.; Lane, K.; Pellet, D.; Perl, M.; Seiden, A.; Wiedemann, H.
1982-07-01
From a technical point of view a linear collider of high energy and luminosity cannot be operated economically at the present date. A series of R and D efforts in different areas are required to produce the necessary technology for an economically feasible linear collider. No fundamental limits, however, have been found as yet that would prevent us from reaching the goals outlined in this report. Most of the critical component will be tested in a real like situation once the SLC comes into operation. Beyond that much R and D is required in rf-power sources to reduce the power consumption and in high gradient accelerating structures to minimize the required real estate and linear construction costs
Organometallics and related molecules for energy conversion
Wong, Wai-Yeung
2015-01-01
This book presents a critical perspective of the applications of organometallic compounds (including those with metal or metalloid elements) and other related metal complexes as versatile functional materials in the transformation of light into electricity (solar energy conversion) and electricity into light (light generation in light emitting diode), in the reduction of carbon dioxide to useful chemicals, as well as in the safe and efficient production and utilization of hydrogen, which serves as an energy storage medium (i.e. energy carrier). This book focuses on recent research developmen
A fluctuation relation for the probability of energy backscatter
Vela-Martin, Alberto; Jimenez, Javier
2017-11-01
We simulate the large scales of an inviscid turbulent flow in a triply periodic box using a dynamic Smagorinsky model for the sub-grid stresses. The flow, which is forced to constant kinetic energy, is fully reversible and can develop a sustained inverse energy cascade. However, due to the large number of degrees freedom, the probability of spontaneous mean inverse energy flux is negligible. In order to quantify the probability of inverse energy cascades, we test a local fluctuation relation of the form log P(A) = - c(V , t) A , where P(A) = p(| Cs|V,t = A) / p(| Cs|V , t = - A) , p is probability, and | Cs|V,t is the average of the least-squared dynamic model coefficient over volume V and time t. This is confirmed when Cs is averaged over sufficiently large domains and long times, and c is found to depend linearly on V and t. In the limit in which V 1 / 3 is of the order of the integral scale and t is of the order of the eddy-turnover time, we recover a global fluctuation relation that predicts a negligible probability of a sustained inverse energy cascade. For smaller V and t, the local fluctuation relation provides useful predictions on the occurrence of local energy backscatter. Funded by the ERC COTURB project.
International Nuclear Information System (INIS)
Sadeghi, Mehdi; Mirshojaeian Hosseini, Hossein
2006-01-01
For many years, energy models have been used in developed or developing countries to satisfy different needs in energy planning. One of major problems against energy planning and consequently energy models is uncertainty, spread in different economic, political and legal dimensions of energy planning. Confronting uncertainty, energy planners have often used two well-known strategies. The first strategy is stochastic programming, in which energy system planners define different scenarios and apply an explicit probability of occurrence to each scenario. The second strategy is Minimax Regret strategy that minimizes regrets of different decisions made in energy planning. Although these strategies have been used extensively, they could not flexibly and effectively deal with the uncertainties caused by fuzziness. 'Fuzzy Linear Programming (FLP)' is a strategy that can take fuzziness into account. This paper tries to demonstrate the method of application of FLP for optimization of supply energy system in Iran, as a case study. The used FLP model comprises fuzzy coefficients for investment costs. Following the mentioned purpose, it is realized that FLP is an easy and flexible approach that can be a serious competitor for other confronting uncertainties approaches, i.e. stochastic and Minimax Regret strategies. (author)
Undecidability of the Logic of Overlap Relation over Discrete Linear Orderings
DEFF Research Database (Denmark)
Bresolin, Davide; Della Monica, Dario; Goranko, Valentin
2010-01-01
. Still, decidability is the rule for the fragments of HS with only one modal operator, based on an Allen’s relation. In this paper, we show that the logic O of the Overlap relation, when interpreted over discrete linear orderings, is an exception. The proof is based on a reduction from the undecidable...
On the Linear Relation between the Mean and the Standard Deviation of a Response Time Distribution
Wagenmakers, Eric-Jan; Brown, Scott
2007-01-01
Although it is generally accepted that the spread of a response time (RT) distribution increases with the mean, the precise nature of this relation remains relatively unexplored. The authors show that in several descriptive RT distributions, the standard deviation increases linearly with the mean. Results from a wide range of tasks from different…
The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories
International Nuclear Information System (INIS)
Pfirsch, D.; Morrison, P.J.; Texas Univ., Austin
1990-02-01
A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-momentum and angular-momentum tensors for any kind of nonlinear or linearized Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are derived for the first time. The kinetic theories treated - which need not be the same for all particle species in a plasma - are the Vlasov and kinetic guiding center theories. The Hamiltonian for the guiding center motion is taken in the form resulting from Dirac's constraint theory for non-standard Lagrangian systems. As an example of the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homogeneous magnetized plasma is calculated with initially vanishing field perturbations. The expression obtained is compared with the corresponding one of Maxwell-Vlasov theory. (orig.)
The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories
International Nuclear Information System (INIS)
Pfirsch, D.; Morrison, P.J.
1990-02-01
A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-momentum and angular-momentum tensors for any king of nonlinear or linearized Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are derived for the first time. The kinetic theories treated --- which need not be the same for all particle species in a plasma --- are the Vlasov and kinetic guiding center theories. The Hamiltonian for the guiding center motion is taken in the form resulting from Dirac's constraint theory for non-standard Lagrangian systems. As an example of the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homogeneous magnetized plasma is calculated with initially vanishing field perturbations. The expression obtained is compared with the corresponding one of Maxwell-Vlasov theory. 11 refs
Linear-scaling evaluation of the local energy in quantum Monte Carlo
International Nuclear Information System (INIS)
Austin, Brian; Aspuru-Guzik, Alan; Salomon-Ferrer, Romelia; Lester, William A. Jr.
2006-01-01
For atomic and molecular quantum Monte Carlo calculations, most of the computational effort is spent in the evaluation of the local energy. We describe a scheme for reducing the computational cost of the evaluation of the Slater determinants and correlation function for the correlated molecular orbital (CMO) ansatz. A sparse representation of the Slater determinants makes possible efficient evaluation of molecular orbitals. A modification to the scaled distance function facilitates a linear scaling implementation of the Schmidt-Moskowitz-Boys-Handy (SMBH) correlation function that preserves the efficient matrix multiplication structure of the SMBH function. For the evaluation of the local energy, these two methods lead to asymptotic linear scaling with respect to the molecule size
Study of electron beam energy conversion at gyrocon-linear accelerator facility
International Nuclear Information System (INIS)
Karliner, M.M.; Makarov, I.G.; Ostreiko, G.N.
2004-01-01
A gyrocon together with the high-voltage 1.5 MeV accelerator ELIT-3A represents a power generator at 430 MHz serving for linear electron accelerator pulse driving. The facility description and results of calorimetric measurements of ELIT-3A electron beam power and accelerated beam at the end of accelerator are presented in the paper. The achieved energy conversion efficiency is about 55%
Energy Technology Data Exchange (ETDEWEB)
Giantsoudi, Drosoula, E-mail: dgiantsoudi@partners.org [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Grassberger, Clemens; Craft, David; Niemierko, Andrzej; Trofimov, Alexei; Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States)
2013-09-01
Purpose: To investigate the feasibility and potential clinical benefit of linear energy transfer (LET) guided plan optimization in intensity modulated proton therapy (IMPT). Methods and Materials: A multicriteria optimization (MCO) module was used to generate a series of Pareto-optimal IMPT base plans (BPs), corresponding to defined objectives, for 5 patients with head-and-neck cancer and 2 with pancreatic cancer. A Monte Carlo platform was used to calculate dose and LET distributions for each BP. A custom-designed MCO navigation module allowed the user to interpolate between BPs to produce deliverable Pareto-optimal solutions. Differences among the BPs were evaluated for each patient, based on dose–volume and LET–volume histograms and 3-dimensional distributions. An LET-based relative biological effectiveness (RBE) model was used to evaluate the potential clinical benefit when navigating the space of Pareto-optimal BPs. Results: The mean LET values for the target varied up to 30% among the BPs for the head-and-neck patients and up to 14% for the pancreatic cancer patients. Variations were more prominent in organs at risk (OARs), where mean LET values differed by a factor of up to 2 among the BPs for the same patient. An inverse relation between dose and LET distributions for the OARs was typically observed. Accounting for LET-dependent variable RBE values, a potential improvement on RBE-weighted dose of up to 40%, averaged over several structures under study, was noticed during MCO navigation. Conclusions: We present a novel strategy for optimizing proton therapy to maximize dose-averaged LET in tumor targets while simultaneously minimizing dose-averaged LET in normal tissue structures. MCO BPs show substantial LET variations, leading to potentially significant differences in RBE-weighted doses. Pareto-surface navigation, using both dose and LET distributions for guidance, provides the means for evaluating a large variety of deliverable plans and aids in
International Nuclear Information System (INIS)
Giantsoudi, Drosoula; Grassberger, Clemens; Craft, David; Niemierko, Andrzej; Trofimov, Alexei; Paganetti, Harald
2013-01-01
Purpose: To investigate the feasibility and potential clinical benefit of linear energy transfer (LET) guided plan optimization in intensity modulated proton therapy (IMPT). Methods and Materials: A multicriteria optimization (MCO) module was used to generate a series of Pareto-optimal IMPT base plans (BPs), corresponding to defined objectives, for 5 patients with head-and-neck cancer and 2 with pancreatic cancer. A Monte Carlo platform was used to calculate dose and LET distributions for each BP. A custom-designed MCO navigation module allowed the user to interpolate between BPs to produce deliverable Pareto-optimal solutions. Differences among the BPs were evaluated for each patient, based on dose–volume and LET–volume histograms and 3-dimensional distributions. An LET-based relative biological effectiveness (RBE) model was used to evaluate the potential clinical benefit when navigating the space of Pareto-optimal BPs. Results: The mean LET values for the target varied up to 30% among the BPs for the head-and-neck patients and up to 14% for the pancreatic cancer patients. Variations were more prominent in organs at risk (OARs), where mean LET values differed by a factor of up to 2 among the BPs for the same patient. An inverse relation between dose and LET distributions for the OARs was typically observed. Accounting for LET-dependent variable RBE values, a potential improvement on RBE-weighted dose of up to 40%, averaged over several structures under study, was noticed during MCO navigation. Conclusions: We present a novel strategy for optimizing proton therapy to maximize dose-averaged LET in tumor targets while simultaneously minimizing dose-averaged LET in normal tissue structures. MCO BPs show substantial LET variations, leading to potentially significant differences in RBE-weighted doses. Pareto-surface navigation, using both dose and LET distributions for guidance, provides the means for evaluating a large variety of deliverable plans and aids in
Moeller scattering polarimetry for high energy e sup + e sup - linear colliders
Alexander, G
2002-01-01
The general features of the Moeller scattering and its use as an electron polarimeter are described and studied in view of the planned future high energy e sup + e sup - linear colliders. In particular the study concentrates on the TESLA collider which is planned to operate with longitudinal polarised beams at a centre of mass energy of the order of 0.5 TeV with a luminosity of 3.4x10 sup 3 sup 4 cm sup - sup 2 s sup - sup 1.
Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young
2017-05-01
This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.
Approximations for W-Pair Production at Linear-Collider Energies
Denner, A
1997-01-01
We determine the accuracy of various approximations to the O(alpha) corrections for on-shell W-pair production. While an approximation based on the universal corrections arising from initial-state radiation, from the running of alpha, and from corrections proportional to m_t^2 fails in the Linear-Collider energy range, a high-energy approximation improved by the exact universal corrections is sufficiently good above about 500GeV. These results indicate that in Monte Carlo event generators for off-shell W-pair production the incorporation of the universal corrections is not sufficient and more corrections should be included.
International Nuclear Information System (INIS)
England, W.B.
1978-01-01
Uncorrelated and correlated potential energy curves and dipole moments are reported for linear KOH. The compound is found to be ionic, K + OH - . Minimum energy bond lengths are R/sub KO/=4.2913 au and R/sub OH/=1.7688 au, with an estimated accuracy of 2%. The corresponding dipole moment is 3.3 au (8.46 D) with a similar accuracy estimate. This is to our knowledge the first value ever reported for the KOH dipole moment, and the large value suggests that KOH will be an effective electron scatterer in MHD plasmas
Energy storage and transfer with homopolar machine for a linear theta-pinch hybrid reactor
International Nuclear Information System (INIS)
Vogel, H.F.; Brennan, M.; Dase, W.G.; Tolk, K.M.; Weldon, W.F.
1976-01-01
The energy storage and transfer system for the compression coils of a linear theta-pinch hybrid reactor (LTPHR) are described. High efficiency and low cost are the principal requirements for the energy storage and transfer of 25MJ/m or 25GJ for a 1-km LTPHR. The circuit efficiency must be approximately 90%, and the cost for the circuit 5-6c/J. Scaling laws and simple relationships between circuit efficiency and cost-per-unit energy as a function of the half cycle time are presented. An important consideration concerns the pulse repetition rate of 2.25 pulses per second, 70x10 6 shots/yr, or 1.7x10 9 shots over the 25-yr plant life. Current interruption to initiate energy transfer is not feasible at this rate. Therefore, a simple ringing circuit with contactors to make and break at the periodically occurring zero-current instances, is considered
Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics
Giesselmann, Jan; Lattanzio, Corrado; Tzavaras, Athanasios
2016-01-01
For an Euler system, with dynamics generated by a potential energy functional, we propose a functional format for the relative energy and derive a relative energy identity. The latter, when applied to specific energies, yields relative energy
LED Uniform Illumination Using Double Linear Fresnel Lenses for Energy Saving
Directory of Open Access Journals (Sweden)
Ngoc Hai Vu
2017-12-01
Full Text Available We present a linear Fresnel lens design for light-emitting diode (LED uniform illumination applications. The LED source is an array of LEDs. An array of collimating lens is applied to collimate output from the LED array. Two linear Fresnel lenses are used to redistribute the collimated beam along two dimensions in the illumination area. Collimating lens and linear Fresnel lens surfaces are calculated by geometrical optics and nonimaging optics. The collimated beam output from the collimating lens array is divided into many fragments. Each fragment is refracted by a segment of Fresnel lens and distributed over the illumination area, so that the total beam can be distributed to the illumination target uniformly. The simulation results show that this design has a compact structure, high optical efficiency of 82% and good uniformity of 76.9%. Some consideration of the energy savings and optical performance are discussed by comparison with other typical light sources. The results show that our proposed LED lighting system can reduce energy consumption five-times in comparison to using a conventional fluorescent lamp. Our research is a strong candidate for low cost, energy savings for indoor and outdoor lighting applications.
Directory of Open Access Journals (Sweden)
Oscar D. Montoya-Giraldo
2014-01-01
Full Text Available This paper presents the design and simulation of a global controller for the Reaction Wheel Pendulum system using energy regulation and extended linearization methods for the state feedback. The proposed energy regulation is based on the gradual reduction of the energy of the system to reach the unstable equilibrium point. The signal input for this task is obtained from the Lyapunov stability theory. The extended state feedback controller design is used to get a smooth nonlinear function that extends the region of operation to a bigger range, in contrast with the static linear state feedback obtained through the method of approximate linearization around an operating point. The general designed controller operates with a switching between the two control signals depending upon the region of operation; perturbations are applied in the control signal and the (simulated measured variables to verify the robustness and efficiency of the controller. Finally, simulations and tests using the model of the reaction wheel pendulum system, allow to observe the versatility and functionality of the proposed controller in the entire operation region of the pendulum.
Assessment of beam stability of high energy and low energy Varian medical linear accelerators
International Nuclear Information System (INIS)
Jayesh, K.; Mohan, R.; Joshi, R.C.; Ganesh, T.; Hegazy, M.; Oubaye, A.J.; AI Idrisi, Maha
2008-01-01
An accurate measurement of the dose delivered to the tumor in external beam radiotherapy is one of the primary responsibilities of a medical physicist. In general, such measurements have been based on the application of a dosimetry protocol and quality assurance procedures. Clinically one must be able to assess the beam quality, flatness and symmetry and variation in the output on daily basis. Flatness and symmetry are the main parameters for determining the pattern of a photon and electron beam produced by linear accelerators. The quality assurance in routine clinical practice of radiotherapy and consequently the treatment-outcome depends definitely on the physical parameters of treatment-delivery. Several recommendations from national and international associations are reported to define the limits for the beam parameters. The review of literature and various reports on quality assurance in radiotherapy show that for flatness, symmetry and output constancy the optimal level of deviation should be within ±3%
Jointly Sponsored Research Program Energy Related Research
Energy Technology Data Exchange (ETDEWEB)
Western Research Institute
2009-03-31
Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental
Circulating follistatin in relation to energy metabolism
DEFF Research Database (Denmark)
Hansen, Jakob Schiøler; Plomgaard, Peter
2016-01-01
a relation to energy metabolism. In this narrative review, we attempt to reconcile the existing findings on circulating follistatin with the novel concept that circulating follistatin is a liver-derived molecule regulated by the glucagon-to-insulin ratio. The picture emerging is that conditions associated...
Precise and fast beam energy measurement at the international linear collider
Energy Technology Data Exchange (ETDEWEB)
Viti, Michele
2010-02-15
The international Linear Collider (ILC) is an electron-positron collider with a center-of-mass energy between 200 and 500 GeV and a peak luminosity of 2 . 10{sup 34} cm{sup -2}s{sup -1}. For the physics program at this machine, an excellent bunch-by-bunch control of the beam energy is mandatory. Several techniques are foreseen to be implemented at the ILC in order to achieve this request. Energy spectrometers upstream and downstream of the electron/positron interaction point were proposed and the present default option for the upstream spectrometer is a beam position monitor based (BPM-based) spectrometer. In 2006/2007, a prototype of such a device was commissioned at the End Station A beam line at the Stanford Linear Accelerator Center (SLAC) in order to study performance and reliability. In addition, a novel method based on laser Compton backscattering has been proposed, since as proved at the Large Electron-Positron Collider (LEP) and the Stanford Linear Collider (SLC), complementary methods are necessary to cross-check the results of the BPM-based spectrometer. In this thesis, an overview of the experiment at End Station A is given, with emphasis on the performance of the magnets in the chicane and first energy resolution estimations. Also, the novel Compton backscattering method is discussed in details and found to be very promising. It has the potential to bring the beam energy resolution well below the requirement of {delta}E{sub b}/E{sub b}=10{sup -4}. (orig.)
On Sequences of Numbers and Polynomials Defined by Linear Recurrence Relations of Order 2
Directory of Open Access Journals (Sweden)
Tian-Xiao He
2009-01-01
Full Text Available Here we present a new method to construct the explicit formula of a sequence of numbers and polynomials generated by a linear recurrence relation of order 2. The applications of the method to the Fibonacci and Lucas numbers, Chebyshev polynomials, the generalized Gegenbauer-Humbert polynomials are also discussed. The derived idea provides a general method to construct identities of number or polynomial sequences defined by linear recurrence relations. The applications using the method to solve some algebraic and ordinary differential equations are presented.
Evaluation of energy related risk acceptance (APHA energy task force)
International Nuclear Information System (INIS)
Hull, A.P.
1977-01-01
Living in a technological society with large energy requirements involves a number of related actities with attendant health risks, both to the working and to the general public. Therefore, the formulation of some general principles for risk acceptance is necessary. In addition to maximizing benefits and minimizing risk, relevant considerations must be made about the perception of risk as voluntary or involuntary, the number of persons collectively at risk at any one occasion, and the extent to which a risk is a familiar one. With regard to a given benefit, such as a given amount of energy, comparisons of the risks of alternate modes of production may be utilized. However, cost-benefit consideration is essential to the amelioration of current or prospective risks. This is unusual, since it is based on some estimate of the monetary value per premature death averted. It is proposed that increased longevity would be a more satisfactory measure. On a societal basis, large expenditures for additional energy-related pollution control do not appear justifiable since much larger, nonenergy-related health risks are relatively underaddressed. Knowledgeable health professionals could benefit the public by imparting authoritative information in this area
International Nuclear Information System (INIS)
Ragavan, Anpalaki J.
2006-01-01
Linear free energy relationships for trivalent cations with crystalline M 2 O 3 and, M(OH) 3 phases of lanthanides and actinides were developed from known thermodynamic properties of the aqueous trivalent cations, modifying the Sverjensky and Molling equation. The linear free energy relationship for trivalent cations is as ΔG f,MvX 0 =a MvX ΔG n,M 3+ 0 +b MvX +β MvX r M 3+ , where the coefficients a MvX , b MvX , and β MvX characterize a particular structural family of MvX, r M 3+ is the ionic radius of M 3+ cation, ΔG f,MvX 0 is the standard Gibbs free energy of formation of MvX and ΔG n,M 3+ 0 is the standard non-solvation free energy of the cation. The coefficients for the oxide family are: a MvX =0.2705, b MvX =-1984.75 (kJ/mol), and β MvX =197.24 (kJ/molnm). The coefficients for the hydroxide family are: a MvX =0.1587, b MvX =-1474.09 (kJ/mol), and β MvX =791.70 (kJ/molnm).
ALICE EMCal Reconstructable Energy Non-Linearity From Test Beam Monte Carlo
Carter, Thomas Michael
2017-01-01
Calorimeters play many important roles in modern high energy physics detectors, such as event selection, triggering, and precision energy measurements. EMCal, in the case of the ALICE experiment provides triggering on high energy jets, improves jet quenching study measurement bias and jet energy resolution, and improves electron and photon measurements [3]. With the EMCal detector in the ALICE experiment taking on so many important roles, it is important to fully understand, characterize and model its interactions with particles. In 2010 SPS and PS electron test beam measurements were performed on an EMCal mini-module [2]. Alongside this, the test beam setup and geometry was recreated in Geant4 by Nico [1]. Figure 1 shows the reconstructable energy linearity for the SPS test beam data and that obtained from the test beam monte carlo, indicating the amount of energy deposit as hits in the EMCal module. It can be seen that for energies above ∼ 100 GeV there is a signiﬁcant drop in the reconstructableenergym...
Regulatory problems relating to energy in Hungary
International Nuclear Information System (INIS)
Remenyi, K.
2002-01-01
One of basic problems of the transition in the energy economy is, how far the process of liberalisation and privatisation could go, i.e. to what extent the control of state/government would be given up, and how the breakdown of the commanding positions of the government would be managed. The transition in the energy sector toward a market economy is characterised by restructuring the regulatory framework of the energy industry, changing the operational structure of the sector and profound reshaping of ownership structures of the enterprises. In Hungary the government, being convinced of the importance of the implementation of the market forces, in 1991 made the first step on the way of restructuring the energy sector in order to increase economic efficiency, to enable companies to react to market forces and to privatise them. Parallel and partly after the restructuring, a profound modification of legal and regulatory framework took place and finally a relatively large scale of privatisation has newly emerged, which will continue in future, too. The process of the energy sector liberalisation in Hungary has a stop and go character and the game is not over. The process can be characterised by institutional restructuring in the energy sector (coal, oil/gas, power ), which is the basic condition for market liberalisation and privatisation, and by the creation of an appropriate environment (regulatory framework, pricing policy, etc. ) for the smooth implementation of the liberation process(author)
Ponomarev, A. L.; Brenner, D.; Hlatky, L. R.; Sachs, R. K.
2000-01-01
DNA double-strand breaks (DSBs) produced by densely ionizing radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. Stochastic DSB clustering at large scales, from > 100 Mbp down to simulations and analytic equations. A random-walk, coarse-grained polymer model for chromatin is combined with a simple track structure model in Monte Carlo software called DNAbreak and is applied to data on alpha-particle irradiation of V-79 cells. The chromatin model neglects molecular details but systematically incorporates an increase in average spatial separation between two DNA loci as the number of base-pairs between the loci increases. Fragment-size distributions obtained using DNAbreak match data on large fragments about as well as distributions previously obtained with a less mechanistic approach. Dose-response relations, linear at small doses of high linear energy transfer (LET) radiation, are obtained. They are found to be non-linear when the dose becomes so large that there is a significant probability of overlapping or close juxtaposition, along one chromosome, for different DSB clusters from different tracks. The non-linearity is more evident for large fragments than for small. The DNAbreak results furnish an example of the RLC (randomly located clusters) analytic formalism, which generalizes the broken-stick fragment-size distribution of the random-breakage model that is often applied to low-LET data.
Reoptimization of Intensity Modulated Proton Therapy Plans Based on Linear Energy Transfer
Energy Technology Data Exchange (ETDEWEB)
Unkelbach, Jan, E-mail: junkelbach@mgh.harvard.edu [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Botas, Pablo [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Faculty of Physics, Ruprecht-Karls-Universität Heidelberg, Heidelberg (Germany); Giantsoudi, Drosoula; Gorissen, Bram L.; Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)
2016-12-01
Purpose: We describe a treatment plan optimization method for intensity modulated proton therapy (IMPT) that avoids high values of linear energy transfer (LET) in critical structures located within or near the target volume while limiting degradation of the best possible physical dose distribution. Methods and Materials: To allow fast optimization based on dose and LET, a GPU-based Monte Carlo code was extended to provide dose-averaged LET in addition to dose for all pencil beams. After optimizing an initial IMPT plan based on physical dose, a prioritized optimization scheme is used to modify the LET distribution while constraining the physical dose objectives to values close to the initial plan. The LET optimization step is performed based on objective functions evaluated for the product of LET and physical dose (LET×D). To first approximation, LET×D represents a measure of the additional biological dose that is caused by high LET. Results: The method is effective for treatments where serial critical structures with maximum dose constraints are located within or near the target. We report on 5 patients with intracranial tumors (high-grade meningiomas, base-of-skull chordomas, ependymomas) in whom the target volume overlaps with the brainstem and optic structures. In all cases, high LET×D in critical structures could be avoided while minimally compromising physical dose planning objectives. Conclusion: LET-based reoptimization of IMPT plans represents a pragmatic approach to bridge the gap between purely physical dose-based and relative biological effectiveness (RBE)-based planning. The method makes IMPT treatments safer by mitigating a potentially increased risk of side effects resulting from elevated RBE of proton beams near the end of range.
Cournoyer, Janie; Post, Andrew; Rousseau, Philippe; Hoshizaki, Blaine
2016-03-01
Football players can receive up to 1400 head impacts per season, averaging 6.3 impacts per practice and 14.3 impacts per game. A decrease in the capacity of a helmet to manage linear acceleration with multiple impacts could increase the risk of traumatic brain injury. To investigate the ability of football helmets to manage linear acceleration with multiple high-energy impacts. Descriptive laboratory study. Laboratory. We collected linear-acceleration data for 100 impacts at 6 locations on 4 helmets of different models currently used in football. Impacts 11 to 20 were compared with impacts 91 to 100 for each of the 6 locations. Linear acceleration was greater after multiple impacts (91-100) than after the first few impacts (11-20) for the front, front-boss, rear, and top locations. However, these differences are not clinically relevant as they do not affect the risk for head injury. American football helmet performance deteriorated with multiple impacts, but this is unlikely to be a factor in head-injury causation during a game or over a season.
International Nuclear Information System (INIS)
Piltan, Mehdi; Shiri, Hiva; Ghaderi, S.F.
2012-01-01
Highlights: ► Investigating different fitness functions for evolutionary algorithms in energy forecasting. ► Energy forecasting of Iranian metal industry by value added, energy prices, investment and employees. ► Using real-coded instead of binary-coded genetic algorithm decreases energy forecasting error. - Abstract: Developing energy-forecasting models is known as one of the most important steps in long-term planning. In order to achieve sustainable energy supply toward economic development and social welfare, it is required to apply precise forecasting model. Applying artificial intelligent models for estimation complex economic and social functions is growing up considerably in many researches recently. In this paper, energy consumption in industrial sector as one of the critical sectors in the consumption of energy has been investigated. Two linear and three nonlinear functions have been used in order to forecast and analyze energy in the Iranian metal industry, Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) are applied to attain parameters of the models. The Real-Coded Genetic Algorithm (RCGA) has been developed based on real numbers, which is introduced as a new approach in the field of energy forecasting. In the proposed model, electricity consumption has been considered as a function of different variables such as electricity tariff, manufacturing value added, prevailing fuel prices, the number of employees, the investment in equipment and consumption in the previous years. Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD) and Mean Absolute Percent Error (MAPE) are the four functions which have been used as the fitness function in the evolutionary algorithms. The results show that the logarithmic nonlinear model using PSO algorithm with 1.91 error percentage has the best answer. Furthermore, the prediction of electricity consumption in industrial sector of Turkey and also Turkish industrial sector
A linear goal programming model for urban energy-economy-environment interaction
Energy Technology Data Exchange (ETDEWEB)
Kambo, N.S.; Handa, B.R. (Indian Inst. of Tech., New Delhi (India). Dept. of Mathematics); Bose, R.K. (Tata Energy Research Inst., New Delhi (India))
1991-01-01
This paper provides a comprehensive and systematic analysis of energy and pollution problems interconnected with the economic structure, by using a multi-objective sectoral end-use model for addressing regional energy policy issues. The multi-objective model proposed for the study is a 'linear goal programming (LGP)' technique of analysing a 'reference energy system (RES)' in a framework within which alternative policies and technical strategies may be evaluated. The model so developed has further been tested for the city of Delhi (India) for the period 1985 - 86, and a scenario analysis has been carried out by assuming different policy options. (orig./BWJ).
High-Energy Beam Transport in the Hanford FMIT Linear Accelerator
International Nuclear Information System (INIS)
Melson, K.E.; Potter, R.C.; Liska, D.J.; Giles, P.M.; Wilson, M.T.; Cole, T.R.; Caldwell, C.J. Jr.
1979-01-01
The High-Energy Beam Transport (HEBT) for the Hanford Fusion Materials Irradiation Test (FMIT) Facility's Linear Accelerator must transport a large emittance, high-current, high-power continuous duty deuteron beam with a large energy spread. Both periodic and nonperiodic systems have been designed to transport and shape the beam as required by the liquid lithium target. An energy spreader system distributes the Bragg Peak within the lithium. A beam spreader and a beam stop have been provided for tune-up purposes. Characterizing the beam will require extensions of beam diagnostics techniques and non-interceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports
Relation between linear and nonlinear N=3,4 supergravity theories
International Nuclear Information System (INIS)
Sevrin, A.; Thielemans, K.; Troost, W.
1993-01-01
The effective actions for d=2, N=3,4 chiral supergravities with a linear and a nonlinear gauge algebra are related to each other by a quantum reduction; the latter is obtained from the former by putting quantum currents equal to zero. This implies that the renormalization factors for the quantum actions are identical
International Nuclear Information System (INIS)
Montoya Andrade, Dan-El; Villa Jaén, Antonio de la; García Santana, Agustín
2014-01-01
Highlights: • We considered the linear generator copper losses in the proposed MPC strategy. • We maximized the power transferred to the generator side power converter. • The proposed MPC increases the useful average power injected into the grid. • The stress level of the PTO system can be reduced by the proposed MPC. - Abstract: The amount of energy that a wave energy converter can extract depends strongly on the control strategy applied to the power take-off system. It is well known that, ideally, the reactive control allows for maximum energy extraction from waves. However, the reactive control is intrinsically noncausal in practice and requires some kind of causal approach to be applied. Moreover, this strategy does not consider physical constraints and this could be a problem because the system could achieve unacceptable dynamic values. These, and other control techniques have focused on the wave energy extraction problem in order to maximize the energy absorbed by the power take-off device without considering the possible losses in intermediate devices. In this sense, a reactive control that considers the linear generator copper losses has been recently proposed to increase the useful power injected into the grid. Among the control techniques that have emerged recently, the model predictive control represents a promising strategy. This approach performs an optimization process on a time prediction horizon incorporating dynamic constraints associated with the physical features of the power take-off system. This paper proposes a model predictive control technique that considers the copper losses in the control optimization process of point absorbers with direct drive linear generators. This proposal makes the most of reactive control as it considers the copper losses, and it makes the most of the model predictive control, as it considers the system constraints. This means that the useful power transferred from the linear generator to the power
Studer, P. A. (Inventor)
1982-01-01
A linear magnetic motor/generator is disclosed which uses magnetic flux to provide mechanical motion or electrical energy. The linear magnetic motor/generator includes an axially movable actuator mechanism. A permament magnet mechanism defines a first magnetic flux path which passes through a first end portion of the actuator mechanism. Another permament magnet mechanism defines a second magnetic flux path which passes through a second end portion of the actuator mechanism. A drive coil defines a third magnetic flux path passing through a third central portion of the actuator mechanism. A drive coil selectively adds magnetic flux to and subtracts magnetic flux from magnetic flux flowing in the first and second magnetic flux path.
