WorldWideScience

Sample records for linear elastic properties

  1. Linear elastic properties derivation from microstructures representative of transport parameters.

    Hoang, Minh Tan; Bonnet, Guy; Tuan Luu, Hoang; Perrot, Camille

    2014-06-01

    It is shown that three-dimensional periodic unit cells (3D PUC) representative of transport parameters involved in the description of long wavelength acoustic wave propagation and dissipation through real foam samples may also be used as a standpoint to estimate their macroscopic linear elastic properties. Application of the model yields quantitative agreement between numerical homogenization results, available literature data, and experiments. Key contributions of this work include recognizing the importance of membranes and properties of the base material for the physics of elasticity. The results of this paper demonstrate that a 3D PUC may be used to understand and predict not only the sound absorbing properties of porous materials but also their transmission loss, which is critical for sound insulation problems.

  2. Linear analysis using secants for materials with temperature dependent nonlinear elastic modulus and thermal expansion properties

    Pepi, John W.

    2017-08-01

    Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.

  3. Elastic properties

    Ledbetter, H.M.

    1983-01-01

    This chapter investigates the following five aspects of engineering-material solid-state elastic constants: general properties, interrelationships, relationships to other physical properties, changes during cooling from ambient to near-zero temperature, and near-zero-temperature behavior. Topics considered include compressibility, bulk modulus, Young's modulus, shear modulus, Poisson's ratio, Hooke's law, elastic-constant measuring methods, thermodynamic potentials, higher-order energy terms, specific heat, thermal expansivity, magnetic materials, structural phase transitions, polymers, composites, textured aggregates, and other-phenomena correlations. Some of the conclusions concerning polycrystalline elastic properties and their temperature dependence are: elastic constants are physical, not mechanical, properties which relate thermodynamically to other physical properties such as specific heat and thermal expansivity; elastic constants at low temperatures are nearly temperature independent, as required by the third law of thermodynamics; and elastic constants can be used to study directional properties of materials, such as textured aggregates and composites

  4. Introduction to linear elasticity

    Gould, Phillip L

    2013-01-01

    Introduction to Linear Elasticity, 3rd Edition, provides an applications-oriented grounding in the tensor-based theory of elasticity for students in mechanical, civil, aeronautical, and biomedical engineering, as well as materials and earth science. The book is distinct from the traditional text aimed at graduate students in solid mechanics by introducing the subject at a level appropriate for advanced undergraduate and beginning graduate students. The author's presentation allows students to apply the basic notions of stress analysis and move on to advanced work in continuum mechanics, plasticity, plate and shell theory, composite materials, viscoelasticity and finite method analysis. This book also:  Emphasizes tensor-based approach while still distilling down to explicit notation Provides introduction to theory of plates, theory of shells, wave propagation, viscoelasticity and plasticity accessible to advanced undergraduate students Appropriate for courses following emerging trend of teaching solid mechan...

  5. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.

    Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping

    2015-10-01

    We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.

  6. Non-linear elastic deformations

    Ogden, R W

    1997-01-01

    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  7. Uniqueness theorems in linear elasticity

    Knops, Robin John

    1971-01-01

    The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...

  8. Integrodifferential relations in linear elasticity

    Kostin, Georgy V

    2012-01-01

    This work treats the elasticity of deformed bodies, including the resulting interior stresses and displacements.It also takes into account that some of constitutive relations can be considered in a weak form. To discuss this problem properly, the method of integrodifferential relations is used, and an advanced numerical technique for stress-strain analysis is presented and evaluated using various discretization techniques. The methods presented in this book are of importance for almost all elasticity problems in materials science and mechanical engineering.

  9. Elastic and viscoplastic properties

    Lebensohn, R.A.

    2015-01-01

    In this chapter, we review crystal elasticity and plasticity-based self-consistent theories and apply them to the determination of the effective response of polycrystalline aggregates. These mean-field formulations, which enable the prediction of the mechanical behaviour of polycrystalline aggregates based on the heterogeneous and/or directional properties of their constituent single crystal grains and phases, are ideal tools to establish relationships between microstructure and properties of these materials, ubiquitous among fuels and structural materials for nuclear systems. (author)

  10. Discriminative Elastic-Net Regularized Linear Regression.

    Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen

    2017-03-01

    In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.

  11. In Situ elastic property sensors

    Olness, D.; Hirschfeld, T.; Kishiyama, K.; Steinhaus, R.

    1987-01-01

    Elasticity is an important property of many materials. Loss of elasticity can have serious consequences, such as when a gasket deteriorates and permits leakage of an expensive or hazardous material, or when a damping system begins to go awry. Loss of elasticity can also provide information related to an ancillary activity such as degradation of electrical insulation, loss of plasticizer in a plastic, or changes in permeability of a thin film. In fact, the mechanical properties of most organic compounds are altered when the compound degrades. Thus, a sensor for the mechanical properties can be used to monitor associated characteristics as well. A piezoelectric material in contact with an elastomer forms an oscillating system that can provide real-time elasticity monitoring. This combination constitutes a forced harmonic oscillator with damping provided by the elastomer. A ceramic oscillator with a total volume of a few mm 3 was used as an elasticity sensor. It was placed in intimate contact with an elastomer and then monitored remotely with a simple oscillator circuit and standard frequency counting electronics. Resonant frequency shifts and changes in Q value were observed corresponding to changes in ambient temperature and/or changes in pressure applied to the sample. Elastomer samples pretreated with ozone (to simulate aging) showed changes in Q value and frequency response, even though there were no visible changes in the elastic samples

  12. Non-linear elastic thermal stress analysis with phase changes

    Amada, S.; Yang, W.H.

    1978-01-01

    The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)

  13. Isogeometric BDDC deluxe preconditioners for linear elasticity

    Pavarino, L. F.

    2018-03-14

    Balancing Domain Decomposition by Constraints (BDDC) preconditioners have been shown to provide rapidly convergent preconditioned conjugate gradient methods for solving many of the very ill-conditioned systems of algebraic equations which often arise in finite element approximations of a large variety of problems in continuum mechanics. These algorithms have also been developed successfully for problems arising in isogeometric analysis. In particular, the BDDC deluxe version has proven very successful for problems approximated by Non-Uniform Rational B-Splines (NURBS), even those of high order and regularity. One main purpose of this paper is to extend the theory, previously fully developed only for scalar elliptic problems in the plane, to problems of linear elasticity in three dimensions. Numerical experiments supporting the theory are also reported. Some of these experiments highlight the fact that the development of the theory can help to decrease substantially the dimension of the primal space of the BDDC algorithm, which provides the necessary global component of these preconditioners, while maintaining scalability and good convergence rates.

  14. Isogeometric BDDC deluxe preconditioners for linear elasticity

    Pavarino, L. F.; Scacchi, S.; Widlund, O. B.; Zampini, Stefano

    2018-01-01

    Balancing Domain Decomposition by Constraints (BDDC) preconditioners have been shown to provide rapidly convergent preconditioned conjugate gradient methods for solving many of the very ill-conditioned systems of algebraic equations which often arise in finite element approximations of a large variety of problems in continuum mechanics. These algorithms have also been developed successfully for problems arising in isogeometric analysis. In particular, the BDDC deluxe version has proven very successful for problems approximated by Non-Uniform Rational B-Splines (NURBS), even those of high order and regularity. One main purpose of this paper is to extend the theory, previously fully developed only for scalar elliptic problems in the plane, to problems of linear elasticity in three dimensions. Numerical experiments supporting the theory are also reported. Some of these experiments highlight the fact that the development of the theory can help to decrease substantially the dimension of the primal space of the BDDC algorithm, which provides the necessary global component of these preconditioners, while maintaining scalability and good convergence rates.

  15. Temperature dependence of elastic properties of paratellurite

    Silvestrova, I.M.; Pisarevskii, Y.V.; Senyushenkov, P.A.; Krupny, A.I.

    1987-01-01

    New data are presented on the temperature dependence of the elastic wave velocities, elastic stiffness constants, and thermal expansion of paratellurite. It is shown that the external pressure appreciably influences the elastic properties of TeO 2 , especially the temperature dependence of the elastic modulus connected with the crystal soft mode. (author)

  16. Identification of elastic properties of composite plate

    Kovalovs, A; Rucevskis, S

    2011-01-01

    Composite laminates are used extensively in the aerospace industry, especially for the fabrication of high-performance structures. The determination of stiffness parameters for complex materials, such as fibre-reinforced composites, is much more complicated than for isotropic materials. A conventional way is testing the coupon specimens, which are manufactured by technology similar to that used for the real, large structures. When such a method is used, the question arises of whether the material properties obtained from the coupon tests are the same as those in the large structure. Therefore, the determination of actual material properties for composite laminates using non-destructive evaluation techniques has been widely investigated. A number of various non-destructive evaluation techniques have been proposed for determining the material properties of composite laminates. In the present study, attention is focused on the identification of the elastic properties of laminated plate using vibration test data. The problem associated with vibration testing is converting the measured modal frequencies to elastic constants. A standard method for solving this problem is the use of a numerical-experimental model and optimization techniques. The identification functional represents the gap between the numerical model response and the experimental one. This gap should be minimized, taking into account the side constraints on the design variables (elastic constants). The minimization problem is solved by using non-linear mathematical programming techniques and sensitivity analysis. The results obtained were verified by comparing the experimentally measured eigenfrequencies with the numerical ones obtained by FEM at the point of optima

  17. Non-linear theory of elasticity

    Lurie, AI

    2012-01-01

    This book examines in detail the Theory of Elasticity which is a branch of the mechanics of a deformable solid. Special emphasis is placed on the investigation of the process of deformation within the framework of the generally accepted model of a medium which, in this case, is an elastic body. A comprehensive list of Appendices is included providing a wealth of references for more in depth coverage. The work will provide both a stimulus for future research in this field as well as useful reference material for many years to come.

  18. A Linear Theory for Pretwisted Elastic Beams

    Krenk, Steen

    1983-01-01

    contains a general system of differential equations and gives explicit solutions for homogenous extension, torsion, and bending. The theory accounts explicitly for the shear center, the elastic center, and the axis of pretwist. The resulting torsion-extension coupling is in agreement with a recent...

  19. Asymptotic expansions for high-contrast linear elasticity

    Poveda, Leonardo A.; Huepo, Sebastian; Calo, Victor M.; Galvis, Juan

    2015-01-01

    We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.

  20. Asymptotic expansions for high-contrast linear elasticity

    Poveda, Leonardo A.

    2015-03-01

    We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.

  1. Elastic properties of spherically anisotropic piezoelectric composites

    En-Bo, Wei; Guo-Qing, Gu; Ying-Ming, Poon

    2010-01-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed. (condensed matter: structure, thermal and mechanical properties)

  2. Non-linear theory of elasticity and optimal design

    Ratner, LW

    2003-01-01

    In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by the stress distributed in a structure can be calculated. The new non-linear theory of elasticity allows one to determine the actual individual limit of elasticity/failure of a structure using a simple non-destructive method of measurement of deformation on the model of a structure while presently it

  3. Calculation of elastic-plastic strain ranges for fatigue analysis based on linear elastic stresses

    Sauer, G.

    1998-01-01

    Fatigue analysis requires that the maximum strain ranges be known. These strain ranges are generally computed from linear elastic analysis. The elastic strain ranges are enhanced by a factor K e to obtain the total elastic-plastic strain range. The reliability of the fatigue analysis depends on the quality of this factor. Formulae for calculating the K e factor are proposed. A beam is introduced as a computational model for determining the elastic-plastic strains. The beam is loaded by the elastic stresses of the real structure. The elastic-plastic strains of the beam are compared with the beam's elastic strains. This comparison furnishes explicit expressions for the K e factor. The K e factor is tested by means of seven examples. (orig.)

  4. On the use of elastic-plastic material characteristics for linear-elastic component assessments

    Kussmaul, K.; Silcher, H.; Eisele, U.

    1995-01-01

    In this paper the procedure of safety assessment of components by fracture mechanics analysis as recommended in TECDOC 717 is applied to two standard specimens of ductile cast iron. It is shown that the use of a pseudo-elastic K IJ -value in linear elastic safety analysis may lead to non-conservative results, when elastic-plastic material behaviour can be expected. (author)

  5. Elastic properties of Gum Metal

    Kuramoto, Shigeru; Furuta, Tadahiko; Hwang, Junghwan; Nishino, Kazuaki; Saito, Takashi

    2006-01-01

    In situ X-ray diffraction measurements under tensile loading and dynamic mechanical analysis were performed to investigate the mechanisms of elastic deformation in Gum Metal. Tensile stress-strain curves for Gum Metal indicate that cold working substantially decreases the elastic modulus while increasing the yield strength, thereby confirming nonlinearity in the elastic range. The gradient of each curve decreased continuously to about one-third its original value near the elastic limit. As a result of this decrease in elastic modulus and nonlinearity, elastic deformability reaches 2.5% after cold working. Superelasticity is attributed to stress-induced martensitic transformations, although the large elastic deformation in Gum Metal is not accompanied by a phase transformation

  6. Elastic properties of graphite and interstitial defects

    Ayasse, J.-B.

    1977-01-01

    The graphite elastic constants C 33 and C 44 , reflecting the interaction of the graphitic planes, were experimentally measured as a function of irradiation and temperature. A model of non-central strength atomic interaction was established to explain the experimental results obtained. This model is valid at zero temperature. The temperature dependence of the elastic properties was analyzed. The influence of the elastic property variations on the specific heat of the lattice at very low temperature was investigated [fr

  7. Elastic properties of gamma-Pu by resonant ultrasound spectroscopy

    Migliori, Albert [Los Alamos National Laboratory; Betts, J [Los Alamos National Laboratory; Trugman, A [Los Alamos National Laboratory; Mielke, C H [Los Alamos National Laboratory; Mitchell, J N [Los Alamos National Laboratory; Ramos, M [Los Alamos National Laboratory; Stroe, I [WORXESTER, MA

    2009-01-01

    Despite intense experimental and theoretical work on Pu, there is still little understanding of the strange properties of this metal. We used resonant ultrasound spectroscopy method to investigate the elastic properties of pure polycrystalline Pu at high temperatures. Shear and longitudinal elastic moduli of the {gamma}-phase of Pu were determined simultaneously and the bulk modulus was computed from them. A smooth linear and large decrease of all elastic moduli with increasing temperature was observed. We calculated the Poisson ratio and found that it increases from 0.242 at 519K to 0.252 at 571K.

  8. Elastic Property Simulation of Nano-particle Reinforced Composites

    He Jiawei

    2016-01-01

    Full Text Available A series of numerical micro-mechanical models for two kinds of particle (cylindrical and discal particle reinforced composites are developed to investigate the effect of microstructural parameters on the elastic properties of composites. The effects of both the degree of particle clustering and particle’s shape on the elastic mechanical properties of composites are investigated. In addition, single particle unit cell approximation is good enough for the analysis of the effect of averaged parameters when only linear elastic response is considered without considering the particle clustering in particle-reinforced composites.

  9. Quantification of local and global elastic anisotropy in ultrafine grained gradient microstructures, produced by linear flow splitting

    Niehuesbernd, Jörn; Müller, Clemens; Pantleon, Wolfgang

    2013-01-01

    . Consequently, the macroscopic elastic behavior results from the local elastic properties within the gradient. In the present investigation profiles produced by the linear flow splitting process were examined with respect to local and global elastic anisotropy, which develops during the complex forming process...

  10. Vectorized Matlab Codes for Linear Two-Dimensional Elasticity

    Jonas Koko

    2007-01-01

    Full Text Available A vectorized Matlab implementation for the linear finite element is provided for the two-dimensional linear elasticity with mixed boundary conditions. Vectorization means that there is no loop over triangles. Numerical experiments show that our implementation is more efficient than the standard implementation with a loop over all triangles.

  11. Extracting real-crack properties from non-linear elastic behaviour of rocks: abundance of cracks with dominating normal compliance and rocks with negative Poisson ratios

    V. Y. Zaitsev

    2017-09-01

    Full Text Available Results of examination of experimental data on non-linear elasticity of rocks using experimentally determined pressure dependences of P- and S-wave velocities from various literature sources are presented. Overall, over 90 rock samples are considered. Interpretation of the data is performed using an effective-medium description in which cracks are considered as compliant defects with explicitly introduced shear and normal compliances without specifying a particular crack model with an a priori given ratio of the compliances. Comparison with the experimental data indicated abundance (∼ 80 % of cracks with the normal-to-shear compliance ratios that significantly exceed the values typical of conventionally used crack models (such as penny-shaped cuts or thin ellipsoidal cracks. Correspondingly, rocks with such cracks demonstrate a strongly decreased Poisson ratio including a significant (∼ 45 % portion of rocks exhibiting negative Poisson ratios at lower pressures, for which the concentration of not yet closed cracks is maximal. The obtained results indicate the necessity for further development of crack models to account for the revealed numerous examples of cracks with strong domination of normal compliance. Discovering such a significant number of naturally auxetic rocks is in contrast to the conventional viewpoint that occurrence of a negative Poisson ratio is an exotic fact that is mostly discussed for artificial structures.

  12. On the hyperbolicity condition in linear elasticity

    Remigio Russo

    1991-05-01

    Full Text Available This talk, which is mainly expository and based on [2-5], discusses the hyperbolicity conditions in linear elastodynamics. Particular emphasis is devoted to the key role it plays in the uniqueness questions associated with the mixed boundary-initial value problem in unbounded domains.

  13. Homogenized Elastic Properties of Graphene for Small Deformations

    Jurica Sorić

    2013-09-01

    Full Text Available In this paper, we provide the quantification of the linear and non-linear elastic mechanical properties of graphene based upon the judicious combination of molecular mechanics simulation results and homogenization methods. We clarify the influence on computed results by the main model features, such as specimen size, chirality of microstructure, the effect of chosen boundary conditions (imposed displacement versus force and the corresponding plane stress transformation. The proposed approach is capable of explaining the scatter of the results for computed stresses, energy and stiffness and provides the bounds on graphene elastic properties, which are quite important in modeling and simulation of the virtual experiments on graphene-based devices.

  14. Elastic properties of icosahedral and decagonal quasicrystals

    Chernikov, Mikhail A

    2005-01-01

    Problems associated with determining the symmetry properties of the elastic constant tensor of icosahedral and decagonal quasicrystals are reviewed. Notions of elastic isotropy and anisotropy are considered, and their relation to the components of the elastic constant tensor is discussed. The question is addressed of how to determine experimentally whether a system under study is elastically isotropic. Experimental results produced by resonant ultrasound spectroscopy of icosahedral Al-Li-Cu and decagonal Al-Ni-Co single quasicrystals are discussed in detail. (methodological notes)

  15. Effective elastic properties of damaged isotropic solids

    Lee, U Sik

    1998-01-01

    In continuum damage mechanics, damaged solids have been represented by the effective elastic stiffness into which local damage is smoothly smeared. Similarly, damaged solids may be represented in terms of effective elastic compliances. By virtue of the effective elastic compliance representation, it may become easier to derive the effective engineering constants of damaged solids from the effective elastic compliances, all in closed form. Thus, in this paper, by using a continuum modeling approach based on both the principle of strain energy equivalence and the equivalent elliptical micro-crack representation of local damage, the effective elastic compliance and effective engineering constants are derived in terms of the undamaged (virgin) elastic properties and a scalar damage variable for both damaged two-and three-dimensional isotropic solids

  16. Emergence of linear elasticity from the atomistic description of matter

    Cakir, Abdullah, E-mail: acakir@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University (Singapore); Pica Ciamarra, Massimo [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University (Singapore); Dipartimento di Scienze Fisiche, CNR–SPIN, Università di Napoli Federico II, I-80126 Napoli (Italy)

    2016-08-07

    We investigate the emergence of the continuum elastic limit from the atomistic description of matter at zero temperature considering how locally defined elastic quantities depend on the coarse graining length scale. Results obtained numerically investigating different model systems are rationalized in a unifying picture according to which the continuum elastic limit emerges through a process determined by two system properties, the degree of disorder, and a length scale associated to the transverse low-frequency vibrational modes. The degree of disorder controls the emergence of long-range local shear stress and shear strain correlations, while the length scale influences the amplitude of the fluctuations of the local elastic constants close to the jamming transition.

  17. Emergence of linear elasticity from the atomistic description of matter

    Cakir, Abdullah; Pica Ciamarra, Massimo

    2016-01-01

    We investigate the emergence of the continuum elastic limit from the atomistic description of matter at zero temperature considering how locally defined elastic quantities depend on the coarse graining length scale. Results obtained numerically investigating different model systems are rationalized in a unifying picture according to which the continuum elastic limit emerges through a process determined by two system properties, the degree of disorder, and a length scale associated to the transverse low-frequency vibrational modes. The degree of disorder controls the emergence of long-range local shear stress and shear strain correlations, while the length scale influences the amplitude of the fluctuations of the local elastic constants close to the jamming transition.

  18. A Lagrangian meshfree method applied to linear and nonlinear elasticity.

    Walker, Wade A

    2017-01-01

    The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code.

  19. Non-linear waves in heterogeneous elastic rods via homogenization

    Quezada de Luna, Manuel

    2012-03-01

    We consider the propagation of a planar loop on a heterogeneous elastic rod with a periodic microstructure consisting of two alternating homogeneous regions with different material properties. The analysis is carried out using a second-order homogenization theory based on a multiple scale asymptotic expansion. © 2011 Elsevier Ltd. All rights reserved.

  20. A Galerkin approximation for linear elastic shallow shells

    Figueiredo, I. N.; Trabucho, L.

    1992-03-01

    This work is a generalization to shallow shell models of previous results for plates by B. Miara (1989). Using the same basis functions as in the plate case, we construct a Galerkin approximation of the three-dimensional linearized elasticity problem, and establish some error estimates as a function of the thickness, the curvature, the geometry of the shell, the forces and the Lamé costants.

  1. Linear models of income patterns in consumer demand for foods and evaluation of its elasticity

    Pavel Syrovátka

    2005-01-01

    Full Text Available The paper is focused on the use of the linear constructions for developing of Engel’s demand models in the field of the food-consumer demand. In the theoretical part of the paper, the linear approximations of this demand models are analysed on the bases of the linear interpolation. In the same part of this text, the hyperbolic elasticity function was defined for the linear Engel model. The behaviour of the hyperbolic elasticity function and its properties were consequently investigated too. The behaviour of the determined elasticity function was investigated according to the values of the intercept point and the direction parameter in the original linear Engel model. The obtained theoretical findings were tested using the real data of Czech Statistical Office. The developed linear Engel model was explicitly dynamised, because the achieved database was formed into the time series. With respect to the two variables definitions of the hyperbolic function in the theoretical part of the text, the determined dynamic model of the Engel demand for food was transformed into the form with parametric intercept point:ret* = At + 0.0946 · rmt*,where the values of absolute member are defined as:At = 1773.0973 + 9.3064 · t – 0.3023 · t2; (t = 1, 2, ... 32.The value of At in the parametric linear model of Engel consumer demand for food was during the observed period (1995–2002 always positive. Thus, the hyperbolic elasticity function achieved the elasticity coefficients from the interval:ηt ∈〈+0; +1.Within quantitative analysis of Engel demand for food in the Czech Republic during the given time period, it was founded, that income elasticity of food expenditures of the average Czech household was moved between +0.4080 and +0.4511. The Czech-household demand for food is thus income inelastic with the normal income reactions.

  2. Elastic properties of some transition metal arsenides

    Nayak, Vikas; Verma, U. P.; Bisht, P. S.

    2018-05-01

    The elastic properties of transition metal arsenides (TMAs) have been studied by employing Wien2K package based on density functional theory in the zinc blende (ZB) and rock salt (RS) phase treating valance electron scalar relativistically. Further, we have also treated them non-relativistically to find out the relativistic effect. We have calculated the elastic properties by computing the volume conservative stress tensor for small strains, using the method developed by Charpin. The obtained results are discussed in paper. From the obtained results, it is clear that the values of C11 > C12 and C44 for all the compounds. The values of shear moduli of these compounds are also calculated. The internal parameter for these compounds shows that ZB structures of these compounds have high resistance against bond order. We find that the estimated elastic constants are in good agreement with the available data.

  3. A reexamination of some puzzling results in linearized elasticity

    University of North Carolina at Charlotte, Charlotte, NC 28223-0001, USA e-mail: jogc@mecheng.iisc.ernet.in; ..... ˆT (F) = C[ϵ] + o(∇u), where ϵ = [∇u+(∇u)T ]/2, and C = D ˆT (I) is the elasticity tensor, and one also linearizes the body force vector to get b = QT [ b∗ − ¨c. ] − ˙ × X − × ( × X) − 2 × v,. (5) where X is the position ...

  4. Membrane elastic properties and cell function.

    Bruno Pontes

    Full Text Available Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.

  5. Non-linear buckling of an FGM truncated conical shell surrounded by an elastic medium

    Sofiyev, A.H.; Kuruoglu, N.

    2013-01-01

    In this paper, the non-linear buckling of the truncated conical shell made of functionally graded materials (FGMs) surrounded by an elastic medium has been studied using the large deformation theory with von Karman–Donnell-type of kinematic non-linearity. A two-parameter foundation model (Pasternak-type) is used to describe the shell–foundation interaction. The FGM properties are assumed to vary continuously through the thickness direction. The fundamental relations, the modified Donnell type non-linear stability and compatibility equations of the FGM truncated conical shell resting on the Pasternak-type elastic foundation are derived. By using the Superposition and Galerkin methods, the non-linear stability equations for the FGM truncated conical shell is solved. Finally, influences of variations of Winkler foundation stiffness and shear subgrade modulus of the foundation, compositional profiles and shell characteristics on the dimensionless critical non-linear axial load are investigated. The present results are compared with the available data for a special case. -- Highlights: • Nonlinear buckling of FGM conical shell surrounded by elastic medium is studied. • Pasternak foundation model is used to describe the shell–foundation interaction. • Nonlinear basic equations are derived. • Problem is solved by using Superposition and Galerkin methods. • Influences of various parameters on the nonlinear critical load are investigated

  6. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

    Wang, John T.

    2010-01-01

    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  7. Elastic Properties and Stability of Physisorbed Graphene

    Philippe Lambin

    2014-05-01

    Full Text Available Graphene is an ultimate membrane that mixes both flexibility and mechanical strength, together with many other remarkable properties. A good knowledge of the elastic properties of graphene is prerequisite to any practical application of it in nanoscopic devices. Although this two-dimensional material is only one atom thick, continuous-medium elasticity can be applied as long as the deformations vary slowly on the atomic scale and provided suitable parameters are used. The present paper aims to be a critical review on this topic that does not assume a specific pre-knowledge of graphene physics. The basis for the paper is the classical Kirchhoff-Love plate theory. It demands a few parameters that can be addressed from many points of view and fitted to independent experimental data. The parameters can also be estimated by electronic structure calculations. Although coming from diverse backgrounds, most of the available data provide a rather coherent picture that gives a good degree of confidence in the classical description of graphene elasticity. The theory can than be used to estimate, e.g., the buckling limit of graphene bound to a substrate. It can also predict the size above which a scrolled graphene sheet will never spontaneously unroll in free space.

  8. CONCERNING THE ELASTIC ORTHOTROPIC MODEL APPLIED TO WOOD ELASTIC PROPERTIES

    Tadeu Mascia,Nilson

    2003-01-01

    Among the construction materials, wood reveals an orthotropic pattern, because of unique characteristics in its internal structure with three axes of wood biological directions (longitudinal, tangential and radial). elastic symmetry: longitudinal, tangential and radial, reveals an orthotropic pattern. The effect of grain angle orientation onin the elastic modulus constitutes the fundamental cause forof wood anisotropy. It is responsible for the greatest changes in the values of the constituti...

  9. Structural phase transition and elastic properties of mercury chalcogenides

    Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Shriya, S. [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria)

    2012-08-15

    Pressure induced structural transition and elastic properties of ZnS-type (B3) to NaCl-type (B1) structure in mercury chalcogenides (HgX; X = S, Se and Te) are presented. An effective interionic interaction potential (EIOP) with long-range Coulomb, as well charge transfer interactions, Hafemeister and Flygare type short-range overlap repulsion extended up to the second neighbor ions and van der Waals interactions are considered. Emphasis is on the evaluation of the pressure dependent Poisson's ratio {nu}, the ratio R{sub BT/G} of B (bulk modulus) over G (shear modulus), anisotropy parameter, Shear and Young's modulus, Lame constant, Kleinman parameter, elastic wave velocity and thermodynamical property as Debye temperature. The Poisson's ratio behavior infers that Mercury chalcogenides are brittle in nature. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of elastic and thermodynamical properties explicitly the ductile (brittle) nature of HgX and still awaits experimental confirmations. Highlights: Black-Right-Pointing-Pointer Vast volume discontinuity in phase diagram infers transition from ZnS to NaCl structure. Black-Right-Pointing-Pointer The shear elastic constant C{sub 44} is nonzero confirms the mechanical stability. Black-Right-Pointing-Pointer Pressure dependence of {theta}{sub D} infers the softening of lattice with increasing pressure. Black-Right-Pointing-Pointer Estimated bulk, shear and tetragonal moduli satisfied elastic stability criteria. Black-Right-Pointing-Pointer In both B3 and B1 phases, C{sub 11} and C{sub 12} increase linearly with pressure.

  10. Elastic properties of liquid and solid argon in nanopores

    Schappert, Klaus; Pelster, Rolf

    2013-01-01

    We have measured sorption isotherms and determined the intrinsic longitudinal elastic modulus β Ar,ads of nanoconfined material via ultrasonic measurements combined with a special effective medium analysis. In the liquid regime the adsorbate only contributes to the measured effective properties when the pores are completely filled and the modulus is bulklike. At partial fillings its contribution is cancelled out by the high compressibility of the vapour phase. In contrast, at lower temperatures frozen argon as well as underlying liquid surface layers cause a linear increase of the effective longitudinal modulus upon filling. During sorption the contribution of the liquid surface layers near the pore wall β Ar,surf increases with the thickness of the solid layers reaching the bulk value β Ar,liquid only in the limit of complete pore filling. We interpret this effect as due to the gradual stiffening of the solid argon membrane. The measurements and their analysis show that longitudinal ultrasonic waves are well suited to the study of the elastic properties and liquid–solid phase transitions in porous systems. This method should also help to detect the influence of nanoconfinement on elastic properties in further research. (paper)

  11. Dynamic analysis of aircraft impact using the linear elastic finite element codes FINEL, SAP and STARDYNE

    Lundsager, P.; Krenk, S.

    1975-08-01

    The static and dynamic response of a cylindrical/ spherical containment to a Boeing 720 impact is computed using 3 different linear elastic computer codes: FINEL, SAP and STARDYNE. Stress and displacement fields are shown together with time histories for a point in the impact zone. The main conclusions from this study are: - In this case the maximum dynamic load factors for stress and displacements were close to 1, but a static analysis alone is not fully sufficient. - More realistic load time histories should be considered. - The main effects seem to be local. The present study does not indicate general collapse from elastic stresses alone. - Further study of material properties at high rates is needed. (author)

  12. Morphology and linear-elastic moduli of random network solids.

    Nachtrab, Susan; Kapfer, Sebastian C; Arns, Christoph H; Madadi, Mahyar; Mecke, Klaus; Schröder-Turk, Gerd E

    2011-06-17

    The effective linear-elastic moduli of disordered network solids are analyzed by voxel-based finite element calculations. We analyze network solids given by Poisson-Voronoi processes and by the structure of collagen fiber networks imaged by confocal microscopy. The solid volume fraction ϕ is varied by adjusting the fiber radius, while keeping the structural mesh or pore size of the underlying network fixed. For intermediate ϕ, the bulk and shear modulus are approximated by empirical power-laws K(phi)proptophin and G(phi)proptophim with n≈1.4 and m≈1.7. The exponents for the collagen and the Poisson-Voronoi network solids are similar, and are close to the values n=1.22 and m=2.11 found in a previous voxel-based finite element study of Poisson-Voronoi systems with different boundary conditions. However, the exponents of these empirical power-laws are at odds with the analytic values of n=1 and m=2, valid for low-density cellular structures in the limit of thin beams. We propose a functional form for K(ϕ) that models the cross-over from a power-law at low densities to a porous solid at high densities; a fit of the data to this functional form yields the asymptotic exponent n≈1.00, as expected. Further, both the intensity of the Poisson-Voronoi process and the collagen concentration in the samples, both of which alter the typical pore or mesh size, affect the effective moduli only by the resulting change of the solid volume fraction. These findings suggest that a network solid with the structure of the collagen networks can be modeled in quantitative agreement by a Poisson-Voronoi process. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Elastic properties of superconducting bulk metallic glasses

    Hempel, Marius

    2015-01-01

    Within the framework of this thesis the elastic properties of a superconducting bulk metallic glass between 10 mK and 300 K were first investigated. In order to measure the entire temperature range, in particular the low temperature part, new experimental techniques were developed. Using an inductive readout scheme for a double paddle oscillator it was possible to determine the internal friction and the relative change of sound velocity of bulk metallic glasses with high precision. This allowed for a detailed comparison of the data with different models. The analysis focuses on the low temperature regime where the properties of glassy materials are governed by atomic tunneling systems as described by the tunneling model. The influence of conduction electrons in the normal conducting state and quasiparticles in the superconducting state of the glass were accounted for in the theoretical description, resulting in a good agreement over a large temperature range between measured data and prediction of the tunneling model. This allowed for a direct determination of the coupling constant between electrons and tunneling systems. In the vicinity of the transition temperature Tc the data can only be described if a modified distribution function of the tunneling parameters is applied.

  14. Surface elastic properties in silicon nanoparticles

    Melis, Claudio; Giordano, Stefano; Colombo, Luciano

    2017-09-01

    The elastic behavior of the external surface of a solid body plays a key role in nanomechanical phenomena. While bulk elasticity enjoys the benefits of a robust theoretical understanding, many surface elasticity features remain unexplored: some of them are here addressed by blending together continuum elasticity and atomistic simulations. A suitable readdressing of the surface elasticity theory allows to write the balance equations in arbitrary curvilinear coordinates and to investigate the dependence of the surface elastic parameters on the mean and Gaussian curvatures of the surface. In particular, we predict the radial strain induced by surface effects in spherical and cylindrical silicon nanoparticles and provide evidence that the surface parameters are nearly independent of curvatures and, therefore, of the surface conformation.

  15. Boron nitride elastic and thermal properties. Irradiation effects

    Jager, Bernard.

    1977-01-01

    The anisotropy of boron nitride (BN) and especially thermal and elastic properties were studied. Specific heat and thermal conductivity between 1.2 and 300K, thermal conductivity between 4 and 350K and elastic constants C 33 and C 44 were measured. BN was irradiated with electrons at 77K and with neutrons at 27K to determine properties after irradiation [fr

  16. Elastic properties of suspended multilayer WSe{sub 2}

    Zhang, Rui, E-mail: rui.zhang@ed.ac.uk; Cheung, Rebecca [Scottish Microelectronics Centre, Alexander Crum Brown Road, The University of Edinburgh, King' s Buildings, Edinburgh EH9 3FF (United Kingdom); Koutsos, Vasileios [Institute for Materials and Processes, School of Engineering, The University of Edinburgh, King' s Buildings, Edinburgh EH9 3FB (United Kingdom)

    2016-01-25

    We report the experimental determination of the elastic properties of suspended multilayer WSe{sub 2}, a promising two-dimensional (2D) semiconducting material combined with high optical quality. The suspended WSe{sub 2} membranes have been fabricated by mechanical exfoliation of bulk WSe{sub 2} and transfer of the exfoliated multilayer WSe{sub 2} flakes onto SiO{sub 2}/Si substrates pre-patterned with hole arrays. Then, indentation experiments have been performed on these membranes with an atomic force microscope. The results show that the 2D elastic modulus of the multilayer WSe{sub 2} membranes increases linearly while the prestress decreases linearly as the number of layers increases. The interlayer interaction in WSe{sub 2} has been observed to be strong enough to prevent the interlayer sliding during the indentation experiments. The Young's modulus of multilayer WSe{sub 2} (167.3 ± 6.7 GPa) is statistically independent of the thickness of the membranes, whose value is about two thirds of other most investigated 2D semiconducting transition metal dichalcogenides, namely, MoS{sub 2} and WS{sub 2}. Moreover, the multilayer WSe{sub 2} can endure ∼12.4 GPa stress and ∼7.3% strain without fracture or mechanical degradation. The 2D WSe{sub 2} can be an attractive semiconducting material for application in flexible optoelectronic devices and nano-electromechanical systems.

  17. Modelling the elastic properties of cellulose nanopaper

    Mao, Rui; Goutianos, Stergios; Tu, Wei

    2017-01-01

    The elastic modulus of cellulose nanopaper was predicted using a two-dimensional (2D) micromechanical fibrous network model. The elastic modulus predicted by the network model was 12 GPa, which is well within the range of experimental data for cellulose nanopapers. The stress state in the network...

  18. Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation.

    Jessamine P Winer

    2009-07-01

    Full Text Available Most tissue cells grown in sparse cultures on linearly elastic substrates typically display a small, round phenotype on soft substrates and become increasingly spread as the modulus of the substrate increases until their spread area reaches a maximum value. As cell density increases, individual cells retain the same stiffness-dependent differences unless they are very close or in molecular contact. On nonlinear strain-stiffening fibrin gels, the same cell types become maximally spread even when the low strain elastic modulus would predict a round morphology, and cells are influenced by the presence of neighbors hundreds of microns away. Time lapse microscopy reveals that fibroblasts and human mesenchymal stem cells on fibrin deform the substrate by several microns up to five cell lengths away from their plasma membrane through a force limited mechanism. Atomic force microscopy and rheology confirm that these strains locally and globally stiffen the gel, depending on cell density, and this effect leads to long distance cell-cell communication and alignment. Thus cells are acutely responsive to the nonlinear elasticity of their substrates and can manipulate this rheological property to induce patterning.

  19. Dispersive elastic properties of Dzyaloshinskii domain walls

    Pellegren, James; Lau, Derek; Sokalski, Vincent

    Recent studies on the asymmetric field-driven growth of magnetic bubble domains in perpendicular thin films exhibiting an interfacial Dzyaloshinskii-Moriya interaction (DMI) have provided a wealth of experimental evidence to validate models of creep phenomena, as key properties of the domain wall (DW) can be altered with the application of an external in-plane magnetic field. While asymmetric growth behavior has been attributed to the highly anisotropic DW energy, σ (θ) , which results from the combination of DMI and the in-plane field, many experimental results remain anomalous. In this work, we demonstrate that the anisotropy of DW energy alters the elastic response of the DW as characterized by the surface stiffness, σ (θ) = σ (θ) + σ (θ) , and evaluate the impact of this stiffness on the creep law. We find that at in-plane fields larger than and antiparallel to the effective field due to DMI, the DW stiffness decreases rapidly, suggesting that higher energy walls can actually become more mobile than their low energy counterparts. This result is consistent with experiments on CoNi multilayer films where velocity curves for domain walls with DMI fields parallel and antiparallel to the applied field cross over at high in-plane fields.

  20. Numerical investigation of elastic mechanical properties of graphene structures

    Georgantzinos, S.K.; Giannopoulos, G.I.; Anifantis, N.K.

    2010-01-01

    The computation of the elastic mechanical properties of graphene sheets, nanoribbons and graphite flakes using spring based finite element models is the aim of this paper. Interatomic bonded interactions as well as van der Waals forces between carbon atoms are simulated via the use of appropriate spring elements expressing corresponding potential energies provided by molecular theory. Each layer is idealized as a spring-like structure with carbon atoms represented by nodes while interatomic forces are simulated by translational and torsional springs with linear behavior. The non-bonded van der Waals interactions among atoms which are responsible for keeping the graphene layers together are simulated with the Lennard-Jones potential using appropriate spring elements. Numerical results concerning the Young's modulus, shear modulus and Poisson's ratio for graphene structures are derived in terms of their chilarity, width, length and number of layers. The numerical results from finite element simulations show good agreement with existing numerical values in the open literature.

  1. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure

    Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C.; Hao, Y.L.; Yang, R.

    2011-01-01

    Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C 11 , C 12 and C 44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.

  2. Structural, electronic and elastic properties of heavy fermion YbRh2 Laves phase compound

    Pawar, Harsha; Shugani, Mani; Aynyas, Mahendra; Sanyal, Sankar P.

    2018-05-01

    The structural, electronic and elastic properties of YbRh2 Laves phase intermetallic compound which crystallize in cubic (MgCu2-type) structure have been investigated using ab-initio full potential linearized augmented plane wave (FP- LAPW) method with LDA and LDA+U approximation. The calculated ground state properties such as lattice parameter (a0), bulk modulus (B) and its pressure derivative (B') are in good agreement with available experimental and theoretical data. The electronic properties are analyzed from band structures and density of states. Elastic constants are predicted first time for this compound which obeys the stability criteria for cubic system.

