Calculation of elastic-plastic strain ranges for fatigue analysis based on linear elastic stresses
Sauer, G.
1998-01-01
Fatigue analysis requires that the maximum strain ranges be known. These strain ranges are generally computed from linear elastic analysis. The elastic strain ranges are enhanced by a factor K e to obtain the total elastic-plastic strain range. The reliability of the fatigue analysis depends on the quality of this factor. Formulae for calculating the K e factor are proposed. A beam is introduced as a computational model for determining the elastic-plastic strains. The beam is loaded by the elastic stresses of the real structure. The elastic-plastic strains of the beam are compared with the beam's elastic strains. This comparison furnishes explicit expressions for the K e factor. The K e factor is tested by means of seven examples. (orig.)
Ateş, Filiz; Hug, François; Bouillard, Killian; Jubeau, Marc; Frappart, Thomas; Couade, Mathieu; Bercoff, Jeremy; Nordez, Antoine
2015-08-01
Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (torque over the entire range of isometric contraction and (ii) the influence of the size of the region of interest (ROI) used to average the shear modulus value. Ten healthy males performed two incremental isometric little finger abductions. The joint torque produced by Abductor Digiti Minimi was considered as an index of muscle torque and elastic modulus. A high coefficient of determination (R(2)) (range: 0.86-0.98) indicated that the relationship between elastic modulus and torque can be accurately modeled by a linear regression over the entire range (0% to 100% of MVC). The changes in shear elastic modulus as a function of torque were highly repeatable. Lower R(2) values (0.89±0.13 for 1/16 of ROI) and significantly increased absolute errors were observed when the shear elastic modulus was averaged over smaller ROI, half, 1/4 and 1/16 of the full ROI) than the full ROI (mean size: 1.18±0.24cm(2)). It suggests that the ROI should be as large as possible for accurate measurement of muscle shear modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.
Introduction to linear elasticity
Gould, Phillip L
2013-01-01
Introduction to Linear Elasticity, 3rd Edition, provides an applications-oriented grounding in the tensor-based theory of elasticity for students in mechanical, civil, aeronautical, and biomedical engineering, as well as materials and earth science. The book is distinct from the traditional text aimed at graduate students in solid mechanics by introducing the subject at a level appropriate for advanced undergraduate and beginning graduate students. The author's presentation allows students to apply the basic notions of stress analysis and move on to advanced work in continuum mechanics, plasticity, plate and shell theory, composite materials, viscoelasticity and finite method analysis. This book also: Emphasizes tensor-based approach while still distilling down to explicit notation Provides introduction to theory of plates, theory of shells, wave propagation, viscoelasticity and plasticity accessible to advanced undergraduate students Appropriate for courses following emerging trend of teaching solid mechan...
Uniqueness theorems in linear elasticity
Knops, Robin John
1971-01-01
The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...
Non-linear elastic deformations
Ogden, R W
1997-01-01
Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.
Integrodifferential relations in linear elasticity
Kostin, Georgy V
2012-01-01
This work treats the elasticity of deformed bodies, including the resulting interior stresses and displacements.It also takes into account that some of constitutive relations can be considered in a weak form. To discuss this problem properly, the method of integrodifferential relations is used, and an advanced numerical technique for stress-strain analysis is presented and evaluated using various discretization techniques. The methods presented in this book are of importance for almost all elasticity problems in materials science and mechanical engineering.
Discriminative Elastic-Net Regularized Linear Regression.
Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen
2017-03-01
In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.
Isogeometric BDDC deluxe preconditioners for linear elasticity
Pavarino, L. F.
2018-03-14
Balancing Domain Decomposition by Constraints (BDDC) preconditioners have been shown to provide rapidly convergent preconditioned conjugate gradient methods for solving many of the very ill-conditioned systems of algebraic equations which often arise in finite element approximations of a large variety of problems in continuum mechanics. These algorithms have also been developed successfully for problems arising in isogeometric analysis. In particular, the BDDC deluxe version has proven very successful for problems approximated by Non-Uniform Rational B-Splines (NURBS), even those of high order and regularity. One main purpose of this paper is to extend the theory, previously fully developed only for scalar elliptic problems in the plane, to problems of linear elasticity in three dimensions. Numerical experiments supporting the theory are also reported. Some of these experiments highlight the fact that the development of the theory can help to decrease substantially the dimension of the primal space of the BDDC algorithm, which provides the necessary global component of these preconditioners, while maintaining scalability and good convergence rates.
Isogeometric BDDC deluxe preconditioners for linear elasticity
Pavarino, L. F.; Scacchi, S.; Widlund, O. B.; Zampini, Stefano
2018-01-01
Balancing Domain Decomposition by Constraints (BDDC) preconditioners have been shown to provide rapidly convergent preconditioned conjugate gradient methods for solving many of the very ill-conditioned systems of algebraic equations which often arise in finite element approximations of a large variety of problems in continuum mechanics. These algorithms have also been developed successfully for problems arising in isogeometric analysis. In particular, the BDDC deluxe version has proven very successful for problems approximated by Non-Uniform Rational B-Splines (NURBS), even those of high order and regularity. One main purpose of this paper is to extend the theory, previously fully developed only for scalar elliptic problems in the plane, to problems of linear elasticity in three dimensions. Numerical experiments supporting the theory are also reported. Some of these experiments highlight the fact that the development of the theory can help to decrease substantially the dimension of the primal space of the BDDC algorithm, which provides the necessary global component of these preconditioners, while maintaining scalability and good convergence rates.
Non-linear theory of elasticity
Lurie, AI
2012-01-01
This book examines in detail the Theory of Elasticity which is a branch of the mechanics of a deformable solid. Special emphasis is placed on the investigation of the process of deformation within the framework of the generally accepted model of a medium which, in this case, is an elastic body. A comprehensive list of Appendices is included providing a wealth of references for more in depth coverage. The work will provide both a stimulus for future research in this field as well as useful reference material for many years to come.
A Linear Theory for Pretwisted Elastic Beams
Krenk, Steen
1983-01-01
contains a general system of differential equations and gives explicit solutions for homogenous extension, torsion, and bending. The theory accounts explicitly for the shear center, the elastic center, and the axis of pretwist. The resulting torsion-extension coupling is in agreement with a recent...
Asymptotic expansions for high-contrast linear elasticity
Poveda, Leonardo A.; Huepo, Sebastian; Calo, Victor M.; Galvis, Juan
2015-01-01
We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.
Asymptotic expansions for high-contrast linear elasticity
Poveda, Leonardo A.
2015-03-01
We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.
Non-linear theory of elasticity and optimal design
Ratner, LW
2003-01-01
In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by the stress distributed in a structure can be calculated. The new non-linear theory of elasticity allows one to determine the actual individual limit of elasticity/failure of a structure using a simple non-destructive method of measurement of deformation on the model of a structure while presently it
On the use of elastic-plastic material characteristics for linear-elastic component assessments
Kussmaul, K.; Silcher, H.; Eisele, U.
1995-01-01
In this paper the procedure of safety assessment of components by fracture mechanics analysis as recommended in TECDOC 717 is applied to two standard specimens of ductile cast iron. It is shown that the use of a pseudo-elastic K IJ -value in linear elastic safety analysis may lead to non-conservative results, when elastic-plastic material behaviour can be expected. (author)
Vectorized Matlab Codes for Linear Two-Dimensional Elasticity
Jonas Koko
2007-01-01
Full Text Available A vectorized Matlab implementation for the linear finite element is provided for the two-dimensional linear elasticity with mixed boundary conditions. Vectorization means that there is no loop over triangles. Numerical experiments show that our implementation is more efficient than the standard implementation with a loop over all triangles.
On the hyperbolicity condition in linear elasticity
Remigio Russo
1991-05-01
Full Text Available This talk, which is mainly expository and based on [2-5], discusses the hyperbolicity conditions in linear elastodynamics. Particular emphasis is devoted to the key role it plays in the uniqueness questions associated with the mixed boundary-initial value problem in unbounded domains.
Singularities of elastic scattering amplitude by long-range potentials
Kvitsinsky, A.A.; Komarov, I.V.; Merkuriev, S.P.
1982-01-01
The angular peculiarities and the zero energy singularities of the elastic scattering amplitude by a long-range potential are described. The singularities of the elastic (2 → 2) scattering amplitude for a system of three Coulomb particles are considered [ru
Colored Range Searching in Linear Space
Grossi, Roberto; Vind, Søren Juhl
2014-01-01
In colored range searching, we are given a set of n colored points in d ≥ 2 dimensions to store, and want to support orthogonal range queries taking colors into account. In the colored range counting problem, a query must report the number of distinct colors found in the query range, while...... an answer to the colored range reporting problem must report the distinct colors in the query range. We give the first linear space data structure for both problems in two dimensions (d = 2) with o(n) worst case query time. We also give the first data structure obtaining almost-linear space usage and o...
Emergence of linear elasticity from the atomistic description of matter
Cakir, Abdullah, E-mail: acakir@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University (Singapore); Pica Ciamarra, Massimo [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University (Singapore); Dipartimento di Scienze Fisiche, CNR–SPIN, Università di Napoli Federico II, I-80126 Napoli (Italy)
2016-08-07
We investigate the emergence of the continuum elastic limit from the atomistic description of matter at zero temperature considering how locally defined elastic quantities depend on the coarse graining length scale. Results obtained numerically investigating different model systems are rationalized in a unifying picture according to which the continuum elastic limit emerges through a process determined by two system properties, the degree of disorder, and a length scale associated to the transverse low-frequency vibrational modes. The degree of disorder controls the emergence of long-range local shear stress and shear strain correlations, while the length scale influences the amplitude of the fluctuations of the local elastic constants close to the jamming transition.
Emergence of linear elasticity from the atomistic description of matter
Cakir, Abdullah; Pica Ciamarra, Massimo
2016-01-01
We investigate the emergence of the continuum elastic limit from the atomistic description of matter at zero temperature considering how locally defined elastic quantities depend on the coarse graining length scale. Results obtained numerically investigating different model systems are rationalized in a unifying picture according to which the continuum elastic limit emerges through a process determined by two system properties, the degree of disorder, and a length scale associated to the transverse low-frequency vibrational modes. The degree of disorder controls the emergence of long-range local shear stress and shear strain correlations, while the length scale influences the amplitude of the fluctuations of the local elastic constants close to the jamming transition.
A Lagrangian meshfree method applied to linear and nonlinear elasticity.
Walker, Wade A
2017-01-01
The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code.
Non-linear elastic thermal stress analysis with phase changes
Amada, S.; Yang, W.H.
1978-01-01
The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)
A Galerkin approximation for linear elastic shallow shells
Figueiredo, I. N.; Trabucho, L.
1992-03-01
This work is a generalization to shallow shell models of previous results for plates by B. Miara (1989). Using the same basis functions as in the plate case, we construct a Galerkin approximation of the three-dimensional linearized elasticity problem, and establish some error estimates as a function of the thickness, the curvature, the geometry of the shell, the forces and the Lamé costants.
Linear elastic properties derivation from microstructures representative of transport parameters.
Hoang, Minh Tan; Bonnet, Guy; Tuan Luu, Hoang; Perrot, Camille
2014-06-01
It is shown that three-dimensional periodic unit cells (3D PUC) representative of transport parameters involved in the description of long wavelength acoustic wave propagation and dissipation through real foam samples may also be used as a standpoint to estimate their macroscopic linear elastic properties. Application of the model yields quantitative agreement between numerical homogenization results, available literature data, and experiments. Key contributions of this work include recognizing the importance of membranes and properties of the base material for the physics of elasticity. The results of this paper demonstrate that a 3D PUC may be used to understand and predict not only the sound absorbing properties of porous materials but also their transmission loss, which is critical for sound insulation problems.
A reexamination of some puzzling results in linearized elasticity
University of North Carolina at Charlotte, Charlotte, NC 28223-0001, USA e-mail: jogc@mecheng.iisc.ernet.in; ..... ˆT (F) = C[ϵ] + o(∇u), where ϵ = [∇u+(∇u)T ]/2, and C = D ˆT (I) is the elasticity tensor, and one also linearizes the body force vector to get b = QT [ b∗ − ¨c. ] − ˙ × X − × ( × X) − 2 × v,. (5) where X is the position ...
Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics
Wang, John T.
2010-01-01
The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.
Dual-range linearized transimpedance amplifier system
Wessendorf, Kurt O.
2010-11-02
A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).
Fatigue analysis - computation of the actual strain range using elastic calculations (factor Ke)
Roche, R.L.
1987-01-01
Pressure vessels are not eternal, their life is not endless, but must be long enough for profitable use. Fatigue is the most important damage limiting life time. It is due to variable loading and especially to deformation-controlled loading like thermal dilatation (thermal stress). Hence, it is of prime importance to perform an fatigue analysis in the design phase in order to be sure the pressure vessel life meet requirement of the design specification. It is also useful to perform such an analysis for assessing the remaining life. To compute the fatigue damage, knowledge of the strain range is needed. As calculation taking into account non linear behavior of the material are very expensive and not always reliable, the current practice is using elastic computation. The aim of this paper is to discuss the methods for correcting the elastically calculated strain range and to propose a sound and practical method
Morphology and linear-elastic moduli of random network solids.
Nachtrab, Susan; Kapfer, Sebastian C; Arns, Christoph H; Madadi, Mahyar; Mecke, Klaus; Schröder-Turk, Gerd E
2011-06-17
The effective linear-elastic moduli of disordered network solids are analyzed by voxel-based finite element calculations. We analyze network solids given by Poisson-Voronoi processes and by the structure of collagen fiber networks imaged by confocal microscopy. The solid volume fraction ϕ is varied by adjusting the fiber radius, while keeping the structural mesh or pore size of the underlying network fixed. For intermediate ϕ, the bulk and shear modulus are approximated by empirical power-laws K(phi)proptophin and G(phi)proptophim with n≈1.4 and m≈1.7. The exponents for the collagen and the Poisson-Voronoi network solids are similar, and are close to the values n=1.22 and m=2.11 found in a previous voxel-based finite element study of Poisson-Voronoi systems with different boundary conditions. However, the exponents of these empirical power-laws are at odds with the analytic values of n=1 and m=2, valid for low-density cellular structures in the limit of thin beams. We propose a functional form for K(ϕ) that models the cross-over from a power-law at low densities to a porous solid at high densities; a fit of the data to this functional form yields the asymptotic exponent n≈1.00, as expected. Further, both the intensity of the Poisson-Voronoi process and the collagen concentration in the samples, both of which alter the typical pore or mesh size, affect the effective moduli only by the resulting change of the solid volume fraction. These findings suggest that a network solid with the structure of the collagen networks can be modeled in quantitative agreement by a Poisson-Voronoi process. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mappings with closed range and finite dimensional linear spaces
Iyahen, S.O.
1984-09-01
This paper looks at two settings, each of continuous linear mappings of linear topological spaces. In one setting, the domain space is fixed while the range space varies over a class of linear topological spaces. In the second setting, the range space is fixed while the domain space similarly varies. The interest is in when the requirement that the mappings have a closed range implies that the domain or range space is finite dimensional. Positive results are obtained for metrizable spaces. (author)
Non-linear waves in heterogeneous elastic rods via homogenization
Quezada de Luna, Manuel
2012-03-01
We consider the propagation of a planar loop on a heterogeneous elastic rod with a periodic microstructure consisting of two alternating homogeneous regions with different material properties. The analysis is carried out using a second-order homogenization theory based on a multiple scale asymptotic expansion. © 2011 Elsevier Ltd. All rights reserved.
Linear Elastic Waves - Series: Cambridge Texts in Applied Mathematics (No. 26)
Harris, John G.
2001-10-01
Wave propagation and scattering are among the most fundamental processes that we use to comprehend the world around us. While these processes are often very complex, one way to begin to understand them is to study wave propagation in the linear approximation. This is a book describing such propagation using, as a context, the equations of elasticity. Two unifying themes are used. The first is that an understanding of plane wave interactions is fundamental to understanding more complex wave interactions. The second is that waves are best understood in an asymptotic approximation where they are free of the complications of their excitation and are governed primarily by their propagation environments. The topics covered include reflection, refraction, the propagation of interfacial waves, integral representations, radiation and diffraction, and propagation in closed and open waveguides. Linear Elastic Waves is an advanced level textbook directed at applied mathematicians, seismologists, and engineers. Aimed at beginning graduate students Includes examples and exercises Has application in a wide range of disciplines
Sensitivity of the elastic scattering matrix elements to the range of the inelastic potentials
Rawitscher, G.H.; Rasoanaivo, R.Y.
1983-01-01
The solution to a system of coupled equations is examined with regard to the effect of the long range part of the inelastic potentials upon the elastic phase shifts. It is found that those parts of the inelastic potentials which occur beyond the range of the elastic to inelastic transition potentials affect the elastic phase shifts in only a minor way. The proof is given theoretically by means of a Green's function formulation which includes the long range part of the inelastic potentials perturbatively. When applied to the calculation of the effect of breakup on the deuteron-nucleus elastic scattering, the argument confirms the finding that errors in the long range part of the potentials in the breakup channels do not sensitively affect the elastic deuteron scattering cross section. This result explains why the elastic scattering is not very sensitive to the choice of the discretization procedure of the breakup space
Extreme non-linear elasticity and transformation optics
Gersborg, Allan Roulund; Sigmund, Ole
2010-01-01
realizations correspond to minimizers of elastic energy potentials for extreme values of the mechanical Poisson's ratio ν . For TE (Hz) polarized light an incompressible transformation ν = 1/2 is ideal and for TM (E z) polarized light one should use a compressible transformation with negative Poissons's ratio......Transformation optics is a powerful concept for designing novel optical components such as high transmission waveguides and cloaking devices. The selection of specific transformations is a non-unique problem. Here we reveal that transformations which allow for all dielectric and broadband optical...... ν = -1. For the TM polarization the mechanical analogy corresponds to a modified Liao functional known from the transformation optics literature. Finally, the analogy between ideal transformations and solid mechanical material models automates and broadens the concept of transformation optics...
Mihai-Victor PRICOP
2010-09-01
Full Text Available The present paper introduces a numerical approach of static linear elasticity equations for anisotropic materials. The domain and boundary conditions are simple, to enhance an easy implementation of the finite difference scheme. SOR and gradient are used to solve the resulting linear system. The simplicity of the geometry is also useful for MPI parallelization of the code.
Designing Linear Feedback Controller for Elastic Inverted Pendulum with Tip Mass
Minh Hoang Nguyen
2016-12-01
Full Text Available This paper introduced a kind of cart and pole system. The pole in this system is not a solid beam but an elastic beam. The paper analyzed the dynamic equation of this complex system. Then, a linear feedback controller was designed to stabilize this model in order to keep the elastic beam balanced in the up-side position. The control results were proved to work well through simulation.
Pepi, John W.
2017-08-01
Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.
Linear models of income patterns in consumer demand for foods and evaluation of its elasticity
Pavel Syrovátka
2005-01-01
Full Text Available The paper is focused on the use of the linear constructions for developing of Engel’s demand models in the field of the food-consumer demand. In the theoretical part of the paper, the linear approximations of this demand models are analysed on the bases of the linear interpolation. In the same part of this text, the hyperbolic elasticity function was defined for the linear Engel model. The behaviour of the hyperbolic elasticity function and its properties were consequently investigated too. The behaviour of the determined elasticity function was investigated according to the values of the intercept point and the direction parameter in the original linear Engel model. The obtained theoretical findings were tested using the real data of Czech Statistical Office. The developed linear Engel model was explicitly dynamised, because the achieved database was formed into the time series. With respect to the two variables definitions of the hyperbolic function in the theoretical part of the text, the determined dynamic model of the Engel demand for food was transformed into the form with parametric intercept point:ret* = At + 0.0946 · rmt*,where the values of absolute member are defined as:At = 1773.0973 + 9.3064 · t – 0.3023 · t2; (t = 1, 2, ... 32.The value of At in the parametric linear model of Engel consumer demand for food was during the observed period (1995–2002 always positive. Thus, the hyperbolic elasticity function achieved the elasticity coefficients from the interval:ηt ∈〈+0; +1.Within quantitative analysis of Engel demand for food in the Czech Republic during the given time period, it was founded, that income elasticity of food expenditures of the average Czech household was moved between +0.4080 and +0.4511. The Czech-household demand for food is thus income inelastic with the normal income reactions.
A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation
Diosady, Laslo T.; Murman, Scott M.
2018-01-01
A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.
Elastic properties and short-range structural order in mixed network former glasses.
Wang, Weimin; Christensen, Randilynn; Curtis, Brittany; Hynek, David; Keizer, Sydney; Wang, James; Feller, Steve; Martin, Steve W; Kieffer, John
2017-06-21
Elastic properties of alkali containing glasses are of great interest not only because they provide information about overall structural integrity but also they are related to other properties such as thermal conductivity and ion mobility. In this study, we investigate two mixed-network former glass systems, sodium borosilicate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)SiO 2 ] and sodium borogermanate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)GeO 2 ] glasses. By mixing network formers, the network topology can be changed while keeping the network modifier concentration constant, which allows for the effect of network structure on elastic properties to be analyzed over a wide parametric range. In addition to non-linear, non-additive mixed-glass former effects, maxima are observed in longitudinal, shear and Young's moduli with increasing atomic number density. By combining results from NMR spectroscopy and Brillouin light scattering with a newly developed statistical thermodynamic reaction equilibrium model, it is possible to determine the relative proportions of all network structural units. This new analysis reveals that the structural characteristic predominantly responsible for effective mechanical load transmission in these glasses is a high density of network cations coordinated by four or more bridging oxygens, as it provides for establishing a network of covalent bonds among these cations with connectivity in three dimensions.
The Simulation and Correction to the Brain Deformation Based on the Linear Elastic Model in IGS
MU Xiao-lan; SONG Zhi-jian
2004-01-01
@@ The brain deformation is a vital factor affecting the precision of the IGS and it becomes a hotspot to simulate and correct the brain deformation recently.The research organizations, which firstly resolved the brain deformation with the physical models, have the Image Processing and Analysis department of Yale University, Biomedical Modeling Lab of Vanderbilt University and so on. The former uses the linear elastic model; the latter uses the consolidation model.The linear elastic model only needs to drive the model using the surface displacement of exposed brain cortex,which is more convenient to be measured in the clinic.
Khidirov, I.; Khajdarov, T.
1995-01-01
Elasticity characteristics of cubic and tetragonal phases of titanium nitride in the homogeneity range were studied for the first time by ultrasonic resonance method. It is established that the Young modulus, the shift and volume module of cubic titanium nitride elasticity in the homogeneity range change nonlinearly with decrease in nitrogen concentration and correlate with concentration dependences of other physical properties.15 refs., 2 figs
Note: A high dynamic range, linear response transimpedance amplifier.
Eckel, S; Sushkov, A O; Lamoreaux, S K
2012-02-01
We have built a high dynamic range (nine decade) transimpedance amplifier with a linear response. The amplifier uses junction-gate field effect transistors (JFETs) to switch between three different resistors in the feedback of a low input bias current operational amplifier. This allows for the creation of multiple outputs, each with a linear response and a different transimpedance gain. The overall bandwidth of the transimpedance amplifier is set by the bandwidth of the most sensitive range. For our application, we demonstrate a three-stage amplifier with transimpedance gains of approximately 10(9)Ω, 3 × 10(7)Ω, and 10(4)Ω with a bandwidth of 100 Hz.
Niehuesbernd, Jörn; Müller, Clemens; Pantleon, Wolfgang
2013-01-01
. Consequently, the macroscopic elastic behavior results from the local elastic properties within the gradient. In the present investigation profiles produced by the linear flow splitting process were examined with respect to local and global elastic anisotropy, which develops during the complex forming process...
Non-linear buckling of an FGM truncated conical shell surrounded by an elastic medium
Sofiyev, A.H.; Kuruoglu, N.
2013-01-01
In this paper, the non-linear buckling of the truncated conical shell made of functionally graded materials (FGMs) surrounded by an elastic medium has been studied using the large deformation theory with von Karman–Donnell-type of kinematic non-linearity. A two-parameter foundation model (Pasternak-type) is used to describe the shell–foundation interaction. The FGM properties are assumed to vary continuously through the thickness direction. The fundamental relations, the modified Donnell type non-linear stability and compatibility equations of the FGM truncated conical shell resting on the Pasternak-type elastic foundation are derived. By using the Superposition and Galerkin methods, the non-linear stability equations for the FGM truncated conical shell is solved. Finally, influences of variations of Winkler foundation stiffness and shear subgrade modulus of the foundation, compositional profiles and shell characteristics on the dimensionless critical non-linear axial load are investigated. The present results are compared with the available data for a special case. -- Highlights: • Nonlinear buckling of FGM conical shell surrounded by elastic medium is studied. • Pasternak foundation model is used to describe the shell–foundation interaction. • Nonlinear basic equations are derived. • Problem is solved by using Superposition and Galerkin methods. • Influences of various parameters on the nonlinear critical load are investigated
Fatigue analysis - computation of the actual strain range using elastic calculation
Roche, R.L.
1987-04-01
The design codes used in nuclear industry do not contain all the same rules allowing to deduce from an elastic calculation the actual deformation variation. Knowledge of strain range is needed for fatigue analysis. Elastic calculation does not give the actual range. The aim of this paper is discussing ways to correct elastic results and proposing a practical method to do it. Two corrections are required. The first one is related to elastic follow up effect when shakedown is not obtained (correction on secondary stress). The second one is related to stress raisers effect (correction on peak stress). It is shown that NEUBER's rule is not convenient for the second correction when shakedown is not fulfilled [fr
Boundary value problems of the circular cylinders in the strain-gradient theory of linear elasticity
Kao, B.G.
1979-11-01
Three boundary value problems in the strain-gradient theory of linear elasticity are solved for circular cylinders. They are the twisting of circular cylinder, uniformly pressuring of concentric circular cylinder, and pure-bending of simply connected cylinder. The comparisons of these solutions with the solutions in classical elasticity and in couple-stress theory reveal the differences in the stress fields as well as the apparent stress fields due to the influences of the strain-gradient. These aspects of the strain-gradient theory could be important in modeling the failure behavior of structural materials
Compact solitary waves in linearly elastic chains with non-smooth on-site potential
Gaeta, Giuseppe [Dipartimento di Matematica, Universita di Milano, Via Saldini 50, 20133 Milan (Italy); Gramchev, Todor [Dipartimento di Matematica e Informatica, Universita di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Walcher, Sebastian [Lehrstuhl A Mathematik, RWTH Aachen, 52056 Aachen (Germany)
2007-04-27
It was recently observed by Saccomandi and Sgura that one-dimensional chains with nonlinear elastic interaction and regular on-site potential can support compact solitary waves, i.e. travelling solitary waves with strictly compact support. In this paper, we show that the same applies to chains with linear elastic interaction and an on-site potential which is continuous but non-smooth at minima. Some different features arise; in particular, the speed of compact solitary waves is not uniquely fixed by the equation. We also discuss several generalizations of our findings.
Four-dimensional Hooke's law can encompass linear elasticity and inertia
Antoci, S.; Mihich, L.
1999-01-01
The question is examined whether the formally straightforward extension of Hooke's time-honoured stress-strain relation to the four dimensions of special and of general relativity can make physical sense. The four-dimensional Hooke law is found able to account for the inertia of matter; in the flat-space, slow-motion approximation the field equations for the displacement four-vector field ξ i can encompass both linear elasticity and inertia. In this limit one just recovers the equations of motion of the classical theory of elasticity
Nonlinear to Linear Elastic Code Coupling in 2-D Axisymmetric Media.
Preston, Leiph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-08-01
Explosions within the earth nonlinearly deform the local media, but at typical seismological observation distances, the seismic waves can be considered linear. Although nonlinear algorithms can simulate explosions in the very near field well, these codes are computationally expensive and inaccurate at propagating these signals to great distances. A linearized wave propagation code, coupled to a nonlinear code, provides an efficient mechanism to both accurately simulate the explosion itself and to propagate these signals to distant receivers. To this end we have coupled Sandia's nonlinear simulation algorithm CTH to a linearized elastic wave propagation code for 2-D axisymmetric media (axiElasti) by passing information from the nonlinear to the linear code via time-varying boundary conditions. In this report, we first develop the 2-D axisymmetric elastic wave equations in cylindrical coordinates. Next we show how we design the time-varying boundary conditions passing information from CTH to axiElasti, and finally we demonstrate the coupling code via a simple study of the elastic radius.
Náhlík, Luboš; Šestáková, L.; Hutař, Pavel; Knésl, Zdeněk
2011-01-01
Roč. 452-453, - (2011), s. 445-448 ISSN 1013-9826 R&D Projects: GA AV ČR(CZ) KJB200410803; GA ČR GA101/09/1821 Institutional research plan: CEZ:AV0Z20410507 Keywords : generalized stress intensity factor * bimaterial interface * composite materials * strain energy density factor * fracture criterion * generalized linear elastic fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics
Multigrid for the Galerkin least squares method in linear elasticity: The pure displacement problem
Yoo, Jaechil [Univ. of Wisconsin, Madison, WI (United States)
1996-12-31
Franca and Stenberg developed several Galerkin least squares methods for the solution of the problem of linear elasticity. That work concerned itself only with the error estimates of the method. It did not address the related problem of finding effective methods for the solution of the associated linear systems. In this work, we prove the convergence of a multigrid (W-cycle) method. This multigrid is robust in that the convergence is uniform as the parameter, v, goes to 1/2 Computational experiments are included.
Tahara, Masaki [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Kim, Hee Young, E-mail: heeykim@ims.tsukuba.ac.jp [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Inamura, Tomonari; Hosoda, Hideki [Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Miyazaki, Shuichi, E-mail: miyazaki@ims.tsukuba.ac.jp [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); School of Materials Science and Engineering and ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)
2013-11-15
Highlights: ► {110}{sub β}〈11{sup ¯}0〉{sub β} transverse type lattice modulation is confirmed in β phase. ► Nanosized modulated region (nanodomain) distributes homogeneously and randomly. ► Nanodomains act as obstacles against the long-ranged martensitic transformation. ► The origin of non-linear elastic deformation behavior is the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation. -- Abstract: In order to clarify the effect of interstitial atoms on the non-linear elastic deformation behavior of the Ti–Nb alloy, the microstructure of (Ti–26Nb)–1.0O alloy was closely investigated by transmission electron microscope (TEM) and in situ X-ray diffraction (XRD) measurements. The 〈1 1 0〉{sub β}* rel rods and {1 1 1}{sub β}* rel planes were observed in a reciprocal space for the (Ti–26Nb)–1.0O alloy. Their origin was {110}{sub β}〈11{sup ¯}0〉{sub β} transverse type lattice modulation generated by oxygen atoms. Nanosized modulated domain structure (nanodomain) distributed homogeneously and randomly in the β phase and acted as obstacles for the long-ranged martensitic transformation in the (Ti–26Nb)–1.0O alloy. The non-linear elastic strain of the (Ti–26Nb)–1.0O alloy was generated by the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation.
Tahara, Masaki; Kim, Hee Young; Inamura, Tomonari; Hosoda, Hideki; Miyazaki, Shuichi
2013-01-01
Highlights: ► {110} β 〈11 ¯ 0〉 β transverse type lattice modulation is confirmed in β phase. ► Nanosized modulated region (nanodomain) distributes homogeneously and randomly. ► Nanodomains act as obstacles against the long-ranged martensitic transformation. ► The origin of non-linear elastic deformation behavior is the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation. -- Abstract: In order to clarify the effect of interstitial atoms on the non-linear elastic deformation behavior of the Ti–Nb alloy, the microstructure of (Ti–26Nb)–1.0O alloy was closely investigated by transmission electron microscope (TEM) and in situ X-ray diffraction (XRD) measurements. The 〈1 1 0〉 β * rel rods and {1 1 1} β * rel planes were observed in a reciprocal space for the (Ti–26Nb)–1.0O alloy. Their origin was {110} β 〈11 ¯ 0〉 β transverse type lattice modulation generated by oxygen atoms. Nanosized modulated domain structure (nanodomain) distributed homogeneously and randomly in the β phase and acted as obstacles for the long-ranged martensitic transformation in the (Ti–26Nb)–1.0O alloy. The non-linear elastic strain of the (Ti–26Nb)–1.0O alloy was generated by the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation
Practical solution of plastic deformation problems in elastic-plastic range
Mendelson, A; Manson, S
1957-01-01
A practical method for solving plastic deformation problems in the elastic-plastic range is presented. The method is one of successive approximations and is illustrated by four examples which include a flat plate with temperature distribution across the width, a thin shell with axial temperature distribution, a solid cylinder with radial temperature distribution, and a rotating disk with radial temperature distribution.
A Short-Range Distance Sensor with Exceptional Linearity
Simmons, Steven; Youngquist, Robert
2013-01-01
A sensor has been demonstrated that can measure distance over a total range of about 300 microns to an accuracy of about 0.1 nm (resolution of about 0.01 nm). This represents an exceptionally large dynamic range of operation - over 1,000,000. The sensor is optical in nature, and requires the attachment of a mirror to the object whose distance is being measured. This work resulted from actively developing a white light interferometric system to be used to measure the depths of defects in the Space Shuttle Orbiter windows. The concept was then applied to measuring distance. The concept later expanded to include spectrometer calibration. In summary, broadband (i.e., white) light is launched into a Michelson interferometer, one mirror of which is fixed and one of which is attached to the object whose distance is to be measured. The light emerging from the interferometer has traveled one of two distances: either the distance to the fixed mirror and back, or the distance to the moving mirror and back. These two light beams mix and produce an interference pattern where some wavelengths interfere constructively and some destructively. Sending this light into a spectrometer allows this interference pattern to be analyzed, yielding the net distance difference between the two paths. The unique feature of this distance sensor is its ability to measure accurately distance over a dynamic range of more than one million, the ratio of its range (about 300 microns) to its accuracy (about 0.1 nanometer). Such a large linear operating range is rare and arises here because both amplitude and phase-matching algorithms contribute to the performance. The sensor is limited by the need to attach a mirror of some kind to the object being tracked, and by the fairly small total range, but the exceptional dynamic range should make it of interest.
Dynamics of pre-strained bi-material elastic systems linearized three-dimensional approach
Akbarov, Surkay D
2015-01-01
This book deals with dynamics of pre-stressed or pre-strained bi-material elastic systems consisting of stack of pre-stressed layers, stack of pre-stressed layers and pre-stressed half space (or half plane), stack of pre-stressed layers as well as absolute rigid foundation, pre-stressed compound solid and hollow cylinders and pre-stressed sandwich hollow cylinders. The problems considered in the book relate to the dynamics of a moving and oscillating moving load, forced vibration caused by linearly located or point located time-harmonic forces acting to the foregoing systems. Moreover, a considerable part of the book relate to the problems regarding the near surface, torsional and axisymmetric longitudinal waves propagation and dispersion in the noted above bi-material elastic systems. The book carries out the investigations within the framework of the piecewise homogeneous body model with the use of the Three-Dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies.
Force sensing using 3D displacement measurements in linear elastic bodies
Feng, Xinzeng; Hui, Chung-Yuen
2016-07-01
In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.
Lundsager, P.; Krenk, S.
1975-08-01
The static and dynamic response of a cylindrical/ spherical containment to a Boeing 720 impact is computed using 3 different linear elastic computer codes: FINEL, SAP and STARDYNE. Stress and displacement fields are shown together with time histories for a point in the impact zone. The main conclusions from this study are: - In this case the maximum dynamic load factors for stress and displacements were close to 1, but a static analysis alone is not fully sufficient. - More realistic load time histories should be considered. - The main effects seem to be local. The present study does not indicate general collapse from elastic stresses alone. - Further study of material properties at high rates is needed. (author)
Linear response in the nonequilibrium zero range process
Maes, Christian; Salazar, Alberto
2014-01-01
We explore a number of explicit response formulæ around the boundary driven zero range process to changes in the exit and entrance rates. In such a nonequilibrium regime kinetic (and not only thermodynamic) aspects make a difference in the response. Apart from a number of formal approaches, we illustrate a general decomposition of the linear response into entropic and frenetic contributions, the latter being realized from changes in the dynamical activity at the boundaries. In particular in this way one obtains nonlinear modifications to the Green–Kubo relation. We end by bringing some general remarks about the situation where that nonequilibrium response remains given by the (equilibrium) Kubo formula such as for the density profile in the boundary driven Lorentz gas
Spannenberg Jescica
2017-09-01
Full Text Available Fractional differentiation has adequate use for investigating real world scenarios related to geological formations associated with elasticity, heterogeneity, viscoelasticity, and the memory effect. Since groundwater systems exist in these geological formations, modelling groundwater recharge as a real world scenario is a challenging task to do because existing recharge estimation methods are governed by linear equations which make use of constant field parameters. This is inadequate because in reality these parameters are a function of both space and time. This study therefore concentrates on modifying the recharge equation governing the EARTH model, by application of the Eton approach. Accordingly, this paper presents a modified equation which is non-linear, and accounts for parameters in a way that it is a function of both space and time. To be more specific, herein, recharge and drainage resistance which are parameters within the equation, became a function of both space and time. Additionally, the study entailed solving the non-linear equation using an iterative method as well as numerical solutions by means of the Crank-Nicolson scheme. The numerical solutions were used alongside the Riemann-Liouville, Caputo-Fabrizio, and Atangana-Baleanu derivatives, so that account was taken for elasticity, heterogeneity, viscoelasticity, and the memory effect. In essence, this paper presents a more adequate model for recharge estimation.
Oscillations of a Beam on a Non-Linear Elastic Foundation under Periodic Loads
Donald Mark Santee
2006-01-01
Full Text Available The complexity of the response of a beam resting on a nonlinear elastic foundation makes the design of this structural element rather challenging. Particularly because, apparently, there is no algebraic relation for its load bearing capacity as a function of the problem parameters. Such an algebraic relation would be desirable for design purposes. Our aim is to obtain this relation explicitly. Initially, a mathematical model of a flexible beam resting on a non-linear elastic foundation is presented, and its non-linear vibrations and instabilities are investigated using several numerical methods. At a second stage, a parametric study is carried out, using analytical and semi-analytical perturbation methods. So, the influence of the various physical and geometrical parameters of the mathematical model on the non-linear response of the beam is evaluated, in particular, the relation between the natural frequency and the vibration amplitude and the first period doubling and saddle-node bifurcations. These two instability phenomena are the two basic mechanisms associated with the loss of stability of the beam. Finally Melnikov's method is used to determine an algebraic expression for the boundary that separates a safe from an unsafe region in the force parameters space. It is shown that this can be used as a basis for a reliable engineering design criterion.
Increasing Linear Dynamic Range of a CMOS Image Sensor
Pain, Bedabrata
2007-01-01
A generic design and a corresponding operating sequence have been developed for increasing the linear-response dynamic range of a complementary metal oxide/semiconductor (CMOS) image sensor. The design provides for linear calibrated dual-gain pixels that operate at high gain at a low signal level and at low gain at a signal level above a preset threshold. Unlike most prior designs for increasing dynamic range of an image sensor, this design does not entail any increase in noise (including fixed-pattern noise), decrease in responsivity or linearity, or degradation of photometric calibration. The figure is a simplified schematic diagram showing the circuit of one pixel and pertinent parts of its column readout circuitry. The conventional part of the pixel circuit includes a photodiode having a small capacitance, CD. The unconventional part includes an additional larger capacitance, CL, that can be connected to the photodiode via a transfer gate controlled in part by a latch. In the high-gain mode, the signal labeled TSR in the figure is held low through the latch, which also helps to adapt the gain on a pixel-by-pixel basis. Light must be coupled to the pixel through a microlens or by back illumination in order to obtain a high effective fill factor; this is necessary to ensure high quantum efficiency, a loss of which would minimize the efficacy of the dynamic- range-enhancement scheme. Once the level of illumination of the pixel exceeds the threshold, TSR is turned on, causing the transfer gate to conduct, thereby adding CL to the pixel capacitance. The added capacitance reduces the conversion gain, and increases the pixel electron-handling capacity, thereby providing an extension of the dynamic range. By use of an array of comparators also at the bottom of the column, photocharge voltages on sampling capacitors in each column are compared with a reference voltage to determine whether it is necessary to switch from the high-gain to the low-gain mode. Depending upon
The application of linear elastic fracture mechanics to thermally stressed welded components
Green, D.
1981-01-01
Linear Elastic Fracture Mechanics techniques are applied to components constructed from brittle materials and operating at low or ambient temperatures. It is argued that these techniques can justifiably be applied to components at high temperature provided that stresses are thermally induced, self-equilibrating and cyclic. Such loading conditions occur for example in an LMFBR and a simple welded detail containing a crevice is taken as an example. Theoretical and experimental estimates of crack growth in this component are compared and good agreement is shown. (author)
Franca, L.P.; Stenberg, R.
1989-06-01
Stability conditions are described to analyze a variational formulation emanating from a variational principle for linear isotropic elasticity. The variational principle is based on four dependent variables (namely, the strain tensor, augmented stress, pressure and displacement) and is shown to be valid for any compressibility including the incompressible limit. An improved convergence error analysis is established for a Galerkin-least-squares method based upon these four variables. The analysis presented establishes convergence for a wide choice of combinations of finite element interpolations. (author) [pt
On reconstruction of an unknown polygonal cavity in a linearized elasticity with one measurement
Ikehata, M; Itou, H
2011-01-01
In this paper we consider a reconstruction problem of an unknown polygonal cavity in a linearized elastic body. For this problem, an extraction formula of the convex hull of the unknown polygonal cavity is established by means of the enclosure method introduced by Ikehata. The advantages of our method are that it needs only a single set of boundary data and we do not require any a priori assumptions for the unknown polygonal cavity and any constraints on boundary data. The theoretical formula may have possibility of application in nondestructive evaluation.
Gabriela Queiroz de Melo Monteiro
2010-03-01
Full Text Available Linear polymerization shrinkage (LPS, flexural strength (FS and modulus of elasticity (ME of 7 dental composites (Filtek Z350™, Filtek Z250™/3M ESPE; Grandio™, Polofil Supra™/VOCO; TPH Spectrum™, TPH3™, Esthet-X™/Denstply were measured. For the measurement of LPS, composites were applied to a cylindrical metallic mold and polymerized (n = 8. The gap formed at the resin/mold interface was observed using scanning electron microscopy (1500×. For FS and ME, specimens were prepared according to the ISO 4049 specifications (n = 10. Statistical analysis of the data was performed with one-way ANOVA and the Tukey test. TPH Spectrum presented significantly higher LPS values (29.45 µm. Grandio had significantly higher mean values for FS (141.07 MPa and ME (13.91 GPa. The relationship between modulus of elasticity and polymerization shrinkage is the main challenge for maintenance of the adhesive interface, thus composites presenting high shrinkage values, associated with a high modulus of elasticity tend to disrupt the adhesive interface under polymerization.
Jessamine P Winer
2009-07-01
Full Text Available Most tissue cells grown in sparse cultures on linearly elastic substrates typically display a small, round phenotype on soft substrates and become increasingly spread as the modulus of the substrate increases until their spread area reaches a maximum value. As cell density increases, individual cells retain the same stiffness-dependent differences unless they are very close or in molecular contact. On nonlinear strain-stiffening fibrin gels, the same cell types become maximally spread even when the low strain elastic modulus would predict a round morphology, and cells are influenced by the presence of neighbors hundreds of microns away. Time lapse microscopy reveals that fibroblasts and human mesenchymal stem cells on fibrin deform the substrate by several microns up to five cell lengths away from their plasma membrane through a force limited mechanism. Atomic force microscopy and rheology confirm that these strains locally and globally stiffen the gel, depending on cell density, and this effect leads to long distance cell-cell communication and alignment. Thus cells are acutely responsive to the nonlinear elasticity of their substrates and can manipulate this rheological property to induce patterning.
Suarez Antola, R.
2004-12-01
The presence of cracks, voids or fields of pores, and their growth under applied forces or environmental actions, can produce a meaningful lowering in the proper frequencies of normal modes of mechanical vibration in machines and structures. A quite general expression for the square of modes proper frequency as a functional of displacement field, density field and elastic moduli fields is used as a starting point. The effect of defects on frequency are modeled as equivalent changes in density and elastic moduli fields, introducing the concept of region of influence of each defect. This region of influence is derived from the relation between the stress field of flawed components in machines or structures, and the elastic energy released from a suitable reference state, due to the presence of significant defects in the above mentioned mechanical components. An approximate analytical expression is obtained, which relates the relative variation in the square of mode s proper frequency with position, size, shape and orientation of defects in mode displacement field. Some simple mathematical models of machine and structural elements with cracks or fields of pores are considered as examples. The connections between the relative lowering in the square of mode s proper frequency and the stress intensity factor of a defect are discussed : the concept of region of influence of a defect is used as a bridge between (low frequency and low amplitude) vibration dynamics and linear elastic fracture mechanics. Some limitations of the present approach are discussed as well as the possibility of applying the region of influence of defects to the damping of normal modes of vibration
A New Theory of Non-Linear Thermo-Elastic Constitutive Equation of Isotropic Hyperelastic Materials
Li, Chen; Liao, Yufei
2018-03-01
Considering the influence of temperature and strain variables on materials. According to the relationship of conjugate stress-strain, a complete and irreducible non-linear constitutive equation of isotropic hyperelastic materials is derived and the constitutive equations of 16 types of isotropic hyperelastic materials are given we study the transformation methods and routes of 16 kinds of constitutive equations and the study proves that transformation of two forms of constitutive equation. As an example of application, the non-linear thermo-elastic constitutive equation of isotropic hyperelastic materials is combined with the natural vulcanized rubber experimental data in the existing literature base on MATLAB, The results show that the fitting accuracy is satisfactory.
DeLuca, R.
2006-03-01
Repeated elastic collisions of point particles on a finite frictionless linear track with perfectly reflecting endpoints are considered. The problem is analysed by means of an elementary linear algebra approach. It is found that, starting with a state consisting of a projectile particle in motion at constant velocity and a target particle at rest in a fixed known position, the points at which collisions occur on track, when plotted versus progressive numerals, corresponding to the collisions themselves, show periodic patterns for a rather large choice of values of the initial position x(0) and on the mass ratio r. For certain values of these parameters, however, only regular behaviour over a large number of collisions is detected.
Kim, Jin Kyu; Kim, Dong Keon
2016-01-01
A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics
Kim, Jin Kyu [School of Architecture and Architectural Engineering, Hanyang University, Ansan (Korea, Republic of); Kim, Dong Keon [Dept. of Architectural Engineering, Dong A University, Busan (Korea, Republic of)
2016-09-15
A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics.