Optimal linear generator with Halbach array for harvesting of vibration energy during human walking
Directory of Open Access Journals (Sweden)
Joonsoo Jun
2016-05-01
Full Text Available In IT business, the capacity of the battery in smartphone was drastically improved to digest various functions such as communication, Internet, e-banking, and entertainment. Although the capacity of the battery is improved, it still needs to be upgraded due to customer’s demands. In this article, we optimize the design of the linear generator with the Halbach array to improve the efficiency of harvesting vibration energy during human walking for the battery capacitance. We propose the optimal design of the tubular permanent magnet with the linear generator that uses a Halbach array. The approximate model is established using generic algorithm. Furthermore, we performed electromagnetic finite element analysis to predict the induced voltage.
The linear attenuation coefficients as features of multiple energy CT image classification
International Nuclear Information System (INIS)
Homem, M.R.P.; Mascarenhas, N.D.A.; Cruvinel, P.E.
2000-01-01
We present in this paper an analysis of the linear attenuation coefficients as useful features of single and multiple energy CT images with the use of statistical pattern classification tools. We analyzed four CT images through two pointwise classifiers (the first classifier is based on the maximum-likelihood criterion and the second classifier is based on the k-means clustering algorithm) and one contextual Bayesian classifier (ICM algorithm - Iterated Conditional Modes) using an a priori Potts-Strauss model. A feature extraction procedure using the Jeffries-Matusita (J-M) distance and the Karhunen-Loeve transformation was also performed. Both the classification and the feature selection procedures were found to be in agreement with the predicted discrimination given by the separation of the linear attenuation coefficient curves for different materials
Pulse-by-pulse energy measurement at the Stanford Linear Collider
International Nuclear Information System (INIS)
Blaylock, G.; Briggs, D.; Collins, B.; Petree, M.
1992-01-01
The stanford Linear Collider (SLC) collides a beam of electrons and positrons at 92 GeV. It is the first colliding linac, and produces Z 0 particles for High-Energy Physics measurements. The energy of each beam must be measured to one part in 10 4 on every collision (120 Hz). An Energy Spectrometer in each beam line after collision produces two stripes of high-energy synchrotron radiation with critical energy of a few MeV. The distance between these two stripes at an imaging plane measures the beam energy. The Wire- Imaging Synchrotron Radiation Detector (WISRD) system comprises a novel detector, data acquisition electronics, readout and analysis. The detector comprises an array of wires for each synchrotron stripe. The electronics measure secondary emission charge on each wire of each array. A Macintosh II (using THINK C, THINK Class Library) and DSP coprocessor (using ANSI C) acquire and analyze the data, and display and report the results for SLC operation
Pulse-by-pulse energy measurement at the Stanford Linear Collider
Blaylock, G.; Briggs, D.; Collins, B.; Petree, M.
1992-01-01
The Stanford Linear Collider (SLC) collides a beam of electrons and positrons at 92 GeV. It is the first colliding linac, and produces Z(sup 0) particles for High-Energy Physics measurements. The energy of each beam must be measured to one part in 10(exp 4) on every collision (120 Hz). An Energy Spectrometer in each beam line after the collision produces two stripes of high-energy synchrotron radiation with critical energy of a few MeV. The distance between these two stripes at an imaging plane measures the beam energy. The Wire-Imaging Synchrotron Radiation Detector (WISRD) system comprises a novel detector, data acquisition electronics, readout, and analysis. The detector comprises an array of wires for each synchrotron stripe. The electronics measure secondary emission charge on each wire of each array. A Macintosh II (using THINK C, THINK Class Library) and DSP coprocessor (using ANSI C) acquire and analyze the data, and display and report the results for SLC operation.
Law project relative to the energy markets
International Nuclear Information System (INIS)
2002-01-01
This document presents the law project relative to the energy markets. It aims to open the french gas market to the competition and defines the gas utilities obligations. The first part presents the main topics of the law: the natural gas distribution access, the natural gas sector regulation, the gas utilities, the natural gas transport and distribution, the underground storage, the control and penalties. The second part details the commission works concerning this law project. (A.L.B.)
Dongarra, Jack; Ltaief, Hatem; Luszczek, Piotr R.; Weaver, Vincent M.
2012-01-01
We propose to study the impact on the energy footprint of two advanced algorithmic strategies in the context of high performance dense linear algebra libraries: (1) mixed precision algorithms with iterative refinement allow to run at the peak performance of single precision floating-point arithmetic while achieving double precision accuracy and (2) tree reduction technique exposes more parallelism when factorizing tall and skinny matrices for solving over determined systems of linear equations or calculating the singular value decomposition. Integrated within the PLASMA library using tile algorithms, which will eventually supersede the block algorithms from LAPACK, both strategies further excel in performance in the presence of a dynamic task scheduler while targeting multicore architecture. Energy consumption measurements are reported along with parallel performance numbers on a dual-socket quad-core Intel Xeon as well as a quad-socket quad-core Intel Sandy Bridge chip, both providing component-based energy monitoring at all levels of the system, through the Power Pack framework and the Running Average Power Limit model, respectively. © 2012 IEEE.
Dongarra, Jack
2012-11-01
We propose to study the impact on the energy footprint of two advanced algorithmic strategies in the context of high performance dense linear algebra libraries: (1) mixed precision algorithms with iterative refinement allow to run at the peak performance of single precision floating-point arithmetic while achieving double precision accuracy and (2) tree reduction technique exposes more parallelism when factorizing tall and skinny matrices for solving over determined systems of linear equations or calculating the singular value decomposition. Integrated within the PLASMA library using tile algorithms, which will eventually supersede the block algorithms from LAPACK, both strategies further excel in performance in the presence of a dynamic task scheduler while targeting multicore architecture. Energy consumption measurements are reported along with parallel performance numbers on a dual-socket quad-core Intel Xeon as well as a quad-socket quad-core Intel Sandy Bridge chip, both providing component-based energy monitoring at all levels of the system, through the Power Pack framework and the Running Average Power Limit model, respectively. © 2012 IEEE.
Thermal performance of a linear Fresnel reflector solar concentrator PV/T energy systems
Energy Technology Data Exchange (ETDEWEB)
Gomaa, Mohamed R. [State Engineering University of Armenia (Armenia)], E-Mail: Dmoh_elbehary@yahoo.com
2011-07-01
This is a report on an investigation of photovoltaic/thermal (PV/T) collectors. Solar energy conversion efficiency was increased by taking advantage of PV/T collectors and low solar concentration technologies, combined into a PV/T system operated at elevated temperature. The main novelty is the coupling of a linear Fresnel mirror reflecting concentrator with a channel PV/T collector. Concentrator PV/T collectors can function at temperatures over 100 degrees celsius, and thus thermal energy can be made to drive processes such as refrigeration, desalination and steam production. Solar system analytical thermal performance gives efficiency values over 60%. Combined electric and thermal (CET) efficiency is high. A combined electric and heat power for the linear fresnel reflector approach that employs high performance CPV technology to produce both electricity and thermal energy at low to medium temperatures is presented. A well-functioning PV/T system can be designed and constructed with low concentration and a total efficiency of nearly 80% can be attained.
Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings
International Nuclear Information System (INIS)
Chung, William
2012-01-01
Highlights: ► Fuzzy linear regression method is used for developing benchmarking systems. ► The systems can be used to benchmark energy efficiency of commercial buildings. ► The resulting benchmarking model can be used by public users. ► The resulting benchmarking model can capture the fuzzy nature of input–output data. -- Abstract: Benchmarking systems from a sample of reference buildings need to be developed to conduct benchmarking processes for the energy efficiency of commercial buildings. However, not all benchmarking systems can be adopted by public users (i.e., other non-reference building owners) because of the different methods in developing such systems. An approach for benchmarking the energy efficiency of commercial buildings using statistical regression analysis to normalize other factors, such as management performance, was developed in a previous work. However, the field data given by experts can be regarded as a distribution of possibility. Thus, the previous work may not be adequate to handle such fuzzy input–output data. Consequently, a number of fuzzy structures cannot be fully captured by statistical regression analysis. This present paper proposes the use of fuzzy linear regression analysis to develop a benchmarking process, the resulting model of which can be used by public users. An illustrative example is given as well.
A Non-linear "Inflation-Relative Prices Variability" Relationship: Evidence from Latin America
Mª Ángeles Caraballo Pou; Carlos Dabús; Diego Caramuta
2006-01-01
This paper presents evidence on a non-linear "inflation-relative prices variability" relationship in three Latin American countries with very high inflation experiences: Argentina, Brazil and Peru. More precisely, and in contrast to results found in previous literature for similar countries, we find a non-concave relation at higher inflation regimes, i.e. when inflation rate surpasses certain threshold. This non-concavity is mainly explained by the unexpected component of inflation, which sug...
Energy Technology Data Exchange (ETDEWEB)
Jana, C. [Indian Inst. of Social Welfare and Business Management, Kolkata (India); Chattopadhyay, R.N. [Indian Inst. of Technology, Kharagpur (India). Rural Development Centre
2004-09-01
Creating provisions for domestic lighting is important for rural development. Its significance in rural economy is unquestionable since some activities, like literacy, education and manufacture of craft items and other cottage products are largely dependent on domestic lighting facilities for their progress and prosperity. Thus, in rural energy planning, domestic lighting remains a key sector for allocation of investments. For rational allocation, decision makers need alternative strategies for identifying adequate and proper investment structure corresponding to appropriate sources and precise devices. The present study aims at designing a model of energy utilisation by developing a decision support frame for an optimised solution to the problem, taking into consideration four sources and six devices suitable for the study area, namely Narayangarh Block of Midnapore District in India. Since the data available from rural and unorganised sectors are often ill-defined and subjective in nature, many coefficients are fuzzy numbers, and hence several constraints appear to be fuzzy expressions. In this study, the energy allocation model is initiated with three separate objectives for optimisation, namely minimising the total cost, minimising the use of non-local sources of energy and maximising the overall efficiency of the system. Since each of the above objective-based solutions has relevance to the needs of the society and economy, it is necessary to build a model that makes a compromise among the three individual solutions. This multi-objective fuzzy linear programming (MOFLP) model, solved in a compromising decision support frame, seems to be a more rational alternative than single objective linear programming model in rural energy planning. (author)
International Nuclear Information System (INIS)
Tang, Yanmei; Bai, Yan; Huang, Congzhi; Du, Bin
2015-01-01
Highlights: • A disturbance rejection solution to the load frequency control issue is proposed. • Several power systems with wind energy conversation system have been tested. • A tuning algorithm of the controller parameters was proposed. • The performance of the proposed approach is better than traditional controllers. - Abstract: A new grid load frequency control approach is proposed for the doubly fed induction generator based wind power plants. The load frequency control issue in a power system is undergoing fundamental changes due to the rapidly growing amount of wind energy conversation system, and concentrating on maintaining generation-load balance and disturbance rejection. The prominent feature of the linear active disturbance rejection control approach is that the total disturbance can be estimated and then eliminated in real time. And thus, it is a feasible solution to deal with the load frequency control issue. In this paper, the application of the linear active disturbance rejection control approach in the load frequency control issue for a complex power system with wind energy conversation system based on doubly fed induction generator is investigated. The load frequency control issue is formulated as a decentralized multi-objective optimization control problem, the solution to which is solved by the hybrid particle swarm optimization technique. To show the effectiveness of the proposed control scheme, the robust performance testing based on Monte-Carlo approach is carried out. The performance superiority of the system with the proposed linear active disturbance rejection control approach over that with the traditional proportional integral and fuzzy-proportional integral-based controllers is validated by the simulation results
Rate-Independent Processes with Linear Growth Energies and Time-Dependent Boundary Conditions
Czech Academy of Sciences Publication Activity Database
Kružík, Martin; Zimmer, J.
2012-01-01
Roč. 5, č. 3 (2012), s. 591-604 ISSN 1937-1632 R&D Projects: GA AV ČR IAA100750802 Grant - others:GA ČR(CZ) GAP201/10/0357 Institutional research plan: CEZ:AV0Z10750506 Keywords : concentrations * oscillations * time - dependent boundary conditions * rate-independent evolution Subject RIV: BA - General Mathematics http://library.utia.cas.cz/separaty/2011/MTR/kruzik-rate-independent processes with linear growth energies and time - dependent boundary conditions.pdf
Uncertainties in linear energy transfer spectra measured with track-etched detectors in space
Czech Academy of Sciences Publication Activity Database
Pachnerová Brabcová, Kateřina; Ambrožová, Iva; Kolísková, Zlata; Malušek, Alexandr
2013-01-01
Roč. 713, JUN 11 (2013), s. 5-10 ISSN 0168-9002 R&D Projects: GA ČR GA205/09/0171; GA AV ČR IAA100480902; GA AV ČR KJB100480901; GA ČR GD202/09/H086 Institutional research plan: CEZ:AV0Z10480505 Institutional support: RVO:61389005 Keywords : CR-39 * linear energy transfer * uncertainty model * space dosimetry Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.316, year: 2013
Minimum Energy Control of 2D Positive Continuous-Discrete Linear Systems
Directory of Open Access Journals (Sweden)
Kaczorek Tadeusz
2014-09-01
Full Text Available The minimum energy control problem for the 2D positive continuous-discrete linear systems is formulated and solved. Necessary and sufficient conditions for the reachability at the point of the systems are given. Sufficient conditions for the existence of solution to the problem are established. It is shown that if the system is reachable then there exists an optimal input that steers the state from zero boundary conditions to given final state and minimizing the performance index for only one step (q = 1. A procedure for solving of the problem is proposed and illustrated by a numerical example.
International Nuclear Information System (INIS)
Aref'ev, A.V.; Blokhov, M.V.; Gerasimov, V.F.
1981-01-01
A program of physical investigations and the corresponding requirements to accelerated beam parameters are discussed in brief. The state and working capacity of separate units and the accelerator as a whole for the 8-year operating period are analyzed. The aim and principal program points of linear electron accelerator modernization are defined. The program of accelerator modernization assumes: electron beam energy increase up to 100-120 MeV; mounting of three additional accelerating sections; clystron efficiency increase; development of a highly reliable modulator; stabilized power supply sources; a system of synchronous start-up; a focusing system; a beam separation system and etc [ru
Linear energy transfer (LET) effects in the radiation-induced inactivation of papain
International Nuclear Information System (INIS)
Bisby, R.H.; Cundall, R.B.; Sims, H.E.; Burns, W.G.
1977-01-01
The inactivation of dilute aqueous solutions of papain by radiations of varying linear energy transfer has been studied in N 2 , N 2 0 and O 2 -saturated solutions. The results obtained with low LET radiation are very similar to those previously reported by Lin et al (Radiation Res.;62:438(1975)). The additional data obtained at higher LET, when radical product yields are reduced and the yield of hydrogen peroxide is increased, show that the hydrogen atom is more important in the inactivation of papain than previously considered. (author)
Midgley, S M
2004-01-21
A novel parameterization of x-ray interaction cross-sections is developed, and employed to describe the x-ray linear attenuation coefficient and mass energy absorption coefficient for both elements and mixtures. The new parameterization scheme addresses the Z-dependence of elemental cross-sections (per electron) using a simple function of atomic number, Z. This obviates the need for a complicated mathematical formalism. Energy dependent coefficients describe the Z-direction curvature of the cross-sections. The composition dependent quantities are the electron density and statistical moments describing the elemental distribution. We show that it is possible to describe elemental cross-sections for the entire periodic table and at energies above the K-edge (from 6 keV to 125 MeV), with an accuracy of better than 2% using a parameterization containing not more than five coefficients. For the biologically important elements 1 coefficients. At higher energies, the parameterization uses fewer coefficients with only two coefficients needed at megavoltage energies.
International Nuclear Information System (INIS)
Tait, E W; Payne, M C; Ratcliff, L E; Haynes, P D; Hine, N D M
2016-01-01
Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable. (paper)
Leakage of the Siemens 160 MLC multileaf collimator on a dual energy linear accelerator
International Nuclear Information System (INIS)
Klueter, Sebastian; Sroka-Perez, Gabriele; Schubert, Kai; Debus, Juergen
2011-01-01
Multileaf collimators (MLCs) have been in clinical use for many years and meanwhile are commonly used to deliver intensity-modulated radiotherapy (IMRT) beams. For this purpose it is important to know their dosimetric properties precisely, one of them being inter- and intraleaf leakage. The Siemens 160 MLC features a single focus design with flat-sided and tilted leaves instead of tongue-and-groove. The leakage performance of the 160 MLC was investigated on a dual energy linear accelerator Siemens ARTISTE with 6 MV and 18 MV photon energies. While the intraleaf leakage amounted to nearly the same dose for 6 and for 18 MV, a much higher interleaf leakage for 6 MV was measured. It could be reduced by simply rotating the collimator, and also by changing the voltage applied to the beam steering coils. The leakage of the 160 MLC is shown to be sensitive to beam alignment. This is of special interest for dual energy accelerators, as the two focal spots of both energies, neither in position nor in shape, do not necessarily always coincide. As a consequence of that, a higher leakage can be expected for one out of two energies for the 160 MLC. (note)
Linear programming optimization of nuclear energy strategy with sodium-cooled fast reactors
International Nuclear Information System (INIS)
Lee, Je Whan; Jeong, Yong Hoon; Chang, Yoon Il; Chang, Soon Heung
2011-01-01
Nuclear power has become an essential part of electricity generation to meet the continuous growth of electricity demand. A Sodium-cooled Fast Reactor (SFR) was developed to extend uranium resource utilization under a growing nuclear energy scenario while concomitantly providing a nuclear waste management solution. Key questions in this scenario are when to introduce SFRs and how many reactors should be introduced. In this study, a methodology using Linear Programming is employed in order to quantify an optimized growth pattern of a nuclear energy system comprising light water reactors and SFRs. The optimization involves tradeoffs between SFR capital cost premiums and the total system U3O8 price premiums. Optimum nuclear growth patterns for several scenarios are presented, as well as sensitivity analyses of important input parameters
Latest astronomical constraints on some non-linear parametric dark energy models
Yang, Weiqiang; Pan, Supriya; Paliathanasis, Andronikos
2018-04-01
We consider non-linear redshift-dependent equation of state parameters as dark energy models in a spatially flat Friedmann-Lemaître-Robertson-Walker universe. To depict the expansion history of the universe in such cosmological scenarios, we take into account the large-scale behaviour of such parametric models and fit them using a set of latest observational data with distinct origin that includes cosmic microwave background radiation, Supernove Type Ia, baryon acoustic oscillations, redshift space distortion, weak gravitational lensing, Hubble parameter measurements from cosmic chronometers, and finally the local Hubble constant from Hubble space telescope. The fitting technique avails the publicly available code Cosmological Monte Carlo (COSMOMC), to extract the cosmological information out of these parametric dark energy models. From our analysis, it follows that those models could describe the late time accelerating phase of the universe, while they are distinguished from the Λ-cosmology.
Ltaief, Hatem
2011-08-31
This paper presents the power profile of two high performance dense linear algebra libraries i.e., LAPACK and PLASMA. The former is based on block algorithms that use the fork-join paradigm to achieve parallel performance. The latter uses fine-grained task parallelism that recasts the computation to operate on submatrices called tiles. In this way tile algorithms are formed. We show results from the power profiling of the most common routines, which permits us to clearly identify the different phases of the computations. This allows us to isolate the bottlenecks in terms of energy efficiency. Our results show that PLASMA surpasses LAPACK not only in terms of performance but also in terms of energy efficiency. © 2011 Springer-Verlag.
Andrew T. Hudak; Matthew B. Dickinson; Benjamin C. Bright; Robert L. Kremens; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Roger D. Ottmar
2016-01-01
Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD),...
Hirota, Yuki; Masunaga, Shin-Ichiro; Kondo, Natsuko; Kawabata, Shinji; Hirakawa, Hirokazu; Yajima, Hirohiko; Fujimori, Akira; Ono, Koji; Kuroiwa, Toshihiko; Miyatake, Shin-Ichi
2014-01-01
Ionizing radiation is applied as the standard treatment for glioblastoma multiforme (GBM). However, radiotherapy remains merely palliative, not curative, because of the existence of glioma stem cells (GSCs), which are regarded as highly radioresistant to low linear-energy-transfer (LET) photons. Here we analyzed whether or not high-LET particles can overcome the radioresistance of GSCs. Glioma stem-like cells (GSLCs) were induced from the GBM cell line A172 in stem cell culture medium. The phenotypes of GSLCs and wild-type cells were confirmed using stem cell markers. These cells were irradiated with (60)Co gamma rays or reactor neutron beams. Under neutron-beam irradiation, high-LET proton particles can be produced through elastic scattering or nitrogen capture reaction. Radiosensitivity was assessed by a colony-forming assay, and the DNA double-strand breaks (DSBs) were assessed by a histone gamma-H2AX focus detection assay. In stem cell culture medium, GSLCs could form neurosphere-like cells and express neural stem cell markers (Sox2 and Musashi) abundantly in comparison with their parental cells. GSLCs were significantly more radioresistant to gamma rays than their parental cells, but neutron beams overcame this resistance. There were significantly fewer gamma-H2AX foci in the A172 GSLCs 24 h after irradiation with gamma rays than in their parental cultured cells, while there was no apparent difference following neutron-beam irradiation. High-LET radiation can overcome the radioresistance of GSLCs by producing unrepairable DNA DSBs. High-LET radiation therapy might have the potential to overcome GBM's resistance to X-rays in a clinical setting.
International Nuclear Information System (INIS)
Hirota, Yuki; Kawabata, Shinji; Kuroiwa, Toshihiko; Miyatake, Shin-ichi; Masunaga, Shin-ichiro; Kondo, Natsuko; Ono, Koji; Hirakawa, Hirokazu; Yajima, Hirohiko; Fujimori, Akira
2014-01-01
Ionizing radiation is applied as the standard treatment for glioblastoma multiforme (GBM). However, radiotherapy remains merely palliative, not curative, because of the existence of glioma stem cells (GSCs), which are regarded as highly radioresistant to low linear-energy-transfer (LET) photons. Here we analyzed whether or not high-LET particles can overcome the radioresistance of GSCs. Glioma stem-like cells (GSLCs) were induced from the GBM cell line A172 in stem cell culture medium. The phenotypes of GSLCs and wild-type cells were confirmed using stem cell markers. These cells were irradiated with 60 Co gamma rays or reactor neutron beams. Under neutron-beam irradiation, high-LET proton particles can be produced through elastic scattering or nitrogen capture reaction. Radiosensitivity was assessed by a colony-forming assay, and the DNA double-strand breaks (DSBs) were assessed by a histone gamma-H2AX focus detection assay. In stem cell culture medium, GSLCs could form neurosphere-like cells and express neural stem cell markers (Sox2 and Musashi) abundantly in comparison with their parental cells. GSLCs were significantly more radioresistant to gamma rays than their parental cells, but neutron beams overcame this resistance. There were significantly fewer gamma-H2AX foci in the A172 GSLCs 24 h after irradiation with gamma rays than in their parental cultured cells, while there was no apparent difference following neutron-beam irradiation. High-LET radiation can overcome the radioresistance of GSLCs by producing unrepairable DNA DSBs. High-LET radiation therapy might have the potential to overcome GBM's resistance to X-rays in a clinical setting. (author)
Wang, Bing; Ninomiya, Yasuharu; Tanaka, Kaoru; Maruyama, Kouichi; Varès, Guillaume; Eguchi-Kasai, Kiyomi; Nenoi, Mitsuru
2012-12-01
Adaptive response (AR) of low linear energy transfer (LET) irradiations for protection against teratogenesis induced by high LET irradiations is not well documented. In this study, induction of AR by X-rays against teratogenesis induced by accelerated heavy ions was examined in fetal mice. Irradiations of pregnant C57BL/6J mice were performed by delivering a priming low dose from X-rays at 0.05 or 0.30 Gy on gestation day 11 followed one day later by a challenge high dose from either X-rays or accelerated heavy ions. Monoenergetic beams of carbon, neon, silicon, and iron with the LET values of about 15, 30, 55, and 200 keV/μm, respectively, were examined. Significant suppression of teratogenic effects (fetal death, malformation of live fetuses, or low body weight) was used as the endpoint for judgment of a successful AR induction. Existence of AR induced by low-LET X-rays against teratogenic effect induced by high-LET accelerated heavy ions was demonstrated. The priming low dose of X-rays significantly reduced the occurrence of prenatal fetal death, malformation, and/or low body weight induced by the challenge high dose from either X-rays or accelerated heavy ions of carbon, neon or silicon but not iron particles. Successful AR induction appears to be a radiation quality event, depending on the LET value and/or the particle species of the challenge irradiations. These findings would provide a new insight into the study on radiation-induced AR in utero. © 2012 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Verhaegen, F.; Seuntjens, J.
1994-01-01
For irradiation of thin samples of biological material with low-energy X rays, conversion of measured air kerma, free in air to average absorbed dose to the sample is necessary. In the present paper, conversion factors from measured air kerma to average absorbed dose in thin blood samples are given for four low-energy X-ray qualities (14-50 kVp). These factors were obtained by Monte Carlo simulation of a practical sample holder. Data for different thicknesses of the blood and backing layer are presented. The conversion factors are found to depend strongly on the thicknesses of the blood layer and backing layer. In radiobiological work, knowledge of linear energy transfer (LET) values for the radiation quality used is often required. Track-averaged LET values for low-energy X rays are presented in this work. It is concluded that the thickness of the sample does not influence the LET value appreciably, indicating that for all radiobiological purposes this value can be regarded as a constant throughout the sample. Furthermore, the large difference between the LET value for a 50 kV spectrum found in this work and the value given in ICRU Report 16 is pointed out. 16 refs., 7 figs., 1 tab
Huels, Michael A.; Bass Andrew, D.; Mirsaleh-Kohan, Nasrin; Sanche, Leon
The question of the origin for the building blocks of life, either synthesized here on earth, or in space [1], has been the subject of much debate, experimental investigation, or astronomical observation, much of it stimulated by the early experiments of Miller [2], and subsequent space radiation related variations thereof [3-5]. And while the precise details of the formation of even the simplest biomolecules that make up life on earth still remain shrouded inmystery, one of the notions that persist throughout the debate is that the building blocks of life, such as amino-acids, or even the cyclic components of RNA and DNA, or other cyclic hydrocarbons (e.g. PHAs), where synthesized via radiolysis [6] either in the earths proto-atmosphere, its early oceans, or in the near interstellar space surrounding the early earth. Here we provide experimental evidence for the hypothesis that interactions of low energy secondary electrons and ions, formed during the radiolysis of matter, with atoms and molecules in the medium, may have played, and may still play an important role in the chemical transformation of astrophysical or planetary surface ices [7], where they lead to the synthesis of more complex chemical species from less complex, naturally occurring components. We report the synthesis and desorption of new chemical species from simple molecular surface ices, containing CH4 / CD4 , C2 D2 , O2 , CO, CO2 , or N2 in various combination mixtures, irradiated by low energy (CO+ (n = 1-3), among others. The formation of all these linear, pre-biotic molecular species, produced here by electron initiated cation-reactions in simple molecular films, suggests that similar mechanisms likely precede the synthesis of life's most basic cyclic molecular components in planetary, or astrophysical surface ices that are continuously subjected to the types of space radiations (UV, X-or -ray, or heavy ions) that can generate such low energy secondary electrons. [Funded by NSERC and Canadian
The neutron dose equivalent around high energy medical electron linear accelerators
Directory of Open Access Journals (Sweden)
Poje Marina
2014-01-01
Full Text Available The measurement of neutron dose equivalent was made in four dual energy linear accelerator rooms. Two of the rooms were reconstructed after decommissioning of 60Co units, so the main limitation was the space. The measurements were performed by a nuclear track etched detectors LR-115 associated with the converter (radiator that consist of 10B and with the active neutron detector Thermo BIOREM FHT 742. The detectors were set at several locations to evaluate the neutron ambient dose equivalent and/or neutron dose rate to which medical personnel could be exposed. Also, the neutron dose dependence on collimator aperture was analyzed. The obtained neutron dose rates outside the accelerator rooms were several times smaller than the neutron dose rates inside the accelerator rooms. Nevertheless, the measured neutron dose equivalent was not negligible from the aspect of the personal dosimetry with almost 2 mSv a year per person in the areas occupied by staff (conservative estimation. In rooms with 15 MV accelerators, the neutron exposure to the personnel was significantly lower than in the rooms having 18 MV accelerators installed. It was even more pronounced in the room reconstructed after the 60Co decommissioning. This study confirms that shielding from the neutron radiation should be considered when building vaults for high energy linear accelerators, especially when the space constraints exist.
Nonlinear instabilities relating to negative-energy modes
International Nuclear Information System (INIS)
Pfirsch, D.
1993-03-01
The nonlinear instability of general linearly stable systems allowing linear negative-energy perturbations is investigated with the aid of a multiple time scale formalism. It is shown that the basic equations thus obtained imply resonance conditions and possess inherent symmetries which lead to the existence of similarity solutions of these equations. These solutions can be of an explosive type, oscillatory or static. It is demonstrated that at least some of the oscillatory and static solutions are normally linearly unstable. (orig.). 5 figs
Design and Experiment Analysis of a Direct-Drive Wave Energy Converter with a Linear Generator
Directory of Open Access Journals (Sweden)
Jing Zhang
2018-03-01
Full Text Available Coastal waves are an abundant nonpolluting and renewable energy source. A wave energy converter (WEC must be designed for efficient and steady operation in highly energetic ocean environments. A direct-drive wave energy conversion (D-DWEC system with a tubular permanent magnet linear generator (TPMLG on a wind and solar photovoltaic complementary energy generation platform is proposed to improve the conversion efficiency and reduce the complexity and device volume of WECs. The operating principle of D-DWECs is introduced, and detailed analyses of the proposed D-DWEC’s floater system, wave force characteristics, and conversion efficiency conducted using computational fluid dynamics are presented. A TPMLG with an asymmetric slot structure is designed to increase the output electric power, and detailed analyses of the magnetic field distribution, detent force characteristics, and no-load and load performances conducted using finite element analysis are discussed. The TPMLG with an asymmetric slot, which produces the same power as the TPMLG with a symmetric slot, has one fifth detent force of the latter. An experiment system with a prototype of the TPMLG with a symmetric slot is used to test the simulation results. The experiment and analysis results agree well. Therefore, the proposed D-DWEC fulfills the requirements of WEC systems.
Vosmeer, C Ruben; Kooi, Derk P; Capoferri, Luigi; Terpstra, Margreet M; Vermeulen, Nico P E; Geerke, Daan P
2016-01-01
Recently an iterative method was proposed to enhance the accuracy and efficiency of ligand-protein binding affinity prediction through linear interaction energy (LIE) theory. For ligand binding to flexible Cytochrome P450s (CYPs), this method was shown to decrease the root-mean-square error and standard deviation of error prediction by combining interaction energies of simulations starting from different conformations. Thereby, different parts of protein-ligand conformational space are sampled in parallel simulations. The iterative LIE framework relies on the assumption that separate simulations explore different local parts of phase space, and do not show transitions to other parts of configurational space that are already covered in parallel simulations. In this work, a method is proposed to (automatically) detect such transitions during the simulations that are performed to construct LIE models and to predict binding affinities. Using noise-canceling techniques and splines to fit time series of the raw data for the interaction energies, transitions during simulation between different parts of phase space are identified. Boolean selection criteria are then applied to determine which parts of the interaction energy trajectories are to be used as input for the LIE calculations. Here we show that this filtering approach benefits the predictive quality of our previous CYP 2D6-aryloxypropanolamine LIE model. In addition, an analysis is performed of the gain in computational efficiency that can be obtained from monitoring simulations using the proposed filtering method and by prematurely terminating simulations accordingly.
Seismic energy dissipation study of linear fluid viscous dampers in steel structure design
Directory of Open Access Journals (Sweden)
A. Ras
2016-09-01
Full Text Available Energy dissipation systems in civil engineering structures are sought when it comes to removing unwanted energy such as earthquake and wind. Among these systems, there is combination of structural steel frames with passive energy dissipation provided by Fluid Viscous Dampers (FVD. This device is increasingly used to provide better seismic protection for existing as well as new buildings and bridges. A 3D numerical investigation is done considering the seismic response of a twelve-storey steel building moment frame with diagonal FVD that have linear force versus velocity behaviour. Nonlinear time history, which is being calculated by Fast nonlinear analysis (FNA, of Boumerdes earthquake (Algeria, May 2003 is considered for the analysis and carried out using the SAP2000 software and comparisons between unbraced, braced and damped structure are shown in a tabulated and graphical format. The results of the various systems are studied to compare the structural response with and without this device of the energy dissipation thus obtained. The conclusions showed the formidable potential of the FVD to improve the dissipative capacities of the structure without increasing its rigidity. It is contributing significantly to reduce the quantity of steel necessary for its general stability.
Scatter fractions from linear accelerators with x-ray energies from 6 to 24 MV.