  3. Stress effects on the elastic properties of amorphous polymeric materials

    Caponi, S., E-mail: silvia.caponi@cnr.it, E-mail: silvia.corezzi@unipg.it [Istituto Officina dei Materiali del CNR (CNR-IOM) - Unità di Perugia, c/o Dipartimento di Fisica e Geologia, Perugia I-06100 (Italy); Corezzi, S., E-mail: silvia.caponi@cnr.it, E-mail: silvia.corezzi@unipg.it [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia (Italy); CNR-ISC (Istituto dei Sistemi Complessi), c/o Università di Roma “LaSapienza,” Piazzale A. Moro 2, I-00185 Roma (Italy); Mattarelli, M. [NiPS Laboratory, Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia (Italy); Fioretto, D. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia (Italy)

    2014-12-07

    Brillouin light scattering measurements have been used to study the stress induced modification in the elastic properties of two glass forming polymers: polybutadiene and epoxy-amine resin, prototypes of linear and network polymers, respectively. Following the usual thermodynamic path to the glass transition, polybutadiene has been studied as a function of temperature from the liquid well into the glassy phase. In the epoxy resin, the experiments took advantage of the system ability to reach the glass both via the chemical vitrification route, i.e., by increasing the number of covalent bonds among the constituent molecules, as well as via the physical thermal route, i.e., by decreasing the temperature. Independently from the particular way chosen to reach the glassy phase, the measurements reveal the signature of long range tensile stresses development in the glass. The stress presence modifies both the value of the sound velocities and their mutual relationship, so as to break the generalized Cauchy-like relation. In particular, when long range stresses, by improvise sample cracking, are released, the frequency of longitudinal acoustic modes increases more than 10% in polybutadiene and ∼4% in the epoxy resin. The data analysis suggests the presence of at least two different mechanisms acting on different length scales which strongly affect the overall elastic behaviour of the systems: (i) the development of tensile stress acting as a negative pressure and (ii) the development of anisotropy which increases its importance deeper and deeper in the glassy state.

  4. Elastic properties of fly ash-stabilized mixes

    Sanja Dimter

    2015-12-01

    Full Text Available Stabilized mixes are used in the construction of bearing layers in asphalt and concrete pavement structures. Two nondestructive methods: resonant frequency method and ultrasonic pulse velocity method, were used for estimation of elastic properties of fly ash–stabilized mixes. Stabilized mixes were designed containing sand from the river Drava and binder composed of different share of cement and fly ash. The aim of the research was to analyze the relationship between the dynamic modulus of elasticity determined by different nondestructive methods. Data showed that average value of elasticity modulus obtained by the ultrasound velocity method is lower than the values of elasticity modulus obtained by resonant frequency method. For further analysis and enhanced discussion of elastic properties of fly ash stabilized mixes, see Dimter et al. [1].

  5. First-order system least squares for the pure traction problem in planar linear elasticity

    Cai, Z.; Manteuffel, T.; McCormick, S.; Parter, S.

    1996-12-31

    This talk will develop two first-order system least squares (FOSLS) approaches for the solution of the pure traction problem in planar linear elasticity. Both are two-stage algorithms that first solve for the gradients of displacement, then for the displacement itself. One approach, which uses L{sup 2} norms to define the FOSLS functional, is shown under certain H{sup 2} regularity assumptions to admit optimal H{sup 1}-like performance for standard finite element discretization and standard multigrid solution methods that is uniform in the Poisson ratio for all variables. The second approach, which is based on H{sup -1} norms, is shown under general assumptions to admit optimal uniform performance for displacement flux in an L{sup 2} norm and for displacement in an H{sup 1} norm. These methods do not degrade as other methods generally do when the material properties approach the incompressible limit.

  6. Using strong nonlinearity and high-frequency vibrations to control effective properties of discrete elastic waveguides

    Lazarov, Boyan Stefanov; Thomsen, Jon Juel; Snaeland, Sveinn Orri

    2008-01-01

    The aim of this article is to investigate how highfrequency (HF) excitation, combined with strong nonlinear elastic material behavior, influences the effective material or structural properties for low-frequency excitation and wave propagation. The HF effects are demonstrated on discrete linear s...

  7. Structural, elastic, optoelectronic and magnetic properties of ...

    2017-09-22

    Sep 22, 2017 ... 1Laboratoire de Physique Quantique de la Matière et de la ... 5Department of Physics and Astronomy, College of Science, King Saud ... elastic moduli, CdHo2S4 is mechanically stable with a ductile nature and a noticeable.

  8. Response statistics of rotating shaft with non-linear elastic restoring forces by path integration

    Gaidai, Oleg; Naess, Arvid; Dimentberg, Michael

    2017-07-01

    Extreme statistics of random vibrations is studied for a Jeffcott rotor under uniaxial white noise excitation. Restoring force is modelled as elastic non-linear; comparison is done with linearized restoring force to see the force non-linearity effect on the response statistics. While for the linear model analytical solutions and stability conditions are available, it is not generally the case for non-linear system except for some special cases. The statistics of non-linear case is studied by applying path integration (PI) method, which is based on the Markov property of the coupled dynamic system. The Jeffcott rotor response statistics can be obtained by solving the Fokker-Planck (FP) equation of the 4D dynamic system. An efficient implementation of PI algorithm is applied, namely fast Fourier transform (FFT) is used to simulate dynamic system additive noise. The latter allows significantly reduce computational time, compared to the classical PI. Excitation is modelled as Gaussian white noise, however any kind distributed white noise can be implemented with the same PI technique. Also multidirectional Markov noise can be modelled with PI in the same way as unidirectional. PI is accelerated by using Monte Carlo (MC) estimated joint probability density function (PDF) as initial input. Symmetry of dynamic system was utilized to afford higher mesh resolution. Both internal (rotating) and external damping are included in mechanical model of the rotor. The main advantage of using PI rather than MC is that PI offers high accuracy in the probability distribution tail. The latter is of critical importance for e.g. extreme value statistics, system reliability, and first passage probability.

  9. Extreme non-linear elasticity and transformation optics

    Gersborg, Allan Roulund; Sigmund, Ole

    2010-01-01

    realizations correspond to minimizers of elastic energy potentials for extreme values of the mechanical Poisson's ratio ν . For TE (Hz) polarized light an incompressible transformation ν = 1/2 is ideal and for TM (E z) polarized light one should use a compressible transformation with negative Poissons's ratio......Transformation optics is a powerful concept for designing novel optical components such as high transmission waveguides and cloaking devices. The selection of specific transformations is a non-unique problem. Here we reveal that transformations which allow for all dielectric and broadband optical...... ν = -1. For the TM polarization the mechanical analogy corresponds to a modified Liao functional known from the transformation optics literature. Finally, the analogy between ideal transformations and solid mechanical material models automates and broadens the concept of transformation optics...

  10. A two-dimensional linear elasticity problem for anisotropic materials, solved with a parallelization code

    Mihai-Victor PRICOP

    2010-09-01

    Full Text Available The present paper introduces a numerical approach of static linear elasticity equations for anisotropic materials. The domain and boundary conditions are simple, to enhance an easy implementation of the finite difference scheme. SOR and gradient are used to solve the resulting linear system. The simplicity of the geometry is also useful for MPI parallelization of the code.

  11. Interpolation problem for the solutions of linear elasticity equations based on monogenic functions

    Grigor'ev, Yuri; Gürlebeck, Klaus; Legatiuk, Dmitrii

    2017-11-01

    Interpolation is an important tool for many practical applications, and very often it is beneficial to interpolate not only with a simple basis system, but rather with solutions of a certain differential equation, e.g. elasticity equation. A typical example for such type of interpolation are collocation methods widely used in practice. It is known, that interpolation theory is fully developed in the framework of the classical complex analysis. However, in quaternionic analysis, which shows a lot of analogies to complex analysis, the situation is more complicated due to the non-commutative multiplication. Thus, a fundamental theorem of algebra is not available, and standard tools from linear algebra cannot be applied in the usual way. To overcome these problems, a special system of monogenic polynomials the so-called Pseudo Complex Polynomials, sharing some properties of complex powers, is used. In this paper, we present an approach to deal with the interpolation problem, where solutions of elasticity equations in three dimensions are used as an interpolation basis.

  12. First Principles Calculations for X-ray Resonant Spectra and Elastic Properties

    Yongbin Lee

    2006-01-01

    In this thesis, we discuss applications of first principles methods to x-ray resonant spectra and elastic properties calculation. We start with brief reviews about theoretical background of first principles methods, such as density functional theory, local density approximation (LDA), LDA+U, and the linear augmented plane wave (LAPW) method to solve Kohn-Sham equations. After that we discuss x-ray resonant scattering (XRMS), x-ray magnetic circular dichroism (XMCD) and the branching problem in the heavy rare earths Ledges. In the last chapter we discuss the elastic properties of the second hardest material AlMgB 14

  13. Designing Linear Feedback Controller for Elastic Inverted Pendulum with Tip Mass

    Minh Hoang Nguyen

    2016-12-01

    Full Text Available This paper introduced a kind of cart and pole system. The pole in this system is not a solid beam but an elastic beam. The paper analyzed the dynamic equation of this complex system. Then, a linear feedback controller was designed to stabilize this model in order to keep the elastic beam balanced in the up-side position. The control results were proved to work well through simulation.

  14. Correlations between elastic moduli and properties in bulk metallic glasses

    Wang Weihua

    2006-01-01

    A survey of the elastic, mechanical, fragility, and thermodynamic properties of bulk metallic glasses (BMGs) and glass-forming liquids is presented. It is found that the elastic moduli of BMGs have correlations with the glass transition temperature, melting temperature, mechanical properties, and even liquid fragility. On the other hand, the elastic constants of available BMGs show a rough correlation with a weighted average of the elastic constants for the constituent elements. Although the theoretical and physical reasons for the correlations are to be clarified, these correlations could assist in understanding the long-standing issues of glass formation and the nature of glass and simulate the work of theorists. Based on the correlation, we show that the elastic moduli can assist in selecting alloying components for controlling the elastic properties and glass-forming ability of the BMGs and thus can guide BMG design. As case study, we report the formation of the families of rare-earth-based BMGs with controllable properties

  15. [Aortic elastic properties and its clinical significance in intracranial aneurysms].

    Pu, Zhao-xia; You, Xiang-dong; Weng, Wen-chao; Wang, Jian-an; Shi, Jian

    2011-09-01

    To investigate the aortic elastic properties and its clinical significance in intracranial aneurysms (IAs). One hundred and seven IAs patients (57 with hypertension) and 108 healthy subjects were recruited. The internal aortic diameters in systole and diastole were measured by the M-mode echocardiography, the aortic elasticity indexes were calculated and compared. The aortic distensibility (DIS) was lower and the aortic stiffness index (SI) was higher in IAs patients than those in controls (both P IAs patients with hypertension (IAs-HP) than those in IAs with no hypertension (P IAs patients and hypertension is closely related to the severity of aortic elasticity.

  16. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  17. Elastic properties of Fe-bearing wadsleyite at high pressures

    Mao, Z.; Jacobsen, S. D.; Jiang, F.; Smyth, J. R.; Holl, C. M.; Frost, D. J.; Duffy, T.

    2009-12-01

    The elastic properties of wadsleyite, thought to be the dominant phase from 410 to 520-km depth in the mantle, are essential to interpret the seismic images and profiles in the transition zone. Our previous experimental measurements showed that elasticity of Mg2SiO4 wadsleyite can be significantly reduced by hydration at high pressures (e.g. Mao et al., 2008a,b). These results provide the first constraints on the effect of hydration on the high-pressure sound velocities of wadsleyite, and are significantly important for identifying the potential hydrogen rich region in the Earth’s transition zone. Since mantle wadsleyite contains ~10 mol.% Fe, it is more important to investigate the combined effect of Fe and hydration on the elastic properties of wadsleyite. Here, we measured the single-crystal elasticity of wadsleyite with 1.0 wt.% H2O, Mg1.73Fe0.19SiO4H0.16, up to 12 GPa using Brillouin scattering. At ambient conditions, the aggregate bulk modulus, KS0, and shear modulus, G0, are 158.4(5) GPa and 99.2(3) GPa, respectively. Including the results of current and previous studies, we find that the elasticity of wadsleyite decreases linearly with Fe and H2O content according to relations (in GPa): KS0 = 171(3)-13.0(8)CH2O, G0 = 112(2)-8.8(3)CH2O-40(10)XFe, where CH2O is the concentration of hydrogen expressed as weight percent H2O, and XFe is the Fe molar fraction (XFe = Fe/(Mg+Fe)). Further high-pressure measurements showed that the presence of 1 wt.% H2O in Fe-bearing wadsleyite increases the pressure derivative of the shear modulus from 1.5(1) to 1.9(1). But Fe-bearing wadsleyite with this amount of H2O might have a similar pressure derivative of the bulk modulus (4.8(1)) similar to the corresponding anhydrous phase. Using our results, we computed the sound velocities of wadsleyite with 1 wt.% H2O up to 12 GPa at 300 K. Compared to Fe-bearing anhydrous wadsleyite, 1 wt.% H2O causes a 1.5(4)% reduction in the compressional velocity at 12 GPa, and a 1

  18. Some properties of the Boltzmann elastic collision operator

    Delcroix, J. L.; Salmon, J.

    1959-01-01

    The authors point out some properties (an important one is a variational property) of the Boltzmann elastic collision operator, valid in a more general framework than that of the Lorentz gas. Reprint of a paper published in 'Le journal de physique et le radium', tome 20, Jun 1959, p. 594-596 [fr

  19. The Simulation and Correction to the Brain Deformation Based on the Linear Elastic Model in IGS

    MU Xiao-lan; SONG Zhi-jian

    2004-01-01

    @@ The brain deformation is a vital factor affecting the precision of the IGS and it becomes a hotspot to simulate and correct the brain deformation recently.The research organizations, which firstly resolved the brain deformation with the physical models, have the Image Processing and Analysis department of Yale University, Biomedical Modeling Lab of Vanderbilt University and so on. The former uses the linear elastic model; the latter uses the consolidation model.The linear elastic model only needs to drive the model using the surface displacement of exposed brain cortex,which is more convenient to be measured in the clinic.

  20. Elastic properties of uniaxial-fiber reinforced composites - General features

    Datta, Subhendu; Ledbetter, Hassel; Lei, Ming

    The salient features of the elastic properties of uniaxial-fiber-reinforced composites are examined by considering the complete set of elastic constants of composites comprising isotropic uniaxial fibers in an isotropic matrix. Such materials exhibit transverse-isotropic symmetry and five independent elastic constants in Voigt notation: C(11), C(33), C(44), C(66), and C(13). These C(ij) constants are calculated over the entire fiber-volume-fraction range 0.0-1.0, using a scattered-plane-wave ensemple-average model. Some practical elastic constants such as the principal Young moduli and the principal Poisson ratios are considered, and the behavior of these constants is discussed. Also presented are the results for the four principal sound velocities used to study uniaxial-fiber-reinforced composites: v(11), v(33), v(12), and v(13).

  1. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations.

    Kim, Dae-Hyeong; Song, Jizhou; Choi, Won Mook; Kim, Hoon-Sik; Kim, Rak-Hwan; Liu, Zhuangjian; Huang, Yonggang Y; Hwang, Keh-Chih; Zhang, Yong-wei; Rogers, John A

    2008-12-02

    Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90 degrees in approximately 1 cm) and linear stretching to "rubber-band" levels of strain (e.g., up to approximately 140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics.

  2. The linear canonical transformation : definition and properties

    Bastiaans, Martin J.; Alieva, Tatiana; Healy, J.J.; Kutay, M.A.; Ozaktas, H.M.; Sheridan, J.T.

    2016-01-01

    In this chapter we introduce the class of linear canonical transformations, which includes as particular cases the Fourier transformation (and its generalization: the fractional Fourier transformation), the Fresnel transformation, and magnifier, rotation and shearing operations. The basic properties

  3. Elastic properties of synthetic materials for soft tissue modeling

    Mansy, H A; Grahe, J R; Sandler, R H

    2008-01-01

    Mechanical models of soft tissue are useful for studying vibro-acoustic phenomena. They may be used for validating mathematical models and for testing new equipment and techniques. The objective of this study was to measure density and visco-elastic properties of synthetic materials that can be used to build such models. Samples of nine different materials were tested under dynamic (0.5 Hz) compressive loading conditions. The modulus of elasticity of the materials was varied, whenever possible, by adding a softener during manufacturing. The modulus was measured over a nine month period to quantify the effect of ageing and softener loss on material properties. Results showed that a wide range of the compression elasticity modulus (10 to 1400 kPa) and phase (3.5 0 -16.7 0 ) between stress and strain were possible. Some materials tended to exude softener over time, resulting in a weight loss and elastic properties change. While the weight loss under normal conditions was minimal in all materials (<3% over nine months), loss under accelerated weight-loss conditions can reach 59%. In the latter case an elasticity modulus increase of up to 500% was measured. Key advantages and limitations of candidate materials were identified and discussed

  4. Size dependence of elastic mechanical properties of nanocrystalline aluminum

    Xu, Wenwu; Dávila, Lilian P., E-mail: ldavila@ucmerced.edu

    2017-04-24

    The effect of grain size on the elastic mechanical properties of nanocrystalline pure metal Al is quantified by molecular dynamics simulation method. In this work, the largest nanocrystalline Al sample has a mean grain size of 29.6 nm and contains over 100 millions atoms in the modeling system. The simulation results show that the elastic properties including elastic modulus and ultimate tensile strength of nanocrystalline Al are relatively insensitive to the variation of mean grain size above 13 nm yet they become distinctly grain size dependent below 13 nm. Moreover, at a grain size <13 nm, the elastic modulus decreases monotonically with decreasing grain size while the ultimate tensile strength of nanocrystalline Al initially decreases with the decrease of the grain size down to 9 nm and then increases with further reduction of grain size. The increase of ultimate tensile strength below 9 nm is believed to be a result of an extended elasticity in the ultrafine grain size nanocrystalline Al. This study can facilitate the prediction of varied mechanical properties for similar nanocrystalline materials and even guide testing and fabrication schemes of such materials.

  5. Permeability and elastic properties of cracked glass under pressure

    Ougier-Simonin, A.; GuéGuen, Y.; Fortin, J.; Schubnel, A.; Bouyer, F.

    2011-07-01

    Fluid flow in rocks is allowed through networks of cracks and fractures at all scales. In fact, cracks are of high importance in various applications ranging from rock elastic and transport properties to nuclear waste disposal. The present work aims at investigating thermomechanical cracking effects on elastic wave velocities, mechanical strength, and permeability of cracked glass under pressure. We performed the experiments on a triaxial cell at room temperature which allows for independent controls of the confining pressure, the axial stress, and pore pressure. We produced cracks in original borosilicate glass samples with a reproducible method (thermal treatment with a thermal shock of 300°C). The evolution of the elastic and transport properties have been monitored using elastic wave velocity sensors, strain gage, and flow measurements. The results obtained evidence for (1) a crack family with identified average aspect ratio and crack aperture, (2) a very small permeability which decreases as a power (exponential) function of pressure, and depends on (3) the crack aperture cube. We also show that permeability behavior of a cracked elastic brittle solid is reversible and independent of the fluid nature. Two independent methods (permeability and elastic wave velocity measurements) give these consistent results. This study provides data on the mechanical and transport properties of an almost ideal elastic brittle solid in which a crack population has been introduced. Comparisons with similar data on rocks allow for drawing interesting conclusions. Over the timescale of our experiments, our results do not provide any data on stress corrosion, which should be considered in further study.

  6. Elastic properties of various ceramic materials

    Zimmermann, H.

    1992-09-01

    The Young's modulus and the Poisson's ratio of various ceramics have been investigated at room temperature and compared with data from the literature. The ceramic materials investigated are Al 2 O 3 , Al 2 O 3 -ZrO 2 , MgAl 2 O 4 , LiAlO 2 , Li 2 SiO 3 , Li 4 SiO 4 , UO 2 , AlN, SiC, B 4 C, TiC, and TiB 2 . The dependence of the elastic moduli on porosity and temperature have been reviewed. Measurements were also performed on samples of Al 2 O 3 , AlN, and SiC, which had been irradiated to maximum neutron fluences of 1.6.10 26 n/m 2 (E>0.1 MeV) at different temperatures. The Young's modulus is nearly unaffected at fluences up to about 4.10 24 n/m 2 . However, it decreases with increasing neutron fluence and seems to reach a saturation value depending upon the irradiation temperature. The reduction of the Young's modulus is lowest in SiC. (orig.) [de

  7. Two-dimensional linear elasticity theory of magneto-electro-elastic plates considering surface and nonlocal effects for nanoscale device applications

    Wang, Wenjun; Li, Peng; Jin, Feng

    2016-09-01

    A novel two-dimensional linear elastic theory of magneto-electro-elastic (MEE) plates, considering both surface and nonlocal effects, is established for the first time based on Hamilton’s principle and the Lee plate theory. The equations derived are more general, suitable for static and dynamic analyses, and can also be reduced to the piezoelectric, piezomagnetic, and elastic cases. As a specific application example, the influences of the surface and nonlocal effects, poling directions, piezoelectric phase materials, volume fraction, damping, and applied magnetic field (i.e., constant applied magnetic field and time-harmonic applied magnetic field) on the magnetoelectric (ME) coupling effects are first investigated based on the established two-dimensional plate theory. The results show that the ME coupling coefficient has an obvious size-dependent characteristic owing to the surface effects, and the surface effects increase the ME coupling effects significantly when the plate thickness decreases to its critical thickness. Below this critical thickness, the size-dependent effect is obvious and must be considered. In addition, the output power density of a magnetic energy nanoharvester is also evaluated using the two-dimensional plate theory obtained, with the results showing that a relatively larger output power density can be achieved at the nanoscale. This study provides a mathematical tool which can be used to analyze the mechanical properties of nanostructures theoretically and numerically, as well as evaluating the size effect qualitatively and quantitatively.

  8. Elastic properties of a polymer chain

    Webman, I.; Lebowitz, J.L.; Kalos, M.H.

    1981-01-01

    We describe the results of computer simulations on a model polymer chain with excluded volume interactions in the presence of an external stretching force. For weak and moderate forces the response is linear while for strong forces the behavior is nonlinear, consistent with the non-Gaussian nature of the end-to-end vector R distribution for large R. In the vicinity of the THETA temperature the onset of nonlinearity occurs at larger forces

  9. Atomistic calculations of interface elastic properties in noncoherent metallic bilayers

    Mi Changwen; Jun, Sukky; Kouris, Demitris A.; Kim, Sung Youb

    2008-01-01

    The paper describes theoretical and computational studies associated with the interface elastic properties of noncoherent metallic bicrystals. Analytical forms of interface energy, interface stresses, and interface elastic constants are derived in terms of interatomic potential functions. Embedded-atom method potentials are then incorporated into the model to compute these excess thermodynamics variables, using energy minimization in a parallel computing environment. The proposed model is validated by calculating surface thermodynamic variables and comparing them with preexisting data. Next, the interface elastic properties of several fcc-fcc bicrystals are computed. The excess energies and stresses of interfaces are smaller than those on free surfaces of the same crystal orientations. In addition, no negative values of interface stresses are observed. Current results can be applied to various heterogeneous materials where interfaces assume a prominent role in the systems' mechanical behavior

  10. Elastic properties of magnetostrictive rare-earth-iron alloys

    Cullen, J.R.; Blessing, G.; Rinaldi, S.

    1978-01-01

    The elastic properties of certain magnetostrictive rare-earth-iron alloys, namely polycrystalline Tbsub(0.3)Dysub(0.7)Fesub(2), Smsub(0.88)Dysub(0.12)Fesub(2)and amorphous TbFesub(2), were investigated ultrasonically. In all cases two shear waves were observed propagating simultaneously when a magnetic field was applied perpendicular to the direction of propagation. A model to explain this behaviour, based on magnetic-elastic coupling within local regions of these disordered materials, is developed and discussed in two limiting cases: (i) strongly coupled regions for which an effective isotropic magneto-elastic coupling is appropriate, and (ii) materials for which the elastic properties of the conglomerate are determined by averaging over those of independent regions. Experimental results up to fields of 25 kOe on the alloys mentioned above are exhibited and compared with the limiting cases (i) and (ii). In the case of polycrystalline Tbsub(0.3)Dysub(0.7)Fesub(2) further comparison is made between the determination of the magneto-elastic coupling constants using this model and the determination by using the results of a previous single-crystal study. (author)

  11. Theoretical study of elastic, mechanical and thermodynamic properties of MgRh intermetallic compound

    S. Boucetta

    2014-03-01

    Full Text Available In the last years, Magnesium alloys are known to be of great technological importance and high scientific interest. In this work, density functional theory plane-wave pseudo potential method, with local density approximation (LDA and generalized gradient approximation (GGA are used to perform first-principles quantum mechanics calculations in order to investigate the structural, elastic and mechanical properties of the intermetallic compound MgRh with a CsCl-type structure. Comparison of the calculated equilibrium lattice constant and experimental data shows good agreement. The elastic constants were determined from a linear fit of the calculated stress–strain function according to Hooke's law. From the elastic constants, the bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio σ, anisotropy factor A and the ratio B/G for MgRh compound are obtained. The sound velocities and Debye temperature are also predicted from elastic constants. Finally, the linear response method has been used to calculate the thermodynamic properties. The temperature dependence of the enthalpy H, free energy F, entropy S, and heat capacity at constant volume Cv of MgRh crystal in a quasi-harmonic approximation have been obtained from phonon density of states and discussed for the first report. This is the first quantitative theoretical prediction of these properties.

  12. Anisotropy in elastic properties of lithium sodium sulphate ...

    Anisotropy in elastic properties of lithium sodium sulphate hexahydrate single crystal—An ultrasonic study. GEORGE VARUGHESE. ,∗. , A S KUMAR†, J PHILIP†† and GODFREY LOUIS#. Department of Physics, Catholicate College, Pathanamthitta 689 648, India. †SPAP, M.G. University, Kottayam 686 560, India. ††STIC ...

  13. Erratum to: Elastic and piezoelectric properties, sound velocity and ...

    Erratum to: Elastic and piezoelectric properties, sound velocity and Debye temperature of (B3) BBi compound under pressure. S DAOUD1,∗, N BIOUD2 and N LEBGAA2. 1Faculté des Sciences et de la Technologie, Université de Bordj Bou Arreridj, 34000, Algeria. 2Laboratoire d'Optoélectronique & Composants, Université ...

  14. Structural, elastic, electronic and optical properties of bi-alkali ...

    The structural parameters, elastic constants, electronic and optical properties of the bi-alkali ... and efficient method for the calculation of the ground-state ... Figure 2. Optimization curve (E–V) of the bi-alkali antimonides: (a) Na2KSb, (b) Na2RbSb, (c) Na2CsSb, .... ical shape of the charge distributions in the contour plots.

  15. Atomistic simulation of the structural and elastic properties of ...

    experimental data and previous theoretical results, showing no phase transition ... and theoretical [2,9–11] studies have been dedicated to deter- ..... [33] introduced a simple relationship that empirically links the plastic properties of materials with their elastic moduli. The shear modulus G represents the resistance to plastic.

  16. Anomalous structural changes and elastic properties of bismuth oxide superconductors

    He, Y.S.; Xiang, J.; Chang, F.G.; Zhang, J.C.; He, A.S.; Wang, H.; Gu, B.L.

    1989-01-01

    Ultrasonic measurement revealed that there are anomalous structural changes near 200 K in single 2212 or 2223 phase samples of Bi(Pb)-Sr-Ca-Cu-O. Detailed study showed such anomalous changes are isothermal-like processes and have a characteristics of second order phase transition, accompanying with increases in lattice constants. The elastic properties of these ceramics and related systems are discussed

  17. Boundary value problems of the circular cylinders in the strain-gradient theory of linear elasticity

    Kao, B.G.

    1979-11-01

    Three boundary value problems in the strain-gradient theory of linear elasticity are solved for circular cylinders. They are the twisting of circular cylinder, uniformly pressuring of concentric circular cylinder, and pure-bending of simply connected cylinder. The comparisons of these solutions with the solutions in classical elasticity and in couple-stress theory reveal the differences in the stress fields as well as the apparent stress fields due to the influences of the strain-gradient. These aspects of the strain-gradient theory could be important in modeling the failure behavior of structural materials

  18. Compact solitary waves in linearly elastic chains with non-smooth on-site potential

    Gaeta, Giuseppe [Dipartimento di Matematica, Universita di Milano, Via Saldini 50, 20133 Milan (Italy); Gramchev, Todor [Dipartimento di Matematica e Informatica, Universita di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Walcher, Sebastian [Lehrstuhl A Mathematik, RWTH Aachen, 52056 Aachen (Germany)

    2007-04-27

    It was recently observed by Saccomandi and Sgura that one-dimensional chains with nonlinear elastic interaction and regular on-site potential can support compact solitary waves, i.e. travelling solitary waves with strictly compact support. In this paper, we show that the same applies to chains with linear elastic interaction and an on-site potential which is continuous but non-smooth at minima. Some different features arise; in particular, the speed of compact solitary waves is not uniquely fixed by the equation. We also discuss several generalizations of our findings.

  19. Four-dimensional Hooke's law can encompass linear elasticity and inertia

    Antoci, S.; Mihich, L.

    1999-01-01

    The question is examined whether the formally straightforward extension of Hooke's time-honoured stress-strain relation to the four dimensions of special and of general relativity can make physical sense. The four-dimensional Hooke law is found able to account for the inertia of matter; in the flat-space, slow-motion approximation the field equations for the displacement four-vector field ξ i can encompass both linear elasticity and inertia. In this limit one just recovers the equations of motion of the classical theory of elasticity

  20. Elastic properties of rigid fiber-reinforced composites

    Chen, J.; Thorpe, M. F.; Davis, L. C.

    1995-05-01

    We study the elastic properties of rigid fiber-reinforced composites with perfect bonding between fibers and matrix, and also with sliding boundary conditions. In the dilute region, there exists an exact analytical solution. Around the rigidity threshold we find the elastic moduli and Poisson's ratio by decomposing the deformation into a compression mode and a rotation mode. For perfect bonding, both modes are important, whereas only the compression mode is operative for sliding boundary conditions. We employ the digital-image-based method and a finite element analysis to perform computer simulations which confirm our analytical predictions.

  1. Elastic and Mechanical Properties of the MAX Phases

    Barsoum, Michel W.; Radovic, Miladin

    2011-08-01

    The more than 60 ternary carbides and nitrides, with the general formula Mn+1AXn—where n = 1, 2, or 3; M is an early transition metal; A is an A-group element (a subset of groups 13-16); and X is C and/or N—represent a new class of layered solids, where Mn+1Xn layers are interleaved with pure A-group element layers. The growing interest in the Mn+1AXn phases lies in their unusual, and sometimes unique, set of properties that can be traced back to their layered nature and the fact that basal dislocations multiply and are mobile at room temperature. Because of their chemical and structural similarities, the MAX phases and their corresponding MX phases share many physical and chemical properties. In this paper we review our current understanding of the elastic and mechanical properties of bulk MAX phases where they differ significantly from their MX counterparts. Elastically the MAX phases are in general quite stiff and elastically isotropic. The MAX phases are relatively soft (2-8 GPa), are most readily machinable, and are damage tolerant. Some of them are also lightweight and resistant to thermal shock, oxidation, fatigue, and creep. In addition, they behave as nonlinear elastic solids, dissipating 25% of the mechanical energy during compressive cycling loading of up to 1 GPa at room temperature. At higher temperatures, they undergo a brittle-to-plastic transition, and their mechanical behavior is a strong function of deformation rate.

  2. Elastic properties and electron transport in InAs nanowires

    Migunov, Vadim

    2013-02-22

    The electron transport and elastic properties of InAs nanowires grown by chemical vapor deposition on InAs (001) substrate were studied experimentally, in-situ in a transmission electron microscope (TEM). A TEM holder allowing the measurement of a nanoforce while simultaneous imaging nanowire bending was used. Diffraction images from local areas of the wire were recorded to correlate elastic properties with the atomic structure of the nanowires. Another TEM holder allowing the application of electrical bias between the nanowire and an apex of a metallic needle while simultaneous imaging the nanowire in TEM or performing electron holography was used to detect mechanical vibrations in mechanical study or holographical observation of the nanowire inner potential in the electron transport studies. The combination of the scanning probe methods with TEM allows to correlate the measured electric and elastic properties of the nanowires with direct identification of their atomic structure. It was found that the nanowires have different atomic structures and different stacking fault defect densities that impacts critically on the elastic properties and electric transport. The unique methods, that were applied in this work, allowed to obtain dependencies of resistivity and Young's modulus of left angle 111 right angle -oriented InAs nanowires on defect density and diameter. It was found that the higher is the defect density the higher are the resistivity and the Young's modulus. Regarding the resistivity, it was deduced that the stacking faults increase the scattering of the electrons in the nanowire. These findings are consistent with the literature, however, the effect described by the other groups is not so pronounced. This difference can be attributed to the significant incompleteness of the physical models used for the data analysis. Regarding the elastic modulus, there are several mechanisms affecting the elasticity of the nanowires discussed in the thesis. It

  3. Nonlinear to Linear Elastic Code Coupling in 2-D Axisymmetric Media.

    Preston, Leiph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Explosions within the earth nonlinearly deform the local media, but at typical seismological observation distances, the seismic waves can be considered linear. Although nonlinear algorithms can simulate explosions in the very near field well, these codes are computationally expensive and inaccurate at propagating these signals to great distances. A linearized wave propagation code, coupled to a nonlinear code, provides an efficient mechanism to both accurately simulate the explosion itself and to propagate these signals to distant receivers. To this end we have coupled Sandia's nonlinear simulation algorithm CTH to a linearized elastic wave propagation code for 2-D axisymmetric media (axiElasti) by passing information from the nonlinear to the linear code via time-varying boundary conditions. In this report, we first develop the 2-D axisymmetric elastic wave equations in cylindrical coordinates. Next we show how we design the time-varying boundary conditions passing information from CTH to axiElasti, and finally we demonstrate the coupling code via a simple study of the elastic radius.

  4. Elastic properties of ultrathin diamond/AlN membranes

    Zuerbig, V.; Hees, J.; Pletschen, W.; Sah, R.E.; Wolfer, M.; Kirste, L.; Heidrich, N.; Nebel, C.E.; Ambacher, O.; Lebedev, V.

    2014-01-01

    Nanocrystalline diamond- (NCD) and AlN-based ultrathin single layer and bilayer membranes are investigated towards their mechanical properties. It is shown that chemo-mechanical polishing and heavy boron doping of NCD thin films do not impact the elastic properties of NCD layers as revealed by negligible variations of the NCD Young's modulus (E). In addition, it is demonstrated that the combination of NCD elastic layer and AlN piezo-actuator is highly suitable for the fabrication of mechanically stable ultrathin membranes in comparison to AlN single layer membranes. The elastic parameters of NCD/AlN heterostructures are mainly determined by the outstanding high Young's modulus of NCD (E = 1019 ± 19 GPa). Such ultrathin unimorph membranes allow for fabrication of piezo-actuated AlN/NCD microlenses with tunable focus length. - Highlights: • Mechanical properties of nanocrystalline diamond (NCD) and AlN circular membranes • No influence of polishing of NCD thin films on the mechanical properties of NCD • No influence of heavy boron-doping on the mechanical properties of NCD • Demonstration of mechanically stable piezo-actuated NCD/AlN membranes • Reported performance of AlN/NCD microlenses with adjustable focus length

  5. Density functional theory investigation of elastic properties and martensitic transformation of Ti-Ta alloys

    Chakraborty, Tanmoy; Rogal, Jutta; Drautz, Ralf [Interdisciplinary Centre for Advanced Materials Simulation, Ruhr- Universitaet Bochum (Germany)

    2016-07-01

    Ti-Ta alloys are considered as promising materials for high temperature shape memory alloys as well as biomedical applications. The properties of these alloys have been shown to be strongly composition dependent. The temperature for the martensitic transformation between the high temperature cubic austenite and the low temperature orthorhombic martensite decreases linearly with increasing Ta content. Likewise, the elastic properties show clear trends with changing composition. We use density functional theory to investigate the involved phases in Ti-Ta where the disordered phases are treated by special quasi-random structures. To compare the stability of the involved phases as a function of temperature we calculate free energies using the quasi-harmonic Debye model. The obtained trends in the stability are consistent with experimentally measured transformation temperatures. Furthermore, we determine elastic properties which are in good agreement with experimentally observed trends.

  6. A micromechanics model of the elastic properties of human dentine

    Kinney, J. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Balooch, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marshall, G. W. [Univ. of California, San Francisco, CA (United States). Dept. of Restorative Dentistry; Marshall, S. J. [Univ. of California, San Francisco, CA (United States). Dept. of Restorative Dentistry

    1999-10-01

    A generalized self-consistent model of cylindrical inclusions in a homogeneous and isotropic matrix phase was used to study the effects of tubule orientation on the elastic properties of dentin. Closed form expressions for the five independent elastic constants of dentin were derived in terms of tubule concentration, and the Young's moduli and Poisson ratios of peri- and intertubular dentin. An atomic force microscope (AFM) indentation technique determined the Young's moduli of the peri- and intertubular dentin as approximately 30 GPa and 15 GPa, respectively. Over the natural variation in tubule density found in dentin, there was only a slight variation in the axial and transverse shear moduli with position in the tooth, and there was no measurable effect of tubule orientation. We conclude that tubule orientation has no appreciable effect on the elastic behavior of normal dentin, and that the elastic properties of healthy dentin can be modeled as an isotropic continuum with a Young's modulus of approximately 16 GPa and a shear modulus of 6.2 GPa.

  7. Generalized linear elastic fracture mechanics: an application to a crack touching the bimaterial interface

    Náhlík, Luboš; Šestáková, L.; Hutař, Pavel; Knésl, Zdeněk

    2011-01-01

    Roč. 452-453, - (2011), s. 445-448 ISSN 1013-9826 R&D Projects: GA AV ČR(CZ) KJB200410803; GA ČR GA101/09/1821 Institutional research plan: CEZ:AV0Z20410507 Keywords : generalized stress intensity factor * bimaterial interface * composite materials * strain energy density factor * fracture criterion * generalized linear elastic fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics

  8. Multigrid for the Galerkin least squares method in linear elasticity: The pure displacement problem

    Yoo, Jaechil [Univ. of Wisconsin, Madison, WI (United States)

    1996-12-31

    Franca and Stenberg developed several Galerkin least squares methods for the solution of the problem of linear elasticity. That work concerned itself only with the error estimates of the method. It did not address the related problem of finding effective methods for the solution of the associated linear systems. In this work, we prove the convergence of a multigrid (W-cycle) method. This multigrid is robust in that the convergence is uniform as the parameter, v, goes to 1/2 Computational experiments are included.

  9. Elastic properties of sub-stoichiometric nitrogen ion implanted silicon

    Sarmanova, M.F., E-mail: marina.sarmanova@iom-leipzig.de [Leibniz Institute of Surface Modification, D-04318 Leipzig (Germany); Karl, H. [University Augsburg, Institute of Physics, D-86135 Augsburg (Germany); Mändl, S.; Hirsch, D. [Leibniz Institute of Surface Modification, D-04318 Leipzig (Germany); Mayr, S.G.; Rauschenbach, B. [Leibniz Institute of Surface Modification, D-04318 Leipzig (Germany); University Leipzig, Institute for Experimental Physics II, D-04103 Leipzig (Germany)

    2015-04-15

    Elastic properties of sub-stoichiometric nitrogen implanted silicon were measured with nanometer-resolution using contact resonance atomic force microscopy (CR-AFM) as function of ion fluence and post-annealing conditions. The determined range of indentation moduli was between 100 and 180 GPa depending on the annealing duration and nitrogen content. The high indentation moduli can be explained by formation of Si–N bonds, as verified by X-ray photoelectron spectroscopy.

  10. An H(∞) approach for elasticity properties reconstruction.

    Liu, Huafeng; Hu, Hongjie; Sinusas, Albert J; Shi, Pengcheng

    2012-01-01

    Quantification of object elasticity properties has significant technical implications as well as important practical applications, such as medical disease diagnosis. In general, given noisy measurements on the kinematic states of the objects from imaging data, the aim is to recover the elasticity parameters for assumed material constitutive models of the objects. The implementation is complicated caused by the large dimensionality of the parameters. Various versions of the least-square (LS) methods have been widely used, which, however, do not perform well under reasonably realistic levels of disturbances. Another popular strategy, based on the extended Kalman filter (EKF), is also far from optimal and subject to divergence if either the initializations are poor or the noises are not Gaussian. In this paper, the authors propose a robust system identification paradigm for the quantitative analysis of object elasticity. It is derived and extended from the H(∞) filtering principles and is particularly powerful for real-world situations where the types and levels of the disturbances are unknown. Using synthetic data, the authors investigate the sensitivity of the strategies toward different types (Gaussian and Poisson) and levels of noises, as well as various initializations. The experimental results show consistently superior performance of the proposed method over the LS and EKF algorithms in reliably identifying object elastic modulus distributions. Results from phase contrast imaging data of canine hearts and human MRI data are also presented, which demonstrate the power of the framework.

  11. Structural, Electronic and Elastic Properties of Heavy Fermion YbTM2 (TM= Ir and Pt) Laves Phase Compounds

    Pawar, H.; Shugani, M.; Aynyas, M.; Sanyal, S. P.

    2018-02-01

    The structural, electronic and elastic properties of YbTM2 (TM = Ir and Pt) Laves phase intermetallic compounds which crystallize in cubic (MgCu2-type) structure, have been investigated using ab-initio full potential linearized augmented plane wave (FP-LAPW) method with LDA and LDA+U approximation. The calculated ground state properties such as lattice parameter (a0), bulk modulus (B) and its pressure derivative (B‧) are in good agreement with available experimental and theoretical data. The electronic properties are analyzed from band structures and density of states. Elastic constants are predicted first time for these compounds which obey the stability criteria for cubic system.