Short Range Correlations in Nuclei at Large xbj through Inclusive Quasi-Elastic Electron Scattering
Ye, Zhihong [Univ. of Virginia, Charlottesville, VA (United States)
2013-12-01
The experiment, E08-014, in Hall-A at Jefferson Lab aims to study the short-range correlations (SRC) which are necessary to explain the nuclear strength absent in the mean field theory. The cross sections for 2H, 3He, 4He, 12C, 40Ca and 48Ca, were measured via inclusive quasi-elastic electron scattering from these nuclei in a Q2 range between 0.8 and 2.8 (GeV/c)^{2} for x>1. The cross section ratios of heavy nuclei to 2H were extracted to study two-nucleon SRC for 1
Response statistics of rotating shaft with non-linear elastic restoring forces by path integration
Gaidai, Oleg; Naess, Arvid; Dimentberg, Michael
2017-07-01
Extreme statistics of random vibrations is studied for a Jeffcott rotor under uniaxial white noise excitation. Restoring force is modelled as elastic non-linear; comparison is done with linearized restoring force to see the force non-linearity effect on the response statistics. While for the linear model analytical solutions and stability conditions are available, it is not generally the case for non-linear system except for some special cases. The statistics of non-linear case is studied by applying path integration (PI) method, which is based on the Markov property of the coupled dynamic system. The Jeffcott rotor response statistics can be obtained by solving the Fokker-Planck (FP) equation of the 4D dynamic system. An efficient implementation of PI algorithm is applied, namely fast Fourier transform (FFT) is used to simulate dynamic system additive noise. The latter allows significantly reduce computational time, compared to the classical PI. Excitation is modelled as Gaussian white noise, however any kind distributed white noise can be implemented with the same PI technique. Also multidirectional Markov noise can be modelled with PI in the same way as unidirectional. PI is accelerated by using Monte Carlo (MC) estimated joint probability density function (PDF) as initial input. Symmetry of dynamic system was utilized to afford higher mesh resolution. Both internal (rotating) and external damping are included in mechanical model of the rotor. The main advantage of using PI rather than MC is that PI offers high accuracy in the probability distribution tail. The latter is of critical importance for e.g. extreme value statistics, system reliability, and first passage probability.
Interpolation problem for the solutions of linear elasticity equations based on monogenic functions
Grigor'ev, Yuri; Gürlebeck, Klaus; Legatiuk, Dmitrii
2017-11-01
Interpolation is an important tool for many practical applications, and very often it is beneficial to interpolate not only with a simple basis system, but rather with solutions of a certain differential equation, e.g. elasticity equation. A typical example for such type of interpolation are collocation methods widely used in practice. It is known, that interpolation theory is fully developed in the framework of the classical complex analysis. However, in quaternionic analysis, which shows a lot of analogies to complex analysis, the situation is more complicated due to the non-commutative multiplication. Thus, a fundamental theorem of algebra is not available, and standard tools from linear algebra cannot be applied in the usual way. To overcome these problems, a special system of monogenic polynomials the so-called Pseudo Complex Polynomials, sharing some properties of complex powers, is used. In this paper, we present an approach to deal with the interpolation problem, where solutions of elasticity equations in three dimensions are used as an interpolation basis.
CHILES, Singularity Strength of Linear Elastic Bodies by Finite Elements Method
Benzley, S.E.; Beisinger, Z.E.
1981-01-01
1 - Description of problem or function: CHILES is a finite element computer program that calculates the strength of singularities in linear elastic bodies. Plane stress, plane strain, and axisymmetric conditions are treated. Crack tip singularity problems are solved by this version of the code, but any type of integrable singularity may be properly modeled by modifying selected subroutines in the program. 2 - Method of solution: A generalized, quadrilateral finite element that includes a singular point at a corner node is incorporated in the code. The displacement formulation is used and inter-element compatibility is maintained so that monotone convergence is preserved. 3 - Restrictions on the complexity of the problem: CHILES allows three singular points to be modeled in the body being analyzed and each singular point may have coupled Mode I and II deformations. 1000 nodal points may be used
Zhu, Yongning; Wang, Yuting; Hellrung, Jeffrey; Cantarero, Alejandro; Sifakis, Eftychios; Teran, Joseph M.
2012-08-01
We present a cut cell method in R2 for enforcing Dirichlet and Neumann boundary conditions with nearly incompressible linear elastic materials in irregular domains. Virtual nodes on cut uniform grid cells are used to provide geometric flexibility in the domain boundary shape without sacrificing accuracy. We use a mixed formulation utilizing a MAC-type staggered grid with piecewise bilinear displacements centered at cell faces and piecewise constant pressures at cell centers. These discretization choices provide the necessary stability in the incompressible limit and the necessary accuracy in cut cells. Numerical experiments suggest second order accuracy in L∞. We target high-resolution problems and present a class of geometric multigrid methods for solving the discrete equations for displacements and pressures that achieves nearly optimal convergence rates independent of grid resolution.
Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials
American Society for Testing and Materials. Philadelphia
2009-01-01
1.1 This test method covers the determination of fracture toughness (KIc) of metallic materials under predominantly linear-elastic, plane-strain conditions using fatigue precracked specimens having a thickness of 1.6 mm (0.063 in.) or greater subjected to slowly, or in special (elective) cases rapidly, increasing crack-displacement force. Details of test apparatus, specimen configuration, and experimental procedure are given in the Annexes. Note 1—Plane-strain fracture toughness tests of thinner materials that are sufficiently brittle (see 7.1) can be made using other types of specimens (1). There is no standard test method for such thin materials. 1.2 This test method is divided into two parts. The first part gives general recommendations and requirements for KIc testing. The second part consists of Annexes that give specific information on displacement gage and loading fixture design, special requirements for individual specimen configurations, and detailed procedures for fatigue precracking. Additional a...
Surek, T.; Kuon, L.G.; Luton, M.J.; Jones, J.J.
1975-01-01
For the case of linear elastic obstacles, the analysis of experimental plastic flow data is shown to have a particularly simple form when the pre-exponential factor is a single-valued function of the modulus-reduced stress. The analysis permits the separation of the stress and temperature dependence of the strain rate into those of the pre-exponential factor and the activation free energy. As a consequence, the true values of the activation enthalpy, volume and entropy also are obtained. The approach is applied to four sets of experimental data, including Zr, and the results for the pre-exponential term are examined for self-consistency in view of the assumed functional dependence
First-order system least squares for the pure traction problem in planar linear elasticity
Cai, Z.; Manteuffel, T.; McCormick, S.; Parter, S.
1996-12-31
This talk will develop two first-order system least squares (FOSLS) approaches for the solution of the pure traction problem in planar linear elasticity. Both are two-stage algorithms that first solve for the gradients of displacement, then for the displacement itself. One approach, which uses L{sup 2} norms to define the FOSLS functional, is shown under certain H{sup 2} regularity assumptions to admit optimal H{sup 1}-like performance for standard finite element discretization and standard multigrid solution methods that is uniform in the Poisson ratio for all variables. The second approach, which is based on H{sup -1} norms, is shown under general assumptions to admit optimal uniform performance for displacement flux in an L{sup 2} norm and for displacement in an H{sup 1} norm. These methods do not degrade as other methods generally do when the material properties approach the incompressible limit.
The Role of Data Range in Linear Regression
da Silva, M. A. Salgueiro; Seixas, T. M.
2017-01-01
Measuring one physical quantity as a function of another often requires making some choices prior to the measurement process. Two of these choices are: the data range where measurements should focus and the number (n) of data points to acquire in the chosen data range. Here, we consider data range as the interval of variation of the independent…
On the hyperporous non-linear elasticity model for fusion-relevant pebble beds
Di Maio, P.A.; Giammusso, R.; Vella, G.
2010-01-01
Packed pebble beds are particular granular systems composed of a large amount of small particles, arranged in irregular lattices and surrounded by a gas filling interstitial spaces. Due to their heterogeneous structure, pebble beds have non-linear and strongly coupled thermal and mechanical behaviours whose constitutive models seem limited, being not suitable for fusion-relevant design-oriented applications. Within the framework of the modelling activities promoted for the lithiated ceramics and beryllium pebble beds foreseen in the Helium-Cooled Pebble Bed breeding blanket concept of DEMO, at the Department of Nuclear Engineering of the University of Palermo (DIN) a thermo-mechanical constitutive model has been set-up assuming that pebble beds can be considered as continuous, homogeneous and isotropic media. The present paper deals with the DIN non-linear elasticity constitutive model, based on the assumption that during the reversible straining of a pebble bed its effective logarithmic bulk modulus depends on the equivalent pressure according to a modified power law and its effective Poisson modulus remains constant. In these hypotheses the functional dependence of the effective tangential and secant bed deformation moduli on either the equivalent pressure or the volumetric strain have been derived in a closed analytical form. A procedure has been, then, defined to assess the model parameters for a given pebble bed from its oedometric test results and it has been applied to both polydisperse lithium orthosilicate and single size beryllium pebble beds.
Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping
2015-10-01
We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.
Garcia, R.D.M.
1984-01-01
A new technique for generating the isotropic and linearly anisotropic componets of elastic and discrete inelastic transfer matrices is proposed. The technique allows certain angular integrals to be expressed in terms of functions that can be computed by recursion relations or series expansions alternatively to the use of numerical quadratures. (Author) [pt
De Beer, Morris
2008-07-01
Full Text Available - wave and ρ the material density. The elastic moduli P-wave modulus, M, is defined so that M = K + 4µ / 3 and M can then be determined by Equation 11, with a known speed Vp P MV 2 ρ = (11) It should however also... gas (such as air within compacted road materials), the adiabatic bulk modulus KS is approximately given by pKS κ= (4) Where: κ is the adiabatic index, (sometimes calledγ ); p is the pressure. In a fluid (such as moisture...
Pan, Hsuan-yu
2010-01-01
This research work aims on exploiting SiGe HBT technologies in high dynamic range wideband RF linear-in- dB envelope detectors and linear amplifiers. First, an improved all-npn broadband highly linear SiGe HBT differential amplifier is presented based on a variation of Caprio's Quad. A broadband linear amplifier with 46dBm OIP₃ at 20MHz, 34dBm OIP₃ at 1GHz, 6dB noise figure and 10.3dBm P₁dB is demonstrated. Second, an improved exact dynamic model of a fast-settling linear-in-dB Automatic Gain...
Bal, Guillaume; Bellis, Cédric; Imperiale, Sébastien; Monard, François
2014-01-01
Within the framework of linear elasticity we assume the availability of internal full-field measurements of the continuum deformations of a non-homogeneous isotropic solid. The aim is the quantitative reconstruction of the associated moduli. A simple gradient system for the sought constitutive parameters is derived algebraically from the momentum equation, whose coefficients are expressed in terms of the measured displacement fields and their spatial derivatives. Direct integration of this system is discussed to finally demonstrate the inexpediency of such an approach when dealing with noisy data. Upon using polluted measurements, an alternative variational formulation is deployed to invert for the physical parameters. Analysis of this latter inversion procedure provides existence and uniqueness results while the reconstruction stability with respect to the measurements is investigated. As the inversion procedure requires differentiating the measurements twice, a numerical differentiation scheme based on an ad hoc regularization then allows an optimally stable reconstruction of the sought moduli. Numerical results are included to illustrate and assess the performance of the overall approach. (paper)
Kim, Dae-Hyeong; Song, Jizhou; Choi, Won Mook; Kim, Hoon-Sik; Kim, Rak-Hwan; Liu, Zhuangjian; Huang, Yonggang Y; Hwang, Keh-Chih; Zhang, Yong-wei; Rogers, John A
2008-12-02
Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90 degrees in approximately 1 cm) and linear stretching to "rubber-band" levels of strain (e.g., up to approximately 140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics.
Sivebæk, Ion Marius; Samoilov, V. N.; Persson, B. N. J.
2003-01-01
The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and the elastic properties of the solid surfaces. We consider linear alkane molecules of different chain lengths, C3H8, C4H10, C8H18, C9H20, C10H22, C12H26 and C14...
Lee, Hyeong Y.; Nikbin, Kamran M.; O'Dowd, Noel P.
2005-01-01
A review of through thickness transverse residual stress distribution measurements in a number of components, manufactured from a range of steels, has been carried out. Residual stresses introduced by welding and mechanical deformation have been considered. The geometries consisted of welded T-plate joints, pipe butt joints, tube-on-plate joints, tubular Y-joints and tubular T-joints as well as cold bent tubes and repair welds. In addition, the collected data cover a range of engineering steels including ferritic, austenitic, C-Mn and Cr-Mo steels. The methods used to measure the residual stresses also varied. These included neutron diffraction, X-ray diffraction and deep hole drilling techniques. Measured residual stress data, normalised by their respective yield stress have shown an inverse linear correlation versus the normalised depth of the region containing the residual stress (up to 0.5 of the component thickness). A simplified generic residual stress profile based on a linear fit to the data is proposed for the case of a transverse residual tensile stress field. Whereas the profiles in assessment procedures are case specific the proposed linear profile can be varied to produce a combination of membrane and bending stress distributions to give lower or higher levels of conservatism on stress intensity factors, depending on the amount of case specific data available or the degree of safety required
Design considerations of a linear generator for a range extender application
Seo Un-Jae
2015-12-01
Full Text Available The free piston linear generator is a new range extender concept for the application in a full electric vehicle. The free piston engine driven linear generators can achieve high efficiency at part and full load which is suitable for the range extender application. This paper presents requirements for designing a linear generator deduced from a basic analysis of a free piston linear generator.
Contoyannis, Paul; Hurley, Jeremiah; Grootendorst, Paul; Jeon, Sung-Hee; Tamblyn, Robyn
2005-09-01
The price elasticity of demand for prescription drugs is a crucial parameter of interest in designing pharmaceutical benefit plans. Estimating the elasticity using micro-data, however, is challenging because insurance coverage that includes deductibles, co-insurance provisions and maximum expenditure limits create a non-linear price schedule, making price endogenous (a function of drug consumption). In this paper we exploit an exogenous change in cost-sharing within the Quebec (Canada) public Pharmacare program to estimate the price elasticity of expenditure for drugs using IV methods. This approach corrects for the endogeneity of price and incorporates the concept of a 'rational' consumer who factors into consumption decisions the price they expect to face at the margin given their expected needs. The IV method is adapted from an approach developed in the public finance literature used to estimate income responses to changes in tax schedules. The instrument is based on the price an individual would face under the new cost-sharing policy if their consumption remained at the pre-policy level. Our preferred specification leads to expenditure elasticities that are in the low range of previous estimates (between -0.12 and -0.16). Naïve OLS estimates are between 1 and 4 times these magnitudes. (c) 2005 John Wiley & Sons, Ltd.
Yuan, Rong [Univ. of California, Berkeley, CA (United States)
2007-01-01
Linear elastic fracture mechanics is widely used in industry because it established simple and explicit relationships between the permissible loading conditions and the critical crack size that is allowed in a structure. Stress intensity factors are the above-mentioned functional expressions that relate load with crack size through geometric functions or weight functions. Compliance functions are to determine the crack/flaw size in a structure when optical inspection is inconvenient. As a result, geometric functions, weight functions and compliance functions have been intensively studied to determine the stress intensity factor expressions for different geometries. However, the relations between these functions have received less attention. This work is therefore to investigate the intrinsic relationships between these functions. Theoretical derivation was carried out and the results were verified on single-edge cracked plate under tension and bending. It is found out that the geometric function is essentially the non-dimensional weight function at the loading point. The compliance function is composed of two parts: a varying part due to crack extension and a constant part from the intact structure if no crack exists. The derivative of the compliance function at any location is the product of the geometric function and the weight function at the evaluation point. Inversely, the compliance function can be acquired by the integration of the product of the geometric function and the weight function with respect to the crack size. The integral constant is just the unchanging compliance from the intact structure. Consequently, a special application of the relations is to obtain the compliance functions along a crack once the geometric function and weight functions are known. Any of the three special functions can be derived once the other two functions are known. These relations may greatly simplify the numerical process in obtaining either geometric functions, weight
Wang, Wenjun; Li, Peng; Jin, Feng
2016-09-01
A novel two-dimensional linear elastic theory of magneto-electro-elastic (MEE) plates, considering both surface and nonlocal effects, is established for the first time based on Hamilton’s principle and the Lee plate theory. The equations derived are more general, suitable for static and dynamic analyses, and can also be reduced to the piezoelectric, piezomagnetic, and elastic cases. As a specific application example, the influences of the surface and nonlocal effects, poling directions, piezoelectric phase materials, volume fraction, damping, and applied magnetic field (i.e., constant applied magnetic field and time-harmonic applied magnetic field) on the magnetoelectric (ME) coupling effects are first investigated based on the established two-dimensional plate theory. The results show that the ME coupling coefficient has an obvious size-dependent characteristic owing to the surface effects, and the surface effects increase the ME coupling effects significantly when the plate thickness decreases to its critical thickness. Below this critical thickness, the size-dependent effect is obvious and must be considered. In addition, the output power density of a magnetic energy nanoharvester is also evaluated using the two-dimensional plate theory obtained, with the results showing that a relatively larger output power density can be achieved at the nanoscale. This study provides a mathematical tool which can be used to analyze the mechanical properties of nanostructures theoretically and numerically, as well as evaluating the size effect qualitatively and quantitatively.
Free piston linear generator in comparison to other range-extender technologies
Virsik, Roman; Heron, Alex
2013-01-01
The free piston linear generator is a new range-extender technology. It converts chemical energy into electrical energy by means of a combustion process and linear generator. Thereby the technology aims to have better properties than other range extenders. Therefore this publication deals with the explanation of the concept and the characteristics of a free piston linear generator and a comparison to other technologies. In order to compare the range extender systems, fuel cells, micro gas tur...
A non-linear elastic constitutive framework for replicating plastic deformation in solids.
Roberts, Scott Alan; Schunk, Peter Randall
2014-02-01
Ductile metals and other materials typically deform plastically under large applied loads; a behavior most often modeled using plastic deformation constitutive models. However, it is possible to capture some of the key behaviors of plastic deformation using only the framework for nonlinear elastic mechanics. In this paper, we develop a phenomenological, hysteretic, nonlinear elastic constitutive model that captures many of the features expected of a plastic deformation model. This model is based on calculating a secant modulus directly from a materials stress-strain curve. Scalar stress and strain values are obtained in three dimensions by using the von Mises invariants. Hysteresis is incorporated by tracking an additional history variable and assuming an elastic unloading response. This model is demonstrated in both single- and multi-element simulations under varying strain conditions.
Angela Mihai, L.; Goriely, Alain
2013-01-01
Finite element simulations of different shear deformations in non-linear elasticity are presented. We pay particular attention to the Poynting effects in hyperelastic materials, complementing recent theoretical findings by showing these effects
Twisting failure of centrally loaded open-section columns in the elastic range
Kappus, Robert
1938-01-01
In the following report a complete theory of twisting failure by the energy method is developed, based on substantially the same assumptions as those employed by Wagner and Bleich. Problems treated in detail are: the stress and strain condition under St. Venant twist and in twist with axial constraint; the concept of shear center and the energy method for problems of elastic stability.
On the use of small integrating spheres to improve the linearity range of RASNIKS systems
Alberdi, J.; Burgos, C.; Ferrando, A.; Molinero, A.; Schvachkin, V.; Figueroa, C.F.; Matorras, F.; Rodrigo, T.; Ruiz, A.; Vila, I.
1997-10-01
Rasniks elements will be used in the CMS alignment system. The large displacements of the different sub detectors expected in the CMS experiment demands large linearity response of this system. By the use of a small integrating sphere we have optimized the source definition such that a factor three improvement in the linearity range with respect to conventional Rasniks configurations is obtained. The response range reached coincides with the maximum one can get with the components used in the test
Improvement of linear reactivity methods and application to long range fuel management
Woehlke, R.A.; Quan, B.L.
1982-01-01
The original development of the linear reactivity theory assumes flat burnup, batch by batch. The validity of this assumption is explored using multicycle burnup data generated with a detailed 3-D SIMULATE model. The results show that the linear reactivity method can be improved by correcting for batchwise power sharing. The application of linear reactivity to long range fuel management is demonstrated in several examples. Correcting for batchwise power sharing improves the accuracy of the analysis. However, with regard to the sensitivity of fuel cost to changes in various parameters, the corrected and uncorrected linear reactivity theories give remarkably similar results
Arnoux , A.; Batou , Anas; Soize , Christian; Gagliardini , L.
2012-01-01
International audience; This paper is devoted to the construction of a stochastic reduced-order model for dynamical structures having a high modal density in the low-frequency range, such as an automotive vehicle. This type of structure is characterized by the fact that it exhibits, in the low-frequency range, not only the classical global elastic modes but also numerous local elastic modes which cannot easily be separated from the global elastic modes. An approach has recently been proposed ...
DESTRUCTION CRITERION IN MODEL OF NON-LINEAR ELASTIC PLASTIC MEDIUM
O. L. Shved
2014-01-01
Full Text Available The paper considers a destruction criterion in a specific phenomenological model of elastic plastic medium which significantly differs from the known criteria. In case of vector interpretation of rank-2 symmetric tensors yield surface in the Cauchy stress space is formed by closed piecewise concave surfaces of its deviator sections with due account of experimental data. Section surface is determined by normal vector which is selected from two private vectors of criterial “deviator” operator. Such selection is not always possible in the case of anisotropy growth. It is expected that destruction can only start when a process point in the stress space is located in the current deviator section of the yield surface. It occurs when a critical point appears in the section, and a private value of an operator becomes N-fold in the point that determines the private vector corresponding to the normal vector. Unique and reasonable selection of the normal vector becomes impossible in the critical point and an yield criteria loses its significance in the point.When the destruction initiation is determined there is a possibility of a special case due to the proposed conic form of the yield surface. The deviator section degenerates into the point at the yield surface peak. Criterion formulation at the surface peak lies in the fact that there is no physically correct solution while using a state equation in regard to elastic distortion measures with a fixed tensor of elastic turn. Such usage of the equation is always possible for the rest points of the yield surface and it is considered as an obligatory condition for determination of the deviator section. A critical point is generally absent at any deviator section of the yield surface for isotropic material. A limiting value of the mean stress has been calculated at uniform tension.
Asymmetry in π-p↑ elastic scattering in momentum range 1.4-2.1 GeV/c
Alekseev, I.G.; Budkovskij, P.E.; Kanavets, V.P.
1989-01-01
Results of systematic measurements of the asymmetry parameter in the elastic scattering of pions on polarized protons at 1.4-2.1 GeV/c in the back hemisphere are presented together with a test of the isospin invariance of the data set available on pion-proton scattering in the investigated momentum range. The obtained data and amplitude reconstruction results are compared with the current phase shift analysis predictions. 22 refs.; 10 figs
Geometric method for stability of non-linear elastic thin shells
Ivanova, Jordanka
2002-01-01
PREFACE This book deals with the new developments and applications of the geometric method to the nonlinear stability problem for thin non-elastic shells. There are no other published books on this subject except the basic ones of A. V. Pogorelov (1966,1967,1986), where variational principles defined over isometric surfaces, are postulated, and applied mainly to static and dynamic problems of elastic isotropic thin shells. A. V. Pogorelov (Harkov, Ukraine) was the first to provide in his monographs the geometric construction of the deformed shell surface in a post-critical stage and deriving explicitely the asymptotic formulas for the upper and lower critical loads. In most cases, these formulas were presented in a closed analytical form, and confirmed by experimental data. The geometric method by Pogorelov is one of the most important analytical methods developed during the last century. Its power consists in its ability to provide a clear geometric picture of the postcritical form of a deformed shell surfac...
Homogenization of Winkler-Steklov spectral conditions in three-dimensional linear elasticity
Gómez, D.; Nazarov, S. A.; Pérez, M. E.
2018-04-01
We consider a homogenization Winkler-Steklov spectral problem that consists of the elasticity equations for a three-dimensional homogeneous anisotropic elastic body which has a plane part of the surface subject to alternating boundary conditions on small regions periodically placed along the plane. These conditions are of the Dirichlet type and of the Winkler-Steklov type, the latter containing the spectral parameter. The rest of the boundary of the body is fixed, and the period and size of the regions, where the spectral parameter arises, are of order ɛ . For fixed ɛ , the problem has a discrete spectrum, and we address the asymptotic behavior of the eigenvalues {β _k^ɛ }_{k=1}^{∞} as ɛ → 0. We show that β _k^ɛ =O(ɛ ^{-1}) for each fixed k, and we observe a common limit point for all the rescaled eigenvalues ɛ β _k^ɛ while we make it evident that, although the periodicity of the structure only affects the boundary conditions, a band-gap structure of the spectrum is inherited asymptotically. Also, we provide the asymptotic behavior for certain "groups" of eigenmodes.
Barwart, O; Rollinger, J M; Burger, A
1999-10-01
Differential scanning calorimetry (DSC) was used to determine the transition temperature ranges (TTR) of four types of super-elastic orthodontic nickel-titanium coil springs (Sentalloy). A knowledge of the TTR provides information on the temperature at which a NiTi wire or spring can assume superelastic properties and when this quality disappears. The spring types in this study can be distinguished from each other by their characteristic TTR during cooling and heating. For each tested spring type a characteristic TTR during heating (austenite transformation) and cooling (martensite transformation) was evaluated. The hysteresis of the transition temperature, found between cooling and heating, was 3.4-5.2 K. Depending on the spring type the austenite transformation started (As) at 9.7-17.1 degrees C and finished (Af) at 29.2-37 degrees C. The martensite transformation starting temperature (Ms) was evaluated at 32.6-25.4 degrees C, while Mf (martensite transformation finishing temperature) was 12.7-6.5 degrees C. The results show that the springs become super-elastic when the temperature increases and As is reached. They undergo a loss of super-elastic properties and a rapid decrease in force delivery when they are cooled to Mf. For the tested springs, Mf and As were found to be below room temperature. Thus, at room temperature and some degrees lower, all the tested springs exert super-elastic properties. For orthodontic treatment this means the maintenance of super-elastic behaviour, even when mouth temperature decreases to about room temperature as can occur, for example, during meals.
The neutron elastic scatterirg differential cross sections in energy range below 440 keV
Zo In Ok; Nikolenko, V.G.; Popov, A.B.; Samosvat, G.S.
1985-01-01
The intensities of elastically scattered neutrons have been measured on Ti, Ni, Fe, Zn, Ge, Se, Zr, Mo, Ru, Rh, Pd, Ag, Cd, 116 Sn, 117 Sn, 118 Sn, 119 Sn, 120 Sn, 122 Sn, 124 Sn, Te, Ta, W, Re targets at 45 deg, 90 deg and 135 deg angles on the IBR-30 reactor. The differential cross sections were descried by the formula σ(THETA)=σsub(s)/σ4π[1+ωsub(1)Psub(1)(cos THETA)+ωsub(2)Psub(2)(cos THETA)]. The tables on σsub(s)(E), ω 1 (E) and ω 2 (E) obtained from the experimental data are given
Boyarskij, S.V.
1986-01-01
Experimental results are presented for internal friction and linear expansion coefficient at zirconium and cobalt in the temperature range from 440 K to the point of the phase transition of the first kind (1138 K for Zr and 706 for Co). Anomalous changes of the internal friction and linear expansion coefficient in the phase transition region are found. Theoretical considerations are given to explain the sharp decrease of the internal friction as temperature approaches the phase transition point
Inferring bread doneness with air-pulse/ultrasonic ranging measurements of the loaf elastic response
Faeth, Loren Elbert
This research marks the discovery of a method by which bread doneness may be determined based on the elastic properties of the loaf as it bakes. The purpose of the study was to determine if changes in bread characteristics could be determined by non-contact methods during baking, as the basis for improved control of the baking process. Current control of the baking process is based on temperature and dwell time, which are determined by experience to produce a produce which is approximately ``done.'' There is no direct measurement of the property of interest, doneness. An ultrasonic measurement system was developed to measure the response of the loaf to an external stimulus. ``Doneness,'' as reflected in the internal elastic consistency of the bakery product, is assessed in less than 1/2 second, and requires no closer approach to the moving bakery product than about 2 inches. The system is designed to be compatible with strapped bread pans in a standard traveling-tray commercial oven.
Majumdar, S.; Kwasny, R.
1985-01-01
High-cycle fatigue tests using 5-mm-diameter smooth specimens were performed on the single crystal alloy PWA 1480 (001 axis) at 70F (room temperature) in air and at 100F (538C) in vacuum (10 to the -6 power torr). Tests were conducted at zero mean stress as well as at high tensile mean stress. The results indicate that, although a tensile mean stress, in general, reduces life, the reduction in fatigue strength, for a given mean stress at a life of one million cycles, is much less than what is predicted by the usual linear Goodman plot. Further, the material appears to be significantly more resistant to mean stress effects at 1000F than at 70F. Metallographic examinations of failed specimens indicate that failures in all cases are initiated from micropores of sizes of the order of 30 to 40 microns. Since the macroscopic stress-strain response in all cases was observed to be linear elastic, linear elastic fracture mechanics (LEFM) analyses were carried out to determine the crack growth curves of the material assuming that crack initiation from a micropore (a sub o = 40 microns) occurs very early in life. The results indicate that the calculated crack growth rates at an R (defined as the ratio between minimum stress to maximum stress) value of zero are approximately the same at 70F as at 1000F. However, the calculated crack growth rates at other R ratios, both positive and negative, tend to be higher at 70F than at 1000F. Calculated threshold effects at large R values tend to be independent of temperature in the temperature regime studied. They are relatively constant with increasing R ratio up to a value of about 0.6, beyond which the calculated threshold stress intensity factor range decreases rapidly with increasing R ratios.
Ultra-low-pressure sputtering to improve exchange bias and tune linear ranges in spin valves
Tang, XiaoLi, E-mail: tangtang1227@163.com; Yu, You; Liu, Ru; Su, Hua; Zhang, HuaiWu; Zhong, ZhiYong; Jing, YuLan
2017-05-01
A series of CoFe/IrMn exchange bilayers was grown by DC-sputtering at different ultra-low argon pressures ranging from 0.008 to 0.1 Pa. This pressure range was one to two orders lower than the normal sputtering pressure. Results revealed that the exchange bias increased from 140 to 250 Oe in CoFe(10 nm)/IrMn (15 nm) bilayers of fixed thickness because of the improved crystalline structure and morphological uniformity of films. Since ferromagnetic /antiferromagnetic (FM/AF) bilayers are always used in linear magnetic sensors as detection layers, the varying exchange bias can successfully achieve tunable linear range in a crossed pinning spin valve. The linear range could be adjustable from −80 Oe – +80 Oe to −150 Oe – +150 Oe on the basis of giant magnetoresistance responses. Therefore, this method provides a simple method to tune the operating range of magnetic field sensors. - Highlights: • Increasing exchange bias was achieved in bilayer at ultra-low-pressure sputtering. • The low void density and smooth surface were achieved in low pressure. • Varying exchange bias achieved tunable linear range in spin valve.
Mitsak, Anna G; Dunn, Andrew M; Hollister, Scott J
2012-07-01
Scaffold tissue engineering strategies for repairing and replacing soft tissue aim to improve reconstructive and corrective surgical techniques whose limitations include suboptimal mechanical properties, fibrous capsule formation and volume loss due to graft resorption. An effective tissue engineering strategy requires a scaffolding material with low elastic modulus that behaves similarly to soft tissue, which has been characterized as a nonlinear elastic material. The material must also have the ability to be manufactured into specifically designed architectures. Poly(glycerol sebacate) (PGS) is a thermoset elastomer that meets these criteria. We hypothesize that the mechanical properties of PGS can be modulated through curing condition and architecture to produce materials with a range of stiffnesses. To evaluate this hypothesis, we manufactured PGS constructs cured under various conditions and having one of two architectures (solid or porous). Specimens were then tensile tested according to ASTM standards and the data were modeled using a nonlinear elastic Neo-Hookean model. Architecture and testing conditions, including elongation rate and wet versus dry conditions, affected the mechanical properties. Increasing curing time and temperature led to increased tangent modulus and decreased maximum strain for solid constructs. Porous constructs had lower nonlinear elastic properties, as did constructs of both architectures tested under simulated physiological conditions (wetted at 37 °C). Both solid and porous PGS specimens could be modeled well with the Neo-Hookean model. Future studies include comparing PGS properties to other biological tissue types and designing and characterizing PGS scaffolds for regenerating these tissues. Copyright © 2012 Elsevier Ltd. All rights reserved.
Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature
Austin, Ryan A.
2018-01-01
The effect of temperature on the dynamic flow behavior of aluminum is considered in the context of precursor wave decay measurements and simulations. In this regard, a dislocation-based model of high-rate metal plasticity is brought into agreement with previous measurements of evolving wave profiles at 300 to 933 K, wherein the amplification of the precursor structure with temperature arises naturally from the dislocation mechanics treatment. The model suggests that the kinetics of inelastic flow and stress relaxation are governed primarily by phonon scattering and radiative damping (sound wave emission from dislocation cores), both of which intensify with temperature. The manifestation of these drag effects is linked to low dislocation density ahead of the precursor wave and the high mobility of dislocations in the face-centered cubic lattice. Simulations performed using other typical models of shock wave plasticity do not reproduce the observed temperature-dependence of elastic/plastic wave structure.
An enhanced finite volume method to model 2D linear elastic structures
Suliman, Ridhwaan
2014-04-01
Full Text Available . Suliman) Preprint submitted to Applied Mathematical Modelling July 22, 2013 Keywords: finite volume, finite element, locking, error analysis 1. Introduction Since the 1960s, the finite element method has mainly been used for modelling the mechanics... formulation provides higher accuracy 2 for displacement solutions. It is well known that the linear finite element formulation suffers from sensitivity to element aspect ratio or shear locking when subjected to bend- ing [16]. Fallah [8] and Wheel [6] present...
Lukasievicz, Gustavo V B; Astrath, Nelson G C; Malacarne, Luis C; Herculano, Leandro S; Zanuto, Vitor S; Baesso, Mauro L; Bialkowski, Stephen E
2013-10-01
A theoretical model for a time-resolved photothermal mirror technique using pulsed-laser excitation was developed for low absorption samples. Analytical solutions to the temperature and thermoelastic deformation equations are found for three characteristic pulse profiles and are compared to finite element analysis methods results for finite samples. An analytical expression for the intensity of the center of a continuous probe laser at the detector plane is derived using the Fresnel diffraction theory, which allows modeling of experimental results. Experiments are performed in optical glasses, and the models are fitted to the data. The parameters of the fit are in good agreement with previous literature data for absorption, thermal diffusion, and thermal expansion of the materials tested. The combined modeling and experimental techniques are shown to be useful for quantitative determination of the physical properties of low absorption homogeneous linear elastic material samples.
Pettermann, Heinz E.; DeSimone, Antonio
2017-09-01
A constitutive material law for linear thermo-viscoelasticity in the time domain is presented. The time-dependent relaxation formulation is given for full anisotropy, i.e., both the elastic and the viscous properties are anisotropic. Thereby, each element of the relaxation tensor is described by its own and independent Prony series expansion. Exceeding common viscoelasticity, time-dependent thermal expansion relaxation/creep is treated as inherent material behavior. The pertinent equations are derived and an incremental, implicit time integration scheme is presented. The developments are implemented into an implicit FEM software for orthotropic material symmetry under plane stress assumption. Even if this is a reduced problem, all essential features are present and allow for the entire verification and validation of the approach. Various simulations on isotropic and orthotropic problems are carried out to demonstrate the material behavior under investigation.
Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).
Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P
2014-01-01
The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented. Copyright © 2013 Elsevier B.V. All rights reserved.
BOERTJENS, G. J.; VAN HORSSEN, W. T.
2000-08-01
In this paper an initial-boundary value problem for the vertical displacement of a weakly non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends of the beam is studied. The initial-boundary value problem can be regarded as a simple model describing oscillations of flexible structures like suspension bridges or iced overhead transmission lines. Using a two-time-scales perturbation method an approximation of the solution of the initial-boundary value problem is constructed. Interactions between different oscillation modes of the beam are studied. It is shown that for certain external excitations, depending on the phase of an oscillation mode, the amplitude of specific oscillation modes changes.
Vattré, A.
2017-08-01
The long- and short-range interactions as well as planar reactions between two infinitely periodic sets of crossing dislocations are investigated using anisotropic elasticity theory in face- (fcc) and body- (bcc) centered cubic materials. Two preliminary cases are proposed to examine the substantial changes in the elastic stress states and the corresponding strain energies due to a slight rearrangement in the internal dislocation geometries and characters. In general, significant differences and discrepancies resulting from the considered cubic crystal structure and the approximation of isotropic elasticity are exhibited. In a third scenario, special attention is paid to connecting specific internal dislocation structures from the previous cases with non-equilibrium configurations predicted by the quantized Frank-Bilby equation for the (111) fcc and (110) bcc twist grain boundaries. The present solutions lead to the formation of energetically favorable dislocation junctions with non-randomly strain-relaxed configurations of lower energy. In particular, the local dislocation interactions and reactions form equilibrium hexagonal-shaped patterns with planar three-fold dislocation nodes without producing spurious far-field stresses.Numerical application results are presented from a selection of cubic metals including aluminum, copper, tantalum, and niobium. In contrast to the fcc materials, asymmetric dislocation nodes occur in the anisotropic bcc cases, within which the minimum-energy paths for predicting the fully strain-relaxed dislocation patterns depend on the Zener anisotropic factor with respect to unity. The associated changes in the dislocation structures as well as the removal of the elastic strain energy upon relaxations are quantified and also discussed.
Linearity improvement on wide-range log signal of neutron measurement system for HANARO
Kim, Young-Ki; Tuetken, Jeffrey S.
1998-01-01
This paper discusses engineering activities for improving the linearity characteristics of the Log Power signal from the neutron measurement system for HANARO. This neutron measurement system uses a fission chamber based detector which covers 10.3 decade-wide range from 10 -8 % full power(FP) up to 200%FP, The Log Power signal is designed to control the reactor at low power levels where most of the reactor physics tests are carried out. Therefore, the linearity characteristics of the Log Power signal is the major factor for accurate reactor power control. During the commissioning of the neutron measurement system, it was found that the linearity characteristics of the Log Power signal, especially near 10 -2 %FP, were not accurate enough for controlling the reactor during physics testing. Analysis of the system linearity data directly measured with reactor operating determined that the system was not operating per the design characteristics established from previous installations. The linearity data, which were taken as the reactor was increased in power, were sent to manufacturer's engineering group and a follow-up measures based on the analysis were then fed back to the field. Through step by step trouble-shooting activities, which included minor circuit modifications and alignment procedure changes, the linearity characteristics have been successfully improved and now exceed minimum performance requirements. This paper discusses the trouble-shooting techniques applied, the changes in the linearity characteristics, special circumstances in the HANARO application and the final resolution. (author)
Asa'd, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Gjerpe, I.; Heymann, F.F.; Imrie, D.C.; Lowndes, R.; Lush, G.J.; Phillips, M.; Baglin, C.; Poulet, M.; Yvert, M.; Benso, S.; Buzzo, A.; Ferroni, S.; Gracco, V.; Macri, M.; Santroni, A.; Brobakken, K.; Bugge, L.; Buran, T.; Fearnley, T.; Helgaker, P.; Kirsebom, K.; Moe, A.; Soerensen, S.O.; Hansen, J.D.; Myrheim, J.; Skjevling, G.
1982-01-01
Measurements of the differential elastic cross sections for π - p scattering at incident momenta of 20 and 50 GeV/c and π + p at 50 GeV/c in the momentum transfer range 0.7 2 are presented. The data are compared with various models of elastic scattering. (orig.)
Lee, Youngoh; Park, Jonghwa; Cho, Soowon; Shin, Young-Eun; Lee, Hochan; Kim, Jinyoung; Myoung, Jinyoung; Cho, Seungse; Kang, Saewon; Baig, Chunggi; Ko, Hyunhyub
2018-04-24
Flexible pressure sensors with a high sensitivity over a broad linear range can simplify wearable sensing systems without additional signal processing for the linear output, enabling device miniaturization and low power consumption. Here, we demonstrate a flexible ferroelectric sensor with ultrahigh pressure sensitivity and linear response over an exceptionally broad pressure range based on the material and structural design of ferroelectric composites with a multilayer interlocked microdome geometry. Due to the stress concentration between interlocked microdome arrays and increased contact area in the multilayer design, the flexible ferroelectric sensors could perceive static/dynamic pressure with high sensitivity (47.7 kPa -1 , 1.3 Pa minimum detection). In addition, efficient stress distribution between stacked multilayers enables linear sensing over exceptionally broad pressure range (0.0013-353 kPa) with fast response time (20 ms) and high reliability over 5000 repetitive cycles even at an extremely high pressure of 272 kPa. Our sensor can be used to monitor diverse stimuli from a low to a high pressure range including weak gas flow, acoustic sound, wrist pulse pressure, respiration, and foot pressure with a single device.
Application of range-test in multiple linear regression analysis in ...
Application of range-test in multiple linear regression analysis in the presence of outliers is studied in this paper. First, the plot of the explanatory variables (i.e. Administration, Social/Commercial, Economic services and Transfer) on the dependent variable (i.e. GDP) was done to identify the statistical trend over the years.
Analyses of Alpha-Alpha Elastic Scattering Data in the Energy Range 140 - 280 MeV
Shehadeh, Zuhair F. [Taif University, Taif (Saudi Arabia)
2017-01-15
The differential and the reaction cross-sections for 4He-4He elastic scattering data have been nicely obtained at four energies ranging from 140 MeV to 280 MeV (lab system), namely, 140, 160, 198 and 280 MeV, by using a new optical potential with a short-range repulsive core. The treatment has been handled relativistically as υ/c > 0.25 for the two lower energies and υ/c > 0.31 for the two higher ones. In addition to explaining the elastic angular distributions, the adopted potentials accounted for the structure that may exist at angles close to 90◦ , especially for the 198 and the 280-MeV incident energies. No renormalization has been used, and all our potential parameters are new. The necessity of including a short-range repulsive potential term in our real nuclear potential part has been demonstrated. Our results contribute to solving a long-standing problem concerning the nature of the alpha-alpha potential. This is very beneficial in explaining unknown alpha-nucleus and nucleus-nucleus relativistic reactions by using the cluster formalism.
He, Haijun; Shao, Liyang; Qian, Heng; Zhang, Xinpu; Liang, Jiawei; Luo, Bin; Pan, Wei; Yan, Lianshan
2017-03-20
A novel demodulation method for Sagnac loop interferometer based sensor has been proposed and demonstrated, by unwrapping the phase changes with birefringence interrogation. A temperature sensor based on Sagnac loop interferometer has been used to verify the feasibility of the proposed method. Several tests with 40 °C temperature range have been accomplished with a great linearity of 0.9996 in full range. The proposed scheme is universal for all Sagnac loop interferometer based sensors and it has unlimited linear measurable range which overwhelming the conventional demodulation method with peak/dip tracing. Furthermore, the influence of the wavelength sampling interval and wavelength span on the demodulation error has been discussed in this work. The proposed interrogation method has a great significance for Sagnac loop interferometer sensor and it might greatly enhance the availability of this type of sensors in practical application.
Barari, Amin; Ganjavi, B.; Jeloudar, M. Ghanbari
2010-01-01
and fluid mechanics. Design/methodology/approach – Two new but powerful analytical methods, namely, He's VIM and HPM, are introduced to solve some boundary value problems in structural engineering and fluid mechanics. Findings – Analytical solutions often fit under classical perturbation methods. However......, as with other analytical techniques, certain limitations restrict the wide application of perturbation methods, most important of which is the dependence of these methods on the existence of a small parameter in the equation. Disappointingly, the majority of nonlinear problems have no small parameter at all......Purpose – In the last two decades with the rapid development of nonlinear science, there has appeared ever-increasing interest of scientists and engineers in the analytical techniques for nonlinear problems. This paper considers linear and nonlinear systems that are not only regarded as general...
Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras.
Payne, Andrew D; Dorrington, Adrian A; Cree, Michael J; Carnegie, Dale A
2010-08-10
Time-of-flight range imaging systems utilizing the amplitude modulated continuous wave (AMCW) technique often suffer from measurement nonlinearity due to the presence of aliased harmonics within the amplitude modulation signals. Typically a calibration is performed to correct these errors. We demonstrate an alternative phase encoding approach that attenuates the harmonics during the sampling process, thereby improving measurement linearity in the raw measurements. This mitigates the need to measure the system's response or calibrate for environmental changes. In conjunction with improved linearity, we demonstrate that measurement precision can also be increased by reducing the duty cycle of the amplitude modulated illumination source (while maintaining overall illumination power).
P-S & S-P Elastic Wave Conversions from Linear Arrays of Oriented Microcracks
Jiang, L.; Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.
2017-12-01
Natural and induced processes can produce oriented mechanical discontinuities such as en echelon cracks, fractures and faults. Previous research has shown that compressional to shear (P-S) wave conversions occur at normal incidence to a fracture because of cross-coupling fracture compliances (Nakagawa et al., 2000). Here, experiments and computer simulation are presented to demonstrate the link among cross-coupling stiffness, microcrack orientation and energy partitioning among P, S, and P-S/S-P waves. A FormLabs 2 3D printer was used to fabricate 7 samples (50 mm x 50 mm x 100 mm) with linear arrays of microcracks oriented at 0, 15, 30, 45, 60, 75, and 900 with a print resolution of 0.025 mm. The microcracks were elliptical in cross-sections (2 mm long by 1 mm wide), through the 50 mm thickness of sample, and spaced 3 mm (center-to-center for adjacent cracks). A 25 mm length of each sample contained no microcracks to act as a reference material. Broadband transducers (0.2-1.5 MHz) were used to transmit and receive P and polarized S wave signals that were propagated at normal incidence to the linear array of microcracks. P-wave amplitude increased, while S-wave amplitude remained relatively constant, as the microcrack orientation increased from 0o to 90o. At normal incidence, P-S and S-P wave conversions emerged and increased in amplitude as the crack inclination increased from 00 to 450. From 450 to 900, the amplitude of these converted modes decreased. Between negative and positive crack angles, the P-to-S and S-to-P waves were 1800 phase reversed. The observed energy partitioning matched the computed compliances obtained from numerical simulations with ABAQUS. The cross-coupling compliance for cracks inclined at 450 was found to be the smallest magnitude. 3D printing enabled the study of microstructural effects on macro-scale wave measurements. Information on the orientation of microcracks or even en echelon fractures and faults is contained in P-S conversions
anti pp elastic scattering at 30 GeV/c incident momentum in the momentum transfer range 0.52
Asa'd, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Fearnley, T.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Phillips, M.; Baglin, A.; Guillard, J.P.; Poulet, M.; Brom, J.M.; Myrheim, J.; Kenyon Gjerpe, I.; Buran, T.; Buzzo, A.; Ferroni, S.; Gracco, V.; Khan, E.; Kirsebom, K.; Macri, M.; Rossi, L.; Santroni, A.; Skjevling, G.; Sorensen, S.O.