Taylor, P L; Rodgers, J E; Shobe, J
1999-08-01
Computation of shielding requirements for a linear accelerator must take into account the amount of radiation scattered from the patient to areas outside the primary beam. Currently, the most frequently used data are from NCRP 49 that only includes data for x-ray energies up to 6 MV and angles from 30 degrees to 135 degrees. In this work we have determined by Monte Carlo simulation the scattered fractions of dose for a wide range of energies and angles of clinical significance including 6, 10, 18, and 24 MV and scattering angles from 10 degrees to 150 degrees. Calculations were made for a 400 cm2 circular field size impinging onto a spherical phantom. Scattered fractions of dose were determined at 1 m from the phantom. Angles from 10 degrees to 30 degrees are of concern for higher energies where the scatter is primarily in the forward direction. An error in scatter fraction may result in too little secondary shielding near the junction with the primary barrier. The Monte Carlo code ITS (Version 3.0) developed at Sandia National Laboratory and NIST was used to simulate scatter from the patient to the barrier. Of significance was the variation of calculated scattered dose with depth of measurement within the barrier indicating that accurate values may be difficult to obtain. Mean energies of scatter x-ray spectra are presented.
The Non-Linear Effect of Chinese Financial Developments on Energy Supply Structures
Directory of Open Access Journals (Sweden)
Jian Chai
2016-10-01
Full Text Available Currently, oversupply coal and coal-based power in China poses a great challenge to energy structure optimization and emissions reduction. The energy industry, however, is closely linked to the financial sector. In view of this, using a non-linear Panel Smooth Transition Regression (PSTR model, this paper examines the threshold effects of financial developments on energy supply structures for 17 energy supply provinces in China observed over 2000–2014. The main results are: (1 The ratio of coal supply (LCSR specification is seen to be a four-regime PSTR model with added value in the financial industry/GDP (LFIR as the threshold variable. The LFIR and LCSR show a positive correlation, and the elastic coefficients change between 0.02 and ~0.085; the impact of financial institutions’ loan balance/GDP (LLAN on LCSR takes on an inverse U-shaped curve: first positive, then negative, and again positive with the financial crisis in 2008 as the turning point; (2 The ratio of thermal power generation (LTPG specification is seen to be a two-regime PSTR model with investment in the coal industry/GDP (LCIR as the threshold variable. Results show that LFIR has a negative effect on LTPG, and the coefficients in the low regime tend to be 0.344%, then gradually decrease to 0.051% in the high regime. The influence of LLAN on the LTPG is positive before and negative after the financial crisis. The influence of the foreign direct investment GDP proportion (LFDI, the degree of financial openness on the LCSR and LTPG both remain negative. Therefore, in the process of formulating energy conservation policies and adjusting energy-intensive industrial structures, the government should fully consider the effect of financial developments.
Nuclear energy: strategy of public relations
Energy Technology Data Exchange (ETDEWEB)
Timell, S [Swedish Power Association, Stockholm, Sweden
1981-02-21
A referendum was held in Sweden on 23rd March 1980, stimulated by the Three Mile Island accident in USA, to determine the future nuclear power development policy. The electricity supply background is that in 1980, 65% of power was hydro, 25% nuclear and 10% coal and oil. In terms of total power consumption, the country is heavily dependent on oil, which represents about 75%. The intensive public relations activity previous to the referendum is described, and this involved fact accumulation and assimilation, dissemination through various media, including brochures, displays, films and leaflets. In the political arena three lines developed: (1) (Conservatives); continue nuclear power, building at least 12 reactors, (2) (Social democrats and liberals); similar to (1), but more cautious, with emphasis on energy conservation, (3) (Centre parties and communists); no more nuclear power, and prevention of uranium extraction in Sweden. The voting was (1) 18.9%, (2) 39.1%, (3) 38.7%, (No dec of the most topical is concerned with the inventory of risks due to each industrial energy sector. This session was in two parts, the first devoted to problems specific to each source of energy including nuclear, the second to commo The extension to longer distances may be made with caution and to the satisfaction of the regulatory authority.
Minakata, Daisuke; Crittenden, John
2011-04-15
The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.
Nguyen, Bao H.
This thesis is a collection of five self contained empirical macroeconomic papers on the asymmetric effects of energy price shocks on various economies. Chapter 1 formally determines the number of regime changes in the US natural gas market by employing a MS-VAR model. Estimated using Bayesian methods, three regimes are identified for the period 1980 - 2016, namely, before the Decontrol Act, after the Decontrol Act and the Recession. The results show that the natural gas market tends to be much more sensitive to market fundamental shocks occurring in a Recession regime than in the other regimes. Augmenting the model by incorporating the price of crude oil, the results reveal that the impacts of oil price shocks on natural gas prices are relatively small. Chapter 2 provides new empirical evidence on the asymmetric reactions of the U.S. natural gas market and the U.S. economy to its market fundamental shocks in different phases of the business cycle. To this end, we employ a ST-VAR model to capture the asymmetric responses depending on economic conditions. Our results indicate that in contrast to the prediction made by a linear VAR model, the STVAR model provides a plausible explanation to the behavior of the U.S. natural gas market, which asymmetrically reacts in bad times and good times. Chapter 3 examines the relationship between China's economic growth and global oil market fluctuations between 1992Q1 and 2015Q3. We find that: (1) the time varying parameter VAR with stochastic volatility provides a better fit as compared to it's constant counterparts; (2) the impacts of intertemporal global oil price shocks on China's output are often small and temporary in nature; (3) oil supply and specific oil demand shocks generally produce negative movements in China's GDP growth whilst oil demand shocks tend to have positive effects; (4) domestic output shocks have no significant impact on price or quantity movements within the global oil market. Chapter 4 examines the
Zuo, S.; Dai, S.; Ren, Y.; Yu, Z.
2017-12-01
Scientifically revealing the spatial heterogeneity and the relationship between the fragmentation of urban landscape and the direct carbon emissions are of great significance to land management and urban planning. In fact, the linear and nonlinear effects among the various factors resulted in the carbon emission spatial map. However, there is lack of the studies on the direct and indirect relations between the carbon emission and the city functional spatial form changes, which could not be reflected by the land use change. The linear strength and direction of the single factor could be calculated through the correlation and Geographically Weighted Regression (GWR) analysis, the nonlinear power of one factor and the interaction power of each two factors could be quantified by the Geodetector analysis. Therefore, we compared the landscape fragmentation metrics of the urban land cover and functional district patches to characterize the landscape form and then revealed the relations between the landscape fragmentation level and the direct the carbon emissions based on the three methods. The results showed that fragmentation decreased and the fragmented patches clustered at the coarser resolution. The direct CO2 emission density and the population density increased when the fragmentation level aggregated. The correlation analysis indicated the weak linear relation between them. The spatial variation of GWR output indicated the fragmentation indicator (MESH) had the positive influence on the carbon emission located in the relatively high emission region, and the negative effects regions accounted for the small part of the area. The Geodetector which explores the nonlinear relation identified the DIVISION and MESH as the most powerful direct factor for the land cover patches, NP and PD for the functional district patches, and the interactions between fragmentation indicator (MESH) and urban sprawl metrics (PUA and DIS) had the greatly increased explanation powers on the
Energy fluxes and their relations within energy plants
International Nuclear Information System (INIS)
Grazzini, Giuseppe; Milazzo, Adriano
2007-01-01
Analysing how energy is delivered from its primary sources to final users, it may be seen that the evolution of technology, driven by economic considerations, has mainly rewarded those systems that have intense energy fluxes through their main sections. On the other hand, renewable energy sources are prevented from being widespread by their low energy density. If a high energy flux is a recognized target for energy use, one may try to characterise the various devices encountered along the energy path according to the concentration obtained of the energy flow. In this way, apart from measuring the energy loss suffered within a given device, it can be decided if this loss is adequate with respect to the gain in terms of energy density
Solvatochromism and linear solvation energy relationship of the kinase inhibitor SKF86002
Khattab, Muhammad; Van Dongen, Madeline; Wang, Feng; Clayton, Andrew H. A.
2017-01-01
We studied the spectroscopic characteristics of SKF86002, an anti-inflammatory and tyrosine kinase inhibitor drug candidate. Two conformers SKF86002A and SKF86002B are separated by energy barriers of 19.68 kJ·mol- 1 and 6.65 kJ·mol- 1 due to H-bonds, and produce the three major UV-Vis absorption bands at 325 nm, 260 nm and 210 nm in cyclohexane solutions. This environment-sensitive fluorophore exhibited emission in the 400-500 nm range with a marked response to changes in environment polarity. By using twenty-two solvents for the solvatochromism study, it was noticed that solvent polarity, represented by dielectric constant, was well correlated with the emission wavelength maxima of SKF86002. Thus, the SKF86002 fluorescence peak red shifted in aprotic solvents from 397.5 nm in cyclohexane to 436 nm in DMSO. While the emission maximum in hydrogen donating solvents ranged from 420 nm in t-butanol to 446 nm in N-methylformamide. Employing Lippert-Mataga, Bakhshiev and Kawski models, we found that one linear correlation provided a satisfactory description of polarity effect of 18 solvents on the spectral changes of SKF86002 with R2 values 0.78, 0.80 and 0.80, respectively. Additionally, the multicomponent linear regression analysis of Kamlet-Taft (R2 = 0.94) revealed that solvent acidity, basicity and polarity accounted for 31%, 24% and 45% of solvent effects on SKF86002 emission, respectively. While Catalán correlation (R2 = 0.92) revealed that solvatochromic change of SKF86002 emission was attributed to changes in solvent dipolarity (71%), solvent polarity (12%), solvent acidity (11%) and solvent basicity (6%). Plot of Reichardt transition energies and emission energies of SKF86002 in 18 solvents showed also a linear correlation with R2 = 0.90. The dipole moment difference between excited and ground state was calculated to be 3.4-3.5 debye.
Solvatochromism and linear solvation energy relationship of the kinase inhibitor SKF86002.
Khattab, Muhammad; Van Dongen, Madeline; Wang, Feng; Clayton, Andrew H A
2017-01-05
We studied the spectroscopic characteristics of SKF86002, an anti-inflammatory and tyrosine kinase inhibitor drug candidate. Two conformers SKF86002A and SKF86002B are separated by energy barriers of 19.68kJ·mol(-1) and 6.65kJ·mol(-1) due to H-bonds, and produce the three major UV-Vis absorption bands at 325nm, 260nm and 210nm in cyclohexane solutions. This environment-sensitive fluorophore exhibited emission in the 400-500nm range with a marked response to changes in environment polarity. By using twenty-two solvents for the solvatochromism study, it was noticed that solvent polarity, represented by dielectric constant, was well correlated with the emission wavelength maxima of SKF86002. Thus, the SKF86002 fluorescence peak red shifted in aprotic solvents from 397.5nm in cyclohexane to 436nm in DMSO. While the emission maximum in hydrogen donating solvents ranged from 420nm in t-butanol to 446nm in N-methylformamide. Employing Lippert-Mataga, Bakhshiev and Kawski models, we found that one linear correlation provided a satisfactory description of polarity effect of 18 solvents on the spectral changes of SKF86002 with R(2) values 0.78, 0.80 and 0.80, respectively. Additionally, the multicomponent linear regression analysis of Kamlet-Taft (R(2)=0.94) revealed that solvent acidity, basicity and polarity accounted for 31%, 24% and 45% of solvent effects on SKF86002 emission, respectively. While Catalán correlation (R(2)=0.92) revealed that solvatochromic change of SKF86002 emission was attributed to changes in solvent dipolarity (71%), solvent polarity (12%), solvent acidity (11%) and solvent basicity (6%). Plot of Reichardt transition energies and emission energies of SKF86002 in 18 solvents showed also a linear correlation with R(2)=0.90. The dipole moment difference between excited and ground state was calculated to be 3.4-3.5debye. Copyright © 2016 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Elata, A.; Hassan, A. M. E.; Ali, E.; Calzolari, P.; Bettega, D.
2009-02-01
The main objective of this study was to perform a radiobiological characterization of different energy photon beams (6 MV and 15 MV) from linear accelerator used in radiotherapy, and comparison of different treatment modalities, with special regard to late effects of radiation. Using two end points, cell survival and micronucleus induction, in the biological system (Chines hamster V79 cell line). Chromosomes number was counted and found to be 22 chromosomes per cell. Cells were kept in confluent growth for two days and then exposed to two photon beams and immediately after irradiation were counted and re seeded in different numbered for each dose. For evaluation of surviving fraction samples were incubated at 37o C for 6 days, five samples were counted for each dose. At the same time three samples were seeded for the micronuclei frequency and incubated at 37o C after 24 hours cytochalasin-B was added to block cells in cytokinesis. The survival curve showed similar curves for the two beams and decreased with dose. The micronuclei frequency was positively correlated with dose and the energy of the photon. This indicates the presence of low dose of photoneutrons produced by using high energy photon beams. (Author)
Scaling behavior of ground-state energy cluster expansion for linear polyenes
Griffin, L. L.; Wu, Jian; Klein, D. J.; Schmalz, T. G.; Bytautas, L.
Ground-state energies for linear-chain polyenes are additively expanded in a sequence of terms for chemically relevant conjugated substructures of increasing size. The asymptotic behavior of the large-substructure limit (i.e., high-polymer limit) is investigated as a means of characterizing the rapidity of convergence and consequent utility of this energy cluster expansion. Consideration is directed to computations via: simple Hückel theory, a refined Hückel scheme with geometry optimization, restricted Hartree-Fock self-consistent field (RHF-SCF) solutions of fixed bond-length Parisier-Parr-Pople (PPP)/Hubbard models, and ab initio SCF approaches with and without geometry optimization. The cluster expansion in what might be described as the more "refined" approaches appears to lead to qualitatively more rapid convergence: exponentially fast as opposed to an inverse power at the simple Hückel or SCF-Hubbard levels. The substructural energy cluster expansion then seems to merit special attention. Its possible utility in making accurate extrapolations from finite systems to extended polymers is noted.
Towards Automated Binding Affinity Prediction Using an Iterative Linear Interaction Energy Approach
Directory of Open Access Journals (Sweden)
C. Ruben Vosmeer
2014-01-01
Full Text Available Binding affinity prediction of potential drugs to target and off-target proteins is an essential asset in drug development. These predictions require the calculation of binding free energies. In such calculations, it is a major challenge to properly account for both the dynamic nature of the protein and the possible variety of ligand-binding orientations, while keeping computational costs tractable. Recently, an iterative Linear Interaction Energy (LIE approach was introduced, in which results from multiple simulations of a protein-ligand complex are combined into a single binding free energy using a Boltzmann weighting-based scheme. This method was shown to reach experimental accuracy for flexible proteins while retaining the computational efficiency of the general LIE approach. Here, we show that the iterative LIE approach can be used to predict binding affinities in an automated way. A workflow was designed using preselected protein conformations, automated ligand docking and clustering, and a (semi-automated molecular dynamics simulation setup. We show that using this workflow, binding affinities of aryloxypropanolamines to the malleable Cytochrome P450 2D6 enzyme can be predicted without a priori knowledge of dominant protein-ligand conformations. In addition, we provide an outlook for an approach to assess the quality of the LIE predictions, based on simulation outcomes only.
International Nuclear Information System (INIS)
Flament, O.; Autran, J.L.; Roche, P.; Leray, J.L.; Musseau, O.
1996-01-01
Enhanced total dose damage of Junction Field-effect Transistors (JFETs) due to low dose rate and/or elevated temperature has been investigated for elementary p-channel structures fabricated on bulk and SOI substrates as well as for related linear integrated circuits. All these devices were fabricated with conventional junction isolation (field oxide). Large increases in damage have been revealed by performing high temperature and/or low dose rate irradiations. These results are consistent with previous studies concerning bipolar field oxides under low-field conditions. They suggest that the transport of radiation-induced holes through the oxide is the underlying mechanism. Such an enhanced degradation must be taken into account for low dose rate effects on linear integrated circuits
Energy Technology Data Exchange (ETDEWEB)
Wiedemann, H.
1981-11-01
Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.
International Nuclear Information System (INIS)
Wiedemann, H.
1981-11-01
Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center
Collective behaviour of linear perturbation waves observed through the energy density spectrum
Energy Technology Data Exchange (ETDEWEB)
Scarsoglio, S [Department of Water Engineering, Politecnico di Torino (Italy); De Santi, F; Tordella, D, E-mail: stefania.scarsoglio@polito.it [Department of Aeronautics and Space Engineering, Politecnico di Torino (Italy)
2011-12-22
We consider the collective behaviour of small three-dimensional transient perturbations in sheared flows. In particular, we observe their varied life history through the temporal evolution of the amplification factor. The spectrum of wave vectors considered fills the range from the size of the external flow scale to the size of the very short dissipative waves. We observe that the amplification factor distribution is scale-invariant. In the condition we analyze, the system is subject to all the physical processes included in the linearized Navier-Stokes equations. With the exception of the nonlinear interaction, these features are the same as those characterizing the turbulent state. The linearized perturbative system offers a great variety of different transient behaviours associated to the parameter combination present in the initial conditions. For the energy spectrum computed by freezing each wave at the instant where its asymptotic condition is met, we ask whether this system is able to show a power-law scaling analogous to the Kolmogorov argument. At the moment, for at least two typical shear flows, the bluff-body wake and the plane Poiseuille flow, the answer is yes.
Comparison of the linear bias models in the light of the Dark Energy Survey
Papageorgiou, A.; Basilakos, S.; Plionis, M.
2018-05-01
The evolution of the linear and scale independent bias, based on the most popular dark matter bias models within the Λ cold dark matter (ΛCDM) cosmology, is confronted to that of the Dark Energy Survey (DES) luminous red galaxies (LRGs). Applying a χ2 minimization procedure between models and data, we find that all the considered linear bias models reproduce well the LRG bias data. The differences among the bias models are absorbed in the predicted mass of the dark-matter halo in which LRGs live and which ranges between ˜6 × 1012 and 1.4 × 1013 h-1 M⊙, for the different bias models. Similar results, reaching however a maximum value of ˜2 × 1013 h-1 M⊙, are found by confronting the SDSS (2SLAQ) Large Red Galaxies clustering with theoretical clustering models, which also include the evolution of bias. This later analysis also provides a value of Ωm = 0.30 ± 0.01, which is in excellent agreement with recent joint analyses of different cosmological probes and the reanalysis of the Planck data.
Dosimetric aspects of the therapeutic photon beams from a dual-energy linear accelerator
International Nuclear Information System (INIS)
Al-Ghazi, M.S.A.L.; Arjune, B.; Fiedler, J.A.; Sharma, P.D.
1988-01-01
Parameters of the photon beams (6 and 20 MV) from a dual-energy linear accelerator (Mevatron-KD, Siemens Medical Laboratories, CA) are presented. The depth dose characteristics of the photon beams are d/sub max/ of 1.8 and 3.8 cm and percentage depth dose of 68% and 80% at 10-cm depth and 100-cm source--surface distance for a field size of 10 x 10 cm 2 for 6 and 20 MV, respectively. The 6 and 20 MV beams were found to correspond to nominal accelerating potentials of 4.7 and 17 MV, respectively. The stability of output is within +- 1% and flatness and symmetry are within +- 3%. These figures compare favorably with the manufacturer's specifications
High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors
Energy Technology Data Exchange (ETDEWEB)
Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
2016-09-11
A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.
High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors
International Nuclear Information System (INIS)
Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.
2016-01-01
A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.
Solvent effects in ionic liquids: empirical linear energy-density relationships.
Cerda-Monje, A; Aizman, A; Tapia, R A; Chiappe, C; Contreras, R
2012-07-28
Multiparameter linear energy-density relationships to model solvent effects in room temperature ionic liquids (RTILs) are introduced and tested. The model incorporates two solvent dependent and two specific solute-solvent parameters represented by a set of electronic indexes derived from the conceptual density functional theory. The specific solute-solvent interactions are described in terms of the electronic chemical potential for proton migration between the anion or cation and the transition state structure of a specific reaction. These indexes provide a quantitative estimation of the hydrogen bond (HB) acceptor basicity and the hydrogen bond donor acidity of the ionic solvent, respectively. A sound quantitative scale of HB strength is thereby obtained. The solvent dependent contributions are described by the global electrophilicity of the cation and nucleophilicity of the anion forming the ionic liquid. The model is illustrated for the kinetics of cycloaddition of cyclopentadiene towards acrolein. In general, cation HB acidity outweighs the remaining parameters for this reaction.
Linear solvation energy relationships: "rule of thumb" for estimation of variable values
Hickey, James P.; Passino-Reader, Dora R.
1991-01-01
For the linear solvation energy relationship (LSER), values are listed for each of the variables (Vi/100, π*, &betam, αm) for fundamental organic structures and functional groups. We give the guidelines to estimate LSER variable values quickly for a vast array of possible organic compounds such as those found in the environment. The difficulty in generating these variables has greatly discouraged the application of this quantitative structure-activity relationship (QSAR) method. This paper present the first compilation of molecular functional group values together with a utilitarian set of the LSER variable estimation rules. The availability of these variable values and rules should facilitate widespread application of LSER for hazard evaluation of environmental contaminants.
One Year assessment of shielding for a multi-energy linear accelerator
International Nuclear Information System (INIS)
Lee, Jae Gi; Carlson, Joel; Lee, Hyun Seok; Ye, Sung Joon; Chung, Jin Beom; Kim, Jae Sung; Kim, Jung In
2014-01-01
In 2005, the publication of Report No. 151 of the National Council on Radiation Protection and Measurements (NCRP) suggested shielding methodologies along with shielding data. Recently, intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have become more widely used for cancer treatment. Thus, we analyzed shielding parameters for a multi-energy medical linear accelerator using the VMAT technique. Calculated total workload was similar to the recommendation of NCRP Report No. 49 and No. 51. However, these results were higher than the previous results in the NCRP Report No. 151. Also, the VMAT technique uses an intensity modulated beams with various gantry angles so that scattered and leakage doses should be carefully considered by retrospective analysis using the treatment data from each facility
One Year assessment of shielding for a multi-energy linear accelerator
Energy Technology Data Exchange (ETDEWEB)
Lee, Jae Gi; Carlson, Joel; Lee, Hyun Seok; Ye, Sung Joon [Seoul National University Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Chung, Jin Beom; Kim, Jae Sung [Dept. of Radiation Oncology, Seoul National University Bundang Hospital, Seoul (Korea, Republic of); Kim, Jung In [Dept. of of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)
2014-11-15
In 2005, the publication of Report No. 151 of the National Council on Radiation Protection and Measurements (NCRP) suggested shielding methodologies along with shielding data. Recently, intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have become more widely used for cancer treatment. Thus, we analyzed shielding parameters for a multi-energy medical linear accelerator using the VMAT technique. Calculated total workload was similar to the recommendation of NCRP Report No. 49 and No. 51. However, these results were higher than the previous results in the NCRP Report No. 151. Also, the VMAT technique uses an intensity modulated beams with various gantry angles so that scattered and leakage doses should be carefully considered by retrospective analysis using the treatment data from each facility.
Non-linear sputtering effects induced by MeV energy gold clusters
International Nuclear Information System (INIS)
Boussofiane-Baudin, K.; Brunelle, A.; Chaurand, P.; Della-Negra, S.; Depauw, J.; Le Beyec, Y.; Hakansson, P.
1993-09-01
Gold clusters Au n + with 1 < n ≤ 4, accelerated to MeV energies at the Orsay tandem accelerator, have been used to induce secondary ion emission from the surface of thin organic and inorganic films. A non-linear enhancement of the secondary ion yields is observed when cluster impacts are compared to single atom impacts at the same velocity. It has been shown that the collective effects propagate in the solid over a depth larger than 2000 A. The equilibrium charge state of cluster constituents after their passage through a thin carbon foil (1000 A) has been measured. The mean value for the cluster constituents is the same as for single atoms at the same velocity. (authors). 41 refs., 8 figs., 1 tab
Lebrun, Philippe
2010-01-01
High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-of markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.
Public Relations - 2003 Energy and Environment Calendar
International Nuclear Information System (INIS)
Novosel, N.; Valcic, I.
2003-01-01
Ministry of Economy in co-operation with the Ministry of Education and Sport, Croatian Electric Utility and Enconet International during the year 2002 realized the project of preparing the calendar for 2003 containing primary school pupils' paintings about energy and environment and additional information about preparedness in the Republic of Croatia in the case of nuclear accident and recommendations for acting. The calendar is primarily created for families living in the circle 25 km from the Nuclear Power Plant Krsko and will be distributed to all pupils of primary schools on that territory. Therefore the collecting of paintings was carried out between pupils from fifth to eight grades in those schools. Expert commission chose twelve best paintings from fifty-two collected and ceremonial promotion of the calendar was held in the Technical museum in Zagreb. This kind of project is only one example of public relations with the purpose of knowledge building about successful living together with energy technologies. In this text the course of the project of realizing the calendar will be presented with the special accent on content and purpose of the text about preparedness in the Republic of Croatia in the case of nuclear accident and recommendations for acting. (author)
Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.
Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H
2014-11-01
Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Sütterlin, Bernadette; Brunner, Thomas A.; Siegrist, Michael
2011-01-01
The present paper aims to identify and describe different types of energy consumers in a more comprehensive way than previous segmentation studies using cluster analysis. Energy consumers were segmented based on their energy-related behavioral characteristics. In addition to purchase- and curtailment-related energy-saving behavior, consumer classification was also based on acceptance of policy measures and energy-related psychosocial factors, so the used behavioral segmentation base was more comprehensive compared to other studies. Furthermore, differentiation between the energy-saving purchase of daily products, such as food, and of energy efficient appliances allowed a more differentiated characterization of the energy consumer segments. The cluster analysis revealed six energy consumer segments: the idealistic, the selfless inconsequent, the thrifty, the materialistic, the convenience-oriented indifferent, and the problem-aware well-being-oriented energy consumer. Findings emphasize that using a broader and more distinct behavioral base is crucial for an adequate and differentiated description of energy consumer types. The paper concludes by highlighting the most promising energy consumer segments and discussing possible segment-specific marketing and policy strategies. - Highlights: ► By applying a cluster-analytic approach, new energy consumer segments are identified. ► A comprehensive, differentiated description of the different energy consumer types is provided. ► A distinction between purchase of daily products and energy efficient appliances is essential. ► Behavioral variables are a more suitable base for segmentation than general characteristics.
International Nuclear Information System (INIS)
Brunckhorst, Elin
2009-01-01
The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a 10 B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with 6 Li and 7 Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined with an
Energy Technology Data Exchange (ETDEWEB)
Brunckhorst, Elin
2009-02-26
The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a {sup 10}B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with {sup 6}Li and {sup 7}Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined
French energy research problems in relation to national energy goals
International Nuclear Information System (INIS)
Ferrari, A.
1984-01-01
There is a new view in energy planning: the new Government has firmly decided to enlarge the spectrum of energy technologies, to give more possibilities. Some new technologies if they reach a sufficient economic balance may be better than the ones used presently, and strict economic analysis shall be complemented by including external cost and taking into account the other considerations (political, social, etc.). The energy situation is serious and no technology should be dismissed: nuclear energy which with coal is one of the two sources of energy already abundant, cannot be discarded especially in a country like France, poor in fossil sources. France shall go on using nuclear energy and this means pursuing the development of the Fast Breeder Reactor Technology, because this is a unique insurance against possible future energy scarcity. Under strict nonproliferation conditions they shall also continue the effort to export nuclear units, using the expertise gained while implementing their own program
Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s
Energy Technology Data Exchange (ETDEWEB)
Kurnosov, Arkady A.; Rubtsov, Igor V.; Maksymov, Andrii O.; Burin, Alexander L., E-mail: aburin@tulane.edu [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States)
2016-07-21
We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed.
Shrestha, Prashanta; Smith, Mark Thomas; Bundy, Bradley Charles
2014-01-25
Site-specific incorporation of unnatural amino acids (uAAs) during protein synthesis expands the proteomic code through the addition of unique residue chemistry. This field provides a unique tool to improve pharmacokinetics, cancer treatments, vaccine development, proteomics and protein engineering. The limited ability to predict the characteristics of proteins with uAA-incorporation creates a need for a low-cost system with the potential for rapid screening. Escherichia coli-based cell-free protein synthesis is a compelling platform for uAA incorporation due to the open and accessible nature of the reaction environment. However, typical cell-free systems can be expensive due to the high cost of energizing reagents. By employing alternative energy sources, we reduce the cost of uAA-incorporation in CFPS by 55%. While alternative energy systems reduce cost, the time investment to develop gene libraries can remain cumbersome. Cell-free systems allow the direct use of PCR products known as linear expression templates, thus alleviating tedious plasmid library preparations steps. We report the specific costs of CFPS with uAA incorporation, demonstrate that LETs are suitable expression templates with uAA-incorporation, and consider the substantial reduction in labor intensity using LET-based expression for CFPS uAA incorporation. Copyright © 2013 Elsevier B.V. All rights reserved.
Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s
Kurnosov, Arkady A.; Rubtsov, Igor V.; Maksymov, Andrii O.; Burin, Alexander L.
2016-07-01
We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed.
Exact asymptotic relations for the effective response of linear viscoelastic heterogeneous media
Gallican, Valentin; Brenner, Renald; Suquet, Pierre
2017-11-01
This article addresses the asymptotic response of viscoelastic heterogeneous media in the frequency domain, at high and low frequencies, for different types of elementary linear viscoelastic constituents. By resorting to stationary principles for complex viscoelasticity and adopting a classification of the viscoelastic behaviours based on the nature of their asymptotic regimes, either elastic or viscous, four exact relations are obtained on the overall viscoelastic complex moduli in each case. Two relations are related to the asymptotic uncoupled heterogeneous problems, while the two remaining ones result from the viscoelastic coupling that manifests itself in the transient regime. These results also provide exact conditions on certain integrals in time of the effective relaxation spectrum. This general setting encompasses the results obtained in preceding studies on mixtures of Maxwell constituents [1,2]. xml:lang="fr"
General formulae for polarization observables in deuteron electrodisintegration and linear relations
International Nuclear Information System (INIS)
Arenhoevel, H.; Leidemann, W.; Tomusiak, E.L.
1993-01-01
Formal expressions are derived for all possible polarization observables in deuteron electrodisintegration with longitudinally polarized incoming electrons, oriented deuteron targets and polarization analysis of outgoing nucleons. They are given in terms of general structure functions which can be determined experimentally. These structure functions are Hermitean forms of the T-matrix elements which, in principle, allow the determination of all T-matrix elements up to an arbitrary common phase. Since the set of structure functions is overcomplete, linear relations among various structure functions exist which are derived explicitly
Directory of Open Access Journals (Sweden)
Mario Gómez
2018-03-01
Full Text Available This paper analyzes the causal link between aggregated and disaggregated levels of energy consumption and economic growth in Mexico between 1965 and 2014, with the presence of structural breaks stemming from the series. To that end, unit root with structural breaks, cointegration, and linear and nonlinear causality tests are employed. The results show that there is a long-run relationship between production, capital, labor, and energy, and linear causal links from total and disaggregated energy consumption to economic growth. A nonlinear causality also exists from energy consumption, the transport sector, capital, and labor to output. These results support the growth hypothesis, which maintains that energy is an important input factor for economic activity and that energy conservation policies impact the economic growth in Mexico.
A Novel Four-Dimensional Energy-Saving and Emission-Reduction System and Its Linear Feedback Control
Directory of Open Access Journals (Sweden)
Minggang Wang
2012-01-01
Full Text Available This paper reports a new four-dimensional energy-saving and emission-reduction chaotic system. The system is obtained in accordance with the complicated relationship between energy saving and emission reduction, carbon emission, economic growth, and new energy development. The dynamics behavior of the system will be analyzed by means of Lyapunov exponents and equilibrium points. Linear feedback control methods are used to suppress chaos to unstable equilibrium. Numerical simulations are presented to show these results.
International Nuclear Information System (INIS)
Turner, W.C.; Barrett, D.M.; Sampayan, S.E.
1991-01-01
In this paper the authors attempt to motivate the development of modeling tools for linear induction accelerator components by giving examples of performance limitations related to energy sweep. The most pressing issues is the development of an accurate model of the switching behavior of large magnetic cores at high dB/dt in the accelerator and magnetic compression modulators. Ideally one would like to have a model with as few parameters as possible that allows the user to choose the core geometry and magnetic material and perhaps a few parameters characterizing the switch model. Beyond this, the critical modeling tasks are: simulation of a magnetic compression modulator, modeling the reset dynamics of a magnetic compression modulator, modeling the loading characteristics of a linear induction accelerator cell, and modeling the electron injector current including the dynamics of feedback modulation and beam loading in an accelerator cell. Of course in the development of these models care should be given to benchmarking them against data from experimental systems. Beyond that one should aim for tools that have predictive power so that they can be used as design tools and not merely to replicate existing data
Nuclear energy: strategy of public relations
International Nuclear Information System (INIS)
Timell, S.