  12. Dynamics of pre-strained bi-material elastic systems linearized three-dimensional approach

    Akbarov, Surkay D

    2015-01-01

    This book deals with dynamics of pre-stressed or pre-strained bi-material elastic systems consisting of stack of pre-stressed layers, stack of pre-stressed layers and pre-stressed half space (or half plane), stack of pre-stressed layers as well as absolute rigid foundation, pre-stressed compound solid and hollow cylinders and pre-stressed sandwich hollow cylinders. The problems considered in the book relate to the dynamics of a moving and oscillating moving load, forced vibration caused by linearly located or point located time-harmonic forces acting to the foregoing systems. Moreover, a considerable part of the book relate to the problems regarding the near surface, torsional and axisymmetric longitudinal waves propagation and dispersion in the noted above bi-material elastic systems. The book carries out the investigations within the framework of the piecewise homogeneous body model with the use of the Three-Dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies.

  13. Magnetic and elastic properties of the antiferromagnet uranium mononitride

    Van Doorn, C.F.

    1976-10-01

    The magnetic and elastic properties of antiferromagnetic uranium mononitride single crystals are studied in the thesis from the measurements of the temperature dependences of the magnetic susceptibility, electrical resistivity and elastic constants. The elastic constants C 11 , C 12 and C 44 were determined in the temperature interval 4 to 300 K by ultrasonic measurements of the five possible wave velocities in the [100] and [110] directions. A test for internal consistency was also made. A dip of about 9 percent occurs in C 11 at a temperature of 5 to 6 K lower than the Neel temperature T(N) (equals about 53 K). Starting at T(N), a renormalization in C 44 is proportional to the square of the sublattice magnetization also occurs. Both these results agree with model calculations which include spin-phonon interactions. The investigation of this anomaly was extended by measuring the electrical resistivity of a sample cut from the same crystal as that on which the elasticity was measured. No anomalous behavior was observed at the temperature where C 11 displays its anomaly. However, a discontinuity in the temperature derivative of the resistance was found at T(N). The possible effect of a magnetic field on the resistivity, as well as on the elasticity, was investigated without any measurable effect. The magnetic susceptibility was measured with a Foner magnetometer between 4 and 1 000 K. It was found that above the Neel temperature the paramagnetic susceptibility followed a revised Curie-Weiss law. In an attempt to ascertain the ionic state of the 5f-uranium ion in UN, use was made of the experimentally determined Weiss constant, spin disorder resistivity and Knight shift. A calculation was made that gave a good representation of the ratio of the experimental susceptibilities along the [100] and [110] directions in the ordered region [af

  14. Elastic properties of LaSnxNi5-x compounds

    Yeheskel, O.; Nattrass, C.E.; Leisure, R.G.; Jacob, I.; Bowman, R.C. Jr.

    2004-01-01

    Ultrasonic methods were used to measure the room-temperature elastic moduli of polycrystalline LaSn x Ni 5-x compounds for 0≤x≤0.5. These materials are of great importance for their hydrogen storage properties. The samples, prepared by a hot isostatic pressing method, had near-theoretical densities with calculated porosities ranging from 0 to 1.5%. The porosity-corrected moduli decreased with increasing x. Poisson's ratio was approximately constant at 0.314 for all the compounds. The Debye temperature, calculated from the RT polycrystalline moduli, decreased from 359 to 344 K as x increased from 0 to 0.5. The results were used to calculate the elastic interaction energy of an interstitial hydrogen atom with the strain fields of all the other interstitial hydrogen. This energy was in turn used to calculate the critical temperature below which phase separation occurs in LaM x Ni 5-x H y compounds (M=Sn or Al). It was found that the critical temperature decreases with increasing x, confirming in a more general way a conclusion drawn for a specific case from earlier thermodynamic measurements. It is suggested that the lowering of the critical temperature plays a role in limiting the width of the plateaus in pressure-composition isotherms for the two-phase regions of these compounds. This suggestion implies a relation between the elastic properties and the maximum hydrogen capacity

  15. Force sensing using 3D displacement measurements in linear elastic bodies

    Feng, Xinzeng; Hui, Chung-Yuen

    2016-07-01

    In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.

  16. Anisotropic elastic and thermal properties of titanium borides by first-principles calculations

    Sun, Liang; Gao, Yimin [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Xiao, Bing [Department of Physics and Quantum Theory Group, School of Science and Engineering, Tulane University, New Orleans, LA 70118 (United States); Li, Yefei, E-mail: yefeili@126.com [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Guoliang [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China)

    2013-12-05

    Highlights: •Elastic properties of titanium borides are calculated by first principles calculation. •Thermodynamical stability of titanium borides is analyzed. •Heat capacity and thermal expansion coefficient for titanium borides are calculated and compared. •Grüneisen parameters of titanium borides are calculated. -- Abstract: The anisotropic elastic and thermal expansions of the titanium borides (TiB{sub 2}, Ti{sub 3}B{sub 4}, TiB{sub P}nma and TiB{sub F}m3{sup ¯}m) are calculated from first-principles using density functional theory. All borides show different anisotropic elastic properties; the bulk, shear and Young’s moduli are consistent with those determined experimentally. The temperature dependence of thermal expansions is mainly caused by the restoration of thermal energy due to phonon excitations at low temperature. When the temperature is higher than 500 K, the volumetric coefficient is increased linearly by increasing temperature. Meanwhile, the heat capacities of titanium borides are obtained based on the knowledge of thermal expansion coefficient and the elasticity, the calculations are in good agreement with the experiments.

  17. Theoretical study of the elastic properties of titanium nitride

    Jingdong CHEN; Yinglu ZHAO; Benhai YU; Chunlei WANG; Deheng SHI

    2009-01-01

    The equilibrium lattice parameter, relative volume V/Vo, elastic constants Cij, and bulk modulus of titanium nitride are successfully obtained using the ab initio plane-wave pseudopotential (PW-PP) method within the framework of density functional theory. The quasi-harmonic Debye model, using a set of total energy vs molar volume obtained with the PW-PP method, is applied to the study of the elastic properties and vibrational effects. We analyze the relationship between the bulk modulus and temperature up to 2000 K and obtain the relationship between bulk modulus B and pressure at different temperatures. It is found that the bulk modulus B increases monotonously with increasing pressure and decreases with increasing temperature. Moreover, the Debye temperature is determined from the non-equilibrium Gibbs func-tions.

  18. Determination of prestress and elastic properties of virus capsids

    Aggarwal, Ankush

    2018-03-01

    Virus capsids are protein shells that protect the virus genome, and determination of their mechanical properties has been a topic of interest because of their potential use in nanotechnology and therapeutics. It has been demonstrated that stresses exist in virus capsids, even in their equilibrium state, due to their construction. These stresses, termed "prestresses" in this study, closely affect the capsid's mechanical behavior. Three methods—shape-based metric, atomic force microscope indentation, and molecular dynamics—have been proposed to determine the capsid elastic properties without fully accounting for prestresses. In this paper, we theoretically analyze the three methods used for mechanical characterization of virus capsids and numerically investigate how prestresses affect the capsid's mechanical properties. We consolidate all the results and propose that by using these techniques collectively, it is possible to accurately determine both the mechanical properties and prestresses in capsids.

  19. New non-linear model of groundwater recharge: Inclusion of memory, heterogeneity and visco-elasticity

    Spannenberg Jescica

    2017-09-01

    Full Text Available Fractional differentiation has adequate use for investigating real world scenarios related to geological formations associated with elasticity, heterogeneity, viscoelasticity, and the memory effect. Since groundwater systems exist in these geological formations, modelling groundwater recharge as a real world scenario is a challenging task to do because existing recharge estimation methods are governed by linear equations which make use of constant field parameters. This is inadequate because in reality these parameters are a function of both space and time. This study therefore concentrates on modifying the recharge equation governing the EARTH model, by application of the Eton approach. Accordingly, this paper presents a modified equation which is non-linear, and accounts for parameters in a way that it is a function of both space and time. To be more specific, herein, recharge and drainage resistance which are parameters within the equation, became a function of both space and time. Additionally, the study entailed solving the non-linear equation using an iterative method as well as numerical solutions by means of the Crank-Nicolson scheme. The numerical solutions were used alongside the Riemann-Liouville, Caputo-Fabrizio, and Atangana-Baleanu derivatives, so that account was taken for elasticity, heterogeneity, viscoelasticity, and the memory effect. In essence, this paper presents a more adequate model for recharge estimation.

  20. Oscillations of a Beam on a Non-Linear Elastic Foundation under Periodic Loads

    Donald Mark Santee

    2006-01-01

    Full Text Available The complexity of the response of a beam resting on a nonlinear elastic foundation makes the design of this structural element rather challenging. Particularly because, apparently, there is no algebraic relation for its load bearing capacity as a function of the problem parameters. Such an algebraic relation would be desirable for design purposes. Our aim is to obtain this relation explicitly. Initially, a mathematical model of a flexible beam resting on a non-linear elastic foundation is presented, and its non-linear vibrations and instabilities are investigated using several numerical methods. At a second stage, a parametric study is carried out, using analytical and semi-analytical perturbation methods. So, the influence of the various physical and geometrical parameters of the mathematical model on the non-linear response of the beam is evaluated, in particular, the relation between the natural frequency and the vibration amplitude and the first period doubling and saddle-node bifurcations. These two instability phenomena are the two basic mechanisms associated with the loss of stability of the beam. Finally Melnikov's method is used to determine an algebraic expression for the boundary that separates a safe from an unsafe region in the force parameters space. It is shown that this can be used as a basis for a reliable engineering design criterion.

  1. The application of linear elastic fracture mechanics to thermally stressed welded components

    Green, D.

    1981-01-01

    Linear Elastic Fracture Mechanics techniques are applied to components constructed from brittle materials and operating at low or ambient temperatures. It is argued that these techniques can justifiably be applied to components at high temperature provided that stresses are thermally induced, self-equilibrating and cyclic. Such loading conditions occur for example in an LMFBR and a simple welded detail containing a crevice is taken as an example. Theoretical and experimental estimates of crack growth in this component are compared and good agreement is shown. (author)

  2. Finite element approximation of a new variational principle for compressible and incompressible linear isotropic elasticity

    Franca, L.P.; Stenberg, R.

    1989-06-01

    Stability conditions are described to analyze a variational formulation emanating from a variational principle for linear isotropic elasticity. The variational principle is based on four dependent variables (namely, the strain tensor, augmented stress, pressure and displacement) and is shown to be valid for any compressibility including the incompressible limit. An improved convergence error analysis is established for a Galerkin-least-squares method based upon these four variables. The analysis presented establishes convergence for a wide choice of combinations of finite element interpolations. (author) [pt

  3. On reconstruction of an unknown polygonal cavity in a linearized elasticity with one measurement

    Ikehata, M; Itou, H

    2011-01-01

    In this paper we consider a reconstruction problem of an unknown polygonal cavity in a linearized elastic body. For this problem, an extraction formula of the convex hull of the unknown polygonal cavity is established by means of the enclosure method introduced by Ikehata. The advantages of our method are that it needs only a single set of boundary data and we do not require any a priori assumptions for the unknown polygonal cavity and any constraints on boundary data. The theoretical formula may have possibility of application in nondestructive evaluation.

  4. Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries

    Francesco Cordero

    2015-12-01

    Full Text Available The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x − T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPB(x boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems.

  5. Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries

    Cordero, Francesco

    2015-01-01

    The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB) between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x−T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPBx boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems. PMID:28793707

  6. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2

    Ravindran, P.; Fast, L.; Korzhavyi, P.A.; Johansson, B.; Wills, J.; Eriksson, O.

    1998-01-01

    A theoretical formalism to calculate the single crystal elastic constants for orthorhombic crystals from first principle calculations is described. This is applied for TiSi 2 and we calculate the elastic constants using a full potential linear muffin-tin orbital method using the local density approximation (LDA) and generalized gradient approximation (GGA). The calculated values compare favorably with recent experimental results. An expression to calculate the bulk modulus along crystallographic axes of single crystals, using elastic constants, has been derived. From this the calculated linear bulk moduli are found to be in good agreement with the experiments. The shear modulus, Young's modulus, and Poisson's ratio for ideal polycrystalline TiSi 2 are also calculated and compared with corresponding experimental values. The directional bulk modulus and the Young's modulus for single crystal TiSi 2 are estimated from the elastic constants obtained from LDA as well as GGA calculations and are compared with the experimental results. The shear anisotropic factors and anisotropy in the linear bulk modulus are obtained from the single crystal elastic constants. From the site and angular momentum decomposed density of states combined with a charge density analysis and the elastic anisotropies, the chemical bonding nature between the constituents in TiSi 2 is analyzed. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal. The calculated elastic properties are found to be in good agreement with experimental values when the generalized gradient approximation is used for the exchange and correlation potential. copyright 1998 American Institute of Physics

  7. Hardrock Elastic Physical Properties: Birch's Seismic Parameter Revisited

    Wu, M.; Milkereit, B.

    2014-12-01

    Identifying rock composition and properties is imperative in a variety of fields including geotechnical engineering, mining, and petroleum exploration, in order to accurately make any petrophysical calculations. Density is, in particular, an important parameter that allows us to differentiate between lithologies and estimate or calculate other petrophysical properties. It is well established that compressional and shear wave velocities of common crystalline rocks increase with increasing densities (i.e. the Birch and Nafe-Drake relationships). Conventional empirical relations do not take into account S-wave velocity. Physical properties of Fe-oxides and massive sulfides, however, differ significantly from the empirical velocity-density relationships. Currently, acquiring in-situ density data is challenging and problematic, and therefore, developing an approximation for density based on seismic wave velocity and elastic moduli would be beneficial. With the goal of finding other possible or better relationships between density and the elastic moduli, a database of density, P-wave velocity, S-wave velocity, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio was compiled based on a multitude of lab samples. The database is comprised of isotropic, non-porous metamorphic rock. Multi-parameter cross plots of the various elastic parameters have been analyzed in order to find a suitable parameter combination that reduces high density outliers. As expected, the P-wave velocity to S-wave velocity ratios show no correlation with density. However, Birch's seismic parameter, along with the bulk modulus, shows promise in providing a link between observed compressional and shear wave velocities and rock densities, including massive sulfides and Fe-oxides.

  8. Numerical calculations of effective elastic properties of two cellular structures

    Tuncer, Enis

    2005-01-01

    Young's moduli of regular two-dimensional truss-like and eye-shaped structures are simulated using the finite element method. The structures are idealizations of soft polymeric materials used in ferro-electret applications. In the simulations, the length scales of the smallest representative units are varied, which changes the dimensions of the cell walls in the structures. A power-law expression with a quadratic as the exponent term is proposed for the effective Young's moduli of the systems as a function of the solid volume fraction. The data are divided into three regions with respect to the volume fraction: low, intermediate and high. The parameters of the proposed power-law expression in each region are later represented as a function of the structural parameters, the unit-cell dimensions. The expression presented can be used to predict a structure/property relationship in materials with similar cellular structures. The contribution of the cell-wall thickness to the elastic properties becomes significant at concentrations >0.15. The cell-wall thickness is the most significant factor in predicting the effective Young's modulus of regular cellular structures at high volume fractions of solid. At lower concentrations of solid, the eye-shaped structure yields a lower Young's modulus than a truss-like structure with similar anisotropy. Comparison of the numerical results with those of experimental data for poly(propylene) show good agreement regarding the influence of cell-wall thickness on elastic properties of thin cellular films

  9. Evaluation of linear polymerization shrinkage, flexural strength and modulus of elasticity of dental composites

    Gabriela Queiroz de Melo Monteiro

    2010-03-01

    Full Text Available Linear polymerization shrinkage (LPS, flexural strength (FS and modulus of elasticity (ME of 7 dental composites (Filtek Z350™, Filtek Z250™/3M ESPE; Grandio™, Polofil Supra™/VOCO; TPH Spectrum™, TPH3™, Esthet-X™/Denstply were measured. For the measurement of LPS, composites were applied to a cylindrical metallic mold and polymerized (n = 8. The gap formed at the resin/mold interface was observed using scanning electron microscopy (1500×. For FS and ME, specimens were prepared according to the ISO 4049 specifications (n = 10. Statistical analysis of the data was performed with one-way ANOVA and the Tukey test. TPH Spectrum presented significantly higher LPS values (29.45 µm. Grandio had significantly higher mean values for FS (141.07 MPa and ME (13.91 GPa. The relationship between modulus of elasticity and polymerization shrinkage is the main challenge for maintenance of the adhesive interface, thus composites presenting high shrinkage values, associated with a high modulus of elasticity tend to disrupt the adhesive interface under polymerization.

  10. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  11. Linear factor copula models and their properties

    Krupskii, Pavel; Genton, Marc G.

    2018-01-01

    We consider a special case of factor copula models with additive common factors and independent components. These models are flexible and parsimonious with O(d) parameters where d is the dimension. The linear structure allows one to obtain closed form expressions for some copulas and their extreme‐value limits. These copulas can be used to model data with strong tail dependencies, such as extreme data. We study the dependence properties of these linear factor copula models and derive the corresponding limiting extreme‐value copulas with a factor structure. We show how parameter estimates can be obtained for these copulas and apply one of these copulas to analyse a financial data set.

  12. Linear factor copula models and their properties

    Krupskii, Pavel

    2018-04-25

    We consider a special case of factor copula models with additive common factors and independent components. These models are flexible and parsimonious with O(d) parameters where d is the dimension. The linear structure allows one to obtain closed form expressions for some copulas and their extreme‐value limits. These copulas can be used to model data with strong tail dependencies, such as extreme data. We study the dependence properties of these linear factor copula models and derive the corresponding limiting extreme‐value copulas with a factor structure. We show how parameter estimates can be obtained for these copulas and apply one of these copulas to analyse a financial data set.

  13. Optimised robot-based system for the exploration of elastic joint properties.

    Frey, M; Burgkart, R; Regenfelder, F; Riener, R

    2004-09-01

    Numerous publications provide measured biomechanical data relating to synovial joints. However, in general, they do not reflect the non-linear elastic joint properties in detail or do not consider all degrees of freedom (DOF), or the quantity of data is sparse. To perform more comprehensive, extended measurements of elastic joint properties, an optimised robot-based approach was developed. The basis was an industrial, high-precision robot that was capable of applying loads to the joint and measuring the joint displacement in 6 DOF. The system was equipped with novel, custom-made control hardware. In contrast to the commonly used sampling rates that are below 100 Hz, a rate of 4 kHz was realised for each DOF. This made it possible to implement advanced, highly dynamic, quasi-continuous closed-loop controllers. Thus oscillations of the robot were avoided, and measurements were speeded up. The stiffness of the entire system was greater than 44 kNm(-1) and 22 Nm deg(-1), and the maximum difference between two successive measurements was less than 0.5 deg. A sophisticated CT-based referencing routine facilitated the matching of kinematic data with the individual anatomy of the tested joint. The detailed detection of the elastic varus-valgus properties of a human knee joint is described, and the need for high spatial resolution is demonstrated.

  14. The region of influence of significant defects and the mechanical vibrations of linear elastic solids

    Suarez Antola, R.

    2004-12-01

    The presence of cracks, voids or fields of pores, and their growth under applied forces or environmental actions, can produce a meaningful lowering in the proper frequencies of normal modes of mechanical vibration in machines and structures. A quite general expression for the square of modes proper frequency as a functional of displacement field, density field and elastic moduli fields is used as a starting point. The effect of defects on frequency are modeled as equivalent changes in density and elastic moduli fields, introducing the concept of region of influence of each defect. This region of influence is derived from the relation between the stress field of flawed components in machines or structures, and the elastic energy released from a suitable reference state, due to the presence of significant defects in the above mentioned mechanical components. An approximate analytical expression is obtained, which relates the relative variation in the square of mode s proper frequency with position, size, shape and orientation of defects in mode displacement field. Some simple mathematical models of machine and structural elements with cracks or fields of pores are considered as examples. The connections between the relative lowering in the square of mode s proper frequency and the stress intensity factor of a defect are discussed : the concept of region of influence of a defect is used as a bridge between (low frequency and low amplitude) vibration dynamics and linear elastic fracture mechanics. Some limitations of the present approach are discussed as well as the possibility of applying the region of influence of defects to the damping of normal modes of vibration

  15. A New Theory of Non-Linear Thermo-Elastic Constitutive Equation of Isotropic Hyperelastic Materials

    Li, Chen; Liao, Yufei

    2018-03-01

    Considering the influence of temperature and strain variables on materials. According to the relationship of conjugate stress-strain, a complete and irreducible non-linear constitutive equation of isotropic hyperelastic materials is derived and the constitutive equations of 16 types of isotropic hyperelastic materials are given we study the transformation methods and routes of 16 kinds of constitutive equations and the study proves that transformation of two forms of constitutive equation. As an example of application, the non-linear thermo-elastic constitutive equation of isotropic hyperelastic materials is combined with the natural vulcanized rubber experimental data in the existing literature base on MATLAB, The results show that the fitting accuracy is satisfactory.

  16. Elastic collisions of classical point particles on a finite frictionless linear track with perfectly reflecting endpoints

    DeLuca, R.

    2006-03-01

    Repeated elastic collisions of point particles on a finite frictionless linear track with perfectly reflecting endpoints are considered. The problem is analysed by means of an elementary linear algebra approach. It is found that, starting with a state consisting of a projectile particle in motion at constant velocity and a target particle at rest in a fixed known position, the points at which collisions occur on track, when plotted versus progressive numerals, corresponding to the collisions themselves, show periodic patterns for a rather large choice of values of the initial position x(0) and on the mass ratio r. For certain values of these parameters, however, only regular behaviour over a large number of collisions is detected.

  17. Structural, elastic and magnetic properties of Mn and Sb doped chromium nitride – An ab initio study

    Ikram Un Nabi Lone; Sheik Sirajuddeen M Mohamed, E-mail: msheiksiraj@bsauniv.ac.in; Shameem Banu, I.B.; Sathik Basha, S.

    2017-05-01

    Structural, magnetic and elastic properties of Mn and Sb doped CrN were investigated by the electronic band structure calculations using Full Potential Linear Augmented Plane Wave (FP-LAPW) method. The host compound CrN was doped with Mn and Sb separately, in the doping concentration of 12.5% to replace Cr atoms. The introduction of Mn and Sb atoms replacing the Cr atoms does not change the structural stability of the compound. The changes in magnetic and elastic properties were investigated and compared in GGA and GGA+U methods. The doped CrN undergoes a relative increase in the magnetic order with the substitution of Mn and Sb atoms. In GGA method, the magnetic moments are found to be greater in Mn doped CrN than that found in Sb doped Cr{sub 0.875}NSb{sub 0.125}. When doped with Sb, the elastic moduli such as Young’s modulus, bulk modulus and rigidity modulus show a relative increase in comparison with that in Mn doped CrN. Using Hubbard model in GGA+U method, both the magnetic and elastic properties increase in Mn and Sb doped compounds. - Highlights: • Mn and Sb doped Chromium Nitride. • Structural properties. • Magnetic properties. • Elastic properties.

  18. Phase stability and elastic properties of Cr-V alloys

    Gao, M. C.; Suzuki, Y.; Schweiger, H.; Doǧan, Ö. N.; Hawk, J.; Widom, M.

    2013-02-01

    V is the only element in the periodic table that forms a complete solid solution with Cr and thus is particularly important in alloying strategy to ductilize Cr. This study combines first-principles density functional theory calculations and experiments to investigate the phase stability and elastic properties of Cr-V binary alloys. The cluster expansion study reveals the formation of various ordered compounds at low temperatures that were not previously known. These compounds become unstable due to the configurational entropy of bcc solid solution as the temperature is increased. The elastic constants of ordered and disordered compounds are calculated at both T = 0 K and finite temperatures. The overall trends in elastic properties are in agreement with measurements using the resonant ultrasound spectroscopy method. The calculations predict that addition of V to Cr decreases both the bulk modulus and the shear modulus, and enhances the Poisson’s ratio, in agreement with experiments. Decrease in the bulk modulus is correlated to decrease in the valence electron density and increase in the lattice constant. An enhanced Poisson’s ratio for bcc Cr-V alloys (compared to pure Cr) is associated with an increased density of states at the Fermi level. Furthermore, the difference charge density in the bonding region in the (110) slip plane is highest for pure Cr and decreases gradually as V is added. The present calculation also predicts a negative Cauchy pressure for pure Cr, and it becomes positive upon alloying with V. The intrinsic ductilizing effect from V may contribute, at least partially, to the experimentally observed ductilizing phenomenon in the literature.

  19. Phase stability and elastic properties of Cr-V alloys

    Gao, M C; Suzuki, Y; Schweiger, H; Doğan, Ö N; Hawk, J; Widom, M

    2013-01-23

    V is the only element in the periodic table that forms a complete solid solution with Cr and thus is particularly important in alloying strategy to ductilize Cr. This study combines first-principles density functional theory calculations and experiments to investigate the phase stability and elastic properties of Cr–V binary alloys. The cluster expansion study reveals the formation of various ordered compounds at low temperatures that were not previously known. These compounds become unstable due to the configurational entropy of bcc solid solution as the temperature is increased. The elastic constants of ordered and disordered compounds are calculated at both T = 0 K and finite temperatures. The overall trends in elastic properties are in agreement with measurements using the resonant ultrasound spectroscopy method. The calculations predict that addition of V to Cr decreases both the bulk modulus and the shear modulus, and enhances the Poisson’s ratio, in agreement with experiments. Decrease in the bulk modulus is correlated to decrease in the valence electron density and increase in the lattice constant. An enhanced Poisson’s ratio for bcc Cr–V alloys (compared to pure Cr) is associated with an increased density of states at the Fermi level. Furthermore, the difference charge density in the bonding region in the (110) slip plane is highest for pure Cr and decreases gradually as V is added. The present calculation also predicts a negative Cauchy pressure for pure Cr, and it becomes positive upon alloying with V. The intrinsic ductilizing effect from V may contribute, at least partially, to the experimentally observed ductilizing phenomenon in the literature.

  20. Quadratic temporal finite element method for linear elastic structural dynamics based on mixed convolved action

    Kim, Jin Kyu; Kim, Dong Keon

    2016-01-01

    A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics

  1. Linear Elastic Waves - Series: Cambridge Texts in Applied Mathematics (No. 26)

    Harris, John G.

    2001-10-01

    Wave propagation and scattering are among the most fundamental processes that we use to comprehend the world around us. While these processes are often very complex, one way to begin to understand them is to study wave propagation in the linear approximation. This is a book describing such propagation using, as a context, the equations of elasticity. Two unifying themes are used. The first is that an understanding of plane wave interactions is fundamental to understanding more complex wave interactions. The second is that waves are best understood in an asymptotic approximation where they are free of the complications of their excitation and are governed primarily by their propagation environments. The topics covered include reflection, refraction, the propagation of interfacial waves, integral representations, radiation and diffraction, and propagation in closed and open waveguides. Linear Elastic Waves is an advanced level textbook directed at applied mathematicians, seismologists, and engineers. Aimed at beginning graduate students Includes examples and exercises Has application in a wide range of disciplines

  2. Quadratic temporal finite element method for linear elastic structural dynamics based on mixed convolved action

    Kim, Jin Kyu [School of Architecture and Architectural Engineering, Hanyang University, Ansan (Korea, Republic of); Kim, Dong Keon [Dept. of Architectural Engineering, Dong A University, Busan (Korea, Republic of)

    2016-09-15

    A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics.

  3. Pulsed-laser time-resolved thermal mirror technique in low-absorbance homogeneous linear elastic materials.

    Lukasievicz, Gustavo V B; Astrath, Nelson G C; Malacarne, Luis C; Herculano, Leandro S; Zanuto, Vitor S; Baesso, Mauro L; Bialkowski, Stephen E

    2013-10-01

    A theoretical model for a time-resolved photothermal mirror technique using pulsed-laser excitation was developed for low absorption samples. Analytical solutions to the temperature and thermoelastic deformation equations are found for three characteristic pulse profiles and are compared to finite element analysis methods results for finite samples. An analytical expression for the intensity of the center of a continuous probe laser at the detector plane is derived using the Fresnel diffraction theory, which allows modeling of experimental results. Experiments are performed in optical glasses, and the models are fitted to the data. The parameters of the fit are in good agreement with previous literature data for absorption, thermal diffusion, and thermal expansion of the materials tested. The combined modeling and experimental techniques are shown to be useful for quantitative determination of the physical properties of low absorption homogeneous linear elastic material samples.

  4. An anisotropic linear thermo-viscoelastic constitutive law - Elastic relaxation and thermal expansion creep in the time domain

    Pettermann, Heinz E.; DeSimone, Antonio

    2017-09-01

    A constitutive material law for linear thermo-viscoelasticity in the time domain is presented. The time-dependent relaxation formulation is given for full anisotropy, i.e., both the elastic and the viscous properties are anisotropic. Thereby, each element of the relaxation tensor is described by its own and independent Prony series expansion. Exceeding common viscoelasticity, time-dependent thermal expansion relaxation/creep is treated as inherent material behavior. The pertinent equations are derived and an incremental, implicit time integration scheme is presented. The developments are implemented into an implicit FEM software for orthotropic material symmetry under plane stress assumption. Even if this is a reduced problem, all essential features are present and allow for the entire verification and validation of the approach. Various simulations on isotropic and orthotropic problems are carried out to demonstrate the material behavior under investigation.

  5. Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).

    Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P

    2014-01-01

    The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Ultrasonic measurement of high burn-up fuel elastic properties

    Laux, D.; Despaux, G.; Augereau, F.; Attal, J.; Gatt, J.; Basini, V.

    2006-01-01

    The ultrasonic method developed for the evaluation of high burn-up fuel elastic properties is presented hereafter. The objective of the method is to provide data for fuel thermo-mechanical calculation codes in order to improve industrial nuclear fuel and materials or to design new reactor components. The need for data is especially crucial for high burn-up fuel modelling for which the fuel mechanical properties are essential and for which a wide range of experiments in MTR reactors and high burn-up commercial reactor fuel examinations have been included in programmes worldwide. To contribute to the acquisition of this knowledge the LAIN activity is developing in two directions. First one is development of an ultrasonic focused technique adapted to active materials study. This technique was used few years ago in the EdF laboratory in Chinon to assess the ageing of materials under irradiation. It is now used in a hot cell at ITU Karlsruhe to determine the elastic moduli of high burnup fuels from 0 to 110 GWd/tU. Some of this work is presented here. The second on going programme is related to the qualification of acoustic sensors in nuclear environments, which is of a great interest for all the methods, which work, in a hostile nuclear environment

  7. Thermodynamics and elastic properties of Ir from first-principle calculations

    Li Qiang; Huang Duohui; Cao Qilong; Wang Fanhou

    2013-01-01

    Within the framework of the quasiharmonic approximation, the thermodynamics and elastic properties, including phonon dispersion curves, equation of state, linear thermal expansion coefficient and temperature-dependent entropy, enthalpy, heat capacity, elastic constants, bulk modulus, shear modulus, Young's modulus of Ir have been studied using first-principles projector-augmented wave method. The results revealed that the predicted phonon dispersion curves of Ir are in agreement with the experimental measurements by neutron diffractions. Considering the thermal electronic contribution to Helmholtz free energy, the calculated entropy, enthalpy, heat capacity and linear thermal expansion co- efficient from the first-principle are consistent well with the experimental data. At 2600 K, the electronic heat capacity accounts for 17% of the total heat capacity at constant pressure, thus the thermal electronic contribution to Helmholtz free energy is very important. The predicted elastic constants, bulk modulus, shear modulus and Young's modulus at room temperature are also in agreement with the available measurements and increase with the increasing temperature. (authors)

  8. Structural and elastic properties of InN nanowires

    Quddus, Ehtesham B.; Wilson, Alina; Liu, Jie; Cai, Zhihua; Veereddy, Deepak; Tao, Xinyong; Li, Xiaodong; Koley, Goutam [Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Webb, Richard A. [Department of Physics and Astronomy and USC Nanocenter, University of South Carolina, Columbia, SC 29208 (United States)

    2012-04-15

    Structural and elastic properties of InN nanowires (NWs) have been investigated. It was observed that the NWs bend spontaneously or upon meeting an obstacle in their growth path at angles that are multiples of 30 . Lithographically patterned trenches and barriers were found to influence the growth direction of the NWs, which depending on the angle of incidence, grew along the barrier or got deflected from it. Young's modulus of InN NWs, measured by three point bending method using a NW suspended across a trench, was found to be 266 GPa, which is in between the moduli of bulk and thin film InN. Overall, the InN NW properties were found to be very suitable for applications in nanoelectromechanical systems (NEMS) and sensors. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Linear and nonlinear properties of segmented waveguides

    Katz, M.

    1998-07-01

    This dissertation deals with Periodically Segmented Waveguides (PSW), which are applied on KTiOP0 4 (KTP) crystals, by chemical ion-exchange process. In these waveguides, the crystal polarity and refractive index are periodically modulated to obtain Quasi Phase Matching (QPM) between the fundamental and second-harmonic waves. PSW is a relatively new optical device which exhibits unique optical properties in comparison with a continuous waveguide. The possibility of utilizing the KTP-PSW as a compact, cw, blue-violet, source by doubling infra-red light, is the main motivation for studying the optical properties of KTP segmented waveguides. Nevertheless, much attention in this work is also given to the study of linear optical properties of KTP-PSW, most of which, to my best knowledge, has not been studied yet. Controlling and understanding the linear optical properties of KTP-PSW, are required, for applying the PSW as an optical device by its own, and for control and characterization of the non-linear optical properties of the waveguide. In this work the dependence of the linear optical properties of KTP-PSW on geometrical parameters (period size, duty cycle and waveguide width) were studied. The experimental measured parameters include the PSW near field and the Bragg reflections, which appear due lo the grating structure of the waveguide. The possibility of controlling the wavelength and intensity, of the segmented waveguide Bragg reflections of regular period and super-period, is shown theoretically and experimentally. An unexpected dependence was found, by the experimental measurement, between the index profile and the ion-exchanged segment area,. The segmented waveguide dispersion curve, n eff (λ) in the infra-red region was found, A main part of the research work is dedicated to the study of nonlinear characteristics of PSW. The different factors, which effect the Second Harmonic Generation (SHG), are measured experimentally and analyzed. The experimental

  10. Theoretical study of phonon dispersion, elastic, mechanical and thermodynamic properties of barium chalcogenides

    Musari, A. A.; Orukombo, S. A.

    2018-03-01

    Barium chalcogenides are known for their high-technological importance and great scientific interest. Detailed studies of their elastic, mechanical, dynamical and thermodynamic properties were carried out using density functional theory and plane-wave pseudo potential method within the generalized gradient approximation. The optimized lattice constants were in good agreement when compared with experimental data. The independent elastic constants, calculated from a linear fit of the computed stress-strain function, were used to determine the Young’s modulus (E), bulk modulus (B), shear modulus (G), Poisson’s ratio (σ) and Zener’s anisotropy factor (A). Also, the Debye temperature and sound velocities for barium chalcogenides were estimated from the three independent elastic constants. The calculations of phonon dispersion showed that there are no negative frequencies throughout the Brillouin zone. Hence barium chalcogenides have dynamically stable NaCl-type crystal structure. Finally, their thermodynamic properties were calculated in the temperature range of 0-1000 K and their constant-volume specific heat capacities at room-temperature were reported.

  11. Structural and elastic properties of AIBIIIC 2 VI semiconductors

    Kumar, V.; Singh, Bhanu P.

    2018-01-01

    The plane wave pseudo-potential method within density functional theory has been used to calculate the structural and elastic properties of AIBIIIC 2 VI semiconductors. The electronic band structure, density of states, lattice constants (a and c), internal parameter (u), tetragonal distortion (η), energy gap (Eg), and bond lengths of the A-C (dAC) and B-C (dBC) bonds in AIBIIIC 2 VI semiconductors have been calculated. The values of elastic constants (Cij), bulk modulus (B), shear modulus (G), Young's modulus (Y), Poisson's ratio (υ), Zener anisotropy factor (A), Debye temperature (ϴD) and G/B ratio have also been calculated. The values of all 15 parameters of CuTlS2 and CuTlSe2 compounds, and 8 parameters of 20 compounds of AIBIIIC 2 VI family, except AgInS2 and AgInSe2, have been calculated for the first time. Reasonably good agreement has been obtained between the calculated, reported and available experimental values.

  12. Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents.

    Tian, Yuxing; Yu, Zhentao; Ong, Chun Yee Aaron; Kent, Damon; Wang, Gui

    2015-05-01

    Cold-deformability and mechanical compatibility of the biomedical β-type titanium alloy are the foremost considerations for their application in stents, because the lower ductility restricts the cold-forming of thin-tube and unsatisfactory mechanical performance causes a failed tissue repair. In this paper, β-type titanium alloy (Ti-25Nb-3Zr-3Mo-2Sn, wt%) thin-tube fabricated by routine cold rolling is reported for the first time, and its elastic behavior and mechanical properties are discussed for the various microstructures. The as cold-rolled tube exhibits nonlinear elastic behavior with large recoverable strain of 2.3%. After annealing and aging, a nonlinear elasticity, considered as the intermediate stage between "double yielding" and normal linear elasticity, is attributable to a moderate precipitation of α phase. Quantitive relationships are established between volume fraction of α phase (Vα) and elastic modulus, strength as well as maximal recoverable strain (εmax-R), where the εmax-R of above 2.0% corresponds to the Vα range of 3-10%. It is considered that the "mechanical" stabilization of the (α+β) microstructure is a possible elastic mechanism for explaining the nonlinear elastic behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. First-principles study of structural stability, electronic, optical and elastic properties of binary intermetallic: PtZr

    Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in [Department of Physics, Sarojini Naidu Government Girls P. G. Autonomous College, Bhopal-462016 (India); Jain, Ekta, E-mail: jainekta05@gmail.com [Department of Physics, Government M. L. B. Girls P. G. Autonomous College, Bhopal-462002 (India); Sanyal, S. P., E-mail: sps.physicsbu@gmail.com [Department of Physics, Barkatullah University, Bhopal-462026 (India)

    2016-05-06

    Structural, electronic, optical and elastic properties of PtZr have been studied using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). The energy against volume and enthalpy vs. pressure variation in three different structures i.e. B{sub 1}, B{sub 2} and B{sub 3} for PtZr has been presented. The equilibrium lattice parameter, bulk modulus and its pressure derivative have been obtained using optimization method for all the three phases. Furthermore, electronic structure was discussed to reveal the metallic character of the present compound. The linear optical properties are also studied under zero pressure for the first time. Results on elastic properties are obtained using generalized gradient approximation (GGA) for exchange correlation potentials. Ductile nature of PtZr compound is predicted in accordance with Pugh’s criteria.

  14. Temperature and Pressure Dependences of the Elastic Properties of Tantalum Single Crystals Under Tensile Loading: A Molecular Dynamics Study

    Li, Wei-bing; Li, Kang; Fan, Kan-qi; Zhang, Da-xing; Wang, Wei-dong

    2018-04-01

    Atomistic simulations are capable of providing insights into physical mechanisms responsible for mechanical properties of the transition metal of Tantalum (Ta). By using molecular dynamics (MD) method, temperature and pressure dependences of the elastic properties of Ta single crystals are investigated through tensile loading. First of all, a comparative study between two types of embedded-atom method (EAM) potentials is made in term of the elastic properties of Ta single crystals. The results show that Ravelo-EAM (Physical Review B, 2013, 88: 134101) potential behaves well at different hydrostatic pressures. Then, the MD simulation results based on the Ravelo-EAM potential show that Ta will experience a body-centered-cubic (BCC) to face-centered-cubic (FCC) phase transition before fracture under tensile loading at 1 K temperature, and model size and strain rate have no obvious effects on tensile behaviors of Ta. Next, from the simulation results at the system temperature from 1 to 1500 K, it can be derived that the elastic modulus of E 100 linearly decrease with the increasing temperature, while the yielding stress decrease with conforming a quadratic polynomial formula. Finally, the pressure dependence of the elastic properties is performed from 0 to 140 GPa and the observations show that the elastic modulus increases with the increasing pressure overall.

  15. CHILES, Singularity Strength of Linear Elastic Bodies by Finite Elements Method

    Benzley, S.E.; Beisinger, Z.E.

    1981-01-01

    1 - Description of problem or function: CHILES is a finite element computer program that calculates the strength of singularities in linear elastic bodies. Plane stress, plane strain, and axisymmetric conditions are treated. Crack tip singularity problems are solved by this version of the code, but any type of integrable singularity may be properly modeled by modifying selected subroutines in the program. 2 - Method of solution: A generalized, quadrilateral finite element that includes a singular point at a corner node is incorporated in the code. The displacement formulation is used and inter-element compatibility is maintained so that monotone convergence is preserved. 3 - Restrictions on the complexity of the problem: CHILES allows three singular points to be modeled in the body being analyzed and each singular point may have coupled Mode I and II deformations. 1000 nodal points may be used

  16. A second-order virtual node algorithm for nearly incompressible linear elasticity in irregular domains

    Zhu, Yongning; Wang, Yuting; Hellrung, Jeffrey; Cantarero, Alejandro; Sifakis, Eftychios; Teran, Joseph M.