1983-01-01
The anti pp elastic differential cross section at 30 GeV/c incident momentum has been measured in a two-arm spectrometer experiment (WA7) at the CERN SPS. The vertical stroketvertical stroke-range covered extends from 0.5 to 5.8 (GeV/c) 2 . A pronounced dip-bump structure is observed, with a sharp minimum around vertical stroketvertical strokeapprox.=1.7 (GeV/c) 2 . The results are compared with existing anti pp data at lower energies and with our earlier anti pp data at 50 GeV/c. A number of model predictions are discussed. We also compare the anti pp 30 GeV/c differential cross section with that of pp at the same momentum. Finally, the energy dependence of the anti pp fixed-vertical stroketvertical stroke differential cross section in the incident momentum range 3.6 to 50 GeV/c is presented. (orig.)
Full-range k-domain linearization in spectral-domain optical coherence tomography.
Jeon, Mansik; Kim, Jeehyun; Jung, Unsang; Lee, Changho; Jung, Woonggyu; Boppart, Stephen A
2011-03-10
A full-bandwidth k-domain linearization method for spectral-domain optical coherence tomography (SD-OCT) is demonstrated. The method uses information of the wavenumber-pixel-position provided by a translating-slit-based wavelength filter. For calibration purposes, the filter is placed either after a broadband source or at the end of the sample path, and the filtered spectrum with a narrowed line width (∼0.5 nm) is incident on a line-scan camera in the detection path. The wavelength-swept spectra are co-registered with the pixel positions according to their central wavelengths, which can be automatically measured with an optical spectrum analyzer. For imaging, the method does not require a filter or a software recalibration algorithm; it simply resamples the OCT signal from the detector array without employing rescaling or interpolation methods. The accuracy of k-linearization is maximized by increasing the k-linearization order, which is known to be a crucial parameter for maintaining a narrow point-spread function (PSF) width at increasing depths. The broadening effect is studied by changing the k-linearization order by undersampling to search for the optimal value. The system provides more position information, surpassing the optimum without compromising the imaging speed. The proposed full-range k-domain linearization method can be applied to SD-OCT systems to simplify their hardware/software, increase their speed, and improve the axial image resolution. The experimentally measured width of PSF in air has an FWHM of 8 μm at the edge of the axial measurement range. At an imaging depth of 2.5 mm, the sensitivity of the full-range calibration case drops less than 10 dB compared with the uncompensated case.
A high linearity current mode multiplier/divider with a wide dynamic range
Liao Pengfei; Luo Ping; Zhang Bo; Li Zhaoji
2012-01-01
A high linearity current mode multiplier/divider (CMM/D) with a wide dynamic range is presented. The proposed CMM/D is based on the voltage—current characteristic of the diode, thus wide dynamic range is achieved. In addition, high linearity is achieved because high accuracy current mirrors are adopted and the output current is insensitive to the temperature and device parameters of the fabrication process. Furthermore, no extra bias current for all input signals is required and thus power saving is realized. With proper selection of establishing the input terminal, the proposed circuit can perform as a multifunction circuit to be operated as a multiplier/divider, without changing its topology. The proposed circuit is implemented in a 0.25 μm BCD process and the chip area is 0.26 × 0.24 mm 2 . The simulation and measurement results show that the maximum static linearity error is ±1.8% and the total harmonic distortion is 0.4% while the input current ranges from 0 to 200 μA. (semiconductor integrated circuits)
Dörsek, Philipp; Melenk, Jens M.
2017-01-01
We consider the extension of the p-robust equilibrated error estimator due to Braess, Pillwein and Schöberl to linear elasticity. We derive a formulation where the local mixed auxiliary problems do not require symmetry of the stresses. The resulting error estimator is p-robust, and the reliability estimate is also robust in the incompressible limit if quadratics are included in the approximation space. Extensions to other systems of linear second-order partial differential equations are discu...
Validation of favor code linear elastic fracture solutions for finite-length flaw geometries
Dickson, T.L.; Keeney, J.A.; Bryson, J.W.
1995-01-01
One of the current tasks within the US Nuclear Regulatory Commission (NRC)-funded Heavy Section Steel Technology Program (HSST) at Oak Ridge National Laboratory (ORNL) is the continuing development of the FAVOR (Fracture, analysis of Vessels: Oak Ridge) computer code. FAVOR performs structural integrity analyses of embrittled nuclear reactor pressure vessels (RPVs) with stainless steel cladding, to evaluate compliance with the applicable regulatory criteria. Since the initial release of FAVOR, the HSST program has continued to enhance the capabilities of the FAVOR code. ABAQUS, a nuclear quality assurance certified (NQA-1) general multidimensional finite element code with fracture mechanics capabilities, was used to generate a database of stress-intensity-factor influence coefficients (SIFICs) for a range of axially and circumferentially oriented semielliptical inner-surface flaw geometries applicable to RPVs with an internal radius (Ri) to wall thickness (w) ratio of 10. This database of SIRCs has been incorporated into a development version of FAVOR, providing it with the capability to perform deterministic and probabilistic fracture analyses of RPVs subjected to transients, such as pressurized thermal shock (PTS), for various flaw geometries. This paper discusses the SIFIC database, comparisons with other investigators, and some of the benchmark verification problem specifications and solutions
I. K. Badalakha
2009-02-01
Full Text Available The article shows the result of solving the problem of stress-strain state of an elastic half-space because of the load action that uniformly distributed over the line, with the use of untraditional linear dependence of deformations on stressed state that is different from the generalized Hooke’s law.
Amir R. Ali
2017-01-01
Full Text Available This paper presents and verifies the mathematical model of an electric field senor based on the whispering gallery mode (WGM. The sensing element is a dielectric microsphere, where the light is used to tune the optical modes of the microsphere. The light undergoes total internal reflection along the circumference of the sphere; then it experiences optical resonance. The WGM are monitored as sharp dips on the transmission spectrum. These modes are very sensitive to morphology changes of the sphere, such that, for every minute change in the sphere’s morphology, a shift in the transmission spectrum will happen and that is known as WGM shifts. Due to the electrostriction effect, the applied electric field will induce forces acting on the surface of the dielectric sphere. In turn, these forces will deform the sphere causing shifts in its WGM spectrum. The applied electric field can be obtained by calculating these shifts. Navier’s equation for linear elasticity is used to model the deformation of the sphere to find the WGM shift. The finite element numerical studies are performed to verify the introduced model and to study the behavior of the sensor at different values of microspheres’ Young’s modulus and dielectric constant. Furthermore, the sensitivity and resolution of the developed WGM electric filed sensor model will be presented in this paper.
Perruisseau-Carrier, A; Bahlouli, N; Bierry, G; Vernet, P; Facca, S; Liverneaux, P
2017-12-01
Augmented reality could help the identification of nerve structures in brachial plexus surgery. The goal of this study was to determine which law of mechanical behavior was more adapted by comparing the results of Hooke's isotropic linear elastic law to those of Ogden's isotropic hyperelastic law, applied to a biomechanical model of the brachial plexus. A model of finite elements was created using the ABAQUS ® from a 3D model of the brachial plexus acquired by segmentation and meshing of MRI images at 0°, 45° and 135° of shoulder abduction of a healthy subject. The offset between the reconstructed model and the deformed model was evaluated quantitatively by the Hausdorff distance and qualitatively by the identification of 3 anatomical landmarks. In every case the Hausdorff distance was shorter with Ogden's law compared to Hooke's law. On a qualitative aspect, the model deformed by Ogden's law followed the concavity of the reconstructed model whereas the model deformed by Hooke's law remained convex. In conclusion, the results of this study demonstrate that the behavior of Ogden's isotropic hyperelastic mechanical model was more adapted to the modeling of the deformations of the brachial plexus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Long-range correlation in synchronization and syncopation tapping: a linear phase correction model.
Didier Delignières
Full Text Available We propose in this paper a model for accounting for the increase in long-range correlations observed in asynchrony series in syncopation tapping, as compared with synchronization tapping. Our model is an extension of the linear phase correction model for synchronization tapping. We suppose that the timekeeper represents a fractal source in the system, and that a process of estimation of the half-period of the metronome, obeying a random-walk dynamics, combines with the linear phase correction process. Comparing experimental and simulated series, we show that our model allows accounting for the experimentally observed pattern of serial dependence. This model complete previous modeling solutions proposed for self-paced and synchronization tapping, for a unifying framework of event-based timing.
Arnold, R.G.; Chertok, B.T.; Dally, E.B.; Grigorian, A.; Jordan, C.L.; Schuetz, W.P.; Zdarko, R.; Martin, F.; Mecking, B.A.
1975-06-01
Preliminary results of elastic eD scattering at large momentum transfer performed at the Stanford Linear Accelerator Center using two high resolution spectrometers in coincidence are reported. The deuteron structure function A(q 2 ) is deduced at 9 values of q 2 from a comparison of elastic eD and eP coincident yields and the world's eP cross sections. These measurements extend the range of q 2 by 4.5 over previous work, and in this new range A(q 2 ) is observed to approach 1/q 20 momentum dependence. Results are in sharp disagreement with the meson exchange calculations, and they are in rough agreement with the nonrelativistic potential models, and they are in agreement with the predictions of the quark dimensional scaling model which pictures the deuteron as a bound state of 6 quarks at large momentum transfer
Kim, Jong Sung; Kim, Yong Woo [Sunchon National University, Suncheon (Korea, Republic of)
2014-10-15
Two acceleration methods, an effective force method (or inertia method) and a large mass method, have been applied for performing time history seismic analysis. The acceleration methods for uncracked structures have been verified via previous studies. However, no study has identified the validity of these acceleration methods for cracked piping. In this study, the validity of the acceleration methods for through-wall cracked piping is assessed via time history implicit dynamic elastic seismic analysis from the viewpoint of linear elastic fracture mechanics. As a result, it is identified that both acceleration methods show the same results for cracked piping if a large mass magnitude and maximum time increment are adequately selected.
Kim, Jong Sung; Kim, Yong Woo
2014-01-01
Two acceleration methods, an effective force method (or inertia method) and a large mass method, have been applied for performing time history seismic analysis. The acceleration methods for uncracked structures have been verified via previous studies. However, no study has identified the validity of these acceleration methods for cracked piping. In this study, the validity of the acceleration methods for through-wall cracked piping is assessed via time history implicit dynamic elastic seismic analysis from the viewpoint of linear elastic fracture mechanics. As a result, it is identified that both acceleration methods show the same results for cracked piping if a large mass magnitude and maximum time increment are adequately selected
A high sensitive 66 dB linear dynamic range receiver for 3-D laser radar
Ma, Rui; Zheng, Hao; Zhu, Zhangming
2017-08-01
This study presents a CMOS receiver chip realized in 0.18 μm standard CMOS technology and intended for high precision 3-D laser radar. The chip includes an adjustable gain transimpedance pre-amplifier, a post-amplifier and two timing comparators. An additional feedback is employed in the regulated cascode transimpedance amplifier to decrease the input impedance, and a variable gain transimpedance amplifier controlled by digital switches and analog multiplexer is utilized to realize four gain modes, extending the input dynamic range. The measurement shows that the highest transimpedance of the channel is 50 k {{Ω }}, the uncompensated walk error is 1.44 ns in a wide linear dynamic range of 66 dB (1:2000), and the input referred noise current is 2.3 pA/\\sqrt{{Hz}} (rms), resulting in a very low detectable input current of 1 μA with SNR = 5.
Design of a High Linearity Four-Quadrant Analog Multiplier in Wideband Frequency Range
Abdul kareem Mokif Obais
2017-05-01
Full Text Available In this paper, a voltage mode four quadrant analog multiplier in the wideband frequency rangeis designed using a wideband operational amplifier (OPAMP and squaring circuits. The wideband OPAMP is designed using 10 identical NMOS transistorsand operated with supply voltages of ±12V. Two NMOS transistors and two wideband OPAMP are utilized in the design of the proposed squaring circuit. All the NMOS transistors are based on 0.35µm NMOStechnology. The multiplier has input and output voltage ranges of ±10 V, high range of linearity from -10 V to +10 V, and cutoff frequency of about 5 GHz. The proposed multiplier is designed on PSpice in Orcad 16.6
High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers
J.-M. Wu
2012-06-01
Full Text Available This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC for worldwide interoperability for microwave access (WiMAX receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA with noise cancellation, an RF bandpass filter (BPF, a downconverter with linearization, and an intermediate frequency (IF BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3 of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf of the RF front end by 3.5 dB.
Nahed S. Hussein
2014-01-01
Full Text Available A numerical boundary integral scheme is proposed for the solution to the system of eld equations of plane. The stresses are prescribed on one-half of the circle, while the displacements are given. The considered problem with mixed boundary conditions in the circle is replaced by two problems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way, and the problem at this stage is reduced to the solution to a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution and the unknown boundary values of stresses or displacements on proper parts of the boundary. On the basis of the obtained results, it is inferred that a stress component has a singularity at each of the two separation points, thought to be of logarithmic type. The results are discussed and boundary plots are given. We have also calculated the unknown functions in the bulk directly from the given boundary conditions using the boundary collocation method. The obtained results in the bulk are discussed and three-dimensional plots are given. A tentative form for the singular solution is proposed and the corresponding singular stresses and displacements are plotted in the bulk. The form of the singular tangential stress is seen to be compatible with the boundary values obtained earlier. The efficiency of the used numerical schemes is discussed.
Improved linearity using harmonic error rejection in a full-field range imaging system
Payne, Andrew D.; Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.
2008-02-01
Full field range imaging cameras are used to simultaneously measure the distance for every pixel in a given scene using an intensity modulated illumination source and a gain modulated receiver array. The light is reflected from an object in the scene, and the modulation envelope experiences a phase shift proportional to the target distance. Ideally the waveforms are sinusoidal, allowing the phase, and hence object range, to be determined from four measurements using an arctangent function. In practice these waveforms are often not perfectly sinusoidal, and in some cases square waveforms are instead used to simplify the electronic drive requirements. The waveforms therefore commonly contain odd harmonics which contribute a nonlinear error to the phase determination, and therefore an error in the range measurement. We have developed a unique sampling method to cancel the effect of these harmonics, with the results showing an order of magnitude improvement in the measurement linearity without the need for calibration or lookup tables, while the acquisition time remains unchanged. The technique can be applied to existing range imaging systems without having to change or modify the complex illumination or sensor systems, instead only requiring a change to the signal generation and timing electronics.
Kaufmann, Anton; Walker, Stephan
2017-11-30
The linear intrascan and interscan dynamic ranges of mass spectrometers are important in metabolome and residue analysis. A large linear dynamic range is mandatory if both low- and high-abundance ions have to be detected and quantitated in heavy matrix samples. These performance criteria, as provided by modern high-resolution mass spectrometry (HRMS), were systematically investigated. The comparison included two generations of Orbitraps, and an ion mobility quadrupole time-of-flight (QTOF) system In addition, different scan modes, as provided by the utilized instruments, were investigated. Calibration curves of different compounds covering a concentration range of five orders of magnitude were measured to evaluate the linear interscan dynamic range. The linear intrascan dynamic range and the resulting mass accuracy were evaluated by repeating these measurements in the presence of a very intense background. Modern HRMS instruments can show linear dynamic ranges of five orders of magnitude. Often, however, the linear dynamic range is limited by the detection capability (sensitivity and selectivity) and by the electrospray ionization. Orbitraps, as opposed to TOF instruments, show a reduced intrascan dynamic range. This is due to the limited C-trap and Orbitrap capacity. The tested TOF instrument shows poorer mass accuracies than the Orbitraps. In contrast, hyphenation with an ion-mobility device seems not to affect the linear dynamic range. The linear dynamic range of modern HRMS instrumentation has been significantly improved. This also refers to the virtual absence of systematic mass shifts at high ion abundances. The intrascan dynamic range of the current Orbitrap technology may still be a limitation when analyzing complex matrix extracts. On the other hand, the linear dynamic range is not only limited by the detector technology, but can also be shortened by peripheral devices, where the ionization and transfer of ions take place. Copyright © 2017 John Wiley
Linear response theory for long-range interacting systems in quasistationary states.
Patelli, Aurelio; Gupta, Shamik; Nardini, Cesare; Ruffo, Stefano
2012-02-01
Long-range interacting systems, while relaxing to equilibrium, often get trapped in long-lived quasistationary states which have lifetimes that diverge with the system size. In this work, we address the question of how a long-range system in a quasistationary state (QSS) responds to an external perturbation. We consider a long-range system that evolves under deterministic Hamilton dynamics. The perturbation is taken to couple to the canonical coordinates of the individual constituents. Our study is based on analyzing the Vlasov equation for the single-particle phase-space distribution. The QSS represents a stable stationary solution of the Vlasov equation in the absence of the external perturbation. In the presence of small perturbation, we linearize the perturbed Vlasov equation about the QSS to obtain a formal expression for the response observed in a single-particle dynamical quantity. For a QSS that is homogeneous in the coordinate, we obtain an explicit formula for the response. We apply our analysis to a paradigmatic model, the Hamiltonian mean-field model, which involves particles moving on a circle under Hamiltonian dynamics. Our prediction for the response of three representative QSSs in this model (the water-bag QSS, the Fermi-Dirac QSS, and the Gaussian QSS) is found to be in good agreement with N-particle simulations for large N. We also show the long-time relaxation of the water-bag QSS to the Boltzmann-Gibbs equilibrium state. © 2012 American Physical Society
Non-linear characteristics and long-range correlations in Asian stock markets
Jiang, J.; Ma, K.; Cai, X.
2007-05-01
We test several non-linear characteristics of Asian stock markets, which indicates the failure of efficient market hypothesis and shows the essence of fractal of the financial markets. In addition, by using the method of detrended fluctuation analysis (DFA) to investigate the long range correlation of the volatility in the stock markets, we find that the crossover phenomena exist in the results of DFA. Further, in the region of small volatility, the scaling behavior is more complicated; in the region of large volatility, the scaling exponent is close to 0.5, which suggests the market is more efficient. All these results may indicate the possibility of characteristic multifractal scaling behaviors of the financial markets.
Náprstek, Jiří; Pospíšil, Stanislav
2012-01-01
Roč. 111, č. 1 (2012), s. 1-13 ISSN 0167-6105 R&D Projects: GA ČR(CZ) GA103/09/0094; GA AV ČR(CZ) IAA200710902 Institutional support: RVO:68378297 Keywords : aero-elastic system * self-excited vibration * instability * aero-elastic derivatives Subject RIV: JN - Civil Engineering Impact factor: 1.342, year: 2012
Hou, Fang
With the extensive application of fiber-reinforced composite laminates in industry, research on the fracture mechanisms of this type of materials have drawn more and more attentions. A variety of fracture theories and models have been developed. Among them, the linear elastic fracture mechanics (LEFM) and cohesive-zone model (CZM) are two widely-accepted fracture models, which have already shown applicability in the fracture analysis of fiber-reinforced composite laminates. However, there remain challenges which prevent further applications of the two fracture models, such as the experimental measurement of fracture resistance. This dissertation primarily focused on the study of the applicability of LEFM and CZM for the fracture analysis of translaminar fracture in fibre-reinforced composite laminates. The research for each fracture model consisted of two sections: the analytical characterization of crack-tip fields and the experimental measurement of fracture resistance parameters. In the study of LEFM, an experimental investigation based on full-field crack-tip displacement measurements was carried out as a way to characterize the subcritical and steady-state crack advances in translaminar fracture of fiber-reinforced composite laminates. Here, the fiber-reinforced composite laminates were approximated as anisotropic solids. The experimental investigation relied on the LEFM theory with a modification with respect to the material anisotropy. Firstly, the full-field crack-tip displacement fields were measured by Digital Image Correlation (DIC). Then two methods, separately based on the stress intensity approach and the energy approach, were developed to measure the crack-tip field parameters from crack-tip displacement fields. The studied crack-tip field parameters included the stress intensity factor, energy release rate and effective crack length. Moreover, the crack-growth resistance curves (R-curves) were constructed with the measured crack-tip field parameters
Polarized Elastic Fast-Neutron Scattering off {sup 12}C in the Lower MeV-Range. I. Experimental Part
Aspelund, O
1967-05-15
Practical as well as more fundamental interest in low-energy n-{sup 12}C elastic scattering motivated the execution of comprehensive polarization studies between 1.062 and 2.243 MeV. Seven complete polarization angular distributions were obtained from experimental finite-geometry left-right ratios at each energy observed at six or seven laboratory scattering angles between 30 and 129 deg, using polarized fast-neutrons emitted at {theta}{sub i} 50 (lab. syst.) from the {sup 7}Li(p, n) {sup 7}Be-reaction. Proper corrections were applied for finite geometry and polarized multiple-scattering effects as well as for the presence of the first-excited state group of fast-neutrons in the incident beams. The magnitude of the polarization effects are sufficiently large to ensure the potentialities of {sup 12}C as an acceptable fast-neutron polarization analyser in the energy range under consideration. Furthermore, on the basis of the above-mentioned polarization data as well as on the basis of total and differential scattering cross section data available in current literature reliable phase shifts were determined. These phase shifts are only in partial agreement with the ones of Wills, Jr. et al. , and in definite disagreement with the extrapolated phases of Meier, Scherrer, and Trumpy. Their energy variations will be predicted in the theoretical part of this contribution.
Wei Wang
2016-09-01
Full Text Available A Fourier transform spectrometer (FTS that incorporates a closed-loop controlled, electrothermally actuated microelectromechanical systems (MEMS micromirror is proposed and experimentally verified. The scan range and the tilting angle of the mirror plate are the two critical parameters for MEMS-based FTS. In this work, the MEMS mirror with a footprint of 4.3 mm × 3.1 mm is based on a modified lateral-shift-free (LSF bimorph actuator design with large piston and reduced tilting. Combined with a position-sensitive device (PSD for tilt angle sensing, the feedback controlled MEMS mirror generates a 430 µm stable linear piston scan with the mirror plate tilting angle less than ±0.002°. The usable piston scan range is increased to 78% of the MEMS mirror’s full scan capability, and a spectral resolution of 0.55 nm at 531.9 nm wavelength, has been achieved. It is a significant improvement compared to the prior work.
Baktibayev, M.K.; Burminskii, V.P.; Burtebaev, N.; Dzazairov -Kakhramanov, V.; Hassan, S.F.; Satpaev, N.K.; Zazulin, D.M.
2004-01-01
Full text: The fulfillment of planned works on measurements of differential cross sections of elastic scattering of protons on nuclear 12 C at the energy region of 350†1050 keV suggests the preparation of thin self - supporting carbon target. The self - supporting target is necessary in order to perform investigations in the total angular range. In the future last data will be used in order to determine optical potentials and scattering phases for this nuclear in the energy range of astrophysical interest. There was prepared target layer of the 12 C with natural composition of carbon and of thickness of 17.4 μg/cm 2 . The spraying was conducted in the vacuum evaporation installation (VUP - 4) by an electron bombardment method. Carbon was sprayed on a glass plate with previously deposited of layer salt. After a heating during 12 hours at the temperature of 150 o C the film of carbon was floated from glass plate and self - supporting target has been picked up on the specially prepared target frame. In order to determine thickness of target there was used the resonance chamber, installed in the protons channel of the accelerator RAC - 2 - 1 (INP NNC RK), with the help of which there was measured energy loss of the protons beam during the passage through target, disposed in the central chamber. For this purpose there was used the reaction 27 Al(p,γ) 28 Si with narrow resonance with E R = 992 keV and with detection of gamma-quanta with E γ = 1779 keV. On shift of the resonance E R =992 keV in the reaction 27 Al(p,γ) 28 Si, which takes place owing to protons energy loss in the thickness of carbon film, and using table values of brake quantities S(E p )[MeV·cm 2 /g] [1], there was determined thickness of this fine film. Such the method allows to determine thicknesses of films in the interval of (10 † 100) mcg/cm 2 with the accuracy of not worse than 5%. In the present work there were carried out measurements of angular distributions of cross sections of the
Vavra, G.
1978-01-01
Considered are the limit and the intermediate values of the Young modulus E, modulus of shear G and of linear modulus of compression K obtainable at various temperatures (4.2 to 1133 K) for single crystals of α-zirconium. Determined and presented are the corrected isotropic elasticity characteristics of E, G, K over the above range of temperatures of textured and non-textured α-Zr
Proton-proton elastic scattering at 50 GeV/c incident momentum in the momentum transfer range 0.82
Baglin, C.; Guillaud, J.P.; Poulet, M.; Myrheim, J.; Asa'd, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Fearnley, T.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Phillips, M.; Brom, J.M.; Kenyon Gjerpe, I.; Buran, T.; Buzzo, A.; Ferroni, S.; Gracco, V.; Kirsebom, K.; Macri, M.; Santroni, A.; Skjevling, G.; Soerensen, S.O.
1983-01-01
A measurement of the proton-proton elastic differential cross section at 50 GeV/c incident momentum in the momentum transfer range 0.8 2 is presented. The data are compared to pp data at lower and higher energies, and to some model predictions. (orig.)
Cappuzzello, F.; Agodi, C.; Bondì, M.; Carbone, D.; Cavallaro, M.; Cunsolo, A.; De Napoli, M.; Foti, A.; Nicolosi, D.; Tropea, S.; Faria, P.N. de; Linares, R.
2014-01-01
The elastic and inelastic scattering of 16 O ions on 27 Al target nuclei were measured in a broad angular range (5°<θ lab <40°) at 280 MeV incident energy. The beam was accelerated by the K800 Superconducting Cyclotron at the INFN-LNS laboratory. The ejectiles were detected by the MAGNEX large acceptance magnetic spectrometer. The matching of the beam properties with the optical characteristics of the spectrometer allowed to separate the elastic from the inelastic channels in the energy spectra and measure accurate cross-section distributed over more than eight orders of magnitude down to a few tens of nb/sr
Bordenave-Montesquieu, D.; Dagnac, R.
1979-01-01
The differential cross section for the elastic scattering, target and projectile excitation (corresponding to energy losses of about 21 eV and 40 eV) and for the double-excitation process (Q approximately 60 eV). Over the whole energy range, the elastic cross section shows oscillations of which extrema are located at particular values of tau(tau = E 0 theta). These oscillations are due to the interference between the waves scattered through the Σsub(u) and Σ sub(g) states and the phaseshift between these waves have been particularly studied, starting from Everhart's calculations (Phys. Rev.; 132: 2083 (1963)). Moreover, the minima of the elastic process appear for some energies and do not exist for others as is expected from Everhart's results. For inelastic processes, the general behaviour is roughly the same. (author)
Shokouhi, Parisa; Rivière, Jacques; Lake, Colton R; Le Bas, Pierre-Yves; Ulrich, T J
2017-11-01
The use of nonlinear acoustic techniques in solids consists in measuring wave distortion arising from compliant features such as cracks, soft intergrain bonds and dislocations. As such, they provide very powerful nondestructive tools to monitor the onset of damage within materials. In particular, a recent technique called dynamic acousto-elasticity testing (DAET) gives unprecedented details on the nonlinear elastic response of materials (classical and non-classical nonlinear features including hysteresis, transient elastic softening and slow relaxation). Here, we provide a comprehensive set of linear and nonlinear acoustic responses on two prismatic concrete specimens; one intact and one pre-compressed to about 70% of its ultimate strength. The two linear techniques used are Ultrasonic Pulse Velocity (UPV) and Resonance Ultrasound Spectroscopy (RUS), while the nonlinear ones include DAET (fast and slow dynamics) as well as Nonlinear Resonance Ultrasound Spectroscopy (NRUS). In addition, the DAET results correspond to a configuration where the (incoherent) coda portion of the ultrasonic record is used to probe the samples, as opposed to a (coherent) first arrival wave in standard DAET tests. We find that the two visually identical specimens are indistinguishable based on parameters measured by linear techniques (UPV and RUS). On the contrary, the extracted nonlinear parameters from NRUS and DAET are consistent and orders of magnitude greater for the damaged specimen than those for the intact one. This compiled set of linear and nonlinear ultrasonic testing data including the most advanced technique (DAET) provides a benchmark comparison for their use in the field of material characterization. Copyright © 2017 Elsevier B.V. All rights reserved.
Elastic scattering of 7Li projectiles in the energy range of 20 to 34 MeV
Khallaf, S.A.E.
1983-01-01
As far as it is known, the Watanabe folding model has not been used to analyse the elastic scattering of 7 Li projectiles. The main purpose of the present work is to calculate the differential cross sections for 7 Li elastic scattering von 90 Zr, 48 , 40 Ca, 16 O and 12 C at incident energies of 20 to 34 MeV using the Watanabe folding model and to study the applicability of this model for 7 Li elastic scattering. The potentials of 7 Li ions are revealed by Taylor expansions of alpha and triton cluster potentials. The resulting differential cross sections are compared with the predicted cross sections using phenomenological potentials of 7 Li ions. (orig./WL)
Jody D. Gray; Shawn T. Grushecky; James P. Armstrong
2008-01-01
Moisture content has a significant impact on mechanical properties of wood. In recent years, stress wave velocity has been used as an in situ and non-destructive method for determining the stiffness of wooden elements. The objective of this study was to determine what effect moisture content has on stress wave velocity and dynamic modulus of elasticity. Results...
Lucchetti, Liana; Fraccia, Tommaso P.; Ciciulla, Fabrizio; Bellini, Tommaso
2017-01-01
Throughout the whole history of liquid crystals science, the balancing of intrinsic elasticity with coupling to external forces has been the key strategy for most application and investigation. While the coupling of the optical field to the nematic director is at the base of a wealth of thoroughly described optical effects, a significant variety of geometries and materials have not been considered yet. Here we show that by adopting a simple cell geometry and measuring the optically induced bi...
Lucchetti, Liana; Fraccia, Tommaso P; Ciciulla, Fabrizio; Bellini, Tommaso
2017-07-10
Throughout the whole history of liquid crystals science, the balancing of intrinsic elasticity with coupling to external forces has been the key strategy for most application and investigation. While the coupling of the optical field to the nematic director is at the base of a wealth of thoroughly described optical effects, a significant variety of geometries and materials have not been considered yet. Here we show that by adopting a simple cell geometry and measuring the optically induced birefringence, we can readily extract the twist elastic coefficient K 22 of thermotropic and lyotropic chiral nematics (N*). The value of K 22 we obtain for chiral doped 5CB thermotropic N* well matches those reported in the literature. With this same strategy, we could determine for the first time K 22 of the N* phase of concentrated aqueous solutions of DNA oligomers, bypassing the limitations that so far prevented measuring the elastic constants of this class of liquid crystalline materials. The present study also enlightens the significant nonlinear optical response of DNA liquid crystals.
Streit, R.D.
1981-01-01
The failure evaluation of Pressurized Water Reactor (PWR) primary coolant loop pipe is often based on a plastic limit load criterion; i.e., failure occurs when the stress on the pipe section exceeds the material flow stress. However, in addition the piping system must be safe against crack propagation at stresses less than those leading to plastic instability. In this paper, elastic, elastic-plastic, and fully-plastic failure models are evaluated, and the requirements for piping integrity based on these models are compared. The model yielding the 'more' critical criteria for the given geometry and loading conditions defines the appropriate failure criterion. The pipe geometry and loading used in this study was choosen based on an evaluation of a guillotine break in a PWR primary coolant loop. It is assumed that the piping may contain cracks. Since a deep circumferential crack, can lead to a guillotine pipe break without prior leaking and thus without warning it is the focus of the failure model comparison study. The hot leg pipe, a 29 in. I.D. by 2.5 in. wall thickness stainless pipe, was modeled in this investigation. Cracks up to 90% through the wall were considered. The loads considered in this evaluation result from the internal pressure, dead weight, and seismic stresses. For the case considered, the internal pressure contributes the most to the failure loading. The maximum moment stress due to the dead weight and seismic moments are simply added to the pressure stress. Thus, with the circumferential crack geometry and uniform pressure stress, the problem is axisymmetric. It is analyzed using NIKE2D--an implicit, finite deformation, finite element code for analyzing two-dimensional elastic-plastic problems. (orig./GL)
Nogueira, J.C.; Dallavalli, M.J.
1992-01-01
Absolute elastic differential cross sections have been measured for incident electron energies between 75 and 1000 eV and in the angular range between 10 0 to 120 0 . The relative flow technique was used and nitrogen was the secondary gas standard. Integral cross sections have also been determined from extrapolation of the differential cross sections. The data are compared with previous experimental data, showing good agreement. (author)
De Beer, Morris
2008-07-01
Full Text Available - wave and ρ the material density. The elastic moduli P-wave modulus, M, is defined so that M = K + 4µ / 3 and M can then be determined by Equation 11, with a known speed Vp P MV 2 ρ = (11) It should however also... gas (such as air within compacted road materials), the adiabatic bulk modulus KS is approximately given by pKS κ= (4) Where: κ is the adiabatic index, (sometimes calledγ ); p is the pressure. In a fluid (such as moisture...
Moussaoui, Ahmed; Bouziane, Touria
2016-01-01
The method LRPIM is a Meshless method with properties of simple implementation of the essential boundary conditions and less costly than the moving least squares (MLS) methods. This method is proposed to overcome the singularity associated to polynomial basis by using radial basis functions. In this paper, we will present a study of a 2D problem of an elastic homogenous rectangular plate by using the method LRPIM. Our numerical investigations will concern the influence of different shape parameters on the domain of convergence,accuracy and using the radial basis function of the thin plate spline. It also will presents a comparison between numerical results for different materials and the convergence domain by precising maximum and minimum values as a function of distribution nodes number. The analytical solution of the deflection confirms the numerical results. The essential points in the method are: •The LRPIM is derived from the local weak form of the equilibrium equations for solving a thin elastic plate.•The convergence of the LRPIM method depends on number of parameters derived from local weak form and sub-domains.•The effect of distributions nodes number by varying nature of material and the radial basis function (TPS).
SCANDAL -- A facility for elastic neutron scattering studies in the 50--130 MeV range
Klug, J.; Blomgren, J.; Atac, A.; Bergenwall, B.; Dangtip, S.; Elmgren, K.; Johansson, C.; Olsson, N.; Prokofiev, A.V.; Rahm, J.; Oberstedt, A.; Tovesson, F.; Eudes, Ph.; Haddad, F.; Kerveno, M.; Kirchner, T.; Lebrun, C.; Stuttge, L.; Slypen, I.; Michel, R.; Neumann, S.; Herpers, U.
2001-01-01
A facility for detection of scattered neutrons in the energy interval 50--130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), has recently been installed at the 20--180 MeV neutron beam facility of the The Svedberg Laboratory, Uppsala. It is primarily intended for studies of elastic neutron scattering, but can be used for the (n,p) and (n,d) reaction experiments as well. The performance of the spectrometer is illustrated in measurements of the (n,p) and (n,n) reactions on 1 H and 12 C. In addition, the neutron beam facility is described in some detail
SCANDAL--a facility for elastic neutron scattering studies in the 50-130 MeV range
Klug, J; Atac, A; Bergenwall, B; Dangtip, S; Elmgren, K; Johansson, C; Olsson, N; Pomp, S; Prokofiev, A V; Rahm, J; Tippawan, U; Jonsson, O; Nilsson, L; Renberg, P U; Nadel-Turonski, P; Ringbom, A; Oberstedt, A; Tovesson, F; Blideanu, V; Le Brun, C; Lecolley, J F; Lecolley, F R; Louvel, M; Marie, N; Schweitzer, C; Varignon, C; Eudes, P; Haddad, F; Kerveno, M; Kirchner, T; Lebrun, C; Stuttgé, L; Slypen, I; Smirnov, A N; Michel, R; Neumann, S; Herpers, U
2002-01-01
A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCAttered Nucleon Detection AssembLy (SCANDAL), has recently been installed at the 20-180 MeV neutron beam facility of The Svedberg Laboratory, Uppsala. It is primarily intended for studies of elastic neutron scattering, but can be used for (n,p) and (n,d) reaction experiments as well. The performance of the spectrometer is illustrated in measurements of the (n,p) and (n,n) reactions on sup 1 H and sup 1 sup 2 C. In addition, the neutron beam facility is described in some detail.
Delbar, T.; Gregoire, G.; Paic, G.; Ceuleneer, R.; Michel, F.; Vanderpoorten, R.; Budzanowski, A.; Dabrowski, H.; Freindl, L.; Grotowski, K.; Micek, S.; Planeta, R.; Strzalkowski, A.; Eberhard, K.A.
1978-01-01
Angular distributions for α particle elastic scattering by /sup 40,44/Ca and excitation of the 3.73 MeV 3 - collective state of 40 Ca were measured for incident energies ranging from 40 to 62 MeV. An extensive optical model analysis of these elastic scattering cross sections and other available data, using squared Woods-Saxon form factors, results in potentials with fixed geometry for both real and imaginary parts and depths with smooth energy behavior over a broad incident energy range. These results are discussed in the frame of the semi-classical approximation developed by Brink and Takigawa. The sensitiveness of the calculated elastic scattering cross sections to the real part of the potentials as a function of the projectile-target distance has been investigated by means of a notch test. Distorted-wave Born-approximtion calculations for the excitation of the 3.73 MeV 3 - state of 40 Ca are presented
Mercier, Sylvain; Gratton, Serge; Tardieu, Nicolas; Vasseur, Xavier
2017-12-01
Many applications in structural mechanics require the numerical solution of sequences of linear systems typically issued from a finite element discretization of the governing equations on fine meshes. The method of Lagrange multipliers is often used to take into account mechanical constraints. The resulting matrices then exhibit a saddle point structure and the iterative solution of such preconditioned linear systems is considered as challenging. A popular strategy is then to combine preconditioning and deflation to yield an efficient method. We propose an alternative that is applicable to the general case and not only to matrices with a saddle point structure. In this approach, we consider to update an existing algebraic or application-based preconditioner, using specific available information exploiting the knowledge of an approximate invariant subspace or of matrix-vector products. The resulting preconditioner has the form of a limited memory quasi-Newton matrix and requires a small number of linearly independent vectors. Numerical experiments performed on three large-scale applications in elasticity highlight the relevance of the new approach. We show that the proposed method outperforms the deflation method when considering sequences of linear systems with varying matrices.
Elastic scattering of 7Li + 27Al at several angles in the 7-11 MeV energy range
Abriola, D.; Carnelli, P.; Arazi, A.; Figueira, J.M.; Capurro, O.A.; Cardona, M.A.; Fernandez Niello, J.O.; Hojman, D.; Fimiani, L.; Grinberg, P.; Martinez Heimann, D.; Marti, G.V.; Negri, A.E.; Pacheco, A.J.
2010-01-01
Elastic cross sections for the 7 Li + 27 Al system were measured at laboratory energies between 7 and 11 MeV in steps of 0.25 MeV, and angles between 135 o and 170 o in steps of 5 o . Excitation functions for the elastic scattering were measured using an array of eight Si surface-barrier detectors whereas a solid-state telescope was used to estimate and subtract background from other reactions. Contamination from α particles arising from the 7 Li breakup process at E lab ≥ 10 MeV makes the use of these energies inadvisable for RBS applications. The present results are compared with previous data obtained at 165 o (E lab ≤ 6 MeV), 140 o and 170 o (E lab ≤ 8 MeV). The experimental data were analyzed in terms of the Optical Model. Two different energy-independent potentials were found. These optical potentials allow an interpolation with physical meaning to other energies and scattering angles. The experimental cross sections will be uploaded to the IBANDL database.
Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki
2017-05-01
The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Liu, Hanghui; Lam, Lily; Yan, Lin; Chi, Bert; Dasgupta, Purnendu K.
2014-01-01
Highlights: • Less abundant isotopologue ions were utilized to decrease detector saturation. • A 25–50 fold increase in the upper limit of dynamic range was demonstrated. • Linear dynamic range was expanded without compromising mass resolution. - Abstract: The linear dynamic range (LDR) for quantitative liquid chromatography–mass spectrometry can be extended until ionization saturation is reached by using a number of target isotopologue ions in addition to the normally used target ion that provides the highest sensitivity. Less abundant isotopologue ions extend the LDR: the lower ion abundance decreases the probability of ion detector saturation. Effectively the sensitivity decreases and the upper limit of the LDR increases. We show in this paper that the technique is particularly powerful with a high resolution time of flight mass spectrometer because the data for all ions are automatically acquired, and we demonstrated this for four small organic molecules; the upper limits of LDRs increased by 25–50 times
Budzanowski, A.; Dabrowski, H.; Freindl, L.; Grotowski, K.; Micek, S.; Planeta, R.; Strzalkowski, A.; Bosman, M.; Leleux, P.; Macq, P.; Meulders, J.P.; Pirart, C.
1978-01-01
The differential cross sections for α particles elastically and inelastically scattered from 5 8Ni (at 29, 34, 38, and 58 MeV) and elastically scattered from 6 0Ni (at 29 and 34 MeV), are measured together with excitation functions in the 25--38 MeV region at 178.5 0 lab. These data together with the data of 26.5, 32.3, 104, and 139 MEV for 5 8Ni and 32.3 and 104 MeV for 6 0Ni from other sources were analyzed using an optical model with volume and surface absorptions and the Saxon-Woods square form factors. The analysis yielded energy dependent depths of both real and imaginary parts of the potential and constant geometric parameters. The analytical expressions for depths of the real and both absorption potentials are obtained. The coupled channel calculations using the above optical potential were performed for the first excited state of 5 8Ni. Both elastic scattering data and coupling with the first excited state of 5 8Ni are well reproduced using the above potential in the wide scattering energy range
Liao, Ruolin; Wu, Zhichao; Fu, Songnian; Zhu, Shengnan; Yu, Zhe; Tang, Ming; Liu, Deming
2018-02-01
Although the linear optical sampling (LOS) technique is powerful enough to characterize various advanced modulation formats with high symbol rates, the central wavelength of a pulsed local oscillator (LO) needs to be carefully set according to that of the signal under test, due to the coherent mixing operation. Here, we experimentally demonstrate wideband LOS enabled by a fiber optics frequency comb (FOFC). Meanwhile, when the broadband FOFC acts as the pulsed LO, we propose a scheme to mitigate the enhanced sampling error arising in the non-ideal response of a balanced photodetector. Finally, precise characterizations of arbitrary 128 Gbps PDM-QPSK wavelength channels from 1550 to 1570 nm are successfully achieved, when a 101.3 MHz frequency spaced comb with a 3 dB spectral power ripple of 20 nm is used.
Angela Mihai, L.
2013-03-01
Finite element simulations of different shear deformations in non-linear elasticity are presented. We pay particular attention to the Poynting effects in hyperelastic materials, complementing recent theoretical findings by showing these effects manifested by specific models. As the finite element method computes uniform deformations exactly, for simple shear deformation and pure shear stress, the Poynting effect is represented exactly, while for the generalised shear and simple torsion, where the deformation is non-uniform, the solution is approximated efficiently and guaranteed computational bounds on the magnitude of the Poynting effect are obtained. The numerical results further indicate that, for a given elastic material, the same sign effect occurs under different shearing mechanisms, showing the genericity of the Poynting effect under a variety of shearing loads. In order to derive numerical models that exhibit either the positive or the negative Poynting effect, the so-called generalised empirical inequalities, which are less restrictive than the usual empirical inequalities involving material parameters, are assumed. © 2012 Elsevier Ltd.
Dirac-global fits to calcium elastic scattering data in the range 21-200 MeV
Cooper, E.D.
1988-01-01
We present a global relativistic optical model for p+ 40 Ca consisting of Lorentz scalar and vector potentials parametrized as a function of energy. The shapes chosen are Woods-Saxons for the real potentials, and a linear combination of Woods-Saxons and derivative Woods-Saxons for the imaginary potentials. (orig.)
Prediction of failures in linear systems with the use of tolerance ranges
Gadzhiev, Ch.M.
1993-01-01
The problem of predicting the technical state of an object can be stated in a general case as that of predicting potential failures on the basis of a quantitative evaluation of the predicted parameters in relation to the set of tolerances on these parameters. The main stages in the prediction are collecting and preparing source data on the prehistory of the predicted phenomenon, forming a mathematical model of this phenomenon, working out the algorithm for the prediction, and adopting a solution from the prediction results. The final two stages of prediction are considered in this article. The prediction algorithm is proposed based on construction of the tolerance range for the signal of error between output coordinates of the system and its mathematical model. A solution regarding possible occurrence of failure in the system is formulated as a result of comparison of the tolerance range and the found confidence interval. 5 refs
Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression
Laun, Matthew C. (Inventor)
2016-01-01
Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.
Carnelli, P. F. F.; Arazi, A.; Cardona, M. A.; Figueira, J. M.; Hojman, D.; Martinez Heimann, D.; Negri, A. E.; Pacheco, A. J.; Abriola, D.; Capurro, O. A.; Fimiani, L.; Grinberg, P.; Marti, G. V.; Fernandez Niello, J. O.
2010-01-01
We have measured elastic excitation functions for the 7 Li+ 27 Al system, in an energy range close to its Coulomb barrier (E lab = 8.4 MeV) in steps of 0.25 MeV. For this purpose, an array of eight surface-barrier detectors was used. To get an insight on the background composition (mainly α particles), a telescope-detector was used for atomic-number identification. Identical measurements for the 6 Li+ 27 Al system are planned for the near future.
Gurbich, A. F.; Bokhovko, M. V.
2018-04-01
The alpha elastic scattering cross-sections for Ni, Cu, and Y were measured at the energies above the onset of the non-Rutherford scattering. The obtained experimental data along with data from literature were incorporated into the theoretical analysis in the framework of the optical model. The optimization of the model parameters provided a basis for the calculations of the differential cross-sections for Z = 28-38 elements in the energy range up to 10 MeV. The obtained cross sections were made available for common use through the SigmaCalc web site at http://sigmacalc.iate.obninsk.ru/.
Stepanova, Larisa; Bronnikov, Sergej
2018-03-01
The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.
A wideband large dynamic range and high linearity RF front-end for U-band mobile DTV
Liu Rongjiang; Liu Shengyou; Guo Guiliang; Cheng Xu; Yan Yuepeng
2013-01-01
A wideband large dynamic range and high linearity U-band RF front-end for mobile DTV is introduced, and includes a noise-cancelling low-noise amplifier (LNA), an RF programmable gain amplifier (RFPGA) and a current communicating passive mixer. The noise/distortion cancelling structure and RC post-distortion compensation are employed to improve the linearity of the LNA. An RFPGA with five stages provides large dynamic range and fine gain resolution. A simple resistor voltage network in the passive mixer decreases the gate bias voltage of the mixing transistor, and optimum linearity and symmetrical mixing is obtained at the same time. The RF front-end is implemented in a 0.25 μm CMOS process. Tests show that it achieves an IIP3 (third-order intercept point) of −17 dBm, a conversion gain of 39 dB, and a noise figure of 5.8 dB. The RFPGA achieves a dynamic range of −36.2 to 23.5 dB with a resolution of 0.32 dB. (semiconductor integrated circuits)
Hedegård, Erik D.; Olsen, Jógvan Magnus Haugaard; Knecht, Stefan
2015-01-01
. To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality......We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE......-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory...
Designing double-gap linear accelerators for a wide mass range
Lysenko, W.P.; Wadlinger, E.A.; Rusnak, B.; Krawczyk, F.; Saadatmand, K.; Wan, Z.