1981-01-01
A referendum was held in Sweden on 23rd March 1980, stimulated by the Three Mile Island accident in USA, to determine the future nuclear power development policy. The electricity supply background is that in 1980, 65% of power was hydro, 25% nuclear and 10% coal and oil. In terms of total power consumption, the country is heavily dependent on oil, which represents about 75%. The intensive public relations activity previous to the referendum is described, and this involved fact accumulation and assimilation, dissemination through various media, including brochures, displays, films and leaflets. In the political arena three lines developed: (1) (Conservatives); continue nuclear power, building at least 12 reactors, (2) (Social democrats and liberals); similar to (1), but more cautious, with emphasis on energy conservation, (3) (Centre parties and communists); no more nuclear power, and prevention of uranium extraction in Sweden. The voting was (1) 18.9%, (2) 39.1%, (3) 38.7%, (No decision) 3.3%. (G.C.)
DEFF Research Database (Denmark)
Xydis, George; Koroneos, C.
2012-01-01
In the present paper the mismatch between the energy supply levels and the end use, in a broader sense, was studied for the Hellenic energy system. The ultimate objective was to optimize the way to meet the country's energy needs in every different administrative and geographical region using...... renewable energy sources (RES) and at the same time to define the remaining available space for energy recovery units from municipal solid waste (MSW) in each region to participate in the energy system. Based on the results of the different scenarios examined for meeting the electricity needs using linear...
Properties of linear integral equations related to the six-vertex model with disorder parameter II
International Nuclear Information System (INIS)
Boos, Hermann; Göhmann, Frank
2012-01-01
We study certain functions arising in the context of the calculation of correlation functions of the XXZ spin chain and of integrable field theories related to various scaling limits of the underlying six-vertex model. We show that several of these functions that are related to linear integral equations can be obtained by acting with (deformed) difference operators on a master function Φ. The latter is defined in terms of a functional equation and of its asymptotic behavior. Concentrating on the so-called temperature case, we show that these conditions uniquely determine the high-temperature series expansions of the master function. This provides an efficient calculation scheme for the high-temperature expansions of the derived functions as well. (paper)
Base Program on Energy Related Research
Energy Technology Data Exchange (ETDEWEB)
Western Research Institute
2008-06-30
The main objective of the Base Research Program was to conduct both fundamental and applied research that will assist industry in developing, deploying, and commercializing efficient, nonpolluting fossil energy technologies that can compete effectively in meeting the energy requirements of the Nation. In that regard, tasks proposed under the WRI research areas were aligned with DOE objectives of secure and reliable energy; clean power generation; development of hydrogen resources; energy efficiency and development of innovative fuels from low and no-cost sources. The goal of the Base Research Program was to develop innovative technology solutions that will: (1) Increase the production of United States energy resources--coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. This report summarizes the accomplishments of the overall Base Program. This document represents a stand-alone Final Report for the entire Program. It should be noted that an interim report describing the Program achievements was prepared in 2003 covering the progress made under various tasks completed during the first five years of this Program.
Primary processes in radiation chemistry. LET (Linear Energy Transfer) effect in water radiolysis
International Nuclear Information System (INIS)
Trupin-Wasselin, V.
2000-01-01
The effect of ionizing radiations on aqueous solutions leads to water ionization and then to the formation of radical species and molecular products (e - aq , H . , OH . , H 2 O 2 , H 2 ). It has been shown that the stopping power, characterized by the LET value (Linear Energy Transfer) becomes different when the nature of the ionizing radiations is different. Few data are nowadays available for high LET radiations such as protons and high energy heavy ions. These particles have been used to better understand the primary processes in radiation chemistry. The yield of a chemical dosimeter (the Fricke dosimeter) and those of the hydrogen peroxide have been determined for different LET. The effect of the dose rate on the Fricke dosimeter yield and on the H 2 O 2 yield has been studied too. When the dose rate increases, an increase of the molecular products yield is observed. At very high dose rate, this yield decreases on account of the attack of the molecular products by radicals. The H 2 O 2 yield in alkaline medium decreases when the pH reaches 12. This decrease can be explained by a slowing down of the H 2 O 2 formation velocity in alkaline medium. Superoxide radical has also been studied in this work. A new detection method: the time-resolved chemiluminescence has been perfected for this radical. This technique is more sensitive than the absorption spectroscopy. Experiments with heavy ions have allowed to determine the O 2 .- yield directly in the irradiation cell. The experimental results have been compared with those obtained with a Monte Carlo simulation code. (O.M.)
Deriving mass-energy equivalence and mass-velocity relation without light
Dai, Youshan; Dai, Liang
2018-04-01
Relativity requires that a particle's momentum and energy are the same functions of the particle's velocity in all inertial frames. Using the fact that momentum and energy must transform linearly between reference frames, we present a novel derivation of the mass-energy equivalence, namely, the relation that the energy is proportional to the moving mass, with no postulate about the existence of light or its properties. We further prove the mass-velocity relation without relying on momentum and energy conservation or on the Lorentz transformation. It is demonstrated that neither conservation laws nor the Lorentz transformation are necessary to establish those relations, and that those relations have a wider scope of validity than that of the conservation laws and the invariance of the speed of light.
Tutcuoglu, A.; Majidi, C.
2014-12-01
Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.
A non-linear 3D printed electromagnetic vibration energy harvester
International Nuclear Information System (INIS)
Constantinou, P; Roy, S
2015-01-01
This paper describes a novel electromagnetic energy harvester that exploits the low flexural modulus of ABS and comprises of a nonlinear mechanism to enhance the generated power and bandwidth. The device is printed using desktop additive manufacturing techniques (3D printing) that use thermoplastics. It has a ‘V’ spring topology and exhibits a softening spring non-linearity introduced through the magnetic arrangement, which introduces a monostable potential well. A model is presented and measurements correspond favourably. The produced prototype generates a peak power of approximately 2.5mW at a frame acceleration of 1g and has a power bandwidth of approximately 1.2→1.5Hz and 3.5→3.9Hz during up and down sweeps respectively. The device has a power density of 0.4mW/cm 3 at a frame acceleration of 1g and a density of 0.04mW/cm 3 from a generated power of 25μW at 0.1g. (paper)
Directory of Open Access Journals (Sweden)
Song Hee Chae
2017-09-01
Full Text Available We present an electromagnetic linear vibration energy harvester with an array of rectangular permanent magnets as a springless proof mass. Instead of supporting the magnet assembly with spring element, ferrofluid has been used as a lubricating material. When external vibration is applied laterally to the harvester, magnet assembly slides back and forth on the channel with reduced friction and wear due to ferrofluid, which significantly improves the long-term reliability of the device. Electric power is generated across an array of copper windings formed at the bottom of the aluminum housing. A proof-of-concept harvester has been fabricated and tested with a vibration exciter at various input frequencies and accelerations. For the device where 5 μL of ferrofluid was used for lubrication, maximum output power of 493 μW has been generated, which was 4.37% higher than that without ferrofluid. Long-term reliability improvement due to ferrofluid lubrication has also been verified. For the device with ferrofluid, 1.02% decrease of output power has been observed, in contrast to 59.73% decrease of output power without ferrofluid after 93,600 cycles.
Dynamic wedge, electron energy and beam profile Q.A. using an ionization chamber linear array
International Nuclear Information System (INIS)
Kenny, M.B.; Todd, S.P.
1996-01-01
Since the introduction of multi-modal linacs the quality assurance workload of a Physical Sciences department has increased dramatically. The advent of dynamic wedges has further complicated matters because of the need to invent accurate methods to perform Q.A. in a reasonable time. We have been using an ionization chamber linear array, the Thebes 7000 TM by Victoreen, Inc., for some years to measure X-ray and electron beam profiles. Two years ago we developed software to perform Q.A. on our dynamic wedges using the array and more recently included a routine to check electron beam energies using the method described by Rosenow, U.F. et al., Med. Phys. 18(1) 19-25. The integrated beam and profile management system has enabled us to maintain a comprehensive quality assurance programme on all our linaccs. Both our efficiency and accuracy have increased to the point where we are able to keep up with the greater number of tests required without an increase in staff or hours spent in quality assurance. In changing the processor from the Z80 of the Thebes console to the 486 of the PC we have also noticed a marked increase in the calibration stability of the array. (author)
Bardhan, Jaydeep P; Knepley, Matthew G; Anitescu, Mihai
2009-03-14
The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.
Energy Technology Data Exchange (ETDEWEB)
Bardhan, J. P.; Knepley, M. G.; Anitescu, M. (Biosciences Division); ( MCS); (Rush Univ.)
2009-03-01
The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.
A Selective-Awakening MAC Protocol for Energy-Efficient Data Forwarding in Linear Sensor Networks
Directory of Open Access Journals (Sweden)
Iclia Villordo-Jimenez
2018-01-01
Full Text Available We introduce the Selective-Awakening MAC (SA-MAC protocol which is a synchronized duty-cycled protocol with pipelined scheduling for Linear Sensor Networks (LSNs. In the proposed protocol, nodes selectively awake depending on node density and traffic load conditions and on the state of the buffers of the receiving nodes. In order to characterize the performance of the proposed protocol, we present a Discrete-Time Markov Chain-based analysis that is validated through extensive discrete-event simulations. Our results show that SA-MAC significantly outperforms previous proposals in terms of energy consumption, throughput, and packet loss probability. This is particularly true under high node density and high traffic load conditions, which are expected to be common scenarios in the context of IoT applications. We also present an analysis by grade (i.e., the number of hops to the sink, which is located at one end of the LSN that reveals that LSNs exhibit heterogeneous performance depending on the nodes’ grade. Such results can be used as a design guideline for future LSN implementations.
Low and high linear energy transfer radiation sensitization of HCC cells by metformin
International Nuclear Information System (INIS)
Kim, Eun Ho; Jung, Won-Gyun; Kim, Mi-Sook; Cho, Chul-Koo; Jeong, Youn Kyoung; Jeong, Jae-Hoon
2014-01-01
The purpose of this study was to investigate the efficacy of metformin as a radiosensitizer for use in combination therapy for human hepatocellular carcinoma (HCC). Three human HCC cell lines (Huh7, HepG2, Hep3B) and a normal human hepatocyte cell line were treated with metformin alone or with radiation followed by metformin. In vitro tests were evaluated by clonogenic survival assay, FACS analysis, western blotting, immunofluorescence and comet assay. Metformin significantly enhanced radiation efficacy under high and low Linear Energy Transfer (LET) radiation conditions in vitro. In combination with radiation, metformin abrogated G2/M arrest and increased the cell population in the sub-G1 phase and the ROS level, ultimately increasing HCC cellular apoptosis. Metformin inhibits the repair of DNA damage caused by radiation. The radiosensitizing effects of metformin are much higher in neutron (high LET)-irradiated cell lines than in γ (low LET)-irradiated cell lines. Metformin only had a moderate effect in normal hepatocytes. Metformin enhances the radiosensitivity of HCC, suggesting it may have clinical utility in combination cancer treatment with high-LET radiation. (author)
International Nuclear Information System (INIS)
Rees, J.
1986-11-01
Scaling laws for linear colliders are considered for the case of laterally round Gaussian beams and for the case that mutual pinching of the beams can be ignored. Based on these assumptions, the relationship is found between the interaction area, beta function, beam emittance, and energy for a linear collider in order to show the need for substantial improvements in the feasible values of accelerator parameters to reach a center of mass energy of 0.7 TeV. Pinch is then taken into account
International Nuclear Information System (INIS)
Eltayeb, A.E.H.
2009-02-01
The main objective of this study is to perform radiobiological characterization of two different photon beam energies, 6 MV and 15 MV, from linear accelerator used in radiotherapy, with special regard to late effects of radiation. Two end-points, namely cell survival and micronucleus induction were used for the characterization. Chinese hamster V 79 lung fibroblast cell line to prepare cell culture and to perform the innervate experiments. chromosomes number was counted and found to be 22 chromosomes per cell, this result is in complete agreement with expected 11 pairs of chromosomes representing the genome of this species. Cells were kept in confluent growth for two days and then exposed to two photon beam energies, 6 and 15 MV respectively. Different dose rates were used for the two beam energies, 0.25, 0.5, 1.0, 2.0, 4.0, 7.0 Gy. Cells were counted immediately after irradiation and re seeded, the seeded number of cells was calculated to the dose rate used. Another set of unirradiated cells treated the same as the experimental set was used as a control group. The plating efficiency (PE) was calculated for the control group, then cells were incubated at 37 o C for 6 days to construct the survival curve, five samples were counted per dose and the mean was calculated. The two survival curves are similar for photon beam energies (6 and 15 MV) and the surviving fraction was decreased with dose rate. The two curves showed similar values of α and β parameters, this result is expected for the same radiation type (X-ray). For the micronuclei assay three samples for each dose were seeded and incubated at 37 o C for 24 hours then Cytochalasin-B was added to block cells in cytokinesis phase of the mitosis. The micronuclei number was counted and plotted with dose. A significant positive correlation was found between dose and micronuclei frequency (P=0.00), moreover, the micronuclei frequency is relatively higher with 15 MV compared with 6 MV energy. This indicates the
de Beer, M.; Vrijkotte, T.G.M.; Fall, C.H.D.; Eijsden, M.; Osmond, C.; Gemke, R.J.B.J.
2015-01-01
Background:Growth and feeding during infancy have been associated with later life body mass index. However, the associations of infant feeding, linear growth and weight gain relative to linear growth with separate components of body composition remain unclear.Methods:Of 5551 children with collected
de Beer, M.; Vrijkotte, T. G. M.; Fall, C. H. D.; van Eijsden, M.; Osmond, C.; Gemke, R. J. B. J.
2015-01-01
Growth and feeding during infancy have been associated with later life body mass index. However, the associations of infant feeding, linear growth and weight gain relative to linear growth with separate components of body composition remain unclear. Of 5551 children with collected growth and
Directory of Open Access Journals (Sweden)
Maria Joita
2007-12-01
Full Text Available In this paper we characterize the order relation on the set of all nondegenerate completely n-positive linear maps between C*-algebras in terms of a self-dual Hilbert module induced by each completely n-positive linear map.
Energy Technology Data Exchange (ETDEWEB)
Regis, J.-M., E-mail: regis@ikp.uni-koeln.de [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany); Rudigier, M.; Jolie, J.; Blazhev, A.; Fransen, C.; Pascovici, G.; Warr, N. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany)
2012-08-21
The electronic {gamma}-{gamma} fast timing technique allows for direct nuclear lifetime determination down to the few picoseconds region by measuring the time difference between two coincident {gamma}-ray transitions. Using high resolution ultra-fast LaBr{sub 3}(Ce) scintillator detectors in combination with the recently developed mirror symmetric centroid difference method, nuclear lifetimes are measured with a time resolving power of around 5 ps. The essence of the method is to calibrate the energy dependent position (centroid) of the prompt response function of the setup which is obtained for simultaneously occurring events. This time-walk of the prompt response function induced by the analog constant fraction discriminator has been determined by systematic measurements using different photomultiplier tubes and timing adjustments of the constant fraction discriminator. We propose a universal calibration function which describes the time-walk or the combined {gamma}-{gamma} time-walk characteristics, respectively, for either a linear or a non-linear amplitude versus energy dependency of the scintillator detector output pulses.
Regazzoni, V.; Acerbi, F.; Cozzi, G.; Ferri, A.; Fiorini, C.; Paternoster, G.; Piemonte, C.; Rucatti, D.; Zappalà, G.; Zorzi, N.; Gola, A.
2017-07-01
Fondazione Bruno Kessler (FBK) (Trento, Italy) has recently introduced High Density (HD) and Ultra High-Density (UHD) SiPMs, featuring very small micro-cell pitch. The high cell density is a very important factor to improve the linearity of the SiPM in high-dynamic-range applications, such as the scintillation light readout in high-energy gamma-ray spectroscopy and in prompt gamma imaging for proton therapy. The energy resolution at high energies is a trade-off between the excess noise factor caused by the non-linearity of the SiPM and the photon detection efficiency of the detector. To study these effects, we developed a new setup that simulates the LYSO light emission in response to gamma photons up to 30 MeV, using a pulsed light source. We measured the non-linearity and energy resolution vs. energy of the FBK RGB-HD e RGB-UHD SiPM technologies. We considered five different cell sizes, ranging from 10 μm up to 25 μm. With the UHD technology we were able to observe a remarkable reduction of the SiPM non-linearity, less than 5% at 5 MeV with 10 μm cells, which should be compared to a non-linearity of 50% with 25 μm-cell HD-SiPMs. With the same setup, we also measured the different components of the energy resolution (intrinsic, statistical, detector and electronic noise) vs. cell size, over-voltage and energy and we separated the different sources of excess noise factor.
2013-04-09
... INTERNATIONAL TRADE COMMISSION [Docket No. 2949] Certain Linear Actuators; Notice of Receipt of... received a complaint entitled Certain Linear Actuators, DN 2949; the Commission is soliciting comments on... States after importation of certain linear actuators. The complaint names as respondents Changzhou Kaidi...
The effect of Moidal non-linear blending function for dual-energy CT on CT image quality
International Nuclear Information System (INIS)
Zhang Fan; Yang Li
2011-01-01
Objective: To compare the difference between linear blending and non-linear blending function for dual-energy CT, and to evaluate the effect on CT image quality. Methods: The model was made of a piece of fresh pork liver inserted with 5 syringes containing various concentrations of iodine solutions (16.3, 26.4, 48.7, 74.6 and 112.3 HU). Linear blending images were automatically reformatted after the model was scanned in the dual-energy mode. Non-linear blending images were reformatted using the software of optimal contrast in Syngo workstation. Images were divided into 3 groups, including linear blending group, non-linear blending group and 120 kV group. Contrast noise ratio (CNR) were measured and calculated respectively in the 3 groups and the different figure of merit (FOM) values between the groups were compared using one-way ANOVA. Twenty patients scanned in the dual-energy mode were randomly selected and the SNR of their liver, renal cortex, spleen, pancreas and abdominal aorta were measured. The independent sample t test was used to compare the difference of signal to noise ratio (SNR) between linear blending group and non linear blending group. Two readers' agreement score and single-blind method were used to investigate the conspicuity difference between linear blending group and non linear blending group. Results: With models of different CT values, the FOM values in non-linear blending group were 20.65± 8.18, 11.40±4.25, 1.60±0.82, 2.40±1.13, 45.49±17.86. In 74.6 HU and 112.3 HU models, the differences of the FOM values observed among the three groups were statistically significant (P<0.05), which were 0.30±0.06 and 14.43±4.59 for linear blending group, and 0.22±0.05 and 15.31±5.16 for 120 kV group. And non-linear blending group had a better FOM value. The SNR of renal cortex and abdominal aorta were 19.2±5.1 and 36.5±13.9 for non-linear blending group, while they were 12.4±3.8 and 22.6±7.0 for linear blending group. There were statistically
Tangent Orbital Rendezvous Using Linear Relative Motion with J2 Perturbations
Directory of Open Access Journals (Sweden)
Gang Zhang
2013-01-01
Full Text Available The tangent-impulse coplanar orbit rendezvous problem is studied based on the linear relative motion for J2-perturbed elliptic orbits. There are three cases: (1 only the first impulse is tangent; (2 only the second impulse is tangent; (3 both impulses are tangent. For a given initial impulse point, the first two problems can be transformed into finding all roots of a single variable function about the transfer time, which can be done by the secant method. The bitangent rendezvous problem requires the same solution for the first two problems. By considering the initial coasting time, the bitangent rendezvous solution is obtained with a difference function. A numerical example for two coplanar elliptic orbits with J2 perturbations is given to verify the efficiency of these proposed techniques.
Energy related design decisions deserve simulation approach
Hensen, J.L.M.
1994-01-01
Building energy consumption and indoor climate result from complex dynamic thermal interactions between outdoor environment, building structure, environmental control systems, and occupants. This reality is too complicated to be casted in simple expressions, rules or graphs. After a general overview
Svebak, Sven
2016-01-01
Results from two studies of biological consequences of laughter are reported. A proposed inhibitory brain mechanism was tested in Study 1. It aims to protect against trunk compression that can cause health hazards during vigorous laughter. Compression may be maximal during moderate durations and, for protective reasons, moderate in enduring vigorous laughs. Twenty-five university students volunteered to see a candid camera film. Laughter responses (LR) and the superimposed ha-responses were operationally assessed by mercury-filled strain gauges strapped around the trunk. On average, the thorax compression amplitudes exceeded those of the abdomen, and greater amplitudes were seen in the males than in the females after correction for resting trunk circumference. Regression analyses supported polynomial relations because medium LR durations were associated with particularly high thorax amplitudes. In Study 2, power changes were computed in the beta and alpha EEG frequency bands of the parietal cortex from before to after exposure to the comedy “Dinner for one” in 56 university students. Highly significant linear relations were calculated between the number of laughs and post-exposure cortical activation (increase of beta, decrease of alpha) due to high activation after frequent laughter. The results from Study 1 supported the hypothesis of a protective brain mechanism that is activated during long LRs to reduce the risk of harm to vital organs in the trunk cavity. The results in Study 2 supported a linear cortical activation and, thus, provided evidence for a biological correlate to the subjective experience of mental refreshment after laughter. PMID:27547260
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper examines the experimental study on influence ofmaterial component to non linear relation between sediment yield and drainage network development completed in the Lab. The area of flume drainage system is 81.2 m2, the longitudinal gradient and cross section slope are from 0.0348 to 0.0775 and from 0.0115 to 0.038, respectively. Different model materials with a medium diameter of 0.021 mm, 0.076 mm and 0.066 mm cover three experiments each. An artificial rainfall equipment is a sprinkler-system composed of 7 downward nozzles, distributed by hexagon type and a given rainfall intensity is 35.56 mm/hr.cm2. Three experiments are designed by process-response principle at the beginning the ψ shaped small network is dug in the flume. Running time spans are 720 m, 1440 minutes and 540 minutes for Runs Ⅰ, Ⅳ and Ⅵ, respectively. Three experiments show that the sediment yield processes are characterized by delaying with a vibration. During network development the energy of a drainage system is dissipated by two ways, of which one is increasing the number of channels (rill and gully), and the other one is enlarging the channel length. The fractal dimension of a drainage network is exactly an index of energy dissipation of a drainage morphological system. Change of this index with time is an unsymmetrical concave curve. Comparison of three experiments explains that the vibration and the delaying ratio of sediment yield processes increase with material coarsening, while the number of channel decreases. The length of channel enlarges with material fining. There exists non-linear relationship between fractal dimension and sediment yield with an unsymmetrical hyperbolic curve. The bsolute value of delaying ratio of the curve reduces with time unning and material fining. It is characterized by substitution of situation to time.
Dispersion and energy conservation relations of surface waves in semi-infinite plasma
International Nuclear Information System (INIS)
Atanassov, V.
1981-01-01
The hydrodynamic theory of surface wave propagation in semi-infinite homogeneous isotropic plasma is considered. Explicit linear surface wave solutions are given for the electric and magnetic fields, charge and current densities. These solutions are used to obtain the well-known dispersion relations and, together with the general energy conservation equation, to find appropriate definitions for the energy and the energy flow densities of surface waves. These densities are associated with the dispersion relation and the group velocity by formulae similar to those for bulk waves in infinite plasmas. Both cases of high-frequency (HF) and low-frequency (LF) surface waves are considered. (author)
Directory of Open Access Journals (Sweden)
Aamir Hussain
2016-06-01
Full Text Available This paper presents the design optimization of linear permanent magnet (PM generator for wave energy conversion using finite element method (FEM. A linear PM generator with triangular-shaped magnet is proposed, which has higher electromagnetic characteristics, superior performance and low weight as compared to conventional linear PM generator with rectangular shaped magnet. The Individual Parameter (IP optimization technique is employed in order to optimize and achieve optimum performance of linear PM generator. The objective function, optimization variables; magnet angle,M_θ(∆ (θ, the pole-width ratio, P_w ratio(τ_p/τ_mz,, and split ratio between translator and stator, δ_a ratio(R_m/R_e, and constraints are defined. The efficiency and its main parts; copper and iron loss are computed using time-stepping FEM. The optimal values after optimization are presented which yields highest efficiency. Key
Modeling bioaccumulation in humans using poly-parameter linear free energy relationships (PPLFERS)
Energy Technology Data Exchange (ETDEWEB)
Undeman, Emma, E-mail: emma.undeman@itm.su.se; Czub, Gertje; McLachlan, Michael S.
2011-04-01
Chemical partition coefficients between environmental media and biological tissues are a key component of bioaccumulation models. The single-parameter linear free energy relationships (spLFERs) commonly used for predicting partitioning are often derived using apolar chemicals and may not accurately capture polar chemicals. In this study, a poly-parameter LFER (ppLFER) based model of organic chemical bioaccumulation in humans is presented. Chemical partitioning was described by an air-body partition coefficient that was a volume weighted average of ppLFER based partition coefficients for the major organs and tissues constituting the human body. This model was compared to a spLFER model treating the body as a mixture of lipid ({approx} octanol) and water. Although model agreement was good for hydrophobic chemicals (average difference 15% for log K{sub OW} > 4 and log K{sub OA} > 8), the ppLFER model predicted {approx} 90% lower body burdens for hydrophilic chemicals (log K{sub OW} < 0). This was mainly due to lower predictions of muscle and adipose tissue sorption capacity for these chemicals. A comparison of the predicted muscle and adipose tissue sorption capacities of hydrophilic chemicals with measurements indicated that the ppLFER and spLFER models' uncertainties were similar. Consequently, little benefit from the implementation of ppLFERs in this model was identified. - Research Highlights: {yields}Implementation of ppLFERs resulted in on average 90% lower predicted body burdens. {yields}Uncertainties in spLFER and ppLFER predictions were similar. {yields}The benefit from implementation of ppLFERs in bioaccumulation models was limited.
Battaglia, Marco
2001-01-01
The physics programme of high energy e+e- linear colliders relies on the accurate identification of fermions in order to study in details the profile of the Higgs boson, search for new particles and probe the multi-TeV mass region by means of precise electro-weak measurements and direct searches.
Battaglia, Marco
2001-01-01
The physics programme of high energy e sup + e sup - linear colliders relies on the accurate identification of fermions in order to study in detail the profile of the Higgs boson, search for new particles and probe the multi-TeV mass region by means of precise electro-weak measurements and direct searches.
Energy Technology Data Exchange (ETDEWEB)
Battaglia, M. E-mail: marco.battaglia@cern.ch
2001-11-01
The physics programme of high energy e{sup +}e{sup -} linear colliders relies on the accurate identification of fermions in order to study in detail the profile of the Higgs boson, search for new particles and probe the multi-TeV mass region by means of precise electro-weak measurements and direct searches.
Role of size on the relative importance of fluid dynamic losses in linear cryocoolers
Kirkconnell, Carl; Ghavami, Ali; Ghiaasiaan, S. Mostafa; Perrella, Matthew
2017-12-01
Thermodynamic modeling results for a novel small satellite (SmallSat) Stirling Cryocooler, capable of delivering over 200 mW net cooling power at 80 K for less than 6 W DC input power, are used in this paper as the basis for related pulse tube computational fluid dynamics (CFD) analysis. Industry and government requirements for SmallSat infrared sensors are driving the development of ever-more miniaturized cryocooler systems. Such cryocoolers must be extremely compact and lightweight, a challenge met by this research team through operating a Stirling cryocooler at a frequency of approximately 300 Hz. The primary advantage of operating at such a high frequency is that the required compression and expansion swept volumes are reduced relative to linear coolers operating at lower frequencies, which evidently reduces the size of the motor mechanisms and the thermodynamic components. In the case of a pulse tube cryocooler, this includes a reduction in diameter of the pulse tube itself. This unfortunately leads to high boundary layer losses, as the presented results demonstrate. Using a Stirling approach with a mechanical moving expander piston eliminates this small pulse tube loss mechanism, but other challenges are introduced, such as maintaining very tight clearance gaps between moving and stationary elements. This paper focuses on CFD modelling results for a highly miniaturized pulse tube cooler.
2010-10-01
... environment, energy and water efficiency, renewable energy technologies, occupational safety, and drug-free workplace. 952.223 Section 952.223 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND... related to environment, energy and water efficiency, renewable energy technologies, occupational safety...
Quantum vacuum energy in general relativity
Energy Technology Data Exchange (ETDEWEB)
Henke, Christian [University of Technology at Clausthal, Department of Mathematics, Clausthal-Zellerfeld (Germany)
2018-02-15
The paper deals with the scale discrepancy between the observed vacuum energy in cosmology and the theoretical quantum vacuum energy (cosmological constant problem). Here, we demonstrate that Einstein's equation and an analogy to particle physics leads to the first physical justification of the so-called fine-tuning problem. This fine-tuning could be automatically satisfied with the variable cosmological term Λ(a) = Λ{sub 0} + Λ{sub 1}a{sup -(4-ε)}, 0 < ε << 1, where a is the scale factor. As a side effect of our solution of the cosmological constant problem, the dynamical part of the cosmological term generates an attractive force and solves the missing mass problem of dark matter. (orig.)
International Nuclear Information System (INIS)
Bogdanovich, B.Yu.; Zavadtsev, D.A.; Kaminskij, V.I.; Sobenin, N.P.; Fadin, A.I.; Zavadtsev, A.A.
2001-01-01
The schemes of the electron linear accelerator (ELA), realized on the basis of a biperiodical accelerating structure and ensuring the possibility of deep retuning of the beam energy in a pulse mode, are considered. Advantages and shortcomings of the proposed methods of pulse regulation of the electron energy are discussed. A project of a two-section ELA with two levels of energy (10 and 4 MeV) is presented as a base version. The beam dynamics is calculated for two versions of the ELA. Their main parameters are given [ru
International Nuclear Information System (INIS)
Friedrich, S.; Li, L.; Ott, L.L.; Kolgani, Rajeswari M.; Yong, G.J.; Ali, Z.A.; Drury, O.B.; Ables, E.; Bionta, R.M.
2006-01-01
We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with ∼10 12 photons per ∼200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within (1- x ) Sr x MnO 3 sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response
International Nuclear Information System (INIS)
Rath, J.; Freeman, A.J.
1975-01-01
A detailed study of the generalized susceptibility chi(vector q) of Sc metal determined from an accurate augmented-plane-wave method calculation of its energy-band structure is presented. The calculations were done by means of a computational scheme for chi(vector q) derived as an extension of the work of Jepsen and Andersen and Lehmann and Taut on the density-of-states problem. The procedure yields simple analytic expressions for the chi(vector q) integral inside a tetrahedral microzone of the Brillouin zone which depends only on the volume of the tetrahedron and the differences of the energies at its corners. Constant-matrix-element results have been obtained for Sc which show very good agreement with the results of Liu, Gupta, and Sinha (but with one less peak) and exhibit a first maximum in chi(vector q) at (0, 0, 0.31) 2π/c [vs (0, 0, 0.35) 2π/c obtained by Liu et al.] which relates very well to dilute rare-earth alloy magnetic ordering at vector q/sub m/ = (0, 0, 0.28) 2π/c and to the kink in the LA-phonon dispersion curve at (0, 0, 0.27) 2π/c. (U.S.)
Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow
Kou, Jisheng; Sun, Shuyu; Wang, Xiuhua
2017-01-01
involved in the discrete momentum equation to ensure a consistency relationship with the mass balance equations. Moreover, we propose a component-wise SAV approach for a multi-component fluid, which requires solving a sequence of linear, separate mass
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-03-01
In relation to the drive system of machine tools widely used as production facilities for automobiles, home electric appliances, etc., the R and D were made of a high efficiency linear motor system of which attention was paid to energy rationalization and environmental loads, and the FY 2000 results were summed up. In the study of the development of the system, studies were made not only on the lowering of heating, cost reduction and heightening of speed, but on the mechanism and control by which machine natural vibration can relatively be cut off, technology of damping for cutting vibration, technology to meet the deformation, etc. by cutting loads, sliding loads, and acceleration of accelerating/decelerating, technology to reduce the machine weight, etc. In the study of the basic technology of linear motor, the finite element method analysis was conducted on the typical linear motor. Concerning the control system, specs were studied which can deal with natural vibration and cutting vibration of the machine system. As to the development of the steel scale type linear encoder, scale sample for evaluation of basic characteristics was designed/trially manufactured. In the study of the detection optical system, the design/trial manufacture of photodiode array were made. (NEDO)
Energy Technology Data Exchange (ETDEWEB)
Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Mora-Ramos, M.E. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos, México (Mexico); Kasapoglu, E.; Ungan, F.; Yesilgul, U. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sakiroglu, S. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey); Sari, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sökmen, I. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey)
2013-11-15
The 1s-like and 2p-like donor impurity energy states are studied in a semiconductor quantum wire of equilateral triangular cross section as functions of the impurity position and the geometrical size of the structure. Linear and nonlinear coefficients for the optical absorption and relative refractive index change associated with 1s→2p transitions are calculated for both the x-polarization and y-polarization of the incident light. The results show a mixed effect of redshift and blueshift depending on the location of the donor atom. Also, strong nonlinear contributions to the optical absorption coefficient are obtained for both polarizations in the on-center impurity case. -- Highlights: • The 1s- and 2p-like impurity states in triangular quantum-well wires. • Optical absorption and relative refractive index changes are calculated. • Redshift and blueshift in the optical structures depend on the donor position. • Strong nonlinear contributions to the absorption coefficient have been obtained.