    2012-08-01

    We present a cut cell method in R2 for enforcing Dirichlet and Neumann boundary conditions with nearly incompressible linear elastic materials in irregular domains. Virtual nodes on cut uniform grid cells are used to provide geometric flexibility in the domain boundary shape without sacrificing accuracy. We use a mixed formulation utilizing a MAC-type staggered grid with piecewise bilinear displacements centered at cell faces and piecewise constant pressures at cell centers. These discretization choices provide the necessary stability in the incompressible limit and the necessary accuracy in cut cells. Numerical experiments suggest second order accuracy in L∞. We target high-resolution problems and present a class of geometric multigrid methods for solving the discrete equations for displacements and pressures that achieves nearly optimal convergence rates independent of grid resolution.

  17. Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the determination of fracture toughness (KIc) of metallic materials under predominantly linear-elastic, plane-strain conditions using fatigue precracked specimens having a thickness of 1.6 mm (0.063 in.) or greater subjected to slowly, or in special (elective) cases rapidly, increasing crack-displacement force. Details of test apparatus, specimen configuration, and experimental procedure are given in the Annexes. Note 1—Plane-strain fracture toughness tests of thinner materials that are sufficiently brittle (see 7.1) can be made using other types of specimens (1). There is no standard test method for such thin materials. 1.2 This test method is divided into two parts. The first part gives general recommendations and requirements for KIc testing. The second part consists of Annexes that give specific information on displacement gage and loading fixture design, special requirements for individual specimen configurations, and detailed procedures for fatigue precracking. Additional a...

  18. Linear elastic obstacles: analysis of experimental results in the case of stress dependent pre-exponentials

    Surek, T.; Kuon, L.G.; Luton, M.J.; Jones, J.J.

    1975-01-01

    For the case of linear elastic obstacles, the analysis of experimental plastic flow data is shown to have a particularly simple form when the pre-exponential factor is a single-valued function of the modulus-reduced stress. The analysis permits the separation of the stress and temperature dependence of the strain rate into those of the pre-exponential factor and the activation free energy. As a consequence, the true values of the activation enthalpy, volume and entropy also are obtained. The approach is applied to four sets of experimental data, including Zr, and the results for the pre-exponential term are examined for self-consistency in view of the assumed functional dependence

  19. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite.

    Ching, W Y; Rulis, Paul; Misra, A

    2009-10-01

    We report elastic constant calculation and a "theoretical" tensile experiment on stoichiometric hydroxyapatite (HAP) crystal using an ab initio technique. These results compare favorably with a variety of measured data. Theoretical tensile experiments are performed on the orthorhombic cell of HAP for both uniaxial and biaxial loading. The results show considerable anisotropy in the stress-strain behavior. It is shown that the failure behavior of the perfect HAP crystal is brittle for tension along the z-axis with a maximum stress of 9.6 GPa at 10% strain. Biaxial failure envelopes from six "theoretical" loading tests show a highly anisotropic pattern. Structural analysis of the crystal under various stages of tensile strain reveals that the deformation behavior manifests itself mainly in the rotation of the PO(4) tetrahedron with concomitant movements of both the columnar and axial Ca ions. These results are discussed in the context of mechanical properties of bioceramic composites relevant to mineralized tissues.

  20. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur.

    Malo, M K H; Rohrbach, D; Isaksson, H; Töyräs, J; Jurvelin, J S; Tamminen, I S; Kröger, H; Raum, K

    2013-04-01

    Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Trc33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, pbone tissue were observed. These findings may explain in part the increase in susceptibility to suffer low energy fractures during aging and highlight the potential of ultrasound in clinical osteoporosis diagnostics. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Elastic and transport properties of topological semimetal ZrTe

    Guo, San-Dong; Wang, Yue-Hua; Lu, Wan-Li

    2017-11-01

    Topological semimetals may have substantial applications in electronics, spintronics, and quantum computation. Recently, ZrTe was predicted as a new type of topological semimetal due to the coexistence of Weyl fermions and massless triply degenerate nodal points. In this work, the elastic and transport properties of ZrTe are investigated by combining the first-principles calculations and semiclassical Boltzmann transport theory. Calculated elastic constants prove the mechanical stability of ZrTe, and the bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio also are calculated. It is found that spin-orbit coupling (SOC) has slightly enhanced effects on the Seebeck coefficient, which along the a(b) and c directions for pristine ZrTe at 300 K is 46.26 μVK-1 and 80.20 μVK-1, respectively. By comparing the experimental electrical conductivity of ZrTe (300 K) with the calculated value, the scattering time is determined as 1.59 × 10-14 s. The predicted room-temperature electronic thermal conductivity along the a(b) and c directions is 2.37 {{Wm}}-1{{{K}}}-1 and 2.90 {{Wm}}-1{{{K}}}-1, respectively. The room-temperature lattice thermal conductivity is predicted as 17.56 {{Wm}}-1{{{K}}}-1 and 43.08 {{Wm}}-1{{{K}}}-1 along the a(b) and c directions, showing very strong anisotropy. Calculated results show that isotope scattering produces an observable effect on lattice thermal conductivity. To observably reduce lattice thermal conductivity by nanostructures, the characteristic length should be smaller than 70 nm, based on cumulative lattice thermal conductivity with respect to the phonon mean free path (MFP) at 300 K. It is noted that the average room-temperature lattice thermal conductivity of ZrTe is slightly higher than that of isostructural MoP, which is due to larger phonon lifetimes and smaller Grüneisen parameters. Finally, the total thermal conductivity as a function of temperature is predicted for pristine ZrTe. Our works provide valuable

  2. Elastic properties of Cs2HgBr4 and Cs2CdBr4 crystals

    Kityk, A.V.; Zadorozhna, A.V.; Shchur, Y.I.; Martynyuk-Lototska, Y.I.; Burak, Y.; Vlokh, O.G.

    1998-01-01

    Using ultrasonic velocity measurements, all components of the elastic constant matrix C ij , elastic compliances matrix S ij , and linear compressibility constants matrix K ij of orthorhombic Cs 2 HgBr 4 and Cs 2 CdBr 4 crystals have been determined over a wide temperature range, including the region of the phase transition from the normal to the incommensurate phase. Results obtained are considered within the framework of the phenomenological theory. Preliminary analysis of the acoustical properties at room temperature clearly indicates that both crystals are relatively important materials for acousto-optical applications. Copyright (1998) CSIRO Australia

  3. FP-LAPW study of the elastic properties of Al2X (X=Sc,Y,La,Lu)

    Rajagopalan, M.; Praveen Kumar, S.; Anuthama, R.

    2010-01-01

    From the first principles total energy calculations based on full-potential linear augmented plane wave method (FP-LAPW), the elastic properties of Al 2 X (X=Sc,Y,La,Lu) are reported here. Theoretical values of Young's modulus, shear modulus, Poisson's ratio and Debye temperature are estimated from the computed elastic constants. From the analysis of the ratio of shear to bulk modulus, it is found that these intermetallic compounds are brittle in nature. The calculated results are compared with other reported values.

  4. High Temperature Elastic Properties of Reduced Activation Ferritic-Martensitic (RAFM) Steel Using Impulse Excitation Technique

    Tripathy, Haraprasanna; Raju, Subramanian; Hajra, Raj Narayan; Saibaba, Saroja

    2018-03-01

    The polycrystalline elastic constants of an indigenous variant of 9Cr-1W-based reduced activation ferritic-martensitic (RAFM) steel have been determined as a function of temperature from 298 K to 1323 K (25 °C to 1000 °C), using impulse excitation technique (IET). The three elastic constants namely, Young's modulus E, shear modulus G, and bulk modulus B, exhibited significant softening with increasing temperature, in a pronounced non-linear fashion. In addition, clearly marked discontinuities in their temperature variations are noticed in the region, where ferrite + carbides → austenite phase transformation occurred upon heating. Further, the incidence of austenite → martensite transformation upon cooling has also been marked by a step-like jump in both elastic E and shear moduli G. The martensite start M s and M f finish temperatures estimated from this study are, M s = 652 K (379 °C) and M f =580 K (307 °C). Similarly, the measured ferrite + carbide → austenite transformation onset ( Ac 1) and completion ( Ac 3) temperatures are found to be 1126 K and 1143 K (853 °C and 870 °C), respectively. The Poisson ratio μ exhibited distinct discontinuities at phase transformation temperatures; but however, is found to vary in the range 0.27 to 0.29. The room temperature estimates of E, G, and μ for normalized and tempered microstructure are found to be 219 GPa, 86.65 GPa, and 0.27, respectively. For the metastable austenite phase, the corresponding values are: 197 GPa, 76.5 GPa, and 0.29, respectively. The measured elastic properties as well as their temperature dependencies are found to be in good accord with reported estimates for other 9Cr-based ferritic-martensitic steel grades. Estimates of θ D el , the elastic Debye temperature and γ G, the thermal Grüneisen parameter obtained from measured bulk elastic properties are found to be θ D el = 465 K (192 °C) and γ G = 1.57.

  5. Bulk microstructure and local elastic properties of carbon nanocomposites studied by impulse acoustic microscopy technique

    Levin, V.; Petronyuk, Yu.; Morokov, E.; Chernozatonskii, L.; Kuzhir, P.; Fierro, V.; Celzard, A.; Bellucci, S.; Bistarelli, S.; Mastrucci, M.; Tabacchioni, I.

    2016-05-01

    Bulk microstructure and elastic properties of epoxy-nanocarbon nanocomposites for diverse types and different content of carbon nanofiller has been studied by using impulse acoustic microscopy technique. It has been shown occurrence of various types of mesoscopic structure formed by nanoparticles inside the bulk of nanocomposite materials, including nanoparticle conglomerates and nanoparticle aerogel systems. In spite of the bulk microstructure, nanocarbon composites demonstrate elastic uniformity and negligible influence of nanofiller on elastic properties of carbon nanocomposite materials.

  6. On the hyperporous non-linear elasticity model for fusion-relevant pebble beds

    Di Maio, P.A.; Giammusso, R.; Vella, G.

    2010-01-01

    Packed pebble beds are particular granular systems composed of a large amount of small particles, arranged in irregular lattices and surrounded by a gas filling interstitial spaces. Due to their heterogeneous structure, pebble beds have non-linear and strongly coupled thermal and mechanical behaviours whose constitutive models seem limited, being not suitable for fusion-relevant design-oriented applications. Within the framework of the modelling activities promoted for the lithiated ceramics and beryllium pebble beds foreseen in the Helium-Cooled Pebble Bed breeding blanket concept of DEMO, at the Department of Nuclear Engineering of the University of Palermo (DIN) a thermo-mechanical constitutive model has been set-up assuming that pebble beds can be considered as continuous, homogeneous and isotropic media. The present paper deals with the DIN non-linear elasticity constitutive model, based on the assumption that during the reversible straining of a pebble bed its effective logarithmic bulk modulus depends on the equivalent pressure according to a modified power law and its effective Poisson modulus remains constant. In these hypotheses the functional dependence of the effective tangential and secant bed deformation moduli on either the equivalent pressure or the volumetric strain have been derived in a closed analytical form. A procedure has been, then, defined to assess the model parameters for a given pebble bed from its oedometric test results and it has been applied to both polydisperse lithium orthosilicate and single size beryllium pebble beds.

  7. Elastic properties and short-range structural order in mixed network former glasses.

    Wang, Weimin; Christensen, Randilynn; Curtis, Brittany; Hynek, David; Keizer, Sydney; Wang, James; Feller, Steve; Martin, Steve W; Kieffer, John

    2017-06-21

    Elastic properties of alkali containing glasses are of great interest not only because they provide information about overall structural integrity but also they are related to other properties such as thermal conductivity and ion mobility. In this study, we investigate two mixed-network former glass systems, sodium borosilicate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)SiO 2 ] and sodium borogermanate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)GeO 2 ] glasses. By mixing network formers, the network topology can be changed while keeping the network modifier concentration constant, which allows for the effect of network structure on elastic properties to be analyzed over a wide parametric range. In addition to non-linear, non-additive mixed-glass former effects, maxima are observed in longitudinal, shear and Young's moduli with increasing atomic number density. By combining results from NMR spectroscopy and Brillouin light scattering with a newly developed statistical thermodynamic reaction equilibrium model, it is possible to determine the relative proportions of all network structural units. This new analysis reveals that the structural characteristic predominantly responsible for effective mechanical load transmission in these glasses is a high density of network cations coordinated by four or more bridging oxygens, as it provides for establishing a network of covalent bonds among these cations with connectivity in three dimensions.

  8. Polymer concentration and properties of elastic turbulence in a von Karman swirling flow

    Jun, Yonggun; Steinberg, Victor

    2017-10-01

    We report detailed experimental studies of statistical, scaling, and spectral properties of elastic turbulence (ET) in a von Karman swirling flow between rotating and stationary disks of polymer solutions in a wide, from dilute to semidilute entangled, range of polymer concentrations ϕ . The main message of the investigation is that the variation of ϕ just weakly modifies statistical, scaling, and spectral properties of ET in a swirling flow. The qualitative difference between dilute and semidilute unentangled versus semidilute entangled polymer solutions is found in the dependence of the critical Weissenberg number Wic of the elastic instability threshold on ϕ . The control parameter of the problem, the Weissenberg number Wi, is defined as the ratio of the nonlinear elastic stress to dissipation via linear stress relaxation and quantifies the degree of polymer stretching. The power-law scaling of the friction coefficient on Wi/Wic characterizes the ET regime with the exponent independent of ϕ . The torque Γ and pressure p power spectra show power-law decays with well-defined exponents, which has values independent of Wi and ϕ separately at 100 ≤ϕ ≤900 ppm and 1600 ≤ϕ ≤2300 ppm ranges. Another unexpected observation is the presence of two types of the boundary layers, horizontal and vertical, distinguished by their role in the energy pumping and dissipation, which has width dependence on Wi and ϕ differs drastically. In the case of the vertical boundary layer near the driving disk, wvv is independent of Wi/Wic and linearly decreases with ϕ /ϕ * , while in the case of the horizontal boundary layer wvh its width is independent of ϕ /ϕ * , linearly decreases with Wi/Wic , and is about five times smaller than wvv. Moreover, these Wi and ϕ dependencies of the vertical and horizontal boundary layer widths are found in accordance with the inverse turbulent intensity calculated inside the boundary layers Vθh/Vθh rms and Vθv/Vθv rms , respectively

  9. First-principles study of electronic and elastic properties of LuAl{sub 3}

    Shukla, Pushplata, E-mail: pujashukla50@gmail.com; Shrivastava, Deepika; Sanyal, Sankar P. [Department of Physics, Barkatullah university, Bhopal 462026 (India)

    2016-05-06

    A systematic theoretical study of electronic structure of rare earth intermetallic LuAl{sub 3} has been carried out using full potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT) within the generalized gradient approximation(GGA) for exchange and correlation potential. The ground state properties such as lattice constant (a{sub o}), bulk modulus (B) and pressure derivative of bulk modulus (B′) were evaluated. LuAl{sub 3} has the cubic AuCu{sub 3} type crystal structure. The electronic properties of this compound have been analyzed quantatively from band structure and DOS. It is clear from band structure that this compound is metallic in nature. The calculated elastic constants infer that this compound is mechanically stable.

  10. First-principles calculations for elastic properties of OsB{sub 2} under pressure

    Yang Junwei [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Chen Xiangrong, E-mail: x.r.chen@tom.co [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 (China); Luo Fen [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Ji Guangfu [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900 (China)

    2009-11-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB{sub 2} are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB{sub 2} under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB{sub 2} tend to increase with increasing pressure. It is predicted that OsB{sub 2} is not a superhard material from our calculations.

  11. First-principles calculations for elastic properties of OsB2 under pressure

    Yang Junwei; Chen Xiangrong; Luo Fen; Ji Guangfu

    2009-01-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.

  12. First-principles calculations for elastic properties of OsB 2 under pressure

    Yang, Jun-Wei; Chen, Xiang-Rong; Luo, Fen; Ji, Guang-Fu

    2009-11-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.

  13. Density functional calculations of elastic properties of portlandite, Ca(OH)(2)

    Laugesen, Jakob Lund

    2005-01-01

    The elastic constants of portlandite, Ca(OH)(2), are calculated by use of density functional theory. A lattice optimization of an infinite (periodic boundary conditions) lattice is performed on which strains are applied. The elastic constants are extracted by minimizing Hooke's law of linear...

  14. Elastic and transport properties in polycrystals of crackedgrains: Cross-property relations and microstructure

    Berryman, J.G.

    2007-10-02

    Some arguments of Bristow (1960) concerning the effects of cracks on elastic and transport (i.e., electrical or thermal conduction) properties of cold-worked metals are reexamined. The discussion is posed in terms of a modern understanding of bounds and estimates for physical properties of polycrystals--in contrast to Bristow's approach using simple mixture theory. One type of specialized result emphasized here is the cross-property estimates and bounds that can be obtained using the methods presented. Our results ultimately agree with those of Bristow, i.e., confirming that microcracking is not likely to be the main cause of the observed elastic behavior of cold-worked metals. However, it also becomes clear that the mixture theory approach to the analysis is too simple and that crack-crack interactions are necessary for proper quantitative study of Bristow's problem.

  15. A new technique for generating the isotropic and linearly anisotropic components of elastic and discrete inelastic transfer matrices

    Garcia, R.D.M.

    1984-01-01

    A new technique for generating the isotropic and linearly anisotropic componets of elastic and discrete inelastic transfer matrices is proposed. The technique allows certain angular integrals to be expressed in terms of functions that can be computed by recursion relations or series expansions alternatively to the use of numerical quadratures. (Author) [pt

  16. Some fundamental definitions of the elastic parameters for homogeneous isotropic linear elastic materials in pavement design and analysis

    De Beer, Morris

    2008-07-01

    Full Text Available - wave and ρ the material density. The elastic moduli P-wave modulus, M, is defined so that M = K + 4µ / 3 and M can then be determined by Equation 11, with a known speed Vp P MV 2 ρ = (11) It should however also... gas (such as air within compacted road materials), the adiabatic bulk modulus KS is approximately given by pKS κ= (4) Where: κ is the adiabatic index, (sometimes calledγ ); p is the pressure. In a fluid (such as moisture...

  17. Effects of microstructure on the elastic properties of selected Ta2O5--Eu2O3 compositions

    Malarkey, C.J.

    1977-06-01

    Elastic properties and internal friction of selected compositions of tantala-doped monoclinic europia were studied at temperatures up to 1500 0 C using the sonic resonance technique. Unit cell parameters between 25C and 1000 0 C for monoclinic Eu 2 O 3 were calculated from high temperature x-ray diffractometer data. Large-grained monoclinic specimens having less than 6.0 Ta cation percent substitution exhibited anomalous elastic behavior when thermally cycled. Compositions above this addition level exhibited linear elastic behavior. Internal friction values also varied abnormally with grain size, composition, and temperature. The anomalous behavior was attributed to microcracking caused by thermal expansion anisotropies. The critical grain size was found to be approximately 14 μm. The high temperature diffractometry measurements supported the postulate that the grain coarsening effect associated with sintered monoclinic Eu 2 O 3 is the controlling factor for microcracking

  18. Elastic properties of crystalline and liquid gallium at high pressures

    Lyapin, A. G.; Gromnitskaya, E. L.; Yagafarov, O. F.; Stal'Gorova, O. V.; Brazhkin, V. V.

    2008-11-01

    The elastic properties of gallium, such as the bulk modulus B, the shear modulus G, and the Poisson’s ratio σ, are investigated and the relative change in the volume is determined in the stability regions of the Ga I, Ga II, and liquid phases at pressures of up to 1.7 GPa. The observed lines of the Ga I-Ga II phase transition and the melting curves of the Ga I and Ga II phases are in good agreement with the known phase diagram of gallium; in this case, the coordinates of the Ga I-Ga II-melt triple point are determined to be 1.24 ± 0.40 GPa and 277 ± 2 K. It is shown that the Ga I-Ga II phase transition is accompanied by a considerable decrease in the moduli B (by 30%) and G (by 55%) and an increase in the density by 5.7%. The Poisson’s ratio exhibits a jump from typically covalent values of approximately 0.22-0.25 to values of approximately 0.32-0.33, which are characteristic of metals. The observed behavior of the elastic characteristics is described in the framework of the model of the phase transition from a “quasi-molecular” (partially covalent) metal state to a “normal” metal state. An increase in the Poisson’s ratio in the Ga I phase from 0.22 to 0.25 with an increase in the pressure can be interpreted as a decrease in the degree of covalence, i.e., the degree of spatial anisotropy of the electron density along the bonds, whereas the large value of the pressure derivative of the bulk modulus (equal to approximately 8) observed up to the transition to the Ga II phase or the melt is associated not only with the quasicovalent nature of the Ga I phase but also with the structural features. In view of the presence of seven neighbors for each gallium atom in the Ga I phase, the gallium lattice can be treated as a structure intermediate between typical open-packed and close-packed structures. Premelting effects, such as a flattening of the isothermal dependence of the shear modulus G( p) with increasing pressure and an increase in the slope of the

  19. Elastic properties of crystalline and liquid gallium at high pressures

    Lyapin, A. G.; Gromnitskaya, E. L.; Yagafarov, O. F.; Stal'gorova, O. V.; Brazhkin, V. V.

    2008-01-01

    The elastic properties of gallium, such as the bulk modulus B, the shear modulus G, and the Poisson's ratio σ, are investigated and the relative change in the volume is determined in the stability regions of the Ga I, Ga II, and liquid phases at pressures of up to 1.7 GPa. The observed lines of the Ga I-Ga II phase transition and the melting curves of the Ga I and Ga II phases are in good agreement with the known phase diagram of gallium; in this case, the coordinates of the Ga I-Ga II-melt triple point are determined to be 1.24 ± 0.40 GPa and 277 ± 2 K. It is shown that the Ga I-Ga II phase transition is accompanied by a considerable decrease in the moduli B (by 30%) and G (by 55%) and an increase in the density by 5.7%. The Poisson's ratio exhibits a jump from typically covalent values of approximately 0.22-0.25 to values of approximately 0.32-0.33, which are characteristic of metals. The observed behavior of the elastic characteristics is described in the framework of the model of the phase transition from a 'quasi-molecular' (partially covalent) metal state to a 'normal' metal state. An increase in the Poisson's ratio in the Ga I phase from 0.22 to 0.25 with an increase in the pressure can be interpreted as a decrease in the degree of covalence, i.e., the degree of spatial anisotropy of the electron density along the bonds, whereas the large value of the pressure derivative of the bulk modulus (equal to approximately 8) observed up to the transition to the Ga II phase or the melt is associated not only with the quasicovalent nature of the Ga I phase but also with the structural features. In view of the presence of seven neighbors for each gallium atom in the Ga I phase, the gallium lattice can be treated as a structure intermediate between typical open-packed and close-packed structures. Premelting effects, such as a flattening of the isothermal dependence of the shear modulus G(p) with increasing pressure and an increase in the slope of the isobaric

  20. Reconstruction of constitutive parameters in isotropic linear elasticity from noisy full-field measurements

    Bal, Guillaume; Bellis, Cédric; Imperiale, Sébastien; Monard, François

    2014-01-01

    Within the framework of linear elasticity we assume the availability of internal full-field measurements of the continuum deformations of a non-homogeneous isotropic solid. The aim is the quantitative reconstruction of the associated moduli. A simple gradient system for the sought constitutive parameters is derived algebraically from the momentum equation, whose coefficients are expressed in terms of the measured displacement fields and their spatial derivatives. Direct integration of this system is discussed to finally demonstrate the inexpediency of such an approach when dealing with noisy data. Upon using polluted measurements, an alternative variational formulation is deployed to invert for the physical parameters. Analysis of this latter inversion procedure provides existence and uniqueness results while the reconstruction stability with respect to the measurements is investigated. As the inversion procedure requires differentiating the measurements twice, a numerical differentiation scheme based on an ad hoc regularization then allows an optimally stable reconstruction of the sought moduli. Numerical results are included to illustrate and assess the performance of the overall approach. (paper)

  1. Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity.

    Ateş, Filiz; Hug, François; Bouillard, Killian; Jubeau, Marc; Frappart, Thomas; Couade, Mathieu; Bercoff, Jeremy; Nordez, Antoine

    2015-08-01

    Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (torque over the entire range of isometric contraction and (ii) the influence of the size of the region of interest (ROI) used to average the shear modulus value. Ten healthy males performed two incremental isometric little finger abductions. The joint torque produced by Abductor Digiti Minimi was considered as an index of muscle torque and elastic modulus. A high coefficient of determination (R(2)) (range: 0.86-0.98) indicated that the relationship between elastic modulus and torque can be accurately modeled by a linear regression over the entire range (0% to 100% of MVC). The changes in shear elastic modulus as a function of torque were highly repeatable. Lower R(2) values (0.89±0.13 for 1/16 of ROI) and significantly increased absolute errors were observed when the shear elastic modulus was averaged over smaller ROI, half, 1/4 and 1/16 of the full ROI) than the full ROI (mean size: 1.18±0.24cm(2)). It suggests that the ROI should be as large as possible for accurate measurement of muscle shear modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Phase properties of elastic waves in systems constituted of adsorbed diatomic molecules on the (001) surface of a simple cubic crystal

    Deymier, P. A.; Runge, K.

    2018-03-01

    A Green's function-based numerical method is developed to calculate the phase of scattered elastic waves in a harmonic model of diatomic molecules adsorbed on the (001) surface of a simple cubic crystal. The phase properties of scattered waves depend on the configuration of the molecules. The configurations of adsorbed molecules on the crystal surface such as parallel chain-like arrays coupled via kinks are used to demonstrate not only linear but also non-linear dependency of the phase on the number of kinks along the chains. Non-linear behavior arises for scattered waves with frequencies in the vicinity of a diatomic molecule resonance. In the non-linear regime, the variation in phase with the number of kinks is formulated mathematically as unitary matrix operations leading to an analogy between phase-based elastic unitary operations and quantum gates. The advantage of elastic based unitary operations is that they are easily realizable physically and measurable.

  3. Influence of temperature on elastic properties of caesium cyanide

    Singh, Preeti; Gaur, N.K.; Singh, R.K.

    2007-01-01

    An extended three body force shell model (ETSM), which incorporates the effects of translational-rotational (TR) coupling, three body interactions (TBI) and anharmonicity, has been applied to investigate the temperature dependence of the second order elastic constants (c ij , i,j=1,2) of CsCN. The elastic constant c 44 obtained by us shows an anomalous behaviour with the variation of temperature. The variations of elastic constants (c 11 , c 12 , c 44 ) with temperature are almost in excellent agreement with Brillouin scattering measured data. We have also evaluated the temperature variations of the third order elastic constants (c ijk ) and the pressure derivatives of the c ij in the CsCN material. However, their values could not be compared due to lack of experimental data. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. First principle electronic, structural, elastic, and optical properties of strontium titanate

    Chinedu E. Ekuma

    2012-03-01

    Full Text Available We report self-consistent ab-initio electronic, structural, elastic, and optical properties of cubic SrTiO3 perovskite. Our non-relativistic calculations employed a generalized gradient approximation (GGA potential and the linear combination of atomic orbitals (LCAO formalism. The distinctive feature of our computations stem from solving self-consistently the system of equations describing the GGA, using the Bagayoko-Zhao-Williams (BZW method. Our results are in agreement with experimental ones where the later are available. In particular, our theoretical, indirect band gap of 3.24 eV, at the experimental lattice constant of 3.91 Å, is in excellent agreement with experiment. Our predicted, equilibrium lattice constant is 3.92 Å, with a corresponding indirect band gap of 3.21 eV and bulk modulus of 183 GPa.

  5. Elastic properties of surfactant monolayers at liquid-liquid interfaces: A molecular dynamics study

    Laradji, Mohamed; Mouritsen, Ole G.

    2000-01-01

    Using a simple molecular model based on the Lennard-Jones potential, we systematically study the elastic properties of liquid-liquid interfaces containing surfactant molecules by means of extensive and large-scale molecular dynamics simulations. The main elastic constants of the interface, corres...

  6. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone

    Kabel, J.; Rietbergen, van B.; Dalstra, M.; Odgaard, A.; Huiskes, H.W.J.

    1999-01-01

    Conceptually, the elastic characteristics of cancellous bone could be predicted directly from the trabecular morphology-or architecture-and by the elastic properties of the tissue itself. Although hardly any experimental evidence exists, it is often implicitly assumed that tissue anisotropy has a

  7. Elastic properties and spectroscopic studies of Na 2 O–ZnO–B 2 O 3 ...

    Elastic properties, 11B MAS–NMR and IR spectroscopic studies have been employed to study the structure of Na2O–ZnO–B2O3 glasses. Sound velocities and elastic moduli such as longitudinal, Young's, bulk and shear modulus have been measured at a frequency of 10 MHz as a function of ZnO concentration.

  8. Development of elastic properties of Cu-based shape memory alloys during martensitic transformation

    Novák, Václav; Landa, Michal; Šittner, Petr

    2004-01-01

    Roč. 115, - (2004), s. 363 ISSN 1155-4339 Institutional research plan: CEZ:AV0Z1010914 Keywords : Cu-based shape memory alloy s * elastic properties * elastic constants * modelling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.294, year: 2004

  9. A first principles study of the electronic structure, elastic and thermal properties of UB2

    Jossou, Ericmoore; Malakkal, Linu; Szpunar, Barbara; Oladimeji, Dotun; Szpunar, Jerzy A.

    2017-07-01

    Uranium diboride (UB2) has been widely deployed for refractory use and is a proposed material for Accident Tolerant Fuel (ATF) due to its high thermal conductivity. However, the applicability of UB2 towards high temperature usage in a nuclear reactor requires the need to investigate the thermomechanical properties, and recent studies have failed in highlighting applicable properties. In this work, we present an in-depth theoretical outlook of the structural and thermophysical properties of UB2, including but not limited to elastic, electronic and thermal transport properties. These calculations were performed within the framework of Density Functional Theory (DFT) + U approach, using Quantum ESPRESSO (QE) code considering the addition of Coulomb correlations on the uranium atom. The phonon spectra and elastic constant analysis show the dynamic and mechanical stability of UB2 structure respectively. The electronic structure of UB2 was investigated using full potential linear augmented plane waves plus local orbitals method (FP-LAPW+lo) as implemented in WIEN2k code. The absence of a band gap in the total and partial density of states confirms the metallic nature while the valence electron density plot reveals the presence of covalent bond between adjacent B-B atoms. We predicted the lattice thermal conductivity (kL) by solving Boltzmann Transport Equation (BTE) using ShengBTE. The second order harmonic and third-order anharmonic interatomic force constants required as input to ShengBTE was calculated using the Density-functional perturbation theory (DFPT). However, we predicted the electronic thermal conductivity (kel) using Wiedemann-Franz law as implemented in Boltztrap code. We also show that the sound velocity along 'a' and 'c' axes exhibit high anisotropy, which accounts for the anisotropic thermal conductivity of UB2.

  10. Some Properties of Multiple Parameters Linear Programming

    Maoqin Li

    2010-01-01

    Full Text Available We consider a linear programming problem in which the right-hand side vector depends on multiple parameters. We study the characters of the optimal value function and the critical regions based on the concept of the optimal partition. We show that the domain of the optimal value function f can be decomposed into finitely many subsets with disjoint relative interiors, which is different from the result based on the concept of the optimal basis. And any directional derivative of f at any point can be computed by solving a linear programming problem when only an optimal solution is available at the point.

  11. Some Properties of Multiple Parameters Linear Programming

    Yan Hong

    2010-01-01

    Full Text Available Abstract We consider a linear programming problem in which the right-hand side vector depends on multiple parameters. We study the characters of the optimal value function and the critical regions based on the concept of the optimal partition. We show that the domain of the optimal value function can be decomposed into finitely many subsets with disjoint relative interiors, which is different from the result based on the concept of the optimal basis. And any directional derivative of at any point can be computed by solving a linear programming problem when only an optimal solution is available at the point.

  12. The effect of inclusions on macroscopic composite elasticity: A systematic finite-element analysis of constituent and bulk elastic properties

    Yoneda, A; Sohag, F H

    2010-01-01

    The bulk physical properties of composite systems are difficult to predict - even when the properties of the constituent materials in the system are well known. We conducted a finite-element method simulation to examine the inclusion effect by substituting an inclusion phase (second phase) into a host phase (first phase). We have organized the simulation results as a function of the elasticity of host and inclusion phases. In this procedure, special attention was paid to the initial change of elastic constants as the inclusion volume ratio was varied. To accomplish this, we introduced a new parameter D ij defined as the derivatives of the normalized stiffness elastic constant over the inclusion volume ratio. We succeeded in obtaining useful systematic formulations for D ij . These formulations are expected to be applicable to the study of composite systems in many disciplines, such as geophysics, mechanics, material engineering, and biology. The present results provide much more effective constraints on the physical properties of composite systems, like rocks, than traditional methods, such as the Voigt-Reuss bounds.

  13. The Relationships between Weight Functions, Geometric Functions,and Compliance Functions in Linear Elastic Fracture Mechanics

    Yuan, Rong [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Linear elastic fracture mechanics is widely used in industry because it established simple and explicit relationships between the permissible loading conditions and the critical crack size that is allowed in a structure. Stress intensity factors are the above-mentioned functional expressions that relate load with crack size through geometric functions or weight functions. Compliance functions are to determine the crack/flaw size in a structure when optical inspection is inconvenient. As a result, geometric functions, weight functions and compliance functions have been intensively studied to determine the stress intensity factor expressions for different geometries. However, the relations between these functions have received less attention. This work is therefore to investigate the intrinsic relationships between these functions. Theoretical derivation was carried out and the results were verified on single-edge cracked plate under tension and bending. It is found out that the geometric function is essentially the non-dimensional weight function at the loading point. The compliance function is composed of two parts: a varying part due to crack extension and a constant part from the intact structure if no crack exists. The derivative of the compliance function at any location is the product of the geometric function and the weight function at the evaluation point. Inversely, the compliance function can be acquired by the integration of the product of the geometric function and the weight function with respect to the crack size. The integral constant is just the unchanging compliance from the intact structure. Consequently, a special application of the relations is to obtain the compliance functions along a crack once the geometric function and weight functions are known. Any of the three special functions can be derived once the other two functions are known. These relations may greatly simplify the numerical process in obtaining either geometric functions, weight

  14. Modeling Non-Linear Material Properties in Composite Materials

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  15. Linear viscoelastic properties of aging suspensions

    Purnomo, E.H.; Purnomo, E.H; van den Ende, Henricus T.M.; Mellema, J.; Mugele, Friedrich Gunther

    2006-01-01

    We have examined the linear viscoelastic behavior of poly-N-isopropylacrylamide (PNIPAM) microgel suspensions in order to obtain insight in the aging processes in these densely packed suspensions at various temperatures below the volume transition temperature. The system is found to display a strong

  16. Structural, electronic and elastic properties of REIr{sub 2} (RE=La and Ce) Laves phase compounds

    Shrivastava, Deepika, E-mail: deepika89shrivastava@gmail.com; Fatima, Bushra; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal, 462026 (India)

    2016-05-23

    REIr{sub 2} (RE = La and Ce) Laves phase intermetallic compounds were investigated with respect to their structural, electronic and elastic properties using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA) as implemented in WIEN2k code. The ground state properties such as lattice constants (a{sub 0}), bulk modulus (B), pressure derivative of bulk modulus (B′) and density of state at Fermi level N(E{sub F}) have been obtained by optimization method. The electronic structure (BS, TDOS and PDOS) reveals that these Laves phase compounds are metallic in nature. The calculated elastic constants indicate that these compounds are mechanically stable at ambient pressure and found to be ductile in nature.

  17. Structural, electronic and elastic properties of RERu{sub 2} (RE=Pr and Nd) Laves phase intermetallic compounds

    Shrivastava, Deepika, E-mail: deepika89shrivastava@gmail.com; Sanyal, Sankar P. [Department of Physics, Barkatullah university, Bhopal, 462026 (India)

    2016-05-06

    We have performed the first-principles calculations to study the structural, electronic and elastic properties of RERu{sub 2} (RE = Pr and Nd) Laves phase intermetallic compounds using full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT) within the generalized gradient approximation (GGA) for exchange and correlation potential. The optimized lattices constant are in reasonable agreement with available experimental data. The electronic properties are analyzed in terms of band structures, total and partial density of states, which confirm their metallic character. The calculated elastic constants infer that these compounds are mechanically stable in C15 (MgCu{sub 2} type) structure and found to be ductile in nature.

  18. Ab-initio thermodynamic and elastic properties of AlNi and AlNi3 intermetallic compounds

    Yalameha, Shahram; Vaez, Aminollah

    2018-04-01

    In this paper, thermodynamic and elastic properties of the AlNi and AlNi3 were investigated using density functional theory (DFT). The full-potential linearized augmented plane-wave (APW) in the framework of the generalized gradient approximation as used as implemented in the Wien2k package. The temperature dependence of thermal expansion coefficient, bulk modulus and heat capacity in a wide range of temperature (0-1600 K) were investigated. The calculated elastic properties of the compounds show that both intermetallic compounds of AlNi and AlNi3 have surprisingly negative Poisson’s ratio (NPR). The results were compared with other experimental and computational data.

  19. Improved measurements of elastic properties at acoustic resonant frequencies

    Rosinger, H.E.; Ritchie, I.G.; Shillinglaw, A.J.

    1976-01-01

    The choice of specimens of rectangular cross section for determination of dynamic elastic moduli by the resonant bar technique is often dictated by specimen fabrication problems. The specimen of rectangular cross section lends itself to accurate determination of elastic vibration shapes by a method in which a simple noncontacting optical transducer is used. The unequivocal indexing of the various vibration modes obtained in this way more than compensates for the added computational difficulties associated with rectangular geometry. The approximations used in the calculations of Young's modulus and the shear modulus for bars of rectangular cross section are tested experimentally and it is shown that high precision can be obtained. Determinations of changes in dynamic elastic moduli with temperature or stress are also described. (author)

  20. First principles study of electronic, elastic and thermal properties of lutetium intermetallics

    Pagare, Gitanjali; Chouhan, Sunil Singh; Soni, Pooja; Sanyal, S.P.; Rajagopalan, M.

    2011-01-01

    In the present work, the electronic, elastic and thermal properties of lutetium intermetallics LuX have been studied theoretically by using first principles calculations based on density functional theory (DFT) with the generalized gradient approximation (GCA)

  1. Electronic, magnetic, elastic and thermodynamic properties of Cu{sub 2}MnGa

    Ghosh, Sukriti [Department of Physics, Government Kamla Raja Girls Autonomous Post Graduate College, Gwalior 474001, Madhya Pradesh (India); Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior 474 011, Madhya Pradesh (India); Gupta, Dinesh C., E-mail: sosfizix@gmail.com [Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior 474 011, Madhya Pradesh (India)

    2016-08-01

    The full-potential linearized augmented plane wave method in the stable Fm-3m phase has been implemented to investigate the structural, elastic, magnetic and electronic properties of Cu{sub 2}MnGa. The optimized equilibrium lattice parameter in stable phase is found to be 5.9495 Å. By the spin resolved density of states calculations, we have shown that the exchange splitting due to Mn atom is the main reason of ferromagnetic behavior of Cu{sub 2}MnGa. The absence of energy gap in both the spin channels predicts that the material is metallic. The total and partial density of states, elastic constants, Shear, Bulk and Young’s moduli, Zener isotropy factor, Cauchy pressure, Pugh's ductility, Kleinman parameter and Poisson's ratio are reported for the first time for the alloy. Cauchy's pressure and Pugh's index of ductility label Cu{sub 2}MnGa as ductile. Cu{sub 2}MnGa is found to be ferromagnetic and anisotropic in nature. The quasi-harmonic approximations have been employed to study the pressure and temperature dependent thermodynamic properties of Cu{sub 2}MnGa. - Highlights: • It is the first attempt to predict a variety of crystal properties of Cu{sub 2}MnGa. • Cu{sub 2}MnGa shows magnetism and hence can prove to be important in modern technology. • Cu{sub 2}MnGa is ductile and hence can attract attention of scientists and technologists.

  2. Elastic properties of silicon nitride ceramics reinforced with graphene nanofillers

    Seiner, Hanuš; Ramírez, C.; Koller, M.; Sedlák, Petr; Landa, Michal; Miranzo, P.; Belmonte, M.; Osendí, M. I.

    2015-01-01

    Roč. 87, December (2015), s. 675-680 ISSN 0264-1275 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61388998 Keywords : multilayer graphene * graphene oxide (GO) * silicon nitride * elastic constants * elastic modulus * shear modulus Subject RIV: JI - Composite Materials Impact factor: 3.997, year: 2015 http://www.sciencedirect.com/science/article/pii/S0264127515302938/pdfft?md5=571e00fd7f976e9b66ed789ae2a868b2&pid=1-s2.0-S0264127515302938-main.pdf

  3. Elastic properties of zinc, cadmium, bismuth, thallium, tin, lead and their binary alloys with indium

    Magomedov, A.M.

    1986-01-01

    Rates of propagation of longitudinal and transverse acoustic waves in samples as well as density of Tl, Pb, Sn, Bi, Cd, Zn and their binary alloys with indium are determined. The results obtained are used for calculation of elasticity constants of these materials. It is stated that concentration dependences of elasticity constants for indium alloys have non-linear character; negative deflection from the additive line is observed

  4. Exploring the Local Elastic Properties of Bilayer Membranes Using Molecular Dynamics Simulations

    Pieffet, Gilles; Botero, Alonso; Peters, Günther H.J.