1998-01-01
For applications like ion implantation, rf linacs using double-gap structures with external resonators can be used because they are practical at low frequencies. However, since the two gaps associated with a given resonator cannot be individually phased, it is not obvious how to build a linac that can efficiently accelerate particles having different mass/charge ratios. This paper describes the beam dynamics of double-gap rf linacs and shows how to maximize the range of mass/charge ratios. The theory also tells one how to rescale a linac tune (i.e., reset the voltages and phases) so that a new particle, having a different mass or charge, will behave similarly to the original particle
Petrascu, M.; Bordeanu, C.; Isbasescu, A.; Mihai, I.; Giurgiu, M.
1997-01-01
Recently, an inclusive fusion experiment of 9,11 Li projectiles with Si targets, in the energy range (9.5 - 25) AMeV has been performed at Riken Ring Cyclotron-Japan using, for the detection of the fusion products, an ionization chamber, MUSIC, built in NIPNE-HH, Bucharest. In this experiment, the contribution of elastic and inelastic scattering, at forward detection angles is eliminated through the experimental set-up. For a clear investigation of the fusion process, the estimation of elastic and inelastic scattering at backward angles, between 80 angle - 180 angle was considered necessary. This estimation was made by the coupled channels computer code ECIS. ECIS is an iterative method, the first iteration of this procedure being DWBA. In the analysis of elastic and inelastic scattering of 9,11 Li projectile on Si target we assumed that the incident 9 Li and 11 Li waves are diffracted by an optical potential with an Woods-Saxon geometry. The adopted optical potential is given. For the depth of the real and imaginary volume terms we used values dependent on projectile energy and target mass number. These values have been chosen in good agreement with a semi-microscopic model with a double-folding potential. The set of optical parameters selected for the system 9,11 Li (13 AMeV) + Si is given. The presence of neutron halo of 11 Li nucleus was taken into account by using adjusted values for the parameters r R and a R . The 28 Si nucleus is considered a rigid rotor, including the couplings involving the ground state and a first to excited states. The quadrupole deformation parameter was β 2 = - 0.24. The results for the scattering of 11 Li projectile on Si target at 13 AMeV energy are given with the parameters R match , I and J max taken from the Monte Carlo simulations with PACE code. We found that the contribution of elastic and inelastic scattering for background angles, between 80 angle - 180 angle is under 2%. The contribution of a inelastic scattering taken
Ranković, Miloš Lj.; Maljković, Jelena B.; Tökési, Károly; Marinković, Bratislav P.
2018-02-01
Measurements and calculations for electron elastic differential cross sections (DCS) of argon atom in the energy range from 40 to 300 eV are presented. DCS have been measured in the crossed beam arrangement of the electron spectrometer with an energy resolution of 0.5 eV and angular resolution of 1.5∘ in the range of scattering angles from 20∘ to 126∘. Both angular behaviour and energy dependence of DCS are obtained in a separate sets of experiments, while the absolute scale is achieved via relative flow method, using helium as a reference gas. All data is corrected for the energy transmission function, changes of primary electron beam current and target pressure, and effective path length (volume correction). DCSs are calculated in relativistic framework by expressing the Mott's cross sections in partial wave expansion. Our results are compared with other available data.
Vinodkumar, Minaxi; Bhutadia, Harshad; Antony, Bobby; Mason, Nigel
2011-01-01
This paper reports computational results of the total cross sections for electron impact on H 2 CO and HCOOH over a wide range of electron impact energies from 0.01 eV to 2 keV. The total cross section is presented as sum of the elastic and electronic excitation cross sections for incident energies. The calculation uses two different methodologies, below the ionization threshold of the target the cross section is calculated using the UK molecular R-matrix code through the Quantemol-N software package while cross sections at higher energies are evaluated using the spherical complex optical potential formalism. The two methods are found to be consistent at the transition energy (∼15 eV). The present results are, in general, found to be in good agreement with previous experimental and theoretical results (wherever available) and, thus, the present results can serve as a benchmark for the cross section over a wide range of energy.
Limei Huang
2017-04-01
Full Text Available The environmental pollution of 2,4,6-tribromophenol (TBP has attracted attention. Based on an urgent need for the better provision of clean water, in situ determination of TBP is of great importance. Here, a facile and effective approach for detecting TBP is developed, based on coupling molecular imprinting technique with electrodeposition of chitosan (CS on the gold electrode. The TBP imprinting CS film was fabricated by using CS as functional material and TBP as template molecule. The experiments show that the morphologies and electrochemical properties of the imprinted film sensor was different from non-imprinted film electrode. The current of the imprinted film was linearly proportional to the TBP concentration, with a wide linear range of 1.0 × 10−7 mol•L−1 to 1.0 × 10−3 mol•L−1. By selecting drop-coating method as a reference for controlled trials with the same functional material, the results illustrated that the electrodeposition enjoyed a widely linear range advantage.
Katskov, Dmitri, E-mail: katskovda@tut.ac.za [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Hlongwane, Miranda [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Heitmann, Uwe [German Aerospace Center, Rose-Luxemburg Str. 2, 10178 Berlin (Germany); Florek, Stefan [ISAS-Leibniz-Institut fuer Analytische Wissenschaften e.V., Albert-Einstein-Str. 9,12489 Berlin (Germany)
2012-05-15
The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 {mu}g{center_dot}L{sup -1} using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed. - Highlights: Black-Right-Pointing-Pointer New calculation algorithm for HR-CS ET AAS measurements was proposed and applied. Black-Right-Pointing-Pointer The suggested formulas include two parameters to be determined experimentally. Black
Shcherbakov, Alexandre S; Arellanes, Adan Omar
2017-12-01
During subsequent development of the recently proposed multi-frequency parallel spectrometer for precise spectrum analysis of wideband radio-wave signals, we study potentials of new acousto-optical cells exploiting selected crystalline materials at the limits of their capabilities. Characterizing these wide-aperture cells is non-trivial due to new features inherent in the chosen regime of an advanced non-collinear one-phonon anomalous light scattering by elastic waves with significantly elevated acoustic losses. These features can be observed simpler in uniaxial, tetragonal, and trigonal crystals possessing linear acoustic attenuation. We demonstrate that formerly studied additional degree of freedom, revealed initially for multi-phonon regimes of acousto-optical interaction, can be identified within the one-phonon geometry as well and exploited for designing new cells. We clarify the role of varying the central acoustic frequency and acoustic attenuation using the identified degree of freedom. Therewith, we are strongly restricted by a linear regime of acousto-optical interaction to avoid the origin of multi-phonon processes within carrying out a multi-frequency parallel spectrum analysis of radio-wave signals. Proof-of-principle experiments confirm the developed approaches and illustrate their applicability to innovative technique for an advanced spectrum analysis of wideband radio-wave signals with the improved resolution in an extended frequency range.
Zhiyuan Gao
2015-11-01
Full Text Available This paper presents a dynamic range (DR enhanced readout technique with a two-step time-to-digital converter (TDC for high speed linear CMOS image sensors. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A column-parallel ADC based on a two-step TDC is utilized to improve the conversion rate. The conversion is divided into coarse phase and fine phase. An error calibration scheme is also proposed to correct quantization errors caused by propagation delay skew within −Tclk~+Tclk. A linear CMOS image sensor pixel array is designed in the 0.13 μm CMOS process to verify this DR-enhanced high speed readout technique. The post simulation results indicate that the dynamic range of readout circuit is 99.02 dB and the ADC achieves 60.22 dB SNDR and 9.71 bit ENOB at a conversion rate of 2 MS/s after calibration, with 14.04 dB and 2.4 bit improvement, compared with SNDR and ENOB of that without calibration.
Hostert, C; Music, D; Schneider, J M; Bednarcik, J; Keckes, J; Kapaklis, V; Hjörvarsson, B
2011-01-01
Density, elastic modulus and the pair distribution function of Co-Fe-Ta-B metallic glasses were obtained by ab initio molecular dynamics simulations and measured for sputtered thin films using x-ray reflectivity, nanoindentation and x-ray diffraction using high energy photons. The computationally obtained density of 8.19 g cm -3 for Co 43 Fe 20 Ta 5.5 B 31.5 and 8.42 g cm -3 for Co 45.5 Fe 24 Ta 6 B 24.5 , as well as the Young’s moduli of 273 and 251 GPa, respectively, are consistent with our experiments and literature data. These data, together with the good agreement between the theoretical and the experimental pair distribution functions, indicate that the model established here is useful to describe the density, elasticity and short range order of Co-Fe-Ta-B metallic glass thin films. Irrespective of the investigated variation in chemical composition, (Co, Fe)-B cluster formation and Co-Fe interactions are identified by density-of-states analysis. Strong bonds within the structural units and between the metallic species may give rise to the comparatively large stiffness. (paper)
Elasticity theory and applications
Saada, Adel S; Hartnett, James P; Hughes, William F
2013-01-01
Elasticity: Theory and Applications reviews the theory and applications of elasticity. The book is divided into three parts. The first part is concerned with the kinematics of continuous media; the second part focuses on the analysis of stress; and the third part considers the theory of elasticity and its applications to engineering problems. This book consists of 18 chapters; the first of which deals with the kinematics of continuous media. The basic definitions and the operations of matrix algebra are presented in the next chapter, followed by a discussion on the linear transformation of points. The study of finite and linear strains gradually introduces the reader to the tensor concept. Orthogonal curvilinear coordinates are examined in detail, along with the similarities between stress and strain. The chapters that follow cover torsion; the three-dimensional theory of linear elasticity and the requirements for the solution of elasticity problems; the method of potentials; and topics related to cylinders, ...
Shavezipur, M; Nieva, P; Khajepour, A; Hashemi, S M
2010-01-01
This paper presents a design technique that can be used to linearize the capacitance–voltage (C–V) response and extend the tuning range of parallel-plate-based MEMS tunable capacitors beyond that of conventional designs. The proposed technique exploits the curvature of the capacitor's moving electrode which could be induced by either manipulating the stress gradients in the plate's material or using bi-layer structures. The change in curvature generates a nonlinear structural stiffness as the moving electrode undergoes out-of-plane deformation due to the actuation voltage. If the moving plate curvature is tailored such that the capacitance increment is proportional to the voltage increment, then a linear C–V response is obtained. The larger structural resistive force at higher bias voltage also delays the pull-in and increases the maximum tunability of the capacitor. Moreover, for capacitors containing an insulation layer between the two electrodes, the proposed technique completely eliminates the pull-in effect. The experimental data obtained from different capacitors fabricated using PolyMUMPs demonstrate the advantages of this design approach where highly linear C–V responses and tunabilities as high as 1050% were recorded. The design methodology introduced in this paper could be easily extended to for example, capacitive pressure and temperature sensors or infrared detectors to enhance their response characteristics.
Yong Cao
2017-01-01
Full Text Available Determination of the local interlaminar stress distribution in a laminate with a bolt-filled hole is helpful for optimal bolted joint design, due to the three-dimensional (3D nature of the stress field near the bolt hole. A new interlaminar stress distribution phenomenon induced by the bolt-head and clamp-up load, which occurs in a filled-hole composite laminate, is investigated. In order to efficiently evaluate interlaminar stresses under the complex boundary condition, a calculation strategy that using zero-thickness cohesive interface element is presented and validated. The interface element is based on a linear elastic traction-separation description. It is found that the interlaminar stress concentrations occur at the hole edge, as well as the interior of the laminate near the periphery of the bolt head. In addition, the interlaminar stresses near the periphery of the bolt head increased with an increase in the clamp-up load, and the interlaminar normal and shear stresses are not at the same circular position. Therefore, the clamp-up load cannot improve the interlaminar stress distribution in the laminate near the periphery of the bolt head, although it can reduce the magnitude of the interlaminar shear stress at the hole edge. Thus, the interlaminar stress distribution phenomena may lead to delamination initiation in the laminate near the periphery of the bolt head, and should be considered in composite bolted joint design.
V. Y. Zaitsev
2017-09-01
Full Text Available Results of examination of experimental data on non-linear elasticity of rocks using experimentally determined pressure dependences of P- and S-wave velocities from various literature sources are presented. Overall, over 90 rock samples are considered. Interpretation of the data is performed using an effective-medium description in which cracks are considered as compliant defects with explicitly introduced shear and normal compliances without specifying a particular crack model with an a priori given ratio of the compliances. Comparison with the experimental data indicated abundance (∼ 80 % of cracks with the normal-to-shear compliance ratios that significantly exceed the values typical of conventionally used crack models (such as penny-shaped cuts or thin ellipsoidal cracks. Correspondingly, rocks with such cracks demonstrate a strongly decreased Poisson ratio including a significant (∼ 45 % portion of rocks exhibiting negative Poisson ratios at lower pressures, for which the concentration of not yet closed cracks is maximal. The obtained results indicate the necessity for further development of crack models to account for the revealed numerous examples of cracks with strong domination of normal compliance. Discovering such a significant number of naturally auxetic rocks is in contrast to the conventional viewpoint that occurrence of a negative Poisson ratio is an exotic fact that is mostly discussed for artificial structures.
Bogachev, Mikhail I.; Bunde, Armin
2011-06-01
We study the predictability of extreme events in records with linear and nonlinear long-range memory in the presence of additive white noise using two different approaches: (i) the precursory pattern recognition technique (PRT) that exploits solely the information about short-term precursors, and (ii) the return interval approach (RIA) that exploits long-range memory incorporated in the elapsed time after the last extreme event. We find that the PRT always performs better when only linear memory is present. In the presence of nonlinear memory, both methods demonstrate comparable efficiency in the absence of white noise. When additional white noise is present in the record (which is the case in most observational records), the efficiency of the PRT decreases monotonously with increasing noise level. In contrast, the RIA shows an abrupt transition between a phase of low level noise where the prediction is as good as in the absence of noise, and a phase of high level noise where the prediction becomes poor. In the phase of low and intermediate noise the RIA predicts considerably better than the PRT, which explains our recent findings in physiological and financial records.
Asa' d, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Fearnley, T.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Phillips, M. (University Coll., London (UK)); Baglin, A.
1983-10-27
The anti pp elastic differential cross section at 30 GeV/c incident momentum has been measured in a two-arm spectrometer experiment (WA7) at the CERN SPS. The vertical stroketvertical stroke-range covered extends from 0.5 to 5.8 (GeV/c)/sup 2/. A pronounced dip-bump structure is observed, with a sharp minimum around vertical stroketvertical strokeapprox.=1.7 (GeV/c)/sup 2/. The results are compared with existing anti pp data at lower energies and with our earlier anti pp data at 50 GeV/c. A number of model predictions are discussed. We also compare the anti pp 30 GeV/c differential cross section with that of pp at the same momentum. Finally, the energy dependence of the anti pp fixed-vertical stroketvertical stroke differential cross section in the incident momentum range 3.6 to 50 GeV/c is presented.
L. Jarecki
2018-04-01
Full Text Available An analytical formula is derived for the oriented crystallization coefficient governing kinetics of oriented crystallization under uniaxial amorphous orientation in the entire temperature range. A series expansion approach is applied to the free energy of crystallization in the Hoffman-Lauritzen kinetic model of crystallization at accounting for the entropy of orientation of the amorphous chains. The series expansion coefficients are calculated for systems of Gaussian chains in linear stress-orientation range. Oriented crystallization rate functions are determined basing on the ‘proportional expansion’ approach proposed by Ziabicki in the steady-state limit. Crystallization kinetics controlled by separate predetermined and sporadic primary nucleation is considered, as well as the kinetics involving both nucleation mechanisms potentially present in oriented systems. The involvement of sporadic nucleation in the transformation kinetics is predicted to increase with increasing amorphous orientation. Example computations illustrate the dependence of the calculated functions on temperature and amorphous orientation, as well as qualitative agreement of the calculations with experimental results.
Liu, K.C.; Grossbeck, M.L.
1979-01-01
A generalized model of a first wall made of 20% cold-worked steel was examined for neutron wall loadings ranging from 2 to 5 MW/m 2 . A spectrum of simplified on-off duty cycles was assumed with a 95% burn time. Independent evaluations of cyclic lifetimes were based on two methods: the method of linear damage summation currently being employed for use in ASME high-temperature design Code Case N-47 and that of strain range partitioning being studied for inclusion in the design code. An important point is that the latter method can incorporate a known decrease in ductility for materials subject to irradiation as a parameter, so low-cycle fatigue behavior can be estimated for irradiated material. Lifetimes predicted by the two methods agree reasonably well despite their diversity in concept. Lack of high-cycle fatigue data for the material tested at temperatures within the range of our interest precludes making conclusions on the accuracy of the predicted results, but such data are forthcoming. The analysis includes stress relaxation due to thermal and irradiation-induced creep. Reduced ductility values from irradiations that simulate the environment of the first wall of a fusion reactor were used to estimate the lifetime of the first wall under irradiation. These results indicate that 20% cold-worked type 316 stainless steel could be used as a first-wall material meeting a 8 to 10 MW-year/m 2 lifetime goal for a neutron wall loading of about 2 MW-year/m 2 and a maximum temperature of about 500 0 C
Branicio, Paulo S.; Vastola, Guglielmo; Jhon, Mark H.; Sullivan, Michael B.; Shenoy, Vivek B.; Srolovitz, David J.
2016-10-01
The deformation of graphene due to the chemisorption of hydrogen atoms on its surface and the long-range elastic interaction between hydrogen atoms induced by these deformations are investigated using a multiscale approach based on first principles, empirical interactions, and continuum modeling. Focus is given to the intrinsic low-temperature structure and interactions. Therefore, all calculations are performed at T =0 , neglecting possible temperature or thermal fluctuation effects. Results from different methods agree well and consistently describe the local deformation of graphene on multiple length scales reaching 500 Å . The results indicate that the elastic interaction mediated by this deformation is significant and depends on the deformation of the graphene sheet both in and out of plane. Surprisingly, despite the isotropic elasticity of graphene, within the linear elastic regime, atoms elastically attract or repel each other depending on (i) the specific site they are chemisorbed; (ii) the relative position of the sites; (iii) and if they are on the same or on opposite surface sides. The interaction energy sign and power-law decay calculated from molecular statics agree well with theoretical predictions from linear elasticity theory, considering in-plane or out-of-plane deformations as a superposition or in a coupled nonlinear approach. Deviations on the exact power law between molecular statics and the linear elastic analysis are evidence of the importance of nonlinear effects on the elasticity of monolayer graphene. These results have implications for the understanding of the generation of clusters and regular formations of hydrogen and other chemisorbed atoms on graphene.
Naveen Kumar
2018-01-01
Full Text Available Background. Difference in scar formation at different sites, in different directions at the same site, but with changes in the elasticity of skin with age, sex, and race or in some pathological conditions, is well known to clinicians. The inappropriate collagen syntheses and delayed or lack of epithelialization are known to induce scar formation with negligible elasticity at the site of damage. Changes in the elasticity of scars may be due to an unequal distribution of dermal collagen (C and elastic (E fibers. Materials and Methods. Spearman correlation coefficients (r of collagen and elastic fibers in horizontal (H and in vertical (V directions (variables CV, CH, EV, and EH were measured from the respective quantitative fraction data in 320 skin samples from 32 human cadavers collected at five selected sites over extremities. Results. Spearman’s correlation analysis revealed the statistically significant (p<0.01 strong positive correlation between CH and CV in all the areas, that is, shoulder joint area (r=0.66, wrist (r=0.75, forearm (r=0.75, and thigh (r=0.80, except at the ankle (r=0.26, p=0.14 region. Similarly, positive correlation between EH and EV has been observed at the forearm (r=0.65, moderate and thigh (r=0.42, low regions. However, a significant moderate negative correlation was observed between CV and EV at the forearm (r=-0.51 and between CH and EH at the thigh region (r=-0.65. Conclusion. Significant differences of correlations of collagen and elastic fibers in different directions from different areas of extremities were noted. This may be one of the possible anatomical reasons of scar behavior in different areas and different directions of the same area.
Kumar, Naveen; Kumar, Pramod; Badagabettu, Satheesha Nayak; Lewis, Melissa Glenda; Adiga, Murali; Padur, Ashwini Aithal
2018-01-01
Difference in scar formation at different sites, in different directions at the same site, but with changes in the elasticity of skin with age, sex, and race or in some pathological conditions, is well known to clinicians. The inappropriate collagen syntheses and delayed or lack of epithelialization are known to induce scar formation with negligible elasticity at the site of damage. Changes in the elasticity of scars may be due to an unequal distribution of dermal collagen (C) and elastic (E) fibers. Spearman correlation coefficients ( r ) of collagen and elastic fibers in horizontal (H) and in vertical (V) directions (variables CV, CH, EV, and EH) were measured from the respective quantitative fraction data in 320 skin samples from 32 human cadavers collected at five selected sites over extremities. Spearman's correlation analysis revealed the statistically significant ( p < 0.01) strong positive correlation between C H and C V in all the areas, that is, shoulder joint area ( r = 0.66), wrist ( r = 0.75), forearm ( r = 0.75), and thigh ( r = 0.80), except at the ankle ( r = 0.26, p = 0.14) region. Similarly, positive correlation between E H and E V has been observed at the forearm ( r = 0.65, moderate) and thigh ( r = 0.42, low) regions. However, a significant moderate negative correlation was observed between C V and E V at the forearm ( r = -0.51) and between C H and E H at the thigh region ( r = -0.65). Significant differences of correlations of collagen and elastic fibers in different directions from different areas of extremities were noted. This may be one of the possible anatomical reasons of scar behavior in different areas and different directions of the same area.
Viscous-elastic dynamics of power-law fluids within an elastic cylinder
Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.
2017-07-01
In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.
Chudnovsky, A.; Dolgopolsky, A.; Kachanov, M.
1987-01-01
The elastic interactions of a two-dimensional configuration consisting of a crack with an array of microcracks located near the tip are studied. The general form of the solution is based on the potential representations and approximations of tractions on the microcracks by polynomials. In the second part, the technique is applied to two simple two-dimensional configurations involving one and two microcracks. The problems of stress shielding and stress amplification (the reduction or increase of the effective stress intensity factor due to the presence of microcracks) are discussed, and the refinements introduced by higher order polynomial approximations are illustrated.
Rahul, Arun; Pramanick, Sumit; Kaarthik, R. Sudharshan
2017-01-01
In this paper, a new space vector pulse width modulation method to extend the linear modulation range of a cascaded five level inverter topology with a single dc supply is presented. Using this method, the inverter can be controlled linearly and the peak phase fundamental output voltage of the in......In this paper, a new space vector pulse width modulation method to extend the linear modulation range of a cascaded five level inverter topology with a single dc supply is presented. Using this method, the inverter can be controlled linearly and the peak phase fundamental output voltage...... of the inverter can be increased from 0.577 to 0.637Vdc without increasing the dc bus voltage and without exceeding the induction motor voltage rating. This new technique makes use of cascaded inverter pole voltage redundancy and property of the space vector structure for its operation. Using this, the induction...
Collusion and the elasticity of demand
David Collie
2004-01-01
The analysis of collusion in infinitely repeated Cournot oligopoly games has generally assumed that demand is linear, but this note uses constant-elasticity demand functions to investigate how the elasticity of demand affects the sustainability of collusion.
Helbig K.
2006-12-01
Full Text Available The propagation of elastic waves is generally treated under four assumptions: - that the medium is isotropic,- that the medium is homogeneous, - that there is a one-to-one relationship between stress and strain, - that stresses are linearly related to strains (equivalently, that strains are linearly related to stresses. Real media generally violate at least some-and often all-of these assumptions. A valid theoretical description of wave propagation in real media thus depends on the qualitative and quantitative description of the relevant inhomogeneity, anisotropy, and non-linearity: one either has to assume (or show that the deviation from the assumption can - for the problem at hand - be neglected, or develop a theoretical description that is valid even under the deviation. While the effect of a single deviation from the ideal state is rather well understood, difficulties arise in the combination of several such deviations. Non-linear elasticity of anisotropic (triclinic rock samples has been reported, e. g. by P. Rasolofosaon and H. Yin at the 6th IWSA in Trondheim (Rasolofosaon and Yin, 1996. Non-linear anisotropic elasticity matters only for non-infinitesimalamplitudes, i. e. , at least in the vicinity of the source. How large this vicinity is depends on the accuracy of observation and interpretation one tries to maintain, on the source intensity, and on the level of non-linearity. This paper is concerned with the last aspect, i. e. , with the meaning of the numbers beyond the fact that they are the results of measurements. As a measure of the non-linearity of the material, one can use the strain level at which the effective stiffness tensor deviates significantly from the zero-strain stiffness tensor. Particularly useful for this evaluation is the eigensystem (six eigenstiffnesses and six eigenstrains of the stiffness tensor : the eigenstrains provide suitable strain typesfor the calculation of the effective stiffness tensor, and the
Ledbetter, H.M.
1983-01-01
This chapter investigates the following five aspects of engineering-material solid-state elastic constants: general properties, interrelationships, relationships to other physical properties, changes during cooling from ambient to near-zero temperature, and near-zero-temperature behavior. Topics considered include compressibility, bulk modulus, Young's modulus, shear modulus, Poisson's ratio, Hooke's law, elastic-constant measuring methods, thermodynamic potentials, higher-order energy terms, specific heat, thermal expansivity, magnetic materials, structural phase transitions, polymers, composites, textured aggregates, and other-phenomena correlations. Some of the conclusions concerning polycrystalline elastic properties and their temperature dependence are: elastic constants are physical, not mechanical, properties which relate thermodynamically to other physical properties such as specific heat and thermal expansivity; elastic constants at low temperatures are nearly temperature independent, as required by the third law of thermodynamics; and elastic constants can be used to study directional properties of materials, such as textured aggregates and composites
Baruah, D; Choudhury, S; Singh, K M; Ghatak, K P
2007-01-01
In this paper we study the carrier contribution to elastic constants in quantum confined heavily doped non-linear optical compounds on the basis of a newly formulated electron dispersion law taking into account the anisotropies of the effective electron masses and spin orbit splitting constants together with the proper inclusion of the crystal field splitting in the Hamiltonian within the framework of k.p formalism. All the results of heavily doped three, and two models of Kane for heavily doped III-V materials form special cases of our generalized analysis. It has been found, taking different heavily doped quantum confined materials that, the carrier contribution to the elastic constants increases with increase in electron statistics and decrease in film thickness in ladder like manners for all types of quantum confinements with different numerical values which are totally dependent on the energy band constants. The said contribution is greatest in quantum dots and least in quantum wells together with the fact the heavy doping enhances the said contributions for all types of quantum confined materials. We have suggested an experimental method of determining the carrier contribution to the elastic constants in nanostructured materials having arbitrary band structures
Application of elasticity theory at Sandia Labortories
Davison, L.
1975-01-01
Examples are given of the application of linear elasticity theory to the solution of practical problems encountered at Sandia Laboratories. It is being applied to a very broad range of problems: those in one, two, and three spatial dimensions, some involving static and some dynamic response, to materials having isotropic and anisotropic symmetry, to homogeneous and inhomogeneous bodies, etc. Various extensions of the theory to include electric, magnetic and thermal effects, to account for material microstructure, for radiation and spall damage, chemical reactions, and other phenomena have been developed and/or applied. In some applications linear elasticity represents the physics of a problem well and is the theory of choice. In others the theory was used because it lent insight into a larger problem that was also attacked by means of other theories and/or experiment, and in some cases it serves as a part of a more encompassing theory
A hyper elasticity method for interactive virtual design of hearing aids
Darkner, Sune; Erleben, Kenny
2011-01-01
We present a computational efficient method for isotropic hyper elasticity based on functional analysis. By selecting a class of shape functions, we arrive at a computational scheme which yields very sparse tensors. This enables fast computations of the hyper elastic energy potential and its...... derivatives. We achieve efficiency and performance through the use of shape functions that are linear in their parameters and through rotation into the eigenspace of the right Cauchy–Green strain tensor. This makes near real time evaluation of hyper elasticity of complex meshes on CPU relatively easy...... to implement. The approach does not rely on a specific shape function or material model but offers a general framework for isotropic hyper elasticity. The method is aimed at interactive and accurate non-linear hyper elastic modeling for a wide range of industrial virtual design applications, which we exemplify...
Carnegie, R K; Cashmore, R J; Davier, M; Leith, D W.G.S.; Walden, P; Williams, S H [Stanford Linear Accelerator Center, Calif. (USA)
1975-11-10
The logarithmic slope of the differential cross section for K/sup + -/p elastic scattering at 10 and 14 GeV, and for ..pi../sup + -/p and p/sup + -/p at 10 GeV has been measured. Rich structure is observed in the forward slope for all processes, which is well accounted for by the properties of a peripheral exchange amplitude for the nonexotic reactions, and by a peripheral component of the diffractive amplitude as clearly seen in the exotic processes, K/sup +/p and pp.
Senjean, Bruno; Knecht, Stefan; Jensen, Hans Jørgen Aa
2015-01-01
Gross-Oliveira-Kohn density-functional theory (GOK-DFT) for ensembles is, in principle, very attractive but has been hard to use in practice. A practical model based on GOK-DFT for the calculation of electronic excitation energies is discussed. The model relies on two modifications of GOK-DFT: use...... promising results have been obtained for both single (including charge transfer) and double excitations with spin-independent short-range local and semilocal functionals. Even at the Kohn-Sham ensemble DFT level, which is recovered when the range-separation parameter is set to 0, LIM performs better than...
Stressed-deformed state of mountain rocks in elastic stage and between elasticity
Samedov A.M.
2017-12-01
Full Text Available The problems of the stress-strain state of rocks in the elastic stage and beyond the elastic limits, and the ways of schematizing the tension and compression diagrams were reviewed in the article. To simplify calculations outside the elastic range, the tension (compression diagrams are usually schematized, i.e. are replaced by curved smooth lines having a fairly simple mathematical expression and at the same time well coinciding with the experimentally obtained diagrams. When diagram is to be schematized, it is necessary to take a constant temperature of superheated water steam if a rock test is planned in a relaxed form. Note that when the diagram is schematizing, the difference between the limits of proportionality and fluidity is erased. This allows the limit of proportionality to be considered the limit of fluidity. Schematicization can be carried out in the area where the tensile strength (compression is planned to be destroyed with the established weakening of rocks by exposure to water steam or chemical reagents. Samples of rocks in natural form were tested and weakened by means of superheated water steam (220 °C and more and chemical reagents for tension and compression. The data are obtained, the diagrams of deformation are constructed and schematized in the elastic stage and beyond the elastic limit. Based on the schematic diagrams of deformation, the components of stress and strain were composed in the elastic stage and beyond the elastic limit. It is established in the publication that rocks under compression and stretching deform, both within the elastic stage, and beyond the limits of elasticity. This could be seen when the samples, both in natural and in weakened state, with superheated water steam (more than 220 °C or chemical reagents were tested. In their natural form, they are mainly deformed within the elastic stage and are destroyed as a brittle material, and in a weakened form they can deform beyond the elastic stage and
Cappuzzello, F., E-mail: cappuzzello@lns.infn.it [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Agodi, C. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Bondì, M.; Carbone, D. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Cavallaro, M. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Cunsolo, A. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95125 Catania (Italy); De Napoli, M. [INFN - Sezione di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95125 Catania (Italy); INFN - Sezione di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Nicolosi, D.; Tropea, S. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Faria, P.N. de [Universidade de São Paulo, Departamento de Física Nuclear, Instituto de Física da Universidade de São Paulo, Caixa Postal 66318, 05315-970 São Paulo, SP (Brazil); Linares, R. [Instituto de Física, Universidade Federal Fluminense, Litoranea s/n, Gragoatá, Niterói, Rio de Janeiro 24210-340 (Brazil); and others
2014-11-01
The elastic and inelastic scattering of {sup 16}O ions on {sup 27}Al target nuclei were measured in a broad angular range (5°<θ{sub lab}<40°) at 280 MeV incident energy. The beam was accelerated by the K800 Superconducting Cyclotron at the INFN-LNS laboratory. The ejectiles were detected by the MAGNEX large acceptance magnetic spectrometer. The matching of the beam properties with the optical characteristics of the spectrometer allowed to separate the elastic from the inelastic channels in the energy spectra and measure accurate cross-section distributed over more than eight orders of magnitude down to a few tens of nb/sr.
Elastic wave excitation in centrosymmetric strontium titanate crystals
Yushin, N.K.; Sotnikov, A.V.
1980-01-01
The main experimental dependencies are measured and the excitation mechanism of elastic waves in centrosymmetric crystals is established. The surface generation of three-dimensional elastic waves of the 30 MHz frequency in strontium titanate crystals is observed and studied. Elastic wave excitation is observed in the 4 350 K temperature range. The efficiency of hysteresis excitation depends on the external electric field. The effect of light irradiation on the amplitude of excited elastic waves is observed. It is shown that escitation is connected with linearization of electrostriction by the constant electric field appearing in a near-surface crystal layer due to phenomena in the Schottky barrier and appearance of electretic near-electrode layers
Elastic plastic fracture mechanics
Simpson, L.A.
1978-07-01
The application of linear elastic fracture mechanics (LEFM) to crack stability in brittle structures is now well understood and widely applied. However, in many structural materials, crack propagation is accompanied by considerable crack-tip plasticity which invalidates the use of LEFM. Thus, present day research in fracture mechanics is aimed at developing parameters for predicting crack propagation under elastic-plastic conditions. These include critical crack-opening-displacement methods, the J integral and R-curve techniques. This report provides an introduction to these concepts and gives some examples of their applications. (author)
Elastic properties of Gum Metal
Kuramoto, Shigeru; Furuta, Tadahiko; Hwang, Junghwan; Nishino, Kazuaki; Saito, Takashi
2006-01-01
In situ X-ray diffraction measurements under tensile loading and dynamic mechanical analysis were performed to investigate the mechanisms of elastic deformation in Gum Metal. Tensile stress-strain curves for Gum Metal indicate that cold working substantially decreases the elastic modulus while increasing the yield strength, thereby confirming nonlinearity in the elastic range. The gradient of each curve decreased continuously to about one-third its original value near the elastic limit. As a result of this decrease in elastic modulus and nonlinearity, elastic deformability reaches 2.5% after cold working. Superelasticity is attributed to stress-induced martensitic transformations, although the large elastic deformation in Gum Metal is not accompanied by a phase transformation
Lengen, M.; Chaudhuri, P.
1994-01-01
The magnetic properties of [L-Fe(III)-dmg 3 Mn(II)-Fe(III)-L] (ClO 4 ) 2 have been characterized by magnetic susceptibility, EPR, and Moessbauer studies. L represents 1,4,7-trimethyl-,1,4,7-triazacyclononane and dmg represents dimethylglyoxime. X-ray diffraction measurements yield that the arrangement of the three metal centers is strictly linear with atomic distances d Fe-Mn 0.35 nm and d Fe-Fe = 0.7 nm. Magnetic susceptibility measurements (3-295 K) were analyzed in the framework of the spin-Hamiltonian formalism considering Heisenberg exchange and Zeeman interaction: H = J Fe-Mn (S Fe1 + S Fe2 )S Mn + J Fe-Fe S Fe1 S Fe2 + gμ B S total B. The spins S Fe1 = S Fe2 = S Mn = 5/2 of the complex are antiferromagnetically coupled, yielding a total spin of S total = 5/2 with exchange coupling constants F Fe-Mn = 13.4 cm -1 and J Fe-Fe = 4.5 cm -1 . Magnetically split Moessbauer spectra were recorded at 1.5 K under various applied fields (20 mT, 170 mT, 4 T). The spin-Hamiltonian analysis of these spectra yields isotropic magnetic hyperfine coupling with A total /(g N μ N ) = -18.5 T. The corresponding local component A Fe is related to A total via spin-projection: A total = (6/7)A Fe . The resulting A Fe /(g N μ N ) -21.6 T is in agreement with standard values of ferric high-spin complexes. Spin-Hamiltonian parameters as obtained from Moessbauer studies and exchange coupling constants as derived from susceptibility measurements are corroborated by temperature-dependent EPR studies. (orig.)
Some remarks on the time of flight and range of a projectile in a linear resisting medium
S. M. Stewart
2011-01-01
Full Text Available In view of the recent work by Karkantzakos [Journal of Engineering Science and Technology Review 2 (2009 76–81], anumber of remarks highlighting the connection between the Lambert W function and the time of flight and range of a projectilemoving in a resisting medium where the retarding force acting on the projectile is proportional to its velocity are made.In particular, we show how each of these quantities can be expressed in closed form in terms of the Lambert W function andindicate how the analysis of the motion becomes greatly simplified by its introduction.
Guerre, J.; Plaige, Y.; Vaux, C.
1974-01-01
The requirements which have led to the design of a specific equipment for reactor neutron control (Multibloc system) are briefly recalled. It is shown how, for reasons of saving the cost of installation, the development tended towards a multifunction performance from signals delivered by one detector. Two major achievments in accordance with the above trend are described: the D.C. linear - logarithmic amplifier and periodmeter, and the wide dynamics range measuring set [fr
Maiya, P.S.
1978-07-01
The creep-fatigue life results for five different heats of Type 304 stainless steel at 593 0 C (1100 0 F), generated under push-pull conditions in the axial strain-control mode, are presented. The life predictions for the various heats based on the linear-damage rule, strain-range partitioning method, and damage-rate approach are discussed. The appropriate material properties required for computation of fatigue life are also included
Guglieri-López, Beatriz; Pérez-Pitarch, Alejandro; Martinez-Gómez, Maria Amparo; Porta-Oltra, Begoña; Climente-Martí, Mónica; Merino-Sanjuán, Matilde
2016-12-01
A wide linearity range analytical method for the determination of lenalidomide in patients with multiple myeloma for pharmacokinetic studies is required. Plasma samples were ultrasonicated for protein precipitation. A solid-phase extraction was performed. The eluted samples were evaporated to dryness under vacuum, and the solid obtained was diluted and injected into the high-performance liquid chromatography (HPLC) system. Separation of lenalidomide was performed on an Xterra RP C18 (250 mm length × 4.6 mm i.d., 5 µm) using a mobile phase consisting of phosphate buffer/acetonitrile (85:15, v/v, pH 3.2) at a flow rate of 0.5 mL · min -1 The samples were monitored at a wavelength of 311 nm. A linear relationship with good correlation coefficient (r = 0.997, n = 9) was found between the peak area and lenalidomide concentrations in the range of 100 to 950 ng · mL -1 The limits of detection and quantitation were 28 and 100 ng · mL -1 , respectively. The intra- and interassay precisions were satisfactory, and the accuracy of the method was proved. In conclusion, the proposed method is suitable for the accurate quantification of lenalidomide in human plasma with a wide linear range, from 100 to 950 ng · mL -1 This is a valuable method for pharmacokinetic studies of lenalidomide in human subjects. © 2016 Society for Laboratory Automation and Screening.
Asa' d, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Fearnley, T.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Phillips, M. (University Coll., London (UK)); Baglin, C.
1985-06-24
Results are presented from experiment WA7 at the CERN SPS, which has measured the elastic differential cross sections of ..pi..sup(+-)p, Ksup(+-)p, anti pp and pp at incident momenta of 20, 30 and 50 GeV/c. The measurements cover the momentum transfer range 0.5 < vertical stroketvertical stroke < 8 (GeV/c)/sup 2/, corresponding to c.m. scattering angles between 10/sup 0/ and 50/sup 0/. The experimental set-up, trigger logic and data analysis are described. The experimental results are compared with existing meson-proton and nucleon-proton data at lower and higher energies covering the medium- and large-vertical stroketvertical stroke region. Some prominent models and their predictions for elastic scattering at WA7 energies and beyond are reviewed, with emphasis on geometrical scaling, factorizing eikonal models, lowest-order QCD and other dynamical exchange-type models. Results for anti pp two-body annihilation into ..pi../sup -/..pi../sup +/ and K/sup -/K/sup +/ at 30 and 50 GeV/c, obtained in parallel with the elastic anti pp data, are also presented.
Asa'd, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Fearnley, T.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Phillips, M.; Baglin, C.; Guillaud, J.P.; Poulet, M.; Myrheim, J.; Gjerpe, I.K.; Buran, T.; Buzzo, A.; Ferroni, S.; Gracco, V.; Kirsebom, K.; Macri, M.; Santroni, A.; Soersdal, T.
1985-01-01
Results are presented from experiment WA7 at the CERN SPS, which has measured the elastic differential cross sections of πsup(+-)p, Ksup(+-)p, anti pp and pp at incident momenta of 20, 30 and 50 GeV/c. The measurements cover the momentum transfer range 0.5 2 , corresponding to c.m. scattering angles between 10 0 and 50 0 . The experimental set-up, trigger logic and data analysis are described. The experimental results are compared with existing meson-proton and nucleon-proton data at lower and higher energies covering the medium- and large-vertical stroketvertical stroke region. Some prominent models and their predictions for elastic scattering at WA7 energies and beyond are reviewed, with emphasis on geometrical scaling, factorizing eikonal models, lowest-order QCD and other dynamical exchange-type models. Results for anti pp two-body annihilation into π - π + and K - K + at 30 and 50 GeV/c, obtained in parallel with the elastic anti pp data, are also presented. (orig.)
Bazan, Carlos; Hawkins, Trevor; Torres-Barba, David; Blomgren, Peter; Paolini, Paul
2011-08-22
We are exploring the viability of a novel approach to cardiocyte contractility assessment based on biomechanical properties of the cardiac cells, energy conservation principles, and information content measures. We define our measure of cell contraction as being the distance between the shapes of the contracting cell, assessed by the minimum total energy of the domain deformation (warping) of one cell shape into another. To guarantee a meaningful vis-à-vis correspondence between the two shapes, we employ both a data fidelity term and a regularization term. The data fidelity term is based on nonlinear features of the shapes while the regularization term enforces the compatibility between the shape deformations and that of a hyper-elastic material. We tested the proposed approach by assessing the contractile responses in isolated adult rat cardiocytes and contrasted these measurements against two different methods for contractility assessment in the literature. Our results show good qualitative and quantitative agreements with these methods as far as frequency, pacing, and overall behavior of the contractions are concerned. We hypothesize that the proposed methodology, once appropriately developed and customized, can provide a framework for computational cardiac cell biomechanics that can be used to integrate both theory and experiment. For example, besides giving a good assessment of contractile response of the cardiocyte, since the excitation process of the cell is a closed system, this methodology can be employed in an attempt to infer statistically significant model parameters for the constitutive equations of the cardiocytes.
Tonellot, Th.L.
2000-03-24
In this thesis, we propose a method which takes into account a priori information (geological, diagraphic and stratigraphic knowledge) in linearized pre-stack seismic data inversion. The approach is based on a formalism in which the a priori information is incorporated in an a priori model of elastic parameters - density, P and S impedances - and a model covariance operator which describes the uncertainties in the model. The first part of the thesis is dedicated to the study of this covariance operator and to the norm associated to its inverse. We have generalized the exponential covariance operator in order to describe the uncertainties in the a priori model elastic parameters and their correlations at each location. We give the analytical expression of the covariance operator inverse in 1-D, 2-D, and 3-D, and we discretized the associated norm with a finite element method. The second part is dedicated to synthetic and real examples. In a preliminary step, we have developed a pre-stack data well calibration method which allows the estimation of the source signal. The impact of different a priori information is then demonstrated on synthetic and real data. (author)
Design guidance for elastic followup
Naugle, F.V.
1983-01-01
The basic mechanism of elastic followup is discussed in relation to piping design. It is shown how mechanistic insight gained from solutions for a two-bar problem can be used to identify dominant design parameters and to determine appropriate modifications where elastic followup is a potential problem. It is generally recognized that quantitative criteria are needed for elastic followup in the creep range where badly unbalanced lines can pose potential problems. Approaches for criteria development are discussed
Schmitt, R.
1986-01-01
With the Erlangen QDQ magnetic spectrometer angular distributions of the depolarization in the elastic scattering of protons on 27 Al, 89 Y at 11 MeV and 1 H at 12 MeV were measured. The evaluation was performed for yttrium and aluminium by adding of additional terms in the optical model which regard the spin-spin interaction. The optical-model parameter without spin-spin potentials were stated by measurements of the cross section and the analyzing power in the 4π scattering chamber in Erlangen at several energies. The calculation of the depolarization which emerges because of the spin-spin interaction was performed by means of DWBA. The depolarization of the proton-proton scattering was evaluated by scattering-phase analysis. The fits were thereby performed on analyzing-power data. The electrical P-wave scattering phases resulted to δ 10 = 4.442±0.121, δ 11 = -2.515±0.026, and δ 12 = 0.937±0.038 (all in degrees). (orig./HSI) [de
Batou, A.; Soize, C.; Brie, N.
2013-01-01
Highlights: • A ROM of a nonlinear dynamical structure is built with a global displacements basis. • The reduced order model of fuel assemblies is accurate and of very small size. • The shocks between grids of a row of seven fuel assemblies are computed. -- Abstract: We are interested in the construction of a reduced-order computational model for nonlinear complex dynamical structures which are characterized by the presence of numerous local elastic modes in the low-frequency band. This high modal density makes the use of the classical modal analysis method not suitable. Therefore the reduced-order computational model is constructed using a basis of a space of global displacements, which is constructed a priori and which allows the nonlinear dynamical response of the structure observed on the stiff part to be predicted with a good accuracy. The methodology is applied to a complex industrial structure which is made up of a row of seven fuel assemblies with possibility of collisions between grids and which is submitted to a seismic loading
Batou, A., E-mail: anas.batou@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France); Soize, C., E-mail: christian.soize@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France); Brie, N., E-mail: nicolas.brie@edf.fr [EDF R and D, Département AMA, 1 avenue du général De Gaulle, 92140 Clamart (France)
2013-09-15
Highlights: • A ROM of a nonlinear dynamical structure is built with a global displacements basis. • The reduced order model of fuel assemblies is accurate and of very small size. • The shocks between grids of a row of seven fuel assemblies are computed. -- Abstract: We are interested in the construction of a reduced-order computational model for nonlinear complex dynamical structures which are characterized by the presence of numerous local elastic modes in the low-frequency band. This high modal density makes the use of the classical modal analysis method not suitable. Therefore the reduced-order computational model is constructed using a basis of a space of global displacements, which is constructed a priori and which allows the nonlinear dynamical response of the structure observed on the stiff part to be predicted with a good accuracy. The methodology is applied to a complex industrial structure which is made up of a row of seven fuel assemblies with possibility of collisions between grids and which is submitted to a seismic loading.