Energy Technology Data Exchange (ETDEWEB)
Pearson, Jeremy [Department of Chemical Engineering and Materials Science - University of California Irvine, 916 Engineering Tower, Irvine, CA, 92697 (United States); Miller, George [Department of Chemistry- University of California Irvine, 2046D PS II, Irvine, CA, 92697 (United States); Nilsson, Mikael [Department of Chemical Engineering and Materials Science - University of California Irvine, 916 Engineering Tower, Irvine, CA, 92697 (United States)
2013-07-01
Treatment of used nuclear fuel through solvent extraction separation processes is hindered by radiolytic damage from radioactive isotopes present in used fuel. The nature of the damage caused by the radiation may depend on the radiation type, whether it be low linear energy transfer (LET) such as gamma radiation or high LET such as alpha radiation. Used nuclear fuel contains beta/gamma emitting isotopes but also a significant amount of transuranics which are generally alpha emitters. Studying the respective effects on matter of both of these types of radiation will allow for accurate prediction and modeling of process performance losses with respect to dose. Current studies show that alpha radiation has milder effects than that of gamma. This is important to know because it will mean that solvent extraction solutions exposed to alpha radiation may last longer than expected and need less repair and replacement. These models are important for creating robust, predictable, and economical processes that have strong potential for mainstream adoption on the commercial level. The effects of gamma radiation on solvent extraction ligands have been more extensively studied than the effects of alpha radiation. This is due to the inherent difficulty in producing a sufficient and confluent dose of alpha particles within a sample without leaving the sample contaminated with long lived radioactive isotopes. Helium ion beam and radioactive isotope sources have been studied in the literature. We have developed a method for studying the effects of high LET radiation in situ via {sup 10}B activation and the high LET particles that result from the {sup 10}B(n,a){sup 7}Li reaction which follows. Our model for dose involves solving a partial differential equation representing absorption by 10B of an isentropic field of neutrons penetrating a sample. This method has been applied to organic solutions of TBP and CMPO, two ligands common in TRU solvent extraction treatment processes. Rates
Passino, Dora R.M.; Hickey, James P.; Frank, Anthony M.
1988-01-01
In the Laurentian Great Lakes, more than 300 contaminants have been identified in fish, other biota, water, and sediment. Current hazard assessment of these chemicals by the National Fisheries Research Center-Great Lakes is based on their toxicity, occurrence in the environment, and source. Although scientists at the Center have tested over 70 chemicals with the crustacean Daphnia pulex, the number of experimental data needed to screen the huge array of chemicals in the Great Lakes exceeds the practical capabilities of conducting bioassays. This limitation can be partly circumvented, however, by using mathematical models based on quantitative structure-activity relationships (QSAR) to provide rapid, inexpensive estimates of toxicity. Many properties of chemicals, including toxicity, bioaccumulation and water solubility are well correlated and can be predicted by equations of the generalized linear solvation energy relationships (LSER). The equation we used to model solute toxicity is Toxicity = constant + mVI/100 + s (π* + dδ) + bβm + aαm where VI = intrinsic (Van der Waals) molar volume; π* = molecular dipolarity/polarizability; δ = polarizability 'correction term'; βm = solute hydrogen bond acceptor basicity; and αm = solute hydrogen bond donor acidity. The subscript m designates solute monomer values for α and β. We applied the LSER model to 48-h acute toxicity data (measured as immobilization) for six classes of chemicals detected in Great Lakes fish. The following regression was obtained for Daphnia pulex (concentration = μM): log EC50 = 4.86 - 4.35 VI/100; N = 38, r2 = 0.867, sd = 0.403 We also used the LSER modeling approach to analyze to a large published data set of 24-h acute toxicity for Daphnia magna; the following regression resulted, for eight classes of compounds (concentration = mM): log EC50 = 3.88 - 4.52 VI/100 - 1.62 π* + 1.66 βm - 0.916 αm; N = 62, r2 = 0.859, sd = 0.375 In addition we developed computer software that identifies
Keynotes in energy-related catalysis
Kaliaguine, S
2011-01-01
Catalysis by solid acids, which includes (modified) zeolites, is of special relevance to energy applications. Acid catalysis is highly important in modern petroleum refining operations - large-scale processes such as fluid catalytic cracking, catalytic reforming, alkylation and olefin oligomerization rely on the transformation of hydrocarbons by acid catalysts. (Modified) zeolites are therefore essential for the improvement of existing processes and for technical innovations in the conversion of crude. There can be little doubt that zeolite-based catalysts will play a major role in the futu
Stjernschantz, E.M.; Marelius, J.; Medina, C.; Jacobsson, M.; Vermeulen, N.P.E.; Oostenbrink, C.
2006-01-01
An extensive evaluation of the linear interaction energy (LIE) method for the prediction of binding affinity of docked compounds has been performed, with an emphasis on its applicability in lead optimization. An automated setup is presented, which allows for the use of the method in an industrial
Reconsidering relations between nuclear energy and security concepts
International Nuclear Information System (INIS)
Irie, Kazutomo
2004-01-01
Relations between nuclear energy and security concepts can be clarified through investigation into the multivocal nature of security concepts. While military uses of nuclear energy significantly influence national security, peaceful uses of nuclear energy contribute energy security, which is an expanded concept of national security. Military and peaceful uses of nuclear energy have reciprocal actions, thus influencing national security and energy security, respectively. Nuclear security, which means security of nuclear systems themselves, recently attracts the attention of the international society. Nuclear security directly influences national security issues. On the other hand, along with nuclear safety, nuclear security becomes a prerequisite for energy security through peaceful uses of nuclear energy. In investigating into relations between nuclear energy and security concepts, the difficulty of translating the English word of 'nuclear security' into Japanese as well as other languages is found. (author)
Directory of Open Access Journals (Sweden)
Hassan Barati
2011-10-01
Full Text Available In this paper a new bidding strategy become modeling to day-ahead markets. The proposed algorithm is related to the point of view of a generation company (Genco that its end is maximized its benefit as a participant in sale markets of active power and spinning reserve. In this method, hourly forecasted energy price (FEP and forecasted reserve price (FRP is used as a reference to model the possible and probable price strategies of Gencos. A bi-level optimization problem That first level, is used to maximize the individual Genco’s payoffs for obtaining the optimal offered quantity of Gencos. The second one, uses the results of the upper sub-problem and minimizes the consumer’s payment with regard to the technical and network constraints, which leads to the awarded generation of the Gencos. In this paper use of the game theory in exist optimization model. The paper proposes a linear programming approach. A six bus system is employed to illustrate the application of the proposed method and to show its high precision and capabilities.
Huang, N. E.; Tung, C.-C.
1977-01-01
The influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models. The results indicate that the dispersion relation varies both as a function of the directional energy distribution and the direction of propagation of the wave component under consideration. Furthermore, both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases. Limited observational data are compared with the theoretical results. The agreement is favorable.
Harrington, D M; Martin, C K; Ravussin, E; Katzmarzyk, P T
2013-08-01
The aim was to investigate relationships between activity related energy expenditure (AREE), appetite ratings and energy intake (EI) in a sample of 40 male (26.4years; BMI 23.5kg/m(2)) and 42 female (26.9years; BMI 22.4kg/m(2)) participants. AREE was expressed as the residual value of the regression between total daily EE (by doubly labeled water) and resting EE (by indirect calorimetry). EI was measured using an ad libitum buffet meal and visual analogue scales measured subjective appetite ratings before and after the meal. AREE was divided into low, middle and high sex-specific tertiles. General linear models were used to investigate differences in appetite ratings and EI across AREE tertiles. Before the meal, males in the high AREE tertile had significantly lower desire to eat and lower prospective food consumption and higher feelings of fullness compared to those in the low tertile. Males in the middle tertile had significantly higher satiety quotients after the meal and lower EI compared to the other tertiles. No significant differences across tertiles were found in females. Sex differences in relationships between AREE, appetite ratings and EI may lead to differing patterns of EI and subsequent weight maintenance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Energy related applications of elementary particle physics
International Nuclear Information System (INIS)
Rafelski, J.
1989-01-01
Study of muon catalysis of nuclear fusion and phenomena commonly referred to as cold fusion has been central to our effort. Muon catalyzed fusion research concentrated primarily on the identification of energy efficient production of muons, and the understanding and control of the density dependence of auto-poisoning (sticking) of the catalyst. We have also developed the in-flight fusion description of the tμ-d reaction, and work in progress shows promise in explaining the fusion cycle anomalies and smallness of sticking as a consequence of the dominant role of such reactions. Our cold fusion work involved the exploration of numerous environments for cold fusion reactions in materials used in the heavy water electrolysis, with emphasis on reactions consistent with the conventional knowledge of nuclear physics reactions. We then considered the possibility that a previously unobserved ultra-heavy particle X - is a catalyst of dd fusion, explaining the low intensity neutrons observed by Jones et. al. 29 refs
Energy Relations between the European Union and North Africa
Directory of Open Access Journals (Sweden)
Sarah Kilpeläinen
2013-06-01
Full Text Available This article discusses European Union (EU-North Africa energy relations with a special focus on renewables in North Africa, arguing that the research so far has not taken due account of North African perceptions of EU external energy policy. It is argued that current research on EU-North African relations has not taken sufficient note of the multidimensionality of energy or addressed the inconsistent nature of EU policy making. However, addressing these issues is vital in approaching EU-North Africa energy relations and EU policy towards North Africa in general. The study of perceptions is introduced as one way to develop research further, to give further impetus on understanding how EU-North African energy relations develop and to understand energy relations in their complexity.
International Nuclear Information System (INIS)
Marsolat, F; De Marzi, L; Mazal, A; Pouzoulet, F
2016-01-01
In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec , for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec . The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm −1 . These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis. (paper)
Mixed-integer linear program for an optimal hybrid energy network topology
Mazairac, L.A.J.; Salenbien, R.; de Vries, B.
2015-01-01
Existing networks do not have the quantitative and qualitative capacity to facilitate the transition towards distributed renewable energy sources. Irregular production of energy over time at different locations will alter the current patters of energy flow, necessitating the implementation of short-
Economic planning for electric energy systems: a multi objective linearized approach for solution
International Nuclear Information System (INIS)
Mata Medeiros Branco, T. da.
1986-01-01
The economic planning problem associated to the expansion and operation of electrical power systems is considered in this study, represented for a vectorial objective function in which the minimization of resources involved and maximization of attended demand constitute goals to be satisfied. Supposing all the variables involved with linear characteristic and considering the conflict existing among the objectives to be achieved, in order to find a solution, a multi objective linearized approach is proposed. This approximation utilizes the compromise programming technique and linear programming methods. Generation and transmission are simultaneously considered into the optimization process in which associated losses and the capacity of each line are included. Illustrated examples are also presented with results discussed. (author)
As a fast and effective technique, the multiple linear regression (MLR) method has been widely used in modeling and prediction of beach bacteria concentrations. Among previous works on this subject, however, several issues were insufficiently or inconsistently addressed. Those is...
B.A.J. van Tuijl; Piet Sonneveld; J. Campen; Gert-Jan Swinkels; H.J.J. Janssen; G.P.A Bot
2011-01-01
A new type of greenhouse with linear Fresnel lenses in the cover performing as a concentrated photovoltaic (CPV) system is presented. The CPV system retains all direct solar radiation, while diffuse solar radiation passes through and enters into the greenhouse cultivation system. The removal of all
A Maple package for computing Groebner bases for linear recurrence relations
International Nuclear Information System (INIS)
Gerdt, Vladimir P.; Robertz, Daniel
2006-01-01
A Maple package for computing Groebner bases of linear difference ideals is described. The underlying algorithm is based on Janet and Janet-like monomial divisions associated with finite difference operators. The package can be used, for example, for automatic generation of difference schemes for linear partial differential equations and for reduction of multiloop Feynman integrals. These two possible applications are illustrated by simple examples of the Laplace equation and a one-loop scalar integral of propagator type
A Maple package for computing Groebner bases for linear recurrence relations
Energy Technology Data Exchange (ETDEWEB)
Gerdt, Vladimir P. [Laboratory of Information Technologies, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)]. E-mail: gerdt@jinr.ru; Robertz, Daniel [Lehrstuhl B fuer Mathematik, RWTH Aachen, Templergraben 64, D-52062 Aachen (Germany)]. E-mail: daniel@momo.math.rwth-aachen.de
2006-04-01
A Maple package for computing Groebner bases of linear difference ideals is described. The underlying algorithm is based on Janet and Janet-like monomial divisions associated with finite difference operators. The package can be used, for example, for automatic generation of difference schemes for linear partial differential equations and for reduction of multiloop Feynman integrals. These two possible applications are illustrated by simple examples of the Laplace equation and a one-loop scalar integral of propagator type.
Stefano Filho, Carlos A; Attux, Romis; Castellano, Gabriela
2017-01-01
Hands motor imagery (MI) has been reported to alter synchronization patterns amongst neurons, yielding variations in the mu and beta bands' power spectral density (PSD) of the electroencephalography (EEG) signal. These alterations have been used in the field of brain-computer interfaces (BCI), in an attempt to assign distinct MI tasks to commands of such a system. Recent studies have highlighted that information may be missing if knowledge about brain functional connectivity is not considered. In this work, we modeled the brain as a graph in which each EEG electrode represents a node. Our goal was to understand if there exists any linear correlation between variations in the synchronization patterns-that is, variations in the PSD of mu and beta bands-induced by MI and alterations in the corresponding functional networks. Moreover, we (1) explored the feasibility of using functional connectivity parameters as features for a classifier in the context of an MI-BCI; (2) investigated three different types of feature selection (FS) techniques; and (3) compared our approach to a more traditional method using the signal PSD as classifier inputs. Ten healthy subjects participated in this study. We observed significant correlations ( p < 0.05) with values ranging from 0.4 to 0.9 between PSD variations and functional network alterations for some electrodes, prominently in the beta band. The PSD method performed better for data classification, with mean accuracies of (90 ± 8)% and (87 ± 7)% for the mu and beta band, respectively, versus (83 ± 8)% and (83 ± 7)% for the same bands for the graph method. Moreover, the number of features for the graph method was considerably larger. However, results for both methods were relatively close, and even overlapped when the uncertainties of the accuracy rates were considered. Further investigation regarding a careful exploration of other graph metrics may provide better alternatives.
Ziyatdinov, Andrey; Vázquez-Santiago, Miquel; Brunel, Helena; Martinez-Perez, Angel; Aschard, Hugues; Soria, Jose Manuel
2018-02-27
Quantitative trait locus (QTL) mapping in genetic data often involves analysis of correlated observations, which need to be accounted for to avoid false association signals. This is commonly performed by modeling such correlations as random effects in linear mixed models (LMMs). The R package lme4 is a well-established tool that implements major LMM features using sparse matrix methods; however, it is not fully adapted for QTL mapping association and linkage studies. In particular, two LMM features are lacking in the base version of lme4: the definition of random effects by custom covariance matrices; and parameter constraints, which are essential in advanced QTL models. Apart from applications in linkage studies of related individuals, such functionalities are of high interest for association studies in situations where multiple covariance matrices need to be modeled, a scenario not covered by many genome-wide association study (GWAS) software. To address the aforementioned limitations, we developed a new R package lme4qtl as an extension of lme4. First, lme4qtl contributes new models for genetic studies within a single tool integrated with lme4 and its companion packages. Second, lme4qtl offers a flexible framework for scenarios with multiple levels of relatedness and becomes efficient when covariance matrices are sparse. We showed the value of our package using real family-based data in the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT2) project. Our software lme4qtl enables QTL mapping models with a versatile structure of random effects and efficient computation for sparse covariances. lme4qtl is available at https://github.com/variani/lme4qtl .
Xiang, Zhaowei; Yin, Ming; Dong, Guanhua; Mei, Xiaoqin; Yin, Guofu
2018-06-01
A finite element model considering volume shrinkage with powder-to-dense process of powder layer in selective laser melting (SLM) is established. Comparison between models that consider and do not consider volume shrinkage or powder-to-dense process is carried out. Further, parametric analysis of laser power and scan speed is conducted and the reliability of linear energy density as a design parameter is investigated. The results show that the established model is an effective method and has better accuracy allowing for the temperature distribution, and the length and depth of molten pool. The maximum temperature is more sensitive to laser power than scan speed. The maximum heating rate and cooling rate increase with increasing scan speed at constant laser power and increase with increasing laser power at constant scan speed as well. The simulation results and experimental result reveal that linear energy density is not always reliable using as a design parameter in the SLM.
International Nuclear Information System (INIS)
Ogbuu, O.A.; Abah, O.C.; Asomba, G.C.; Okoye, C.M.I.
2011-01-01
We derived the transition temperature and the isotope exponent of two-band superconductor. We employed Bogoliubov-Valatin formalism assuming a three-square-well potential. The effect of linear-energy-dependent electronic DOS in superconductors is considered. The relevance of the studies to MgB 2 is analyzed. We have derived the expressions for the transition temperature and the isotope effect exponent within the framework of Bogoliubov-Valatin two-band formalism using a linear-energy-dependent electronic density of states assuming a three-square-well potentials model. Our results show that the approach could be used to account for a wide range of values of the transition temperature and isotope effect exponent. The relevance of the present calculations to MgB 2 is analyzed.
Parsons, David; Robar, James L
2012-07-01
Recent work has demonstrated improvement of image quality with low-Z linear accelerator targets and energies as low as 3.5 MV. In this paper, the authors lower the incident electron beam energy between 1.90 and 2.35 MeV and assess the improvement of megavoltage planar image quality with the use of carbon and aluminum linear accelerator targets. The bending magnet shunt current was adjusted in a Varian linear accelerator to allow selection of mean electron energy between 1.90 and 2.35 MeV. Linac set points were altered to increase beam current to allow experimental imaging in a practical time frame. Electron energy was determined through comparison of measured and Monte Carlo modeled depth dose curves. Planar image CNR and spatial resolution measurements were performed to quantify the improvement of image quality. Magnitudes of improvement are explained with reference to Monte Carlo generated energy spectra. After modifications to the linac, beam current was increased by a factor greater than four and incident electron energy was determined to have an adjustable range from 1.90 MeV to 2.35 MeV. CNR of cortical bone was increased by a factor ranging from 6.2 to 7.4 and 3.7 to 4.3 for thin and thick phantoms, respectively, compared to a 6 MV therapeutic beam for both aluminum and carbon targets. Spatial resolution was degraded slightly, with a relative change of 3% and 10% at 0.20 lp∕mm and 0.40 lp∕mm, respectively, when reducing energy from 2.35 to 1.90 MV. The percentage of diagnostic x-rays for the beams examined here, ranges from 46% to 54%. It is possible to produce a large fraction of diagnostic energy x-rays by lowering the beam energy below 2.35 MV. By lowering the beam energy to 1.90 MV or 2.35 MV, CNR improves by factors ranging from 3.7 to 7.4 compared to a 6 MV therapy beam, with only a slight degradation of spatial resolution when lowering the energy from 2.35 MV to 1.90 MV.
DEFF Research Database (Denmark)
Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises
2017-01-01
-side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data...
Ltaief, Hatem; Luszczek, Piotr R.; Dongarra, Jack
2011-01-01
This paper presents the power profile of two high performance dense linear algebra libraries i.e., LAPACK and PLASMA. The former is based on block algorithms that use the fork-join paradigm to achieve parallel performance. The latter uses fine
78 FR 26394 - Renewable Energy and Related Services: Recent Developments
2013-05-06
... INTERNATIONAL TRADE COMMISSION [Investigation No. 332-534] Renewable Energy and Related Services: Recent Developments AGENCY: United States International Trade Commission. ACTION: Extension of date for... USTR in investigation No. 332-534, Renewable Energy and Related Services: Recent Developments. DATES...
Abramov, Rafail V.
2011-01-01
Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation prop...
Christman, Stephen D; Weaver, Ryan
2008-05-01
The nature of temporal variability during speeded finger tapping was examined using linear (standard deviation) and non-linear (Lyapunov exponent) measures. Experiment 1 found that right hand tapping was characterised by lower amounts of both linear and non-linear measures of variability than left hand tapping, and that linear and non-linear measures of variability were often negatively correlated with one another. Experiment 2 found that increased non-linear variability was associated with relatively enhanced performance on a closed-loop motor task (mirror tracing) and relatively impaired performance on an open-loop motor task (pointing in a dark room), especially for left hand performance. The potential uses and significance of measures of non-linear variability are discussed.
Assistance to States on Policies Related to Wind Energy Issues
Energy Technology Data Exchange (ETDEWEB)
Brown, Matthew, H; Decesaro, Jennifer; DOE Project Officer - Keith Bennett
2005-07-15
This final report summarizes work carried out under agreement with the US Department of Energy, related to wind energy policy issues. This project has involved a combination of outreach and publications on wind energy, with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of wind energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of meetings designed specifically for state legislators and legislative staff, responses to information requests on wind energy, and publications. The publications addressed: renewable energy portfolio standards, wind energy transmission, wind energy siting, case studies of wind energy policy, avian issues, economic development, and other related issues. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about wind information for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to wind energy in the states.
Directory of Open Access Journals (Sweden)
Luis Gonzaga Baca Ruiz
2016-08-01
Full Text Available This paper addresses the problem of energy consumption prediction using neural networks over a set of public buildings. Since energy consumption in the public sector comprises a substantial share of overall consumption, the prediction of such consumption represents a decisive issue in the achievement of energy savings. In our experiments, we use the data provided by an energy consumption monitoring system in a compound of faculties and research centers at the University of Granada, and provide a methodology to predict future energy consumption using nonlinear autoregressive (NAR and the nonlinear autoregressive neural network with exogenous inputs (NARX, respectively. Results reveal that NAR and NARX neural networks are both suitable for performing energy consumption prediction, but also that exogenous data may help to improve the accuracy of predictions.
Directory of Open Access Journals (Sweden)
Zhaowei Xiang
2018-06-01
Full Text Available A finite element model considering volume shrinkage with powder-to-dense process of powder layer in selective laser melting (SLM is established. Comparison between models that consider and do not consider volume shrinkage or powder-to-dense process is carried out. Further, parametric analysis of laser power and scan speed is conducted and the reliability of linear energy density as a design parameter is investigated. The results show that the established model is an effective method and has better accuracy allowing for the temperature distribution, and the length and depth of molten pool. The maximum temperature is more sensitive to laser power than scan speed. The maximum heating rate and cooling rate increase with increasing scan speed at constant laser power and increase with increasing laser power at constant scan speed as well. The simulation results and experimental result reveal that linear energy density is not always reliable using as a design parameter in the SLM. Keywords: Selective laser melting, Volume shrinkage, Powder-to-dense process, Numerical modeling, Thermal analysis, Linear energy density
Nelson, Melissa C.; Lytle, Leslie A.; Pasch, Keryn E.
2009-01-01
Despite the need for effective obesity prevention strategies, little research is currently available to assess adolescents’ knowledge around basic concepts of energy intake, expenditure and balance. Using data from 349 adolescent-caregiver pairs (recruited from Minneapolis/St. Paul metro region, MN, 2006-2007), cross-sectional linear regression was used to assess adolescent and parental knowledge related to energy intake and expenditure as a predictor of adolescent weight-related behaviors an...
Asymmetric interdependence in the Czech–Russian energy relations
International Nuclear Information System (INIS)
Binhack, Petr; Tichý, Lukáš
2012-01-01
This paper addresses the issue of asymmetric energy relations between the Czech Republic and the Russian Federation. The theory of interdependence is a widely used concept in political and economic studies of international relations. As can be seen from the analysis of Czech–Russian energy relations and its costs and benefits, the interdependence cannot be limited to a situation of equal interdependence. Energy sensitivity and vulnerability of the Czech Republic towards Russia is considered as a key source of power for the energy policy of Russia vis-à-vis the Czech Republic. The evidence for this claim can be found in the procedures and expressions of Russia’s energy policy. On the other hand, the energy policy of the Czech Republic is influenced by the European Union and its focus on the liberalization of the energy market, diversification of the currently existing transportation routes and legislative proposals aimed at strengthening the EU’s own energy security. The European Union significantly contributes to an increase of the energy security of the Czech Republic. The European Union and regional cooperation (such as the V4 group) could balance out the asymmetry of interdependence, thus lowering the sensitivity and vulnerability of the Czech Republic towards Russia. - Highlights: ► We examine energy relations between the Czech Republic and the Russian Federation. ► We use the concept of asymmetric interdependence in energy relations. ► Energy sensitivity and vulnerability of the Czech Republic are key variables. ► The asymmetric interdependence is a source of power for Russian energy policy. ► The EU and V4 cooperation contribute to an energy security of the Czech Republic.
Large Higgs energy region in Higgs associated top pair production at the Linear Collider
International Nuclear Information System (INIS)
Farrell, Cailin; Hoang, Andre H.
2005-01-01
The process e + e - →ttH is considered in the kinematic end point region where the Higgs energy is close to its maximal energy. In perturbative QCD, using the loop expansion, the amplitudes are plagued by Coulomb singularities that need to be resummed. We show that the QCD dynamics in this end point region is governed by nonrelativistic heavy quarkonium dynamics, and we use a nonrelativistic effective theory to compute the Higgs energy distribution at leading and next-to-leading-logarithmic approximation in the nonrelativistic expansion. Updated numbers for the total cross section including the summations in the Higgs energy end point region are presented
Spectroscopic properties of the S1 state of linear carotenoids after excess energy excitation
Kuznetsova, Valentyna; Southall, June; Cogdell, Richard J.; Fuciman, Marcel; Polívka, Tomáš
2017-09-01
Properties of the S1 state of neurosporene, spheroidene and lycopene were studied after excess energy excitation in the S2 state. Excitation of carotenoids into higher vibronic levels of the S2 state generates excess vibrational energy in the S1 state. The vibrationally hot S1 state relaxes faster when carotenoid is excited into the S2 state with excess energy, but the S1 lifetime remains constant regardless of which vibronic level of the S2 state is excited. The S∗ signal depends on excitation energy only for spheroidene, which is likely due to asymmetry of the molecule, facilitating conformations responsible for the S∗ signal.
The Opacity of Russian-Ukrainian Energy Relations
International Nuclear Information System (INIS)
Dubien, A.
2007-01-01
Energy issues lie at the heart of Ukraine's economic, political and strategic challenges. A year after the 'orange revolution', the 'gas war' served to highlight the country's vulnerable position, being 80% dependent on imports of gas and having the world's most energy hungry economy. The 2005 crisis also highlighted the extreme opacity of the country's bilateral relations with Russia, which are governed as much by the interests surrounding Gazprom's relations as by those of the state. Yanukovich's return to power in the summer of 2006 coincided with a relative appeasement of relations with Moscow and a new division of spheres of influence in the Ukrainian energy sector. (author)
International Nuclear Information System (INIS)
Xu, H.; Wang, Y.
1999-01-01
In this letter, a linear free energy relationship is used to predict the Gibbs free energies of formation of crystalline phases of pyrochlore and zirconolite families with stoichiometry of MCaTi 2 O 7 (or, CaMTi 2 O 7 ,) from the known thermodynamic properties of aqueous tetravalent cations (M 4+ ). The linear free energy relationship for tetravalent cations is expressed as ΔG f,M v X 0 =a M v X ΔG n,M 4+ 0 +b M v X +β M v X r M 4+ , where the coefficients a M v X , b M v X , and β M v X characterize a particular structural family of M v X, r M 4+ is the ionic radius of M 4+ cation, ΔG f,M v X 0 is the standard Gibbs free energy of formation of M v X, and ΔG n,M 4+ 0 is the standard non-solvation energy of cation M 4+ . The coefficients for the structural family of zirconolite with the stoichiometry of M 4+ CaTi 2 O 7 are estimated to be: a M v X =0.5717, b M v X =-4284.67 (kJ/mol), and β M v X =27.2 (kJ/mol nm). The coefficients for the structural family of pyrochlore with the stoichiometry of M 4+ CaTi 2 O 7 are estimated to be: a M v X =0.5717, b M v X =-4174.25 (kJ/mol), and β M v X =13.4 (kJ/mol nm). Using the linear free energy relationship, the Gibbs free energies of formation of various zirconolite and pyrochlore phases are calculated. (orig.)
Event-shape of dileptons plus missing energy at a linear collider as ...
Indian Academy of Sciences (India)
This talk is based on work done with Partha Konar [1]. New physics is widely expected to emerge at TeV energies on the basis of naturalness, gauge hierarchy ... a measurable quantity, needs to have robust features distinguishing between them. Such is not the case with the lepton energy spectrum here. For appropriate ...
Photodisintegration of aligned deuterons at astrophysical energies using linearly polarized photons
International Nuclear Information System (INIS)
Shilpashree, S.P.; Sirsi, Swarnamala; Ramachandran, G.
2013-01-01
Following the model independent approach to deuteron photodisintegration with linearly polarized γ-rays, we show that the measurements of the tensor analyzing powers on aligned deuterons along with the differential cross-section involve five different linear combinations of the isovector E1 ν j ; j = 0, 1, 2 amplitudes interfering with the isoscalar M1 s and E2 s amplitudes. This is of current interest in view of the recent experimental finding [M. A. Blackston et al., Phys. Rev. C78 (2008) 034003] that the three E1 ν j amplitudes are distinct and also the reported experimental observation [B. D. Sawatzky, Ph.D. thesis, University of Virginia (2005)] on the front–back (polar angle) asymmetry in the differential cross-section. (author)
Energy principles for linear dissipative systems with application to resistive MHD stability
International Nuclear Information System (INIS)
Pletzer, A.
1997-04-01
A formalism for the construction of energy principles for dissipative systems is presented. It is shown that dissipative systems satisfy a conservation law for the bilinear Hamiltonian provided the Lagrangian is time invariant. The energy on the other hand, differs from the Hamiltonian by being quadratic and by having a negative definite time derivative (positive power dissipation). The energy is a Lyapunov functional whose definiteness yields necessary and sufficient stability criteria. The stability problem of resistive magnetohydrodynamic (MHD) is addressed: the energy principle for ideal MHD is generalized and the stability criterion by Tasso is shown to be necessary in addition to sufficient for real growth rates. An energy principle is found for the inner layer equations that yields the resistive stability criterion D R <0 in the incompressible limit, whereas the tearing mode criterion Δ'<0 is shown to result from the conservation law of the bilinear concomitant in the resistive layer. (author) 1 fig., 25 refs
Czech Academy of Sciences Publication Activity Database
Haslinger, Jaroslav; Repin, S.; Sysala, Stanislav
2016-01-01
Roč. 61, č. 5 (2016), s. 527-564 ISSN 0862-7940 R&D Projects: GA MŠk LQ1602 Institutional support: RVO:68145535 Keywords : functionals with linear growth * limit load * truncation method * perfect plasticity Subject RIV: BA - General Mathematics Impact factor: 0.618, year: 2016 http://link.springer.com/article/10.1007/s10492-016-0146-6
Some problems of solar-terrestrial energy relations
International Nuclear Information System (INIS)
Kovalevskij, I.V.
1982-01-01
Energy aspects of relations of phenomena occurring on the Sun, in the interplanetary space, magnetosphere, ionosphere and on the Earth's surface are discussed. Particular attention is given to the energy radiated by the Sun (flares, coronal holes). The problems are considered of the energy transfer and transformation in high-velocity and flare flows of solar wind. Estimates are performed: of densities of various types of energy of the interplanetary space at the Earth's orbit level; energy fluxes incident on the magnetosphere; energy accumulated inside the magnetosphere; a series of energy parameters of magnetic storms. It is pointed out that nowadays one of the main problems of the magnetosphere physics is studying ways of the interplanatary space energy transfer into the magnetosphere. In this connection some problems are investigated: plasma penetration through the dayside magnetopause, solar wind plasma entry into the magnetotail, the electric field effect on transition region plasma penetration into the distant magnetotail
Energy-range relations for hadrons in nuclear matter
Strugalski, Z.
1985-01-01
Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.
International Nuclear Information System (INIS)
Mistretta, J.