    2014-01-01

    Membrane mechanical elastic properties regulate a variety of cellular processes involving local membrane deformation, such as ion channel function and vesicle fusion. In this work, we used molecular dynamics simulations to estimate the local elastic properties of a membrane. For this, we calculated...... the stretching process in molecular detail, allowing us to fit this profile to a previously proposed continuum elastic model. Through this approach, we calculated an effective membrane spring constant of 42 kJ-2.mol-1, which is in good agreement with the PMF calculation. Furthermore, the solvation energy we...

  5. Elastic Properties of Nucleic Acids by Single-Molecule Force Spectroscopy.

    Camunas-Soler, Joan; Ribezzi-Crivellari, Marco; Ritort, Felix

    2016-07-05

    We review the current knowledge on the use of single-molecule force spectroscopy techniques to extrapolate the elastic properties of nucleic acids. We emphasize the lesser-known elastic properties of single-stranded DNA. We discuss the importance of accurately determining the elastic response in pulling experiments, and we review the simplest models used to rationalize the experimental data as well as the experimental approaches used to pull single-stranded DNA. Applications used to investigate DNA conformational transitions and secondary structure formation are also highlighted. Finally, we provide an overview of the effects of salt and temperature and briefly discuss the effects of contour length and sequence dependence.

  6. Linear Optical Properties of Gold Colloid

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  7. Theoretical studies of the pressure-induced phase transition and elastic properties of BeS

    Ji, Xu [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Yu, Yang, E-mail: yuyang@scu.edu.cn [Department of Logistics Management, Sichuan University, Chengdu 610065 (China); Ji, Junyi [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Long, Jianping [College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China); Chen, Jianjun; Liu, Daijun [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2015-02-25

    Highlights: • Transition pressure from B3 to B8 of BeS is 58.86 GPa. • Elastic properties of BeS under pressure are predicted for the first time. • Elastic moduli of BeS increase monotonically with increasing pressure. • Elastic anisotropy of BeS has been investigated. - Abstract: First-principles calculations were performed to investigate the structural, electronic and elastic properties of BeS in both B3 and B8 structures. The structural phase transition from B3 to B8 occurs at 58.86 GPa with a volume decrease of 10.74%. The results of the electronic band structure show that the energy gap is indirect for B3 and B8 phases. The pressure dependence of the direct and indirect band gaps for BeS has been investigated. Especially, the elastic constants of B8 BeS under high pressure have been studied for the first time. The mechanical stability of the two phases has been discussed based on the pressure dependence of the elastic constants. In addition, the pressure dependence of bulk modulus, shear modulus, Young’s modulus, elastic wave velocities and brittle–ductile behavior of BeS are all successfully obtained. Finally, the elastic anisotropy has been investigated by using two different methods.

  8. AELAS: Automatic ELAStic property derivations via high-throughput first-principles computation

    Zhang, S. H.; Zhang, R. F.

    2017-11-01

    The elastic properties are fundamental and important for crystalline materials as they relate to other mechanical properties, various thermodynamic qualities as well as some critical physical properties. However, a complete set of experimentally determined elastic properties is only available for a small subset of known materials, and an automatic scheme for the derivations of elastic properties that is adapted to high-throughput computation is much demanding. In this paper, we present the AELAS code, an automated program for calculating second-order elastic constants of both two-dimensional and three-dimensional single crystal materials with any symmetry, which is designed mainly for high-throughput first-principles computation. Other derivations of general elastic properties such as Young's, bulk and shear moduli as well as Poisson's ratio of polycrystal materials, Pugh ratio, Cauchy pressure, elastic anisotropy and elastic stability criterion, are also implemented in this code. The implementation of the code has been critically validated by a lot of evaluations and tests on a broad class of materials including two-dimensional and three-dimensional materials, providing its efficiency and capability for high-throughput screening of specific materials with targeted mechanical properties. Program Files doi:http://dx.doi.org/10.17632/f8fwg4j9tw.1 Licensing provisions: BSD 3-Clause Programming language: Fortran Nature of problem: To automate the calculations of second-order elastic constants and the derivations of other elastic properties for two-dimensional and three-dimensional materials with any symmetry via high-throughput first-principles computation. Solution method: The space-group number is firstly determined by the SPGLIB code [1] and the structure is then redefined to unit cell with IEEE-format [2]. Secondly, based on the determined space group number, a set of distortion modes is automatically specified and the distorted structure files are generated

  9. On the elastic properties of carbon nanotube-based composites: modelling and characterization

    Thostenson, E T

    2003-01-01

    The exceptional mechanical and physical properties observed for carbon nanotubes has stimulated the development of nanotube-based composite materials, but critical challenges exist before we can exploit these extraordinary nanoscale properties in a macroscopic composite. At the nanoscale, the structure of the carbon nanotube strongly influences the overall properties of the composite. The focus of this research is to develop a fundamental understanding of the structure/size influence of carbon nanotubes on the elastic properties of nanotube-based composites. Towards this end, the nanoscale structure and elastic properties of a model composite system of aligned multi-walled carbon nanotubes embedded in a polystyrene matrix were characterized, and a micromechanical approach for modelling of short fibre composites was modified to account for the structure of the nanotube reinforcement to predict the elastic modulus of the nanocomposite as a function of the constituent properties, reinforcement geometry and nanot...

  10. An examination of the elastic properties of tissue-mimicking phantoms using vibro-acoustography and a muscle motor system

    Maccabi, A.; Taylor, Z.; Bajwa, N.; Mallen-St. Clair, J.; St. John, M.; Sung, S.; Grundfest, W.; Saddik, G.

    2016-02-01

    Tissue hardness, often quantified in terms of elasticity, is an important differentiating criterion for pathological identity and is extensively used by surgeons for tumor localization. Delineation of malignant regions from benign regions is typically performed by visual inspection and palpation. Although practical, this method is highly subjective and does not provide quantitative metrics. We have previously reported on Vibro-Acoustography (VA) for tumor delineation. VA is unique in that it uses the specific, non-linear properties of tumor tissue in response to an amplitude modulated ultrasound beam to generate spatially resolved, high contrast maps of tissue. Although the lateral and axial resolutions (sub-millimeter and sub-centimeter, respectively) of VA have been extensively characterized, the relationship between static stiffness assessment (palpation) and dynamic stiffness characterization (VA) has not been explicitly established. Here we perform a correlative exploration of the static and dynamic properties of tissue-mimicking phantoms, specifically elasticity, using VA and a muscle motor system. Muscle motor systems, commonly used to probe the mechanical properties of materials, provide absolute, quantitative point measurements of the elastic modulus, analogous to Young's modulus, of a target. For phantoms of varying percent-by-weight concentrations, parallel VA and muscle motor studies conducted on 18 phantoms reveal a negative correlation (p < - 0.85) between mean signal amplitude levels observed with VA and calculated elastic modulus values from force vs. indentation depth curves. Comparison of these elasticity measurements may provide additional information to improve tissue modeling, system characterization, as well as offer valuable insights for in vivo applications, specifically surgical extirpation of tumors.

  11. The elastic properties of zirconium alloy fuel cladding and pressure tubing materials

    Rosinger, H.E.; Northwood, D.O.

    1979-01-01

    A knowledge of the elastic properties of zirconium alloys is required in the mathematical modelling of cladding and pressure tubing performance. Until recently, little of this type of data was available, particularly at elevated temperatures. The dynamic elastic moduli of zircaloy-2, zircaloy-4, the alloys Zr-1.0 wt%Nb, Zr-2.5 wt%Nb and Marz grade zirconium have therefore been determined over the temperature range 275 to 1000 K. Young's modulus and shear modulus for all the zirconium alloys decrease with temperature and are expressed by empirical relations fitted to the data. The elastic properties are texture dependent and a detailed study has been conducted on the effect of texture on the elastic properties of Zr-1.0 wt% Nb over the temperature range 275 to 775 K. The results are compared with polycrystalline elastic constants computed from single crystal elastic constants, and the effect of texture on the dynamic elastic moduli is discussed in detail. (Auth.)

  12. A non-linear elastic constitutive framework for replicating plastic deformation in solids.

    Roberts, Scott Alan; Schunk, Peter Randall

    2014-02-01

    Ductile metals and other materials typically deform plastically under large applied loads; a behavior most often modeled using plastic deformation constitutive models. However, it is possible to capture some of the key behaviors of plastic deformation using only the framework for nonlinear elastic mechanics. In this paper, we develop a phenomenological, hysteretic, nonlinear elastic constitutive model that captures many of the features expected of a plastic deformation model. This model is based on calculating a secant modulus directly from a materials stress-strain curve. Scalar stress and strain values are obtained in three dimensions by using the von Mises invariants. Hysteresis is incorporated by tracking an additional history variable and assuming an elastic unloading response. This model is demonstrated in both single- and multi-element simulations under varying strain conditions.

  13. Elastic properties of graphene: A pseudo-beam model with modified internal bending moment and its application

    Xia, Z. M.; Wang, C. G.; Tan, H. F.

    2018-04-01

    A pseudo-beam model with modified internal bending moment is presented to predict elastic properties of graphene, including the Young's modulus and Poisson's ratio. In order to overcome a drawback in existing molecular structural mechanics models, which only account for pure bending (constant bending moment), the presented model accounts for linear bending moments deduced from the balance equations. Based on this pseudo-beam model, an analytical prediction is accomplished to predict the Young's modulus and Poisson's ratio of graphene based on the equation of the strain energies by using Castigliano second theorem. Then, the elastic properties of graphene are calculated compared with results available in literature, which verifies the feasibility of the pseudo-beam model. Finally, the pseudo-beam model is utilized to study the twisting wrinkling characteristics of annular graphene. Due to modifications of the internal bending moment, the wrinkling behaviors of graphene sheet are predicted accurately. The obtained results show that the pseudo-beam model has a good ability to predict the elastic properties of graphene accurately, especially the out-of-plane deformation behavior.

  14. Decay properties of linear thermoelastic plates: Cattaneo versus Fourier law

    Said-Houari, Belkacem

    2013-01-01

    In this article, we investigate the decay properties of the linear thermoelastic plate equations in the whole space for both Fourier and Cattaneo's laws of heat conduction. We point out that while the paradox of infinite propagation speed inherent

  15. Mechanical characterization and non-linear elastic modeling of poly(glycerol sebacate) for soft tissue engineering.

    Mitsak, Anna G; Dunn, Andrew M; Hollister, Scott J

    2012-07-01

    Scaffold tissue engineering strategies for repairing and replacing soft tissue aim to improve reconstructive and corrective surgical techniques whose limitations include suboptimal mechanical properties, fibrous capsule formation and volume loss due to graft resorption. An effective tissue engineering strategy requires a scaffolding material with low elastic modulus that behaves similarly to soft tissue, which has been characterized as a nonlinear elastic material. The material must also have the ability to be manufactured into specifically designed architectures. Poly(glycerol sebacate) (PGS) is a thermoset elastomer that meets these criteria. We hypothesize that the mechanical properties of PGS can be modulated through curing condition and architecture to produce materials with a range of stiffnesses. To evaluate this hypothesis, we manufactured PGS constructs cured under various conditions and having one of two architectures (solid or porous). Specimens were then tensile tested according to ASTM standards and the data were modeled using a nonlinear elastic Neo-Hookean model. Architecture and testing conditions, including elongation rate and wet versus dry conditions, affected the mechanical properties. Increasing curing time and temperature led to increased tangent modulus and decreased maximum strain for solid constructs. Porous constructs had lower nonlinear elastic properties, as did constructs of both architectures tested under simulated physiological conditions (wetted at 37 °C). Both solid and porous PGS specimens could be modeled well with the Neo-Hookean model. Future studies include comparing PGS properties to other biological tissue types and designing and characterizing PGS scaffolds for regenerating these tissues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Theoretical study of the elastic and thermodynamic properties of Pt_{3}Al with the L1_{2} structure under high pressure

    N. Wei

    2015-12-01

    Full Text Available In this work, the elastic and thermodynamic properties of Pt_{3}Al under high pressure are investigated using density functional theory within the generalized gradient approximation. The results of bulk modulus and elastic constants at zero pressure are in good agreement with the available theoretical and experimental values. Under high pressure, all the elastic constants meet the corresponding mechanical stability criteria, meaning that Pt_{3}Al possesses mechanical stability. In addition, the elastic constants and elastic modulus increase linearly with the applied pressure. According to the Poisson's ratio ν and elastic modulus ratio (B/G, Pt_{3}Al alloy is found to be ductile, and higher pressure can significantly enhance the ductility. Those indicate that the elastic properties of Pt_{3}Al will be improved under high pressure. Through the quasi-harmonic Debye model, we first successfully report the variations of the Debye temperature Θ_{D}, specific heats C_{P}, thermal expansion coefficient α, and Grüneisen parameter γ under pressure range from 0 to 100 GPa and temperature range from 0 to 1000 K.

  17. Mechanical Properties and Elastic Constants Due to Damage Accumulation and Amorphization in SiC

    Gao, Fei; Weber, William J.

    2004-01-01

    Damage accumulation due to cascade overlap, which was simulated previously, has been used to study the changes of elastic constants, bulk and elastic moduli as a function of dose. These mechanical properties generally decrease with increasing dose, and the rapid decrease at low-dose level indicates that point defects and small clusters play an important role in the changes of elastic constants rather than topological disorder. The internal strain relaxation has no effect on the elastic constants, C11 and C12, in perfect SiC, but it has a significant influence on all elastic constants calculated in damaged SiC. The elastic constants in the cascade-amorphized (CA) SiC decrease about 19%, 29% and 46% for C11, C12 and C44, respectively. The bulk modulus decrease 23% and the elastic modulus decreases 29%, which is consistent with experimental measurements. The stability of both the perfect SiC and CA-SiC under hydrostatic tension has been also investigated. All mechanical properties in the CA-SiC exhibit behavior similar to that in perfect SiC, but the critical stress at which the CA-SiC becomes structurally unstable is one order of magnitude smaller than that for perfect SiC

  18. Chirality-dependent anisotropic elastic properties of a monolayer graphene nanosheet.

    Guo, Jian-Gang; Zhou, Li-Jun; Kang, Yi-Lan

    2012-04-01

    An analytical approach is presented to predict the elastic properties of a monolayer graphene nanosheet based on interatomic potential energy and continuum mechanics. The elastic extension and torsional springs are utilized to simulate the stretching and angle variation of carbon-carbon bond, respectively. The constitutive equation of the graphene nanosheet is derived by using the strain energy density, and the analytical formulations for nonzero elastic constants are obtained. The in-plane elastic properties of the monolayer graphene nanosheet are proved to be anisotropic. In addition, Young's moduli, Poisson's ratios and shear modulus of the monolayer graphene nanosheet are calculated according to the force constants derived from Morse potential and AMBER force field, respectively, and they were proved to be chirality-dependent. The comparison with experimental results shows a very agreement.

  19. Acoustic and elastic properties of Sn2P2S6 crystals

    Mys, O; Martynyuk-Lototska, I; Vlokh, R; Grabar, A

    2009-01-01

    We present the results concerned with acoustic and elastic properties of Sn 2 P 2 S 6 crystals. The complete matrices of elastic stiffness and compliance coefficients are determined in both the crystallographic coordinate system and the system associated with eigenvectors of the elastic stiffness tensor. The acoustic slowness surfaces are constructed and the propagation and polarization directions of the slowest acoustic waves promising for acousto-optic interactions are determined on this basis. The acoustic obliquity angle and the deviation of polarization of the acoustic waves from purely transverse or longitudinal states are quantitatively analysed.

  20. Acoustic and elastic properties of Sn(2)P(2)S(6) crystals.

    Mys, O; Martynyuk-Lototska, I; Grabar, A; Vlokh, R

    2009-07-01

    We present the results concerned with acoustic and elastic properties of Sn(2)P(2)S(6) crystals. The complete matrices of elastic stiffness and compliance coefficients are determined in both the crystallographic coordinate system and the system associated with eigenvectors of the elastic stiffness tensor. The acoustic slowness surfaces are constructed and the propagation and polarization directions of the slowest acoustic waves promising for acousto-optic interactions are determined on this basis. The acoustic obliquity angle and the deviation of polarization of the acoustic waves from purely transverse or longitudinal states are quantitatively analysed.

  1. First-principles study of structural stabilities, elastic and electronic properties of transition metal monocarbides (TMCs) and mononitrides (TMNs)

    Rached, H.; Rached, D.; Benalia, S. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Reshak, A.H., E-mail: maalidph@yahoo.co.uk [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Rabah, M. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique de la Matière (LPQ3M), université de Mascara, Mascara 29000 (Algeria); Bin Omran, S. [Department of Physics and Astronomy, Faculty of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2013-12-16

    The structural stabilities, elastic and electronic properties of 5d transition metal mononitrides (TMNs) XN with (X = Ir, Os, Re, W and Ta) and 5d transition metal monocarbides (TMCs) XC with (X = Ir, Os, Re and Ta) were investigated using the full-potential linear muffin-tin orbital (FP-LMTO) method, in the framework of the density functional theory (DFT) within the local density approximation (LDA) for the exchange correlation functional. The ground state quantities such as the lattice parameter, bulks modulus and its pressure derivatives for the six considered crystal structures, Rock-salt (B1), CsCl (B2), zinc-blend (B3), Wurtzite (B4), NiAs (B8{sub 1}) and the tungsten carbides (B{sub h}) are calculated. The elastic constants of TMNs and TMCs compounds in its different stable phases are determined by using the total energy variation with strain technique. The elastic modulus for polycrystalline materials, shear modulus (G), Young's modulus (E), and Poisson's ratio (ν) are calculated. The Debye temperature (θ{sub D}) and sound velocities (v{sub m}) were also derived from the obtained elastic modulus. The analysis of the hardness of the herein studied compounds classifies OsN – (B4 et B8{sub 1}), ReN – (B8{sub 1}), WN – (B8{sub 1}) and OsC – (B8{sub 1}) as superhard materials. Our results for the band structure and densities of states (DOS), show that TMNs and TMCs compounds in theirs energetically and mechanically stable phase has metallic characteristic with strong covalent nature Metal–Nonmetal elements. - Highlights: • Structural stabilities, elastic, electronic properties of 5d TMNs XN are investigated. • 5d TMCs XC with (X = Ir, Os, Re and Ta) were investigated. • The ground state properties for the six considered crystal structure are calculated. • The elastic constants of TMNs and TMCs in its different stable phases are determined. • The elastic modulus for polycrystalline materials, G, E, and ν are calculated.

  2. From Process Modeling to Elastic Property Prediction for Long-Fiber Injection-Molded Thermoplastics

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Frame, Barbara J.; Phelps, Jay; Tucker III, Charles L.; Bapanapalli, Satish K.; Holbery, James D.; Smith, Mark T.

    2007-01-01

    This paper presents an experimental-modeling approach to predict the elastic properties of long-fiber injection-molded thermoplastics (LFTs). The approach accounts for fiber length and orientation distributions in LFTs. LFT samples were injection-molded for the study, and fiber length and orientation distributions were measured at different locations for use in the computation of the composite properties. The current fiber orientation model was assessed to determine its capability to predict fiber orientation in LFTs. Predicted fiber orientations for the studied LFT samples were also used in the calculation of the elastic properties of these samples, and the predicted overall moduli were then compared with the experimental results. The elastic property prediction was based on the Eshelby-Mori-Tanaka method combined with the orientation averaging technique. The predictions reasonably agree with the experimental LFT data

  3. Numerical simulation of shear and the Poynting effects by the finite element method: An application of the generalised empirical inequalities in non-linear elasticity

    Angela Mihai, L.; Goriely, Alain

    2013-01-01

    Finite element simulations of different shear deformations in non-linear elasticity are presented. We pay particular attention to the Poynting effects in hyperelastic materials, complementing recent theoretical findings by showing these effects

  4. Visco-Elastic Properties of Sodium Hyaluronate Solutions

    Kulicke, Werner-Michael; Meyer, Fabian; Bingöl, Ali Ö.; Lohmann, Derek

    2008-07-01

    Sodium Hyaluronate (NaHA) is a member of the glycosaminoglycans and is present in the human organism as part of the synovial fluid and the vitreous body. HA is mainly commercialized as sodium or potassium salt. It can be extracted from cockscombs or can be produced by bacterial fermentation ensuring a low protein content. Because of its natural origin and toxicological harmlessness, NaHA is used to a great extent for pharmaceutical and cosmetic products. In medical applications, NaHA is already being used as a component of flushing and stabilizing fluids in the treatment of eye cataract and as a surrogate for natural synovial fluid. Another growing domain in the commercial utilization of NaHA is the field of skin care products like dermal fillers or moisturizers. In this spectrum, NaHA is used in dilute over semidilute up to concentrated (0elastic material functions of different NaHA samples. This includes, besides shear flow and oscillatory experiments, the performance of rheo-optical measurements in order to determine the elastic component in the range of low shear rates and low concentrations.

  5. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    Zeng, Fan W.; Han, Karen; Olasov, Lauren R.; Gallego, Nidia C.; Contescu, Cristian I.; Spicer, James B.

    2015-05-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements.

  6. Elastic properties and spectroscopic studies of Na2O–ZnO–B2O3 ...

    Unknown

    Therefore, the choice of the most appropriate material for particular application requires a knowledge of its mechanical properties. Hence, elastic properties are ... son's ratio and θD the Debye temperature. Vl and Vt are longitudinal and shear sound velocities, respectively. The mean sound velocity, Vm, is defined by the ...

  7. Rational design of soft mechanical metamaterials : Independent tailoring of elastic properties with randomness

    Mirzaali Mazandarani, M.J.; Hedayati, R.; Vena, P; Vergani, L.; Strano, M.; Zadpoor, A.A.

    2017-01-01

    The elastic properties of mechanical metamaterials are direct functions of their topological designs. Rational design approaches based on computational models could, therefore, be used to devise topological designs that result in the desired properties. It is of particular importance to

  8. Elastic properties of RCC under flexural loading-experimental and ...

    For a simply supported beam subjected to gradually increasing load, the applied moment .... For simulation of material non-linearity, parabolic stress–strain ..... reinforcement, finite element meshes with discrete reinforcement are more realistic.

  9. Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy

    Tahara, Masaki [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Kim, Hee Young, E-mail: heeykim@ims.tsukuba.ac.jp [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Inamura, Tomonari; Hosoda, Hideki [Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Miyazaki, Shuichi, E-mail: miyazaki@ims.tsukuba.ac.jp [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); School of Materials Science and Engineering and ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2013-11-15

    Highlights: ► {110}{sub β}〈11{sup ¯}0〉{sub β} transverse type lattice modulation is confirmed in β phase. ► Nanosized modulated region (nanodomain) distributes homogeneously and randomly. ► Nanodomains act as obstacles against the long-ranged martensitic transformation. ► The origin of non-linear elastic deformation behavior is the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation. -- Abstract: In order to clarify the effect of interstitial atoms on the non-linear elastic deformation behavior of the Ti–Nb alloy, the microstructure of (Ti–26Nb)–1.0O alloy was closely investigated by transmission electron microscope (TEM) and in situ X-ray diffraction (XRD) measurements. The 〈1 1 0〉{sub β}* rel rods and {1 1 1}{sub β}* rel planes were observed in a reciprocal space for the (Ti–26Nb)–1.0O alloy. Their origin was {110}{sub β}〈11{sup ¯}0〉{sub β} transverse type lattice modulation generated by oxygen atoms. Nanosized modulated domain structure (nanodomain) distributed homogeneously and randomly in the β phase and acted as obstacles for the long-ranged martensitic transformation in the (Ti–26Nb)–1.0O alloy. The non-linear elastic strain of the (Ti–26Nb)–1.0O alloy was generated by the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation.

  10. Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy

    Tahara, Masaki; Kim, Hee Young; Inamura, Tomonari; Hosoda, Hideki; Miyazaki, Shuichi

    2013-01-01

    Highlights: ► {110} β 〈11 ¯ 0〉 β transverse type lattice modulation is confirmed in β phase. ► Nanosized modulated region (nanodomain) distributes homogeneously and randomly. ► Nanodomains act as obstacles against the long-ranged martensitic transformation. ► The origin of non-linear elastic deformation behavior is the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation. -- Abstract: In order to clarify the effect of interstitial atoms on the non-linear elastic deformation behavior of the Ti–Nb alloy, the microstructure of (Ti–26Nb)–1.0O alloy was closely investigated by transmission electron microscope (TEM) and in situ X-ray diffraction (XRD) measurements. The 〈1 1 0〉 β * rel rods and {1 1 1} β * rel planes were observed in a reciprocal space for the (Ti–26Nb)–1.0O alloy. Their origin was {110} β 〈11 ¯ 0〉 β transverse type lattice modulation generated by oxygen atoms. Nanosized modulated domain structure (nanodomain) distributed homogeneously and randomly in the β phase and acted as obstacles for the long-ranged martensitic transformation in the (Ti–26Nb)–1.0O alloy. The non-linear elastic strain of the (Ti–26Nb)–1.0O alloy was generated by the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation

  11. Pressure effect on the structural, elastic, electronic and optical properties of the Zintl phase KAsSn, first principles study

    Guechi, A., E-mail: ab_guechi@yahoo.fr [Institute of Optics and Precision Mechanics, Setif-1 University, 19000 Setif (Algeria); Laboratory of Optoelectronics and Components, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria); Merabet, A. [Institute of Optics and Precision Mechanics, Setif-1 University, 19000 Setif (Algeria); Laboratory of Physics and Mechanics of Metallic Materials, Setif-1 University, 19000 Setif (Algeria); Chegaar, M. [Laboratory of Optoelectronics and Components, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria); Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Guechi, N. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria)

    2015-02-25

    Highlights: • KAsSn is interesting in the materials community due to its complex structure and narrow gap. • Physical properties of KAsSn have not taken much attention in previous studies. • The KAsSn structure is shown to be mechanically stable. • KAsSn is predicted to be brittleness and characterized by a weak elastic anisotropy. • Its high absorption in the U.V. energy range shows its use in the optoelectronic devices. - Abstract: In this work, a first-principles study of ternary Zintl phase KAsSn compound using density-functional theory (DFT) method within the generalized gradient approximation developed by Wu–Cohen (GGA-Wc) has been performed. Based on the optimized structural parameter, the electronic structure, elastic and optical properties have been investigated. The calculated lattice constants agree reasonably with the previous results. The effect of high pressure on the structural parameters has been shown. The elastic constants were calculated and satisfy the stability conditions for hexagonal crystal. These indicate that this compound is stable in the studied pressure regime. The single crystal elastic constants (C{sub ij}) and related properties are calculated using the static finite strain technique, moreover the polycrystalline elastic moduli such as bulk modulus, shear modulus, micro-hardness parameter H{sub ν}, Young’s modulus and Poisson’s ratio were estimated using Voigt, Reuss and Hill’s (VRH) approximations. The elastic anisotropy of the KAsSn was also analyzed. On another hand the Debye temperature was obtained from the average sound velocity. Electronic properties have been studied throughout the calculation of band structure, density of states and charge densities. It is shown that this crystal belongs to the semiconductors with a pseudo gap of about 0.34 eV. Furthermore, in order to clarify the optical transitions of this compound, linear optical functions including the complex dielectric function, refractive index

  12. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  13. Ab Initio Study of the Electronic Structure, Elastic Properties, Magnetic Feature and Thermodynamic Properties of the Ba2NiMoO6 Material

    Deluque Toro, C. E.; Mosquera Polo, A. S.; Gil Rebaza, A. V.; Landínez Téllez, D. A.; Roa-Rojas, J.

    2018-04-01

    We report first-principles calculations of the elastic properties, electronic structure and magnetic behavior performed over the Ba2NiMoO6 double perovskite. Calculations are carried out through the full-potential linear augmented plane-wave method within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient and Local Density Approximations, including spin polarization. The elastic properties calculated are bulk modulus (B), the elastic constants (C 11, C 12 and C 44), the Zener anisotropy factor (A), the isotropic shear modulus (G), the Young modulus (Y) and the Poisson ratio (υ). Structural parameters, total energies and cohesive properties of the perovskite are studied by means of minimization of internal parameters with the Murnaghan equation, where the structural parameters are in good agreement with experimental data. Furthermore, we have explored different antiferromagnetic configurations in order to describe the magnetic ground state of this compound. The pressure and temperature dependence of specific heat, thermal expansion coefficient, Debye temperature and Grüneisen parameter were calculated by DFT from the state equation using the quasi-harmonic model of Debye. A specific heat behavior C V ≈ C P was found at temperatures below T = 400 K, with Dulong-Petit limit values, which is higher than those, reported for simple perovskites.

  14. Effect of pressure variation on structural, elastic, mechanical, optoelectronic and thermodynamic properties of SrNaF3 fluoroperovskite

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-12-01

    The effect of pressure variation on structural, electronic, elastic, mechanical, optical and thermodynamic characteristics of cubic SrNaF3 fluoroperovskite have been investigated by employing first-principles method within the framework of gradient approximation (GGA). For the total energy calculations, we have used the full-potential linearized augmented plane wave (FP-LAPW) method. Thermodynamic properties are computed in terms of quasi-harmonic Debye model. The pressure effects are determined in the range of 0-25 GPa, in which mechanical stability of SrNaF3 fluoroperovskite remains valid. A prominent decrease in lattice constant and bonds length is observed with the increase in pressure from 0 to 25 GPa. The effect of increase in pressure on band structure calculations with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential reveals a predominant characteristic associated with widening of bandgap. The influence of pressure on set of isotropic elastic parameters and their related properties are numerically estimated for SrNaF3 polycrystalline aggregate. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is observed as pressure is increased from 0 to 25 GPa. We have successfully obtained variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities with pressure and temperature in the range of 0-25 GPa and 0-600 K. All the calculated optical properties such as the complex dielectric function ɛ(ω), optical conductivity σ(ω), energy loss function L(ω), absorption coefficient α(w), refractive index n(ω), reflectivity R(ω), and effective number of electrons n eff, via sum rules shift towards the higher energies under the application of pressure.

  15. DESTRUCTION CRITERION IN MODEL OF NON-LINEAR ELASTIC PLASTIC MEDIUM

    O. L. Shved

    2014-01-01

    Full Text Available The paper considers a destruction criterion in a specific phenomenological model of elastic plastic medium which significantly differs from the known criteria. In case of vector interpretation of rank-2 symmetric tensors yield surface in the Cauchy stress space is formed by closed piecewise concave surfaces of its deviator sections with due account of experimental data. Section surface is determined by normal vector which is selected from two private vectors of criterial “deviator” operator. Such selection is not always possible in the case of anisotropy growth. It is expected that destruction can only start when a process point in the stress space is located in the current deviator section of the yield surface. It occurs when a critical point appears in the section, and a private value of an operator becomes N-fold in the point that determines the private vector corresponding to the normal vector. Unique and reasonable selection of the normal vector becomes impossible in the critical point and an yield criteria loses its significance in the point.When the destruction initiation is determined there is a possibility of a special case due to the proposed conic form of the yield surface. The deviator section degenerates into the point at the yield surface peak. Criterion formulation at the surface peak lies in the fact that there is no physically correct solution while using a state equation in regard to elastic distortion measures with a fixed tensor of elastic turn. Such usage of the equation is always possible for the rest points of the yield surface and it is considered as an obligatory condition for determination of the deviator section. A critical point is generally absent at any deviator section of the yield surface for isotropic material. A limiting value of the mean stress has been calculated at uniform tension.

  16. Elastic properties of cubic perovskite BaRuO{sub 3} from first-principles calculations

    Han Deming; Liu Xiaojuan; Lv Shuhui; Li Hongping [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng Jian, E-mail: jmeng@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-08-01

    We present first-principles investigations on the structural and elastic properties of the cubic perovskite BaRuO{sub 3} using density-functional theory within both local density approximation (LDA) and generalized gradient approximation (GGA). Basic physical properties, such as lattice constant, shear modulus, elastic constants (C{sub ij}) are calculated. The calculated energy band structures show that the cubic perovskite BaRuO{sub 3} is metallic. We have also predicted the Young's modulus (Y), Poisson's ratio ({upsilon}), and Anisotropy factor (A).

  17. Tuning and switching the hypersonic phononic properties of elastic impedance contrast nanocomposites.

    Sato, Akihiro; Pennec, Yan; Shingne, Nitin; Thurn-Albrecht, Thomas; Knoll, Wolfgang; Steinhart, Martin; Djafari-Rouhani, Bahram; Fytas, George

    2010-06-22

    Anodic aluminum oxide (AAO) containing arrays of aligned cylindrical nanopores infiltrated with polymers is a well-defined model system for the study of hypersound propagation in polymer nanocomposites. Hypersonic phononic properties of AAO/polymer nanocomposites such as phonon localization and anisotropic sound propagation can be tailored by adjusting elastic contrast and density contrast between the components. Changes in density and elastic properties of the component located in the nanopores induced by phase transitions allow reversible modification of the phononic band structure and mode switching. As example in case, the crystallization and melting of poly(vinylidene difluoride) inside AAO was investigated.

  18. Investigation of translaminar fracture in fibrereinforced composite laminates---applicability of linear elastic fracture mechanics and cohesive-zone model

    Hou, Fang

    With the extensive application of fiber-reinforced composite laminates in industry, research on the fracture mechanisms of this type of materials have drawn more and more attentions. A variety of fracture theories and models have been developed. Among them, the linear elastic fracture mechanics (LEFM) and cohesive-zone model (CZM) are two widely-accepted fracture models, which have already shown applicability in the fracture analysis of fiber-reinforced composite laminates. However, there remain challenges which prevent further applications of the two fracture models, such as the experimental measurement of fracture resistance. This dissertation primarily focused on the study of the applicability of LEFM and CZM for the fracture analysis of translaminar fracture in fibre-reinforced composite laminates. The research for each fracture model consisted of two sections: the analytical characterization of crack-tip fields and the experimental measurement of fracture resistance parameters. In the study of LEFM, an experimental investigation based on full-field crack-tip displacement measurements was carried out as a way to characterize the subcritical and steady-state crack advances in translaminar fracture of fiber-reinforced composite laminates. Here, the fiber-reinforced composite laminates were approximated as anisotropic solids. The experimental investigation relied on the LEFM theory with a modification with respect to the material anisotropy. Firstly, the full-field crack-tip displacement fields were measured by Digital Image Correlation (DIC). Then two methods, separately based on the stress intensity approach and the energy approach, were developed to measure the crack-tip field parameters from crack-tip displacement fields. The studied crack-tip field parameters included the stress intensity factor, energy release rate and effective crack length. Moreover, the crack-growth resistance curves (R-curves) were constructed with the measured crack-tip field parameters

  19. Acoustic tests of elastic and microplastic properties of V-Ti-Cr alloys

    Chernov, V.M. [Fiziko-Ehnergeticheskij Institut, Obninsk (Russian Federation); Rezvoushkin, A.V. [Fiziko-Ehnergeticheskij Institut, Obninsk (Russian Federation); Kardashev, B.K. [Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation)

    1996-10-01

    The non-linear acoustic properties of V-10Ti-5Cr alloy before and after proton irradiation (dose 2.2 x 10{sup 14} p/cm{sup 2}) were investigated using a composite oscillator technique at longitudinal vibration frequencies of about 100 kHz. Acoustic parameters (decrement and resonance frequency) of the samples demonstrated noticeable amplitude dependencies of hysteretic type both in undeformed and deformed states. An unusual influence of plastical pre-straining on irradiated sample was found which resulted in small decreases in damping and increases in resonance frequency, and hence, of the elastic modulus. Damping in an irradiated sample was higher and its resonant frequency was lower as compared with a non-irradiated sample. This acoustic effect correlated with the results of microhardness and yield strength measurements. The experimental results are discussed in the framework of a model which predicts the creation by proton irradiation of defects which aid the motion of dislocations in V-alloys. (orig.).

  20. The Relationship between Elastic Properties and Shear Fabric in Clay-Rich Fault Gouge

    Kenigsberg, A.; Saffer, D. M.; Riviere, J.; Ryan, K. L.; Marone, C.

    2016-12-01

    The low mechanical strength of major crustal faults remains a fundamental problem in geophysics and earthquake mechanics. Although both clay abundance and shear fabric are known as key controls on the frictional weakening of faults, the detailed links between fabric, elastic properties, composition, and fault strength remain poorly understood. This gap in information is in part because data are lacking to fully characterize the evolution of gouge microstructures and elastic properties during shearing. Here, we use seismic wave propagation to probe gouge ultrasonic and elastic properties, as a proxy for the development of shear fabrics. We report on a suite of direct shear experiments that include ultrasonic wave transmission to monitor compressional and shear wave velocities (Vp, Vs), during progressive shear of synthetic, clay-rich fault gouge. In order to better understand when and how clay grain alignment and nano-coatings begin to dominate the affect of shear fabric and local gouge density on elastic properties and shear strength, we studied a suite of synthetic gouges composed of Ca-montmorillonite and quartz ranging from 0-100% clay. Our laboratory experiments document friction coefficients (μ) ranging from 0.21 for gouges composed of 100% smectite to 0.62 for 100% quartz, with μ decreasing as clay content increases. We find that Vp and Vs increases as shear progresses and porosity decreases. Ongoing analyses of ultrasonic waves will assess variations of Vp, Vs, and elastic moduli throughout shear and as a function of gouge composition. We anticipate that these variations will be linked to formation of fabric elements observed via microstructural analysis, and will be indicative of whether quartz or clay is dominating how the fabrics form. Finally, we expect that clay content will be the dominant factor controlling shear fabric evolution and, consequently, the key control on the evolution of elastic properties with shear.

  1. Geometric method for stability of non-linear elastic thin shells

    Ivanova, Jordanka

    2002-01-01

    PREFACE This book deals with the new developments and applications of the geometric method to the nonlinear stability problem for thin non-elastic shells. There are no other published books on this subject except the basic ones of A. V. Pogorelov (1966,1967,1986), where variational principles defined over isometric surfaces, are postulated, and applied mainly to static and dynamic problems of elastic isotropic thin shells. A. V. Pogorelov (Harkov, Ukraine) was the first to provide in his monographs the geometric construction of the deformed shell surface in a post-critical stage and deriving explicitely the asymptotic formulas for the upper and lower critical loads. In most cases, these formulas were presented in a closed analytical form, and confirmed by experimental data. The geometric method by Pogorelov is one of the most important analytical methods developed during the last century. Its power consists in its ability to provide a clear geometric picture of the postcritical form of a deformed shell surfac...

  2. Homogenization of Winkler-Steklov spectral conditions in three-dimensional linear elasticity

    Gómez, D.; Nazarov, S. A.; Pérez, M. E.

    2018-04-01

    We consider a homogenization Winkler-Steklov spectral problem that consists of the elasticity equations for a three-dimensional homogeneous anisotropic elastic body which has a plane part of the surface subject to alternating boundary conditions on small regions periodically placed along the plane. These conditions are of the Dirichlet type and of the Winkler-Steklov type, the latter containing the spectral parameter. The rest of the boundary of the body is fixed, and the period and size of the regions, where the spectral parameter arises, are of order ɛ . For fixed ɛ , the problem has a discrete spectrum, and we address the asymptotic behavior of the eigenvalues {β _k^ɛ }_{k=1}^{∞} as ɛ → 0. We show that β _k^ɛ =O(ɛ ^{-1}) for each fixed k, and we observe a common limit point for all the rescaled eigenvalues ɛ β _k^ɛ while we make it evident that, although the periodicity of the structure only affects the boundary conditions, a band-gap structure of the spectrum is inherited asymptotically. Also, we provide the asymptotic behavior for certain "groups" of eigenmodes.

  3. Full-potential calculations of structural, elastic and electronic properties of MgAl2O4 and ZnAl2O4 compounds

    Khenata, R.; Sahnoun, M.; Baltache, H.; Rerat, M.; Reshak, Ali H.; Al-Douri, Y.; Bouhafs, B.

    2005-01-01

    Theoretical studies of structural, elastic and electronic properties of spinel MgAl 2 O 4 and ZnAl 2 O 4 oxides are presented, using the full-potential linear augmented plane wave (FP-LAPW) method as implemented in the WIEN97 code. In this approach the local density approximation (LDA) is used for the exchange-correlation (XC) potential. Results are given for lattice constant, bulk modulus, and its pressure derivative. The band structure, density of states, pressure coefficients of energy gaps and elastic constants are also given. We present a detailed comparison with available experimental data and previous calculations. Good agreement is found

  4. Structural phase transition and elastic properties of samarium monopnictides

    Pagare, Gitanjali; Chouhan, Sunil Singh; Soni, Pooja; Sanyal, Sankar P.

    2011-01-01

    In recent years the monopnictides and monochalcogenides of the rare-earth elements with rocksalt structure (B 1 ) have aroused intensive interest due to the presence of strongly correlated f electrons in them. Under pressure, the nature of f-electrons of these compounds can be changed from localized to itinerant leading to significant changes in physical and chemical properties. These unusual structural, electronic, and high-pressure properties make them candidates for advanced industrial applications. For these applications they provide unique physical properties which cannot be achieved with other materials

  5. The porosity effect on properties of sintered materials as their conductivity and Youngs modulus of elasticity

    Ondracek, G.; Thuemmler, F.