Vliet, Jurg; Wel, Steven; Dowd, Dara
2011-01-01
While it's always been possible to run Java applications on Amazon EC2, Amazon's Elastic Beanstalk makes the process easier-especially if you understand how it works beneath the surface. This concise, hands-on book not only walks you through Beanstalk for deploying and managing web applications in the cloud, you'll also learn how to use this AWS tool in other phases of development. Ideal if you're a developer familiar with Java applications or AWS, Elastic Beanstalk provides step-by-step instructions and numerous code samples for building cloud applications on Beanstalk that can handle lots
Blocky inversion of multichannel elastic impedance for elastic parameters
Mozayan, Davoud Karami; Gholami, Ali; Siahkoohi, Hamid Reza
2018-04-01
Petrophysical description of reservoirs requires proper knowledge of elastic parameters like P- and S-wave velocities (Vp and Vs) and density (ρ), which can be retrieved from pre-stack seismic data using the concept of elastic impedance (EI). We propose an inversion algorithm which recovers elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion method (exploited recently for recovering acoustic impedance from post-stack seismic data), high-resolution blocky EI models are obtained directly from partial angle-stacks. Using an efficient total-variation (TV) regularization, each angle-stack is inverted independently in a multichannel form without prior knowledge of the corresponding wavelet. The second step involves inversion of the resulting EI models for elastic parameters. Mathematically, under some assumptions, the EI's are linearly described by the elastic parameters in the logarithm domain. Thus a linear weighted least squares inversion is employed to perform this step. Accuracy of the concept of elastic impedance in predicting reflection coefficients at low and high angles of incidence is compared with that of exact Zoeppritz elastic impedance and the role of low frequency content in the problem is discussed. The performance of the proposed inversion method is tested using synthetic 2D data sets obtained from the Marmousi model and also 2D field data sets. The results confirm the efficiency and accuracy of the proposed method for inversion of pre-stack seismic data.
Atac, Hamza [Temple University, Philadelphia, PA
2017-12-01
The Coulomb Sum is defined by the quasi-elastic nucleon knock-out process and it is the integration of the longitudinal response function over the energy loss of the incident electron. The Coulomb sum goes to the total charge at large q. The existing measurements of the Coulomb Sum Rule show disagreement with the theoretical calculations for the medium and heavy nuclei. To find the reason behind the disagreement might answer the question of whether the properties of the nucleons are affected by the nuclear medium or not. In order to determine the Coulomb Sum in nuclei, a precision measurement of inclusive electron scattering in the quasi-elastic region was performed at the Thomas Jefferson National Accelerator Facility. Incident electrons with energies ranging from 0.4 GeV to 4 GeV scattered off 4He,12C,56Fe and 208Pb nuclei at four scattering angles (15 deg.; 60 deg.; 90 deg.; 120 deg.) and scattered energies ranging from 0.1 GeV to 4 GeV. The Born cross sections were extracted for the Left High Resolution Spectrometer (LHRS) and the Right High Resolution Spectrometer 56Fe data. The Rosenbluth separation was performed to extract the transverse and longitudinal response functions at 650 MeV three-momentum transfer. The preliminary results of the longitudinal and transverse functions were extracted for 56Fe target at 650 MeV three-momentum transfer.
Agababyan, K.S.; Adamyan, F.V.; Akopyan, G.G.; Vartapetyan, G.A.; Galumyan, P.I.; Grabskii, V.O.; Karapetyan, V.V.; Karapetyan, G.V.; Kordonskii, M.S.
1985-06-01
We describe the experimental methods and the results of measurements of the asymmetry of the cross section of the eld pn reaction induced by linearly polarized photons over the energy range E/sub el/ = 0.4 to 0.8 GeV and proton angles in the c.m. system theta* = 45 to 95. Experiments were conducted on a two-arm spectrometer installation. The results obtained do not agree either with calculations within the framework of phenomenological models, or with predictions of a partial-wave analysis that includes the contribution of dibaryon resonances.
Implications of stress range for inelastic analysis
Karabin, M.E.; Dhalla, A.K.
1981-01-01
The elastic stress range over a complete load cycle is routinely used to formulate simplified rules regarding the inelastic behavior of structures operating at elevated temperature. For example, a 300 series stainless steel structure operating at elevated temperature, in all probability, would satisfy the ASME Boiler and Pressure Vessel Code criteria if the linearized elastic stress range is less than three times the material yield strength. However, at higher elastic stress ranges it is difficult to judge, a priori, that a structural component would comply with inelastic Code criteria after a detailed inelastic analysis. The purpose of this paper is to illustrate that it is not the elastic stress range but the stress intensities at specific times during a thermal transient which provide a better insight into the inelastic response of the structure. The specific example of the CRBRP flued head design demonstrates that the temperature differential between various parts of the structure can be changed by modifying the insulation pattern and heat flow path in the structure, without significantly altering the elastic stress range over a complete load cycle. However, the modified design did reduce the stress intensity during steady state elevated temperature operation. This modified design satisfied the inelastic Code criteria whereas the initial design failed to comply with the strain accumulation criterion
The price elasticity of electricity demand in South Australia
Fan Shu; Hyndman, Rob J.
2011-01-01
In this paper, the price elasticity of electricity demand, representing the sensitivity of customer demand to the price of electricity, has been estimated for South Australia. We first undertake a review of the scholarly literature regarding electricity price elasticity for different regions and systems. Then we perform an empirical evaluation of the historic South Australian price elasticity, focussing on the relationship between price and demand quantiles at each half-hour of the day. This work attempts to determine whether there is any variation in price sensitivity with the time of day or quantile, and to estimate the form of any relationships that might exist in South Australia. - Highlights: → We review the scholarly literature on electricity own-price elasticity for different regions and systems. → We use annual log-linear econometric models of the electricity demand to estimate the historic South Australian price elasticity. → We focus on the relationship between price and demand quantiles at each half-hour of the day. → The overall price elasticity in South Australia ranges from -0.363 to -0.428.
Phan, Thien Q.; Levine, Lyle E.; Lee, I-Fang; Xu, Ruqing; Tischler, Jonathan Z.; Huang, Yi; Langdon, Terence G.; Kassner, Michael E.
2016-01-01
Synchrotron X-ray microbeam diffraction was used to measure the full elastic long range internal strain and stress tensors of low dislocation density regions within the submicrometer grain/subgrain structure of equal-channel angular pressed (ECAP) aluminum alloy AA1050 after 1, 2, and 8 passes using route B C . This is the first time that full tensors were measured in plastically deformed metals at this length scale. The maximum (most tensile or least compressive) principal elastic strain directions for the unloaded 1 pass sample for the grain/subgrain interiors align well with the pressing direction, and are more random for the 2 and 8 pass samples. The measurements reported here indicate that the local stresses and strains become increasingly isotropic (homogenized) with increasing ECAP passes using route B C . The average maximum (in magnitude) LRISs are −0.43 σ a for 1 pass, −0.44 σ a for 2 pass, and 0.14 σ a for the 8 pass sample. These LRISs are larger than those reported previously because those earlier measurements were unable to measure the full stress tensor. Significantly, the measured stresses are inconsistent with the two-component composite model.
Leader, Elliot
1991-01-01
With very few unexplained results to challenge conventional ideas, physicists have to look hard to search for gaps in understanding. An area of physics which offers a lot more than meets the eye is elastic and diffractive scattering where particles either 'bounce' off each other, emerging unscathed, or just graze past, emerging relatively unscathed. The 'Blois' workshops provide a regular focus for this unspectacular, but compelling physics, attracting highly motivated devotees
Zolotukhin, I.V.; Balalaev, S.Yu.
1990-01-01
Relaxation properties of Y 19 Fe 81 spin glass (SG) were investigated by means of internal friction(IF). Relaxation process resulting from transition to SG state was determined at sound range frequencies in amorphous alloy. On the basis of the obtained results concerning IF and magnetic susceptibility it follows, that relaxation of certain part of cluster magnetic moments lies within 10 -5 -10 -3 s limits with 0.11±0.06 eV activation energy. IF technique is shown to be used for investigation into relaxation properties, in particular, for acquisition of data on temperature of transition to SG' state
High energy elastic hadron scattering
Fearnly, T.A.
1986-04-01
The paper deals with the WA7 experiment at the CERN super proton synchrotron (SPS). The elastic differential cross sections of pion-proton, kaon-proton, antiproton-proton, and proton-proton at lower SPS energies over a wide range of momentum transfer were measured. Some theoretical models in the light of the experimental results are reviewed, and a comprehensive impact parameter analysis of antiproton-proton elastic scattering over a wide energy range is presented. A nucleon valence core model for high energy proton-proton and antiproton-proton elastic scattering is described
Gray, R.G.; Lafuma, J.; Parish, S.E.; Peto, R.; CEA Centre d'Etudes Nucleaires de Fontenay-aux-Roses
1986-01-01
More than 2000 rats were exposed to cumulative doses of up to 28,000 WLMs of radon gas. More than 300 pulmonary tumors were induced by this exposure, most being nonfatal lesions detected only at autopsy of animals that had died of unrelated causes. Above 6000 WLMs rats suffered increasingly from life shortening due to radiation-induced nonneoplastic causes and so had less time in which to develop tumors. When adjusted for these competing causes of death, the hazard function for the excess risk of developing pulmonary tumors was approximately linearly related to dose throughout the range of doses studied. This suggests that some previously reported high-dose ''reductions'' in radiogenic tumor-induction rates may chiefly have involved the killing of rats rather than the killing of precursor cells. Rats exposed to radon and then to six months of inhalation of tobacco smoke had a four times greater age-specific prevalence of pulmonary tumors than rats exposed to an identical radon dose either alone or preceded by tobacco smoke inhalation. This suggests that tobacco smoke may accelerate the carcinogenic process by acting as a promoter of radiation-induced somatic damage. These data suggest that, for assessing human risk from exposure to radon, the linear model should be assumed, but that the WLM is not on its own an adequate index of carcinogenic insult. 7 refs., 2 figs., 4 tabs
Yalcin, S. [Education Faculty, Kastamonu University, 37200 Kastamonu (Turkey)]. E-mail: yalcin@gazi.edu.tr; Gurler, O. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Gultekin, A. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Gundogdu, O. [School of Engineering, University of Surrey, Guildford, GU2 7XH (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk
2006-07-31
In this Letter, an expression is presented to calculate elastic scattering cross sections for incident electrons as a function of both energy and atomic number in the energy range between 1 keV and 1 MeV for materials with effective atomic number between 3 and 18. The expression we present has a rather simple analytical form which gives accurate results that are in very good agreement with the results calculated by a relativistic partial-wave expansion method. Hence, this equation can be employed accurately and efficiently in a continuous manner, without the need to go through rather large look-up tables, thus making the whole process quick, efficient and removing possible computational errors that may arise from the efforts of interpolation.
Yalcin, S.; Gurler, O.; Gultekin, A.; Gundogdu, O.
2006-01-01
In this Letter, an expression is presented to calculate elastic scattering cross sections for incident electrons as a function of both energy and atomic number in the energy range between 1 keV and 1 MeV for materials with effective atomic number between 3 and 18. The expression we present has a rather simple analytical form which gives accurate results that are in very good agreement with the results calculated by a relativistic partial-wave expansion method. Hence, this equation can be employed accurately and efficiently in a continuous manner, without the need to go through rather large look-up tables, thus making the whole process quick, efficient and removing possible computational errors that may arise from the efforts of interpolation
Li, Zhenzhen
2015-06-12
One-dimensional nanocomposites of metal-oxide and noble metal were expected to present superior performance for nonenzymatic glucose detection due to its good conductivity and high catalytic activity inherited from noble metal and metal oxide respectively. As a proof of concept, we synthesized gold and copper oxide (Au/CuO) composite with unique one-dimensional nanocauliflowers structure. Due to the nature of the synthesis method, no any foreign binder was needed in keeping either Au or CuO in place. To the best of our knowledge, this is the first attempt in combining metal oxide and noble metal in a binder-free style for fabricating nonenzymatic glucose sensor. The Au/CuO nanocauliflowers with large electrochemical active surface and high electrolyte contact area would promise a wide linear range and high sensitive detection of glucose with good stability and reproducibility due to its good electrical conductivity of Au and high electrocatalytic activity of CuO.
Petrov, K.; Will, G.
1981-01-01
High-temperature treatment of tungsten carbide-cobalt hard alloys in TiB 2 media leads to the formation of a surface diffusion coating which contains orthorhombic WCoB. The function of this compound in enhancing wear resistance of cutting tools, is discussed. The thermal expansion of WCoB is of primary interest, since the wear resistance of the coating reflects the degree of matching of the thermal expansion coefficients of the different phases. Preparation of the samples is described and experimental details of the X-ray diffraction measurements are given. The temperature dependence of the lattice parameters for the range 300 to 973 K, and the corresponding linear thermal expansion coefficients along the three principal crystallographic directions, are given. The results are discussed in terms of the bonding features of the solid. (U.K.)
Zhou, Jian; Li, Xi; Yang, Linlin; Yan, Songlin; Wang, Mengmeng; Cheng, Dan; Chen, Qi; Dong, Yulin; Liu, Peng; Cai, Weiquan; Zhang, Chaocan
2015-01-01
A novel electrochemical sensor based on Cu-MOF-199 [Cu-MOF-199 = Cu 3 (BTC) 2 (BTC = 1,3,5-benzenetricarboxylicacid)] and SWCNTs (single-walled carbon nanotubes) was fabricated for the simultaneous determination of hydroquinone (HQ) and catechol (CT). The modification procedure was carried out through casting SWCNTs on the bare glassy carbon electrode (GCE) and followed by the electrodeposition of Cu-MOF-199 on the SWCNTs modified electrode. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were performed to characterize the electrochemical performance and surface characteristics of the as-prepared sensor. The composite electrode exhibited an excellent electrocatalytic activity with increased electrochemical signals towards the oxidation of HQ and CT, owing to the synergistic effect of SWCNTs and Cu-MOF-199. Under the optimized condition, the linear response range were from 0.1 to 1453 μmol L −1 (R HQ = 0.9999) for HQ and 0.1–1150 μmol L −1 (R CT = 0.9990) for CT. The detection limits for HQ and CT were as low as 0.08 and 0.1 μmol L −1 , respectively. Moreover, the modified electrode presented the good reproducibility and the excellent anti-interference performance. The analytical performance of the developed sensor for the simultaneous detection of HQ and CT had been evaluated in practical samples with satisfying results. - Highlights: • Cu-MOF-199/SWCNTs/GCE was facilely fabricated by the electrodeposition on SWCNTs/GCE. • An electrochemical sensor for detecting HQ and CT was constructed based on this modified electrode. • The proposed electrochemical sensor showed an extended linear range and lower detection limits. • The proposed electrochemical sensor had an excellent stability and reproducibility.
Xu, Fan; Wang, Yuanqing, E-mail: yqwang@nju.edu.cn; Li, Fenfang [School of Electronic Science and Engineering, Nanjing University, Nanjing 210046 (China)
2016-03-15
The avalanche-photodiode-array (APD-array) laser detection and ranging (LADAR) system has been continually developed owing to its superiority of nonscanning, large field of view, high sensitivity, and high precision. However, how to achieve higher-efficient detection and better integration of the LADAR system for real-time three-dimensional (3D) imaging continues to be a problem. In this study, a novel LADAR system using four linear mode APDs (LmAPDs) is developed for high-efficient detection by adopting a modulation and multiplexing technique. Furthermore, an automatic control system for the array LADAR system is proposed and designed by applying the virtual instrumentation technique. The control system aims to achieve four functions: synchronization of laser emission and rotating platform, multi-channel synchronous data acquisition, real-time Ethernet upper monitoring, and real-time signal processing and 3D visualization. The structure and principle of the complete system are described in the paper. The experimental results demonstrate that the LADAR system is capable of achieving real-time 3D imaging on an omnidirectional rotating platform under the control of the virtual instrumentation system. The automatic imaging LADAR system utilized only 4 LmAPDs to achieve 256-pixel-per-frame detection with by employing 64-bit demodulator. Moreover, the lateral resolution is ∼15 cm and range accuracy is ∼4 cm root-mean-square error at a distance of ∼40 m.
Phason elasticity and surface roughening
Tang Leihan; Jaric, M.V.
1990-01-01
The phason elasticity of two-dimensional (2D) equilibrium quasicrystals is discussed in analogy with surface roughening phenomena. Taking a Penrose tiling model as an example, we show that the phason elastic energy is linear in the phason strain at zero temperature (T = 0), but becomes quadratic at any T > 0 and sufficiently small strain. Heuristic and real-space renormalization group arguments are given for the thermal roughening of the hyper-surface which represents quasicrystal tiling. Monte Carlo method is applied to illustrate the logarithmically diverging phason fluctuations and power-law diffraction intensities at T > 0. For three-dimensional systems, we present arguments which suggest a finite temperature transition between two quasicrystal phases, characterized by linear and quadratic phason elastic energy, respectively. (author). 17 refs, 12 figs
The visco-elastic multilayer program VEROAD
Hopman, P.C.
1996-01-01
The mathematical principles and derivation of a linear visco-elastic multilayer computer program are described. The mathematical derivation is based on Fourier Transformation. The program is called VEROAD, which is an acronym for Visco-Elastic ROad Analysis Delft. The program allows calculation of
Fu, Y. B.; Ogden, R. W.
2001-05-01
This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.
Gao, Kai
2015-06-05
The development of reliable methods for upscaling fine-scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. Therefore, we have proposed a numerical homogenization algorithm based on multiscale finite-element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that was similar to the rotated staggered-grid finite-difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity in which the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.
THE ELASTICITY OF EXPORT DEMAND FOR US COTTON
Paudel, Laxmi; Houston, Jack E.; Adhikari, Murali; Devkota, Nirmala
2004-01-01
There exist conflicting views among the researchers about the magnitudes of US cotton export demand elasticity, ranging from the highly inelastic to highly elastic. An Armington model was used to analyze the export demand elasticity of US Cotton. Our analysis confirms an elastic nature of US cotton export demand.
Zhao, Xin
2013-01-01
Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects
Puljiz, Mate; Menzel, Andreas M.
2017-05-01
Embedding rigid inclusions into elastic matrix materials is a procedure of high practical relevance, for instance, for the fabrication of elastic composite materials. We theoretically analyze the following situation. Rigid spherical inclusions are enclosed by a homogeneous elastic medium under stick boundary conditions. Forces and torques are directly imposed from outside onto the inclusions or are externally induced between them. The inclusions respond to these forces and torques by translations and rotations against the surrounding elastic matrix. This leads to elastic matrix deformations, and in turn results in mutual long-ranged matrix-mediated interactions between the inclusions. Adapting a well-known approach from low-Reynolds-number hydrodynamics, we explicitly calculate the displacements and rotations of the inclusions from the externally imposed or induced forces and torques. Analytical expressions are presented as a function of the inclusion configuration in terms of displaceability and rotateability matrices. The role of the elastic environment is implicitly included in these relations. That is, the resulting expressions allow a calculation of the induced displacements and rotations directly from the inclusion configuration, without having to explicitly determine the deformations of the elastic environment. In contrast to the hydrodynamic case, compressibility of the surrounding medium is readily taken into account. We present the complete derivation based on the underlying equations of linear elasticity theory. In the future, the method will, for example, be helpful to characterize the behavior of externally tunable elastic composite materials, to accelerate numerical approaches, as well as to improve the quantitative interpretation of microrheological results.
Lu, LingFeng
2016-01-01
Ion Cyclotron Resonant Heating (ICRH) by waves in 30-80 MHz range is currently used in magnetic fusion plasmas. Excited by phased arrays of current straps at the plasma periphery, these waves exist under two polarizations. The Fast Wave tunnels through the tenuous plasma edge and propagates to its center where it is absorbed. The parasitically emitted Slow Wave only exists close to the launchers. How much power can be coupled to the center with 1 A current on the straps? How do the emitted radiofrequency (RF) near and far fields interact parasitically with the edge plasma via RF sheath rectification at plasma-wall interfaces? To address these two issues simultaneously, in realistic geometry over the size of ICRH antennas, this thesis upgraded and tested the Self-consistent Sheaths and Waves for ICH (SSWICH) code. SSWICH couples self-consistently RF wave propagation and Direct Current (DC) plasma biasing via non-linear RF and DC sheath boundary conditions (SBCs) at plasma/wall interfaces. Its upgrade is full wave and was implemented in two dimensions (toroidal/radial). New SBCs coupling the two polarizations were derived and implemented along shaped walls tilted with respect to the confinement magnetic field. Using this new tool in the absence of SBCs, we studied the impact of a density decaying continuously inside the antenna box and across the Lower Hybrid (LH) resonance. Up to the memory limits of our workstation, the RF fields below the LH resonance changed with the grid size. However the coupled power spectrum hardly evolved and was only weakly affected by the density inside the box. In presence of SBCs, SSWICH-FW simulations have identified the role of the fast wave on RF sheath excitation and reproduced some key experimental observations. SSWICH-FW was finally adapted to conduct the first electromagnetic and RF-sheath 2D simulations of the cylindrical magnetized plasma device ALINE. (author) [fr
Elastic-plastic transition: A universal law
Chen Zhong
2016-01-01
Full Text Available Although the initial stress-strain behavior in a tensile test is often characterized as linear elastic up to a yield stress and nonlinear plastic thereafter, the pre-yield transition region is known to exhibit significant curvature and hysteresis. Hundreds of high-precision loading-unloading-loading tensile tests were performed using 26 commercial sheet alloys exhibiting a wide range of strength, ductility and crystal structure. Analysis of the results reveals the following: 1.There is no significant linear elastic region; the proportional limit is ~0 MPa when measured with sufficient sensitivity. 2.Each of the hundreds of measured transitional stress-strain curves can be characterized by a single parameter, here called the “modulus reduction rate.”The corresponding equation captures ~80% of the observed variation, a factor of 3 to 6 better than a one-parameter linear approximation. 3.Most interestingly, the transitional behavior for all alloys follows a “Universal Law” requiring no fit parameters. The law depends only upon the strength of the material and its Young’s modulus, both of which are can be measured by independent tests or adopted from handbooks. The Universal Law captures ~90% of the variation represented by the one-parameter representation and eliminates the need for mechanical testing to implement and apply. The practical and theoretical implications of these results are discussed. The results provide a simple path to significantly improving applied constitutive models in the transitional regime. The consistency of the effect for such a wide range of metals and suggests that the origin of the behavior lies in the pile-up and relaxation of dislocation arrays.
Rudolph, Juergen; Goetz, Andreas; Hilpert, Roland
2012-01-01
The procedures of fatigue analyses of several relevant nuclear and conventional design codes (ASME, KTA, EN, AD) for power plant components differentiate between an elastic, simplified elastic-plastic and elastic-plastic fatigue check. As a rule, operational load levels will exclude the purely elastic fatigue check. The application of the code procedure of the simplified elastic-plastic fatigue check is common practice. Nevertheless, resulting cumulative usage factors may be overly conservative mainly due to high code based plastification penalty factors Ke. As a consequence, the more complex and still code conforming general elastic-plastic fatigue analysis methodology based on non-linear finite element analysis (FEA) is applied for fatigue design as an alternative. The requirements of the FEA and the material law to be applied have to be clarified in a first step. Current design codes only give rough guidelines on these relevant items. While the procedure for the simplified elastic-plastic fatigue analysis and the associated code passages are based on stress related cycle counting and the determination of pseudo elastic equivalent stress ranges, an adaptation to elastic-plastic strains and strain ranges is required for the elastic-plastic fatigue check. The associated requirements are explained in detail in the paper. If the established and implemented evaluation mechanism (cycle counting according to the peak and valley respectively the rainflow method, calculation of stress ranges from arbitrary load-time histories and determination of cumulative usage factors based on all load events) is to be retained, a conversion of elastic-plastic strains and strain ranges into pseudo elastic stress ranges is required. The algorithm to be applied is described in the paper. It has to be implemented in the sense of an extended post processing operation of FEA e.g. by APDL scripts in ANSYS registered . Variations of principal stress (strain) directions during the loading
Zhao, Xin
2013-05-01
Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects. Architectural structures, NODUS, were constructed by elastic rods as a new method of form-finding. We study discrete models of elastic rods and NODUS structures. We also develop computational tools to find the equilibria of elastic rods and the shape of NODUS. Applications of elastic rods in forming torus knot and closing Bishop frame are included in this thesis.
Elastic metamaterial beam with remotely tunable stiffness
Qian, Wei [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Zhengyue [School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Xiaole [School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Lai, Yun [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Yellen, Benjamin B., E-mail: yellen@duke.edu [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)
2016-02-07
We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ∼30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.
Elastic metamaterial beam with remotely tunable stiffness
Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.
2016-02-01
We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.
Gomez, M.P.; McMeeking, R.M.; Parks, D.M.
1980-06-01
Contributions were made toward developing a new methodology to assess the stability of cracks in pressure vessels made from materials that exhibit a significant increase in toughness during the early increments of crack growth. It has a wide range of validity from linear elastic to fully plastic behavior
Motivation and compliance with intraoral elastics.
Veeroo, Helen J; Cunningham, Susan J; Newton, Jonathon Timothy; Travess, Helen C
2014-07-01
Intraoral elastics are commonly used in orthodontics and require regular changing to be effective. Unfortunately, poor compliance with elastics is often encountered, especially in adolescents. Intention for an action and its implementation can be improved using "if-then" plans that spell out when, where, and how a set goal, such as elastic wear, can be put into action. Our aim was to determine the effect of if-then plans on compliance with elastics. To identify common barriers to compliance with recommendations concerning elastic wear, semistructured interviews were carried out with 14 adolescent orthodontic patients wearing intraoral elastics full time. Emerging themes were used to develop if-then plans to improve compliance with elastic wear. A prospective pilot study assessed the effectiveness of if-then planning aimed at overcoming the identified barriers on compliance with elastic wear. Twelve participants were randomized equally into study and control groups; the study group received information about if-then planning. The participants were asked to collect used elastics, and counts of these were used to assess compliance. A wide range of motivational and volitional factors were described by the interviewed participants, including the perceived benefits of elastics, cues to remember, pain, eating, social situations, sports, loss of elastics, and breakages. Compliance with elastic wear was highly variable among patients. The study group returned more used elastics, suggesting increased compliance, but the difference was not significant. The use of if-then plans might improve compliance with elastic wear when compared with routine clinical instructions. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Bauer, Fabian; Römer, Ulrich, E-mail: ulrich.roemer@kit.edu; Fidlin, Alexander; Seemann, Wolfgang [Institute of Engineering Mechanics, Karlsruhe Institute of Technology (Germany)
2016-11-15
This paper presents a method to optimize the energy efficiency of walking bipedal robots by more than 80 % in a speed range from 0.3 to 2.3 m/s using elastic couplings—mechanical springs with movement speed independent parameters. The considered planar robot consists of a trunk, two two-segmented legs, two actuators in the hip joints, two actuators in the knee joints and an elastic coupling between the shanks. It is modeled as underactuated system to make use of its natural dynamics and feedback controlled via input–output linearization. A numerical optimization of the joint angle trajectories as well as the elastic couplings is performed to minimize the average energy expenditure over the whole speed range. The elastic couplings increase the swing leg motion’s natural frequency thus making smaller steps more efficient which reduce the impact loss at the touchdown of the swing leg. The process of energy turnover is investigated in detail for the robot with and without elastic coupling between the shanks. Furthermore, the influences of the elastic couplings’ topology and of joint friction are analyzed. It is shown that the optimization of the robot’s motion and elastic coupling towards energy efficiency leads to a slightly slower convergence rate of the controller, yet no loss of stability, but a lower sensitivity with respect to disturbances. The optimal elastic coupling discovered via numerical optimization is a linear torsion spring with transmissions between the shanks. A design proposal for this elastic coupling—which does not affect the robot’s trunk and parallel shank motion and can be used to enhance an existing robot—is given for planar as well as spatial robots.
Wave chaos in acoustics and elasticity
Tanner, Gregor; Soendergaard, Niels
2007-01-01
Interpreting wave phenomena in terms of an underlying ray dynamics adds a new dimension to the analysis of linear wave equations. Forming explicit connections between spectra and wavefunctions on the one hand and the properties of a related ray dynamics on the other hand is a comparatively new research area, especially in elasticity and acoustics. The theory has indeed been developed primarily in a quantum context; it is increasingly becoming clear, however, that important applications lie in the field of mechanical vibrations and acoustics. We provide an overview over basic concepts in this emerging field of wave chaos. This ranges from ray approximations of the Green function to periodic orbit trace formulae and random matrix theory and summarizes the state of the art in applying these ideas in acoustics-both experimentally and from a theoretical/numerical point of view. (topical review)
Elastic-plastic fracture mechanics study of thermal shock cracking
Hirano, K.; Kobayashi, H.; Nakazawa, H.
1980-01-01
This paper describes thermal shock experiments conducted on a nuclear pressure vessel steel (A533 Grade B Class 1), an AISI304 steel and a tool steel (JIS SKD62) using both a new thermal shock test facility and method. Analysis of their quasi-static thermal stress intensity factors is performed on the basis of linear-elastic fracture mechanics; and a thermal shock fracture toughness value, Ksub(tsc) is evaluated. Then elastic-plastic fracture toughness tests are carried out in the same high temperature range of the thermal shock experiment, and a relation between the stretched zone width, SZW, formed as a result of the fatigue precrack tip plastic blunting and the J-integral is clarified. An elastic-plastic thermal shock fracture toughness value, Jsub(tsc), is evaluated from a critical value of the stretched zone width, SZWsub(tsc), at the initiation of the thermal shock cracking by using the relation between SZW and J. The Jsub(tsc) value is compared with an elastic-plastic fracture toughness value, Jsub(Ic), and the difference between these Jsub(tsc) and Jsub(Ic) values is discussed on the basis of fractography. (author)
Modelling the elastic properties of cellulose nanopaper
Mao, Rui; Goutianos, Stergios; Tu, Wei
2017-01-01
The elastic modulus of cellulose nanopaper was predicted using a two-dimensional (2D) micromechanical fibrous network model. The elastic modulus predicted by the network model was 12 GPa, which is well within the range of experimental data for cellulose nanopapers. The stress state in the network...
Saim, A., E-mail: saim1989asma@gmail.com; Tebboune, A.; Berkok, H.; Belameiri, N.; Belbachir, A.H.
2014-07-25
The Full Potential Linear Muffin Tin Orbitals method within the density functional theory has been utilized to calculate structural and electronic properties of the CdTe compound. We have checked that the CdTe has two phase-transitions from zinc-blend to cinnabar and from cinnabar to rocksalt. We have found that the rigidity, the energy and the nature of the gap change according to the phase change, so we can predict that a CdTe detector may have different behaviors in different phase conditions. In order to investigate this behavior change, the linear and the mass attenuation coefficients of X-ray in rocksalt, zinc-blend and cinnabar structures are calculated from 10 keV to100 keV, using the XCOM data. We have found that when CdTe undergoes a phase transition from zinc-blend to cinnabar, its linear attenuation coefficient decreases down to a value of about 100 times smaller than its initial one, and when it undergoes a transition from cinnabar to rocksalt it increases up to a value about 90 times larger than its initial one.
Structural phase transition and elastic properties of mercury chalcogenides
Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Shriya, S. [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria)
2012-08-15
Pressure induced structural transition and elastic properties of ZnS-type (B3) to NaCl-type (B1) structure in mercury chalcogenides (HgX; X = S, Se and Te) are presented. An effective interionic interaction potential (EIOP) with long-range Coulomb, as well charge transfer interactions, Hafemeister and Flygare type short-range overlap repulsion extended up to the second neighbor ions and van der Waals interactions are considered. Emphasis is on the evaluation of the pressure dependent Poisson's ratio {nu}, the ratio R{sub BT/G} of B (bulk modulus) over G (shear modulus), anisotropy parameter, Shear and Young's modulus, Lame constant, Kleinman parameter, elastic wave velocity and thermodynamical property as Debye temperature. The Poisson's ratio behavior infers that Mercury chalcogenides are brittle in nature. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of elastic and thermodynamical properties explicitly the ductile (brittle) nature of HgX and still awaits experimental confirmations. Highlights: Black-Right-Pointing-Pointer Vast volume discontinuity in phase diagram infers transition from ZnS to NaCl structure. Black-Right-Pointing-Pointer The shear elastic constant C{sub 44} is nonzero confirms the mechanical stability. Black-Right-Pointing-Pointer Pressure dependence of {theta}{sub D} infers the softening of lattice with increasing pressure. Black-Right-Pointing-Pointer Estimated bulk, shear and tetragonal moduli satisfied elastic stability criteria. Black-Right-Pointing-Pointer In both B3 and B1 phases, C{sub 11} and C{sub 12} increase linearly with pressure.
Extremal Overall Elastic Response of Polycrystalline Materials
Bendsøe, Martin P; Lipton, Robert
1996-01-01
Polycrystalline materials comprised of grains obtained froma single anisotropic material are considered in the frameworkof linear elasticity. No assumptions on the symmetry of thepolycrystal are made. We subject the material to independentexternal strain and stress fields with prescribed mean...... values.We show that the extremal overall elastic response is alwaysachieved by a configuration consisting of a single properlyoriented crystal. This result is compared to results for isotropicpolycrystals....
Carmeliet, J.; Abeele, van den K.E.A.
2004-01-01
The non-linear quasi-static and dynamic elastic behaviour of Berea sandstone has been experimentally analysed showing hysteresis and a strong influence of moisture especially in the lower saturation range. It is shown that non-linear hysteretic response originates within the "bond system" of the
Becker, K.; Shapiro, S.; Stanchits, S.; Dresen, G.; Kaselow, A.; Vinciguerra, S.
2005-12-01
Elastic properties of rocks are sensitive to changes of the in-situ stress and damage state. In particular, seismic velocities are strongly affected by stress-induced formation and deformation of cracks or shear-enhanced pore collapse. The effect of stress on seismic velocities as a result of pore space deformation in isotropic rock at isostatic compression may be expressed by the equation: A+K*P-B*exp (-D*P) (1), where P=Pc-Pp is the effective pressure, the pure difference between confining pressure and pore pressure. The parameter A, K, B and D describe material constants determined using experimental data. The physical meaning of the parameters is given by Shapiro (2003, in Geophysics Vol.68(Nr.2)). Parameter D is related to the stress sensitivity of the rock. A similar relation was derived by Shapiro and Kaselow (2005, in Geophysics in press) for weak anisotropic rocks under arbitrary load. They describe the stress dependent anisotropy in terms of Thomson's (1986, in Geophysics, Vol. 51(Nr.10)) anisotropy parameters ɛ and γ as a function of stress in the case of an initially isotropic rock: ɛ ∝ E2-E3, γ ∝ E3-E2 (2) with Ei=exp (D*Pi). The exponential terms Ei are controlled by the effective stress components Pi. To test this relation, we have conducted a series of triaxial compression tests on dry samples of initially isotropic Etnean Basalt in a servo-controlled MTS loading frame equipped with a pressure cell. Confining pressure was 60, 40 and 20 MPa. Samples were 5 cm in diameter and 10 cm in length. Elastic anisotropy was induced by axial compression of the samples through opening and growth of microcracks predominantly oriented parallel to the sample axis. Ultrasonic P- and S- wave velocities were monitored parallel and normal to the sample axis by an array of 20 piezoceramic transducers glued to the surface. Preamplified full waveform signals were stored in two 12 channel transient recorders. According to equation 2 the anisotropy parameters are
Dynamic elasticity measurement for prosthetic socket design.
Kim, Yujin; Kim, Junghoon; Son, Hyeryon; Choi, Youngjin
2017-07-01
The paper proposes a novel apparatus to measure the dynamic elasticity of human limb in order to help the design and fabrication of the personalized prosthetic socket. To take measurements of the dynamic elasticity, the desired force generated as an exponential chirp signal in which the frequency increases and amplitude is maintained according to time progress is applied to human limb and then the skin deformation is recorded, ultimately, to obtain the frequency response of its elasticity. It is referred to as a Dynamic Elasticity Measurement Apparatus (DEMA) in the paper. It has three core components such as linear motor to provide the desired force, loadcell to implement the force feedback control, and potentiometer to record the skin deformation. After measuring the force/deformation and calculating the dynamic elasticity of the limb, it is visualized as 3D color map model of the limb so that the entire dynamic elasticity can be shown at a glance according to the locations and frequencies. For the visualization, the dynamic elasticities measured at specific locations and frequencies are embodied using the color map into 3D limb model acquired by using 3D scanner. To demonstrate the effectiveness, the visualized dynamic elasticities are suggested as outcome of the proposed system, although we do not have any opportunity to apply the proposed system to the amputees. Ultimately, it is expected that the proposed system can be utilized to design and fabricate the personalized prosthetic socket in order for releasing the wearing pain caused by the conventional prosthetic socket.
Elastic least-squares reverse time migration
Feng, Zongcai
2017-03-08
We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTMsolves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional leastsquares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTMwill produce migration noise stronger than that seen in the RTM images.
Elastic least-squares reverse time migration
Feng, Zongcai; Schuster, Gerard T.
2017-01-01
We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTMsolves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional leastsquares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTMwill produce migration noise stronger than that seen in the RTM images.
New constitutive equations to describe infinitesimal elastic-plastic deformations
Boecke, B.; Link, F.; Schneider, G.; Bruhns, O.T.
1983-01-01
A set of constitutive equations is presented to describe infinitesimal elastic-plastic deformations of austenitic steel in the range up to 600 deg C. This model can describe the hardening behaviour in the case of mechanical loading and hardening, and softening behaviour in the case of thermal loading. The loading path can be either monotonic or cyclic. For this purpose, the well-known isotropic hardening model is continually transferred into the kinematic model according to Prager, whereby suitable internal variables are chosen. The occurring process-dependent material functions are to be determined by uniaxial experiments. The hardening function g and the translation function c are determined by means of a linearized stress-strain behaviour in the plastic range, whereby a coupling condition must be taken into account. As a linear hardening process is considered to be too unrealistic, nonlinearity is achieved by introducing a small function w, the determination procedure of which is given. (author)
Sasaki, Toshihiko; Kuramoto, Makoto; Yoshioka, Yasuo.
1990-01-01
This paper describes the method and the experiment for the determination of the x-ray elastic constants of Zn-Ni-alloy electroplate. For this material, the sin 2 ψ method is not adequate to use because this material shows severely curved sin 2 ψ diagrams. Therefore, a new method developed by the authors was explained first. This new method is effective for materials showing nonlinear sin 2 ψ diagrams. Secondly, the experiment was made on the application of this method to the Zn-Ni-alloy electroplate. And it was found out that the experimental data agreed well to the theory of this method. As a result, the following values were obtained as the x-ray elastic constants of the sample measured: (1+ν)/E=8.44 TPa -1 ν/E=2.02 TPa -1 (author)
An analysis of hypercritical states in elastic and inelastic systems
Kowalczk, Maciej
The author raises a wide range of problems whose common characteristic is an analysis of hypercritical states in elastic and inelastic systems. the article consists of two basic parts. The first part primarily discusses problems of modelling hypercritical states, while the second analyzes numerical methods (so-called continuation methods) used to solve non-linear problems. The original approaches for modelling hypercritical states found in this article include the combination of plasticity theory and an energy condition for cracking, accounting for the variability and cyclical nature of the forms of fracture of a brittle material under a die, and the combination of plasticity theory and a simplified description of the phenomenon of localization along a discontinuity line. The author presents analytical solutions of three non-linear problems for systems made of elastic/brittle/plastic and elastic/ideally plastic materials. The author proceeds to discuss the analytical basics of continuation methods and analyzes the significance of the parameterization of non-linear problems, provides a method for selecting control parameters based on an analysis of the rank of a rectangular matrix of a uniform system of increment equations, and also provides a new method for selecting an equilibrium path originating from a bifurcation point. The author provides a general outline of continuation methods based on an analysis of the rank of a matrix of a corrective system of equations. The author supplements his theoretical solutions with numerical solutions of non-linear problems for rod systems and problems of the plastic disintegration of a notched rectangular plastic plate.
Alcaraz, J.
2001-01-01
After several years of study e''+ e''- linear colliders in the TeV range have emerged as the major and optimal high-energy physics projects for the post-LHC era. These notes summarize the present status form the main accelerator and detector features to their physics potential. The LHC era. These notes summarize the present status, from the main accelerator and detector features to their physics potential. The LHC is expected to provide first discoveries in the new energy domain, whereas an e''+ e''- linear collider in the 500 GeV-1 TeV will be able to complement it to an unprecedented level of precision in any possible areas: Higgs, signals beyond the SM and electroweak measurements. It is evident that the Linear Collider program will constitute a major step in the understanding of the nature of the new physics beyond the Standard Model. (Author) 22 refs
Tattersall, Wade; Chiari, Luca; Machacek, J. R.; Anderson, Emma; Sullivan, James P.; White, Ron D.; Brunger, M. J.; Buckman, Stephen J.; Garcia, Gustavo; Blanco, Francisco
2014-01-01
Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions
Parameter Optimisation for the Behaviour of Elastic Models over Time
Mosegaard, Jesper
2004-01-01
Optimisation of parameters for elastic models is essential for comparison or finding equivalent behaviour of elastic models when parameters cannot simply be transferred or converted. This is the case with a large range of commonly used elastic models. In this paper we present a general method tha...
Bordenave-Montesquieu, D.; Nouet, P.; Boutonnet, A.; Bergnes, C.; Dagnac, R.
1987-09-14
Elastic and inelastic cross sections, differential in energy loss and scattering angle, have been determined from the energy loss spectra of 1.5 - 25 keV He/sup +/ scattered from atomic hydrogen at scattering angles from 5'-2/sup 0/ (laboratory frame). The experimental results compare favourably with the experimental and theoretical data obtained at low incident energies by other authors, but for the higher energies, the present results exhibit a strong disagreement with many of the reported calculations.
Elastic scattering and quasi-elastic transfers
Mermaz, M.C.
1978-01-01
Experiments are presented which it will be possible to carry out at GANIL on the elastic scattering of heavy ions: diffraction phenomena if the absorption is great, refraction phenomena if absorption is low. The determination of the optical parameters can be performed. The study of the quasi-elastic transfer reactions will make it possible to know the dynamics of the nuclear reactions, form exotic nuclei and study their energy excitation spectrum, and analyse the scattering and reaction cross sections [fr
Blass, J.J.
1982-01-01
An improved multiaxial fatigue failure criterion was developed based on the results of combined axial-torsional strain cycling tests of AISI 304 and 2-1/4 Cr-1 Mo steel conducted at 538 0 C (1000 0 F). The formulation of this criterion involves the shear and normal components of inelastic strain range on the planes of maximum inelastic shear strain range. Optimum values of certain parameters contained in the formulation were obtained for each material by the method of least squares. The ability of this criterion to correlate the test results was compared with that of the usual (Mises) equivalent inelastic strain range criterion. An improved definition of equivalent inelastic strain range resulting from these considerations was used to generalize the theory of Strain Range Partitioning to multiaxial stress-strain conditions and was also applied to the linear summation of creep and fatigue damage
Tian, Yuxing; Yu, Zhentao; Ong, Chun Yee Aaron; Kent, Damon; Wang, Gui
2015-05-01
Cold-deformability and mechanical compatibility of the biomedical β-type titanium alloy are the foremost considerations for their application in stents, because the lower ductility restricts the cold-forming of thin-tube and unsatisfactory mechanical performance causes a failed tissue repair. In this paper, β-type titanium alloy (Ti-25Nb-3Zr-3Mo-2Sn, wt%) thin-tube fabricated by routine cold rolling is reported for the first time, and its elastic behavior and mechanical properties are discussed for the various microstructures. The as cold-rolled tube exhibits nonlinear elastic behavior with large recoverable strain of 2.3%. After annealing and aging, a nonlinear elasticity, considered as the intermediate stage between "double yielding" and normal linear elasticity, is attributable to a moderate precipitation of α phase. Quantitive relationships are established between volume fraction of α phase (Vα) and elastic modulus, strength as well as maximal recoverable strain (εmax-R), where the εmax-R of above 2.0% corresponds to the Vα range of 3-10%. It is considered that the "mechanical" stabilization of the (α+β) microstructure is a possible elastic mechanism for explaining the nonlinear elastic behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.
The indentation of pressurized elastic shells: from polymeric capsules to yeast cells
Vella, D.
2011-08-10
Pressurized elastic capsules arise at scales ranging from the 10 m diameter pressure vessels used to store propane at oil refineries to the microscopic polymeric capsules that may be used in drug delivery. Nature also makes extensive use of pressurized elastic capsules: plant cells, bacteria and fungi have stiff walls, which are subject to an internal turgor pressure. Here, we present theoretical, numerical and experimental investigations of the indentation of a linearly elastic shell subject to a constant internal pressure. We show that, unlike unpressurized shells, the relationship between force and displacement demonstrates two linear regimes. We determine analytical expressions for the effective stiffness in each of these regimes in terms of the material properties of the shell and the pressure difference. As a consequence, a single indentation experiment over a range of displacements may be used as a simple assay to determine both the internal pressure and elastic properties of capsules. Our results are relevant for determining the internal pressure in bacterial, fungal or plant cells. As an illustration of this, we apply our results to recent measurements of the stiffness of baker\\'s yeast and infer from these experiments that the internal osmotic pressure of yeast cells may be regulated in response to changes in the osmotic pressure of the external medium.
Semidefinite linear complementarity problems
Eckhardt, U.
1978-04-01
Semidefinite linear complementarity problems arise by discretization of variational inequalities describing e.g. elastic contact problems, free boundary value problems etc. In the present paper linear complementarity problems are introduced and the theory as well as the numerical treatment of them are described. In the special case of semidefinite linear complementarity problems a numerical method is presented which combines the advantages of elimination and iteration methods without suffering from their drawbacks. This new method has very attractive properties since it has a high degree of invariance with respect to the representation of the set of all feasible solutions of a linear complementarity problem by linear inequalities. By means of some practical applications the properties of the new method are demonstrated. (orig.) [de
Forest biomass and Armington elasticities in Europe
Lundmark, Robert; Shahrammehr, Shima
2011-01-01
The purpose of this paper is to provide estimated Armington elasticities for selected European countries and for three forest biomass commodities of main interest in many energy models: roundwood, chips and particles and wood residues. The Armington elasticity is based on the assumption that a specific forest biomass commodity is differentiated by its origin. The statistically significant estimated Armington elasticities range from 0.52 for roundwood in Hungary to approximately 4.53 for roundwood in Estonia. On average, the statistically significant Armington elasticity for chips and particles over all countries is 1.7 and for wood residues and roundwood 1.3 and 1.5, respectively. These elasticities can provide benchmark values for simulation models trying to assess trade patterns of forest biomass commodities and energy policy effects for European countries or for the EU as a whole.
The elasticity of demand for gasoline in China
Lin, C.-Y. Cynthia; Zeng, Jieyin
2013-01-01
This paper estimates the price and income elasticities of demand for gasoline in China. Our estimates of the intermediate-run price elasticity of gasoline demand range between −0.497 and −0.196, and our estimates of the intermediate-run income elasticity of gasoline demand range between 1.01 and 1.05. We also extend previous studies to estimate the vehicle miles traveled (VMT) elasticity and obtain a range from −0.882 to −0.579. - highlights: • The price elasticity of demand for gasoline in China is between −0.497 and −0.196. • The income elasticity of demand for gasoline in China is between 1.01 and 1.05. • The price elasticity of demand for VMT in China is between −0.882 and −0.579
Efficient education policy: A second-order elasticity rule
Richter, Wolfram F.