1988-01-01
The EMRIC set up (Ensemble de Mesure Rapide pour l'Interferometrie et les Correlations) is devoted to the study of space and time extent of nuclear sources from the measurement of light charged particles correlations. This device, composed of an array of 16 detectors (CsI crystals coupled to phototubes) used in conjunction with a multiwire chamber, is characterised by a smart granulation, a large solid angle and very small detection dead areas. It opens new possibilities in the measurement of the correlation functions (complete determination (modulus and direction) of the relative momenta in the range 1 to 100 MeV/c). This work describes the development and performances of EMRIC. The mechanics and electronics are detailed to enlighten difficulties inherent to this type of detector. An auxiliary monitoring system has been carried out to simplify some of the experimental tasks. A simulation software code has been written (based on Monte-Carlo techniques) to simulate the effect of the detector on the experimental data. The precision and efficiency in detection place EMRIC, which can be operated in the whole intermediate energy range (10-100 MeV/u), among the most powerful existing devices. First results on the 20 Ne + 27 Al system are finally shown [fr
Food and agriculture in relation to energy, environment and resources
Energy Technology Data Exchange (ETDEWEB)
Winteringham, F P.W. [International Atomic Energy Agency, Vienna (Austria). Joint FAO/IAEA Div. of Atomic Energy in Food and Agriculture
1980-03-01
Current trends in cultivated land, world population, agricultural practices food and energy are briefly reviewed. The rise in energy input/food energy output ratios with modernization is indicated. Nutritional needs, and trends in food and energy demand per capita are also indicated. Some emerging constraints in relation to soil fertility and agrochemical usage are identified. A growing pressure on land for ''energy and chemical farming'' is foreseen. Losses of native and added soil nitrogen, comparable with total industrial fertilizer nitrogen fixation, seem unavoidable for two decades at least. This consideration of trends and their interactions suggests the need for more effective interdisciplinary study, longer-term planning and international cooperation.
Food and agriculture in relation to energy, environment and resources
International Nuclear Information System (INIS)
Winteringham, F.P.W.
1980-01-01
Current trends in cultivated land, world population, agricultural practices food and energy are briefly reviewed. The rise in energy input/food energy output ratios with modernization is indicated. Nutritional needs, and trends in food and energy demand per capita are also indicated. Some emerging constraints in relation to soil fertility and agrochemical usage are identified. A growing pressure on land for ''energy and chemical farming'' is foreseen. Losses of native and added soil nitrogen, comparable with total industrial fertilizer nitrogen fixation, seem unavoidable for two decades at least. This consideration of trends and their interactions suggests the need for more effective interdisciplinary study, longer-term planning and international cooperation. (author)
An analysis of buildings-related energy use in manufacturing
Energy Technology Data Exchange (ETDEWEB)
Niefer, M.J.; Ashton, W.B.
1997-04-01
This report presents research by the Pacific Northwest National Laboratory (PNNL) to develop improved estimates of buildings-related energy use in US manufacturing facilities. The research was supported by the Office of Building Technology, State and Community Programs (BTS), Office of Energy Efficiency and Renewable Energy (EERE), US Department of Energy (DOE). The research scope includes only space conditioning and lighting end uses. In addition, this study also estimates the energy savings potential for application of selected commercial buildings technologies being developed by the BTS office to manufacturing and other industrial process facilities. 17 refs., 2 figs., 19 tabs.
Energy Technology Data Exchange (ETDEWEB)
Friedrich, S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States)]. E-mail: Friedrich1@llnl.gov; Li, L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Ott, L.L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Kolgani, Rajeswari M. [Department of Physics, Geosciences and Astronomy, Towson University, 8000 York Avenue, Towson MD 21252 (United States); Yong, G.J. [Department of Physics, Geosciences and Astronomy, Towson University, 8000 York Avenue, Towson MD 21252 (United States); Ali, Z.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Drury, O.B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Ables, E. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Bionta, R.M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States)
2006-04-15
We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with {approx}10{sup 12} photons per {approx}200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within <0.1%, taking into account thermal and mechanical stress to prevent melting in the LCLS beam due to its high energy density. We propose to use a magnetoresistive Nd{sub (1-} {sub x} {sub )}Sr {sub x} MnO{sub 3} sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response.
The Eastern Partnership and the EU-Turkey Energy Relations
Directory of Open Access Journals (Sweden)
Demiryol Tolga
2014-10-01
Full Text Available This article discusses the prospects and challenges of energy cooperation between the European Union (EU and Turkey within the context of the Eastern Partnership (EaP. Part of the EaP agenda is to advance energy cooperation between the EU and the partner states, particularly regarding the diversification of import routes. As an energy corridor between the EU and the hydrocarbon-rich Caspian states, Turkey is a strategic asset for European energy security. Turkey also has economic ties and political capital in the Caspian region that can help the EU reach out to its eastern partners. Despite robust incentives for cooperation, however, the EU-Turkey energy partnership has so far failed to meet mutual expectations. This article argues that this is primarily due to the inability of the two actors to credibly commit to regional energy cooperation. Commitment problem stems from two factors. First, the predominance of national energy interests over communal ones undermines credible commitment. The variation in energy needs of Member States prevents the EU from acting in unison in external energy policy. Similarly, Turkey also prioritizes its own energy security, particularly in its relations with suppliers, which undermines cooperation with the EU. Second, the EU and Turkey hold divergent perspectives on the potential political payoffs of energy cooperation. Turkish decision makers are convinced that energy cooperation warrants palpable progress in Turkey’s accession while most EU actors appear hesitant to establish a direct connection between energy and accession.
Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes.
Ahmed, Faisal; Tamberg, Gert; Le Moullec, Yannick; Annus, Paul
2018-04-05
In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90-94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models.
On the energy-momentum tensor in non-linear σ-models with torsion
International Nuclear Information System (INIS)
Dorn, H.; Otto, H.J.
1987-10-01
We study the renormalization properties of the energy-momentum tensor in a σ-model with torsion. Our normal product version contains besides the classical expression and the trace anomaly an off diagonal term proportional to the squared torsion. Specialized to a group manifold this term is crucial to reproduce the correct perturbative expansion of the energy-momentum tensor in Sugawara form. (orig.)
LETTERS AND COMMENTS: Energy in one-dimensional linear waves in a string
Burko, Lior M.
2010-09-01
We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus-based physics course.
International Nuclear Information System (INIS)
Forger, M.; Mannheim Univ.; Laartz, J.; Schaeper, U.
1994-01-01
The recently derived current algrbra of classical non-linear sigma models on arbitrary Riemannian manifolds is extended to include the energy-momentum tensor. It is found that in two dimensions the energy-momentum tensor θ μv , the Noether current j μ associated with the global symmetry of the theory and the composite field j appearing as the coefficient of the Schwinger term in the current algebra, together with the derivatives of j μ and j, generte a closed algebra. The subalgebra generated by the light-cone components of the energy-momentum tensor consists of two commuting copies of the Virasoro algebra, with central charge c=0, reflecting the classical conformal invariance of the theory, but the current algebra part and the semidirect product structure are quite different from the usual Kac-Moody/Sugawara type contruction. (orig.)
Online Energy Management of City Cars with Multi-Objective Linear Parameter-Varying L2-Gain Control
Directory of Open Access Journals (Sweden)
Boe-Shong Hong
2015-09-01
Full Text Available This work aims at online regulating transient current out of the batteries of small-sized electric cars that transport people and goods around cities. In a city with heavy traffic, transient current dominates the energy economy and propulsion capability, which are in opposition to each other. In order to manage the trade-off between energy consumption per distance and propulsion capability in transience, the authors improve on previous work on multi-objective linear parameter-varying (LPV L2-gain control. The observer embedded into this multi-objective controller no longer assumes Kalman-filtering structure, and structural conservatism is thus removed. A full-spectrum set of experiments is performed. The results reveal that the feedback design significantly improves energy-motion management.
Linear triangular optimization technique and pricing scheme in residential energy management systems
Anees, Amir; Hussain, Iqtadar; AlKhaldi, Ali Hussain; Aslam, Muhammad
2018-06-01
This paper presents a new linear optimization algorithm for power scheduling of electric appliances. The proposed system is applied in a smart home community, in which community controller acts as a virtual distribution company for the end consumers. We also present a pricing scheme between community controller and its residential users based on real-time pricing and likely block rates. The results of the proposed optimization algorithm demonstrate that by applying the anticipated technique, not only end users can minimise the consumption cost, but it can also reduce the power peak to an average ratio which will be beneficial for the utilities as well.
Estimates of emittance dilution and stability in high-energy linear accelerators
Directory of Open Access Journals (Sweden)
T. O. Raubenheimer
2000-12-01
Full Text Available In this paper, we present a series of analytic expressions to predict the beam dynamics in a long linear accelerator. These expressions can be used to model the linac optics, calculate the magnitude of the wakefields, estimate the emittance dilution due to misaligned accelerator components, and estimate the stability and jitter limitations. The analytic expressions are based on the results of simple physics models and are useful to understand the parameter sensitivities. They are also useful when using simple codes or spreadsheets to optimize a linac system.
Another two dark energy models motivated from Karolyhazy uncertainty relation
Energy Technology Data Exchange (ETDEWEB)
Sun, Cheng-Yi; Yang, Wen-Li; Song, Yu. [Northwest University, Institute of Modern Physics, Xian (China); Yue, Rui-Hong [Ningbo University, Faculty of Science, Ningbo (China)
2012-03-15
The Karolyhazy uncertainty relation indicates that there exists a minimal detectable cell {delta}t{sup 3} over the region t{sup 3} in Minkowski space-time. Due to the energy-time uncertainty relation, the energy of the cell {delta}t {sup 3} cannot be less {delta}t{sup -1}. Then we get a new energy density of metric fluctuations of Minkowski spacetime as {delta}t{sup -4}. Motivated by the energy density, we propose two new dark-energy models. One model is characterized by the age of the universe and the other is characterized by the conformal age of the universe. We find that in the two models, the dark energy mimics a cosmological constant in the late time. (orig.)
The interdependence of European–Russian energy relations
International Nuclear Information System (INIS)
Harsem, Øistein; Harald Claes, Dag
2013-01-01
The aim of this article is to explore this dynamic interdependent relationship between Russia and Europe in the field of energy. Based on the concept of interdependence and perspectives on the political aspects of trade relations we discuss how Russia can exercise power based on its energy resources and how the EU can compensate for its lack of power in the energy game with other trade related capabilities. In particular we explore the implications of the lack of a full-fledged EU foreign energy policy towards Russia, with the somewhat counter-intuitive conclusion that the EU countries, on average, not necessarily are better off with a common foreign energy policy. - Highlights: • We examine Russian–European gas (inter)dependence. • East-European countries are most dependent on Russian gas in Europe. • EU countries, on average, are not better off with a common foreign energy policy
Design and simulation of a short, variable-energy 4 to 10 MV S-band linear accelerator waveguide.
Baillie, Devin; Fallone, B Gino; Steciw, Stephen
2017-06-01
To modify a previously designed, short, 10 MV linac waveguide, so that it can produce any energy from 4 to 10 MV. The modified waveguide is designed to be a drop-in replacement for the 6 MV waveguide used in the author's current linear accelerator-magnetic resonance imager (Linac-MR). Using our group's previously designed short 10 MV linac as a starting point, the port was moved to the fourth cavity, the shift to the first coupling cavity was removed and a tuning cylinder added to the first coupling cavity. Each cavity was retuned using finite element method (FEM) simulations to resonate at the desired frequency. FEM simulations were used to determine the RF field distributions for various tuning cylinder depths, and electron trajectories were computed using a particle-in-cell model to determine the required RF power level and tuning cylinder depth to produce electron energy distributions for 4, 6, 8, and 10 MV photon beams. Monte Carlo simulations were then used to compare the depth dose profiles with those produced by published electron beam characteristics for Varian linacs. For each desired photon energy, the electron beam energy was within 0.5% of the target mean energy, the depth of maximum dose was within 1.5 mm of that produced by the Varian linac, and the ratio of dose at 10 cm depth to 20 cm depth was within 1%. A new 27.5 cm linear accelerator waveguide design capable of producing any photon energy between 4 and 10 MV has been simulated, however coupling port design and the implications of increased electron beam current at 10 MV remain to be investigated. For the specific cases of 4, 6, and 10 MV, this linac produces depth dose profiles similar to those produced by published spectra for Varian linacs. © 2017 American Association of Physicists in Medicine.
Relativistic energy-dispersion relations of 2D rectangular lattices
Ata, Engin; Demirhan, Doğan; Büyükkılıç, Fevzi
2017-04-01
An exactly solvable relativistic approach based on inseparable periodic well potentials is developed to obtain energy-dispersion relations of spin states of a single-electron in two-dimensional (2D) rectangular lattices. Commutation of axes transfer matrices is exploited to find energy dependencies of the wave vector components. From the trace of the lattice transfer matrix, energy-dispersion relations of conductance and valence states are obtained in transcendental form. Graphical solutions of relativistic and nonrelativistic transcendental energy-dispersion relations are plotted to compare how lattice parameters V0, core and interstitial size of the rectangular lattice affects to the energy-band structures in a situation core and interstitial diagonals are of equal slope.
Energy drinks and alcohol-related risk among young adults.
Caviness, Celeste M; Anderson, Bradley J; Stein, Michael D
2017-01-01
Energy drink consumption, with or without concurrent alcohol use, is common among young adults. This study sought to clarify risk for negative alcohol outcomes related to the timing of energy drink use. The authors interviewed a community sample of 481 young adults, aged 18-25, who drank alcohol in the last month. Past-30-day energy drink use was operationalized as no-use, use without concurrent alcohol, and concurrent use of energy drinks with alcohol ("within a couple of hours"). Negative alcohol outcomes included past-30-day binge drinking, past-30-day alcohol use disorder, and drinking-related consequences. Just over half (50.5%) reported no use of energy drinks,18.3% reported using energy drinks without concurrent alcohol use, and 31.2% reported concurrent use of energy drinks and alcohol. Relative to those who reported concurrent use of energy drinks with alcohol, and controlling for background characteristics and frequency of alcohol consumption, those who didn't use energy drinks and those who used without concurrent alcohol use had significantly lower binge drinking, negative consequences, and rates of alcohol use disorder (P energy drink without concurrent alcohol groups on any alcohol-related measure (P > .10 for all outcomes). Concurrent energy drink and alcohol use is associated with increased risk for negative alcohol consequences in young adults. Clinicians providing care to young adults could consider asking patients about concurrent energy drink and alcohol use as a way to begin a conversation about risky alcohol consumption while addressing 2 substances commonly used by this population.
International Nuclear Information System (INIS)
Wouters, Carmen; Fraga, Eric S.; James, Adrian M.
2015-01-01
The integration of distributed generation units and microgrids in the current grid infrastructure requires an efficient and cost effective local energy system design. A mixed-integer linear programming model is presented to identify such optimal design. The electricity as well as the space heating and cooling demands of a small residential neighbourhood are satisfied through the consideration and combined use of distributed generation technologies, thermal units and energy storage with an optional interconnection with the central grid. Moreover, energy integration is allowed in the form of both optimised pipeline networks and microgrid operation. The objective is to minimise the total annualised cost of the system to meet its yearly energy demand. The model integrates the operational characteristics and constraints of the different technologies for several scenarios in a South Australian setting and is implemented in GAMS. The impact of energy integration is analysed, leading to the identification of key components for residential energy systems. Additionally, a multi-microgrid concept is introduced to allow for local clustering of households within neighbourhoods. The robustness of the model is shown through sensitivity analysis, up-scaling and an effort to address the variability of solar irradiation. - Highlights: • Distributed energy system planning is employed on a small residential scale. • Full energy integration is employed based on microgrid operation and tri-generation. • An MILP for local clustering of households in multi-microgrids is developed. • Micro combined heat and power units are key components for residential microgrids
Can a Linear Sigma Model Describe Walking Gauge Theories at Low Energies?
Gasbarro, Andrew
2018-03-01
In recent years, many investigations of confining Yang Mills gauge theories near the edge of the conformal window have been carried out using lattice techniques. These studies have revealed that the spectrum of hadrons in nearly conformal ("walking") gauge theories differs significantly from the QCD spectrum. In particular, a light singlet scalar appears in the spectrum which is nearly degenerate with the PNGBs at the lightest currently accessible quark masses. This state is a viable candidate for a composite Higgs boson. Presently, an acceptable effective field theory (EFT) description of the light states in walking theories has not been established. Such an EFT would be useful for performing chiral extrapolations of lattice data and for serving as a bridge between lattice calculations and phenomenology. It has been shown that the chiral Lagrangian fails to describe the IR dynamics of a theory near the edge of the conformal window. Here we assess a linear sigma model as an alternate EFT description by performing explicit chiral fits to lattice data. In a combined fit to the Goldstone (pion) mass and decay constant, a tree level linear sigma model has a Χ2/d.o.f. = 0.5 compared to Χ2/d.o.f. = 29.6 from fitting nextto-leading order chiral perturbation theory. When the 0++ (σ) mass is included in the fit, Χ2/d.o.f. = 4.9. We remark on future directions for providing better fits to the σ mass.
International Nuclear Information System (INIS)
Ekel, P.Y.; Galperin, E.A.
2003-01-01
Models for multicriteria resource allocation are constructed with the specific box-triangular structure of a feasible region. The method of balance set equations is extended for the satisfaction level representation of the cost function space including the case of linearly dependent cost functions. On this basis, different goal criteria on the balance set are investigated for linear cases. Procedures for determining the balance set and finding goal-optimal Pareto solutions are illustrated on examples. The results of the paper are of universal character and can find wide applications in allocating diverse types of resources on the multiobjective basis in planning and control of complex systems including load management and energy market problems. (Author)
Borjigin, Sumuya; Yang, Yating; Yang, Xiaoguang; Sun, Leilei
2018-03-01
Many researchers have realized that there is a strong correlation between stock prices and macroeconomy. In order to make this relationship clear, a lot of studies have been done. However, the causal relationship between stock prices and macroeconomy has still not been well explained. A key point is that, most of the existing research adopts linear and stable models to investigate the correlation of stock prices and macroeconomy, while the real causality of that may be nonlinear and dynamic. To fill this research gap, we investigate the nonlinear and dynamic causal relationships between stock prices and macroeconomy. Based on the case of China's stock prices and acroeconomy measures from January 1992 to March 2017, we compare the linear Granger causality test models with nonlinear ones. Results demonstrate that the nonlinear dynamic Granger causality is much stronger than linear Granger causality. From the perspective of nonlinear dynamic Granger causality, China's stock prices can be viewed as "national economic barometer". On the one hand, this study will encourage researchers to take nonlinearity and dynamics into account when they investigate the correlation of stock prices and macroeconomy; on the other hand, our research can guide regulators and investors to make better decisions.
Cognitive determinants of energy balance-related behaviours : measurement issues
Kremers, Stef P J; Visscher, Tommy L S; Seidell, Jacob C; van Mechelen, Willem; Brug, Johannes
2005-01-01
The burden of disease as a result of overweight and obesity calls for in-depth examination of the main causes of behavioural actions responsible for weight gain. Since weight gain is the result of a positive energy balance, these behavioural actions are referred to as 'energy balance-related
Lipsky, Leah M
2009-11-01
The inverse relation between energy density (kcal/g) and energy cost (price/kcal) has been interpreted to suggest that produce (fruit, vegetables) is more expensive than snacks (cookies, chips). The objective of this study was to show the methodologic weakness of comparing energy density with energy cost. The relation between energy density and energy cost was replicated in a random-number data set. Additionally, observational data were collected for produce and snacks from an online supermarket. Variables included total energy (kcal), total weight (g), total number of servings, serving size (g/serving), and energy density (kcal/g). Price measures included energy cost ($/kcal), total price ($), unit price ($/g), and serving price ($/serving). Two-tailed t tests were used to compare price measures by food category. Relations between energy density and price measures within food categories were examined with the use of Spearman rank correlation analysis. The relation between energy density and energy cost was shown to be driven by the algebraic properties of these variables. Food category was strongly correlated with both energy density and food price measures. Energy cost was higher for produce than for snacks. However, total price and unit price were lower for produce. Serving price and serving size were greater for produce than for snacks. Within food categories, energy density was uncorrelated with most measures of food price, except for a weak positive correlation with serving price within the produce category. The findings suggest the relation between energy density and food price is confounded by food category and depends on which measure of price is used.
A distributed multi-agent linear biobjective algorithm for energy flow optimization in microgrids
DEFF Research Database (Denmark)
Brehm, Robert; Top, Søren; Mátéfi-Tempfli, Stefan
2016-01-01
consisting of local energy resources and storage capacities is presented which is based on the auction algorithm for assignment problems originally introduced by Bertsekas in 1979 [1]. It is shown that the topology of a microgrid can be represented as a bipartite graph and mathematically be described...... as a classical transportation problem. This allows applying an auction algorithm scheme in a distributed way where each energy supply system node is either a source or a sink and is represented by an individual acting agent. The single-objective approach is extended towards bi-objectivity to build a framework...
Beyond the International Linear Collider Driven by FEL with Energy Recovery at 5-10TeV
Hajima, R
2005-01-01
The international linear collider (ILC) at the extreme high energy frontier provides the best hope for the scientist to probe the finenst structure of matter and its origin and perhaps even the origin of the Universe. The technology that employs is based on superconducting RF technology. This technology may usher in a new era for the development of superconducting accelerator technology. On the other hand, the gradient that is allowed in such an accelerator is limited. If one wishes something beyond this after one learns the physics at such high energies(~0.5TeV) and utilizing such technology, one may need a new way to employ the supeconducting technology in providing high gradient compact accelerators. Inspired by a former work of 5-TeV colliders based on solid-state tera-watt lasers [1], we explore 5-10 TeV linear colliders driven by free-electron lasers equipped with energy-recovery system. A preliminary design study suggests that a 5-10 TeV collider with the luminosity of 10(34) can be realized by multi-s...
Directory of Open Access Journals (Sweden)
Lei Huang
2013-01-01
Full Text Available Linear generators have the advantage of a simple structure of the secondary, which is suitable for the application of wave energy conversion. Based on the vernier hybrid machines (VHMs, widely used for direct drive wave energy converters, this paper proposes a novel hybrid excitation flux-switching generator (LHEFSG, which can effectively improve the performance of this kind of generators. DC hybrid excitation windings and multitooth structure were used in the proposed generator to increase the magnetic energy and overcome the disadvantages of easily irreversible demagnetization of VHMs. Firstly, the operation principle and structure of the proposed generator are introduced. Secondly, by using the finite element method, the no-load performance of the proposed generator is analyzed and composed with ones of conventional VHM. In addition, the on-load performance of the proposed generator is obtained by finite element analysis (FEA. A dislocation of pole alignments method is implemented to reduce the cogging force. Lastly, a prototype of the linear flux-switching generator is used to verify the correctness of FEA results. All the results validate that the proposed generator has better performance than its counterparts.
Eames, P. C.; Norton, B.
A numerical simulation model was employed to investigate the effects of ambient temperature and insolation on the efficiency of compound parabolic concentrating solar energy collectors. The limitations of presently-used collector performance characterization curves were investigated and a new approach proposed.
Comment on 'Energy in one-dimensional linear waves in a string'
International Nuclear Information System (INIS)
Butikov, Eugene I
2011-01-01
In this communication we comment on numerous erroneous statements in a recent letter to this journal by Burko (Eur. J. Phys. 2010 31 L71-7) concerning the energy transferred by transverse waves in a stretched string. (letters and comments)
Energy- and particle-confinement properties of an end-plugged, linear, theta pinch
International Nuclear Information System (INIS)
Commisso, R.J.; Bartsch, R.R.; Ekdahl, C.A.; McKenna, K.F.; Siemon, R.E.
1979-01-01
Experiments show that axial confinement of plasma in a straight theta-pinch solenoid is improved by placing solid lithium deuteride plugs at the ends. The energy confinement is increased nearly threefold in agreement with theoretical estimates which assume classical electron thermal conduction and no convective losses. The confinement of deuterium ions is explained by classical Coulomb collisions in the ablated lithium deuteride plasma
Non-linear vibrating systems excited by a nonideal energy source with a large slope characteristic
González-Carbajal, Javier; Domínguez, Jaime
2017-11-01
This paper revisits the problem of an unbalanced motor attached to a fixed frame by means of a nonlinear spring and a linear damper. The excitation provided by the motor is, in general, nonideal, which means it is affected by the vibratory response. Since the system behaviour is highly dependent on the order of magnitude of the motor characteristic slope, the case of large slope is considered herein. Some Perturbation Methods are applied to the system of equations, which allows transforming the original 4D system into a much simpler 2D system. The fixed points of this reduced system and their stability are carefully studied. We find the existence of a Hopf bifurcation which, to the authors' knowledge, has not been addressed before in the literature. These analytical results are supported by numerical simulations. We also compare our approach and results with those published by other authors.
Intermediate energy nuclear physics at the MIT-Bates linear accelerator Center
International Nuclear Information System (INIS)
Alarcon, R.
2001-01-01
The MlT-Bates linear accelerator center is a University-based laboratory carrying out frontier research in electromagnetic nuclear physics. The research program is focussed on the flavor structure, charge distribution, shape, size and polarizability of the nucleon; the spin and electromagnetic structure of light nuclei; and the origin of the elements. The Bates research program has three central thrusts: the SAMPLE experiments to probe the flavor structure of the proton using parity-violating electron scattering at back angles; the OOPS (out-of-plane spectrometer system) program which uses out-of-plane detection to probe nucleon and few-body nuclear structure; and the BLAST (Bates large acceptance spectrometer toroid) program which will use a new spectrometer under construction to measure electron scattering from internal gas targets in the south hall ring. (Author)
Press problem related to nuclear energy news reporting
International Nuclear Information System (INIS)
Arai, Mitsuo
2008-01-01
Since the event of Niigataken Chuetsu-oki Earthquake in 2007 and the subsequent press reports on damage of nuclear power station after it, a stance of media is being questioned. In order to clear this problem, basic organizational structure of the press related to nuclear energy news was analyzed. Local news department, social news department, science news department and economical news department involve in nuclear energy news the accordance with their own situations and concerns. This structure makes problem of nuclear energy news reporting complicated. Changing this system is required but very difficult. It is concluded that the press problem around nuclear energy news is strange. (author)
DEFF Research Database (Denmark)
Eder, Martin Alexander; Bitsche, Robert; Belloni, Federico
2015-01-01
Most wind turbine rotor blades comprise several adhesively connected sub-components typically made from glass fibre reinforced polymer composite materials. It is a well-known fact that wind turbine blades are prone to fail in their adhesive joints. However, owing to the complexity...... of their structural behaviour, little is known about the root causes of adhesive joint failure. This paper investigates the effects of geometrical non-linearity on energy release rates (ERRs) of transversely oriented cracks present in the adhesive joints of a wind turbine rotor blade. Utilising a computationally...
Affective Influences on Energy-Related Decisions and Behaviors
Energy Technology Data Exchange (ETDEWEB)
Brosch, Tobias, E-mail: tobias.brosch@unige.ch [Department of Psychology, University of Geneva, Geneva (Switzerland); Swiss Center of Affective Sciences, University of Geneva, Geneva (Switzerland); Patel, Martin K. [Energy Group, Institute for Environmental Sciences, University of Geneva, Geneva (Switzerland); Energy Group, Forel Institute, University of Geneva, Geneva (Switzerland); Sander, David [Department of Psychology, University of Geneva, Geneva (Switzerland); Swiss Center of Affective Sciences, University of Geneva, Geneva (Switzerland)
2014-03-17
A successful energy transition will depend not only on the development of new energy technologies, but also on changes in the patterns of individual energy-related decisions and behaviors resulting in substantial reductions in energy demand. Across scientific disciplines, most theoretical approaches that try to understand energy-related decisions and behaviors focus mainly on cognitive processes, such as computations of utility (typically economic), the impact of cognitive heuristics, or the role of individual beliefs. While these models already explain important aspects of human decisions and behavior in the energy domain, we argue that an additional consideration of the contributions of emotional processes may be very fruitful for a deeper understanding of the issue. In this contribution, we outline a theoretical perspective on energy-related decisions and behaviors that integrates emotions, elicited by a cognitive-affective appraisal of the relevance of a situation, into a response system driving adaptive decisions and behaviors. We empirically investigate the explanatory power of the model variables to predict intentions to reduce energy use demonstrating that the appraisal–emotion variables are able to account for additional variance that is not explained by two established models focused on cognitive processes (theory of planned behavior and value-belief-norm theory). Finally, we discuss how the appraisal–emotion approach may be fruitfully integrated with other existing approaches and outline some questions for future research.
Affective Influences on Energy-Related Decisions and Behaviors
International Nuclear Information System (INIS)
Brosch, Tobias; Patel, Martin K.; Sander, David
2014-01-01
A successful energy transition will depend not only on the development of new energy technologies, but also on changes in the patterns of individual energy-related decisions and behaviors resulting in substantial reductions in energy demand. Across scientific disciplines, most theoretical approaches that try to understand energy-related decisions and behaviors focus mainly on cognitive processes, such as computations of utility (typically economic), the impact of cognitive heuristics, or the role of individual beliefs. While these models already explain important aspects of human decisions and behavior in the energy domain, we argue that an additional consideration of the contributions of emotional processes may be very fruitful for a deeper understanding of the issue. In this contribution, we outline a theoretical perspective on energy-related decisions and behaviors that integrates emotions, elicited by a cognitive-affective appraisal of the relevance of a situation, into a response system driving adaptive decisions and behaviors. We empirically investigate the explanatory power of the model variables to predict intentions to reduce energy use demonstrating that the appraisal–emotion variables are able to account for additional variance that is not explained by two established models focused on cognitive processes (theory of planned behavior and value-belief-norm theory). Finally, we discuss how the appraisal–emotion approach may be fruitfully integrated with other existing approaches and outline some questions for future research.
Affective influences on energy-related decisions and behaviors
Directory of Open Access Journals (Sweden)
Tobias eBrosch
2014-03-01
Full Text Available A successful energy transition will depend not only on the development of new energy technologies, but also on changes in the patterns of individual energy-related decisions and behaviors resulting in substantial reductions in energy demand. Across scientific disciplines, most theoretical approaches that try to understand energy-related decisions and behaviors focus mainly on cognitive processes, such as computations of utility (typically economic, the impact of cognitive heuristics, or the role of individual beliefs. While these models already explain important aspects of human decisions and behavior in the energy domain, we argue that an additional consideration of the contributions of emotional processes may be very fruitful for a deeper understanding of the issue. In this contribution, we outline a theoretical perspective on energy-related decisions and behaviors that integrates emotions, elicited by a cognitive-affective appraisal of the relevance of a situation, into a response system driving adaptive decisions and behaviors. We empirically investigate the explanatory power of the model variables to predict intentions to reduce energy use, demonstrating that the appraisal-emotion variables are able to account for additional variance that is not explained by two established models focused on cognitive processes (Theory of Planned Behavior and Value-Belief-Norm Theory. Finally, we discuss how the appraisal-emotion approach may be fruitfully integrated with other existing approaches and outline some questions for future research.
Malaysian public perception towards nuclear power energy-related issues
Misnon, Fauzan Amin; Hu, Yeoh Siong; Rahman, Irman Abd.; Yasir, Muhamad Samudi
2017-01-01
Malaysia had considered nuclear energy as an option for future electricity generation during the 9th Malaysia Development Plan. Since 2009, Malaysia had implemented a number of important preparatory steps towards this goal, including the establishment of Nuclear Power Corporation of Malaysia (MNPC) as first Nuclear Energy Programme Implementing Organization (NEPIO) in Malaysia. In light of the establishment of MNPC, the National Nuclear Policy was formulated in 2010 and a new comprehensive nuclear law to replace the existing Atomic Energy Licensing Act (Act 304) is currently in the pipeline. Internationally, public acceptance is generally used to gauge the acceptance of nuclear energy by the public whenever a government decides to engage in nuclear energy. A public survey was conducted in between 14 March 2016 to 10 May 2016 focusing on the Malaysian public acceptance and perception towards the implementation of nuclear energy in Malaysia. The methodology of this research was aim on finding an overview of the general knowledge, public-relation recommendation, perception and acceptance of Malaysian towards the nuclear power development program. The combination of information gathered from this study can be interpreted as an indication of the complexity surrounding the development of nuclear energy and its relationship with the unique background of Malaysian demography. This paper will focus mainly on energy-related section in the survey in comparison with nuclear energy.
International Nuclear Information System (INIS)
Alvarez, R.J.T.; Trovar, M.V.M; González, J.F.
2015-01-01
From the rate of natural mortality m s cancer (t) for every 100 thousand habitants, modeled by a fourth-degree polynomial function of the age data of the Mexican population (2008), and assuming: a) a relationship 1: 5 of cancer induced radiation respect to presented spontaneously, b) a size of initial cohort No = 100 k SOPs, c) a speed of H E = (2 ± 1) mSv / received by the SOPs from 18 to 65 years, d) a latency of 8 years for cancer induction after irradiation, e) a time tracking cohort to 75 years, f) and taking the coefficients absolute and relative risk BEIRs induction of cancer models II and VII (excluding leukemia); It determined: BEIR II for a total of 125 and 400 deaths from cancer for absolute and relative linear models respectively. For BEIR VII has a number of fatal cases of 345 and 927 deaths respectively for absolute and relative linear model cancer. [es
Development of Linear Mode Detection for Top-down Ion Implantation of Low Energy Sb Donors
Pacheco, Jose; Singh, Meenakshi; Bielejec, Edward; Lilly, Michael; Carroll, Malcolm
2015-03-01
Fabrication of donor spin qubits for quantum computing applications requires deterministic control over the number of implanted donors and the spatial accuracy to within which these can be placed. We present an ion implantation and detection technique that allows us to deterministically implant a single Sb ion (donor) with a resulting volumetric distribution of performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
Stochastic linear dynamical programming in order to apply it in energy modelling
Energy Technology Data Exchange (ETDEWEB)
El Hachem, S
1995-11-01
This thesis contributes to the development of new algorithms for the computation of stochastic dynamic problem and its mini-maxi variant for the case of imperfect knowledge on random data. The proposed algorithms are scenarios aggregation type. It also contributes to integrate these algorithms in a decision support approach and to discuss the stochastic modeling of two energy problems: the refining and the portfolio gas contracts. (author). 112 refs., 5 tabs.