    1979-01-01

    A set of equations derived demonstrates quantitatively the influence of closed pores on the conductivity as well as on Youngsmodulus of elasticity of sintered materials. There are three microstructural parameters following from the theoretical derivation controlling the porosity effect on the properties, which are the total porosity, the form factor and the orientation factor of the pores. By quantitative microstructure analysis these factors become available providing together with the equations the tool - to calculate the conductivity and Youngs modulus of elasticity from microstructural quantities of sintered materials thus substituting direct property measurements by quantitative microstructure analysis if desired - to endeaver technologically optimum microstructures to obtain theoretically predicted special property values and to precalculate property alterations by microstructure variations ('taylor-made-materials') - to supplement the conventional microstructural quality control by calculated property data. (orig.) [de

  6. Micromechanics-based determination of effective elastic properties of polymer bonded explosives

    Banerjee, Biswajit; Adams, D.O.

    2003-01-01

    Polymer bonded explosives are particulate composites containing a high volume fraction of stiff elastic explosive particles in a compliant viscoelastic binder. Since the volume fraction of particles can be greater than 0.9 and the modulus contrast greater than 20 000, rigorous bounds on the elastic moduli of the composite are an order of magnitude different from experimentally determined values. Analytical solutions are also observed to provide inaccurate estimates of effective elastic properties. Direct finite element approximations of effective properties require large computational resources because of the complexity of the microstructure of these composites. An alternative approach, the recursive cells method (RCM) is also explored in this work. Results show that the degree of discretization and the microstructures used in finite element models of PBXs can significantly affect the estimated Young's moduli

  7. First-Principle Calculations for Elastic and Thermodynamic Properties of Diamond

    Fu Zhijian; Chen Xiangrong; Gou Qingquan; Ji Guangfu

    2009-01-01

    The elastic constants and thermodynamic properties of diamond are investigated by using the CRYSTAL03 program. The lattice parameters, the bulk modulus, the heat capacity, the Grueneisen parameter, and the Debye temperature are obtained. The results are in good agreement with the available experimental and theoretical data. Moreover, the relationship between V/V 0 and pressure, the elastic constants under high pressure are successfully obtained. Especially, the elastic constants of diamond under high pressure are firstly obtained theoretically. At the same time, the variations of the thermal expansion α with pressure P and temperature Tare obtained systematically in the ranges of 0-870 GPa and 0-1600 K. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Pressure effect on structural, elastic, and thermodynamic properties of tetragonal B4C4

    Baobing Zheng

    2015-03-01

    Full Text Available The compressibility, elastic anisotropy, and thermodynamic properties of the recently proposed tetragonal B4C4 (t-B4C4 are investigated under high temperature and high pressure by using of first-principles calculations method. The elastic constants, bulk modulus, shear modulus, Young’s modulus, Vickers hardness, Pugh’s modulus ratio, and Poisson’s ratio for t-B4C4 under various pressures are systematically explored, the obtained results indicate that t-B4C4 is a stiffer material. The elastic anisotropies of t-B4C4 are discussed in detail under pressure from 0 GPa to 100 GPa. The thermodynamic properties of t-B4C4, such as Debye temperature, heat capacity, and thermal expansion coefficient are investigated by the quasi-harmonic Debye model.

  9. Moisture Comfort and Antibacterial Properties of Elastic Warp-Knitted Fabrics

    Yu Zhi-Cai

    2015-03-01

    Full Text Available Multifunction elastic warp-knitted fabrics were fabricated on a crochet machine with the use of metal composite yarns/viscose yarn and bamboo polyester/ crisscross-section polyester hybrid yarns as the front face and back face of the knitted fabric structure, respectively. We investigated the effect of the blend ratio of bamboo charcoal/ crisscross-section polyester multiply yarns on the fabric's moisture comfort properties, such as water vapour transmission (WVT, water evaporation rate (WER, and water absorbency. The results showed that blending ratio significantly influenced WVT and WER. Moreover, antibacterial activity of the elastic warp- knitted fabric was tested against Staphylococcus aureus and Escherichia coli in accordance with AATCC 90-2011. Finally, the extension- stress value curves were used to analyse the elastic stretching property, and the fabric exhibited greater breaking elongation and lower stress value in the walewise than in the weft direction.

  10. Mechanical properties of concrete with SAP. Part II: Modulus of elasticity

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede

    2010-01-01

    In this study, focus is on the modulus of elasticity for concrete with superabsorbent polymers (SAP). The results show that based on composite theory it is possible to establish a model, which predicts overall concrete elasticity. The model assumes a three phase material of aggregate, cement paste......, and air with volume fractions of the three phases as well as elastic properties of paste and aggregates as input parameters. Addition of SAP changes the E-modulus, because it both has an influence on properties of the cement paste and on the volume of air voids. Here, the E-modulus is an example...... a more or less empirical relation. The results show that when introducing SAP, models of a more empirical nature can be misleading (and e.g. relations stated in codes are often of this empirical nature). The reason is twofold: First, the empirical models often have a general problem with the effect...

  11. Low-temperature elastic properties of YbSbPt probed by ultrasound measurements

    Nakanishi, Y.; Takahashi, S.; Ohyama, R.; Hasegawa, J.; Nakamura, M.; Suzuki, H.; Yoshizawa, M.

    2018-03-01

    The elastic properties of a single crystal of the half-Heusler compound YbSbPt have been investigated by means of the ultrasonic measurement. In particular, careful measurements of the temperature (T) dependent elastic constant C 11(T) was performed in the vicinity of its phase transition point near T N of 0.5 K. A clear step-like anomaly accompanied by spin-density-wave type antiferromagnetic (AFM) phase transition was found in the C 11(T) curve. The low-temperature magnetic phase diagram is proposed on the basis of the results. The phase diagram consists of, at least two main distinct phases: a low-field and high-field regime with a transition field of approximately 0.6 T at zero field. We discuss the low-temperature elastic property based on analysis of Landau-type free energy.

  12. Elastic and thermal properties of silicon compounds from first-principles calculations

    Hou, Haijun; Zhu, H.J. [Yancheng Institute of Technology (China). School of Materials Engineering; Cheng, W.H. [Yancheng Institute of Technology (China). Dept. of Light Chemical Engineering; Xie, L.H. [Sichuan Normal Univ., Chengdu (China). Inst. of Solid State Physics and School of Physics and Electronic Engineering

    2016-11-01

    The structural and elastic properties of V-Si (V{sub 3}Si, VSi{sub 2}, V{sub 5}Si{sub 3}, and V{sub 6}Si{sub 5}) compounds are studied by using first-principles method. The calculated equilibrium lattice parameters and formation enthalpy are in good agreement with the available experimental data and other theoretical results. The calculated results indicate that the V-Si compounds are mechanically stable. Elastic properties including bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also obtained. The elastic anisotropies of V-Si compounds are investigated via the three-dimensional (3D) figures of directional dependences of reciprocals of Young's modulus. Finally, based on the quasi-harmonic Debye model, the internal energy, Helmholtz free energy, entropy, heat capacity, thermal expansion coefficient, Grueneisen parameter, and Debye temperature of V-Si compounds have been calculated.

  13. EVALUATION OF ELASTICITY AND MECHANICAL PROPERTIES OF BREAD DOUGH MADE WITH REPLACED FLOUR POTATO (IPOMOEA BATATA

    Ely Fernando Sacón Vera

    2016-10-01

    Full Text Available The effect of the incorporation of sweet potato flour, with 30% replacement in 1kg of wheat flour was evaluated to determine the behavior of elastic and mechanical properties during the kneading and baking stage of bread. For the evaluation the following varieties were studied: Morado Brazil, Morado Ecuador, Guayaco Morado, Ina and Toquecita, and the evaluated properties were: texture (hardness, elasticity, firmness, chewiness measured by a texture meter Bloomfield and volume was measured by INEN standard (NTE INEN 0530: 80. The design employed was completely at random, using analysis of variance at 5% significance level. The results obtained showed that elasticity attribute in texture variable presented significant differences (P <0.05. Analysis concluded that including Toquecita flour in the mixture to form the dough, had the highest elasticity of 13.32mm. However, Morado Ecuador variety flour presented a 6.24 mm elasticity value, ideal for both the malleability of the dough and the freshness of the bread, and concerning volume, the inclusion of Ecuador Morado flour and Ina in the formulation of bread, showed an increase in volume at 93.30 and 93.67cm3 respectively, close to the normed value for wheat flour bread.

  14. Physical and elastic properties of marine sediments off Bombay, India

    SubbaRaju, L.V.; Ramana, Y.V.

    45'N and 21 degrees 00N. Representative core samples preserving their natural state were also retrieved from the region in the water depths ranging from 5 to 70 m for the determination of physical properties in the laboratory. Data on the physical...

  15. A Nanoscale Simulation Study of Elastic Properties of Gaspeite

    Benazzouz Brahim-Khalil

    2015-02-01

    Full Text Available The study of structural and mechanical properties of carbonate rock is an interesting subject in engineering and its different applications. In this paper, the crystal structure of gaspeite (NiCO3 is investigated by carrying out molecular dynamics simulations based on energy minimization technique using an interatomic interaction potential.

  16. Prediction of elastic properties for polymer-particle nanocomposites exhibiting an interphase

    Deng Fei; Van Vliet, Krystyn J

    2011-01-01

    Particle-polymer nanocomposites often exhibit mechanical properties described poorly by micromechanical models that include only the particle and matrix phases. Existence of an interfacial region between the particle and matrix, or interphase, has been posited and indirectly demonstrated to account for this effect. Here, we present a straightforward analytical approach to estimate effective elastic properties of composites comprising particles encapsulated by an interphase of finite thickness and distinct elastic properties. This explicit solution can treat nanocomposites that comprise either physically isolated nanoparticles or agglomerates of such nanoparticles; the same framework can also treat physically isolated nanoparticle aggregates or agglomerates of such aggregates. We find that the predicted elastic moduli agree with experiments for three types of particle-polymer nanocomposites, and that the predicted interphase thickness and stiffness of carbon black-rubber nanocomposites are consistent with measured values. Finally, we discuss the relative influence of the particle-polymer interphase thickness and stiffness to identify maximum possible changes in the macroscale elastic properties of such materials.

  17. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus

    Appalakondaiah, S.; Vaitheeswaran, G.; Lebègue, S.

    2012-01-01

    constant is significantly larger than the C11 and C33 parameters, implying that black phosphorus is stiffer against strain along the a axis than along the b and c axes. From the calculated elastic constants, the mechanical properties, such as bulk modulus, shear modulus, Young's modulus, and Poisson...

  18. Structural, vibrational, elastic and topological properties of PaN under pressure

    Modak, P.; K. Verma, Ashok; Svane, A.

    2013-01-01

    Electronic, structural, vibrational and elastic properties of PaN have been studied both at ambient and high pressures, using first principles methods with several commonly used parameterizations of the exchange-correlation energy. The generalized gradient approximation (GGA) reproduces the groun...

  19. Elastic properties of Na 2 O–ZnO–ZnF 2

    Elastic properties of Na2O–ZnO–ZnF2–B2O3 oxyfluoride glasses with different ZnF2 concentrations have been investigated using ultrasonic velocity measurements at room temperature, at a frequency of 10 MHz. Glasses prepared by melt quenching method were suitably polished for the ultrasonic velocity measurements ...

  20. The integration of elastic wave properties and machine learning for the distribution of petrophysical properties in reservoir modeling

    Ratnam, T. C.; Ghosh, D. P.; Negash, B. M.

    2018-05-01

    Conventional reservoir modeling employs variograms to predict the spatial distribution of petrophysical properties. This study aims to improve property distribution by incorporating elastic wave properties. In this study, elastic wave properties obtained from seismic inversion are used as input for an artificial neural network to predict neutron porosity in between well locations. The method employed in this study is supervised learning based on available well logs. This method converts every seismic trace into a pseudo-well log, hence reducing the uncertainty between well locations. By incorporating the seismic response, the reliance on geostatistical methods such as variograms for the distribution of petrophysical properties is reduced drastically. The results of the artificial neural network show good correlation with the neutron porosity log which gives confidence for spatial prediction in areas where well logs are not available.

  1. Ab-initio study of structural, elastic, electronic and thermodynamic properties of BaxSr1−xS ternary alloys

    Chelli S.

    2015-12-01

    Full Text Available The structural, elastic, electronic and thermodynamic properties of BaxSr1−xS ternary alloys have been investigated using the full-potential (linearized augmented plane wave method. The ground state properties, such as lattice constant, bulk modulus and elastic constants, are in good agreement with numerous experimental and theoretical data. The dependence of the lattice parameters, bulk modulus and band gap on the composition x was analyzed. Deviation of the lattice constant from Vegard’s law and the bulk modulus from linear concentration dependence (LCD was observed. The microscopic origins of the gap bowing were explained by using the approach of Zunger et al. The thermodynamic stability of BaxSr1−xS alloy was investigated by calculating the excess enthalpy of mixing, ΔHm and the calculated phase diagram showed a broad miscibility gap with a critical temperature.

  2. Local elastic properties of nano-confined fluids: A density functional study

    Sun, Zongli, E-mail: zongli_sun@163.com [Science and Technology College, North China Electric Power University, Baoding 071051 (China); Kang, Yanshuang [College of Science, Agriculture University of Hebei, Baoding 071001 (China)

    2014-05-01

    The understanding of mechanical properties of confined fluids is essential for modeling and manipulating of nano-scaled systems. Unlike the uniform phase, the confined fluids usually display different features in structure and related properties. Due to the presence of the confining geometry, the density profile and many physical and chemical properties may be position-dependent. The aim of our research is to derive an expression for the local elastic property by using the classical elastic theory. Both the bulk and shear moduli are expressed as functional of density of particle. The theoretical result derived is applied to the Lennard-Jones fluids confined in nano-cavity. Comparison of our numerical result and the simulation result is made and qualitative agreement is observed. Further, influence of bulk density, temperature and external potential on moduli is calculated and the physical mechanism is analyzed. Relationship between contact modulus and the interfacial tension is also calculated. Their opposite trend with temperature is observed.

  3. Local elastic properties of nano-confined fluids: A density functional study

    Sun, Zongli; Kang, Yanshuang

    2014-01-01

    The understanding of mechanical properties of confined fluids is essential for modeling and manipulating of nano-scaled systems. Unlike the uniform phase, the confined fluids usually display different features in structure and related properties. Due to the presence of the confining geometry, the density profile and many physical and chemical properties may be position-dependent. The aim of our research is to derive an expression for the local elastic property by using the classical elastic theory. Both the bulk and shear moduli are expressed as functional of density of particle. The theoretical result derived is applied to the Lennard-Jones fluids confined in nano-cavity. Comparison of our numerical result and the simulation result is made and qualitative agreement is observed. Further, influence of bulk density, temperature and external potential on moduli is calculated and the physical mechanism is analyzed. Relationship between contact modulus and the interfacial tension is also calculated. Their opposite trend with temperature is observed.

  4. Comparative first-principles calculations of the electronic, optical, elastic and thermodynamic properties of XCaF{sub 3} (X = K, Rb, Cs) cubic perovskites

    Li, Li; Wang, Y.-J. [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Nan' an District, Chongqing 400065 (China); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Liu, D.-X.; Ma, C.-G. [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Nan' an District, Chongqing 400065 (China); Brik, M.G., E-mail: mikhail.brik@ut.ee [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Nan' an District, Chongqing 400065 (China); Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411 (Estonia); Institute of Physics, Jan Długosz University, Armii Krajowej 13/15, PL-42200 Częstochowa (Poland); Suchocki, A. [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Nan' an District, Chongqing 400065 (China); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Institute of Physics, Kazimierz Wielki University, Weyssenhoffa 11, 85-072 Bydgoszcz (Poland); Piasecki, M. [Institute of Physics, Jan Długosz University, Armii Krajowej 13/15, PL-42200 Częstochowa (Poland); Reshak, A.H. [New Technologies – Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia)

    2017-02-15

    Three fluoroperovskites with the general formula XCaF{sub 3} (X = K, Rb, Cs) have been systematically studied using the first-principles methods. The structural, electronic, optical, elastic and thermodynamic properties of these three compounds were calculated at the ambient and elevated hydrostatic pressure. Variation of all these properties with pressure was analyzed; it was shown that the structural and elastic constants change linearly with increased pressure, whereas the calculated band gaps follow the quadratic dependence on pressure. Influence of the first cation variation (K – Rb – Cs) on these properties was discussed. Elastic anisotropy (directional dependence of the Young moduli) of these compounds was modeled and analyzed for the first time. - Highlights: • Three cubic perovskites XCaF{sub 3} (X = K, Rb, Cs) were studied by ab initio methods. • Systematic variation of physical properties with the first cation change was traced. • Pressure effects on physical properties were calculated and modeled. • Debye temperature and Grüneisen constant for all materials were calculated for the first time. • Elastic anisotropy was visualized by plotting Young moduli directional dependences.

  5. The elastic and thermodynamic properties of ZrMo2 from first principles calculations

    Liu, Xian-Kun; Zhou, Wei; Zheng, Zhou; Peng, Shu-Ming

    2014-01-01

    Highlights: • Elastic and thermodynamic properties of ZrMo 2 under high temperature and pressure are calculated by first principles. • Mechanical stability is testified from elastic constants at zero pressure. • Phonon scattering of ZrMo 2 under different temperature are obtained. - Abstract: The elastic and thermodynamic properties of ZrMo 2 under high temperature and pressure are investigated by first-principles calculations based on pseudopotential plane-wave density functional theory (DFT) within the generalized gradient approximation (GGA) and quasi-harmonic Debye model. The calculated lattice parameters are in good agreement with the available experimental data. The calculated elastic constants of ZrMo 2 increase monotonically with increasing pressure, and the relationship between the elastic constants and pressure show that ZrMo 2 satisfies the mechanical stability criteria under applied pressure (0–65 GPa). The related mechanical properties such as bulk modulus (B), shear modulus (G), Young’s modulus (E), and Poisson’s ratio (v) are also studied for polycrystalline of ZrMo 2 . The calculated B/G value shows that ZrMo 2 behaves in a ductile manner, and higher pressure can significantly improve the ductility of ZrMo 2 . The pressure and temperature dependencies of the relative volume, the bulk modulus, the elastic constants, the heat capacity and the thermal expansion coefficient, as well as the Grüneisen parameters are obtained and discussed by the quasi-harmonic Debye model in the ranges of 0–1800 K and 0–65 GPa

  6. Quantum Mechanical Calculations Of Elastic Properties Of Doped Tetragonal Yttria-Stabilized Zirconium Dioxide

    Yuriy Natanzon

    2008-01-01

    Full Text Available We report first principles calculations of the electronic and elastic properties of yttriastabilized tetragonal zirconium dioxide doped with metal oxides like: GeO2, TiO2, SiO2,MgO and Al2O3. It is shown that addition of such dopants affects selected elastic propertiesof ZrO2, which is driven by the attraction of electron density by dopant atom and creationof stronger dopant–oxygen bonds. This effect contributes to the increase of superplasticityof doped material.

  7. The first principles study of elastic and thermodynamic properties of ZnSe

    Khatta, Swati; Kaur, Veerpal; Tripathi, S. K.; Prakash, Satya

    2018-05-01

    The elastic and thermodynamic properties of ZnSe are investigated using thermo_pw package implemented in Quantum espresso code within the framework of density functional theory. The pseudopotential method within the local density approximation is used for the exchange-correlation potential. The physical parameters of ZnSe bulk modulus and shear modulus, anisotropy factor, Young's modulus, Poisson's ratio, Pugh's ratio and Frantsevich's ratio are calculated. The sound velocity and Debye temperature are obtained from elastic constant calculations. The Helmholtz free energy and internal energy of ZnSe are also calculated. The results are compared with available theoretical calculations and experimental data.

  8. Structure, elastic properties and phase stability of Cr1-xAlxN

    Mayrhofer, P.H.; Music, D.; Reeswinkel, Th.; Fuss, H.-G.; Schneider, J.M.

    2008-01-01

    The effect of composition and metal sublattice population on the phase stability, structure and elastic properties of cubic (c), hexagonal (h) and orthorhombic spin-polarized Cr 1-x Al x N was studied using ab initio calculations. Excellent correlation between ab initio and experimentally obtained lattice parameters and elastic constants was obtained. The energy of formation suggests that the cubic phase can be stabilized for x in the range 0.48-0.75, depending on the metal sublattice population. The broad range of x, which is also observed in experiments, can be understood by considering the Al distribution induced changes in the configurational contribution to the total energy

  9. Elastic and Strength Properties of Heat-Treated Beech and Birch Wood

    Vlastimil Borůvka

    2018-04-01

    Full Text Available This paper deals with the impact of heat treatment on the elastic and strength properties of two diffuse porous hardwoods, namely Fagus sylvatica and Betula pendula. Two degrees of the heat treatment were used at temperatures of 165 °C and 210 °C. The dynamic and static elasticity modulus, bending strength, impact toughness, hardness, and density were tested. It is already known that an increase in treatment temperature decreases the mechanical properties and, on the other hand, leads to a better shape and dimensional stability. Higher temperatures of the heat treatment correlated with lower elastic and strength properties. In the case of higher temperature treatments, the decline of tested properties was noticeable as a result of serious changes in the chemical composition of wood. It was confirmed that at higher temperature stages of treatment, there was a more pronounced decrease in beech properties compared to those of the birch, which was the most evident in their bending strength and hardness. Our research confirmed that there is no reason to consider birch wood to be of a lesser quality, although it is regarded by foresters as an inferior tree species. After the heat treatment, the wood properties are almost the same as in the case of beech wood.

  10. Thermophysical and elastic properties of titanium carbonitrides containing molybdenum and tungsten

    Matsuda, Tetsushi; Matsubara, Hideaki

    2013-01-01

    Highlights: ► (Ti,Me)(C,N) sintered bodies were prepared by hot-pressing. ► The thermophysical and elastic properties of the carbonitrides were evaluated. ► The porosities of the specimens were less than 1%. ► The Young’s modulus decreases with increasing Mo content. ► The Debye temperatures decrease with increasing Mo/W content. -- Abstract: Titanium carbonitride has good mechanical properties such as high hardness and high Young’s modulus. It is a major raw material for Ti(C,N)-based cermets, and their properties are strongly dependent on the properties of titanium carbonitrides. The thermophysical and elastic properties of the carbonitride need to be systematically investigated, so as to be used for designing cutting tools and wear-resistant tools. The thermophysical and elastic properties of (Ti,Me)(C,N) (Me = Mo. W) sintered bodies prepared by hot-pressing at 2200 °C were evaluated. The porosities of the specimens were less than 1%. The Young’s modulus decreased with increasing Mo, which seems to be the result of vacancy formation. The thermal expansion coefficient, the thermal conductivity and the Debye temperatures of (Ti,Me)(C,N) sintered bodies decreased with increasing Mo/W content

  11. An enhanced finite volume method to model 2D linear elastic structures

    Suliman, Ridhwaan

    2014-04-01

    Full Text Available . Suliman) Preprint submitted to Applied Mathematical Modelling July 22, 2013 Keywords: finite volume, finite element, locking, error analysis 1. Introduction Since the 1960s, the finite element method has mainly been used for modelling the mechanics... formulation provides higher accuracy 2 for displacement solutions. It is well known that the linear finite element formulation suffers from sensitivity to element aspect ratio or shear locking when subjected to bend- ing [16]. Fallah [8] and Wheel [6] present...

  12. Elastic properties of Sr- and Mg-doped lanthanum gallate at elevated temperature

    Okamura, T.; Shimizu, S.; Mogi, M.; Tanimura, M.; Furuya, K.; Munakata, F.

    The elastic moduli, i.e., Young's modulus, shear modulus and Poisson's ratio, of a sintered La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ bulk have been experimentally determined in the temperature range from room temperature to 1373 K using a resonance technique. Anomalous elastic properties were observed over a wide temperature range from 473 to 1173 K. In the results for internal friction and in X-ray diffraction measurements at elevated temperature, two varieties of structural changes were seen in La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ in the examined temperature range. The results agreed with the findings of a previous crystallographic study of the same composition system by Slater et al. In addition, the temperature range in which a successive structural change occurred in La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ was the same as that exhibiting the anomalous elastic properties. Taking all the results together, it can be inferred that the successive structural change in the significant temperature range is responsible for the elastic property anomaly of La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ.

  13. Elastic properties of porous low-k dielectric nano-films

    Zhou, W.; Bailey, S.; Sooryakumar, R.; King, S.; Xu, G.; Mays, E.; Ege, C.; Bielefeld, J.

    2011-08-01

    Low-k dielectrics have predominantly replaced silicon dioxide as the interlayer dielectric for interconnects in state of the art integrated circuits. In order to further reduce interconnect RC delays, additional reductions in k for these low-k materials are being pursued via the introduction of controlled levels of porosity. The main challenge for such dielectrics is the substantial reduction in elastic properties that accompanies the increased pore volume. We report on Brillouin light scattering measurements used to determine the elastic properties of these films at thicknesses well below 200 nm, which are pertinent to their introduction into present ultralarge scale integrated technology. The observation of longitudinal and transverse standing wave acoustic resonances and their transformation into traveling waves with finite in-plane wave vectors provides for a direct non-destructive measure of the principal elastic constants that characterize the elastic properties of these porous nano-scale films. The mode dispersion further confirms that for porosity levels of up to 25%, the reduction in the dielectric constant does not result in severe degradation in the Young's modulus and Poisson's ratio of the films.

  14. A generic approach for a linear elastic fracture mechanics analysis of components containing residual stress

    Lee, Hyeong Y.; Nikbin, Kamran M.; O'Dowd, Noel P.

    2005-01-01

    A review of through thickness transverse residual stress distribution measurements in a number of components, manufactured from a range of steels, has been carried out. Residual stresses introduced by welding and mechanical deformation have been considered. The geometries consisted of welded T-plate joints, pipe butt joints, tube-on-plate joints, tubular Y-joints and tubular T-joints as well as cold bent tubes and repair welds. In addition, the collected data cover a range of engineering steels including ferritic, austenitic, C-Mn and Cr-Mo steels. The methods used to measure the residual stresses also varied. These included neutron diffraction, X-ray diffraction and deep hole drilling techniques. Measured residual stress data, normalised by their respective yield stress have shown an inverse linear correlation versus the normalised depth of the region containing the residual stress (up to 0.5 of the component thickness). A simplified generic residual stress profile based on a linear fit to the data is proposed for the case of a transverse residual tensile stress field. Whereas the profiles in assessment procedures are case specific the proposed linear profile can be varied to produce a combination of membrane and bending stress distributions to give lower or higher levels of conservatism on stress intensity factors, depending on the amount of case specific data available or the degree of safety required

  15. Seismic transmission tomography: determination of the elastic properties of building structures (some examples

    E. Cardarelli

    2000-06-01

    Full Text Available This paper is a general review on seismic transmission tomography considering data acquisition and processing. Some questions on linear and non linear inversions are tackled, and advice given on the choice of the best damping factor. Taking into account prediction matrices we show that it is possible to point out the best distribution of sensors and shot points in terms of resolution and stability of system. Then two examples in which seismic tomography was used are described concerning the determination of elastic characteristics of building structures.

  16. On Interactions of Oscillation Modes for a Weakly Non-Linear Undamped Elastic Beam with AN External Force

    BOERTJENS, G. J.; VAN HORSSEN, W. T.

    2000-08-01

    In this paper an initial-boundary value problem for the vertical displacement of a weakly non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends of the beam is studied. The initial-boundary value problem can be regarded as a simple model describing oscillations of flexible structures like suspension bridges or iced overhead transmission lines. Using a two-time-scales perturbation method an approximation of the solution of the initial-boundary value problem is constructed. Interactions between different oscillation modes of the beam are studied. It is shown that for certain external excitations, depending on the phase of an oscillation mode, the amplitude of specific oscillation modes changes.

  17. Ab initio study of the elastic properties of sodium chloride at high pressure

    Liu Lei; Bi Yan; Xu Jian; Chen Xiangrong

    2010-01-01

    The equation of state and elastic properties for B1- and B2-NaCl up to 160 GPa have been studied by using the density functional simulation within the generalized gradient approximation (GGA). The calculated lattice constants of NaCl agree well with experimental values in a precision of 0.1% over the pressure range studied. It is found that the cell volume decreases 5.5% at the phase transition point. All three independent elastic stiffness coefficients, c 11 , c 12 and c 44 for B1- and B2-NaCl are evaluated by a calculated stress tensor which was generated by forcing small strain to the optimized unit cell. The calculated zero-pressure elastic moduli, wave velocities, and their initial pressure dependences of B1-NaCl are in excellent agreement with experiments. Systematic investigation on the elasticity of NaCl has been done through four parameters, the Zener anisotropy ratio (A Z ), the acoustic anisotropy factor (A a ), the Cauchy deviation (δ), and the normalized elastic constants (c ij '). With the pressure, the Zener anisotropy ratio A Z decreases in the B1-phase, but increases in the B2-phase and reaches 1 at about 174 GPa, it suggests that NaCl would become elastic isotropic at this pressure range. The acoustic anisotropy factor A a shows the similar pressure behavior as A Z . The Cauchy deviation (δ)) increases with pressures, it demonstrates that in the interatomic interaction, the many-body contribution becomes more important at higher pressures. A discussion on the normalized elastic constants is also presented.

  18. Structure and properties of joints of two-ply steel using ''elastic'' explosives

    Gel'man, A.S.; Savel'ev, S.A.; Kulakevich, Ya.S.; Sharypov, N.A.; Drogovejko, I.Z.; Domolego, I.E.

    1980-01-01

    Some experimental data on structure and properties of compounds during cladding of sheets made of St3 with sheets of nichrome and steel 12Kh18N10T with the use of ''elastic'' explosives are presented. It is shown that the use of ''elastic'' explosives permits to decrease r parameter sufficiently, (where r - is the ratio of explosive mass to the mass of throwen phate) that reduces considerably the specific consumption explosives in comparison with the consumption conventional mixture explosives. Peculiarities of tested ''elastic'' explosives make their application perspective in two cases - at cladding of complex curved surfaces (drums, tube blanks etc.), as sell as at applications of burst chambers, where explosive mass limits dimensions of cladding blanks and details [ru

  19. Elastic properties of thin poly(vinyl alcohol)–cellulose nanocrystal membranes

    Pakzad, A; Yassar, R S; Simonsen, J

    2012-01-01

    In spite of extensive studies on the preparation and characterization of nanocomposite materials, the correlation of their properties at the nanoscale with those in bulk is a relatively unexplored area. This is of great importance, especially for materials with potential biomedical applications, where surface properties are as important in determining their applicability as bulk characteristics. In this study, the nanomechanical characteristics of thin poly(vinyl alcohol) (PVOH)–poly(acrylic acid) (PAA)–cellulose nanocrystal (CNC) membranes were studied using the nanoindentation module in an atomic force microscope (AFM) and the properties were compared with the macro-scale properties obtained by tensile tests. In general, the elastic properties measured by nanoindentation followed the same trend as macro-scale tensile tests except for the PVOH 85-PAA 0-CNC 15 sample. In comparison to the macro-scale elastic properties, the measured elastic moduli with AFM were higher. Macro-scale tensile test results indicated that, in the presence of PAA, incorporation of CNCs up to 20 wt% improved the elastic modulus of PVOH, but when no PAA was added, increasing the CNC content above 10 wt% resulted in their agglomeration and degradation in mechanical properties of PVOH. The discrepancy between macro-scale tensile tests and nanoindentation in the PVOH 85-PAA 0-CNC 15 sample was correlated to the high degree of inhomogeneity of CNC dispersion in the matrix. It was found that the composites reinforced with cellulose nanocrystals had smaller indentation imprints and the pile-up effect increased with the increase of cellulose nanocrystal content. (paper)

  20. The first-principles calculations for the elastic properties of Zr2Al under compression

    Yuan Xiaoli; Wei Dongqing; Chen Xiangrong; Zhang Qingming; Gong Zizheng

    2011-01-01

    Graphical abstract: The calculated elastic constants C ij as a function of pressure P. Display Omitted Research highlights: → It is found that the five independent elastic constants increase monotonically with pressure. C 11 and C 33 vary rapidly as pressure increases, C 13 and C 12 becomes moderate. However, C 44 increases comparatively slowly with pressure. Figure shows excellent satisfaction of the calculated elastic constants of Zr 2 Al to these equations and hence in our calculation, the Zr 2 Al is mechanically stable at pressure up to 100 GPa. - Abstract: The first-principles calculations were applied to investigate the structural, elastic constants of Zr 2 Al alloy with increasing pressure. These properties are based on the plane wave pseudopotential density functional theory (DFT) method within the generalized gradient approximation (GGA) for exchange and correlation. The result of the heat of formation of Zr 2 Al crystal investigated is in excellent consistent with results from other study. The anisotropy, the shear modulus, and Young's modulus for the ideal polycrystalline Zr 2 Al are also studied. It is found that (higher) pressure can significantly improve the ductility of Zr 2 Al. Moreover, the elastic constants of Zr 2 Al increase monotonically and the anisotropies decrease with the increasing pressure. Finally, it is observed that Zr d electrons are mainly contributed to the density of states at the Fermi level.

  1. Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation

    Zhang Chenli; Shen Huishen

    2008-01-01

    Molecular dynamics simulation is performed on a double-walled carbon nanotube (DWCNT) to predict its elastic properties based on a double-walled shear deformable shell model. By direct buckling measurement, we present here a method for uniquely determining the effective wall thickness for the shell model. Accounting for two different kinds of DWCNTs by adding an inner or outer tube to a fiducial tube, the mechanical properties of DWCNTs are carefully investigated as compared with those of the fiducial tube. It is found that the predicted values of Young's and shear moduli depend strongly on the construction and helicity of DWCNTs, while the dependence on nanotube length is relatively small. The results also confirm that the temperature variation has a significant effect on the elastic properties of DWCNTs

  2. Micro-CT based finite element models for elastic properties of glass-ceramic scaffolds.

    Tagliabue, Stefano; Rossi, Erica; Baino, Francesco; Vitale-Brovarone, Chiara; Gastaldi, Dario; Vena, Pasquale

    2017-01-01

    In this study, the mechanical properties of porous glass-ceramic scaffolds are investigated by means of three-dimensional finite element models based on micro-computed tomography (micro-CT) scan data. In particular, the quantitative relationship between the morpho-architectural features of the obtained scaffolds, such as macroscopic porosity and strut thickness, and elastic properties, is sought. The macroscopic elastic properties of the scaffolds have been obtained through numerical homogenization approaches using the mechanical characteristics of the solid walls of the scaffolds (assessed through nanoindentation) as input parameters for the numerical simulations. Anisotropic mechanical properties of the produced scaffolds have also been investigated by defining a suitable anisotropy index. A comparison with morphological data obtained through the micro-CT scans is also presented. The proposed study shows that the produced glass-ceramic scaffolds exhibited a macroscopic porosity ranging between 29% and 97% which corresponds to an average stiffness ranging between 42.4GPa and 36MPa. A quantitative estimation of the isotropy of the macroscopic elastic properties has been performed showing that the samples with higher solid fractions were those closest to an isotropic material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Prediction study of structural, elastic and electronic properties of FeMP (M = Ti, Zr, Hf) compounds

    Tanto, A.; Chihi, T.; Ghebouli, M. A.; Reffas, M.; Fatmi, M.; Ghebouli, B.

    2018-06-01

    First principles calculations are applied in the study of FeMP (M = Ti, Zr, Hf) compounds. We investigate the structural, elastic, mechanical and electronic properties by combining first-principles calculations with the CASTEP approach. For ideal polycrystalline FeMP (M = Ti, Zr, Hf) the shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy indexes, Pugh's criterion, elastic wave velocities and Debye temperature are also calculated from the single crystal elastic constants. The shear anisotropic factors and anisotropy are obtained from the single crystal elastic constants. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal.

  4. High pressure elastic properties of minerals from ab initio simulations: The case of pyrope, grossular and andradite silicate garnets

    Erba, A., E-mail: alessandro.erba@unito.it; Mahmoud, A.; Dovesi, R. [Dipartimento di Chimica and Centre of Excellence NIS (Nanostructured Interfaces and Surfaces), Università di Torino, via Giuria 5, IT-10125 Torino (Italy); Belmonte, D. [DISTAV, Università di Genova, Corso Europa 26, 16132 Genoa (Italy)

    2014-03-28

    A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed.

  5. High pressure elastic properties of minerals from ab initio simulations: The case of pyrope, grossular and andradite silicate garnets

    Erba, A.; Mahmoud, A.; Dovesi, R.; Belmonte, D.

    2014-01-01

    A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed

  6. Elastic Properties of Tricalcium Aluminate from High-Pressure Experiments and First-Principles Calculations

    Moon, Juhyuk

    2012-06-04

    The structure and elasticity of tricalcium aluminate (C 3A) have been experimentally and theoretically studied. From high-pressure X-ray diffraction experiments, the bulk modulus of 102(6) and 110(3) GPa were obtained by fitting second- and third-order finite strain equation of state, respectively. First-principles calculations with a generalized gradient approximation gave an isotropic bulk modulus of 102.1 GPa and an isothermal bulk modulus of 106.0 GPa. The static calculations using the exchange-correlation functional show an excellent agreement with the experimental measurements. Based on the agreement, accurate elastic constants and other elastic moduli were computed. The slight difference of behavior at high pressure can be explained by the infiltration of pressure-transmitting silicone oil into structural holes in C 3A. The computed elastic and mechanical properties will be useful in understanding structural and mechanical properties of cementitious materials, particularly with the increasing interest in the advanced applications at the nanoscale. © 2012 The American Ceramic Society.

  7. Elastic Properties of Tricalcium Aluminate from High-Pressure Experiments and First-Principles Calculations

    Moon, Juhyuk; Yoon, Seyoon; Wentzcovitch, Renata M.; Clark, Simon M.; Monteiro, Paulo J.M.

    2012-01-01

    The structure and elasticity of tricalcium aluminate (C 3A) have been experimentally and theoretically studied. From high-pressure X-ray diffraction experiments, the bulk modulus of 102(6) and 110(3) GPa were obtained by fitting second- and third-order finite strain equation of state, respectively. First-principles calculations with a generalized gradient approximation gave an isotropic bulk modulus of 102.1 GPa and an isothermal bulk modulus of 106.0 GPa. The static calculations using the exchange-correlation functional show an excellent agreement with the experimental measurements. Based on the agreement, accurate elastic constants and other elastic moduli were computed. The slight difference of behavior at high pressure can be explained by the infiltration of pressure-transmitting silicone oil into structural holes in C 3A. The computed elastic and mechanical properties will be useful in understanding structural and mechanical properties of cementitious materials, particularly with the increasing interest in the advanced applications at the nanoscale. © 2012 The American Ceramic Society.

  8. Assessment of Two Analytical Methods in Solving the Linear and Nonlinear Elastic Beam Deformation Problems

    Barari, Amin; Ganjavi, B.; Jeloudar, M. Ghanbari

    2010-01-01

    and fluid mechanics. Design/methodology/approach – Two new but powerful analytical methods, namely, He's VIM and HPM, are introduced to solve some boundary value problems in structural engineering and fluid mechanics. Findings – Analytical solutions often fit under classical perturbation methods. However......, as with other analytical techniques, certain limitations restrict the wide application of perturbation methods, most important of which is the dependence of these methods on the existence of a small parameter in the equation. Disappointingly, the majority of nonlinear problems have no small parameter at all......Purpose – In the last two decades with the rapid development of nonlinear science, there has appeared ever-increasing interest of scientists and engineers in the analytical techniques for nonlinear problems. This paper considers linear and nonlinear systems that are not only regarded as general...

  9. Structure/property relationships in non-linear optical materials

    Cole, J M [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); [Durham Univ. (United Kingdom); Howard, J A.K. [Durham Univ. (United Kingdom); McIntyre, G J [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  10. Numerical study of the shape parameter dependence of the local radial point interpolation method in linear elasticity.

    Moussaoui, Ahmed; Bouziane, Touria

    2016-01-01

    The method LRPIM is a Meshless method with properties of simple implementation of the essential boundary conditions and less costly than the moving least squares (MLS) methods. This method is proposed to overcome the singularity associated to polynomial basis by using radial basis functions. In this paper, we will present a study of a 2D problem of an elastic homogenous rectangular plate by using the method LRPIM. Our numerical investigations will concern the influence of different shape parameters on the domain of convergence,accuracy and using the radial basis function of the thin plate spline. It also will presents a comparison between numerical results for different materials and the convergence domain by precising maximum and minimum values as a function of distribution nodes number. The analytical solution of the deflection confirms the numerical results. The essential points in the method are: •The LRPIM is derived from the local weak form of the equilibrium equations for solving a thin elastic plate.•The convergence of the LRPIM method depends on number of parameters derived from local weak form and sub-domains.•The effect of distributions nodes number by varying nature of material and the radial basis function (TPS).