2010-01-01
Assuming a two-period model with endogenous choices of labour, education, and saving, efficient education policy is characterized for a Ramsey-like scenario in which the government is constrained to use linear instruments. It is shown that education should be effectively subsidized if, and only if, the elasticity of the earnings function is increasing in education. The strength of second-best subsidization increases in the elasticity of the elasticity of the earnings function. This second-ord...
Tuey, R. C.
1972-01-01
Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.
Elastic Cube Actuator with Six Degrees of Freedom Output
Pengchuan Wang
2015-09-01
Full Text Available Unlike conventional rigid actuators, soft robotic technologies possess inherent compliance, so they can stretch and twist along every axis without the need for articulated joints. This compliance is exploited here using dielectric elastomer membranes to develop a novel six degrees of freedom (6-DOF polymer actuator that unifies ordinarily separate components into a simple cubic structure. This cube actuator design incorporates elastic dielectric elastomer membranes on four faces which are coupled by a cross-shaped end effector. The inherent elasticity of each membrane greatly reduces kinematic constraint and enables a 6-DOF actuation output to be produced via the end effector. An electro-mechanical model of the cube actuator is presented that captures the non-linear hyperelastic behaviour of the active membranes. It is demonstrated that the model accurately predicts actuator displacement and blocking moment for a range of input voltages. Experimental testing of a prototype 60 mm device demonstrates 6-DOF operation. The prototype produces maximum linear and rotational displacements of ±2.6 mm (±4.3% and ±4.8° respectively and a maximum blocking moment of ±76 mNm. The capacity for full 6-DOF actuation from a compact, readily scalable and easily fabricated polymeric package enables implementation in a range of mechatronics and robotics applications.
Shoepe, Todd C; Ramirez, David A; Almstedt, Hawley C
2010-01-01
Elastic bands added to traditional free-weight techniques have become a part of suggested training routines in recent years. Because of the variable loading patterns of elastic bands (i.e., greater stretch produces greater resistance), it is necessary to quantify the exact loading patterns of bands to identify the volume and intensity of training. The purpose of this study was to determine the length vs. tension properties of multiple sizes of a set of commonly used elastic bands to quantify the resistance that would be applied to free-weight plus elastic bench presses (BP) and squats (SQ). Five elastic bands of varying thickness were affixed to an overhead support beam. Dumbbells of varying weights were progressively added to the free end while the linear deformation was recorded with each subsequent weight increment. The resistance was plotted as a factor of linear deformation, and best-fit nonlinear logarithmic regression equations were then matched to the data. For both the BP and SQ loading conditions and all band thicknesses tested, R values were greater than 0.9623. These data suggest that differences in load exist as a result of the thickness of the elastic band, attachment technique, and type of exercise being performed. Facilities should adopt their own form of loading quantification to match their unique set of circumstances when acquiring, researching, and implementing elastic band and free-weight exercises into the training programs.
Paro, Alberto
2013-01-01
Written in an engaging, easy-to-follow style, the recipes will help you to extend the capabilities of ElasticSearch to manage your data effectively.If you are a developer who implements ElasticSearch in your web applications, manage data, or have decided to start using ElasticSearch, this book is ideal for you. This book assumes that you've got working knowledge of JSON and Java
Uniqueness in inverse elastic scattering with finitely many incident waves
Elschner, Johannes; Yamamoto, Masahiro
2009-01-01
We consider the third and fourth exterior boundary value problems of linear isotropic elasticity and present uniqueness results for the corresponding inverse scattering problems with polyhedral-type obstacles and a finite number of incident plane elastic waves. Our approach is based on a reflection principle for the Navier equation. (orig.)
Support minimized inversion of acoustic and elastic wave scattering
Safaeinili, A.
1994-01-01
This report discusses the following topics on support minimized inversion of acoustic and elastic wave scattering: Minimum support inversion; forward modelling of elastodynamic wave scattering; minimum support linearized acoustic inversion; support minimized nonlinear acoustic inversion without absolute phase; and support minimized nonlinear elastic inversion
Elastic properties of Cs2HgBr4 and Cs2CdBr4 crystals
Kityk, A.V.; Zadorozhna, A.V.; Shchur, Y.I.; Martynyuk-Lototska, Y.I.; Burak, Y.; Vlokh, O.G.
1998-01-01
Using ultrasonic velocity measurements, all components of the elastic constant matrix C ij , elastic compliances matrix S ij , and linear compressibility constants matrix K ij of orthorhombic Cs 2 HgBr 4 and Cs 2 CdBr 4 crystals have been determined over a wide temperature range, including the region of the phase transition from the normal to the incommensurate phase. Results obtained are considered within the framework of the phenomenological theory. Preliminary analysis of the acoustical properties at room temperature clearly indicates that both crystals are relatively important materials for acousto-optical applications. Copyright (1998) CSIRO Australia
Stamm, G; Eichbaum, G; Hagemann, G
1997-09-01
The following three screen-film combinations were compared: a) a combination of anticrossover film and UV-light emitting screens, b) a combination of blue-light emitting screens and film, and c) a conventional green fluorescing screen-film combination. Radiographs of a specially designed plexiglass phantom (0.2 x 0.2 x 0.12 m3) with bar patterns of lead and plaster and of air, respectively were obtained using the following parameters: 12 pulse generator, 0.6 mm focus size, 4.7 mm aluminum pre-filter, a grid with 40 lines/cm (12:1) and a focus-detector distance of 1.15 m. Image analysis was performed using an IBAS system and a Zeiss Kontron computer. Display conditions were the following: display distance 0.12 m, a vario film objective 35/70 (Zeiss), a video camera tube with a PbO photocathode, 625 lines (Siemens Heimann), an IBAS image matrix of 512 x 512 pixels with a resolution of 7 lines/mm, the projected matrix area was 5000 microns2. Grey scale ranges were measured on a line perpendicular to the grouped bar patterns. The difference between the maximum and minimum density value served as signal. The spatial resolution of the detector system was measured when the signal value was three times higher than the standard deviation of the means of multiple density measurements. The results showed considerable advantages of the two new screen-film combinations as compared to the conventional screen-film combination. The result was contradictory to the findings with pure visual assessment of thresholds (part I) that had found no differences. The authors concluded that (automatic) interactive image analysis algorithms serve as an objective measure and are specifically advantageous when small differences in image quality are to be evaluated.
Extremal Overall Elastic Response of Polycrystalline Materials
Bendsøe, Martin P; Lipton, Robert
1997-01-01
Polycrystalline materials comprised of grains obtained from a single anisotropic material are considered in the framework of linear elasticity. No assumptions on the symmetry of the polycrystal are made. We subject the material to independent external strain and stress fields with prescribed mean...
The theory of elastic waves and waveguides
Miklowitz, J
1984-01-01
The primary objective of this book is to give the reader a basic understanding of waves and their propagation in a linear elastic continuum. The studies of elastodynamic theory and its application to fundamental value problems should prepare the reader to tackle many physical problems of general interest in engineering and geophysics, and of particular interest in mechanics and seismology.
Response of orthotropic micropolar elastic medium due to time ...
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
namic response of anisotropic continuum has received the attention of ... linear theory of micropolar elasticity and bending of orthotropic micropolar ... medium due to time harmonic concentrated load, the continuum is divided into two half-.
Free vibration analysis of elastically supported Timoshenko columns ...
, concen- trated mass ... linear equations of motion for transverse vibrations of a simply supported beam carrying con- centrated ... a cantilever Timoshenko beam with a rigid tip mass. Ferreira .... Figure 3. Free body diagram of elastic support.
N. Wei
2015-12-01
Full Text Available In this work, the elastic and thermodynamic properties of Pt_{3}Al under high pressure are investigated using density functional theory within the generalized gradient approximation. The results of bulk modulus and elastic constants at zero pressure are in good agreement with the available theoretical and experimental values. Under high pressure, all the elastic constants meet the corresponding mechanical stability criteria, meaning that Pt_{3}Al possesses mechanical stability. In addition, the elastic constants and elastic modulus increase linearly with the applied pressure. According to the Poisson's ratio ν and elastic modulus ratio (B/G, Pt_{3}Al alloy is found to be ductile, and higher pressure can significantly enhance the ductility. Those indicate that the elastic properties of Pt_{3}Al will be improved under high pressure. Through the quasi-harmonic Debye model, we first successfully report the variations of the Debye temperature Θ_{D}, specific heats C_{P}, thermal expansion coefficient α, and Grüneisen parameter γ under pressure range from 0 to 100 GPa and temperature range from 0 to 1000 K.
Paro, Alberto
2015-01-01
If you are a developer who implements ElasticSearch in your web applications and want to sharpen your understanding of the core elements and applications, this is the book for you. It is assumed that you've got working knowledge of JSON and, if you want to extend ElasticSearch, of Java and related technologies.
Continuum mechanics elasticity, plasticity, viscoelasticity
Dill, Ellis H
2006-01-01
FUNDAMENTALS OF CONTINUUM MECHANICSMaterial ModelsClassical Space-TimeMaterial BodiesStrainRate of StrainCurvilinear Coordinate SystemsConservation of MassBalance of MomentumBalance of EnergyConstitutive EquationsThermodynamic DissipationObjectivity: Invariance for Rigid MotionsColeman-Mizel ModelFluid MechanicsProblems for Chapter 1BibliographyNONLINEAR ELASTICITYThermoelasticityMaterial SymmetriesIsotropic MaterialsIncompressible MaterialsConjugate Measures of Stress and StrainSome Symmetry GroupsRate Formulations for Elastic MaterialsEnergy PrinciplesGeometry of Small DeformationsLinear ElasticitySpecial Constitutive Models for Isotropic MaterialsMechanical Restrictions on the Constitutive RelationsProblems for Chapter 2BibliographyLINEAR ELASTICITYBasic EquationsPlane StrainPlane StressProperties of SolutionsPotential EnergySpecial Matrix NotationThe Finite Element Method of SolutionGeneral Equations for an Assembly of ElementsFinite Element Analysis for Large DeformationsProblems for Chapter 3Bibliograph...
Nonlinear dynamics between linear and impact limits
Pilipchuk, Valery N; Wriggers, Peter
2010-01-01
This book examines nonlinear dynamic analyses based on the existence of strongly nonlinear but simple counterparts to the linear models and tools. Discusses possible application to periodic elastic structures with non-smooth or discontinuous characteristics.
Finite Thin Cover on an Orthotropic Elastic Half Plane
Federico Oyedeji Falope
2016-01-01
Full Text Available The present work deals with the mechanical behaviour of thin films bonded to a homogeneous elastic orthotropic half plane under plain strain condition and infinitesimal strain. Both the film and semi-infinite substrate display linear elastic orthotropic behaviour. By assuming perfect adhesion between film and half plane together with membrane behaviour of the film, the compatibility condition between the coating and substrate leads to a singular integral equation with Cauchy kernel. Such an equation is straightforwardly solved by expanding the unknown interfacial stress in series of Chebyshev polynomials displaying square-root singularity at the film edges. This approach allows handling the singular behaviour of the shear stress and, in turn, reducing the problem to a linear algebraic system of infinite terms. Results are found for two loading cases, with particular reference to concentrated axial forces acting at the edges of the film. The corresponding mode II stress intensity factor has been assessed, thus providing the stress concentrations at both ends of the covering. Possible applications of the results here obtained range from MEMS, NEMS, and solar Silicon cell for energy harvesting to welded joint and building foundation.
Remarks on orthotropic elastic models applied to wood
Nilson Tadeu Mascia
2006-09-01
Full Text Available Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal, R( radial and T(tangential are coincident with the Cartesian axes (x, y, z, is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young´s modulus and shear modulus, with fiber orientation are presented.
The elastic response of composite materials
Laws, N.
1980-01-01
The theory of linear elasticity is used to study the elastic response of composite materials. The main concern is the prediction of overall moduli. Some attention is paid to the problem of deciding upon when the idea of an overall modulus is meaningful. In addition it is shown how to calculate some rigorous bounds on the overall moduli, and some predictions of the self-consistent method are discussed. The paper mainly concentrates on isotropic dispersions of spheres, unidirectional fibre-reinforced materials and laminates. (author)
Two Propositions on the Application of Point Elasticities to Finite Price Changes.
Daskin, Alan J.
1992-01-01
Considers counterintuitive propositions about using point elasticities to estimate quantity changes in response to price changes. Suggests that elasticity increases with price along a linear demand curve, but falling quantity demand offsets it. Argues that point elasticity with finite percentage change in price only approximates percentage change…
Elastic-plastic fracture mechanics of compact bone
Yan, Jiahau
Bone is a composite composed mainly of organics, minerals and water. Most studies on the fracture toughness of bone have been conducted at room temperature. Considering that the body temperature of animals is higher than room temperature, and that bone has a high volumetric percentage of organics (generally, 35--50%), the effect of temperature on fracture toughness of bone should be studied. Single-edged V-shaped notched (SEVN) specimens were prepared to measure the fracture toughness of bovine femur and manatee rib in water at 0, 10, 23, 37 and 50°C. The fracture toughness of bovine femur and manatee rib were found to decrease from 7.0 to 4.3 MPa·m1/2 and from 5.5 to 4.1 MPa·m1/2, respectively, over a temperature range of 50°C. The decreases were attributed to inability of the organics to sustain greater stresses at higher temperatures. We studied the effects of water and organics on fracture toughness of bone using water-free and organics-free SEVN specimens at 23°C. Water-free and organics-free specimens were obtained by placing fresh bone specimen in a furnace at different temperatures. Water and organics significantly affected the fracture toughness of bone. Fracture toughness of the water-free specimens was 44.7% (bovine femur) and 32.4% (manatee rib) less than that of fresh-bone specimens. Fracture toughness of the organics-free specimens was 92.7% (bovine femur) and 91.5% (manatee rib) less than that of fresh bone specimens. Linear Elastic Fracture Mechanics (LEFM) is widely used to study bone. However, bone often has small to moderate scale yielding during testing. We used J integral, an elastic-plastic fracture-mechanics parameter, to study the fracture process of bone. The J integral of bovine femur increased from 6.3 KJ/mm2 at 23°C to 6.7 KJ/mm2 at 37°C. Although the fracture toughness of bovine bone decreases as the temperature increases, the J integral results show a contrary trend. The energy spent in advancing the crack beyond the linear-elastic
Statistical mechanics of elasticity
Weiner, JH
2012-01-01
Advanced, self-contained treatment illustrates general principles and elastic behavior of solids. Topics include thermoelastic behavior of crystalline and polymeric solids, interatomic force laws, behavior of solids, and thermally activated processes. 1983 edition.
Elasticity of energy consumption
Stam, M.
2004-01-01
Insight is given into the price elasticities of several energy carriers. Next, attention is paid to the impact of the discussion on changes of the Regulating Energy Levy (REB, abbreviated in Dutch) in the Netherlands [nl
Kuc, Rafal
2013-01-01
A practical tutorial that covers the difficult design, implementation, and management of search solutions.Mastering ElasticSearch is aimed at to intermediate users who want to extend their knowledge about ElasticSearch. The topics that are described in the book are detailed, but we assume that you already know the basics, like the query DSL or data indexing. Advanced users will also find this book useful, as the examples are getting deep into the internals where it is needed.
Variational linear algebraic equations method
Moiseiwitsch, B.L.
1982-01-01
A modification of the linear algebraic equations method is described which ensures a variational bound on the phaseshifts for potentials having a definite sign at all points. The method is illustrated by the elastic scattering of s-wave electrons by the static field of atomic hydrogen. (author)
Shilov, Georgi E
1977-01-01
Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.
Modeling Pseudo-elastic Behavior of Springback
Xia, Z. Cedric
2005-01-01
One of the principal foundations of mathematical theory of conventional plasticity for rate-independent metals is that there exists a well-defined yield surface in stress space for any material point under deformation. A material point can undergo further plastic deformation if the applied stresses are beyond current yield surface which is generally referred as 'plastic loading'. On the other hand, if the applied stress state falls within or on the yield surface, the metal will deform elastically only and is said to be undergoing 'elastic unloading'. Although it has been always recognized throughout the history of development of plasticity theory that there is indeed inelastic deformation accompanying elastic unloading, which leads to metal's hysteresis behavior, its effects were thought to be negligible and were largely ignored in the mathematical treatment.Recently there have been renewed interests in the study of unloading behavior of sheet metals upon large plastic deformation and its implications on springback prediction. Springback is essentially an elastic recovery process of a formed sheet metal blank when it is released from the forming dies. Its magnitude depends on the stress states and compliances of the deformed sheet metal if no further plastic loading occurs during the relaxation process. Therefore the accurate determination of material compliances during springback and its effective incorporation into simulation software are important aspects for springback calculation. Some of the studies suggest that the unloading curve might deviate from linearity, and suggestions were made that a reduced elastic modulus be used for springback simulation.The aim of this study is NOT to take a position on the debate of whether elastic moduli are changed during sheet metal forming process. Instead we propose an approach of modeling observed psuedoelastic behavior within the context of mathematical theory of plasticity, where elastic moduli are treated to be
Modeling elastic anisotropy in strained heteroepitaxy.
Dixit, Gopal Krishna; Ranganathan, Madhav
2017-09-20
Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the [Formula: see text] [Formula: see text] on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to [Formula: see text] facets on the surface.
Modeling elastic anisotropy in strained heteroepitaxy
Krishna Dixit, Gopal; Ranganathan, Madhav
2017-09-01
Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the Ge0.25 Si0.75 on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to facets on the surface.
Stress effects on the elastic properties of amorphous polymeric materials
Caponi, S., E-mail: silvia.caponi@cnr.it, E-mail: silvia.corezzi@unipg.it [Istituto Officina dei Materiali del CNR (CNR-IOM) - Unità di Perugia, c/o Dipartimento di Fisica e Geologia, Perugia I-06100 (Italy); Corezzi, S., E-mail: silvia.caponi@cnr.it, E-mail: silvia.corezzi@unipg.it [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia (Italy); CNR-ISC (Istituto dei Sistemi Complessi), c/o Università di Roma “LaSapienza,” Piazzale A. Moro 2, I-00185 Roma (Italy); Mattarelli, M. [NiPS Laboratory, Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia (Italy); Fioretto, D. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia (Italy)
2014-12-07
Brillouin light scattering measurements have been used to study the stress induced modification in the elastic properties of two glass forming polymers: polybutadiene and epoxy-amine resin, prototypes of linear and network polymers, respectively. Following the usual thermodynamic path to the glass transition, polybutadiene has been studied as a function of temperature from the liquid well into the glassy phase. In the epoxy resin, the experiments took advantage of the system ability to reach the glass both via the chemical vitrification route, i.e., by increasing the number of covalent bonds among the constituent molecules, as well as via the physical thermal route, i.e., by decreasing the temperature. Independently from the particular way chosen to reach the glassy phase, the measurements reveal the signature of long range tensile stresses development in the glass. The stress presence modifies both the value of the sound velocities and their mutual relationship, so as to break the generalized Cauchy-like relation. In particular, when long range stresses, by improvise sample cracking, are released, the frequency of longitudinal acoustic modes increases more than 10% in polybutadiene and ∼4% in the epoxy resin. The data analysis suggests the presence of at least two different mechanisms acting on different length scales which strongly affect the overall elastic behaviour of the systems: (i) the development of tensile stress acting as a negative pressure and (ii) the development of anisotropy which increases its importance deeper and deeper in the glassy state.
Graff, Karl F
1991-01-01
This highly useful textbook presents comprehensive intermediate-level coverage of nearly all major topics of elastic wave propagation in solids. The subjects range from the elementary theory of waves and vibrations in strings to the three-dimensional theory of waves in thick plates. The book is designed not only for a wide audience of engineering students, but also as a general reference for workers in vibrations and acoustics. Chapters 1-4 cover wave motion in the simple structural shapes, namely strings, longitudinal rod motion, beams and membranes, plates and (cylindrical) shells. Chapter
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Vascular elastic photoacoustic tomography in humans
Hai, Pengfei; Zhou, Yong; Liang, Jinyang; Li, Chiye; Wang, Lihong V.
2016-03-01
Quantification of vascular elasticity can help detect thrombosis and prevent life-threatening conditions such as acute myocardial infarction or stroke. Here, we propose vascular elastic photoacoustic tomography (VE-PAT) to measure vascular elasticity in humans. VE-PAT was developed by incorporating a linear-array-based photoacoustic computed tomography system with a customized compression stage. By measuring the deformation of blood vessels under uniaxial loading, VE-PAT was able to quantify the vascular compliance. We first demonstrated the feasibility of VE-PAT in blood vessel phantoms. In large vessel phantoms, VE-PAT detected a decrease in vascular compliance due to simulated thrombosis, which was validated by a standard compression test. In small blood vessel phantoms embedded 3 mm deep in gelatin, VE-PAT detected elasticity changes at depths that are difficult to image using other elasticity imaging techniques. We then applied VE-PAT to assess vascular compliance in a human subject and detected a decrease in vascular compliance when an occlusion occurred downstream from the measurement point, demonstrating the potential of VE-PAT in clinical applications such as detection of deep venous thrombosis.
Probing hysteretic elasticity in weakly nonlinear materials
Johnson, Paul A [Los Alamos National Laboratory; Haupert, Sylvain [UPMC UNIV PARIS; Renaud, Guillaume [UPMC UNIV PARIS; Riviere, Jacques [UPMC UNIV PARIS; Talmant, Maryline [UPMC UNIV PARIS; Laugier, Pascal [UPMC UNIV PARIS
2010-12-07
Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.
Income Elasticity Literature Review | Science Inventory | US ...
Following advice from the SAB Council, when estimating the economic value of reductions in air pollution-related mortality and morbidity risk, EPA accounts for the effect of personal income on the willingness to pay to reduce the risk of adverse health outcomes. These income growth adjustment factors are calculated using a combination of income elasticity estimates and income growth projections, both of which have remained essentially unchanged since 1999. These income elasticity estimates vary according to the severity of illness. EPA recently received advice from the SAB regarding the range of income elasticities to apply as well as the research standards to use when selecting income elasticity estimates. Following this advice, EPA consulted with a contractor to update its income elasticity and income growth projections, and generate new income growth adjustment factors. The SAB would evaluate the income elasticity estimates identified in the EPA-provided literature review, determining the extent to which these estimates are appropriate to use in human health benefits assessments.
Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes
Goriely, A.; Tabor, M.
2013-01-01
Cylindrical tubes and membranes are universal structural elements found in biology and engineering over a wide range of scales.Working in the framework of nonlinear elasticity, we consider the possible deformations of elastic cylindrical shells
Elastic anisotropy of crystals
Christopher M. Kube
2016-09-01
Full Text Available An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.
Das, Y.C.; Kedia, K.K.
1977-01-01
No realistic analytical work in the area of Shells on Elastic Foundations has been reported in the literature. Various foundation models have been proposed by several authors. These models involve one or more than one parameters to characterise the foundation medium. Some of these models cannot be used to derive the basic equations governing the behaviour of shells on elastic foundations. In the present work, starting from an elastic continuum hypothesis, a mathematical model for foundation has been derived in curvilinear orthogonal coordinates by the help of principle of virtual displacements, treating one of the virtual displacements as known to satisfy certain given conditions at its edge surfaces. In this model, several foundation parameters can be considered and it can also be used for layered medium of both finite and infinite thickness. (Auth.)
Elastic and hydrodynamic torques on a colloidal disk within a nematic liquid crystal.
Rovner, Joel B; Borgnia, Dan S; Reich, Daniel H; Leheny, Robert L
2012-10-01
The orientationally dependent elastic energy and hydrodynamic behavior of colloidal disks with homeotropic surface anchoring suspended in the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) have been investigated. In the absence of external torques, the disks align with the normal of the disk face â parallel to the nematic director n[over ^]. When a magnetic field is applied, the disks rotate â by an angle θ so that the magnetic torque and the elastic torque caused by distortion of the nematic director field are balanced. Over a broad range of angles, the elastic torque increases linearly with θ in quantitative agreement with a theoretical prediction based on an electrostatic analogy. When the disks are rotated to angles θ>π/2, the resulting large elastic distortion makes the disk orientation unstable, and the director undergoes a topological transition in which θ→π-θ. In the transition, a defect loop is shed from the disk surface, and the disks spin so that â sweeps through π radians as the loop collapses back onto the disk. Additional measurements of the angular relaxation of disks to θ=0 following removal of the external torque show a quasi-exponential time dependence from which an effective drag viscosity for the nematic can be extracted. The scaling of the angular time dependence with disk radius and observations of disks rotating about â indicate that the disk motion affects the director field at surprisingly modest Ericksen numbers.
Hwu, Chyanbin
2010-01-01
As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a
Lai, Yun
2011-06-26
Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.
Lai, Yun; Wu, Ying; Sheng, Ping; Zhang, Zhaoqing
2011-01-01
Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.
Sergio Cesare Masin
2010-01-01
Full Text Available Participants estimated the imagined elongation of a spring while they were imagining that a load was stretching the spring. This elongation turned out to be a multiplicative function of spring length and load weight-a cognitive law analogous to Hooke¿s law of elasticity. Participants also estimated the total imagined elongation of springs joined either in series or in parallel. This total elongation was longer for serial than for parallel springs, and increased proportionally to the number of serial springs and inversely proportionally to the number of parallel springs. The results suggest that participants integrated load weight with imagined elasticity rather than with spring length.
Rogozinski, Marek
2014-01-01
This book is a detailed, practical, hands-on guide packed with real-life scenarios and examples which will show you how to implement an ElasticSearch search engine on your own websites.If you are a web developer or a user who wants to learn more about ElasticSearch, then this is the book for you. You do not need to know anything about ElastiSeach, Java, or Apache Lucene in order to use this book, though basic knowledge about databases and queries is required.
Temperature effect on elastic properties of yttrium ferrite garnet Y3Fe5O12
Burenkov, Yu.A.; Nikanorov, S.P.
2002-01-01
One studied temperature dependence of all independent elastic constants describing comprehensively elastic anisotropy of yttrium ferrite garnet within temperature wide range covering T c . One measured the Young modules for [100] and [110] crystallographic directions and the module of shift for [100] direction of specially pure single crystal of yttrium ferrite garnet within 20-600 deg C temperature range. One analyzed behavior of elastic modules and of elastic anisotropy factor near the critical temperature of magnetic phase transition [ru
Elastic representation surfaces of unidirectional graphite/epoxy composites
Kriz, R.D.; Ledbetter, H.M.
1985-01-01
Unidirectional graphite/epoxy composites exhibit high elastic anisotropy and unusual geometrical features in their elastic-property polar diagrams. From the five-component transverse-isotropic elastic-stiffness tensor we compute and display representation surfaces for Young's modulus, torsional modulus, linear compressibility, and Poisson's ratios. Based on Christoffel-equation solutions, we describe some unusual elastic-wave-surface topological features. Musgrave considered in detail the differences between phase-velocity and group-velocity surfaces arising from high elastic anisotropy. For these composites, we find effects similar to, but more dramatic than, Musgrave's. Some new, unexpected results for graphite/epoxy include: a shear-wave velocity that exceeds a longitudinal velocity in the plane transverse to the fiber; a wave that changes polarization character from longitudinal to transverse as the propagation direction sweeps from the fiber axis to the perpendicular axis
Filtering of elastic waves by opal-based hypersonic crystal.
Salasyuk, Alexey S; Scherbakov, Alexey V; Yakovlev, Dmitri R; Akimov, Andrey V; Kaplyanskii, Alexander A; Kaplan, Saveliy F; Grudinkin, Sergey A; Nashchekin, Alexey V; Pevtsov, Alexander B; Golubev, Valery G; Berstermann, Thorsten; Brüggemann, Christian; Bombeck, Michael; Bayer, Manfred
2010-04-14
We report experiments in which high quality silica opal films are used as three-dimensional hypersonic crystals in the 10 GHz range. Controlled sintering of these structures leads to well-defined elastic bonding between the submicrometer-sized silica spheres, due to which a band structure for elastic waves is formed. The sonic crystal properties are studied by injection of a broadband elastic wave packet with a femtosecond laser. Depending on the elastic bonding strength, the band structure separates long-living surface acoustic waves with frequencies in the complete band gap from bulk waves with band frequencies that propagate into the crystal leading to a fast decay.
Markovic, B.; Tamborini, D.; Villa, F.; Tisa, S.; Tosi, A.; Zappa, F. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2012-07-15
We present a compact high performance time-to-digital converter (TDC) module that provides 10 ps timing resolution, 160 ns dynamic range and a differential non-linearity better than 1.5% LSB{sub rms}. The TDC can be operated either as a general-purpose time-interval measurement device, when receiving external START and STOP pulses, or in photon-timing mode, when employing the on-chip SPAD (single photon avalanche diode) detector for detecting photons and time-tagging them. The instrument precision is 15 ps{sub rms} (i.e., 36 ps{sub FWHM}) and in photon timing mode it is still better than 70 ps{sub FWHM}. The USB link to the remote PC allows the easy setting of measurement parameters, the fast download of acquired data, and their visualization and storing via an user-friendly software interface. The module proves to be the best candidate for a wide variety of applications such as: fluorescence lifetime imaging, time-of-flight ranging measurements, time-resolved positron emission tomography, single-molecule spectroscopy, fluorescence correlation spectroscopy, diffuse optical tomography, optical time-domain reflectometry, quantum optics, etc.
Elastic modulus and fracture of boron carbide
Hollenberg, G.W.; Walther, G.
1978-12-01
The elastic modulus of hot-pressed boron carbide with 1 to 15% porosity was measured at room temperature. K/sub IC/ values were determined for the same porosity range at 500 0 C by the double torsion technique. The critical stress intensity factor of boron carbide with 8% porosity was evaluated from 25 to 1200 0 C
Negative stiffness honeycombs as tunable elastic metamaterials
Goldsberry, Benjamin M.; Haberman, Michael R.
2018-03-01
Acoustic and elastic metamaterials are media with a subwavelength structure that behave as effective materials displaying atypical effective dynamic properties. These material systems are of interest because the design of their sub-wavelength structure allows for direct control of macroscopic wave dispersion. One major design limitation of most metamaterial structures is that the dynamic response cannot be altered once the microstructure is manufactured. However, the ability to modify wave propagation in the metamaterial with an external stimulus is highly desirable for numerous applications and therefore remains a significant challenge in elastic metamaterials research. In this work, a honeycomb structure composed of a doubly periodic array of curved beams, known as a negative stiffness honeycomb (NSH), is analyzed as a tunable elastic metamaterial. The nonlinear static elastic response that results from large deformations of the NSH unit cell leads to a large variation in linear elastic wave dispersion associated with infinitesimal motion superposed on the externally imposed pre-strain. A finite element model is utilized to model the static deformation and subsequent linear wave motion at the pre-strained state. Analysis of the slowness surface and group velocity demonstrates that the NSH exhibits significant tunability and a high degree of anisotropy which can be used to guide wave energy depending on static pre-strain levels. In addition, it is shown that partial band gaps exist where only longitudinal waves propagate. The NSH therefore behaves as a meta-fluid, or pentamode metamaterial, which may be of use for applications of transformation elastodynamics such as cloaking and gradient index lens devices.
Pretko, Michael; Radzihovsky, Leo
2018-05-01
Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.
Cocco, Alberto; Masin, Sergio Cesare
2010-01-01
Participants estimated the imagined elongation of a spring while they were imagining that a load was stretching the spring. This elongation turned out to be a multiplicative function of spring length and load weight--a cognitive law analogous to Hooke's law of elasticity. Participants also estimated the total imagined elongation of springs joined…
Autonomic Vertical Elasticity of Docker Containers with ElasticDocker
Al-Dhuraibi , Yahya; Paraiso , Fawaz; Djarallah , Nabil; Merle , Philippe
2017-01-01
International audience; Elasticity is the key feature of cloud computing to scale computing resources according to application workloads timely. In the literature as well as in industrial products, much attention was given to the elasticity of virtual machines, but much less to the elasticity of containers. However, containers are the new trend for packaging and deploying microservices-based applications. Moreover, most of approaches focus on horizontal elasticity, fewer works address vertica...
Elastic properties of gamma-Pu by resonant ultrasound spectroscopy
Migliori, Albert [Los Alamos National Laboratory; Betts, J [Los Alamos National Laboratory; Trugman, A [Los Alamos National Laboratory; Mielke, C H [Los Alamos National Laboratory; Mitchell, J N [Los Alamos National Laboratory; Ramos, M [Los Alamos National Laboratory; Stroe, I [WORXESTER, MA
2009-01-01
Despite intense experimental and theoretical work on Pu, there is still little understanding of the strange properties of this metal. We used resonant ultrasound spectroscopy method to investigate the elastic properties of pure polycrystalline Pu at high temperatures. Shear and longitudinal elastic moduli of the {gamma}-phase of Pu were determined simultaneously and the bulk modulus was computed from them. A smooth linear and large decrease of all elastic moduli with increasing temperature was observed. We calculated the Poisson ratio and found that it increases from 0.242 at 519K to 0.252 at 571K.
A Reevaluation of Price Elasticities for Irrigation Water
Howitt, Richard E.; Watson, William D.; Adams, Richard M.
1980-08-01
The effectiveness of pricing systems in the allocation of irrigation water is linked with the price elasticity of demand of farmers for water. Using microeconomic theory, it is shown that omission of the elasticity of demand for the crop produced leads to an inelastic bias in the demand for irrigated water. Linear programing approaches omit the product elasticity of demand and are consequently biased, whereas quadratic programing approaches to estimating derived demands for irrigation water include product demand functions. The difference between the resulting estimates are empirically demonstrated for regional derived demand functions estimated from a model of California's agricultural industry.
Elastic Property Simulation of Nano-particle Reinforced Composites
He Jiawei
2016-01-01
Full Text Available A series of numerical micro-mechanical models for two kinds of particle (cylindrical and discal particle reinforced composites are developed to investigate the effect of microstructural parameters on the elastic properties of composites. The effects of both the degree of particle clustering and particle’s shape on the elastic mechanical properties of composites are investigated. In addition, single particle unit cell approximation is good enough for the analysis of the effect of averaged parameters when only linear elastic response is considered without considering the particle clustering in particle-reinforced composites.
Bernauer, Jan C
2010-09-24
analysis of the previous world data shows up in a modi ed form. When compared to the standard-dipole form factor as a smooth curve, the extracted GE exhibits a strong change of the slope around 0.1 (GeV/c){sup 2}, and in the magnetic form factor a dip around 0.2 (GeV/c){sup 2} is found. This may be taken as indications for a pion cloud. For higher Q{sup 2}, the fits yield larger values for G{sub M} than previous measurements, in agreement with form factor ratios from recent precise polarized measurements in the Q{sup 2} region up to 0.6 (GeV/c){sup 2}. The charge and magnetic rms radii are determined as left angle r{sub e} right angle =0.879{+-} 0.005{sub stat.} {+-} 0.004{sub syst.} {+-} 0.002{sub model} {+-} 0.004{sub group} fm; left angle r{sub m} right angle =0.777 {+-} 0.013{sub stat.} {+-} 0.009{sub syst.} {+-} 0.005{sub model} {+-} 0.002{sub group} fm. This charge radius is significantly larger than theoretical predictions and than the radius of the standard dipole. However, it is in agreement with earlier results measured at the Mainz linear accelerator and with determinations from Hydrogen Lamb shift measurements. The extracted magnetic radius is smaller than previous determinations and than the standard-dipole value. (orig.)
Bernauer, Jan C.
2010-01-01
shows up in a modi ed form. When compared to the standard-dipole form factor as a smooth curve, the extracted GE exhibits a strong change of the slope around 0.1 (GeV/c) 2 , and in the magnetic form factor a dip around 0.2 (GeV/c) 2 is found. This may be taken as indications for a pion cloud. For higher Q 2 , the fits yield larger values for G M than previous measurements, in agreement with form factor ratios from recent precise polarized measurements in the Q 2 region up to 0.6 (GeV/c) 2 . The charge and magnetic rms radii are determined as left angle r e right angle =0.879± 0.005 stat. ± 0.004 syst. ± 0.002 model ± 0.004 group fm; left angle r m right angle =0.777 ± 0.013 stat. ± 0.009 syst. ± 0.005 model ± 0.002 group fm. This charge radius is significantly larger than theoretical predictions and than the radius of the standard dipole. However, it is in agreement with earlier results measured at the Mainz linear accelerator and with determinations from Hydrogen Lamb shift measurements. The extracted magnetic radius is smaller than previous determinations and than the standard-dipole value. (orig.)
Bernauer, Jan C.
2010-09-24
analysis of the previous world data shows up in a modi ed form. When compared to the standard-dipole form factor as a smooth curve, the extracted GE exhibits a strong change of the slope around 0.1 (GeV/c){sup 2}, and in the magnetic form factor a dip around 0.2 (GeV/c){sup 2} is found. This may be taken as indications for a pion cloud. For higher Q{sup 2}, the fits yield larger values for G{sub M} than previous measurements, in agreement with form factor ratios from recent precise polarized measurements in the Q{sup 2} region up to 0.6 (GeV/c){sup 2}. The charge and magnetic rms radii are determined as left angle r{sub e} right angle =0.879{+-} 0.005{sub stat.} {+-} 0.004{sub syst.} {+-} 0.002{sub model} {+-} 0.004{sub group} fm; left angle r{sub m} right angle =0.777 {+-} 0.013{sub stat.} {+-} 0.009{sub syst.} {+-} 0.005{sub model} {+-} 0.002{sub group} fm. This charge radius is significantly larger than theoretical predictions and than the radius of the standard dipole. However, it is in agreement with earlier results measured at the Mainz linear accelerator and with determinations from Hydrogen Lamb shift measurements. The extracted magnetic radius is smaller than previous determinations and than the standard-dipole value. (orig.)
On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi
Qiu, S.; Clausen, B.; Padula, S.A.; Noebe, R.D.; Vaidyanathan, R.
2011-01-01
A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.
On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi
Qiu, S. [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States); Clausen, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Padula, S.A.; Noebe, R.D. [NASA Glenn Research Center, Cleveland, OH 44135 (United States); Vaidyanathan, R., E-mail: raj@mail.ucf.edu [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States)
2011-08-15
A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.
Suwono.
1978-01-01
A linear gate providing a variable gate duration from 0,40μsec to 4μsec was developed. The electronic circuity consists of a linear circuit and an enable circuit. The input signal can be either unipolar or bipolar. If the input signal is bipolar, the negative portion will be filtered. The operation of the linear gate is controlled by the application of a positive enable pulse. (author)
Vretenar, M
2014-01-01
The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics
Designing interactively with elastic splines
Brander, David; Bærentzen, Jakob Andreas; Fisker, Ann-Sofie
2018-01-01
We present an algorithm for designing interactively with C1 elastic splines. The idea is to design the elastic spline using a C1 cubic polynomial spline where each polynomial segment is so close to satisfying the Euler-Lagrange equation for elastic curves that the visual difference becomes neglig...... negligible. Using a database of cubic Bézier curves we are able to interactively modify the cubic spline such that it remains visually close to an elastic spline....
Pneumatic Variable Series Elastic Actuator.
Zheng, Hao; Wu, Molei; Shen, Xiangrong
2016-08-01
Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.
Approximation by planar elastic curves
Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge
2016-01-01
We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....
Linearization Method and Linear Complexity
Tanaka, Hidema
We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N(≅2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.
Zhang, Xiao-Long; Ma, Yong-Tao; Zhai, Yu; Li, Hui
2018-03-01
A first effective six-dimensional ab initio potential energy surface (PES) for CH3F-H2 which explicitly includes the intramolecular Q3 stretching normal mode of the CH3F monomer is presented. The electronic structure computations have been carried out at the explicitly correlated coupled cluster level of theory [CCSD(T)-F12a] with an augmented correlation-consistent triple zeta basis set. Five-dimensional analytical intermolecular PESs for ν3(CH3F) = 0 and 1 are then obtained by fitting the vibrationally averaged potentials to the Morse/Long-Range (MLR) potential function form. The MLR function form is applied to the nonlinear molecule-linear molecule case for the first time. These fits to 25 015 points have root-mean-square deviations of 0.74 cm-1 and 0.082 cm-1 for interaction energies less than 0.0 cm-1. Using the adiabatic hindered-rotor approximation, three-dimensional PESs for CH3F-paraH2 are generated from the 5D PESs over all possible orientations of the hydrogen monomer. The infrared and microwave spectra for CH3F-paraH2 dimer are predicted for the first time. These analytic PESs can be used for modeling the dynamical behavior in CH3F-(H2)N clusters, including the possible appearance of microscopic superfluidity.
Reshak, Ali H.; Jamal, Morteza
2012-01-01
Highlights: ► A new package for calculating elastic constants of orthorhombic structure is released. ► The package called ortho-elastic. ► It is compatible with [FP-(L)APW+lo] method implemented in WIEN2k code. ► Several orthorhombic structure compounds were used to test the new package. ► Elastic constants calculated using this package show good agreement with experiment. - Abstract: A new package for calculating the elastic constants of orthorhombic structure is released. The package called ortho-elastic. The formalism of calculating the ortho-elastic constants is described in details. The package is compatible with the highly accurate all-electron full-potential (linearized) augmented plane-wave plus local orbital [FP-(L)APW+lo] method implemented in WIEN2k code. Several orthorhombic structure compounds were used to test the new package. We found that the calculated elastic constants using the new package show better agreement with the available experimental data than the previous theoretical results used different methods. In this package the second-order derivative E ″ (ε) of polynomial fit E=E(ε) of energy vs strains at zero strain (ε=0), used to calculate the orthorhombic elastic constants.
Elasticity in Elastics-An in-vitro study.
Kamisetty, Supradeep Kumar; Nimagadda, Chakrapani; Begam, Madhoom Ponnachi; Nalamotu, Raghuveer; Srivastav, Trilok; Gs, Shwetha
2014-04-01
Orthodontic tooth movement results from application of forces to teeth. Elastics in orthodontics have been used both intra-orally and extra- orally to a great effect. Their use, combined with good patient co-operation provides the clinician with the ability to correct both anteroposterior and vertical discrepancies. Force decay over a period of time is a major problem in the clinical usage of latex elastics and synthetic elastomers. This loss of force makes it difficult for the clinician to determine the actual force transmitted to the dentition. It's the intent of the clinician to maintain optimal force values over desired period of time. The majority of the orthodontic elastics on the market are latex elastics. Since the early 1990s, synthetic products have been offered in the market for latex-sensitive patients and are sold as nonlatex elastics. There is limited information on the risk that latex elastics may pose to patients. Some have estimated that 0.12-6% of the general population and 6.2% of dental professionals have hypersensitivity to latex protein. There are some reported cases of adverse reactions to latex in the orthodontic population but these are very limited to date. Although the risk is not yet clear, it would still be inadvisable to prescribe latex elastics to a patient with a known latex allergy. To compare the in-vitro performance of latex and non latex elastics. Samples of 0.25 inch, latex and non latex elastics (light, medium, heavy elastics) were obtained from three manufacturers (Forestadent, GAC, Glenroe) and a sample size of ten elastics per group was tested. The properties tested included cross sectional area, internal diameter, initial force generated by the elastics, breaking force and the force relaxation for the different types of elastics. Force relaxation testing involved stretching the elastics to three times marketed internal diameter (19.05 mm) and measuring force level at intervals over a period of 48 hours. The data were
Said-Houari, Belkacem
2017-01-01
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...
Sargsyan, V.V.; Adamian, G.G.; Antonenko, N.V.; Gomes, P.R.S.
2014-01-01
We suggest simple and useful methods to extract reaction and capture (fusion) cross sections from the experimental elastic and quasi-elastic backscattering data.The direct measurement of the reaction or capture (fusion) cross section is a difficult task since it would require the measurement of individual cross sections of many reaction channels, and most of them could be reached only by specific experiments. This would require different experimental setups not always available at the same laboratory and, consequently, such direct measurements would demand a large amount of beam time and would take probably some years to be reached. Because of that, the measurements of elastic scattering angular distributions that cover full angular ranges and optical model analysis have been used for the determination of reaction cross sections. This traditional method consists in deriving the parameters of the complex optical potentials which fit the experimental elastic scattering angular distributions and then of deriving the reaction cross sections predicted by these potentials. Even so, both the experimental part and the analysis of this latter method are not so simple. In the present work we present a much simpler method to determine reaction and capture (fusion) cross sections. It consists of measuring only elastic or quasi-elastic scattering at one backward angle, and from that, the extraction of the reaction or capture cross sections can easily be performed. (author)
Modeling of rail track substructure linear elastic coupling
2015-09-30
Most analyses of rail dynamics neglect contribution of the soil, or treat it in a very simple manner such as using spring elements. This can cause accuracy issues in examining dynamics for passenger comfort, derailment, substructure analysis, or othe...
Aprile, E; Cantale, G; Degli-Agosti, S; Hausammann, R; Heer, E; Hess, R; Lechanoine-LeLuc, C; Leo, W; Morenzoni, S; Onel, Y [Geneva Univ. (Switzerland). Dept. de Physique Nucleaire et Corpusculaire
1983-01-01
The aim of the elastic pp experimental program at SIN was to measure enough spin dependent parameters in order to do a direct experimental reconstruction of the elastic scattering amplitudes at a few energies between 400 and 600 MeV and at several angles between 38/sup 0/ cm and 90/sup 0/ cm. This reconstruction was not possible until recently due to lack of experimental data. Information instead has come mainly from phase shift analysis (PSA). The only way to extract the elastic scattering amplitudes without any hypotheses except those of basic symmetries, is to measure a sufficient set of spin dependent parameters at a given angle and energy. With this in view, the authors have measured at 448, 494, 515, 536 and 579 MeV, the polarization, the spin correlation parameters Asub(00nn), Asub(00ss), Asub(00kk), Asub(00ks), the 2-spin parameters Dsub(n0n0), Ksub(n00n), Dsub(s'0s0), Dsub(s'0k0) and the 3-spin parameters Msub(s'0sn), Msub(s'0kn) between 34/sup 0/ cm and 118/sup 0/ cm. A few of these parameters have also been measured at 560 and 470 MeV and at a few energies below 448 MeV. The indices refer to the polarization orientation of the scattered, recoil, beam and target particle respectively.
Homogenized Elastic Properties of Graphene for Small Deformations
Jurica Sorić
2013-09-01
Full Text Available In this paper, we provide the quantification of the linear and non-linear elastic mechanical properties of graphene based upon the judicious combination of molecular mechanics simulation results and homogenization methods. We clarify the influence on computed results by the main model features, such as specimen size, chirality of microstructure, the effect of chosen boundary conditions (imposed displacement versus force and the corresponding plane stress transformation. The proposed approach is capable of explaining the scatter of the results for computed stresses, energy and stiffness and provides the bounds on graphene elastic properties, which are quite important in modeling and simulation of the virtual experiments on graphene-based devices.