Combining high frequency data with non-linear models for forecasting energy market volatility
Czech Academy of Sciences Publication Activity Database
Baruník, Jozef; Křehlík, Tomáš
2016-01-01
Roč. 55, č. 1 (2016), s. 222-242 ISSN 0957-4174 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : artificial neural networks * realized volatility * multiple-step-ahead forecasts * energy markets Subject RIV: AH - Economics Impact factor: 3.928, year: 2016 http://library.utia.cas.cz/separaty/2016/E/barunik-0456185.pdf
Energy storage cell impedance measuring apparatus, methods and related systems
Morrison, John L.; Morrison, William H.; Christophersen, Jon P.
2017-12-26
Energy storage cell impedance testing devices, circuits, and related methods are disclosed. An energy storage cell impedance measuring device includes a sum of sinusoids (SOS) current excitation circuit including differential current sources configured to isolate a ground terminal of the differential current sources from a positive terminal and a negative terminal of an energy storage cell. A method includes applying an SOS signal comprising a sum of sinusoidal current signals to the energy storage cell with the SOS current excitation circuit, each of the sinusoidal current signals oscillating at a different one of a plurality of different frequencies. The method also includes measuring an electrical signal at a positive terminal and a negative terminal of the energy storage cell, and computing an impedance of the energy storage cell at each of the plurality of different frequencies using the measured electrical signal.
Gamma-ray relative energy response of Ce: YAG crystal
International Nuclear Information System (INIS)
Zhang Jianhua; Zhang Chuanfei; Hu Mengchun; Peng Taiping; Wang Zhentong; Tang Dengpan; Zhao Guangjun
2010-01-01
Gamma-ray relative energy response of Ce: YAG crystal, which is important for pulsed γ-ray measurement, was studied in this work.The Ce: YAG crystal, which was developed at Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, was aligned point by point with γ-rays scattered from an industrial 60 Co line source. The γ-ray relative energy response was calculated using the mass attenuation coefficient. The results show that the numerical calculation method of γ-ray relative energy response is reliable, and the experimental method with multi-energy point γ-ray by Compton scattering is also feasible, that can be used for checking up correctness of the numerical calculation results. (authors)
Technology diffusion of energy-related products in residential markets
Energy Technology Data Exchange (ETDEWEB)
Davis, L.J.; Bruneau, C.L.
1987-05-01
Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.
Meng, Yilin; Roux, Benoît
2015-08-11
The weighted histogram analysis method (WHAM) is a standard protocol for postprocessing the information from biased umbrella sampling simulations to construct the potential of mean force with respect to a set of order parameters. By virtue of the WHAM equations, the unbiased density of state is determined by satisfying a self-consistent condition through an iterative procedure. While the method works very effectively when the number of order parameters is small, its computational cost grows rapidly in higher dimension. Here, we present a simple and efficient alternative strategy, which avoids solving the self-consistent WHAM equations iteratively. An efficient multivariate linear regression framework is utilized to link the biased probability densities of individual umbrella windows and yield an unbiased global free energy landscape in the space of order parameters. It is demonstrated with practical examples that free energy landscapes that are comparable in accuracy to WHAM can be generated at a small fraction of the cost.
International Nuclear Information System (INIS)
Barber, D.P.; Ripken, G.; Schmidt, F.
1987-05-01
We investigate the motion of protons of arbitrary energy (below and above transition energy) in a storage ring. The motion is described both in terms of the fully six-dimensional formalism with the canonical variables x, p x , z, p z , σ = s - v 0 . t, η = ΔE/E 0 = p σ and in terms of a dispersion formalism with new variables x, p x , z, p z , σ, p σ . Since the dispersion function is introduced into the equations of motion via a canonical transformation the symplectic structure of these equations is completely preserved. In this formulation it is then possible to define three uncoupled linear (unperturbed) oscillation modes which are described by phase ellipses. Perturbations manifest themselves as deviations from these ellipses. The equations of motion are solved within the framework of the fully six-dimensional formalism. (orig.)
Directory of Open Access Journals (Sweden)
Kant Eliab Kanyarusoke
2018-01-01
Full Text Available A new mechanism interconverting linear and rotary motion was investigated for energy transfers among its components. It employed a gear-rack set, a Hooke coupling and a specially designed bladder-valve system that regulated the motion. The purpose was to estimate individual component mechanical efficiencies as they existed in the prototype so that future reengineering of the mechanism could be properly targeted. Theoretical modelling of the mechanism was first done to obtain equations for efficiencies of the key components. Two-stage experimentation followed when running a solar tracker. The first stage produced data for inputting into the model to determine the efficiencies’ theoretical variation with the Hooke coupling shaft angle. The second one verified results of the Engineering Equation Solver (EES software solutions of the model. It was found that the energy transfer to focus on was that between the Hooke coupling and the output shaft because its efficiency was below 4%
Linear energy transfer effects on time profiles of scintillation of Ce-doped LiCaAlF6 crystals
International Nuclear Information System (INIS)
Yanagida, Takayuki; Koshimizu, Masanori; Kurashima, Satoshi; Iwamatsu, Kazuhiro; Kimura, Atsushi; Taguchi, Mitsumasa; Fujimoto, Yutaka; Asai, Keisuke
2015-01-01
We measured temporal profiles of the scintillation of Ce-doped LiCaAlF 6 scintillator crystals at different linear energy transfers (LETs). Based on the comparison of high-LET temporal profiles with those at low LET, a fast component was observed only at low LET. The disappearance of the fast component at high LET is tentatively ascribed to the quenching of excited states at crystal defects owing to the interaction between excited states via the Auger process. In addition, the rise and the initial decay behavior were dependent on the LET. This LET-dependent behavior is explained by an acceleration process and a deceleration process in energy transfer at high LET. The LET-dependent temporal profiles provide the basis for a discrimination technique of gamma-ray and neutron detection events using these scintillators based on the nuclear reaction, 6 Li(n,α)t.
Modeling of a Permanent Magnet Linear Generator for Wave-Energy Conversion
Tom, Nathan; Son, Daewoong; Belissen, Valentin; Yeung, Ronald W.
2015-01-01
© 2015 by ASME. This paper begins with a brief review of the equation of motion for a generic floating body with modification to incorporate the influence of a power-take-off (PTO) unit. Since the damping coefficient is considered the dominant contribution to the PTO reaction force, the optimum non time-varying values are presented for all frequencies, recovering the well-known impedance-matching principle at the resonance condition of the coupled system. The construction of a laboratory-scale permanent magnet linear generator (PMLG), developed at the University of California at Berkeley, is discussed along with the basic electromagnetic equations used to model its performance. Modeling of the PMLG begins with a lumped magnetic circuit analysis, which provides an analytical solution to predict the magnetic flux available for power conversion. The voltage generated across each phase of the stator, induced by the motion of the armature, provides an estimate for the electromagnetic damping as a function of the applied resistive load. The performance of the PMLG and the validation of the proposed analytical model is completed by a set of dry-bench tests. Results from the bench test showed good agreement with the described electromechanical model, thus providing an analytical solution that can assist in further optimization of the PMLG.
Modeling of a Permanent Magnet Linear Generator for Wave-Energy Conversion
Tom, Nathan
2015-05-31
© 2015 by ASME. This paper begins with a brief review of the equation of motion for a generic floating body with modification to incorporate the influence of a power-take-off (PTO) unit. Since the damping coefficient is considered the dominant contribution to the PTO reaction force, the optimum non time-varying values are presented for all frequencies, recovering the well-known impedance-matching principle at the resonance condition of the coupled system. The construction of a laboratory-scale permanent magnet linear generator (PMLG), developed at the University of California at Berkeley, is discussed along with the basic electromagnetic equations used to model its performance. Modeling of the PMLG begins with a lumped magnetic circuit analysis, which provides an analytical solution to predict the magnetic flux available for power conversion. The voltage generated across each phase of the stator, induced by the motion of the armature, provides an estimate for the electromagnetic damping as a function of the applied resistive load. The performance of the PMLG and the validation of the proposed analytical model is completed by a set of dry-bench tests. Results from the bench test showed good agreement with the described electromechanical model, thus providing an analytical solution that can assist in further optimization of the PMLG.
International Nuclear Information System (INIS)
Mashayekh, Salman; Stadler, Michael; Cardoso, Gonçalo; Heleno, Miguel
2017-01-01
Highlights: • This paper presents a MILP model for optimal design of multi-energy microgrids. • Our microgrid design includes optimal technology portfolio, placement, and operation. • Our model includes microgrid electrical power flow and heat transfer equations. • The case study shows advantages of our model over aggregate single-node approaches. • The case study shows the accuracy of the integrated linearized power flow model. - Abstract: Optimal microgrid design is a challenging problem, especially for multi-energy microgrids with electricity, heating, and cooling loads as well as sources, and multiple energy carriers. To address this problem, this paper presents an optimization model formulated as a mixed-integer linear program, which determines the optimal technology portfolio, the optimal technology placement, and the associated optimal dispatch, in a microgrid with multiple energy types. The developed model uses a multi-node modeling approach (as opposed to an aggregate single-node approach) that includes electrical power flow and heat flow equations, and hence, offers the ability to perform optimal siting considering physical and operational constraints of electrical and heating/cooling networks. The new model is founded on the existing optimization model DER-CAM, a state-of-the-art decision support tool for microgrid planning and design. The results of a case study that compares single-node vs. multi-node optimal design for an example microgrid show the importance of multi-node modeling. It has been shown that single-node approaches are not only incapable of optimal DER placement, but may also result in sub-optimal DER portfolio, as well as underestimation of investment costs.
Introduction to high-energy physics and the Stanford Linear Accelerator Center (SLAC)
International Nuclear Information System (INIS)
Clearwater, S.
1983-03-01
The type of research done at SLAC is called High Energy Physics, or Particle Physics. This is basic research in the study of fundamental particles and their interactions. Basic research is research for the sake of learning something. Any practical application cannot be predicted, the understanding is the end in itself. Interactions are how particles behave toward one another, for example some particles attract one another while others repel and still others ignore each other. Interactions of elementary particles are studied to reveal the underlying structure of the universe
Constrained Optimal Stochastic Control of Non-Linear Wave Energy Point Absorbers
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Chen, Jian-Bing; Kramer, Morten
2014-01-01
to extract energy. Constrains are enforced on the control force to prevent large structural stresses in the floater at specific hot spots with the risk of inducing fatigue damage, or because the demanded control force cannot be supplied by the actuator system due to saturation. Further, constraints...... are enforced on the motion of the floater to prevent it from hitting the bottom of the sea or to make unacceptable jumps out of the water. The applied control law, which is of the feedback type with feedback from the displacement, velocity, and acceleration of the floater, contains two unprovided gain...
Introduction to high-energy physics and the Stanford Linear Accelerator Center (SLAC)
Energy Technology Data Exchange (ETDEWEB)
Clearwater, S.
1983-03-01
The type of research done at SLAC is called High Energy Physics, or Particle Physics. This is basic research in the study of fundamental particles and their interactions. Basic research is research for the sake of learning something. Any practical application cannot be predicted, the understanding is the end in itself. Interactions are how particles behave toward one another, for example some particles attract one another while others repel and still others ignore each other. Interactions of elementary particles are studied to reveal the underlying structure of the universe.
e+e-→e-ν-bareud-bar from LEP to linear collider energies
International Nuclear Information System (INIS)
Kurihara, Y.; Shimizu, Y.; Perret-Gallix, D.
1994-12-01
The complete tree level cross-section for the process e + e - → e - ν-bar e ud-bar is computed using the GRACE system, a program package for automatic amplitude calculation. Special attention is brought to the gauge violation problem induced by the finite width of the W-boson. The preserved gauge scheme is introduced and an event generator including double-resonant, single-resonant and non-resonant diagrams with no need for a cut on the electron polar angle is built. A mono jet event rate estimation based on this process at LEP-I energy is discussed. (author). 11 refs., 9 figs
Energy-range relation and mean energy variation in therapeutic particle beams
International Nuclear Information System (INIS)
Kempe, Johanna; Brahme, Anders
2008-01-01
Analytical expressions for the mean energy and range of therapeutic light ion beams and low- and high-energy electrons have been derived, based on the energy dependence of their respective stopping powers. The new mean energy and range relations are power-law expressions relevant for light ion radiation therapy, and are based on measured practical ranges or known tabulated stopping powers and ranges for the relevant incident particle energies. A practical extrapolated range, R p , for light ions was defined, similar to that of electrons, which is very closely related to the extrapolated range of the primary ions. A universal energy-range relation for light ions and electrons that is valid for all material mixtures and compounds has been developed. The new relation can be expressed in terms of the range for protons and alpha particles, and is found to agree closely with experimental data in low atomic number media and when the difference in the mean ionization energy is low. The variation of the mean energy with depth and the new energy-range relation are useful for accurate stopping power and mass scattering power calculations, as well as for general particle transport and dosimetry applications
Prediction of energy-related technology for next 30 years
Energy Technology Data Exchange (ETDEWEB)
Hashiguchi, Isao; Kondo, Satoru
1987-12-01
The report outlines major results of a survey concerning technologies expected to emerge during the next 30 years that was carried out by the Japan's Science and Technology Agency using the DELPHI method. The survey covered 51 technical issues in energy-related areas including fossil energy, nucler energy, natural energy, biomass and energy utilization techniques, and process-related areas including exploration, collection/extraction, transportation/storage, power generation, resources conversion and substitution. For each technical issue, investigation is made on its importance, time of realization, restrictions, procedure and responsible organization for promoting research and development, and government policy. Results show that the importance of nuclear energy will continue to increase and that diversification of energy sources, such as shift to coal, will also become more important. It is indicated that technological breakthroughs, such as the development of new superconducting materials, will accelerate the development of other techniques in related areas and simultaneously increase the importance of such techniques. The survey provides valuable basic data serving for predicting future social changes that may be caused by technical innovation or a shift in view on technology in the economic areas or in the society. (2 figs, 1 tab)
Advertising, marketing and purchase behavior for energy-related products
Energy Technology Data Exchange (ETDEWEB)
Tiedemann, K.; Nelson, D.
1998-07-01
Energy conservation programs have relied heavily on incentives and regulatory standards to reduce residential energy consumption. However, in the changing market environment characterized by competitive pressures, alternative mechanisms such as marketing and promotions may increase substantially in importance compared to the demand-side management programs which have been the focus of most research. This paper describes the role of marketing and promotions in encouraging energy efficiency at the household level in British Columbia. The paper examines three related issues: first, the purchase process for energy-related products; second, the criteria used by customers in making purchase decisions; and third, the impact and effectiveness of alternative marketing tools. A key finding is the energy-related purchases do not fall into the impulse purchase category. There are two reasons for this: first, most of these products require installation and this requires a high level of commitment on the part of the purchaser; second, many energy-related products require a significant outlay of funds and this reduces impulse buying.
An attempt to assess the energy related climate variability
Energy Technology Data Exchange (ETDEWEB)
Iotova, A [Bulgarian Academy of Sciences, Sofia (Bulgaria). National Inst. of Meteorology and Hydrology
1996-12-31
A lot of efforts are directed now to study the interactions between energy and climate because of their significant importance for our planet. Globally, energy related emissions of Greenhouse Gases (GHGs) contribute for atmospheric warming. On regional level, where it is more difficult to determine concrete direction of climate variability and change, the role of energy remains considerable being not so direct as in the case of emissions` impact. Still there is essential necessity for further analyses and assessments of energy related climate variations and change in order to understand better and to quantify the energy - climate relations. In the presentation an attempt is made to develop approach for assessment of energy related climate variations on regional level. For this purpose, data and results from the research within Bulgarian Case Study (BCS) in the DECADES Inter-Agency Project framework are used. Considering the complex nature of the examined interconnections and the medium stage of the Study`s realisation, at the moment the approach can be presented in conceptual form. Correspondingly, the obtained results are illustrative and preliminary
An attempt to assess the energy related climate variability
Energy Technology Data Exchange (ETDEWEB)
Iotova, A. [Bulgarian Academy of Sciences, Sofia (Bulgaria). National Inst. of Meteorology and Hydrology
1995-12-31
A lot of efforts are directed now to study the interactions between energy and climate because of their significant importance for our planet. Globally, energy related emissions of Greenhouse Gases (GHGs) contribute for atmospheric warming. On regional level, where it is more difficult to determine concrete direction of climate variability and change, the role of energy remains considerable being not so direct as in the case of emissions` impact. Still there is essential necessity for further analyses and assessments of energy related climate variations and change in order to understand better and to quantify the energy - climate relations. In the presentation an attempt is made to develop approach for assessment of energy related climate variations on regional level. For this purpose, data and results from the research within Bulgarian Case Study (BCS) in the DECADES Inter-Agency Project framework are used. Considering the complex nature of the examined interconnections and the medium stage of the Study`s realisation, at the moment the approach can be presented in conceptual form. Correspondingly, the obtained results are illustrative and preliminary
Relating Linear and Volumetric Variables Through Body Scanning to Improve Human Interfaces in Space
Margerum, Sarah E.; Ferrer, Mike A.; Young, Karen S.; Rajulu, Sudhakar
2010-01-01
Designing space suits and vehicles for the diverse human population present unique challenges for the methods of traditional anthropometry. Space suits are bulky and allow the operator to shift position within the suit and inhibit the ability to identify body landmarks. Limited suit sizing options also cause variability in fit and performance between similarly sized individuals. Space vehicles are restrictive in volume in both the fit and the ability to collect data. NASA's Anthropometric and Biomechanics Facility (ABF) has utilized 3D scanning to shift from traditional linear anthropometry to explore and examine volumetric capabilities to provide anthropometric solutions for design. Overall, the key goals are to improve the human-system performance and develop new processes to aid in the design and evaluation of space systems. Four case studies are presented that illustrate the shift from purely linear analyses to an augmented volumetric toolset to predict and analyze the human within the space suit and vehicle. The first case study involves the calculation of maximal head volume to estimate total free volume in the helmet for proper air exchange. Traditional linear measurements resulted in an inaccurate representation of the head shape, yet limited data exists for the determination of a large head volume. Steps were first taken to identify and classify a maximum head volume and the resulting comparisons to the estimate are presented in this paper. This study illustrates the gap between linear components of anthropometry and the need for overall volume metrics in order to provide solutions. A second case study examines the overlay of the space suit scans and components onto scanned individuals to quantify fit and clearance to aid in sizing the suit to the individual. Restrictions in space suit size availability present unique challenges to optimally fit the individual within a limited sizing range while maintaining performance. Quantification of the clearance and
Fiber-wise linear Poisson structures related to W∗-algebras
Odzijewicz, Anatol; Jakimowicz, Grzegorz; Sliżewska, Aneta
2018-01-01
In the framework of Banach differential geometry we investigate the fiber-wise linear Poisson structures as well as the Lie groupoid and Lie algebroid structures which are defined in the canonical way by the structure of a W∗-algebra (von Neumann algebra) M. The main role in this theory is played by the complex Banach-Lie groupoid G(M) ⇉ L(M) of partially invertible elements of M over the lattice L(M) of orthogonal projections of M. The Atiyah sequence and the predual Atiyah sequence corresponding to this groupoid are investigated from the point of view of Banach Poisson geometry. In particular we show that the predual Atiyah sequence fits in a short exact sequence of complex Banach sub-Poisson V B-groupoids with G(M) ⇉ L(M) as the side groupoid.
Clery, Stephane; Cumming, Bruce G; Nienborg, Hendrikje
2017-01-18
Fine judgments of stereoscopic depth rely mainly on relative judgments of depth (relative binocular disparity) between objects, rather than judgments of the distance to where the eyes are fixating (absolute disparity). In macaques, visual area V2 is the earliest site in the visual processing hierarchy for which neurons selective for relative disparity have been observed (Thomas et al., 2002). Here, we found that, in macaques trained to perform a fine disparity discrimination task, disparity-selective neurons in V2 were highly selective for the task, and their activity correlated with the animals' perceptual decisions (unexplained by the stimulus). This may partially explain similar correlations reported in downstream areas. Although compatible with a perceptual role of these neurons for the task, the interpretation of such decision-related activity is complicated by the effects of interneuronal "noise" correlations between sensory neurons. Recent work has developed simple predictions to differentiate decoding schemes (Pitkow et al., 2015) without needing measures of noise correlations, and found that data from early sensory areas were compatible with optimal linear readout of populations with information-limiting correlations. In contrast, our data here deviated significantly from these predictions. We additionally tested this prediction for previously reported results of decision-related activity in V2 for a related task, coarse disparity discrimination (Nienborg and Cumming, 2006), thought to rely on absolute disparity. Although these data followed the predicted pattern, they violated the prediction quantitatively. This suggests that optimal linear decoding of sensory signals is not generally a good predictor of behavior in simple perceptual tasks. Activity in sensory neurons that correlates with an animal's decision is widely believed to provide insights into how the brain uses information from sensory neurons. Recent theoretical work developed simple
International Nuclear Information System (INIS)
Vega, Jose M. de la; Guirado, Damian; Vilches, Manuel; Perdices, Jose I.; Lallena, Antonio M.
2008-01-01
Purpose. To present a novel methodology to model the intrinsic electron spectra of a linear accelerator and its situation with respect to the energy window. Methods. The spectra are obtained by fitting the variation of R 50 and the maximum dose rate measured in a water phantom with the bending magnet current. The obtained spectra are verified with a realistic Monte Carlo simulation of the accelerator. Results. The intrinsic spectra and their relative position with respect to the energy window of the bending magnet have been obtained for a Siemens Mevatron KDS and an ELEKTA SL20 accelerators. Conclusions. Using this method in the commissioning and scheduled revisions of the accelerator, the tuning of the current of the bending magnet could be done in such a way that both the quality of the beam and the dose rate would reach a better long-term stability
Jacobson, Daniel; Stratt, Richard M.
2014-05-01
Because the geodesic pathways that a liquid follows through its potential energy landscape govern its slow, diffusive motion, we suggest that these pathways are logical candidates for the title of a liquid's "inherent dynamics." Like their namesake "inherent structures," these objects are simply features of the system's potential energy surface and thus provide views of the system's structural evolution unobstructed by thermal kinetic energy. This paper shows how these geodesic pathways can be computed for a liquid of linear molecules, allowing us to see precisely how such molecular liquids mix rotational and translational degrees of freedom into their dynamics. The ratio of translational to rotational components of the geodesic path lengths, for example, is significantly larger than would be expected on equipartition grounds, with a value that scales with the molecular aspect ratio. These and other features of the geodesics are consistent with a picture in which molecular reorientation adiabatically follows translation—molecules largely thread their way through narrow channels available in the potential energy landscape.
2018-01-01
The energy-growth nexus has important policy implications for economic development. The results from many past studies that investigated the causality direction of this nexus can lead to misleading policy guidance. Using data on China from 1953 to 2013, this study shows that an application of causality test on the time series of energy consumption and national output has masked a lot of information. The Toda-Yamamoto test with bootstrapped critical values and the newly proposed non-linear causality test reveal no causal relationship. However, a further application of these tests using series in different time-frequency domain obtained from wavelet decomposition indicates that while energy consumption Granger causes economic growth in the short run, the reverse is true in the medium term. A bidirectional causal relationship is found for the long run. This approach has proven to be superior in unveiling information on the energy-growth nexus that are useful for policy planning over different time horizons. PMID:29782534
Energy Technology Data Exchange (ETDEWEB)
Welsch, Dominic Markus
2010-03-10
The High-Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) which is planned as a major extension to the present facility of the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt. The HESR will provide antiprotons in the momentum range from 1.5 to 15 GeV/c for the internal target experiment PANDA. The demanding requirements of PANDA in terms of beam quality and luminosity together with a limited production rate of antiprotons call for a long beam life time and a minimum of beam loss. Therefore, an effective closed orbit correction and a sufficiently large dynamic aperture of the HESR are crucial. With this thesis I present my work on both of these topics. The expected misalignments of beam guiding magnets have been estimated and used to simulate the closed orbit in the HESR. A closed orbit correction scheme has been developed for different ion optical settings of the HESR and numerical simulations have been performed to validate the scheme. The proposed closed orbit correction method which uses the orbit response matrix has been benchmarked at the Cooler Synchrotron COSY of the Forschungszentrum Juelich. A chromaticity correction scheme for the HESR consisting of sextupole magnets has been developed to reduce tune spread and thus to minimize the emittance growth caused by betatron resonances. The chromaticity correction scheme has been optimized through dynamic aperture calculations. The estimated field errors of the HESR dipole and quadrupole magnets have been included in the non-linear beam dynamics studies. Investigations concerning their optimization have been carried out. The ion optical settings of the HESR have been improved using dynamic aperture calculations and the technique of frequency map analysis. The related diffusion coefficient was also used to predict long-term stability based on short-term particle tracking. With a reasonable reduction of the quadrupole magnets field errors and a
International Nuclear Information System (INIS)
Anastassi, Z. A.; Simos, T. E.
2010-01-01
We develop a new family of explicit symmetric linear multistep methods for the efficient numerical solution of the Schroedinger equation and related problems with oscillatory solution. The new methods are trigonometrically fitted and have improved intervals of periodicity as compared to the corresponding classical method with constant coefficients and other methods from the literature. We also apply the methods along with other known methods to real periodic problems, in order to measure their efficiency.
International Nuclear Information System (INIS)
Exposito, M. R.; Terron, J. A.; Domingo, C.; Amgarou, K.; Garcia-Fuente, M. J.; Gonzalez-Soto, J.; Legares, J. I.; Gomez, F.; Sanchez-Doblado, F.
2011-01-01
Pollution neutron radiotherapy with photon beams of energy greater than 10 MV represents a major inconvenience for patients in treatment, given the increased likelihood of developing a second radiation-induced cancer. Most of these neutrons are generated in the accelerator head as a result of the interaction of photons with heavy metals. As a result, knowledge of the effect on patients in the fields of neutrons from the accelerator should lead to improvements in design and selection of components from manufacturers. For this purpose, we have performed comparative measurements of the neutron fields present in both the patient (represented by an anthropomorphic phantom) and in the treatment room, considering almost all types of machines currently operating in the world.
Feenstra, Peter; Brunsteiner, Michael; Khinast, Johannes
2014-10-01
The interaction between drug products and polymeric packaging materials is an important topic in the pharmaceutical industry and often associated with high costs because of the required elaborative interaction studies. Therefore, a theoretical prediction of such interactions would be beneficial. Often, material parameters such as the octanol water partition coefficient are used to predict the partitioning of migrant molecules between a solvent and a polymeric packaging material. Here, we present the investigation of the partitioning of various migrant molecules between polymers and solvents using molecular dynamics simulations for the calculation of interaction energies. Our results show that the use of a model for the interaction between the migrant and the polymer at atomistic detail can yield significantly better results when predicting the polymer solvent partitioning than a model based on the octanol water partition coefficient. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Fisher information, kinetic energy and uncertainty relation inequalities
International Nuclear Information System (INIS)
Luo Shunlong
2002-01-01
By interpolating between Fisher information and mechanical kinetic energy, we introduce a general notion of kinetic energy with respect to a parameter of Schroedinger wavefunctions from a statistical inference perspective. Kinetic energy is the sum of Fisher information and an integral of a parametrized analogue of quantum mechanical current density related to phase. A family of integral inequalities concerning kinetic energy and moments are established, among which the Cramer-Rao inequality and the Weyl-Heisenberg inequality, are special cases. In particular, the integral inequalities involving the negative order moments are relevant to the study of electron systems. Moreover, by specifying the parameter to a scale, we obtain a family of inequalities of uncertainty relation type which incorporate the position and momentum observables symmetrically in a single quantity. (author)
Nonlinear generalization of special relativity at very high energies
International Nuclear Information System (INIS)
Winterberg, F.
1984-01-01
It is shown, that the introduction of a fundamental length constant into the operator representation of the quantum mechanical commutation relations, as suggested by Bagge, leads to a nonlinear generalization of the Lorentz transformations. The theory requires the introduction of a substratum (ether) and which can be identified as the zero point vacuum energy. At very high energies a non-Lorentz invariant behaviour for the cross sections between elementary particles is predicted. Using the Einstein clock synchronisation definition, the velocity of light is also constant and equal to c in the new theory, but the zero point vacuum energy becomes finite, as are all other quantities which are divergent in Lorentz invariant quantum field theories. In the limiting case where the length constant is set equal to zero, the zero point vacuum energy diverges and special relativity is recovered. (orig.) [de
International Nuclear Information System (INIS)
Bolisetti, Chandrakanth; Whittaker, Andrew S.; Mason, H. Benjamin; Almufti, Ibrahim; Willford, Michael
2014-01-01
Highlights: • Performed equivalent linear and nonlinear site response analyses using industry-standard numerical programs. • Considered a wide range of sites and input ground motions. • Noted the practical issues encountered while using these programs. • Examined differences between the responses calculated from different programs. • Results of biaxial and uniaxial analyses are compared. - Abstract: Site response analysis is a precursor to soil-structure interaction analysis, which is an essential component in the seismic analysis of safety-related nuclear structures. Output from site response analysis provides input to soil-structure interaction analysis. Current practice in calculating site response for safety-related nuclear applications mainly involves the equivalent linear method in the frequency-domain. Nonlinear time-domain methods are used by some for the assessment of buildings, bridges and petrochemical facilities. Several commercial programs have been developed for site response analysis but none of them have been formally validated for large strains and high frequencies, which are crucial for the performance assessment of safety-related nuclear structures. This study sheds light on the applicability of some industry-standard equivalent linear (SHAKE) and nonlinear (DEEPSOIL and LS-DYNA) programs across a broad range of frequencies, earthquake shaking intensities, and sites ranging from stiff sand to hard rock, all with a focus on application to safety-related nuclear structures. Results show that the equivalent linear method is unable to reproduce the high frequency acceleration response, resulting in almost constant spectral accelerations in the short period range. Analysis using LS-DYNA occasionally results in some unrealistic high frequency acceleration ‘noise’, which can be removed by smoothing the piece-wise linear backbone curve. Analysis using DEEPSOIL results in abrupt variations in the peak strains of consecutive soil layers
Energy Technology Data Exchange (ETDEWEB)
Kreitzer, B R; Houck, T L; Luchterhand, O C
2011-07-19
This paper addresses thermal drift in sodium thiosulfate liquid resistors and their replacement with linear disk resistors from HVR Advanced Power Components. Sodium thiosulfate resistors in the FXR induction linear accelerator application have a temperature coefficient of {approx}1.8%/C. The FXR Marx banks send an 8kJ pulse through eight 524 cm{sup 3} liquid resistors at a repetition rate of up to 1 every 45 seconds. Every pulse increases the temperature of the solution by {approx}0.4 C which produces a 0.7% change in resistance. The typical cooling rate is {approx}0.4 C per minute which results in {approx}0.1% energy drop per pulse during continuous pulsed operations. A radiographic accelerator is extraordinarily sensitive to energy variations. Changes in beam energy produce movement in beam transport, changes in spot size, and large dose variations. If self-heating were the only problem, we could predict the increase in input voltage required to compensate for the energy loss. However, there are other variables that influence the temperature of the resistors such as focus magnet heating, changes in room temperature, changes in cooling water, where the cell is located, etc. Additionally not all of the resistors have equivalent cooling rates and as many as 32 resistors are driven from a single power source. The FXR accelerator group elected to replace the sodium thiosulfate resistors with HVR Linear Disk Resistors in a stack type configuration. With data limited for these resistors when used in oil and at low resistance values, a full characterization needed to be performed. High currents (up to 15kA), high voltages (up to 400kV), and Fast Rise times (<10ns) made a resistor choice difficult. Other solid resistors have been tried and had problems at the connection points and with the fact that the resistivity changed as they absorbed oil. The selected HVR resistors have the advantage of being manufactured with the oil impregnated in to them so this characteristic
International Nuclear Information System (INIS)
Kreitzer, B.R.; Houck, T.L.; Luchterhand, O.C.