  11. Ab initio localized basis set study of structural parameters and elastic properties of HfO2 polymorphs

    Caravaca, M A; Casali, R A

    2005-01-01

    The SIESTA approach based on pseudopotentials and a localized basis set is used to calculate the electronic, elastic and equilibrium properties of P 2 1 /c, Pbca, Pnma, Fm3m, P4 2 nmc and Pa3 phases of HfO 2 . Using separable Troullier-Martins norm-conserving pseudopotentials which include partial core corrections for Hf, we tested important physical properties as a function of the basis set size, grid size and cut-off ratio of the pseudo-atomic orbitals (PAOs). We found that calculations in this oxide with the LDA approach and using a minimal basis set (simple zeta, SZ) improve calculated phase transition pressures with respect to the double-zeta basis set and LDA (DZ-LDA), and show similar accuracy to that determined with the PPPW and GGA approach. Still, the equilibrium volumes and structural properties calculated with SZ-LDA compare better with experiments than the GGA approach. The bandgaps and elastic and structural properties calculated with DZ-LDA are accurate in agreement with previous state of the art ab initio calculations and experimental evidence and cannot be improved with a polarized basis set. These calculated properties show low sensitivity to the PAO localization parameter range between 40 and 100 meV. However, this is not true for the relative energy, which improves upon decrease of the mentioned parameter. We found a non-linear behaviour in the lattice parameters with pressure in the P 2 1 /c phase, showing a discontinuity of the derivative of the a lattice parameter with respect to external pressure, as found in experiments. The common enthalpy values calculated with the minimal basis set give pressure transitions of 3.3 and 10.8?GPa for P2 1 /c → Pbca and Pbca → Pnma, respectively, in accordance with different high pressure experimental values

  12. Ab initio localized basis set study of structural parameters and elastic properties of HfO{sub 2} polymorphs

    Caravaca, M A [Facultad de Ingenieria, Universidad Nacional del Nordeste, Avenida Las Heras 727, 3500-Resistencia (Argentina); Casali, R A [Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad, 5600-Corrientes (Argentina)

    2005-09-21

    The SIESTA approach based on pseudopotentials and a localized basis set is used to calculate the electronic, elastic and equilibrium properties of P 2{sub 1}/c, Pbca, Pnma, Fm3m, P4{sub 2}nmc and Pa3 phases of HfO{sub 2}. Using separable Troullier-Martins norm-conserving pseudopotentials which include partial core corrections for Hf, we tested important physical properties as a function of the basis set size, grid size and cut-off ratio of the pseudo-atomic orbitals (PAOs). We found that calculations in this oxide with the LDA approach and using a minimal basis set (simple zeta, SZ) improve calculated phase transition pressures with respect to the double-zeta basis set and LDA (DZ-LDA), and show similar accuracy to that determined with the PPPW and GGA approach. Still, the equilibrium volumes and structural properties calculated with SZ-LDA compare better with experiments than the GGA approach. The bandgaps and elastic and structural properties calculated with DZ-LDA are accurate in agreement with previous state of the art ab initio calculations and experimental evidence and cannot be improved with a polarized basis set. These calculated properties show low sensitivity to the PAO localization parameter range between 40 and 100 meV. However, this is not true for the relative energy, which improves upon decrease of the mentioned parameter. We found a non-linear behaviour in the lattice parameters with pressure in the P 2{sub 1}/c phase, showing a discontinuity of the derivative of the a lattice parameter with respect to external pressure, as found in experiments. The common enthalpy values calculated with the minimal basis set give pressure transitions of 3.3 and 10.8?GPa for P2{sub 1}/c {yields} Pbca and Pbca {yields} Pnma, respectively, in accordance with different high pressure experimental values.

  13. Electronic, elastic, acoustic and optical properties of cubic TiO2: A DFT approach

    Mahmood, Tariq; Cao, Chuanbao; Tahir, Muhammad; Idrees, Faryal; Ahmed, Maqsood; Tanveer, M.; Aslam, Imran; Usman, Zahid; Ali, Zulfiqar; Hussain, Sajad

    2013-01-01

    The electronic, elastic, acoustic and optical properties of cubic phases TiO 2 fluorite and pyrite are investigated using the first principles calculations. We have employed five different exchange–correlation functions within the local density and generalized gradient approximations using the ultrasoft plane wave pseudopotential method. The calculated band structures of cubic-TiO 2 elucidate that the TiO 2 fluorite and pyrite are direct and indirect semiconductors in contrast to the previous findings. From our studied properties such as bulk and shear moduli, elastic constants C 44 and Debye temperature for TiO 2 fluorite and pyrite, we infer that both the cubic phases are not superhard materials and the pyrite phase is harder than fluorite. The longitudinal and transversal acoustic wave speeds for both phases in the directions [100], [110] and [111] are determined using the pre-calculated elastic constants. In addition, we also calculate the optical properties such as dielectric function, absorption spectrum, refractive index and energy loss function using the pre-optimized structure. On the observation of optical properties TiO 2 fluorite phase turn out to be more photocatalytic than pyrite

  14. Ferroelastic domains: mesoscopic mediators of elastic and diffusion properties of solids

    Redfern, S.A.T.

    2002-01-01

    Full text: Microstructure is well known to play a major role in determining the mechanical properties of a material such as its hardness, slip, ductility, and creep. Another important question is how microstructure affects the chemical reactivity of a material. Dislocations and vacancies greatly enhance transport of reactants, which increases reactivity. Fast diffusion is also believed to occur along grain boundaries, providing means for mass transport over distances of cm to metres. Here, however, I focus on the influence of (intra-grain) domain microstructures associated with structural phase transitions, in particular ferroelastic phase transitions and their associated domain walls. It has been found that these can cause a large increase in chemical reactivity. Examples include those found in measurement and computational simulation of transport and diffusion of Na and Li in perovskite structures and in quartz. It has been demonstrated that ferroelastic microstructure can exert a profound control on transport, providing a possible route to the synthesis and fabrication of novel devices. The bulk elastic properties of crystals are commonly affected by phase transitions occurring within them. For ferroelastic transitions Landau theory provides a good model of the critical behaviour of the elastic constants, with mean field behaviour being followed closely. But the influence of the microstructure that results from these transitions on the apparent elastic behaviour of materials can be even greater. The behaviour of the elastic storage modulus and elastic loss modulus of a strontium-calcium titanate perovskite as a function of temperature through the cubic-tetragonal phase transition. The large elastic loss ('tan delta') arises from the movement of domain walls under applied stress in the three-point bend geometry of the experiment, and their interaction with pinning centres and grain boundaries. The dynamics of domain movement and relaxation behave according to a

  15. P-S & S-P Elastic Wave Conversions from Linear Arrays of Oriented Microcracks

    Jiang, L.; Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    Natural and induced processes can produce oriented mechanical discontinuities such as en echelon cracks, fractures and faults. Previous research has shown that compressional to shear (P-S) wave conversions occur at normal incidence to a fracture because of cross-coupling fracture compliances (Nakagawa et al., 2000). Here, experiments and computer simulation are presented to demonstrate the link among cross-coupling stiffness, microcrack orientation and energy partitioning among P, S, and P-S/S-P waves. A FormLabs 2 3D printer was used to fabricate 7 samples (50 mm x 50 mm x 100 mm) with linear arrays of microcracks oriented at 0, 15, 30, 45, 60, 75, and 900 with a print resolution of 0.025 mm. The microcracks were elliptical in cross-sections (2 mm long by 1 mm wide), through the 50 mm thickness of sample, and spaced 3 mm (center-to-center for adjacent cracks). A 25 mm length of each sample contained no microcracks to act as a reference material. Broadband transducers (0.2-1.5 MHz) were used to transmit and receive P and polarized S wave signals that were propagated at normal incidence to the linear array of microcracks. P-wave amplitude increased, while S-wave amplitude remained relatively constant, as the microcrack orientation increased from 0o to 90o. At normal incidence, P-S and S-P wave conversions emerged and increased in amplitude as the crack inclination increased from 00 to 450. From 450 to 900, the amplitude of these converted modes decreased. Between negative and positive crack angles, the P-to-S and S-to-P waves were 1800 phase reversed. The observed energy partitioning matched the computed compliances obtained from numerical simulations with ABAQUS. The cross-coupling compliance for cracks inclined at 450 was found to be the smallest magnitude. 3D printing enabled the study of microstructural effects on macro-scale wave measurements. Information on the orientation of microcracks or even en echelon fractures and faults is contained in P-S conversions

  16. Linear and Branched PEIs (Polyethylenimines and Their Property Space

    Claudiu N. Lungu

    2016-04-01

    Full Text Available A chemical property space defines the adaptability of a molecule to changing conditions and its interaction with other molecular systems determining a pharmacological response. Within a congeneric molecular series (compounds with the same derivatization algorithm and thus the same brute formula the chemical properties vary in a monotonic manner, i.e., congeneric compounds share the same chemical property space. The chemical property space is a key component in molecular design, where some building blocks are functionalized, i.e., derivatized, and eventually self-assembled in more complex systems, such as enzyme-ligand systems, of which (physico-chemical properties/bioactivity may be predicted by QSPR/QSAR (quantitative structure-property/activity relationship studies. The system structure is determined by the binding type (temporal/permanent; electrostatic/covalent and is reflected in its local electronic (and/or magnetic properties. Such nano-systems play the role of molecular devices, important in nano-medicine. In the present article, the behavior of polyethylenimine (PEI macromolecules (linear LPEI and branched BPEI, respectively with respect to the glucose oxidase enzyme GOx is described in terms of their (interacting energy, geometry and topology, in an attempt to find the best shape and size of PEIs to be useful for a chosen (nanochemistry purpose.

  17. Structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba)

    Benahmed, A.; Bouhemadou, A.; Alqarni, B.; Guechi, N.; Al-Douri, Y.; Khenata, R.; Bin-Omran, S.

    2018-05-01

    First-principles calculations were performed to investigate the structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) using two complementary approaches based on density functional theory. The pseudopotential plane-wave method was used to explore the structural and elastic properties whereas the full-potential linearised augmented plane wave approach was used to study the structural, electronic, optical and thermoelectric properties. The calculated structural parameters are in good consistency with the corresponding measured ones. The single-crystal and polycrystalline elastic constants and related properties were examined in details. The electronic properties, including energy band dispersions, density of states and charge-carrier effective masses, were computed using Tran-Blaha modified Becke-Johnson functional for the exchange-correlation potential. It is found that both studied compounds are direct band gap semiconductors. Frequency-dependence of the linear optical functions were predicted for a wide photon energy range up to 15 eV. Charge carrier concentration and temperature dependences of the basic parameters of the thermoelectric properties were explored using the semi-classical Boltzmann transport model. Our calculations unveil that the studied compounds are characterised by a high thermopower for both carriers, especially the p-type conduction is more favourable.

  18. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    Kanoun, Mohammed; Goumri-Said, Souraya

    2014-01-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  19. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    Kanoun, Mohammed

    2014-09-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young\\'s modulus, and Poisson\\'s ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  20. Structural stability, dynamical stability, thermoelectric properties, and elastic properties of GeTe at high pressure

    Kagdada, Hardik L.; Jha, Prafulla K.; Śpiewak, Piotr; Kurzydłowski, Krzysztof J.

    2018-04-01

    The stability of GeTe in rhombohedral (R 3 m ), face centred cubic (F m 3 m ), and simple cubic (P m 3 m ) phases has been studied using density functional perturbation theory. The rhombohedral phase of GeTe is dynamically stable at 0 GPa, while F m 3 m and P m 3 m phases are stable at 3.1 and 33 GPa, respectively. The pressure-dependent phonon modes are observed in F m 3 m and P m 3 m phases at Γ and M points, respectively. The electronic and the thermoelectric properties have been investigated for the stable phases of GeTe. The electronic band gap for rhombohedral and F m 3 m phases of GeTe has been observed as 0.66 and 0.17 eV, respectively, while the P m 3 m phase shows metallic behavior. We have used the Boltzmann transport equation under a rigid band approximation and constant relaxation time approximation as implemented in boltztrap code for the calculation of thermoelectric properties of GeTe. The metallic behavior of P m 3 m phase gives a very low value of Seebeck coefficient compared to the other two phases as a function of temperature and the chemical potential μ. It is observed that the rhombohedral phase of GeTe exhibits higher thermoelectric performance. Due to the metallic nature of P m 3 m phase, negligible thermoelectric performance is observed compared to R 3 m and F m 3 m -GeTe. The calculated lattice thermal conductivities are low for F m 3 m -GeTe and high for R 3 m -GeTe. At the relatively higher temperature of 1350 K, the figure of merit ZT is found to be 0.7 for rhombohedral GeTe. The elastic constants satisfy the Born stability criteria for all three phases. The rhombohedral and F m 3 m phases exhibits brittleness and the P m 3 m phase shows ductile nature.

  1. Temperature dependence of elastic properties in austenite and martensite of Ni-Mn-Ga epitaxial films

    Heczko, Oleg; Seiner, Hanuš; Stoklasová, Pavla; Sedlák, Petr; Sermeus, J.; Glorieux, C.; Backen, A.; Fähler, S.; Landa, Michal

    2018-01-01

    Roč. 145, Feb (2018), s. 298-305 ISSN 1359-6454 R&D Projects: GA ČR GA17-00062S Institutional support: RVO:68378271 ; RVO:61388998 Keywords : magnetic shape memory alloys * elastic properties * surface acoustic waves * Ni 2 MnGa * NiMnGa Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Acoustics (UT-L) Impact factor: 5.301, year: 2016

  2. Evaluation of elastic properties of DLC layers using resonant ultrasound spectroscopy and AFM nanoindentation

    Kocourek, Tomáš; Růžek, Michal; Landa, Michal; Jelínek, Miroslav; Mikšovský, Jan; Kopeček, Jaromír

    2011-01-01

    Roč. 205, č. 2 (2011), S67-S70 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GA101/09/0702 Institutional research plan: CEZ:AV0Z10100522; CEZ:AV0Z20760514 Keywords : RUS-resonant ultrasound spectroscopy * PLD * diamond-like carbon * elastic properties * AFM nanoindentation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.867, year: 2011

  3. Relationship between swelling and elastic properties in neutron-irradiated 316 stainless steel

    Bates, J.F.

    1976-04-01

    The results encompass elastic property measurements on several alloys, which differ in silicon, molybdenum and phosphorus contents but have a nominal 316 stainless steel composition. It is shown that there is a good correlation between the initial shear modulus of the material and the resultant swelling rate of that material. It is also shown that the bias factor concept does not satisfactorily account for the observed compositional sensitivity of swelling in the alloys investigated. 6 fig

  4. Delayed hydride cracking and elastic properties of Excel, a candidate CANDU-SCWR pressure tube material

    Pan, Z.L.

    2010-01-01

    Excel, a Zr alloy which contains 3.5%Sn, 0.8%Nb and 0.8%Mo, shows high strength, good corrosion resistance, excellent creep-resistance and dimension stability and thus is selected as a candidate pressure tube material for CANDU-SCWR. In the present work, the delayed hydride cracking properties (K IH and the DHC growth rates), the hydrogen solubility and elastic modulus were measured in the irradiated and unirradiated Excel pressure tube material. (author)

  5. Elastic and strength properties of Hanford concrete mixes at room and elevated temperatures

    Abrams, M.S.; Gillen, M.; Campbell, D.H.

    1979-03-01

    The effects of long-term exposure to elevated temperatures on the physical properties of concrete mixes used in Hanford radioactive waste storage tanks were determined. Temperature had a significant effect on the elastic modulus of concretes. Poisson's ratio determined by the sonic method remained relatively constant. The splitting tensile strength increased rapidly up to 190 days of age. Then strength decreased to about 350 days and either leveled off or increased from that point on. Compressive strength data were erratic

  6. Phase Separation and Elastic Properties of Poly(Trimethylene Terephthalate)-block-poly(Ethylene Oxide) Copolymers

    Elżbieta Piesowicz; Sandra Paszkiewicz; Anna Szymczyk

    2016-01-01

    A series of poly(trimethylene terephthalate)-block-poly(ethylene oxide) (PTT-b-PEOT) copolymers with different compositions of rigid PTT and flexible PEOT segments were synthesized via condensation in the melt. The influence of the block length and the block ratio on the micro-separated phase structure and elastic properties of the synthesized multiblock copolymers was studied. The PEOT segments in these copolymers were kept constant at 1130, 2130 or 3130 g/mol, whereas the PTT content varied...

  7. Distributing Correlation Coefficients of Linear Structure-Activity/Property Models

    Sorana D. BOLBOACA

    2011-12-01

    Full Text Available Quantitative structure-activity/property relationships are mathematical relationships linking chemical structure and activity/property in a quantitative manner. These in silico approaches are frequently used to reduce animal testing and risk-assessment, as well as to increase time- and cost-effectiveness in characterization and identification of active compounds. The aim of our study was to investigate the pattern of correlation coefficients distribution associated to simple linear relationships linking the compounds structure with their activities. A set of the most common ordnance compounds found at naval facilities with a limited data set with a range of toxicities on aquatic ecosystem and a set of seven properties was studied. Statistically significant models were selected and investigated. The probability density function of the correlation coefficients was investigated using a series of possible continuous distribution laws. Almost 48% of the correlation coefficients proved fit Beta distribution, 40% fit Generalized Pareto distribution, and 12% fit Pert distribution.

  8. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    Monteseguro, V.; Rodríguez-Hernández, P.; Muñoz, A.

    2015-01-01

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y 3 Al 5 O 12 are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet is mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y 3 Al 5 O 12 and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa

  9. Analyses of microstructural and elastic properties of porous SOFC cathodes based on focused ion beam tomography

    Chen, Zhangwei; Wang, Xin; Giuliani, Finn; Atkinson, Alan

    2015-01-01

    Mechanical properties of porous SOFC electrodes are largely determined by their microstructures. Measurements of the elastic properties and microstructural parameters can be achieved by modelling of the digitally reconstructed 3D volumes based on the real electrode microstructures. However, the reliability of such measurements is greatly dependent on the processing of raw images acquired for reconstruction. In this work, the actual microstructures of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathodes sintered at an elevated temperature were reconstructed based on dual-beam FIB/SEM tomography. Key microstructural and elastic parameters were estimated and correlated. Analyses of their sensitivity to the grayscale threshold value applied in the image segmentation were performed. The important microstructural parameters included porosity, tortuosity, specific surface area, particle and pore size distributions, and inter-particle neck size distribution, which may have varying extent of effect on the elastic properties simulated from the microstructures using FEM. Results showed that different threshold value range would result in different degree of sensitivity for a specific parameter. The estimated porosity and tortuosity were more sensitive than surface area to volume ratio. Pore and neck size were found to be less sensitive than particle size. Results also showed that the modulus was essentially sensitive to the porosity which was largely controlled by the threshold value.

  10. Elastic properties of amorphous boron suboxide based solids studied using ab initio molecular dynamics

    Music, Denis; Schneider, Jochen M

    2008-01-01

    We have studied the correlation between chemical composition, structure, chemical bonding and elastic properties of amorphous B 6 O based solids using ab initio molecular dynamics. These solids are of different chemical compositions, but the elasticity data appear to be a function of density. This is in agreement with previous experimental observations. As the density increases from 1.64 to 2.38 g cm -3 , the elastic modulus increases from 74 to 253 GPa. This may be understood by analyzing the cohesive energy and the chemical bonding of these compounds. The cohesive energy decreases from -7.051 to -7.584 eV/atom in the elastic modulus range studied. On the basis of the electron density distributions, Mulliken analysis and radial distribution functions, icosahedral bonding is the dominating bonding type. C and N promote cross-linking of icosahedra and thus increase the density, while H hinders the cross-linking by forming OH groups. The presence of icosahedral bonding is independent of the density

  11. Effect of temperature and geometric parameters on elastic properties of tungsten nanowire: A molecular dynamics study

    Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit; Mahboob, Monon [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Islam, M. Zahabul [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-07-12

    Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10 K ~ 1500 K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAM potential is used for molecular dynamic simulation. We applied constant strain rate of 10{sup 9} s{sup −1} to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.

  12. Symmetry-Free, p-Robust Equilibrated Error Indication for the hp-Version of the FEMin Nearly Incompressible Linear Elasticity

    Dörsek, Philipp; Melenk, Jens M.

    2017-01-01

    We consider the extension of the p-robust equilibrated error estimator due to Braess, Pillwein and Schöberl to linear elasticity. We derive a formulation where the local mixed auxiliary problems do not require symmetry of the stresses. The resulting error estimator is p-robust, and the reliability estimate is also robust in the incompressible limit if quadratics are included in the approximation space. Extensions to other systems of linear second-order partial differential equations are discu...

  13. THE STRESS-STRAIN STATE OF ELASTIC HALF-SPACE FROM RUNNING LINEAR LOAD ACTING ON THE LIMITED AND UNLIMITED EXTENT OVER ITS SURFACE

    I. K. Badalakha

    2009-02-01

    Full Text Available The article shows the result of solving the problem of stress-strain state of an elastic half-space because of the load action that uniformly distributed over the line, with the use of untraditional linear dependence of deformations on stressed state that is different from the generalized Hooke’s law.

  14. The Effect of Knitting Parameter and Finishing on Elastic Property of PET/PBT Warp Knitted Fabric

    Chen Qing

    2017-12-01

    Full Text Available This study investigated the elastic elongation and elastic recovery of the elastic warp knittedfabric made of PET( polyethylene terephthalate and PBT(polybutylene terephthalate filament. Using 50/24F PET and 50D/24F PBT in two threadingbars, the tricot, locknit and satin warp knitted fabrics were produced on the E28 tricot warpknitting machine. The knitting parameters influencing the elastic elongation under 100N wereanalyzed in terms of fabric structure, yarn run-in speed and drawing density set on machine.Besides, dyeing temperature and heat setting temperature/time were also examined in order toretain proper elastic elongation and elastic recovery. The relationship between elastic elongationand knitting parameter and finishing parameter were analyzed. Finally, the elastic recovery ofPET/PBT warp knitted fabric was examined to demonstrate the elastic property of final finishedfabric. This study could help us to further exploit the use of PET/PBT warp knitted fabric in thedevelopment of elastic garment in future.

  15. Investigation on the elastic properties of Gd-Sc-Al garnet by the Mandelstam-Brillouin light scattering method

    Zharikov, E.V.; Zagumennyj, A.I.; Kitaeva, V.F.; Lutts, G.B.; Terskov, D.B.

    1991-01-01

    The Gd-Sc-Al garnet (GSAG) crystals grown from the melt with composition Gd 2.88 Sc 1.89 Al 3.23 O 12 , were investigated. The GSAG doped with chromium was also studied. The Mandelstam-Brillouin (MB) light scattering in the GSAG crystals was observed. The garnet elastic components were determined using the data on the MB component shifts, the products of the elastic constants by molar volume were calculated as well. The GSAG is elastically anisotropic. The doping addition introduction do not cause noticeable change in the elastic properties. The obtained values of elastic constants and their combinations for GSAG were compared with the data for aluminium and gallium garnets. The comparison has shown that the values of elastic constants for GSAG is closer to those for Gd-Sc-Ga garnet than to the corresponding values for the Y-Al one

  16. Polarization properties of linearly polarized parabolic scaling Bessel beams

    Guo, Mengwen; Zhao, Daomu, E-mail: zhaodaomu@yahoo.com

    2016-10-07

    The intensity profiles for the dominant polarization, cross polarization, and longitudinal components of modified parabolic scaling Bessel beams with linear polarization are investigated theoretically. The transverse intensity distributions of the three electric components are intimately connected to the topological charge. In particular, the intensity patterns of the cross polarization and longitudinal components near the apodization plane reflect the sign of the topological charge. - Highlights: • We investigated the polarization properties of modified parabolic scaling Bessel beams with linear polarization. • We studied the evolution of transverse intensity profiles for the three components of these beams. • The intensity patterns of the cross polarization and longitudinal components can reflect the sign of the topological charge.

  17. FP-LAPW calculations of the elastic, electronic and thermoelectric properties of the filled skutterudite CeRu4Sb12

    Shankar, A.; Rai, D.P.; Chettri, Sandeep; Khenata, R.; Thapa, R.K.

    2016-01-01

    We have investigated the electronic structure, elastic and thermoelectric properties of the filled skutterudite CeRu 4 Sb 12 using the density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) approach is used to perform the calculations presented here. The electronic structure calculation suggests an indirect band gap semiconducting nature of the material with energy band gap of 0.08 eV. The analysis of the elastic constants at relaxed positions reveals the ductile nature of the sample material with covalent contribution in the inter-atomic bonding. The narrow band gap semiconducting nature with high value of Seebeck coefficient suggests the possibility of the thermoelectric application of the material. The analysis of the thermal transport properties confirms the result obtained from the energy band structure of the material with high thermopower and dimensionless figure of merit 0.19 at room temperature.

  18. Structural and elastic properties of Ni2+xMn1-xGa alloys

    Ghosh, Subhradip; Vitos, Levente; Sanyal, Biplab

    2011-01-01

    The structural parameters and the energetics of the Ni 2+x Mn 1-x Ga alloys have been investigated by the first-principles Exact Muffin Tin Orbital-Coherent Potential Approximation (EMTO-CPA) for 0.10 m . The qualitative behavior of δE with variation of x has been found to be in agreement with the experimentally observed variation of T m with x. The elastic constants for the entire range of x have also been calculated and the determination of a relationship between δE and the elastic shear modulus has been attempted. It is seen that δE varies linearly with elastic shear modulus C', qualitatively similar to the relation between T m and C'. The energetics calculated with the EMTO method agrees quite well with the all-electron full-potential results ensuring the accuracy of the method. These results show that the EMTO-CPA method is one of the most reliable and accurate first-principles methods, in the context of off-stoichiometric alloys which undergo martensitic phase transformations.

  19. Thermodynamic and elastic properties of hexagonal ZnO under high temperature

    Wang, Feng; Wu, Jinghe; Xia, Chuanhui; Hu, Chenghua; Hu, Chunlian; Zhou, Ping; Shi, Lingna; Ji, Yanling; Zheng, Zhou; Liu, Xiankun

    2014-01-01

    Highlights: • A new method is applied to predict crystal constants of hexagonal crystal under high temperature. • Elastic properties of ZnO under high temperature are obtained exactly. • Thermodynamic properties of ZnO under high temperature are attained too. - Abstract: Studies on thermodynamic and elastic properties of hexagonal ZnO (wurtzite structure) under high temperature have not been reported usually from no matter experimental or theoretic methods. In this work, we study these properties by ab-initio together with quasi-harmonic Debye model. The value of C v tends to the Petit and Dulong limit at high temperature under any pressure, 49.73 J/mol K. And C v is greatly limited by pressure at intermediate temperatures. Nevertheless, the limit effect on C v caused by pressure is not obvious under low as well as very high temperature. The thermal expansions along a or c axis are almost same under temperature, which increase with temperature like a parabola. C 11 , C 33 , C 12 and C 13 decrease with temperature a little, which means that mechanics properties are weakened respectively

  20. Mechanical properties of two-way grid shells optimized considering roundness and elastic stiffness

    Ogawa, Toshiyuki; Yuta, Nishikawa; Rie, Tateishi; Ohsaki, Makoto

    2002-01-01

    A single-layer two-way grid shell defined by Bezier surface is optimized by coordinates of the control points as design variables. The purpose of this paper is to find optimal shapes considering roundness and elastic stiffness, and to investigate their mechanical properties. The distance of the center of curvature from the specified point is used for formulating the objective function for generating a round shape. Consider next a problem of minimizing the compliance as mechanical performance measure. The compliance is defined by the external work against the static loads applied to the nodes. The mechanically optimal shape is different from the round shape. Therefore, the multi objective optimization problem is formulated for optimizing the two objectives, which are roundness and the elastic stiffness defined by using the compliance. The constraint method is used for obtaining Pareto optimal solutions between the two objectives. We optimize single-layer two-way grid shells with square and rectangle plans. Mechanical properties of the optimal shapes are investigated by compliance and the distributions of axial force and bending moment. The round shape is significantly dominated by the bending moment and its compliance is large. The bending moment of the mechanically optimal shape is not very large, and the latticed shell has large stiffness through axial deformation. A trade-off shape is round enough, and the influence of the bending moment is smaller than that of the optimal round shape and the elastic stiffness is moderately large

  1. Field characterization of elastic properties across a fault zone reactivated by fluid injection

    Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny; Nussbaum, Christophe; Birkholzer, Jens

    2017-08-01

    We studied the elastic properties of a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). Four controlled water injection experiments were performed in borehole straddle intervals set at successive locations across the fault zone. A three-component displacement sensor, which allowed capturing the borehole wall movements during injection, was used to estimate the elastic properties of representative locations across the fault zone, from the host rock to the damage zone to the fault core. Young's moduli were estimated by both an analytical approach and numerical finite difference modeling. Results show a decrease in Young's modulus from the host rock to the damage zone by a factor of 5 and from the damage zone to the fault core by a factor of 2. In the host rock, our results are in reasonable agreement with laboratory data showing a strong elastic anisotropy characterized by the direction of the plane of isotropy parallel to the laminar structure of the shale formation. In the fault zone, strong rotations of the direction of anisotropy can be observed. The plane of isotropy can be oriented either parallel to bedding (when few discontinuities are present), parallel to the direction of the main fracture family intersecting the zone, and possibly oriented parallel or perpendicular to the fractures critically oriented for shear reactivation (when repeated past rupture along this plane has created a zone).

  2. Phase Separation and Elastic Properties of Poly(Trimethylene Terephthalate-block-poly(Ethylene Oxide Copolymers

    Elżbieta Piesowicz

    2016-06-01

    Full Text Available A series of poly(trimethylene terephthalate-block-poly(ethylene oxide (PTT-b-PEOT copolymers with different compositions of rigid PTT and flexible PEOT segments were synthesized via condensation in the melt. The influence of the block length and the block ratio on the micro-separated phase structure and elastic properties of the synthesized multiblock copolymers was studied. The PEOT segments in these copolymers were kept constant at 1130, 2130 or 3130 g/mol, whereas the PTT content varied from 30 up to 50 wt %. The phase separation was assessed using differential scanning calorimetry (DSC and dynamic mechanical thermal analysis (DMTA. The crystal structure of the synthesised block copolymers and their microstructure on the manometer scale was evaluated by using WAXS and SAXS analysis. Depending on the PTT/PEOT ratio, but also on the rigid and flexible segment length in PTT-b-PEO copolymers, four different domains were observed i.e.,: a crystalline PTT phase, a crystalline PEO phase (which exists for the whole series based on three types of PEOT segments, an amorphous PTT phase (only at 50 wt % content of PTT rigid segments and an amorphous PEO phase. Moreover, the elastic deformability and reversibility of PTT-b-PEOT block copolymers were studied during a cyclic tensile test. Determined values of permanent set resultant from maximum attained stain (100% and 200% for copolymers were used to evaluate their elastic properties.

  3. Competition of elastic and adhesive properties of carbon nanotubes anchored to atomic force microscopy tips

    Bernard, Charlotte; Marsaudon, Sophie; Boisgard, Rodolphe; Aime, Jean-Pierre

    2008-01-01

    In this paper we address the mechanical properties of carbon nanotubes anchored to atomic force microscopy (AFM) tips in a detailed analysis of experimental results and exhaustive description of a simple model. We show that volume elastic and surface adhesive forces both contribute to the dynamical AFM experimental signals. Their respective weights depend on the nanotube properties and on an experimental parameter: the oscillation amplitude. To quantify the elastic and adhesive contributions, a simple analytical model is used. It enables analytical expressions of the resonance frequency shift and dissipation that can be measured in the atomic force microscopy dynamical frequency modulation mode. It includes the nanotube adhesive contribution to the frequency shift. Experimental data for single-wall and multi-wall carbon nanotubes compare well to the model predictions for different oscillation amplitudes. Three parameters can be extracted: the distance necessary to unstick the nanotube from the surface and two spring constants corresponding to tube compression and to the elastic force required to overcome the adhesion force

  4. Mathematical Model for Electric Field Sensor Based on Whispering Gallery Modes Using Navier’s Equation for Linear Elasticity

    Amir R. Ali

    2017-01-01

    Full Text Available This paper presents and verifies the mathematical model of an electric field senor based on the whispering gallery mode (WGM. The sensing element is a dielectric microsphere, where the light is used to tune the optical modes of the microsphere. The light undergoes total internal reflection along the circumference of the sphere; then it experiences optical resonance. The WGM are monitored as sharp dips on the transmission spectrum. These modes are very sensitive to morphology changes of the sphere, such that, for every minute change in the sphere’s morphology, a shift in the transmission spectrum will happen and that is known as WGM shifts. Due to the electrostriction effect, the applied electric field will induce forces acting on the surface of the dielectric sphere. In turn, these forces will deform the sphere causing shifts in its WGM spectrum. The applied electric field can be obtained by calculating these shifts. Navier’s equation for linear elasticity is used to model the deformation of the sphere to find the WGM shift. The finite element numerical studies are performed to verify the introduced model and to study the behavior of the sensor at different values of microspheres’ Young’s modulus and dielectric constant. Furthermore, the sensitivity and resolution of the developed WGM electric filed sensor model will be presented in this paper.

  5. Comparison between isotropic linear-elastic law and isotropic hyperelastic law in the finite element modeling of the brachial plexus.

    Perruisseau-Carrier, A; Bahlouli, N; Bierry, G; Vernet, P; Facca, S; Liverneaux, P

    2017-12-01

    Augmented reality could help the identification of nerve structures in brachial plexus surgery. The goal of this study was to determine which law of mechanical behavior was more adapted by comparing the results of Hooke's isotropic linear elastic law to those of Ogden's isotropic hyperelastic law, applied to a biomechanical model of the brachial plexus. A model of finite elements was created using the ABAQUS ® from a 3D model of the brachial plexus acquired by segmentation and meshing of MRI images at 0°, 45° and 135° of shoulder abduction of a healthy subject. The offset between the reconstructed model and the deformed model was evaluated quantitatively by the Hausdorff distance and qualitatively by the identification of 3 anatomical landmarks. In every case the Hausdorff distance was shorter with Ogden's law compared to Hooke's law. On a qualitative aspect, the model deformed by Ogden's law followed the concavity of the reconstructed model whereas the model deformed by Hooke's law remained convex. In conclusion, the results of this study demonstrate that the behavior of Ogden's isotropic hyperelastic mechanical model was more adapted to the modeling of the deformations of the brachial plexus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part II: Mechanical modeling

    Han, Fei; Azdoud, Yan; Lubineau, Gilles

    2014-01-01

    We present two modeling approaches for predicting the macroscopic elastic properties of carbon nanotubes/polymer composites with thick interphase regions at the nanotube/matrix frontier. The first model is based on local continuum mechanics

  7. Molecular dynamics investigation of the elastic and fracture properties of the R-graphyne under uniaxial tension

    Rouhi, Saeed, E-mail: s_rouhi@iaul.ac.ir

    2017-05-15

    In this paper, the mechanical properties of the R-graphynes are investigated by using molecular dynamics simulations. For this purpose, the uniaxial strain is applied on the nanosheets. The effects of R-graphyne chirality and dimension on their fracture and elastic properties are investigated. It is shown that the fracture properties of the armchair R-graphyne are approximately independent from the nanosheet sizes. However, a clear dependence is observed in the fracture properties of the zigzag R-graphyne on the nanosheet dimensions. Comparing the elastic modulus of the armchair and zigzag R-graphynes, it is shown that for the same sizes, the elastic modulus of armchair R-graphyne is approximately equal to 2.5 times of the elastic modulus of the zigzag ones. Pursuing the fracture process of R-graphynes with different chiralities, it is represented that the fracture propagates in the zigzag nanosheet with a higher velocity than the armchair ones.

  8. Ab initio study of the elastic properties of single and polycrystal TiO2, ZrO2 and HfO2 in the cotunnite structure

    Caravaca, M A; Mino, J C; Perez, V J; Casali, R A; Ponce, C A

    2009-01-01

    In this work, we study theoretically the elastic properties of the orthorhombic (Pnma) high-pressure phase of IV-B group oxides: titania, zirconia and hafnia. By means of the self-consistent SIESTA code, pseudopotentials, density functional theory in the LDA and GGA approximations, the total energies, hydrostatic pressures and stress tensor components are calculated. From the stress-strain relationships, in the linear regime, the elastic constants C ij are determined. Derived elastic constants, such as bulk, Young's and shear modulus, Poisson coefficient and brittle/ductile behavior are estimated with the polycrystalline approach, using Voigt-Reuss-Hill theories. We have found that C 11 , C 22 and C 33 elastic constants of hafnia and zirconia show increased strength with respect to the experimental values of the normal phase, P 2 1 /c. A similar situation applies to titania if these constants are compared with its normal phase, rutile. However, shear elastic constants C 44 , C 55 and C 66 are similar to the values found in the normal phase. This fact increases the compound anisotropy as well as its ductile behavior. The dependence of unit-cell volumes under hydrostatic pressures is also analyzed. P-V data, fitted to third-order Birch-Murnaghan equations of state, provide the bulk modulus B 0 and its pressure derivatives B' 0 . In this case, LDA estimations show good agreement with respect to recent measured bulk moduli of ZrO 2 and HfO 2 . Thermo-acoustic properties, e.g. the propagation speed of transverse, longitudinal elastic waves together with associated Debye temperatures, are also estimated.

  9. Comparison of stress and total energy methods for calculation of elastic properties of semiconductors.

    Caro, M A; Schulz, S; O'Reilly, E P

    2013-01-16

    We explore the calculation of the elastic properties of zinc-blende and wurtzite semiconductors using two different approaches: one based on stress and the other on total energy as a function of strain. The calculations are carried out within the framework of density functional theory in the local density approximation, with the plane wave-based package VASP. We use AlN as a test system, with some results also shown for selected other materials (C, Si, GaAs and GaN). Differences are found in convergence rate between the two methods, especially in low symmetry cases, where there is a much slower convergence for total energy calculations with respect to the number of plane waves and k points used. The stress method is observed to be more robust than the total energy method with respect to the residual error in the elastic constants calculated for different strain branches in the systems studied.

  10. Structural, elastic, and electronic properties of compressed ZnP{sub 2}

    Huang, Hong-Mei [School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 (China); Li, Yan-Ling, E-mail: ylli@jsnu.edu.cn [School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 (China); Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zeng, Zhi [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2013-06-15

    The structural, elastic and electronic properties of compressed ZnP{sub 2} were investigated by first-principles total energy calculations. The optimized equilibrium structural parameters agree well with those of experiments for α-ZnP{sub 2} and β-ZnP{sub 2} at zero pressure. α-ZnP{sub 2} transforms into I4{sub 1}/22 phase (referred as γ-ZnP{sub 2}) at 11 GPa, which is an indirect band-gap (∼0.78 eV) semiconductor. Space group of low pressure phase is the subgroup of that of high pressure phase. The calculated elastic constants for α-ZnP{sub 2} and β-ZnP{sub 2} at zero pressure as well as γ-ZnP{sub 2} at phase transition pressure determine their stability mechanically. Phonon calculation confirms dynamical stability of γ-ZnP{sub 2}.

  11. Elastic, thermal and high pressure structural properties of heavy rare earth antimonides

    Soni, P.; Pagare, G.; Sanyal, S.P.

    2009-01-01

    Pressure induced structural phase transition of two heavy rare earth antimonides (RESb; RE=Ho, Er) have been studied theoretically by using an inter-ionic potential theory. This method has been found quite satisfactory in the case of pnictides of rare earth and describes the crystal properties in the framework of rigid-ion modal. The long-range Coulomb interaction, short-range repulsive interaction and van der Waals (vdW) interactions are properly incorporated in this theory. These compounds exhibit first order crystallographic phase transition from their NaCl-type structure to CsCl-type structure at 27 GPa and 33.2 GPa, respectively. The bulk moduli of RESb compounds are compared with the experimental values of elastic constants. We have also calculated the Debye temperature by incorporating the elastic constants for both the rare earth antimonides. (author)

  12. High pressure and temperature induced structural and elastic properties of lutetium chalcogenides

    Shriya, S.; Kinge, R.; Khenata, R.; Varshney, Dinesh

    2018-04-01

    The high-pressure structural phase transition and pressure as well temperature induced elastic properties of rock salt to CsCl structures in semiconducting LuX (X = S, Se, and Te) chalcogenides compound have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from ZnS to NaCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, melting temperature TM, Hardness (HV), and young modulus (E) the LuX lattice infers mechanical stiffening, and thermal softening.

  13. First-principles study of structural and elastic properties of monoclinic and orthorhombic BiMnO3

    Mei Zhigang; Shang Shunli; Wang Yi; Liu Zikui

    2010-01-01

    The structural and elastic properties of BiMnO 3 with monoclinic (C 2/c) and orthorhombic (Pnma) ferromagnetic (FM) structures have been studied by first-principles calculations within LDA + U and GGA + U approaches. The equilibrium volumes and bulk moduli of BiMnO 3 phases are evaluated by equation of state (EOS) fittings, and the bulk properties predicted by LDA + U calculations are in better agreement with experiment. The orthorhombic phase is found to be more stable than the monoclinic phase at ambient pressure. A monoclinic to monoclinic phase transition is predicted to occur at a pressure of about 10 GPa, which is ascribed to magnetism versus volume instability of monoclinic BiMnO 3 . The single-crystal elastic stiffness constants c ij s of the monoclinic and orthorhombic phases are investigated using the stress-strain method. The c 46 of the monoclinic phase is predicted to be negative. In addition, the polycrystalline elastic properties including bulk modulus, shear modulus, Young's modulus, bulk modulus-shear modulus ratio, Poisson's ratio, and elastic anisotropy ratio are determined based on the calculated elastic constants. The presently predicted phase transition and elastic properties open new directions for investigation of the phase transitions in BiMnO 3 , and provide helpful guidance for the future elastic constant measurements.