Mathematical methods for elastic plates
Constanda, Christian
2014-01-01
Mathematical models of deformation of elastic plates are used by applied mathematicians and engineers in connection with a wide range of practical applications, from microchip production to the construction of skyscrapers and aircraft. This book employs two important analytic techniques to solve the fundamental boundary value problems for the theory of plates with transverse shear deformation, which offers a more complete picture of the physical process of bending than Kirchhoff’s classical one. The first method transfers the ellipticity of the governing system to the boundary, leading to singular integral equations on the contour of the domain. These equations, established on the basis of the properties of suitable layer potentials, are then solved in spaces of smooth (Hölder continuous and Hölder continuously differentiable) functions. The second technique rewrites the differential system in terms of complex variables and fully integrates it, expressing the solution as a combination of complex ana...
The elastic solid solution model for minerals at high pressures and temperatures
Myhill, R.
2018-02-01
Non-ideality in mineral solid solutions affects their elastic and thermodynamic properties, their thermobaric stability, and the equilibrium phase relations in multiphase assemblages. At a given composition and state of order, non-ideality in minerals is typically modelled via excesses in Gibbs free energy which are either constant or linear with respect to pressure and temperature. This approach has been extremely successful when modelling near-ideal solutions. However, when the lattice parameters of the solution endmembers differ significantly, extrapolations of thermodynamic properties to high pressures using these models may result in significant errors. In this paper, I investigate the effect of parameterising solution models in terms of the Helmholtz free energy, treating volume (or lattice parameters) rather than pressure as an independent variable. This approach has been previously applied to models of order-disorder, but the implications for the thermodynamics and elasticity of solid solutions have not been fully explored. Solid solution models based on the Helmholtz free energy are intuitive at a microscopic level, as they automatically include the energetic contribution from elastic deformation of the endmember lattices. A chemical contribution must also be included in such models, which arises from atomic exchange within the solution. Derivations are provided for the thermodynamic properties of n-endmember solutions. Examples of the use of the elastic model are presented for the alkali halides, pyroxene, garnet, and bridgmanite solid solutions. Elastic theory provides insights into the microscopic origins of non-ideality in a range of solutions, and can make accurate predictions of excess enthalpies, entropies, and volumes as a function of volume and temperature. In solutions where experimental data are sparse or contradictory, the Helmholtz free energy approach can be used to assess the magnitude of excess properties and their variation as a function
Data-Driven Problems in Elasticity
Conti, S.; Müller, S.; Ortiz, M.
2018-01-01
We consider a new class of problems in elasticity, referred to as Data-Driven problems, defined on the space of strain-stress field pairs, or phase space. The problem consists of minimizing the distance between a given material data set and the subspace of compatible strain fields and stress fields in equilibrium. We find that the classical solutions are recovered in the case of linear elasticity. We identify conditions for convergence of Data-Driven solutions corresponding to sequences of approximating material data sets. Specialization to constant material data set sequences in turn establishes an appropriate notion of relaxation. We find that relaxation within this Data-Driven framework is fundamentally different from the classical relaxation of energy functions. For instance, we show that in the Data-Driven framework the relaxation of a bistable material leads to material data sets that are not graphs.
Diffraction by an immersed elastic wedge
Croisille, Jean-Pierre
1999-01-01
This monograph presents the mathematical description and numerical computation of the high-frequency diffracted wave by an immersed elastic wave with normal incidence. The mathematical analysis is based on the explicit description of the principal symbol of the pseudo-differential operator connected with the coupled linear problem elasticity/fluid by the wedge interface. This description is subsequently used to derive an accurate numerical computation of diffraction diagrams for different incoming waves in the fluid, and for different wedge angles. The method can be applied to any problem of coupled waves by a wedge interface. This work is of interest for any researcher concerned with high frequency wave scattering, especially mathematicians, acousticians, engineers.
Price Elasticity of Alcohol Demand in India.
Kumar, Santosh
2017-05-01
Using a household survey conducted in 2014, this study estimates price elasticity of demand (PED) for beer, country liquor and spirits in India. Ordinary least-square models were used to estimate the responsiveness in alcohol demand due to price change. A large number of control variables were included to adjust for potential confounding in the model. Inter-district variation in alcohol consumption is adjusted for by including district fixed effects. Alcohol prices are negatively associated with demand for alcoholic beverages. The PED ranged from -0.14 for spirits to -0.46 for country liquor. Low level of education was positively associated with spirits consumption. The magnitude of elasticity varied by rural-urban, education and gender. Results indicate that a policy mix of price controls and awareness campaigns would be most effective in tackling the adverse effects of harmful drinking in India. The demand for beer, country liquor and spirits is negatively associated with its own price. The elasticity estimates ranged from -0.14 for spirits to -0.44 for country liquor. The elasticity estimates varied by rural-urban, gender and by education levels of the drinkers. © The Author 2017. Medical Council on Alcohol and Oxford University Press. All rights reserved
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Elasticity problems in domains with nonsmooth boundaries
Esparza, David
2001-01-01
In the present work we study the behaviour of elastic stress fields in domains with non-regular boundaries. We consider three-dimensional problems in elastic media with thin conical defects (inclusions or cavities) and analyse the stress singularity at their vertices. To construct asymptotic expansions for the stress and displacement fields in terms of a small parameter ε related to the 'thickness' of the defect, we employ a technique based on the work by Kondrat'ev, Maz'ya, Nazarov and Plamenevskii. We first study the stress distribution in an elastic body with a thin conical notch. We derive an asymptotic representation for the stress singularity exponent by reducing the original problem to a spectral problem for a 9x9 matrix. The elements of this matrix are found to depend upon the geometry of the cross-section of the notch and the elastic properties of the medium. We specify the sets of eigenvalues and the corresponding eigenvectors for a circular, elliptical, 'triangular' and 'square' cross-section, and show that the strongest singularity is associated with the 'triangular' cross-section, and is generated by a non-axisymmetric load. We then analyse the stress distribution near a thin conical inclusion which is allowed to slide freely along its axis. We derive the representation for the stress singularity exponent for the case of a circular conical inclusion whose elastic properties differ from those of the medium. In the last chapter we study the stress distribution in the vicinity of a thin 'coated' conical inclusion. We show that a soft thin coating (perfectly bonded to the inclusion and the surrounding material) can be replaced by a so-called linear interface at which the normal displacement is discontinuous, and the stresses are proportional to the 'jump' in the normal displacement across the coating. We analyse the effect of the properties of the coating on the stress singularity exponent and compare the results with those for a perfectly bonded
Passive and active ventricular elastances of the left ventricle
Ng Eddie YK
2005-02-01
Full Text Available Abstract Background Description of the heart as a pump has been dominated by models based on elastance and compliance. Here, we are presenting a somewhat new concept of time-varying passive and active elastance. The mathematical basis of time-varying elastance of the ventricle is presented. We have defined elastance in terms of the relationship between ventricular pressure and volume, as: dP = EdV + VdE, where E includes passive (Ep and active (Ea elastance. By incorporating this concept in left ventricular (LV models to simulate filling and systolic phases, we have obtained the time-varying expression for Ea and the LV-volume dependent expression for Ep. Methods and Results Using the patient's catheterization-ventriculogram data, the values of passive and active elastance are computed. Ea is expressed as: ; Epis represented as: . Ea is deemed to represent a measure of LV contractility. Hence, Peak dP/dt and ejection fraction (EF are computed from the monitored data and used as the traditional measures of LV contractility. When our computed peak active elastance (Ea,max is compared against these traditional indices by linear regression, a high degree of correlation is obtained. As regards Ep, it constitutes a volume-dependent stiffness property of the LV, and is deemed to represent resistance-to-filling. Conclusions Passive and active ventricular elastance formulae can be evaluated from a single-beat P-V data by means of a simple-to-apply LV model. The active elastance (Ea can be used to characterize the ventricle's contractile state, while passive elastance (Ep can represent a measure of resistance-to-filling.
Solow, Daniel
2014-01-01
This text covers the basic theory and computation for a first course in linear programming, including substantial material on mathematical proof techniques and sophisticated computation methods. Includes Appendix on using Excel. 1984 edition.
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Berberian, Sterling K
2014-01-01
Introductory treatment covers basic theory of vector spaces and linear maps - dimension, determinants, eigenvalues, and eigenvectors - plus more advanced topics such as the study of canonical forms for matrices. 1992 edition.
Searle, Shayle R
2012-01-01
This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.
Phase diagrams of ferroelectric nanocrystals strained by an elastic matrix
Nikitchenko, A. I.; Azovtsev, A. V.; Pertsev, N. A.
2018-01-01
Ferroelectric crystallites embedded into a dielectric matrix experience temperature-dependent elastic strains caused by differences in the thermal expansion of the crystallites and the matrix. Owing to the electrostriction, these lattice strains may affect polarization states of ferroelectric inclusions significantly, making them different from those of a stress-free bulk crystal. Here, using a nonlinear thermodynamic theory, we study the mechanical effect of elastic matrix on the phase states of embedded single-domain ferroelectric nanocrystals. Their equilibrium polarization states are determined by minimizing a special thermodynamic potential that describes the energetics of an ellipsoidal ferroelectric inclusion surrounded by a linear elastic medium. To demonstrate the stability ranges of such states for a given material combination, we construct a phase diagram, where the inclusion’s shape anisotropy and temperature are used as two parameters. The ‘shape-temperature’ phase diagrams are calculated numerically for PbTiO3 and BaTiO3 nanocrystals embedded into representative dielectric matrices generating tensile (silica glass) or compressive (potassium silicate glass) thermal stresses inside ferroelectric inclusions. The developed phase maps demonstrate that the joint effect of thermal stresses and matrix-induced elastic clamping of ferroelectric inclusions gives rise to several important features in the polarization behavior of PbTiO3 and BaTiO3 nanocrystals. In particular, the Curie temperature displays a nonmonotonic variation with the ellipsoid’s aspect ratio, being minimal for spherical inclusions. Furthermore, the diagrams show that the polarization orientation with respect to the ellipsoid’s symmetry axis is controlled by the shape anisotropy and the sign of thermal stresses. Under certain conditions, the mechanical inclusion-matrix interaction qualitatively alters the evolution of ferroelectric states on cooling, inducing a structural transition
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
Nonlinear Subincremental Method for Determination of Elastic-Plastic-Creep Behaviour
Ottosen, N. Saabye; Gunneskov, O.
1985-01-01
to general elastic-plastic-creep behaviour including problems with a highly nonlinear total strain path caused by the occurrence of creep hardening. This nonlinear method degenerates to the linear approach for elastic-plastic behaviour and when secondary creep is present. It is also linear during step......The frequently used subincremental method has so far been used on a linear interpolation of the total strain path within each main step. This method has proven successful when elastic-plastic behaviour and secondary creep is involved. The authors propose a nonlinear subincremental method applicable...
Mechanics of Fluctuating Elastic Plates and Fiber Networks
Liang, Xiaojun
Lipid membranes and fiber networks in biological systems perform important mechanical functions at the cellular and tissue levels. In this thesis I delve into two detailed problems--thermal fluctuation of membranes and non-linear compression response of fiber networks. Typically, membrane fluctuations are analysed by decomposing into normal modes or by molecular simulations. In the first part of my thesis, I propose a new semi-analytic method to calculate the partition function of a membrane. The membrane is viewed as a fluctuating von Karman plate and discretized into triangular elements. Its energy is expressed as a function of nodal displacements, and then the partition function and co-variance matrix are computed using Gaussian integrals. I recover well-known results for the dependence of the projected area of a lipid bilayer membrane on the applied tension, and recent simulation results on the ependence of membrane free energy on geometry, spontaneous curvature and tension. As new applications I use this technique to study a membrane with heterogeneity and different boundary conditions. I also use this technique to study solid membranes by taking account of the non-linear coupling of in-plane strains with out-of-plane deflections using a penalty energy, and apply it to graphene, an ultra-thin two-dimensional solid. The scaling of graphene fluctuations with membrane size is recovered. I am able to capture the dependence of the thermal expansion coefficient of graphene on temperature. Next, I study curvature mediated interactions between inclusions in membranes. I assume the inclusions to be rigid, and show that the elastic and entropic forces between them can compete to yield a local maximum in the free energy if the membrane bending modulus is small. If the spacing between the inclusions is less than this local maximum then the attractive entropic forces dominate and the separation between the inclusions will be determined by short range interactions; if the
Form finding in elastic gridshells
Baek, Changyeob; Sageman-Furnas, Andrew O.; Jawed, Mohammad K.; Reis, Pedro M.
2018-01-01
Elastic gridshells comprise an initially planar network of elastic rods that are actuated into a shell-like structure by loading their extremities. The resulting actuated form derives from the elastic buckling of the rods subjected to inextensibility. We study elastic gridshells with a focus on the rational design of the final shapes. Our precision desktop experiments exhibit complex geometries, even from seemingly simple initial configurations and actuation processes. The numerical simulations capture this nonintuitive behavior with excellent quantitative agreement, allowing for an exploration of parameter space that reveals multistable states. We then turn to the theory of smooth Chebyshev nets to address the inverse design of hemispherical elastic gridshells. The results suggest that rod inextensibility, not elastic response, dictates the zeroth-order shape of an actuated elastic gridshell. As it turns out, this is the shape of a common household strainer. Therefore, the geometry of Chebyshev nets can be further used to understand elastic gridshells. In particular, we introduce a way to quantify the intrinsic shape of the empty, but enclosed regions, which we then use to rationalize the nonlocal deformation of elastic gridshells to point loading. This justifies the observed difficulty in form finding. Nevertheless, we close with an exploration of concatenating multiple elastic gridshell building blocks.
Elastic creep-fatigue evaluation for ASME code
Severud, L.K.; Winkel, B.V.
1987-01-01
Experience with applying the ASME Code Case N-47 rules for evaluation of creep-fatigue with elastic analysis results has been problematic. The new elastic evaluation methods are intended to bound the stress level and strain range values needed for use in employing the code inelastic analysis creep-fatigue damage counting procedures. To account for elastic followup effects, ad hoc rules for stress classification, shakedown, and ratcheting are employed. Because elastic followup, inelastic strain concentration, and stress-time effects are accounted for, the design fatigue curves in Case N-47 for inelastic analysis are used instead of the more conservative elastic analysis curves. Creep damage assessments are made using an envelope stress-time history that treats multiple load events and repeated cycles during elevated temperature service life. (orig./GL)
Mikhailov, SE
2006-01-01
Copyright @ 2006 Tech Science Press A quasi-static mixed boundary value problem of elastic damage mechanics for a continuously inhomogeneous body is considered. Using the two-operator Green-Betti formula and the fundamental solution of an auxiliary homogeneous linear elasticity with frozen initial, secant or tangent elastic coe±cients, a boundary-domain integro-differential formulation of the elasto-plastic problem with respect to the displacement rates and their gradients is derived. Usin...
Mathematical foundations of elasticity
Marsden, Jerrold E
1994-01-01
This advanced-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It is directed to mathematicians, engineers and physicists who wish to see this classical subject in a modern setting with examples of newer mathematical contributions. Prerequisites include a solid background in advanced calculus and the basics of geometry and functional analysis.The first two chapters cover the background geometry ― developed as needed ― and use this discussion to obtain the basic results on kinematics and dynamics of con
Elastic and viscoplastic properties
Lebensohn, R.A.
2015-01-01
In this chapter, we review crystal elasticity and plasticity-based self-consistent theories and apply them to the determination of the effective response of polycrystalline aggregates. These mean-field formulations, which enable the prediction of the mechanical behaviour of polycrystalline aggregates based on the heterogeneous and/or directional properties of their constituent single crystal grains and phases, are ideal tools to establish relationships between microstructure and properties of these materials, ubiquitous among fuels and structural materials for nuclear systems. (author)
SIMULATION OFTHERMO-ELASTICS PROPERTIESOFTHERMALBARRIERCOATINGS
A.M.Ferouani M. Ferouani
2015-07-01
Full Text Available Thermal barrier coatings are used to protect different parts in compressors and turbines from heat. They are generally composed of two layers, one metallic layer providing resistance to heat corrosion and oxidation, and one thermally insulating ceramic layer. Two different techniques are industrially used. Plasma spray results in a lamellar structure granting a low thermal conductivity, but with a low thermal expansion compliance. Electron Beam Physical Vapour Deposition generates a columnar structure allowing a better accommodation of the thermal expansion stresses, entailing improved lifetime of the coating, but with a higher thermal conductivity. The aim of the paper presented here is to develop a procedure of analysis based on the micro structural observation for the prediction of the properties of new coatings in court of industrial development and to predict the effect of the posterior thermal treatment on the properties of the coatings carried out. For a given coating, one has to calculate linear elasticity and its evolution with the temperature as well as thermal expansion, aiming at predicting different parameters related to the in service deterioration.
Mathematical methods in elasticity imaging
Ammari, Habib; Garnier, Josselin; Kang, Hyeonbae; Lee, Hyundae; Wahab, Abdul
2015-01-01
This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic...
Prediction of fretting fatigue behavior under elastic-plastic conditions
Shin, Ki Su
2009-01-01
Fretting fatigue generally leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Fretting fatigue is regarded as an important issue in designing aerospace structures. While many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few have focused on fretting fatigue behavior under elastic-plastic deformation conditions, especially the crack orientation and fatigue life prediction for Ti-6Al-4V. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. To calculate stress distributions under elastic-plastic fretting fatigue conditions, FEA was also performed. Several parametric approaches were used to predict fretting fatigue life along with stress distribution resulting from FEA. However, those parameters using surface stresses were unable to establish an equivalence between elastic fretting fatigue data and elastic-plastic fretting fatigue data. Based on this observation, the critical distance methods, which are commonly used in notch analysis, were applied to the fretting fatigue problem. In conclusion, the effective strain range method when used in conjunction with the SMSSR parameter showed a good correlation of data points between the pad configurations involving elastic and elastic plastic deformations
Elastic constants of diamond from molecular dynamics simulations
Gao Guangtu; Van Workum, Kevin; Schall, J David; Harrison, Judith A
2006-01-01
The elastic constants of diamond between 100 and 1100 K have been calculated for the first time using molecular dynamics and the second-generation, reactive empirical bond-order potential (REBO). This version of the REBO potential was used because it was redesigned to be able to model the elastic properties of diamond and graphite at 0 K while maintaining its original capabilities. The independent elastic constants of diamond, C 11 , C 12 , and C 44 , and the bulk modulus were all calculated as a function of temperature, and the results from the three different methods are in excellent agreement. By extrapolating the elastic constant data to 0 K, it is clear that the values obtained here agree with the previously calculated 0 K elastic constants. Because the second-generation REBO potential was fit to obtain better solid-state force constants for diamond and graphite, the agreement with the 0 K elastic constants is not surprising. In addition, the functional form of the second-generation REBO potential is able to qualitatively model the functional dependence of the elastic constants and bulk modulus of diamond at non-zero temperatures. In contrast, reactive potentials based on other functional forms do not reproduce the correct temperature dependence of the elastic constants. The second-generation REBO potential also correctly predicts that diamond has a negative Cauchy pressure in the temperature range examined
Olive, David J
2017-01-01
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
Loewenthal, M.; Loseke, K.; Dow, T.A.; Scattergood, R.O.
1988-12-01
Elastic emission polishing, also called elastic emission machining (EEM), is a process where a stream of abrasive slurry is used to remove material from a substrate and produce damage free surfaces with controlled surface form. It is a noncontacting method utilizing a thick elasto-hydrodynamic film formed between a soft rotating ball and the workpiece to control the flow of the abrasive. An apparatus was built in the Center, which consists of a stationary spindle, a two-axis table for the workpiece, and a pump to circulate the working fluid. The process is controlled by a programmable computer numerical controller (CNC), which presently can operate the spindle speed and movement of the workpiece in one axis only. This apparatus has been used to determine material removal rates on different material samples as a function of time, utilizing zirconium oxide (ZrO{sub 2}) particles suspended in distilled water as the working fluid. By continuing a study of removal rates the process should become predictable, and thus create a new, effective, yet simple tool for ultra-precision mechanical machining of surfaces.
Mermaz, M.C.
1984-01-01
Diffraction and refraction play an important role in particle elastic scattering. The optical model treats correctly and simultaneously both phenomena but without disentangling them. Semi-classical discussions in terms of trajectories emphasize the refractive aspect due to the real part of the optical potential. The separation due to to R.C. Fuller of the quantal cross section into two components coming from opposite side of the target nucleus allows to understand better the refractive phenomenon and the origin of the observed oscillations in the elastic scattering angular distributions. We shall see that the real part of the potential is responsible of a Coulomb and a nuclear rainbow which allows to determine better the nuclear potential in the interior region near the nuclear surface since the volume absorption eliminates any effect of the real part of the potential for the internal partial scattering waves. Resonance phenomena seen in heavy ion scattering will be discussed in terms of optical model potential and Regge pole analysis. Compound nucleus resonances or quasi-molecular states can be indeed the more correct and fundamental alternative
Linearity in Process Languages
Nygaard, Mikkel; Winskel, Glynn
2002-01-01
The meaning and mathematical consequences of linearity (managing without a presumed ability to copy) are studied for a path-based model of processes which is also a model of affine-linear logic. This connection yields an affine-linear language for processes, automatically respecting open......-map bisimulation, in which a range of process operations can be expressed. An operational semantics is provided for the tensor fragment of the language. Different ways to make assemblies of processes lead to different choices of exponential, some of which respect bisimulation....
Income Elasticity of Environmental Amenities
Daniel Miles; Andrés Pereyra; Máximo Rossi
2000-01-01
In this paper we are concerned with the estimation of income elasticities of environmental amenities. The novelty is the application of econometric methods that take into account the problem of measurement errors when estimating these elasticities, which are common in microeconomic data and are not usually considered in the applied literature related with this issue. Our aim is to discuss whether the measurement error has signi…cant e¤ects on the elasticities. Data from the Expenditure Budget...
Hadron elastic scattering at small angles
2002-01-01
This experiment is an extension of the measurements of the WA9 experiment up to the highest energies available in the North Area. It will measure the differential cross-section for hadron elastic scattering in the t-range 0.002-0.05 (GeV/c)$^{2}$ using an ionization chamber for the measurement of the energy and the angle of the recoil and a magnet-WC spectrometer to measure the momentum and direction of the forward particle. From these measurements will be obtained the ratio $\\rho$ of the real to imaginary parts of the forward elastic amplitude and the exponential slope parameter b of the hadronic amplitude at small t. The precision expected in these measurements is $\\Delta \\rho \\approx \\pm 0.01$ and $\\Delta$b $\\approx \\pm 0.2$ (GeV/c)$^{-2}$. \\\\ \\\\ The experimental programme includes: \\\\\\\\ i) measurements of $\\rho$ and b for $\\pi$p elastic scattering at incident momenta between 150 GeV/c and 300 GeV/c; \\\\ ii) measurements of $\\rho$ and b for $\\pi^{+}$p and pp elastic scattering at incident momenta between 5...
pp elastic scattering at LHC energies
Kohara, A.K.; Ferreira, E.; Kodama, T. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, C.P. 68528, Rio de Janeiro, RJ (Brazil)
2014-11-15
Using a unified analytic representation for the elastic scattering amplitudes of pp scattering valid for all energies above 20 GeV, the behavior of observables in the LHC collisions in the range √(s) = 2.76-14 TeV is discussed. After the precise description of dσ/dt at 7 TeV, we discuss the energy dependence of the amplitudes and expect that the proposed analytical forms give equally good predictions for the future experiments. (orig.)
pp elastic scattering at LHC energies
Kohara, A.K.; Ferreira, E.; Kodama, T.
2014-01-01
Using a unified analytic representation for the elastic scattering amplitudes of pp scattering valid for all energies above 20 GeV, the behavior of observables in the LHC collisions in the range √(s) = 2.76-14 TeV is discussed. After the precise description of dσ/dt at 7 TeV, we discuss the energy dependence of the amplitudes and expect that the proposed analytical forms give equally good predictions for the future experiments. (orig.)
A meta-analysis of the price elasticity of gasoline demand. A SUR approach
Brons, M.R.E.; Nijkamp, P.; Pels, E.; Rietveld, P.
2008-01-01
Automobile gasoline demand can be expressed as a multiplicative function of fuel efficiency, mileage per car and car ownership. This implies a linear relationship between the price elasticity of total fuel demand and the price elasticities of fuel efficiency, mileage per car and car ownership. In
A Meta-analysis of the Price Elasticity of Gasoline Demand. A System of Equations Approach
Brons, Martijn; Nijkamp, Peter; Pels, Eric; Rietveld, Piet
2006-01-01
Automobile gasoline demand can be expressed as a multiplicative function of fuel efficiency, mileage per car and car ownership. This implies a linear relationship between the price elasticity of total fuel demand and the price elasticities of fuel efficiency, mileage per car and car ownership. In
Density functional calculations of elastic properties of portlandite, Ca(OH)(2)
Laugesen, Jakob Lund
2005-01-01
The elastic constants of portlandite, Ca(OH)(2), are calculated by use of density functional theory. A lattice optimization of an infinite (periodic boundary conditions) lattice is performed on which strains are applied. The elastic constants are extracted by minimizing Hooke's law of linear...
Two-velocity elasticity theory and facet growth
Andreev, A. F.; Melnikovsky, L. A.
2002-01-01
We explain the linear growth of smooth solid helium facets by the presence of lattice point defects. To implement this task, the framework of very general two-velocity elasticity theory equations is developed. Boundary conditions for these equations for various surface types are derived. We also suggest additional experiments to justify the concept.
Generation of discrete inelastic and elastic transfer matrix
Garcia, R.D.M.; Santina, M.D.
1985-01-01
A technique developed for the calculation of the isotropic and linearly anisotropic components components of elastic and discrete inelastic transfer matrices is presented in this work. The implementation of the technique is discussed in detail and numerical results obtained for some examples are compared with results reported in the literature or generated with the use of several processing codes. (author) [pt
On Love's approximation for fluid-filled elastic tubes
Caroli, E.; Mainardi, F.
1980-01-01
A simple procedure is set up to introduce Love's approximation for wave propagation in thin-walled fluid-filled elastic tubes. The dispersion relation for linear waves and the radial profile for fluid pressure are determined in this approximation. It is shown that the Love approximation is valid in the low-frequency regime. (author)
Self-bending elastic waves and obstacle circumventing in wireless power transfer
Tol, S.; Xia, Y.; Ruzzene, M.; Erturk, A.
2017-04-01
We demonstrate self-bending of elastic waves along convex trajectories by means of geometric and phased arrays. Potential applications include ultrasonic imaging and manipulation, wave focusing, and wireless power transfer around obstacles. The basic concept is illustrated through a geometric array, which is designed to implement a phase delay profile among the array elements that leads to self-bending along a specified circular trajectory. Experimental validation is conducted for the lowest asymmetric Lamb wave mode in a thin plate over a range of frequencies to investigate the bandwidth of the approach. Experiments also illustrate the functionality of the array as a transmitter to deliver elastic wave energy to a receiver/harvester located behind a large obstacle for electrical power extraction. It is shown that the trajectory is not distorted by the presence of the obstacle and circumventing is achieved. A linear phased array counterpart of the geometric array is then constructed to illustrate the concept by imposing proper time delays to the array elements, which allows the generation of different trajectories using the same line source. This capability is demonstrated by tailoring the path diameter in the phased array setting, which offers the flexibility and versatility to induce a variety of convex trajectories for self-bending elastic waves.
Structural and elastic properties of Ni2+xMn1-xGa alloys
Ghosh, Subhradip; Vitos, Levente; Sanyal, Biplab
2011-01-01
The structural parameters and the energetics of the Ni 2+x Mn 1-x Ga alloys have been investigated by the first-principles Exact Muffin Tin Orbital-Coherent Potential Approximation (EMTO-CPA) for 0.10 m . The qualitative behavior of δE with variation of x has been found to be in agreement with the experimentally observed variation of T m with x. The elastic constants for the entire range of x have also been calculated and the determination of a relationship between δE and the elastic shear modulus has been attempted. It is seen that δE varies linearly with elastic shear modulus C', qualitatively similar to the relation between T m and C'. The energetics calculated with the EMTO method agrees quite well with the all-electron full-potential results ensuring the accuracy of the method. These results show that the EMTO-CPA method is one of the most reliable and accurate first-principles methods, in the context of off-stoichiometric alloys which undergo martensitic phase transformations.
Musari, A. A.; Orukombo, S. A.
2018-03-01
Barium chalcogenides are known for their high-technological importance and great scientific interest. Detailed studies of their elastic, mechanical, dynamical and thermodynamic properties were carried out using density functional theory and plane-wave pseudo potential method within the generalized gradient approximation. The optimized lattice constants were in good agreement when compared with experimental data. The independent elastic constants, calculated from a linear fit of the computed stress-strain function, were used to determine the Young’s modulus (E), bulk modulus (B), shear modulus (G), Poisson’s ratio (σ) and Zener’s anisotropy factor (A). Also, the Debye temperature and sound velocities for barium chalcogenides were estimated from the three independent elastic constants. The calculations of phonon dispersion showed that there are no negative frequencies throughout the Brillouin zone. Hence barium chalcogenides have dynamically stable NaCl-type crystal structure. Finally, their thermodynamic properties were calculated in the temperature range of 0-1000 K and their constant-volume specific heat capacities at room-temperature were reported.
Identification of elastic properties of composite plate
Kovalovs, A; Rucevskis, S
2011-01-01
Composite laminates are used extensively in the aerospace industry, especially for the fabrication of high-performance structures. The determination of stiffness parameters for complex materials, such as fibre-reinforced composites, is much more complicated than for isotropic materials. A conventional way is testing the coupon specimens, which are manufactured by technology similar to that used for the real, large structures. When such a method is used, the question arises of whether the material properties obtained from the coupon tests are the same as those in the large structure. Therefore, the determination of actual material properties for composite laminates using non-destructive evaluation techniques has been widely investigated. A number of various non-destructive evaluation techniques have been proposed for determining the material properties of composite laminates. In the present study, attention is focused on the identification of the elastic properties of laminated plate using vibration test data. The problem associated with vibration testing is converting the measured modal frequencies to elastic constants. A standard method for solving this problem is the use of a numerical-experimental model and optimization techniques. The identification functional represents the gap between the numerical model response and the experimental one. This gap should be minimized, taking into account the side constraints on the design variables (elastic constants). The minimization problem is solved by using non-linear mathematical programming techniques and sensitivity analysis. The results obtained were verified by comparing the experimentally measured eigenfrequencies with the numerical ones obtained by FEM at the point of optima
Impact loads on beams on elastic foundations
Kameswara Rao, N.S.V.; Prasad, B.B.
1975-01-01
Quite often, complex structural components are idealised as beams in engineering analysis and design. Also, equations governing the responses of shallow shells are mathematically equivalent to the equations governing the responses of beams on elastic foundations. Hence with possible applications in several technical disciplines, the behaviour of beams on elastic foundations subjected to impact loads is studied in detail in the present investigation both analytically and experimentally. The analytical methods include analysis and energy method. The effect of foundation parameters (stiffness, and damping constants) on the dynamic responses of the beam-foundation system has been analysed. In modal analysis, the free-vibration equation has been solved by replacing the applied impulse by suitable initial conditions and the solution has been obtained as the linear combination of an infinite sequence of discrete eigen-vectors. In the energy method, the beam-foundation system is treated to be under forced vibrations and the forcing function has been obtained using the Hertz's law of impact. In the case of free-free end conditions of the beam, the rigid body modes and the elastic modes have been superposed to obtain the total response. The responses predicted using modal analysis are higher than those obtained using energy method. From the present study it is observed that model analysis is preferable to energy method. (Auth.)
A symplectic integration method for elastic filaments
Ladd, Tony; Misra, Gaurav
2009-03-01
Elastic rods are a ubiquitous coarse-grained model of semi-flexible biopolymers such as DNA, actin, and microtubules. The Worm-Like Chain (WLC) is the standard numerical model for semi-flexible polymers, but it is only a linearized approximation to the dynamics of an elastic rod, valid for small deflections; typically the torsional motion is neglected as well. In the standard finite-difference and finite-element formulations of an elastic rod, the continuum equations of motion are discretized in space and time, but it is then difficult to ensure that the Hamiltonian structure of the exact equations is preserved. Here we discretize the Hamiltonian itself, expressed as a line integral over the contour of the filament. This discrete representation of the continuum filament can then be integrated by one of the explicit symplectic integrators frequently used in molecular dynamics. The model systematically approximates the continuum partial differential equations, but has the same level of computational complexity as molecular dynamics and is constraint free. Numerical tests show that the algorithm is much more stable than a finite-difference formulation and can be used for high aspect ratio filaments, such as actin. We present numerical results for the deterministic and stochastic motion of single filaments.
Jurenko, Robert J.; Bush, T. Jason; Ottander, John A.
2014-01-01
A method for transitioning linear time invariant (LTI) models in time varying simulation is proposed that utilizes both quadratically constrained least squares (LSQI) and Direct Shape Mapping (DSM) algorithms to determine physical displacements. This approach is applicable to the simulation of the elastic behavior of launch vehicles and other structures that utilize multiple LTI finite element model (FEM) derived mode sets that are propagated throughout time. The time invariant nature of the elastic data for discrete segments of the launch vehicle trajectory presents a problem of how to properly transition between models while preserving motion across the transition. In addition, energy may vary between flex models when using a truncated mode set. The LSQI-DSM algorithm can accommodate significant changes in energy between FEM models and carries elastic motion across FEM model transitions. Compared with previous approaches, the LSQI-DSM algorithm shows improvements ranging from a significant reduction to a complete removal of transients across FEM model transitions as well as maintaining elastic motion from the prior state.
Theoretical aspects of high energy elastic nucleon scattering
Kundrat, Vojtech; Lokajicek, Milos
2010-01-01
The eikonal model must be denoted as strongly preferable for the analysis of elastic high-energy hadron collisions. The given approach allows to derive corresponding impact parameter profiles that characterize important physical features of nucleon collisions, e.g., the range of different forces. The contemporary phenomenological analysis of experimental data is, however, not able to determine these profiles unambiguously, i.e., it cannot give the answer whether the elastic hadron collisions are more central or more peripheral than the inelastic ones. However, in the collisions of mass objects (like protons) the peripheral behavior of elastic collisions should be preferred.
Elastic scattering with the MINERνA experiment
Ziemer, Benjamin P
2013-01-01
The Main Injector Experiment ν-A (MINERνA) located at Fermi National Laboratory will measure neutrino cross sections, nuclear effects from a broad range of nuclear targets and a variety of other neutrino interactions. Neutrino elastic scattering will be one of the first focuses of the MINERA collaboration; these measurements will be an important input to current and future neutrino oscillation experiments. Results of the charged current quasi-elastic channel exposure in anti-neutrino NuMI running are presented. Future elastic scattering results, both charged current and neutral current, in anti-neutrino and neutrino exposures are also discussed.
Ab-initio thermodynamic and elastic properties of AlNi and AlNi3 intermetallic compounds
Yalameha, Shahram; Vaez, Aminollah
2018-04-01
In this paper, thermodynamic and elastic properties of the AlNi and AlNi3 were investigated using density functional theory (DFT). The full-potential linearized augmented plane-wave (APW) in the framework of the generalized gradient approximation as used as implemented in the Wien2k package. The temperature dependence of thermal expansion coefficient, bulk modulus and heat capacity in a wide range of temperature (0-1600 K) were investigated. The calculated elastic properties of the compounds show that both intermetallic compounds of AlNi and AlNi3 have surprisingly negative Poisson’s ratio (NPR). The results were compared with other experimental and computational data.
Twist and Stretch of Helices Explained via the Kirchhoff-Love Rod Model of Elastic Filaments
Đuričković, Bojan; Goriely, Alain; Maddocks, John H.
2013-01-01
that within the context of the classic Kirchhoff-Love rod model of elastic filaments, both behaviors are possible, depending on the precise constitutive relations of the polymer. More generally, our analysis provides an effective linear response theory
Dasbiswas, K.; Alster, E.; Safran, S. A.
2016-06-01
Mechanobiological studies of cell assemblies have generally focused on cells that are, in principle, identical. Here we predict theoretically the effect on cells in culture of locally introduced biochemical signals that diffuse and locally induce cytoskeletal contractility which is initially small. In steady-state, both the concentration profile of the signaling molecule as well as the contractility profile of the cell assembly are inhomogeneous, with a characteristic length that can be of the order of the system size. The long-range nature of this state originates in the elastic interactions of contractile cells (similar to long-range “macroscopic modes” in non-living elastic inclusions) and the non-linear diffusion of the signaling molecules, here termed mechanogens. We suggest model experiments on cell assemblies on substrates that can test the theory as a prelude to its applicability in embryo development where spatial gradients of morphogens initiate cellular development.
Engelbrecht, Jüri
2015-01-01
This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.
Nonlinear Elasticity of Doped Semiconductors
2017-02-01
AFRL-RY-WP-TR-2016-0206 NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS Mark Dykman and Kirill Moskovtsev Michigan State University...2016 4. TITLE AND SUBTITLE NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS 5a. CONTRACT NUMBER FA8650-16-1-7600 5b. GRANT NUMBER 5c. PROGRAM...vibration amplitude. 15. SUBJECT TERMS semiconductors , microresonators, microelectromechanical 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
Elasticity theory of ultrathin nanofilms
Li, Jiangang; Yun, Guohong; Narsu, B; Yao, Haiyan
2015-01-01
A self-consistent theoretical scheme for describing the elastic behavior of ultrathin nanofilms (UTNFs) was proposed. Taking into account the lower symmetry of an UTNF compared to its bulk counterpart, additional elastic and magnetoelastic parameters were introduced to model the elasticity rigorously. The applications of current theory to several elastic and magnetoelastic systems gave excellent agreement with experiments. More importantly, the surface elastic and magnetoelastic parameters used to fit the experimental results are physically reasonable and in close agreement with those obtained from experiment and simulation. This fact suggests that the additional elastic (magnetoelastic) constants due to symmetry breaking are of great importance in theoretical description of the mechanical properties of UTNFs. And we proved that the elasticity of UTNFs should be described by a three-dimensional model just including the intrinsic surface and bulk parameters, but not the effective surface parameters. It is believed that the theory reported here is a universal strategy for elasticity and magnetoelasticity of ultrathin films. (paper)
Karloff, Howard
1991-01-01
To this reviewer’s knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming from the Simplex Method…via the Ellipsoid algorithm to Karmarkar’s algorithm. Moreover, its point of view is algorithmic and thus it provides both a history and a case history of work in complexity theory. The presentation is admirable; Karloff's style is informal (even humorous at times) without sacrificing anything necessary for understanding. Diagrams (including horizontal brackets that group terms) aid in providing clarity. The end-of-chapter notes are helpful...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. —Choice Reviews The reader will be well served by reading the monograph from cover to cover. The author succeeds in providing a concise, readable, understandable introduction to modern linear programming. —Mathematics of Computing This is a textbook intend...
Polymer concentration and properties of elastic turbulence in a von Karman swirling flow
Jun, Yonggun; Steinberg, Victor
2017-10-01
We report detailed experimental studies of statistical, scaling, and spectral properties of elastic turbulence (ET) in a von Karman swirling flow between rotating and stationary disks of polymer solutions in a wide, from dilute to semidilute entangled, range of polymer concentrations ϕ . The main message of the investigation is that the variation of ϕ just weakly modifies statistical, scaling, and spectral properties of ET in a swirling flow. The qualitative difference between dilute and semidilute unentangled versus semidilute entangled polymer solutions is found in the dependence of the critical Weissenberg number Wic of the elastic instability threshold on ϕ . The control parameter of the problem, the Weissenberg number Wi, is defined as the ratio of the nonlinear elastic stress to dissipation via linear stress relaxation and quantifies the degree of polymer stretching. The power-law scaling of the friction coefficient on Wi/Wic characterizes the ET regime with the exponent independent of ϕ . The torque Γ and pressure p power spectra show power-law decays with well-defined exponents, which has values independent of Wi and ϕ separately at 100 ≤ϕ ≤900 ppm and 1600 ≤ϕ ≤2300 ppm ranges. Another unexpected observation is the presence of two types of the boundary layers, horizontal and vertical, distinguished by their role in the energy pumping and dissipation, which has width dependence on Wi and ϕ differs drastically. In the case of the vertical boundary layer near the driving disk, wvv is independent of Wi/Wic and linearly decreases with ϕ /ϕ * , while in the case of the horizontal boundary layer wvh its width is independent of ϕ /ϕ * , linearly decreases with Wi/Wic , and is about five times smaller than wvv. Moreover, these Wi and ϕ dependencies of the vertical and horizontal boundary layer widths are found in accordance with the inverse turbulent intensity calculated inside the boundary layers Vθh/Vθh rms and Vθv/Vθv rms , respectively
Estimating Price Elasticity using Market-Level Appliance Data
Fujita, K. Sydny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2015-08-04
This report provides and update to and expansion upon our 2008 LBNL report “An Analysis of the Price Elasticity of Demand for Appliances,” in which we estimated an average relative price elasticity of -0.34 for major household appliances (Dale and Fujita 2008). Consumer responsiveness to price change is a key component of energy efficiency policy analysis; these policies influence consumer purchases through price both explicitly and implicitly. However, few studies address appliance demand elasticity in the U.S. market and public data sources are generally insufficient for rigorous estimation. Therefore, analysts have relied on a small set of outdated papers focused on limited appliance types, assuming long-term elasticities estimated for other durables (e.g., vehicles) decades ago are applicable to current and future appliance purchasing behavior. We aim to partially rectify this problem in the context of appliance efficiency standards by revisiting our previous analysis, utilizing data released over the last ten years and identifying additional estimates of durable goods price elasticities in the literature. Reviewing the literature, we find the following ranges of market-level price elasticities: -0.14 to -0.42 for appliances; -0.30 to -1.28 for automobiles; -0.47 to -2.55 for other durable goods. Brand price elasticities are substantially higher for these product groups, with most estimates -2.0 or more elastic. Using market-level shipments, sales value, and efficiency level data for 1989-2009, we run various iterations of a log-log regression model, arriving at a recommended range of short run appliance price elasticity between -0.4 and -0.5, with a default value of -0.45.
Cell Elasticity Determines Macrophage Function
Patel, Naimish R.; Bole, Medhavi; Chen, Cheng; Hardin, Charles C.; Kho, Alvin T.; Mih, Justin; Deng, Linhong; Butler, James; Tschumperlin, Daniel; Fredberg, Jeffrey J.; Krishnan, Ramaswamy; Koziel, Henry
2012-01-01
Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function. PMID:23028423
Cell elasticity determines macrophage function.
Naimish R Patel
Full Text Available Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function.
Multipurpose hooks for elastic attachment
Siddharth Shashidhar Revankar
2014-01-01
Full Text Available As certain bracket systems do not include hooks on premolar brackets for elastic attachment, Kobayashi or custom made ligature hooks have proven as an alternative. However, these hooks tend to bend labially when used with heavy elastics and these elastics can even pop loose from the hooks on mouth opening. The following article describes an innovative multipurpose hook which is simple, stiff and inexpensive and can be used for engagement of class II elastics on premolars in case of missing molars as well as engagement of intermaxillary elastics for settling of occlusion in finishing stages. As the hooks can be prefabricated, this saves a lot of chair side time and is more practical for use in day-to-day orthodontic practice.
Consequences of elastic anisotropy in patterned substrate heteroepitaxy.
Dixit, Gopal Krishna; Ranganathan, Madhav
2018-06-13
The role of elastic anisotropy on quantum dot formation and evolution on a pre-patterned substrate is evaluated within the framework of a continuum model. We first extend the formulation for surface evolution to take elastic anisotropy into account. Using a small slope approximation, we derive the evolution equation and show how it can be numerically implemented up to linear and second order for stripe and egg-carton patterned substrates using an accurate and efficient procedure. The semi--infinite nature of the substrate is used to solve the elasticity problem subject to other boundary conditions at the free surface and at the film--substrate interface. The positioning of the quantum dots with respect to the peaks and valleys of the pattern is explained by a competition between the length scale of the pattern and the wavelength of the Asaro--Tiller--Grinfeld instability, which is also affected by the elastic anisotropy. The alignment of dots is affected by a competition between the elastic anisotropy of the film and the pattern orientation. A domain of pattern inversion, wherein the quantum dots form exclusively in the valleys of the patterns is identified as a function of the average film thickness and the elastic anisotropy, and the time--scale for this inversion as function of height is analyzed. © 2018 IOP Publishing Ltd.
Some Differential Geometric Relations in the Elastic Shell
Xiaoqin Shen
2016-01-01
Full Text Available The theory of the elastic shells is one of the most important parts of the theory of solid mechanics. The elastic shell can be described with its middle surface; that is, the three-dimensional elastic shell with equal thickness comprises a series of overlying surfaces like middle surface. In this paper, the differential geometric relations between elastic shell and its middle surface are provided under the curvilinear coordinate systems, which are very important for forming two-dimensional linear and nonlinear elastic shell models. Concretely, the metric tensors, the determinant of metric matrix field, the Christoffel symbols, and Riemann tensors on the three-dimensional elasticity are expressed by those on the two-dimensional middle surface, which are featured by the asymptotic expressions with respect to the variable in the direction of thickness of the shell. Thus, the novelty of this work is that we can further split three-dimensional mechanics equations into two-dimensional variation problems. Finally, two kinds of special shells, hemispherical shell and semicylindrical shell, are provided as the examples.
Resonant Column Tests and Nonlinear Elasticity in Simulated Rocks
Sebastian, Resmi; Sitharam, T. G.
2018-01-01
Rocks are generally regarded as linearly elastic even though the manifestations of nonlinearity are prominent. The variations of elastic constants with varying strain levels and stress conditions, disagreement between static and dynamic moduli, etc., are some of the examples of nonlinear elasticity in rocks. The grain-to-grain contact, presence of pores and joints along with other compliant features induce the nonlinear behavior in rocks. The nonlinear elastic behavior of rocks is demonstrated through resonant column tests and numerical simulations in this paper. Resonant column tests on intact and jointed gypsum samples across varying strain levels have been performed in laboratory and using numerical simulations. The paper shows the application of resonant column apparatus to obtain the wave velocities of stiff samples at various strain levels under long wavelength condition, after performing checks and incorporating corrections to the obtained resonant frequencies. The numerical simulation and validation of the resonant column tests using distinct element method are presented. The stiffness reductions of testing samples under torsional and flexural vibrations with increasing strain levels have been analyzed. The nonlinear elastic behavior of rocks is reflected in the results, which is enhanced by the presence of joints. The significance of joint orientation and influence of joint spacing during wave propagation have also been assessed and presented using the numerical simulations. It has been found that rock joints also exhibit nonlinear behavior within the elastic limit.
Are rapid changes in brain elasticity possible?
Parker, K. J.