2011-01-01
This paper addresses thermal drift in sodium thiosulfate liquid resistors and their replacement with linear disk resistors from HVR Advanced Power Components. Sodium thiosulfate resistors in the FXR induction linear accelerator application have a temperature coefficient of ∼1.8%/C. The FXR Marx banks send an 8kJ pulse through eight 524 cm 3 liquid resistors at a repetition rate of up to 1 every 45 seconds. Every pulse increases the temperature of the solution by ∼0.4 C which produces a 0.7% change in resistance. The typical cooling rate is ∼0.4 C per minute which results in ∼0.1% energy drop per pulse during continuous pulsed operations. A radiographic accelerator is extraordinarily sensitive to energy variations. Changes in beam energy produce movement in beam transport, changes in spot size, and large dose variations. If self-heating were the only problem, we could predict the increase in input voltage required to compensate for the energy loss. However, there are other variables that influence the temperature of the resistors such as focus magnet heating, changes in room temperature, changes in cooling water, where the cell is located, etc. Additionally not all of the resistors have equivalent cooling rates and as many as 32 resistors are driven from a single power source. The FXR accelerator group elected to replace the sodium thiosulfate resistors with HVR Linear Disk Resistors in a stack type configuration. With data limited for these resistors when used in oil and at low resistance values, a full characterization needed to be performed. High currents (up to 15kA), high voltages (up to 400kV), and Fast Rise times (<10ns) made a resistor choice difficult. Other solid resistors have been tried and had problems at the connection points and with the fact that the resistivity changed as they absorbed oil. The selected HVR resistors have the advantage of being manufactured with the oil impregnated in to them so this characteristic is minimized while still
International Nuclear Information System (INIS)
Alcaraz, J.
2001-01-01
After several years of study e''+ e''- linear colliders in the TeV range have emerged as the major and optimal high-energy physics projects for the post-LHC era. These notes summarize the present status form the main accelerator and detector features to their physics potential. The LHC era. These notes summarize the present status, from the main accelerator and detector features to their physics potential. The LHC is expected to provide first discoveries in the new energy domain, whereas an e''+ e''- linear collider in the 500 GeV-1 TeV will be able to complement it to an unprecedented level of precision in any possible areas: Higgs, signals beyond the SM and electroweak measurements. It is evident that the Linear Collider program will constitute a major step in the understanding of the nature of the new physics beyond the Standard Model. (Author) 22 refs
Non-linear QCD dynamics in two-photon interactions at high energies
Energy Technology Data Exchange (ETDEWEB)
Carvalho, F. [Depto de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo Rua Arthur Riedel 275, Jd. Eldorado, Cep 09972-270, Diadema, SP (Brazil); Navarra, F. S.; Cazaroto, E. [Instituto de Fisica, Universidade de Sao Paulo, Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil); Goncalves, V. P. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas Caixa Postal 354, 96010-900, Pelotas, RS (Brazil)
2013-03-25
Assuming that the dipole - dipole cross section can be related with the dipole - proton cross section, we calculate the total {gamma}{gamma}, {gamma}*{gamma}* cross-sections and the real photon structure function F{sup {gamma}}{sub 2}(x,Q{sup 2}) using the recent solution of the BK equation with running coupling constant.
Application of a linear free energy relationship to crystalline solids of MO2 and M(OH)4
International Nuclear Information System (INIS)
Xu Huifang; Barton, L.L.
1999-01-01
In this letter, a linear free energy relationship developed by Sverjensky and Molling is used to predict the Gibbs free energies of formation of crystalline phases of M 4+ O 2 and M 4+ (OH) 4 from the known thermodynamic properties of aqueous tetravalent cations (M 4+ ). The modified Sverjensky and Molling equation for tetravalent cations is expressed as ΔG 0 f,M v X = a M v X ΔG 0 n,M 4+ + b M v X + β M v X r M 4+ , where the coefficients a M v X , b M v X and β M v X characterize a particular structural family of M v X, r M 4+ is the ionic radius of M 4+ cation, ΔG 0 f,M v X is the standard Gibbs free energy of formation of M v X, and ΔG 0 n,M 4+ is the standard non-solvation energy of cation M 4+ . By fitting the equation to the existing thermodynamic data, the coefficients in the equation for the MO 2 family minerals are estimated to be: a M v X = 0.670, β M v X = 32 (kcal/mol A), and b = -430.02 (kcal/mol). The constrained relationship can be used to predict the standard Gibbs free energies of formation of crystalline phases and fictive phases (i.e., phases which are thermodynamically unstable and do not occur at standard conditions) within the isostructural families of M 4+ O 2 and M 4+ (OH) 4 if the standard Gibbs free energies of formation of the tetravalent cations are known. (orig.)
On the reciprocity-like relations in linear neutron transport theory
International Nuclear Information System (INIS)
Modak, R.S.; Sahni, D.C.
1997-01-01
The existence of certain reciprocity-like relations in neutron transport theory was shown earlier under some quite restrictive conditions. Here, these relations are shown to be valid in more general situations by using a different approach based on individual neutron trajectories. (author)
Galaxy bias and non-linear structure formation in general relativity
International Nuclear Information System (INIS)
Baldauf, Tobias; Seljak, Uroš; Senatore, Leonardo; Zaldarriaga, Matias
2011-01-01
Length scales probed by the large scale structure surveys are becoming closer and closer to the horizon scale. Further, it has been recently understood that non-Gaussianity in the initial conditions could show up in a scale dependence of the bias of galaxies at the largest possible distances. It is therefore important to take General Relativistic effects into account. Here we provide a General Relativistic generalization of the bias that is valid both for Gaussian and for non-Gaussian initial conditions. The collapse of objects happens on very small scales, while long-wavelength modes are always in the quasi linear regime. Around every small collapsing region, it is therefore possible to find a reference frame that is valid for arbitrary times and where the space time is almost flat: the Fermi frame. Here the Newtonian approximation is applicable and the equations of motion are the ones of the standard N-body codes. The effects of long-wavelength modes are encoded in the mapping from the cosmological frame to the local Fermi frame. At the level of the linear bias, the effect of the long-wavelength modes on the dynamics of the short scales is all encoded in the local curvature of the Universe, which allows us to define a General Relativistic generalization of the bias in the standard Newtonian setting. We show that the bias due to this effect goes to zero as the square of the ratio between the physical wavenumber and the Hubble scale for modes longer than the horizon, confirming the intuitive picture that modes longer than the horizon do not have any dynamical effect. On the other hand, the bias due to non-Gaussianities does not need to vanish for modes longer than the Hubble scale, and for non-Gaussianities of the local kind it goes to a constant. As a further application of our setup, we show that it is not necessary to perform large N-body simulations to extract information about long-wavelength modes: N-body simulations can be done on small scales and long
The psychosocial and behavioral characteristics related to energy misreporting.
Maurer, Jaclyn; Taren, Douglas L; Teixeira, Pedro J; Thomson, Cynthia A; Lohman, Timothy G; Going, Scott B; Houtkooper, Linda B
2006-02-01
Energy underreporting occurs in 2% to 85% and overreporting in 1% to 39% of various populations. Efforts are needed to understand the psychosocial and behavioral characteristics associated with misreporting to help improve the accuracy of dietary self-reporting. Past research suggests that higher social desirability and greater eating restraint are key factors influencing misreporting, while a history of dieting and being overweight are more moderately associated. Eating disinhibition, body image, depression, anxiety, and fear of negative evaluation may be related to energy misreporting, but evidence is insufficient. This review will provide a detailed discussion of the published associations among psychosocial and behavioral characteristics and energy misreporting.
Implicit ligand theory for relative binding free energies
Nguyen, Trung Hai; Minh, David D. L.
2018-03-01
Implicit ligand theory enables noncovalent binding free energies to be calculated based on an exponential average of the binding potential of mean force (BPMF)—the binding free energy between a flexible ligand and rigid receptor—over a precomputed ensemble of receptor configurations. In the original formalism, receptor configurations were drawn from or reweighted to the apo ensemble. Here we show that BPMFs averaged over a holo ensemble yield binding free energies relative to the reference ligand that specifies the ensemble. When using receptor snapshots from an alchemical simulation with a single ligand, the new statistical estimator outperforms the original.
Nano crystals-Related Synthesis, Assembly, and Energy Applications 2012
International Nuclear Information System (INIS)
Zou, B.; Yu, W.W.; Seo, J.; Zhu, T.; Hu, M.Z.
2012-01-01
During the past decades, nano crystals have attracted broad attention due to their unique shape- and size-dependent physical and chemical properties that differ drastically from their bulk counterparts. Hitherto, much effort has been dedicated to achieving rational controlling over the morphology, assembly, and related energy applications of the nano materials. Therefore, the ability to manipulate the morphology, size, and size distribution of inorganic nano materials is still an important goal in modern materials physics and chemistry. Especially, the world's demand for energy supply is causing a dramatic escalation of social and political unrest. Likewise, the environmental impact of the global climate change due to the combustion of fossil fuel is becoming increasingly alarming. These problems compel us to search for effective routes to build devices that can supply sustainable energy, with not only high efficiency but also environmental friendship. One of ways to relieve the energy crisis is to exploit devices based on renewable energy sources, such as solar energy and water power. Aiming at this exploration, the primary stage requires the design of appropriate strategies for the synthesis of high-quality nano crystals with respect to size uniformity and superior electrochemical performances. As a consequence, we organize the current special issue for Journal of Nano materials to provide the authors with a platform and readers with the latest achievements of nano crystals-related synthesis, assembly, and energy applications.
International Nuclear Information System (INIS)
2002-01-01
The main goals of the majority of processes and developments relating to energy sectors of today present the enhancement of energy sector efficiency, ensuring of stable financial sources and safe return of the means invested through practice of activities at the market of energy and energy services, i.e. public services or monopoly. This is to be achieved by means of energy sector restructuring and liberalisation, pluralism of ownership and transparency of the organisational and management scheme. Thereby, an important role and significance for the realisation of these aims, for the development and energy market functioning on the national level, as well as for the achievement of reciprocity and complementarity of national markets with regional and multi-national energy markets, is held by models and forms of energy activity regulation. In a limited sense, the regulation itself should constitute an adequate stimulating framework for free energy flows, transparent and non- discriminating conditions for the utilisation of transmission and transportation systems and networks, protection of supplier choice rights, pluralism of ownership and ownership rights, protection of energy and energy services' quality, environmental protection, protection of purchasers and consumers and protection of energy subjects. For all these reasons, aspects and problems appertaining to energy sector and energy activities' regulation have been chosen as the theme and contents of the 11th Forum. Various countries have undertaken and implemented or are in the process of implementation of different models and contents referring to energy sector and energy activity regulation. Experience and legislative practice are quoted as the main criteria. The aim of this Forum is to set forth and clarify experiences and solutions connected to the regulation of energy activities in numerous European countries or in the world
The EU Integration Discourse in the Energy Relations with Russia
Directory of Open Access Journals (Sweden)
Tichý Lukáš
2016-01-01
Full Text Available The energy issue is a long-term one of the most discussed, controversial topics in relations between the European Union and the Russian Federation. The intention of the present article is an attempt to overcome the largely non-discursive and in the security conditions anchored way of looking at the energy interaction of the EU and the RF and through an integration discourse to analyze EU energy relations with Russia in the years 2004 - 2014. In the theoretical level, the article is based on a critical constructivism, which in relation to the discourse as the main concept reflects a number of fundamental knowledge. At the methodological level, the article is based on the discourse analysis as a basic methodological tool through which the author examines the EU text documents.
On the relation between flexibility analysis and robust optimization for linear systems
Zhang, Qi
2016-03-05
Flexibility analysis and robust optimization are two approaches to solving optimization problems under uncertainty that share some fundamental concepts, such as the use of polyhedral uncertainty sets and the worst-case approach to guarantee feasibility. The connection between these two approaches has not been sufficiently acknowledged and examined in the literature. In this context, the contributions of this work are fourfold: (1) a comparison between flexibility analysis and robust optimization from a historical perspective is presented; (2) for linear systems, new formulations for the three classical flexibility analysis problems—flexibility test, flexibility index, and design under uncertainty—based on duality theory and the affinely adjustable robust optimization (AARO) approach are proposed; (3) the AARO approach is shown to be generally more restrictive such that it may lead to overly conservative solutions; (4) numerical examples show the improved computational performance from the proposed formulations compared to the traditional flexibility analysis models. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3109–3123, 2016
Preliminary grouping in a strong-current linear ion accelerator with a low injection energy
International Nuclear Information System (INIS)
Enal'skii, V.A.; Osipov, V.V.; Fedotov, A.P.; Shembel, B.K.
1984-08-01
The results of the numerical calculations show that, in strong-current accelerators with a low injection energy and a large increase in the velocity of the particles on the gaps: (1) the effect of the space charge, with grouping of the particles, may be weakened, to a considerable extent, by the utilization of large grouping voltages. In this case, the coefficient of grouping may exceed the corresponding values, given by the kinematic theory. (2) The spread of the velocities of the grouped particles, increased within certain limits, does not hinder the subsequent effective capture of the latter in a synchronous acceleration mode, because of the expanded region of capture, which is characteristic for a similar accelerator. (3) With small values of the generalized parameter of the space charge (q less than or equal to 0.3), one may, for calculation of the buncher, make use of the results of the kinematic theory with a known approximation. With values of q > 0.5, good results are provided by the theory of German and Kompaneets. In the intermediate range, for determination of the optimal drift length and the coefficient of grouping, it is necessary to utilize numerical methods of calculation. 9 references, 4 figures
Long term energy-related environmental issues of copper production
Energy Technology Data Exchange (ETDEWEB)
Alvarado, S. [University of Chile, Santiago (Chile). Dept. of Mechanical Engineering; Maldonado, P.; Barrios, A.; Jaques, I. [University of Chile, Santiago (Chile). Energy Research Program
2002-02-01
Primary copper production is a major activity in the mining sector of several countries. However, it is highly energy-intensive and poses important environmental hazards. In the case of Chile, the world's largest copper producer (40% of world total), we examine its energy consumption and energy-related environmental implications over a time horizon of 25 years. Concerning the latter, we focus on greenhouse-gas (GHG) emissions, one of the most debated environmental issues. This paper follows up our previous report in which the current situation was analyzed and a particular technical option for improving the energy efficiency and concurrently reducing GHG emissions was discussed. Estimated reference or base (BS) and mitigation (MS) scenarios are developed for the period ending in 2020. The former assesses the energy demand projected in accordance with production forecasts and specific energy consumption patterns (assuming that energy efficiency measures are adopted 'spontaneously') with their resultant GHG emissions, while the latter assumes induced actions intended to reduce emissions by adopting an aggressive policy of efficient energy use. For the year 2020, the main results are: (i) BS, 1214 t of CO{sub 2}/ton of refined copper content (49% lower than in 1994); (ii) MS, 1037 t of CO{sub 2}/t of refined copper content (56% lower than in 1994). CO{sub 2} emissions have been estimated considering both fuel and electricity process requirements. (author)
Long term energy-related environmental issues of copper production
International Nuclear Information System (INIS)
Alvarado, S.; Maldonado, P.; Barrios, A.; Jaques, I.
2002-01-01
Primary copper production is a major activity in the mining sector of several countries. However, it is highly energy-intensive and poses important environmental hazards. In the case of Chile, the world's largest copper producer (40% of world total), we examine its energy consumption and energy-related environmental implications over a time horizon of 25 years. Concerning the latter, we focus on greenhouse-gas (GHG) emissions, one of the most debated environmental issues. This paper follows up our previous report in which the current situation was analyzed and a particular technical option for improving the energy efficiency and concurrently reducing GHG emissions was discussed. Estimated reference or base (BS) and mitigation (MS) scenarios are developed for the period ending in 2020. The former assesses the energy demand projected in accordance with production forecasts and specific energy consumption patterns (assuming that energy efficiency measures are adopted 'spontaneously') with their resultant GHG emissions, while the latter assumes induced actions intended to reduce emissions by adopting an aggressive policy of efficient energy use. For the year 2020, the main results are: (i) BS, 1214 t of CO 2 /ton of refined copper content (49% lower than in 1994); (ii) MS, 1037 t of CO 2 /t of refined copper content (56% lower than in 1994). CO 2 emissions have been estimated considering both fuel and electricity process requirements. (author)
Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics
Giesselmann, Jan
2016-10-26
For an Euler system, with dynamics generated by a potential energy functional, we propose a functional format for the relative energy and derive a relative energy identity. The latter, when applied to specific energies, yields relative energy identities for the Euler-Korteweg, the Euler-Poisson, the Quantum Hydrodynamics system, and low order approximations of the Euler-Korteweg system. For the Euler-Korteweg system we prove a stability theorem between a weak and a strong solution and an associated weak-strong uniqueness theorem. In the second part we focus on the Navier-Stokes-Korteweg system (NSK) with non-monotone pressure laws: we prove stability for the NSK system via a modified relative energy approach. We prove continuous dependence of solutions on initial data and convergence of solutions of a low order model to solutions of the NSK system. The last two results provide physically meaningful examples of how higher order regularization terms enable the use of the relative energy framework for models with energies which are not poly- or quasi-convex, but compensating via higher-order gradients.
Lorenzo-Seva, Urbano; Ferrando, Pere J
2011-03-01
We provide an SPSS program that implements currently recommended techniques and recent developments for selecting variables in multiple linear regression analysis via the relative importance of predictors. The approach consists of: (1) optimally splitting the data for cross-validation, (2) selecting the final set of predictors to be retained in the equation regression, and (3) assessing the behavior of the chosen model using standard indices and procedures. The SPSS syntax, a short manual, and data files related to this article are available as supplemental materials from brm.psychonomic-journals.org/content/supplemental.
Constraints on stress-energy perturbations in general relativity
International Nuclear Information System (INIS)
Traschen, J.
1985-01-01
Conditions are found for the existence of integral constraints on stress-energy perturbations in general relativity. The integral constraints can be thought of as a general-relativistic generalization of the conservation of energy and momentum of matter perturbations in special relativity. The constraints are stated in terms of a vector field V, and the Robertson-Walker spacetimes are shown to have such constraint vectors. Although in general V is not a Killing vector, in a vacuum spacetime the constraint vectors are precisely the Killing vectors
Approximate theory the electromagnetic energy of solenoid in special relativity
International Nuclear Information System (INIS)
Prastyaningrum, I; Kartikaningsih, S.
2017-01-01
Solenoid is a device that is often used in electronic devices. A solenoid is electrified will cause a magnetic field. In our analysis, we just focus on the electromagnetic energy for solenoid form. We purpose to analyze by the theoretical approach in special relativity. Our approach is begun on the Biot Savart law and Lorentz force. Special theory relativity can be derived from the Biot Savart law, and for the energy can be derived from Lorentz for, by first determining the momentum equation. We choose the solenoid form with the goal of the future can be used to improve the efficiency of the electrical motor. (paper)
Intelligent structures and design of energy related facilities
International Nuclear Information System (INIS)
Namba, Haruyuki
1994-01-01
Possibility of applying intelligent structural concepts to civil design of energy plants is discussed. Intelligent structures, which are now common in aerospace engineering field, are also referred to as adaptive structures or smart structures depending on cases. Among various existing concepts, reconfigurable structures, precise shape control, structural monitoring using smart materials of optical fiber sensors, and relation with recent innovative communication technologies are focused from civil engineering point of view. Application of such new technologies will help to enhance design of energy related plants, which include multiplex functions which need to be very reliable and safe. (author)
International Nuclear Information System (INIS)
Vlahostergios, Z.; Yakinthos, K.; Goulas, A.
2009-01-01
We present an effort to model the separation-induced transition on a flat plate with a semi-circular leading edge, using a cubic non-linear eddy-viscosity model combined with the laminar kinetic energy. A non-linear model, compared to a linear one, has the advantage to resolve the anisotropic behavior of the Reynolds-stresses in the near-wall region and it provides a more accurate expression for the generation of turbulence in the transport equation of the turbulence kinetic energy. Although in its original formulation the model is not able to accurately predict the separation-induced transition, the inclusion of the laminar kinetic energy increases its accuracy. The adoption of the laminar kinetic energy by the non-linear model is presented in detail, together with some additional modifications required for the adaption of the laminar kinetic energy into the basic concepts of the non-linear eddy-viscosity model. The computational results using the proposed combined model are shown together with the ones obtained using an isotropic linear eddy-viscosity model, which adopts also the laminar kinetic energy concept and in comparison with the existing experimental data.
Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony
2016-03-08
Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.
Neutron-induced electronic failures around a high-energy linear accelerator
International Nuclear Information System (INIS)
Kry, Stephen F.; Johnson, Jennifer L.; White, R. Allen; Howell, Rebecca M.; Kudchadker, Rajat J.; Gillin, Michael T.
2011-01-01
Purpose: After a new in-vault CT-on-rails system repeatedly malfunctioned following use of a high-energy radiotherapy beam, we investigated the presence and impact of neutron radiation on this electronic system, as well as neutron shielding options. Methods: We first determined the CT scanner's failure rate as a function of the number of 18 MV monitor units (MUs) delivered. We then re-examined the failure rate with both 2.7-cm-thick and 7.6-cm-thick borated polyethylene (BPE) covering the linac head for neutron shielding. To further examine shielding options, as well as to explore which neutrons were relevant to the scanner failure, Monte Carlo simulations were used to calculate the neutron fluence and spectrum in the bore of the CT scanner. Simulations included BPE covering the CT scanner itself as well as covering the linac head. Results: We found that the CT scanner had a 57% chance of failure after the delivery of 200 MUs. While the addition of neutron shielding to the accelerator head reduced this risk of failure, the benefit was minimal and even 7.6 cm of BPE was still associated with a 29% chance of failure after the delivery of 200 MU. This shielding benefit was achieved regardless of whether the linac head or CT scanner was shielded. Additionally, it was determined that fast neutrons were primarily responsible for the electronic failures. Conclusions: As illustrated by the CT-on-rails system in the current study, physicists should be aware that electronic systems may be highly sensitive to neutron radiation. Medical physicists should therefore monitor electronic systems that have not been evaluated for potential neutron sensitivity. This is particularly relevant as electronics are increasingly common in the therapy vault and newer electronic systems may exhibit increased sensitivity.
Energy Technology Data Exchange (ETDEWEB)
Kipfmueller, K.F. [Minnesota Univ., Minneapolis, MN (United States). Dept. of Geography; Salzer, M.W. [Arizona Univ., Tucson, AZ (United States). Laboratory of Tree-Ring Research
2010-01-15
This study investigated sixty-six 5-needle pine growth chronologies from 1896 to their end years in order to identify potential patterns related to linear trends in ring width. Individual chronology responses to climate were also evaluated by comparing the chronologies with seasonal temperature and precipitation data from 1896 to the present date. Chronologies exhibiting similar patterns of climate response were grouped in order to examine the role of treeline proximity on climate-growth relationships. Ring width measurements for pine sites located in the western United States were obtained from the International Tree Ring Data Bank. Growth indices were compared among all sites in order to assess the relative strength of common signals with increasing distance. Pearson correlations were used to calculate linear trends for each chronology. A cluster analysis of climate response patterns indicated that most chronologies positively associated with temperatures were located near upper treeline and contained significant positive linear trends. The study suggested that 5-needle pine treeline chronologies may be used as predictors in temperature reconstructions. However, care must be taken to determine that collection sites have not been impacted by disturbances such as fire or insect outbreaks. 35 refs., 2 tabs., 5 figs.
Energy Technology Data Exchange (ETDEWEB)
Fernandes Neto, Tobias Rafael
2012-06-28
The idea of a flexible industrial manufacturing system for the transfer of material, tooling, processing/filling, etc., in which several vehicles can travel with high speed, high degree of independency and high precision is proposed in this thesis. Such flexible systems show a meaningful economic potential for modern manufacturing systems. The basic concept is that a linear motor has the secondary part fixed to the track while the primary (moving winding) travels along the track (short primary topology). The same principle can work in the other way around, arranging the primary in segments and letting the secondary (carrier) to move from segment to segment (long primary topology). The concept's implementation involves technical issues, such as: the position measurement, the energy and information transfer, the individual position and speed control of the vehicle in which varying speeds increase the possibility of collision, and the smooth transition between segments or different types of the secondary. Finally, multiple vehicles traveling at high speed, high positioning repeatability and rapid acceleration rates increase the production throughout and the reliability compared to conventional manufacturing conveyor systems. As an example, a transporting and processing system based on linear drives is a continuous and closed structure with multiple loops, which permits the safe transport of fragile loads. Although such solutions often need higher investment costs, the lack of mechanical coupling parts and wearing elements in these motors greatly increases their reliability. The long primary topology allows a passive and lightweight vehicle (secondary), avoiding brushes and cables to transfer energy and information. For long distances, the primary is arranged in several electrical independent segments. On the other hand, the short primary configuration uses the winding mounted on the moving part (active vehicle) to produce the traveling wave, the secondary as
Design of a non-linear power take-off simulator for model testing of rotating wave energy devices
Energy Technology Data Exchange (ETDEWEB)
Lopes, M.F.P.; Henriques, J.C.C.; Lopes, Miguel C.; Gato, L.M.C. [IDMEC - Instituto de Engenharia Mecanica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Lisboa (Portugal); Dente Antonio [CIE3 - Center for Innovation in Electrical and Energy Engineering, Lisboa (Portugal)
2009-07-01
Eddy current brakes provide a versatile way of simulating the power take-off system (PTO) in the model testing of wave energy converters at small scale. These are based on the principle that a conductive material moving perpendicularly to a magnetic field generates a braking force proportional to its velocity. This was applied in the design of the PTO simulator of a bottom-hinged flap wave energy converter model, at 1/16 scale. The efforts put into the accurate dynamic simulation of the device led to the development of a controllable PTO simulator, which can be applied to other small scale rotating wave energy device models. A special power source was built to provide the required controllable current intensity to feed the magnetic field generating coils. Different non-linear damping PTO characteristic curves can be simulated by basing the current control on real-time velocity measurement. The calibration of the system was done by connecting the device to a constant rotating speed motor and measuring the resistent torque produced by the PTO with a torquemeter for different values of current intensity through the coils.
International Nuclear Information System (INIS)
Kanamori, Takahiro; Kamata, Shouji; Ito, Shinichi.
1989-01-01
A prototype high energy X-ray CT (computed tomography) system has been developed which employs a linear accelerator as the X-ray source (max. photon energy: 12 MeV). One problem encountered in development of this CT system was to reduce the scattered photons from adjacent detectors, i.e. crosstalk, due to high energy X-rays. This crosstalk was reduced to 2% by means of detector shields using tungsten spacers. Spatial resolution was not affected by such small crosstalk as confirmed by numerical simulations. A second problem was to reduce the scattered photons from the test object. This was done using collimators. A third concern was to realize a wide dynamic range data processing which would allow applications to large and dense objects. This problem was solved by using a sample and hold data acquisition method to reduce the dark current of the photo detectors. The dynamic range of this system was experimentally confirmed over 60 dB. It was demonstrated that slits (width: 2 mm) in an iron object (diameter: 25 cm) could be imaged by this prototype CT system. (author)
A non-linear σ-model related to the fine structure of strings
International Nuclear Information System (INIS)
Abdalla, E.; Abdalla, M.C.B.; Lima Santos, A.
1986-07-01
It is shown that a σ-model related to the strings via Polyakov's construction is classically (but not quantum mechanically) integrable. When fermions are suitably introduced the exact on shell solution is discussed. In the locally supersymmetric case the 1/D expansion is used to integrate out the σ-model fields leaving an effective action for graviton and gravitino. (author)
Abramov, R. V.
2011-12-01
Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger chaotic system would result in general increase of chaos at the slow variables.
Li, Chi-Lin; Lu, Chia-Jung
2009-08-15
Linear solvation energy relationships (LSERs) have been recognized as a useful model for investigating the chemical forces behind the partition coefficients between vapor molecules and absorbents. This study is the first to determine the solvation properties of monolayer-protected gold nanoclusters (MPCs) with different surface ligands. The ratio of partition coefficients/MPC density (K/rho) of 18 volatile organic compounds (VOCs) for four different MPCs obtained through quartz crystal microbalance (QCM) experiments were used for the LSER model calculations. LSER modeling results indicate that all MPC surfaces showed a statistically significant (pattraction, 4-methoxythiophenol-capped MPCs can also interact with polar organics (s=1.04). Showing a unique preference for the hydrogen bond basicity of vapors (b=1.11), 2-benzothiazolethiol-capped MPCs provide evidence of an intra-molecular, proton-shift mechanism on surface of nano-gold.
Non-linear multi-objective model for planning water-energy modes of Novosibirsk Hydro Power Plant
Alsova, O. K.; Artamonova, A. V.
2018-05-01
This paper presents a non-linear multi-objective model for planning and optimizing of water-energy modes for the Novosibirsk Hydro Power Plant (HPP) operation. There is a very important problem of developing a strategy to improve the scheme of water-power modes and ensure the effective operation of hydropower plants. It is necessary to determine the methods and criteria for the optimal distribution of water resources, to develop a set of models and to apply them to the software implementation of a DSS (decision-support system) for managing Novosibirsk HPP modes. One of the possible versions of the model is presented and investigated in this paper. Experimental study of the model has been carried out with 2017 data and the task of ten-day period planning from April to July (only 12 ten-day periods) was solved.
Directory of Open Access Journals (Sweden)
Muthukaruppan eAlagar
2013-10-01
Full Text Available The aim of the present work is to develop a new type of flexible linear aliphatic alkoxy core bridged bisphenol cyanate ester (AECE based POSS nanocomposites for low k applications. The POSS-AECE nanocomposites were developed by incorporating varying weight percentages (0, 5 and 10 wt % of octakis (dimethylsiloxypropylglycidylether silsesquioxane (OG-POSS into cyanate esters. Data from thermal and dielectric studies imply that the POSS reinforced nanocomposite exhibits higher thermal stability and low dielectric value of k=2.4 (10 wt% POSS-AECE4 compared than those of neat AECE. From the contact angle measurement, it is inferred that, the increase in the percentage incorporation of POSS in to AECE, the values of water contact angle was enhanced. Further, the value of surface free energy was lower when compared to that of neat AECE. The molecular level dispersion of POSS into AECE was ascertained from SEM and TEM analyses.
The relation between food price, energy density and diet quality
Directory of Open Access Journals (Sweden)
Margareta Bolarić
2013-01-01
Full Text Available Low energy density diet, high in fruits and vegetables, is related to lower obesity risk and to better health status, but is more expensive. High energy density diet, high in added sugar and fats, is more affordable, but is related to higher obesity and chronic diseases risk. The aim of this study was to report prices according to energy density (low vs. high of food items and to show how food affordability could affect food choice and consumers’ health. Data was collected for 137 raw and processed foods from three purchase sites in Zagreb (one representative for supermarket, one smaller shop and green market. Results showed that low energy density food is more expensive than high energy density food (for example, the price of 1000 kcal from green zucchini (15 kcal/100 g is 124.20 kn while the price of 1000 kcal from sour cream (138 kcal/100 g is 13.99 kn. Food energy price was significantly different (p<0.05 between food groups with highest price for vegetable products (159.04 ± 36.18 kn/1000 kcal and raw vegetables (97.90 ± 50.13 kn/1000 kcal and lowest for fats (8.49 ± 1.22 kn/1000 kcal and cereals and products (5.66 ± 0.76 kn/1000 kcal. Negative correlation (Spearman r=-0.72, p<0.0001 was observed for energy density (kcal/100 g and price of 1000 kcal. Therefore, it is advisable to develop strategies in order to reduce price of low energy density food and encourage its intake since it would improve diet quality, which could lead to better costumers’ health.
Siddiqi, Ariba; Arjunan, Sridhar P; Kumar, Dinesh K
2016-08-01
Age-associated changes in the surface electromyogram (sEMG) of Tibialis Anterior (TA) muscle can be attributable to neuromuscular alterations that precede strength loss. We have used our sEMG model of the Tibialis Anterior to interpret the age-related changes and compared with the experimental sEMG. Eighteen young (20-30 years) and 18 older (60-85 years) performed isometric dorsiflexion at 6 different percentage levels of maximum voluntary contractions (MVC), and their sEMG from the TA muscle was recorded. Six different age-related changes in the neuromuscular system were simulated using the sEMG model at the same MVCs as the experiment. The maximal power of the spectrum, Gaussianity and Linearity Test Statistics were computed from the simulated and experimental sEMG. A correlation analysis at α=0.05 was performed between the simulated and experimental age-related change in the sEMG features. The results show the loss in motor units was distinguished by the Gaussianity and Linearity test statistics; while the maximal power of the PSD distinguished between the muscular factors. The simulated condition of 40% loss of motor units with halved the number of fast fibers best correlated with the age-related change observed in the experimental sEMG higher order statistical features. The simulated aging condition found by this study corresponds with the moderate motor unit remodelling and negligible strength loss reported in literature for the cohorts aged 60-70 years.
Firm Size as Moderator to Non-Linear Leverage-Performance Relation: An Emerging Market Review
Directory of Open Access Journals (Sweden)
Umar Farooq
2017-08-01
such losses are more prominent for small size firms. Results also show that the leverage-performance relation is nonlinear for medium and large size firms. However, these firms are not targeting optimal level and overleveraging that ultimately decrease their profits. So, financial managers of small size firms should avoid debt financing while for large and medium size firms, managers need to adjust their debt ratio to its optimal level.