2017-09-01
Elastography of the brain is a topic of clinical and preclinical research, motivated by the potential for viscoelastic measures of the brain to provide sensitive indicators of pathological processes, and to assist in early diagnosis. To date, studies of the normal brain and of those with confirmed neurological disorders have reported a wide range of shear stiffness and shear wave speeds, even within similar categories. A range of factors including the shear wave frequency, and the age of the individual are thought to have a possible influence. However, it may be that short term dynamics within the brain may have an influence on the measured stiffness. This hypothesis is addressed quantitatively using the framework of the microchannel flow model, which derives the tissue stiffness, complex modulus, and shear wave speed as a function of the vascular and fluid network in combination with the elastic matrix that comprise the brain. Transformation rules are applied so that any changes in the fluid channels or the elastic matrix can be mapped to changes in observed elastic properties on a macroscopic scale. The results are preliminary but demonstrate that measureable, time varying changes in brain stiffness are possible simply by accounting for vasodynamic or electrochemical changes in the state of any region of the brain. The value of this preliminary exploration is to identify possible mechanisms and order-of-magnitude changes that may be testable in vivo by specialized protocols.
Total and elastic electron scattering cross sections from Xe at intermediate and high energies
Garcia, G; Pablos, J L de; Blanco, F; Williart, A
2002-01-01
Experimental total electron scattering cross sections from Xe in the energy range 300-5000 eV have been obtained with experimental errors of about 3%. The method was based on the measurement of the attenuation of a linear electron beam through a Xe gas cell in combination with an electron spectroscopy technique to analyse the energy of the transmitted electrons. Differential and integral elastic cross sections have been calculated using a scattering potential method which includes relativistic effects. The consistency of our theoretical and experimental results is also discussed in the paper. Finally, analytical formulae depending on two parameters, namely the number of target electrons and the atomic polarizability, are given to reproduce the experimental data for Ne, Ar, Kr and Xe in the energy range 500-10 000 eV
Dynamic response of beams on elastic foundations to impact loading
Prasad, B.B.; Sinha, B.P.
1987-01-01
The beam considered is a Timoshenko beam in which the effects of rotatory inertia and shear deformations are included and the foundation model consists of Winkler-Zimmermann type having Hookean linear elastic springs. The analysis is very useful for predicting the dynamic response of structural components of aircraft or nuclear reactors or even runways if that component may be mathematically idealized as a beam on elastic foundation. The effect of rotatory inertia and shear deformation is very much pronounced and hence should not be neglected in solving such impact problems. In general the effect of foundation modulus is to further increase the values of frequencies of vibrations. (orig./HP)
Rayleigh wave effects in an elastic half-space.
Aggarwal, H. R.
1972-01-01
Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.
bessel functions for axisymmetric elasticity problems of the elastic
HOD
2, 3DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF NIGERIA, NSUKKA. ENUGU STATE. ... theory of elasticity and in the case of vertical applied loads, was first ... partial differential equations in bodies having cylindrical symmetry.
Tripathy, Haraprasanna; Raju, Subramanian; Hajra, Raj Narayan; Saibaba, Saroja
2018-03-01
The polycrystalline elastic constants of an indigenous variant of 9Cr-1W-based reduced activation ferritic-martensitic (RAFM) steel have been determined as a function of temperature from 298 K to 1323 K (25 °C to 1000 °C), using impulse excitation technique (IET). The three elastic constants namely, Young's modulus E, shear modulus G, and bulk modulus B, exhibited significant softening with increasing temperature, in a pronounced non-linear fashion. In addition, clearly marked discontinuities in their temperature variations are noticed in the region, where ferrite + carbides → austenite phase transformation occurred upon heating. Further, the incidence of austenite → martensite transformation upon cooling has also been marked by a step-like jump in both elastic E and shear moduli G. The martensite start M s and M f finish temperatures estimated from this study are, M s = 652 K (379 °C) and M f =580 K (307 °C). Similarly, the measured ferrite + carbide → austenite transformation onset ( Ac 1) and completion ( Ac 3) temperatures are found to be 1126 K and 1143 K (853 °C and 870 °C), respectively. The Poisson ratio μ exhibited distinct discontinuities at phase transformation temperatures; but however, is found to vary in the range 0.27 to 0.29. The room temperature estimates of E, G, and μ for normalized and tempered microstructure are found to be 219 GPa, 86.65 GPa, and 0.27, respectively. For the metastable austenite phase, the corresponding values are: 197 GPa, 76.5 GPa, and 0.29, respectively. The measured elastic properties as well as their temperature dependencies are found to be in good accord with reported estimates for other 9Cr-based ferritic-martensitic steel grades. Estimates of θ D el , the elastic Debye temperature and γ G, the thermal Grüneisen parameter obtained from measured bulk elastic properties are found to be θ D el = 465 K (192 °C) and γ G = 1.57.
Reduction of Linear Programming to Linear Approximation
Vaserstein, Leonid N.
2006-01-01
It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.
Strain fluctuations and elastic constants
Parrinello, M.; Rahman, A.
1982-03-01
It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.
The Value Range of Contact Stiffness Factor between Pile and Soil Based on Penalty Function
Chen, Sandy H. L.; Wu, Xinliu
2018-03-01
The value range of contact stiffness factor based on penalty function is studied when we use finite element software ANSYS to analyze contact problems, take single pile and soil of a certain project for example, the normal contact between pile and soil is analyzed with 2D simplified model in horizontal load. The study shows that when adopting linear elastic model to simulate soil, the maximum contact pressure and penetration approach steady value as the contact stiffness factor increases. The reasonable value range of contact stiffness factor reduces as the underlying element thickness decreases, but the rule reverses when refers to the soil stiffness. If choose DP model to simulate soil, the stiffness factor should be magnified 100 times compares to the elastic model regardless of the soil bears small force and still in elastic deformation stage or into the plastic deformation stage. When the soil bears big force and into plastic deformation stage, the value range of stiffness factor relates to the plastic strain range of the soil, and reduces as the horizontal load increases.
CONCERNING THE ELASTIC ORTHOTROPIC MODEL APPLIED TO WOOD ELASTIC PROPERTIES
Tadeu Mascia,Nilson
2003-01-01
Among the construction materials, wood reveals an orthotropic pattern, because of unique characteristics in its internal structure with three axes of wood biological directions (longitudinal, tangential and radial). elastic symmetry: longitudinal, tangential and radial, reveals an orthotropic pattern. The effect of grain angle orientation onin the elastic modulus constitutes the fundamental cause forof wood anisotropy. It is responsible for the greatest changes in the values of the constituti...
Spectral dimension of elastic Sierpinski gaskets with general elastic forces
Liu, S.H.; Liu, A.J.
1985-01-01
The spectral dimension is calculated for a Sierpinski gasket with the most general elastic restoring forces allowed by symmetry. The elastic forces consist of bond-stretching and angle-bending components. The spectral dimension is the same as that for the bond-stretching-force (central-force) model. This demonstrates that on the Sierpinski gasket the two types of forces belong to the same universality class
Elasticity improves handgrip performance and user experience during visuomotor control.
Mace, Michael; Rinne, Paul; Liardon, Jean-Luc; Uhomoibhi, Catherine; Bentley, Paul; Burdet, Etienne
2017-02-01
Passive rehabilitation devices, providing motivation and feedback, potentially offer an automated and low-cost therapy method, and can be used as simple human-machine interfaces. Here, we ask whether there is any advantage for a hand-training device to be elastic, as opposed to rigid, in terms of performance and preference. To address this question, we have developed a highly sensitive and portable digital handgrip, promoting independent and repetitive rehabilitation of grasp function based around a novel elastic force and position sensing structure. A usability study was performed on 66 healthy subjects to assess the effect of elastic versus rigid handgrip control during various visuomotor tracking tasks. The results indicate that, for tasks relying either on feedforward or on feedback control, novice users perform significantly better with the elastic handgrip, compared with the rigid equivalent (11% relative improvement, 9-14% mean range; p training devices.
Elastic properties of uniaxial-fiber reinforced composites - General features
Datta, Subhendu; Ledbetter, Hassel; Lei, Ming
The salient features of the elastic properties of uniaxial-fiber-reinforced composites are examined by considering the complete set of elastic constants of composites comprising isotropic uniaxial fibers in an isotropic matrix. Such materials exhibit transverse-isotropic symmetry and five independent elastic constants in Voigt notation: C(11), C(33), C(44), C(66), and C(13). These C(ij) constants are calculated over the entire fiber-volume-fraction range 0.0-1.0, using a scattered-plane-wave ensemple-average model. Some practical elastic constants such as the principal Young moduli and the principal Poisson ratios are considered, and the behavior of these constants is discussed. Also presented are the results for the four principal sound velocities used to study uniaxial-fiber-reinforced composites: v(11), v(33), v(12), and v(13).
Elastic response of thermal spray deposits under indentation tests
Leigh, S.H.; Lin, C.K.; Berndt, C.C.
1997-01-01
The elastic response behavior of thermal spray deposits at Knoop indentations has been investigated using indentation techniques. The ration of hardness to elastic modulus, which is an important prerequisite for the evaluation of indentation fracture toughness, is determined by measuring the elastic recovery of the in-surface dimensions of Knoop indentations. The elastic moduli of thermal spray deposits are in the range of 12%--78% of the comparable bulk materials and reveal the anisotropic behavior of thermal spray deposits. A variety of thermal spray deposits has been examined, including Al 2 O 3 , yttria-stabilized ZrO 2 (YSZ), and NiAl. Statistical tools have been used to evaluate the error estimates of the data
Elasticity of fluorite at high temperatures
Eke, J.; Tennakoon, S.; Mookherjee, M.
2017-12-01
Fluorite (CaF2) is a simple halide with cubic space group symmetry (Fm-3m) and is often used as an internal pressure calibrant in moderate high-pressure/high-temperature experiments [1]. In order to gain insight into the elastic behavior of fluorite, we have conducted Resonant Ultrasound Spectroscopy (RUS) on a single crystal of fluorite with rectangular parallelepiped geometry. Using single crystal X-ray diffraction, we aligned the edges of the rectangular parallelepiped with [-1 1 1], [-1 1 -2], and [-1 -1 0] crystallographic directions. We conducted the RUS measurements up to 620 K. RUS spectra are influenced by the geometry, density, and the full elastic moduli tensor of the material. In our high-temperature RUS experiments, the geometry and density were constrained using thermal expansion from previous studies [2]. We determined the elasticity by minimizing the difference between observed resonance and calculated Eigen frequency using Rayleigh-Ritz method [3]. We found that at room temperature, the single crystal elastic moduli for fluorite are 170, 49, and 33 GPa for C11, C12, and C44 respectively. At room temperatures, the aggregate bulk modulus (K) is 90 GPa and the shear modulus (G) is 43 GPa. We note that the elastic moduli and sound wave velocities decrease linearly as a function of temperature with dVP /dT and dVS /dT being -9.6 ×10-4 and -5.0 ×10-4 km/s/K respectively. Our high-temperature RUS results are in good agreement with previous studies on fluorite using both Ultrasonic methods and Brillouin scattering [4,5]. Acknowledgement: This study is supported by US NSF awards EAR-1639552 and EAR-1634422. References: [1] Speziale, S., Duffy, T. S. 2002, Phys. Chem. Miner., 29, 465-472; [2] Roberts, R. B., White, G. K., 1986, J. Phys. C: Solid State Phys., 19, 7167-7172. [3] Migliori, A., Maynard, J. D., 2005, Rev. Sci. Instrum., 76, 121301. [4] Catlow, C. R. A., Comins, J. D., Germano, F. A., Harley, R. T., Hayes, W., 1978, J. Phys. C Solid State Phys
Linear and Nonlinear Finite Elements.
1983-12-01
Metzler. Con/ ugte rapdent solution of a finite element elastic problem with high Poson rato without scaling and once with the global stiffness matrix K...nonzero c, that makes u(0) = 1. According to the linear, small deflection theory of the membrane the central displacement given to the membrane is not... theory is possible based on the approximations (l-y 2 )t = +y’ 2 +y , (1-y)’ 1-y’ 2 - y" (6) that change eq. (5) to V) = , [yŖ(1 + y") - Qy
Comparison of elastic and inelastic seismic response of high temperature piping systems
Thomas, F.M.; McCabe, S.L.; Liu, Y.
1994-01-01
A study of high temperature power piping systems is presented. The response of the piping systems is determined when subjected to seismic disturbances. Two piping systems are presented, a main steam line, and a cold reheat line. Each of the piping systems are modeled using the ANSYS computer program and two analyses are performed on each piping system. First, each piping system is subjected to a seismic disturbance and the pipe material is assumed to remain linear and elastic. Next the analysis is repeated for each piping system when the pipe material is modeled as having elastic-plastic behavior. The results of the linear elastic analysis and elastic-plastic analysis are compared for each of the two pipe models. The pipe stresses, strains, and displacements, are compared. These comparisons are made so that the effect of the material yielding can be determined and to access what error is made when a linear analysis is performed on a system that yields
Astronomical optics and elasticity theory
Lemaitre, Gerard Rene
2008-01-01
Astronomical Optics and Elasticity Theory provides a very thorough and comprehensive account of what is known in this field. After an extensive introduction to optics and elasticity, the book discusses variable curvature and multimode deformable mirrors, as well as, in depth, active optics, its theory and applications. Further, optical design utilizing the Schmidt concept and various types of Schmidt correctors, as well as the elasticity theory of thin plates and shells are elaborated upon. Several active optics methods are developed for obtaining aberration corrected diffraction gratings. Further, a weakly conical shell theory of elasticity is elaborated for the aspherization of grazing incidence telescope mirrors. The very didactic and fairly easy-to-read presentation of the topic will enable PhD students and young researchers to actively participate in challenging astronomical optics and instrumentation projects.
Wrinkling of Pressurized Elastic Shells
Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki
2011-01-01
We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells
Elastic flexibility, fast-ion conduction, boson and floppy modes in AgPO3-AgI glasses
Novita, Deassy I.; Boolchand, P.; Malki, M.; Micoulaut, Matthieu
2009-05-01
Raman scattering, IR reflectance and modulated-DSC measurements are performed on specifically prepared dry (AgI)x(AgPO3)1-x glasses over a wide range of compositions 0%37.8% are elastically flexible. Raman optical elasticity power laws, trends in the nature of the glass transition endotherms, corroborate the three elastic phase assignments. Ionic conductivities reveal a step-like increase when glasses become stress-free at x>xc(1) = 9.5% and a logarithmic increase in conductivity (σ~(x-xc(2))μ) once they become flexible at x>xc(2) = 37.8% with a power law μ = 1.78. The power law is consistent with percolation of 3D filamentary conduction pathways. Traces of water doping lower Tg and narrow the reversibility window, and can also completely collapse it. Ideas on network flexibility promoting ion conduction are in harmony with the unified approach of Ingram et al (2008 J. Phys. Chem. B 112 859), who have emphasized the similarity of process compliance or elasticity relating to ion transport and structural relaxation in decoupled systems. Boson mode frequency and scattering strength display thresholds that coincide with the two elastic phase boundaries. In particular, the scattering strength of the boson mode increases almost linearly with glass composition x, with a slope that tracks the floppy mode fraction as a function of mean coordination number r predicted by mean-field rigidity theory. These data suggest that the excess low frequency vibrations contributing to the boson mode in flexible glasses come largely from floppy modes.
Svitek, Tomáš; Vavryčuk, Václav; Lokajíček, Tomáš; Petružálek, Matěj
2014-12-01
The most common type of waves used for probing anisotropy of rocks in laboratory is the direct P wave. Information potential of the measured P-wave velocity, however, is limited. In rocks displaying weak triclinic anisotropy, the P-wave velocity depends just on 15 linear combinations of 21 elastic parameters, called the weak-anisotropy parameters. In strong triclinic anisotropy, the P-wave velocity depends on the whole set of 21 elastic parameters, but inversion for six of them is ill-conditioned and these parameters are retrieved with a low accuracy. Therefore, in order to retrieve the complete elastic tensor accurately, velocities of S waves must also be measured and inverted. For this purpose, we developed a lab facility which allows the P- and S-wave ultrasonic sounding of spherical rock samples in 132 directions distributed regularly over the sphere. The velocities are measured using a pair of P-wave sensors with the transmitter and receiver polarized along the radial direction and using two pairs of S-wave sensors with the transmitter and receiver polarized tangentially to the spherical sample in mutually perpendicular directions. We present inversion methods of phase and ray velocities for elastic parameters describing general triclinic anisotropy. We demonstrate on synthetic tests that the inversion becomes more robust and stable if the S-wave velocities are included. This applies even to the case when the velocity of the S waves is measured in a limited number of directions and with a significantly lower accuracy than that of the P wave. Finally, we analyse velocities measured on a rock sample from the Outokumpu deep drill hole, Finland. We present complete sets of elastic parameters of the sample including the error analysis for several levels of confining pressure ranging from 0.1 to 70 MPa.
CONFERENCE: Elastic and diffractive scattering
White, Alan
1989-09-15
Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago.
A Labor Supply Elasticity Accord?
Lars Ljungqvist; Thomas J. Sargent
2011-01-01
A dispute about the size of the aggregate labor supply elasticity has been fortified by a contentious aggregation theory used by real business cycle theorists. The replacement of that aggregation theory with one more congenial to microeconomic observations opens possibilities for an accord about the aggregate labor supply elasticity. The new aggregation theory drops features to which empirical microeconomists objected and replaces them with life-cycle choices. Whether the new aggregation theo...
In Situ elastic property sensors
Olness, D.; Hirschfeld, T.; Kishiyama, K.; Steinhaus, R.
1987-01-01
Elasticity is an important property of many materials. Loss of elasticity can have serious consequences, such as when a gasket deteriorates and permits leakage of an expensive or hazardous material, or when a damping system begins to go awry. Loss of elasticity can also provide information related to an ancillary activity such as degradation of electrical insulation, loss of plasticizer in a plastic, or changes in permeability of a thin film. In fact, the mechanical properties of most organic compounds are altered when the compound degrades. Thus, a sensor for the mechanical properties can be used to monitor associated characteristics as well. A piezoelectric material in contact with an elastomer forms an oscillating system that can provide real-time elasticity monitoring. This combination constitutes a forced harmonic oscillator with damping provided by the elastomer. A ceramic oscillator with a total volume of a few mm 3 was used as an elasticity sensor. It was placed in intimate contact with an elastomer and then monitored remotely with a simple oscillator circuit and standard frequency counting electronics. Resonant frequency shifts and changes in Q value were observed corresponding to changes in ambient temperature and/or changes in pressure applied to the sample. Elastomer samples pretreated with ozone (to simulate aging) showed changes in Q value and frequency response, even though there were no visible changes in the elastic samples
A design concept of parallel elasticity extracted from biological muscles for engineered actuators.
Chen, Jie; Jin, Hongzhe; Iida, Fumiya; Zhao, Jie
2016-08-23
Series elastic actuation that takes inspiration from biological muscle-tendon units has been extensively studied and used to address the challenges (e.g. energy efficiency, robustness) existing in purely stiff robots. However, there also exists another form of passive property in biological actuation, parallel elasticity within muscles themselves, and our knowledge of it is limited: for example, there is still no general design strategy for the elasticity profile. When we look at nature, on the other hand, there seems a universal agreement in biological systems: experimental evidence has suggested that a concave-upward elasticity behaviour is exhibited within the muscles of animals. Seeking to draw possible design clues for elasticity in parallel with actuators, we use a simplified joint model to investigate the mechanisms behind this biologically universal preference of muscles. Actuation of the model is identified from general biological joints and further reduced with a specific focus on muscle elasticity aspects, for the sake of easy implementation. By examining various elasticity scenarios, one without elasticity and three with elasticity of different profiles, we find that parallel elasticity generally exerts contradictory influences on energy efficiency and disturbance rejection, due to the mechanical impedance shift thus caused. The trade-off analysis between them also reveals that concave parallel elasticity is able to achieve a more advantageous balance than linear and convex ones. It is expected that the results could contribute to our further understanding of muscle elasticity and provide a theoretical guideline on how to properly design parallel elasticity behaviours for engineering systems such as artificial actuators and robotic joints.
Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure
Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C.; Hao, Y.L.; Yang, R.
2011-01-01
Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C 11 , C 12 and C 44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.
Tanwiwat Jaikuna
2017-02-01
Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.
Temperature dependence of elastic properties of paratellurite
Silvestrova, I.M.; Pisarevskii, Y.V.; Senyushenkov, P.A.; Krupny, A.I.
1987-01-01
New data are presented on the temperature dependence of the elastic wave velocities, elastic stiffness constants, and thermal expansion of paratellurite. It is shown that the external pressure appreciably influences the elastic properties of TeO 2 , especially the temperature dependence of the elastic modulus connected with the crystal soft mode. (author)
S. P. Gaba
1984-01-01
The paper deals with underwater laser ranging system, its principle of operation and maximum depth capability. The sources of external noise and methods to improve signal-to-noise ratio are also discussed.
Energy based methods for determining elastic plastic fracture
Witt, F.J.
1979-01-01
Several methods are currently in use or under study for calculating various conditions of fracturing for varying degrees of plasticity. Among these are innovations on the J-integral concept, crack opening displacement or angle, the two parameter concept and the equivalent energy method. Methods involving crack arrest and ductile tearing also fall in this category. Each of these methods have many salient points and some efforts are underway to establish the underlying relationship between them. In this paper, the current research directions of J-integral and equivalent energy methodologies are reviewed with a broader discussion presented for the equivalent energy methodology. The fundamental basis of equivalent energy methodology rests with the volumetric energy ratio. For fractures governed by linear elastic fracture mechanics, the volumetric energy ratio is independent of flaw size and geometry and depends only on the scale factor between model and prototype and temperature. The behavioral aspects of the volumetric energy ratios have been investigated throughout the temperature range from brittle fracture to fully ductile fracture. For five different specimen and structural configurations it has been shown experimentally that the volumetric energy ratio retains its basic properties. That is, the volumetric energy ratio while changing in actual value, maintains its independence of geometry and flaw size while retaining a unique dependence on scale factor and temperature. This property interpreted in terms of fracture mechanics leads to the equivalent energy method. (orig.)
Inverse problemfor an inhomogeneous elastic beam at a combined strength
Andreev Vladimir Igorevich
2014-01-01
Full Text Available In the article the authors describe a method of optimizing the stress state of an elastic beam, subject to the simultaneous action of the central concentrated force and bending moment. The optimization method is based on solving the inverse problem of the strength of materials, consisting in defining the law of changing in elasticity modulus with beam cross-section altitude. With this changing the stress state will be preset. Most problems of the elasticity theory of inhomogeneous bodies are solved in direct formulation, the essence of which is to determine the stress-strain state of a body at the known dependences of the material elastic characteristics from the coordinates. There are also some solutions of the inverse problems of the elasticity theory, in which the dependences of the mechanical characteristics from the coordinates, at which the stress state of a body is preset, are determined. In the paper the authors solve the problem of finding a dependence modulus of elasticity, where the stresses will be constant over the beam’s cross section. We will solve the problem of combined strength (in the case of the central stretching and bending. We will use an iterative method. As the initial solution, we take the solution for a homogeneous material. As the first approximation, we consider the stress state of a beam, when the modulus of elasticity varies linearly. According to the results, it can be stated that three approximations are sufficient in the considered problem. The obtained results allow us to use them in assessing the strength of a beam and its optimization.
Hydrogen analysis by elastic recoil spectrometry
Tirira, J.; Trocellier, P.
1989-01-01
An absolute, quantitative procedure was developed to determine the hydrogen content and to describe its concentration profile in the near-surface region of solids. The experimental technique used was the elastic recoil detection analysis of protons induced by 4 He beam bombardment in the energy range <=1.8 MeV. The hydrogen content was calculated using a new recoil cross section expression. The analyses were performed in silicon crystals implanted with hydrogen at 10 keV. The implantation dose was evaluated with an accuracy of 10% and the hydrogen depth profile with that of +-10 nm around 200 nm. (author) 10 refs.; 3 figs
Elastic lattice in an incommensurate background
Dickman, R.; Chudnovsky, E.M.
1995-01-01
We study a harmonic triangular lattice, which relaxes in the presence of an incommensurate short-wavelength potential. Monte Carlo simulations reveal that the elastic lattice exhibits only short-ranged translational correlations, despite the absence of defects in either lattice. Extended orientational order, however, persists in the presence of the background. Translational correlation lengths exhibit approximate power-law dependence upon cooling rate and background strength. Our results may be relevant to Wigner crystals, atomic monolayers on crystals surfaces, and flux-line and magnetic bubble lattices
Elastic hadron scattering and optical theorem
Lokajicek, Milos V.; Prochazka, Jiri
2014-01-01
In principle all contemporary phenomenological models of elastic hadronic scattering have been based on the assumption of optical theorem validity that has been overtaken from optics. It will be shown that the given theorem which has not been actually proved cannot be applied to short-ranged strong interactions in any case. The actual progress in description of collision processes might then exist only if the initial states are specified on the basis of impact parameter values of colliding particles and probability dependence on this parameter is established.
Martensitic textures: Multiscale consequences of elastic compatibility
Shenoy, S.R.; Lookman, T.; Saxena, A.; Bishop, A.R.
2001-03-01
We show that a free energy entirely in the order-parameter strain variable(s), rather than the displacement field, provides a unified understanding of martensitic textures. We use compatibility equations, linking the strain tensor components in the bulk and at interfaces, that induce anisotropic order-parameter strain interactions. These two long-range bulk/interface potentials, together with local compositional fluctuations, drive the formation of global elastic textures. Relaxational simulations show the spontaneous formation (and evolution under stress/temperature quenches) of equal width parallel twins, branched twins, and tweed, including characteristic scaling of twin width with twin length. (author)
Elastic layer under axisymmetric indentation and surface energy effects
Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon
2018-04-01
In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.
Low-temperature elastic anomalies in CaTiO3: dynamical characterization
Placeres-Jiménez, R.; Gonçalves, L. G. V.; Rino, J. P.; Fraygola, B.; Nascimento, W. J.; Eiras, J. A.
2012-11-01
Pulse-echo ultrasonic measurements of elastic coefficients of CaTiO3 show anomalous behavior around 200 K, with a notable rise in the attenuation coefficient. Molecular dynamics simulation is used to simulate the elastic response of a mono-domain (MDm) and a poly-domain (PDm) configuration of CaTiO3 using the Vashishta-Raman interatomic potential. The PDm is obtained by cooling the melt from 3600 to 300 K at a rate of 0.5 K ps-1, so that it recrystallizes to the PDm orthorhombic configuration. The elastic behavior is simulated in the temperature range from 300 to 20 K. In the MDm, it is observed that the bulk modulus varies linearly with temperature, while in the PDm an anomalous hardening is seen around 210 K. The bulk modulus of the PDm fluctuates strongly and is lower than that of the MDm. Neither the pair correlation function nor the Ti-Ti-O bonding angle indicate a true structural phase transition in this range of temperatures. Given the absence of any apparent change in the structure, a possible explanation for this phenomenon is the emergence of a certain class of dynamical instability associated with domain wall motion. Curiously, the pressure fluctuations in both the MDm and PDm configurations follow a power law distribution f ˜ P-α, with the exponent independent of applied strain and temperature. Time series for pressure are used to analyze the dynamics by time-delay reconstruction techniques. The calculus of embedding and correlation dimension indicates that in the polycrystalline configuration, low-dimension dynamics (<26) appears, which tend to disappear at higher temperatures.
Jong-Shin Wei
2013-01-01
Price elasticity of demand measures how much, in terms of percentage change, the quantity demanded responds to a change in price. In this pedagogical note, first we intuitively introduce the very first notion of price elasticity, which is a directional measure because it describes the impact of an arbitrary change in price from one to another on the percentage change in quantity demanded. Next, we show how this measure becomes "point" price elasticity of demand when demand is linear. Finally,...
The Morishima Gross elasticity of substitution
Blackorby, Charles; Primont, Daniel; Russell, R. Robert
2007-01-01
We show that the Hotelling-Lau elasticity of substitution, an extension of the Allen-Uzawa elasticity to allow for optimal output-quantity (or utility) responses to changes in factor prices, inherits all of the failings of the Allen-Uzawa elasticity identified by Blackorby and Russell [1989 AER]. An analogous extension of the Morishima elasticity of substitution to allow for output quantity changes preserves the salient properties of the original Hicksian notion of elasticity of substitution.
A Membrane Model from Implicit Elasticity Theory
Freed, A. D.; Liao, J.; Einstein, D. R.
2014-01-01
A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal-energy function. The theory utilizes Biot’s (1939) definitions for stress and strain that, in 1-dimension, are the stress/strain measures adopted by Fung (1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from a porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly non-linear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model. PMID:24282079
Effective stress law for anisotropic elastic deformation
Carroll, M.M.
1979-01-01
An effective stress law is derived analytically to describe the effect of pore fluid pressure on the linearly elastic response of saturated porous rocks which exhibit anisotropy. For general anisotropy the difference between the effective stress and the applied stress is not hydrostatic. The effective stress law involves two constants for transversely isotropic response and three constants for orthotropic response; these constants can be expressed in terms of the moduli of the porous material and of the solid material. These expressions simplify considerably when the anisotropy is structural rather than intrinsic, i.e., in the case of an isotropic solid material with an anisotropic pore structure. In this case the effective stress law involves the solid or grain bulk modulus and two or three moduli of the porous material, for transverse isotropy and orthotropy, respectively. The law reduces, in the case of isotropic response, to that suggested by Geertsma (1957) and by Skempton (1961) and derived analytically by Nur and Byerlee
Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr. [Los Alamos National Lab., NM (United States)
1993-11-01
Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.
Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr.
1993-01-01
Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime
Appraisal of elastic follow up
Roche, R.L.
1981-08-01
The aim of this paper is to provide indications to choose what fraction of a self limiting stress can be considered as secondary. At first, considerations are given to a simple structure which could be called ''creep relaxation tensile test''. A bar (with constant cross section) is loaded by an elastic spring in order to obtain a given elongation of the assembly. The stress evolution is studied. Then the creep damage is computed, and compared to the damage corresponding to the elastic computed stress. This comparison gives the fraction of the self limiting stress which must be considered as primary. This involve the structural parameter 0 which is the initial value of the ratio of elastic energy to dissipating power. Extension of the rule is made with the help of KACHANOV approximation. As a conclusion a procedure is described which determines what fraction of a self limiting stress must be considered as primary
Hood, John Linsley
2013-01-01
The Art of Linear Electronics presents the principal aspects of linear electronics and techniques in linear electronic circuit design. The book provides a wide range of information on the elucidation of the methods and techniques in the design of linear electronic circuits. The text discusses such topics as electronic component symbols and circuit drawing; passive and active semiconductor components; DC and low frequency amplifiers; and the basic effects of feedback. Subjects on frequency response modifying circuits and filters; audio amplifiers; low frequency oscillators and waveform generato
Metamaterials-based sensor to detect and locate nonlinear elastic sources
Gliozzi, Antonio S.; Scalerandi, Marco [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Miniaci, Marco; Bosia, Federico [Department of Physics, University of Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Pugno, Nicola M. [Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo (Trento) (Italy); School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)
2015-10-19
In recent years, acoustic metamaterials have attracted increasing scientific interest for very diverse technological applications ranging from sound abatement to ultrasonic imaging, mainly due to their ability to act as band-stop filters. At the same time, the concept of chaotic cavities has been recently proposed as an efficient tool to enhance the quality of nonlinear signal analysis, particularly in the ultrasonic/acoustic case. The goal of the present paper is to merge the two concepts in order to propose a metamaterial-based device that can be used as a natural and selective linear filter for the detection of signals resulting from the propagation of elastic waves in nonlinear materials, e.g., in the presence of damage, and as a detector for the damage itself in time reversal experiments. Numerical simulations demonstrate the feasibility of the approach and the potential of the device in providing improved signal-to-noise ratios and enhanced focusing on the defect locations.
Metamaterials-based sensor to detect and locate nonlinear elastic sources
Gliozzi, Antonio S.; Scalerandi, Marco; Miniaci, Marco; Bosia, Federico; Pugno, Nicola M.
2015-01-01
In recent years, acoustic metamaterials have attracted increasing scientific interest for very diverse technological applications ranging from sound abatement to ultrasonic imaging, mainly due to their ability to act as band-stop filters. At the same time, the concept of chaotic cavities has been recently proposed as an efficient tool to enhance the quality of nonlinear signal analysis, particularly in the ultrasonic/acoustic case. The goal of the present paper is to merge the two concepts in order to propose a metamaterial-based device that can be used as a natural and selective linear filter for the detection of signals resulting from the propagation of elastic waves in nonlinear materials, e.g., in the presence of damage, and as a detector for the damage itself in time reversal experiments. Numerical simulations demonstrate the feasibility of the approach and the potential of the device in providing improved signal-to-noise ratios and enhanced focusing on the defect locations
Investor response to consumer elasticity
Grenaa Jensen, Stine; Meibom, Peter; Ravn, H.F.; Straarup, Sarah
2004-01-01
In the Nordic electricity system there is considerable uncertainty with respect to the long-term development in production capacity. The process towards liberalisation of the electricity sector started in a situation with a large reserve margin, but this margin is gradually vanishing. Since the potential investors in new production capacity are unaccustomed with investments under the new regime it is unknown if and when investments will take place. The electricity price is the key market signal to potential investors. The price is settled as a balance between supply and demand, and it is generally assumed that the demand side has an important role in this, and increasingly so. However, since consumers have not earlier had the incentive to respond to electricity prices, no reliable estimate of demand elasticity is known. The purpose of the present study is to analyse the role of electricity demand elasticity for investments in new electricity production capacity. Electricity price scenarios generated with a partial equilibrium model (Balmorel) are combined with a model of investment decisions. In this, various scenarios concerning the development in the demand elasticity are used. The simulated investment decisions are taken in a stochastic, dynamic setting, where a key point is the timing of the investment decision in relation to the gathering of new information relative to the stochastic elements. Based on this, the consequences of the development in consumer price elasticity for investments in a base load and a peak load plant are investigated. The main result of the analysis is that peak load investments can be made unprofitable by the development in consumer price elasticity, such that an investor will tend to wait with his peak load investment, until the development in consumer price elasticity has been revealed. (au)
Malo, M K H; Rohrbach, D; Isaksson, H; Töyräs, J; Jurvelin, J S; Tamminen, I S; Kröger, H; Raum, K
2013-04-01
Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Trc33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, pbone tissue were observed. These findings may explain in part the increase in susceptibility to suffer low energy fractures during aging and highlight the potential of ultrasound in clinical osteoporosis diagnostics. Copyright © 2013 Elsevier Inc. All rights reserved.
CONFERENCE: Elastic and diffractive scattering
White, Alan
1989-01-01
Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago
Gale, J.; Tiselj, I.
2002-01-01
One dimensional two-fluid six-equation model of two-phase flow, that can be found in computer codes like RELAP5, TRAC, and CATHARE, was upgraded with additional terms, which enable modelling of the pressure waves in elastic pipes. It is known that pipe elasticity reduces the propagation velocity of the shock and other pressure waves in the piping systems. Equations that include the pipe elasticty terms are used in WAHA code, which is being developed within the WAHALoads project of 5't'h EU research program.(author)
Miniature linear cooler development
Pruitt, G.R.
1993-01-01
An overview is presented of the status of a family of miniature linear coolers currently under development by Hughes Aircraft Co. for use in hand held, volume limited or power limited infrared applications. These coolers, representing the latest additions to the Hughes family of TOP trademark [twin-opposed piston] linear coolers, have been fabricated and tested in three different configurations. Each configuration is designed to utilize a common compressor assembly resulting in reduced manufacturing costs. The baseline compressor has been integrated with two different expander configurations and has been operated with two different levels of input power. These various configuration combinations offer a wide range of performance and interface characteristics which may be tailored to applications requiring limited power and size without significantly compromising cooler capacity or cooldown characteristics. Key cooler characteristics and test data are summarized for three combinations of cooler configurations which are representative of the versatility of this linear cooler design. Configurations reviewed include the shortened coldfinger [1.50 to 1.75 inches long], limited input power [less than 17 Watts] for low power availability applications; the shortened coldfinger with higher input power for lightweight, higher performance applications; and coldfingers compatible with DoD 0.4 Watt Common Module coolers for wider range retrofit capability. Typical weight of these miniature linear coolers is less than 500 grams for the compressor, expander and interconnecting transfer line. Cooling capacity at 80K at room ambient conditions ranges from 400 mW to greater than 550 mW. Steady state power requirements for maintaining a heat load of 150 mW at 80K has been shown to be less than 8 Watts. Ongoing reliability growth testing is summarized including a review of the latest test article results
Erum, Nazia; Azhar Iqbal, Muhammad
2017-12-01
The effect of pressure variation on structural, electronic, elastic, mechanical, optical and thermodynamic characteristics of cubic SrNaF3 fluoroperovskite have been investigated by employing first-principles method within the framework of gradient approximation (GGA). For the total energy calculations, we have used the full-potential linearized augmented plane wave (FP-LAPW) method. Thermodynamic properties are computed in terms of quasi-harmonic Debye model. The pressure effects are determined in the range of 0-25 GPa, in which mechanical stability of SrNaF3 fluoroperovskite remains valid. A prominent decrease in lattice constant and bonds length is observed with the increase in pressure from 0 to 25 GPa. The effect of increase in pressure on band structure calculations with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential reveals a predominant characteristic associated with widening of bandgap. The influence of pressure on set of isotropic elastic parameters and their related properties are numerically estimated for SrNaF3 polycrystalline aggregate. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is observed as pressure is increased from 0 to 25 GPa. We have successfully obtained variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities with pressure and temperature in the range of 0-25 GPa and 0-600 K. All the calculated optical properties such as the complex dielectric function ɛ(ω), optical conductivity σ(ω), energy loss function L(ω), absorption coefficient α(w), refractive index n(ω), reflectivity R(ω), and effective number of electrons n eff, via sum rules shift towards the higher energies under the application of pressure.
Effect of price elasticity of demand in monopolies with gradient adjustment
Cavalli, Fausto; Naimzada, Ahmad
2015-01-01
Highlights: •A monopoly with isoelastic demand function is studied. •Reduced rationality monopolist uses gradient adjustment. •If marginal cost is small, increasing elasticity leads to stable dynamics. •For large marginal cost, dynamic can be unstable for both small and large elasticity. -- Abstract: We study a monopolistic market characterized by a constant elasticity demand function, in which the firm technology is described by a linear total cost function. The firm is assumed to be boundedly rational and to follow a gradient rule to adjust the production level in order to optimize its profit. We focus on what happens on varying the price elasticity of demand, studying the effect on the equilibrium stability. We prove that, depending on the relation between the market size and the marginal cost, two different scenarios are possible, in which elasticity has either a stabilizing or a mixed stabilizing/destabilizing effect
Technique for determination of elastic limit of micron band-thick amorphous
Zakharov, E.K.; Pol'dyaeva, G.P.; Tret'yakov, B.N.
1984-01-01
A method is suggested to determine the elastic limit of micron-thick amorphous band under bending. The elastic limit is determined by bending an amorphous band sample around a series of cylindrical mandrels of gradually decreasing radius. Experimental data on measuring the elastic limit of some amorphous iron base alloys according to the suggested technique are presented. The elastic limit of amorphous alloys is shown to lie in the 3140-4110 MPa range depending on chemical composition, which is about 2-2.5 times higher as compared to high-strength crystal alloys
A REMARK ON FORMAL MODELS FOR NONLINEARLY ELASTIC MEMBRANE SHELLS
无
2001-01-01
This paper gives all the two-dimensional membrane models obtained from formal asymptotic analysis of the three-dimensional geometrically exact nonlinear model of a thin elastic shell made with a Saint Venant-Kirchhoff material. Therefore, the other models can be quoted as flexural nonlinear ones. The author also gives the formal equations solved by the associated stress tensor and points out that only one of those models leads, by linearization, to the “classical” linear limiting membrane model, whose juetification has already been established by a convergence theorem.
Elastic properties of Cs{sub 2}HgBr{sub 4} and Cs{sub 2}CdBr{sub 4} crystals
Kityk, A.V.; Zadorozhna, A.V.; Shchur, Y.I.; Martynyuk-Lototska, Y.I.; Burak, Y.; Vlokh, O.G. [Institute of Physical Optics, Lvov (Ukraine)
1998-12-31
Using ultrasonic velocity measurements, all components of the elastic constant matrix C{sub ij} , elastic compliances matrix S{sub ij}, and linear compressibility constants matrix K{sub ij} of orthorhombic Cs{sub 2}HgBr{sub 4} and Cs{sub 2}CdBr{sub 4} crystals have been determined over a wide temperature range, including the region of the phase transition from the normal to the incommensurate phase. Results obtained are considered within the framework of the phenomenological theory. Preliminary analysis of the acoustical properties at room temperature clearly indicates that both crystals are relatively important materials for acousto-optical applications. Copyright (1998) CSIRO Australia 16 refs., 1 tab. 8 figs. The URL for the electronic version of this article is http://www.publish.csiro.au/journals/ajp/electronic.html
QUANTITATIVE NON-DESTRUCTIVE EVALUATION (QNDE) OF THE ELASTIC MODULI OF POROUS TIAL ALLOYS
Yeheskel, O.
2008-01-01
The elastic moduli of γ-TiA1 were studied in porous samples consolidated by various techniques e.g. cold isostatic pressing (CIP), pressure-less sintering, or hot isostatic pressing (HIP). Porosity linearly affects the dynamic elastic moduli of samples. The results indicate that the sound wave velocities and the elastic moduli affected by the processing route and depend not only on the attained density but also on the consolidation temperature. In this paper we show that there is linear correlation between the shear and the longitudinal sound velocities in porous TiA1. This opens the way to use a single sound velocity as a tool for quantitative non-destructive evaluation (QNDE) of porous TiA1 alloys. Here we demonstrate the applicability of an equation derived from the elastic theory and used previously for porous cubic metals
Giersch, C; Cornish-Bowden, A
1996-10-07
The double modulation method for determining the elasticities of pathway enzymes, originally devised by Kacser & Burns (Biochem. Soc. Trans. 7, 1149-1160, 1979), is extended to pathways of complex topological structure, including branching and feedback loops. An explicit system of linear equations for the unknown elasticities is derived. The constraints imposed on this linear system imply that modulations of more than one enzyme are not necessarily independent. Simple combinatorial rules are described for identifying without using any algebra the set of independent modulations that allow the determination of the elasticities of any enzyme. By repeated application, the minimum numbers of modulations required to determine the elasticities of all enzymes of a given pathway can be determined. The procedure is illustrated with numerous examples.
The relationship between elastic constants and structure of shock waves in a zinc single crystal
Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.
2017-12-01
The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.
Measurement of membrane elasticity by micro-pipette aspiration
Henriksen, Jonas Rosager; Ipsen, John H.
2004-01-01
The classical micro-pipette aspiration technique, applied for measuring the membrane bending elasticity, is in the present work reviewed and extended to span the range of pipette aspiration pressures going through the °accid (low pressures) to tense (high pressures) membrane regime. The quality...
Ultrabroadband elastic cloaking in thin plates.
Farhat, Mohamed; Guenneau, Sebastien; Enoch, Stefan
2009-07-10
Control of waves with metamaterials is of great topical interest, and is fueled by rapid progress in broadband acoustic and electromagnetic cloaks. We propose a design for a cloak to control bending waves propagating in isotropic heterogeneous thin plates. This is achieved through homogenization of a multilayered concentric coating filled with piecewise constant isotropic elastic material. Significantly, our cloak displays no phase shift for both backward and forward scattering. To foster experimental efforts, we provide a simplified design of the cloak which is shown to work in a more than two-octave frequency range (30 Hz to 150 Hz) when it consists of 10 layers using only 6 different materials overall. This metamaterial should be easy to manufacture, with potential applications ranging from car industry to anti-earthquake passive systems for smart buildings, depending upon the plate dimensions and wavelengths.
Magomedov, A.M.
1986-01-01
Rates of propagation of longitudinal and transverse acoustic waves in samples as well as density of Tl, Pb, Sn, Bi, Cd, Zn and their binary alloys with indium are determined. The results obtained are used for calculation of elasticity constants of these materials. It is stated that concentration dependences of elasticity constants for indium alloys have non-linear character; negative deflection from the additive line is observed
Design and Vibration Suppression Control of a Modular Elastic Joint
Hong Liu
2018-06-01
Full Text Available In this paper, a novel mechatronic design philosophy is introduced to develop a compact modular rotary elastic joint for a humanoid manipulator. The designed elastic joint is mainly composed of a brushless direct current (DC motor, harmonic reducer, customized torsional spring, and fail-safe brake. The customized spring considerably reduces the volume of the elastic joint and facilitates the construction of a humanoid manipulator which employs this joint. The large central hole along the joint axis brings convenience for cabling and the fail-safe brake can guarantee safety when the power is off. In order to reduce the computational burden on the central controller and simplify system maintenance, an expandable electrical system, which has a double-layer control structure, is introduced. Furthermore, a robust position controller for the elastic joint is proposed and interpreted in detail. Vibration of the elastic joint is suppressed by means of resonance ratio control (RRC. In this method, the ratio between the resonant and anti-resonant frequency can be arbitrarily designated according to the feedback of the nominal spring torsion. Instead of using an expensive torque sensor, the spring torque can be obtained by calculating the product of spring stiffness and deformation, due to the high linearity of the customized spring. In addition, to improve the system robustness, a motor-side disturbance observer (DOb and an arm-side DOb are employed to estimate and compensate for external disturbances and system uncertainties, such as model variation, friction, and unknown external load. Validity of the DOb-based RRC is demonstrated in the simulation results. Experimental results show the performance of the modular elastic joint and the viability of the proposed controller further.
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...
Nonlinear theory of elastic shells
Costa Junior, J.A.
1979-08-01
Nonlinear theory of elastic shells is developed which incorporates both geometric and physical nonlinearities and which does not make use of the well known Love-Kirchhoff hypothesis. The resulting equations are formulated in tensorial notation and are reduced to the ones of common use when simplifying assumptions encountered in the especific litterature are taken. (Author) [pt
Fei Gao
2015-05-01
Full Text Available In order to investigate the aerosol variability over the southwest region of Slovenia, an ultraviolet scanning elastic backscatter LiDAR was utilized to make the vertical scan for atmospheric probing. With the assumption of horizontal atmospheric homogeneity, aerosol optical variables were retrieved from the horizontal pixel data points of two-dimensional range-height-indicator (RHI diagrams by using a multiangle retrieval method, in which optical depth is defined as the slope of the resulting linear function when height is kept constant. To make the data retrieval feasible and precise, a series of key procedures complemented the data processing, including construction of the RHI diagram, correction of Rayleigh scattering, assessment of horizontal atmospheric homogeneity and retrieval of aerosol optical variables. The measurement example demonstrated the feasibility of the ultraviolet scanning elastic backscatter LiDAR in the applications of the retrieval of aerosol extinction and determination of the atmospheric boundary layer height. Three months’ data combined with the modeling of air flow trajectories using Hybrid Single Particle Lagrangian Integrated Trajectory Model were analyzed to investigate aerosol variability. The average value of aerosol extinction with the presence of land-based air masses from the European continent was found to be two-times larger than that influenced by marine aerosols from the Mediterranean or Adriatic Sea.