  14. Review of Acceleration Methods for Seismic Analysis of Through-Wall Cracked Piping from the Viewpoint of Linear Elastic Fracture Mechanics

    Kim, Jong Sung; Kim, Yong Woo [Sunchon National University, Suncheon (Korea, Republic of)

    2014-10-15

    Two acceleration methods, an effective force method (or inertia method) and a large mass method, have been applied for performing time history seismic analysis. The acceleration methods for uncracked structures have been verified via previous studies. However, no study has identified the validity of these acceleration methods for cracked piping. In this study, the validity of the acceleration methods for through-wall cracked piping is assessed via time history implicit dynamic elastic seismic analysis from the viewpoint of linear elastic fracture mechanics. As a result, it is identified that both acceleration methods show the same results for cracked piping if a large mass magnitude and maximum time increment are adequately selected.

  15. Review of Acceleration Methods for Seismic Analysis of Through-Wall Cracked Piping from the Viewpoint of Linear Elastic Fracture Mechanics

    Kim, Jong Sung; Kim, Yong Woo

    2014-01-01

    Two acceleration methods, an effective force method (or inertia method) and a large mass method, have been applied for performing time history seismic analysis. The acceleration methods for uncracked structures have been verified via previous studies. However, no study has identified the validity of these acceleration methods for cracked piping. In this study, the validity of the acceleration methods for through-wall cracked piping is assessed via time history implicit dynamic elastic seismic analysis from the viewpoint of linear elastic fracture mechanics. As a result, it is identified that both acceleration methods show the same results for cracked piping if a large mass magnitude and maximum time increment are adequately selected

  16. Structural, elastic, mechanical and thermodynamic properties of Terbium oxide: First-principles investigations

    Samah Al-Qaisi

    Full Text Available First-principles investigations of the Terbium oxide TbO are performed on structural, elastic, mechanical and thermodynamic properties. The investigations are accomplished by employing full potential augmented plane wave FP-LAPW method framed within density functional theory DFT as implemented in the WIEN2k package. The exchange-correlation energy functional, a part of the total energy functional, is treated through Perdew Burke Ernzerhof scheme of the Generalized Gradient Approximation PBEGGA. The calculations of the ground state structural parameters, like lattice constants a0, bulk moduli B and their pressure derivative B′ values, are done for the rock-salt RS, zinc-blende ZB, cesium chloride CsCl, wurtzite WZ and nickel arsenide NiAs polymorphs of the TbO compound. The elastic constants (C11, C12, C13, C33, and C44 and mechanical properties (Young’s modulus Y, Shear modulus S, Poisson’s ratio σ, Anisotropic ratio A and compressibility β, were also calculated to comprehend its potential for valuable applications. From our calculations, the RS phase of TbO compound was found strongest one mechanically amongst the studied cubic structures whereas from hexagonal phases, the NiAs type structure was found stronger than WZ phase of the TbO. To analyze the ductility of the different structures of the TbO, Pugh’s rule (B/SH and Cauchy pressure (C12–C44 approaches are used. It was found that ZB, CsCl and WZ type structures of the TbO were of ductile nature with the obvious dominance of the ionic bonding while RS and NiAs structures exhibited brittle nature with the covalent bonding dominance. Moreover, Debye temperature was calculated for both cubic and hexagonal structures of TbO in question by averaging the computed sound velocities. Keywords: DFT, TbO, Elastic properties, Thermodynamic properties

  17. Afrika Statistika ISSN 2316-090X Further properties of linear ...

    properties of linear prediction sufficiency and the BLUPs in the linear model with new observations. ...... a wide range of applications, for example, plant variety trials, animal breeding, selection ..... Linear Algebra Appl., 430, 2622–2641. DOI.

  18. Quasi-linear viscoelastic properties of the human medial patello-femoral ligament.

    Criscenti, G; De Maria, C; Sebastiani, E; Tei, M; Placella, G; Speziali, A; Vozzi, G; Cerulli, G

    2015-12-16

    The evaluation of viscoelastic properties of human medial patello-femoral ligament is fundamental to understand its physiological function and contribution as stabilizer for the selection of the methods of repair and reconstruction and for the development of scaffolds with adequate mechanical properties. In this work, 12 human specimens were tested to evaluate the time- and history-dependent non linear viscoelastic properties of human medial patello-femoral ligament using the quasi-linear viscoelastic (QLV) theory formulated by Fung et al. (1972) and modified by Abramowitch and Woo (2004). The five constant of the QLV theory, used to describe the instantaneous elastic response and the reduced relaxation function on stress relaxation experiments, were successfully evaluated. It was found that the constant A was 1.21±0.96MPa and the dimensionless constant B was 26.03±4.16. The magnitude of viscous response, the constant C, was 0.11±0.02 and the initial and late relaxation time constants τ1 and τ2 were 6.32±1.76s and 903.47±504.73s respectively. The total stress relaxation was 32.7±4.7%. To validate our results, the obtained constants were used to evaluate peak stresses from a cyclic stress relaxation test on three different specimens. The theoretically predicted values fit the experimental ones demonstrating that the QLV theory could be used to evaluate the viscoelastic properties of the human medial patello-femoral ligament. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Elastic properties, reaction kinetics, and structural relaxation of an epoxy resin polymer during cure

    Heili, Manon; Bielawski, Andrew; Kieffer, John

    The cure kinetics of a DGEBA/DETA epoxy is investigated using concurrent Raman and Brillouin light scattering. Raman scattering allows us to monitor the in-situ reaction and quantitatively assess the degree of cure. Brillouin scattering yields the elastic properties of the system, providing a measure of network connectivity. We show that the adiabatic modulus evolves non-uniquely as a function of cure degree, depending on the cure temperature and the molar ratio of the epoxy. Two mechanisms contribute to the increase in the elastic modulus of the material during curing. First, there is the formation of covalent bonds in the network during the curing process. Second, following bond formation, the epoxy undergoes structural relaxation toward an optimally packed network configuration, enhancing non-bonded interactions. We investigate to what extent the non-bonded interaction contribution to structural rigidity in cross-linked polymers is reversible, and to what extent it corresponds to the difference between adiabatic and isothermal moduli obtained from static tensile, i.e. the so-called relaxational modulus. To this end, we simultaneously measure the adiabatic and isothermal elastic moduli as a function of applied strain and deformation rate.

  20. Pressure dependent elastic and structural (B3-B1) properties of Ga based monopnictides

    Varshney, Dinesh; Joshi, Geetanjali; Varshney, Meenu; Shriya, Swarna

    2010-01-01

    By formulating an effective interionic interaction potential that incorporates the long-range Coulomb, the covalency effects, the charge transfer caused by the deformation of the electron shells of the overlapping ions, the Hafemeister and Flygare type short-range overlap repulsion extended up to the second neighbour ions and the van der Waals (vdW) interaction, the pressure dependent elastic and thermodynamical properties of the III-V semiconductors as GaY (Y = N, P, As) are studied. The estimated values of phase transition pressure of GaY (Y = N, P, As) are in reasonably good agreement with the available data on the phase transition pressures (P t = 41, 22, 17 GPa). The vast volume discontinuity in pressure-volume phase diagram identifies a structural phase transition from zinc-blende (B3) to rock salt (B1) structure. Later on, the Poisson's ratio ν, the ratio R S/B of S (Voigt averaged shear modulus) over B (bulk modulus), elastic anisotropy parameter, elastic wave velocity, average wave velocity and Debye temperature as functions of pressure is calculated. From Poisson's ratio and the ratio R S/B it is inferred that GaY (Y = N, P, As) is brittle [ductile] in zinc-blende (B3) [Sodium Chloride (B1)] phase. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of ductile (brittle) nature of GaY compounds and still awaits experimental confirmations.

  1. Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions.

    Wojciechowski, K W; Tretiakov, K V; Kowalik, M

    2003-03-01

    Systems of model planar, nonconvex, hard-body "molecules" of fivefold and sevenfold symmetry axes are studied by constant pressure Monte Carlo simulations with variable shape of the periodic box. The molecules, referred to as pentamers (heptamers), are composed of five (seven) identical hard disks "atoms" with centers forming regular pentagons (heptagons) of sides equal to the disk diameter. The elastic compliances of defect-free solid phases are computed by analysis of strain fluctuations and the reference (equilibrium) state is determined within the same run in which the elastic properties are computed. Results obtained by using pseudorandom number generators based on the idea proposed by Holian and co-workers [Holian et al., Phys. Rev. E 50, 1607 (1994)] are in good agreement with the results generated by DRAND48. It is shown that singular behavior of the elastic constants near close packing is in agreement with the free volume approximation; the coefficients of the leading singularities are estimated. The simulations prove that the highest density structures of heptamers (in which the molecules cannot rotate) are auxetic, i.e., show negative Poisson ratios.

  2. Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions

    Wojciechowski, K.W.; Tretiakov, K.V.; Kowalik, M.

    2003-02-01

    Systems of model plannar, non-convex, hard-body 'molecules' of five-fold and seven-fold symmetry axes are studied by constant pressure Monte Carlo simulations with variable shape of the periodic box. The molecules, referred to as pentamers (heptamers) are composed of five (seven) identical hard discs-'atoms' with centers forming regular pentagons (heptagons) of sides equal to the disc diameter. The elastic compliances of defect-free solid phases are computed by analysis of strain fluctuations and the reference (equilibrium) state is determined within the same run in which the elastic properties are computed. Results obtained by using pseudo-random number generators based on the idea proposed by Holian and co-workers [B. L. Holian et al., Phys. Rev. E50, 1607 (1994)] are in good agreement with the results generated by DRAND48. It is shown that singular behavior of the elastic constants near close packing is in agreement with the free volume approximation; the coefficients of the leading singularities are estimated. The simulations prove that the highest density structures of heptamers (in which the molecules cannot rotate) are auxetic, i.e. show negative Poisson ratios. (author)

  3. Characteristics and Properties of a Simple Linear Regression Model

    Kowal Robert

    2016-12-01

    Full Text Available A simple linear regression model is one of the pillars of classic econometrics. Despite the passage of time, it continues to raise interest both from the theoretical side as well as from the application side. One of the many fundamental questions in the model concerns determining derivative characteristics and studying the properties existing in their scope, referring to the first of these aspects. The literature of the subject provides several classic solutions in that regard. In the paper, a completely new design is proposed, based on the direct application of variance and its properties, resulting from the non-correlation of certain estimators with the mean, within the scope of which some fundamental dependencies of the model characteristics are obtained in a much more compact manner. The apparatus allows for a simple and uniform demonstration of multiple dependencies and fundamental properties in the model, and it does it in an intuitive manner. The results were obtained in a classic, traditional area, where everything, as it might seem, has already been thoroughly studied and discovered.

  4. Influence of exogenous pigmentation on the optical properties of orthodontic elastic ligatures

    Alline Birra Nolasco Fernandes

    2012-08-01

    Full Text Available OBJECTIVES: The aim of this study was to assess the optical properties of orthodontic elastic ligatures under the influence of exogenous pigments contained in the daily diet. MATERIAL AND METHODS: For the analysis, colorless (clear elastic segments (ORTHO Organizers, lot 660625A10 were used as received from the manufacturer, and were divided into 8 groups of 3 segments each. Each group was immersed in 200 mL of a solution containing a determined substance, as follows: distilled water (control group, Coca-Cola®, Pomarola brand tomato sauce (Cica®, açai, Jasmine® brand green tea, Royal Blend® black tea brand, Pilão® brand coffee and Palmares® wine brand. All test specimens were immersed in the solutions and kept in an appropriate receptacle for 7 days at 37°C14. After the staining session, the test specimens were washed with distilled water in an ultrasonic vat for 5 min and dried with paper tissues6. The portable digital spectrophotometer Vita Easyshade Compact was used to assess if there was color variation of the test specimens. This variation was quantified and qualified at the initial time (T0 and after staining (T1. RESULTS: These results were analyzed statistically using the software SPSS version 18.0. The Shapiro-Wilk test of normality was applied followed by the one-way analysis of variance and the Tukey's post hoc test. The level of significance adopted was 5%. CONCLUSIONS: From the substances evaluated in this study, those with higher staining potential on esthetic elastic ligatures were black tea, coffee and wine, respectively. Knowing this information, the dentist may advise their patients to avoid certain foods because of elastic staining may occur thus decreasing the aesthetics of the material.

  5. Achilles and patellar tendinopathy display opposite changes in elastic properties: A shear wave elastography study.

    Coombes, B K; Tucker, K; Vicenzino, B; Vuvan, V; Mellor, R; Heales, L; Nordez, A; Hug, F

    2018-03-01

    To compare tendon elastic and structural properties of healthy individuals with those with Achilles or patellar tendinopathy. Sixty-seven participants (22 Achilles tendinopathy, 17 patellar tendinopathy, and 28 healthy controls) were recruited between March 2015 and March 2016. Shear wave velocity (SWV), an index of tissue elastic modulus, and tendon thickness were measured bilaterally at mid-tendon and insertional regions of Achilles and patellar tendons by an examiner blinded to group. Analysis of covariance, adjusted for age, body mass index, and sex was used to compare differences in tendon thickness and SWV between the two tendinopathy groups (relative to controls) and regions. Tendon thickness was included as a covariate for analysis of SWV. Compared to controls, participants with Achilles tendinopathy had lower SWV at the distal insertion (Mean difference MD; 95% CI: -1.56; -2.49 to -0.62 m/s; P < .001) and greater thickness at the mid-tendon (MD 0.19; 0.05-0.33 cm; P = .007). Compared to controls, participants with patellar tendinopathy had higher SWV at both regions (MD 1.25; 0.40-2.10 m/s; P = .005) and greater thickness proximally (MD 0.17; 0.06-0.29 cm; P = .003). Compared to controls, participants with Achilles and patellar tendinopathy displayed lower Achilles tendon elastic modulus and higher patellar tendon elastic modulus, respectively. More research is needed to explore whether maturation, aging, or chronic load underlie these findings and whether current management programs for Achilles and patellar tendinopathy need to be tailored to the tendon. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Elastic and Piezoelectric Properties of Boron Nitride Nanotube Composites. Part II; Finite Element Model

    Kim, H. Alicia; Hardie, Robert; Yamakov, Vesselin; Park, Cheol

    2015-01-01

    This paper is the second part of a two-part series where the first part presents a molecular dynamics model of a single Boron Nitride Nanotube (BNNT) and this paper scales up to multiple BNNTs in a polymer matrix. This paper presents finite element (FE) models to investigate the effective elastic and piezoelectric properties of (BNNT) nanocomposites. The nanocomposites studied in this paper are thin films of polymer matrix with aligned co-planar BNNTs. The FE modelling approach provides a computationally efficient way to gain an understanding of the material properties. We examine several FE models to identify the most suitable models and investigate the effective properties with respect to the BNNT volume fraction and the number of nanotube walls. The FE models are constructed to represent aligned and randomly distributed BNNTs in a matrix of resin using 2D and 3D hollow and 3D filled cylinders. The homogenisation approach is employed to determine the overall elastic and piezoelectric constants for a range of volume fractions. These models are compared with an analytical model based on Mori-Tanaka formulation suitable for finite length cylindrical inclusions. The model applies to primarily single-wall BNNTs but is also extended to multi-wall BNNTs, for which preliminary results will be presented. Results from the Part 1 of this series can help to establish a constitutive relationship for input into the finite element model to enable the modeling of multiple BNNTs in a polymer matrix.

  7. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM

    Alsteens, David; Dupres, Vincent; Evoy, Kevin Mc; Dufrene, Yves F; Wildling, Linda; Gruber, Hermann J

    2008-01-01

    Although the chemical composition of yeast cell walls is known, the organization, assembly, and interactions of the various macromolecules remain poorly understood. Here, we used in situ atomic force microscopy (AFM) in three different modes to probe the ultrastructure, cell wall elasticity and polymer properties of two brewing yeast strains, i.e. Saccharomyces carlsbergensis and S. cerevisiae. Topographic images of the two strains revealed smooth and homogeneous cell surfaces, and the presence of circular bud scars on dividing cells. Nanomechanical measurements demonstrated that the cell wall elasticity of S. carlsbergensis is homogeneous. By contrast, the bud scar of S. cerevisiae was found to be stiffer than the cell wall, presumably due to the accumulation of chitin. Notably, single molecule force spectroscopy with lectin-modified tips revealed major differences in polysaccharide properties of the two strains. Polysaccharides were clearly more extended on S. cerevisiae, suggesting that not only oligosaccharides, but also polypeptide chains of the mannoproteins were stretched. Consistent with earlier cell surface analyses, these findings may explain the very different aggregation properties of the two organisms. This study demonstrates the power of using multiple complementary AFM modalities for probing the organization and interactions of the various macromolecules of microbial cell walls

  8. Effect of ionizing radiation on visco-elastic properties of polymethyl-methacrylate and poly-4-methylpentene-1

    Perepechko, I.I.; Mar'yasin, B.Ya.

    1978-01-01

    The effect of γ radiation on visco-elastic properties of polymethylmethacrylate (PMMA) and poly-4-methylpentene-1 (P4MPI) has been investigated by the method of the forced resonance oscillations of a cantilevered specimen. It has been shown, that the variation of the dynamic elasticity modulus of amorphous polymer when the irradiation dose increases, considerable depends on the polymer physical state during the measurement. The irradiated polymer is a binary mixture of radiolysis low-molecular products and polymer itself. The value of elasticity modulus in such a mixture is defined by the modules of different components. More complex than in PMMA in the effect of γ-radiation upon the P4MPI visco-elastic behaviour. During the P4MPI irradiation, the rebuilding of polymer supermolecular structure takes place, which results in the variation of the dynamic elasticity modulus values and in the intensity of peaks of mechanical losses

  9. Low frequency elastic properties of glasses at low temperatures - implications on the tunneling model

    Raychaudhuri, A.K.; Hunklinger, S.

    1984-01-01

    We have measured the low frequency elastic properties of dielectric, normal conducting and superconducting metallic glasses at audio-frequencies (fapprox.=1 kHz) and temperatures down to 10 mK. Our results are discussed in the framework of the tunneling model of glasses. The major assumption of the tunneling model regarding the tunneling states with long relaxation time has been verified, but discrepancies to high frequency measurements have been found. In addition, our experiments on superconducting metallic glasses seem to indicate that the present treatment of the electron-tunneling state interaction is not sufficient. (orig.)

  10. Magnetic and magneto-elastic properties of a single crystal of TbB{sub 6}

    Granovsky, S.A.; Amara, M.; Galera, R.M. [Laboratoire Louis Neel, CNRS, BP 166, Grenoble (France); Kunii, S. [Department of Physics, Faculty of Science, Tohoku University, Aramaki, Aoba-ku, Sendai (Japan)

    2001-07-23

    The magnetic and magneto-elastic properties of a single crystal of TbB{sub 6} are studied. In the ordered range metamagnetic behaviours are observed and complex phase diagrams are determined for magnetic fields along fourfold and threefold directions. In the paramagnetic phase the third-order magnetic susceptibilities and the parastriction curves show anisotropic behaviour which could be accounted for by crystalline electric field (CEF) effects. A set of CEF parameters is proposed on the basis of the analysis of the experimental magnetic and quadrupolar susceptibilities. Though non-negligible, the deduced quadrupolar couplings are weak in comparison with those previously determined in PrB{sub 6}. (author)

  11. Laser-Ultrasonic Measurement of Elastic Properties of Anodized Aluminum Coatings

    Singer, F.

    Anodized aluminum oxide plays a great role in many industrial applications, e.g. in order to achieve greater wear resistance. Since the hardness of the anodized films strongly depends on its processing parameters, it is important to characterize the influence of the processing parameters on the film properties. In this work the elastic material parameters of anodized aluminum were investigated using a laser-based ultrasound system. The anodized films were characterized analyzing the dispersion of Rayleigh waves with a one-layer model. It was shown that anodizing time and temperature strongly influence Rayleigh wave propagation.

  12. Evaluation of aortic elastic properties in patients with exaggerated systolic blood pressure response to exercise testing.

    Kilicaslan, Baris; Eren, Nihan Kahya; Nazlı, Cem

    2015-01-01

    We aimed to evaluate the aortic elastic properties in subjects with hypertensive response to exercise stress test (HRE). Sixty-six patients were divided into two groups (33 patients in HRE group and 33 patients in normotensive group). Baseline demographic characteristics were similar. The mean aortic stiffness index (ASI) was significantly higher (p=0.001) whereas aortic distensibility (AD) was significantly lower (p=0.029) in patients suggesting HRE. The C-reactive protein levels of patients with HRE was higher in the HRE group (p=0.03). AD was significantly correlated with age (r=-0.406, pHRE.

  13. Characterization of elastic-viscoplastic properties of an AS4/PEEK thermoplastic composite

    Yoon, K. J.; Sun, C. T.

    1991-01-01

    The elastic-viscoplastic properties of an AS4/PEEK (APC-2) thermoplastic composite were characterized at 24 C (75 F) and 121 C (250 F) by using a one-parameter viscoplasticity model. To determine the strain-rate effects, uniaxial tension tests were performed on unidirectional off-axis coupon specimens with different monotonic strain rates. A modified Bodner and Partom's model was also used to describe the viscoplasticity of the thermoplastic composite. The experimental results showed that viscoplastic behavior can be characterized quite well using the one-parameter overstress viscoplasticity model.

  14. Solution of a Problem Linear Plane Elasticity with Mixed Boundary Conditions by the Method of Boundary Integrals

    Nahed S. Hussein

    2014-01-01

    Full Text Available A numerical boundary integral scheme is proposed for the solution to the system of …eld equations of plane. The stresses are prescribed on one-half of the circle, while the displacements are given. The considered problem with mixed boundary conditions in the circle is replaced by two problems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way, and the problem at this stage is reduced to the solution to a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution and the unknown boundary values of stresses or displacements on proper parts of the boundary. On the basis of the obtained results, it is inferred that a stress component has a singularity at each of the two separation points, thought to be of logarithmic type. The results are discussed and boundary plots are given. We have also calculated the unknown functions in the bulk directly from the given boundary conditions using the boundary collocation method. The obtained results in the bulk are discussed and three-dimensional plots are given. A tentative form for the singular solution is proposed and the corresponding singular stresses and displacements are plotted in the bulk. The form of the singular tangential stress is seen to be compatible with the boundary values obtained earlier. The efficiency of the used numerical schemes is discussed.

  15. Model-Checking of Linear-Time Properties in Multi-Valued Systems

    Li, Yongming; Droste, Manfred; Lei, Lihui

    2012-01-01

    In this paper, we study model-checking of linear-time properties in multi-valued systems. Safety property, invariant property, liveness property, persistence and dual-persistence properties in multi-valued logic systems are introduced. Some algorithms related to the above multi-valued linear-time properties are discussed. The verification of multi-valued regular safety properties and multi-valued $\\omega$-regular properties using lattice-valued automata are thoroughly studied. Since the law o...

  16. RF properties of periodic accelerating structures for linear colliders

    Wang, J.W.

    1989-07-01

    With the advent of the SLAC electron-positron linear collider (SLC) in the 100 GeV center-of-mass energy range, research and development work on even higher energy machines of this type has started in several laboratories in the United States, Europe, the Soviet Union and Japan. These linear colliders appear to provide the only promising approach to studying e + e - physics at center-of-mass energies approaching 1 TeV. This thesis concerns itself with the study of radio frequency properties of periodic accelerating structures for linear colliders and their interaction with bunched beams. The topics that have been investigated are: experimental measurements of the energy loss of single bunches to longitudinal modes in two types of structures, using an equivalent signal on a coaxial wire to simulate the beam; a method of canceling the energy spread created within a single bunch by longitudinal wakefields, through appropriate shaping of the longitudinal charge distribution of the bunch; derivation of the complete transient beam-loading equation for a train of bunches passing through a constant-gradient accelerator section, with application to the calculation and minimization of multi-bunch energy spread; detailed study of field emission and radio frequency breakdown in disk-loaded structures at S-, C- and X-band frequencies under extremely high-gradient conditions, with special attention to thermal effects, radiation, sparking, emission of gases, surface damage through explosive emission and its possible control through RF-gas processing. 53 refs., 49 figs., 9 tabs

  17. Magnetodynamic non-linearity of electric properties of uncompensated metals

    Sobol', V.R.; Mazurenko, O.N.

    2001-01-01

    Magnetodynamic non-linearity of electric properties of normal metals is investigated both experimentally and analytically provided that the drift of charge carriers of high density in crossed electric and magnetic fields results in generation of a self current field. The measurements were made on high purity polycrystalline aluminium cylindrical conductors under the action of the magnetic field, coaxial the sample axis, on the radial current. The electric potential and its nonlinear correction are determined in a wide range of energy dissipation values up to the levels corresponding to the crisis of liquid helium boiling. In the approximation of contribution additivity to the resistive effect of both the external and self magnetic field agreement between the experimental data and the results calculated using the macroscopic field equations is attained. The problems of magnetic energy concentration for cylindrical conductors is discussed in the approximation of long and short solenoids

  18. Decay properties of linear thermoelastic plates: Cattaneo versus Fourier law

    Said-Houari, Belkacem

    2013-02-01

    In this article, we investigate the decay properties of the linear thermoelastic plate equations in the whole space for both Fourier and Cattaneo\\'s laws of heat conduction. We point out that while the paradox of infinite propagation speed inherent in Fourier\\'s law is removed by changing to the Cattaneo law, the latter always leads to a loss of regularity of the solution. The main tool used to prove our results is the energy method in the Fourier space together with some integral estimates. We prove the decay estimates for initial data U0 ∈ Hs(ℝ) ∩ L1(ℝ). In addition, by restricting the initial data to U0 ∈ Hs(ℝ) ∩ L1,γ(ℝ) and γ ∈ [0, 1], we can derive faster decay estimates with the decay rate improvement by a factor of t-γ/2. © 2013 Copyright Taylor and Francis Group, LLC.

  19. High-frequency imaging of elastic contrast and contact area with implications for naturally observed changes in fault properties

    Nagata, Kohei; Kilgore, Brian D.; Beeler, Nicholas M.; Nakatani, Masao

    2014-01-01

    During localized slip of a laboratory fault we simultaneously measure the contact area and the dynamic fault normal elastic stiffness. One objective is to determine conditions where stiffness may be used to infer changes in area of contact during sliding on nontransparent fault surfaces. Slip speeds between 0.01 and 10 µm/s and normal stresses between 1 and 2.5 MPa were imposed during velocity step, normal stress step, and slide-hold-slide tests. Stiffness and contact area have a linear interdependence during rate stepping tests and during the hold portion of slide-hold-slide tests. So long as linearity holds, measured fault stiffness can be used on nontransparent materials to infer changes in contact area. However, there are conditions where relations between contact area and stiffness are nonlinear and nonunique. A second objective is to make comparisons between the laboratory- and field-measured changes in fault properties. Time-dependent changes in fault zone normal stiffness made in stress relaxation tests imply postseismic wave speed changes on the order of 0.3% to 0.8% per year in the two or more years following an earthquake; these are smaller than postseismic increases seen within natural damage zones. Based on scaling of the experimental observations, natural postseismic fault normal contraction could be accommodated within a few decimeter wide fault core. Changes in the stiffness of laboratory shear zones exceed 10% per decade and might be detectable in the field postseismically.

  20. Structural and Interfacial Properties of Hyperbranched-Linear Polymer Surfactant.

    Qiang, Taotao; Bu, Qiaoqiao; Huang, Zhaofeng; Wang, Xuechuan

    2014-01-01

    With oleic acid grafting modification, a series of hyperbranched-linear polymer surfactants (HLPS) were prepared by hydroxyl-terminated hyperbranched polymer (HBP), which was gained through a step synthesis method using trimethylolpropane and AB 2 monomer. The AB 2 monomers were obtained through the Michael addition reaction of methyl acrylate and diethanol amine. The structures of HLPS were characterised by Fourier transform infrared spectrophotometer and nuclear magnetic resonance (NMR), which indicated that HBP was successfully modified by oleic acid. Furthermore, the properties of surface tension and critical micelle concentration of HLPS solution showed that HLPS can significantly reduce the surface tension of water. The morphology of the HLPS solution was characterised by dynamic light scattering, which revealed that HLPS exhibited a nonmonotonic appearance in particle size at different scattering angles owing to the different replaced linear portions. The relationships of the surface pressure to monolayer area and time were measured using the Langmuir-Blodgett instrument, which showed that the surface tension of monolayer molecules increased with the increasing of hydrophobic groups. In addition, the interface conditions of different replaced HLPS solutions were simulated.

  1. First principles study of structural, elastic, electronic and magnetic properties of Mn-doped AlY (Y=N, P, As) compounds

    Sajjad, M. [School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Alay-e-Abbas, S.M. [Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan); Department of Physics, Government College University, Faisalabad, Allama Iqbal Road, Faisalabad 38000 (Pakistan); Zhang, H.X. [School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Beijing Key Laboratory of Work Safety Intelligent Monitoring (Beijing University of Posts and Telecommunications), Beijing 100876 (China); Noor, N.A. [Centre for High Energy Physics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore (Pakistan); Saeed, Y. [Department of Physics, Government College University, Faisalabad, Allama Iqbal Road, Faisalabad 38000 (Pakistan); Shakir, Imran [Deanship of scientific research, College of Engineering, King Saud University, P. O. BOX 800, Riyadh 11421 (Saudi Arabia); Shaukat, A., E-mail: schaukat@gmail.com [Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan)

    2015-09-15

    We investigate zinc-blende phase Al{sub 0.75}Mn{sub 0.25}Y (Y=N, P, As) compounds using full-potential linear-augmented-plane wave plus local-orbital method. For computing structural and elastic properties the Generalized Gradient Approximation (GGA) has been used; whereas the electronic and magnetic properties are examined at the optimized GGA lattice parameters by employing modified Becke and Johnson local density approximation. All these compounds are found to be stable in ferromagnetic ordering in the zinc-blende structure which is supported by the computed elastic constants. The nature of electronic band structure are calculated and the nature of band gaps in the doped system is analyzed. The results are examined to identify exchange mechanism which is the main source of introducing ferromagnetism in the compounds under investigation. Spin charge density contour plots in the (1 1 0) plane and the evaluation of s–p and p–d exchange constants (N{sub 0}α and N{sub 0}β) are evaluated for understanding bonding and exchange splitting process, respectively. - Highlights: • Spin-polarized DFT investigation Mn-doped AlN, AlP and AlAs is reported. • Structrual and elastic properites are computed for evaluating stability. • mBJLDA used for appropriate treatment of d states of Mn for electronic properties. • Half metallicity, ferromagnetic stability and exchange constants are evaluated.

  2. Elastic properties of Cs{sub 2}HgBr{sub 4} and Cs{sub 2}CdBr{sub 4} crystals

    Kityk, A.V.; Zadorozhna, A.V.; Shchur, Y.I.; Martynyuk-Lototska, Y.I.; Burak, Y.; Vlokh, O.G. [Institute of Physical Optics, Lvov (Ukraine)

    1998-12-31

    Using ultrasonic velocity measurements, all components of the elastic constant matrix C{sub ij} , elastic compliances matrix S{sub ij}, and linear compressibility constants matrix K{sub ij} of orthorhombic Cs{sub 2}HgBr{sub 4} and Cs{sub 2}CdBr{sub 4} crystals have been determined over a wide temperature range, including the region of the phase transition from the normal to the incommensurate phase. Results obtained are considered within the framework of the phenomenological theory. Preliminary analysis of the acoustical properties at room temperature clearly indicates that both crystals are relatively important materials for acousto-optical applications. Copyright (1998) CSIRO Australia 16 refs., 1 tab. 8 figs. The URL for the electronic version of this article is http://www.publish.csiro.au/journals/ajp/electronic.html

  3. A first principles study of the electronic structure, elastic and thermal properties of UB{sub 2}

    Jossou, Ericmoore, E-mail: ericmoore.jossou@usask.ca [Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9, Saskatchewan (Canada); Malakkal, Linu [Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9, Saskatchewan (Canada); Szpunar, Barbara; Oladimeji, Dotun [Department of Physics and Engineering Physics, College of Art and Science, University of Saskatchewan, 116 Science Place, Saskatoon, S7N 5E2, Saskatchewan (Canada); Szpunar, Jerzy A. [Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9, Saskatchewan (Canada)

    2017-07-15

    Uranium diboride (UB{sub 2}) has been widely deployed for refractory use and is a proposed material for Accident Tolerant Fuel (ATF) due to its high thermal conductivity. However, the applicability of UB{sub 2} towards high temperature usage in a nuclear reactor requires the need to investigate the thermomechanical properties, and recent studies have failed in highlighting applicable properties. In this work, we present an in-depth theoretical outlook of the structural and thermophysical properties of UB{sub 2}, including but not limited to elastic, electronic and thermal transport properties. These calculations were performed within the framework of Density Functional Theory (DFT) + U approach, using Quantum ESPRESSO (QE) code considering the addition of Coulomb correlations on the uranium atom. The phonon spectra and elastic constant analysis show the dynamic and mechanical stability of UB{sub 2} structure respectively. The electronic structure of UB{sub 2} was investigated using full potential linear augmented plane waves plus local orbitals method (FP-LAPW+lo) as implemented in WIEN2k code. The absence of a band gap in the total and partial density of states confirms the metallic nature while the valence electron density plot reveals the presence of covalent bond between adjacent B-B atoms. We predicted the lattice thermal conductivity (k{sub L}) by solving Boltzmann Transport Equation (BTE) using ShengBTE. The second order harmonic and third-order anharmonic interatomic force constants required as input to ShengBTE was calculated using the Density-functional perturbation theory (DFPT). However, we predicted the electronic thermal conductivity (k{sub el}) using Wiedemann-Franz law as implemented in Boltztrap code. We also show that the sound velocity along ‘a’ and ‘c’ axes exhibit high anisotropy, which accounts for the anisotropic thermal conductivity of UB{sub 2}. - Highlights: •Prediction of electronic structure and thermophysical properties of UB

  4. First-principles study of elastic and thermodynamic properties of orthorhombic OsB4 under high pressure

    Yan, Hai-Yan; Zhang, Mei-Guang; Huang, Duo-Hui; Wei, Qun

    2013-04-01

    The first-principles study on the elastic properties, elastic anisotropy and thermodynamic properties of the orthorhombic OsB4 is reported using density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation. The calculated equilibrium parameters are in good agreement with the available theoretical data. A complete elastic tensor and crystal anisotropies of the ultra-incompressible OsB4 are determined in the pressure range of 0-50 GPa. By the elastic stability criteria, it is predicted that the orthorhombic OsB4 is stable below 50 GPa. By using the quasi-harmonic Debye model, the heat capacity, the coefficient of thermal expansion, and the Grüneisen parameter of OsB4 are also successfully obtained in the present work.

  5. Acoustic and elastic properties of Sn{sub 2}P{sub 2}S{sub 6} crystals

    Mys, O; Martynyuk-Lototska, I; Vlokh, R [Institute of Physical Optics of the Ministry of Education and Science of Ukraine, 23 Dragomanov Street, 79005 Lviv (Ukraine); Grabar, A [Istitute for Solid State Physics and Chemistry, Uzhgorod National University, 54 Voloshyn Street, 88000 Uzhgorod (Ukraine)], E-mail: vlokh@ifo.lviv.ua

    2009-07-01

    We present the results concerned with acoustic and elastic properties of Sn{sub 2}P{sub 2}S{sub 6} crystals. The complete matrices of elastic stiffness and compliance coefficients are determined in both the crystallographic coordinate system and the system associated with eigenvectors of the elastic stiffness tensor. The acoustic slowness surfaces are constructed and the propagation and polarization directions of the slowest acoustic waves promising for acousto-optic interactions are determined on this basis. The acoustic obliquity angle and the deviation of polarization of the acoustic waves from purely transverse or longitudinal states are quantitatively analysed.

  6. Elastic properties and molar volume of rare-earth aluminosilicae glasses

    Tanabe, S.; Hirao, K.; Soga, N.

    1992-01-01

    This paper reports on the elastic properties, molar volume, and glass transition temperature (T g ) of rare-earth-containing aluminosilicate glasses that were investigated in the compositions of SiO 2 --LnAlO 3 and SiO 2 --Ln 3/4 Al 5/4 O 3 , where Ln is Y, La, Nd, Eu, or Yb. The molar volume decreased with decreased ionic size of the Ln 3+ ion, and T g and elastic moduli increased in the same order. The Yb-containing glasses showed the highest Young's modulus among all the oxide glasses, even higher than the highest value ever known fro glass containing Y 2 O 3 , as expected from the smaller ionic radius of Yb 3+ than that of Y 3+ . The bulk modulus was found to be almost proportional to the inverse four-thirds power of the molar volume of glasses in each composition, indicating that Ln 3+ ions can substitute for each other without changing the glass structure except for the size of the local structure around themselves. From the comparison of these properties, the structural role of rate-earth ions in these glasses is discussed

  7. Structural, electronic and elastic properties of potassium hexatitanate crystal from first-principles calculations

    Hua Manyu; Li Yimin; Long Chunguang; Li Xia

    2012-01-01

    The structural, electronic and elastic properties of potassium hexatitanate (K 2 Ti 6 O 13 ) whisker were investigated using first-principles calculations. The calculated cell parameters of K 2 Ti 6 O 13 including lattice constants and atomic positions are in good agreement with the experimental data. The obtained formation enthalpy (-61.1535 eV/atom) and cohesive energy (-137.4502 eV/atom) are both negative, showing its high structural stability. Further analysis of the electronic structures shows that the potassium hexatitanate is a wide-band semiconductor. Within K 2 Ti 6 O 13 crystal, the Ti---O bonding interactions are stronger than that of K---O, while no apparent K---Ti bonding interactions can be observed. The structural stability of K 2 Ti 6 O 13 was closely associated with the covalent bond interactions between Ti (d) and O (p) orbits. Further calculations on elastic properties show that K 2 Ti 6 O 13 is a high stiffness and brittle material with small anisotropy in shear and compression.

  8. The stabilities, electronic structures and elastic properties of Rb—As systems

    Ozisik Havva Bogaz; Colakoglu Kemal; Deligoz Engin; Ozisik Haci

    2012-01-01

    The structural, electronic and elastic properties of Rb—As systems (RbAs in NaP, LiAs and AuCu structures, RbAs 2 in the MgCu 2 structure, Rb 3 As in Na 3 As, Cu 3 P and Li 3 Bi structures, and Rb 5 As 4 in the A 5 B 4 structure) are investigated with the generalized gradient approximation in the frame of density functional theory. The lattice parameters, cohesive energies, formation energies, bulk moduli and the first derivatives of the bulk moduli (to fit Murnaghan's equation of state) of the considered structures are calculated and reasonable agreement is obtained. In addition, the phase transition pressures are also predicted. The electronic band structures, the partial densities of states corresponding to the band structures and the charge density distributions are presented and analysed. The second-order elastic constants based on the stress-strain method and other related quantities such as Young's modulus, the shear modulus, Poisson's ratio, sound velocities, the Debye temperature and shear anisotropy factors are also estimated. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite

    Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.

    2016-02-01

    This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.

  10. Electronic, elastic and optical properties of ZnGeP{sub 2} semiconductor under hydrostatic pressures

    Tripathy, S.K.; Kumar, V., E-mail: vkumar52@hotmail.com

    2014-03-15

    The electronic, elastic and optical properties of zinc germanium phosphide, ZnGeP{sub 2}, semiconductor have been studied using local density approximation (LDA) method within the density functional theory (DFT). The lattice constants (a and c), band structure, density of states (DOS), bulk modulus (B) and pressure derivative of bulk modulus (B′) have been discussed. The value of pseudo-direct band gap (E{sub g}) at Γ point has been calculated. The pressure dependences of elastic stiffness coefficients (C{sub ij}), Zener anisotropy factor (A), Poisson's ratio (ν), Young modulus (Y) and shear modulus (G) have also been calculated. The ratio of B/G shows that that ZnGeP{sub 2} is ductile in nature. The optical properties have been discussed in detail under three different pressures in the energy range 0–22 eV. The calculated values of all parameters are compared with the available experimental values and the values reported by different workers. Reasonably good agreement has been obtained between them.

  11. Response types and general stability conditions of linear aero-elastic system with two degrees-of-freedom

    Náprstek, Jiří; Pospíšil, Stanislav

    2012-01-01

    Roč. 111, č. 1 (2012), s. 1-13 ISSN 0167-6105 R&D Projects: GA ČR(CZ) GA103/09/0094; GA AV ČR(CZ) IAA200710902 Institutional support: RVO:68378297 Keywords : aero-elastic system * self-excited vibration * instability * aero-elastic derivatives Subject RIV: JN - Civil Engineering Impact factor: 1.342, year: 2012

  12. Decay property of regularity-loss type for solutions in elastic solids with voids

    Djouamai, Leila; Said-Houari, Belkacem

    2014-01-01

    In this paper, we consider the Cauchy problem for a system of elastic solids with voids. First, we show that a linear porous dissipation leads to decay rates of regularity-loss type of the solution. We show some decay estimates for initial data in Hs(R)∩L1(R). Furthermore, we prove that by restricting the initial data to be in Hs(R)∩L1,γ(R) and γ. ∈. [0, 1], we can derive faster decay estimates of the solution. Second, we show that by adding a viscoelastic damping term, then we gain the regularity of the solution and obtain the optimal decay rate. © 2013 Elsevier Ltd.

  13. Modeling amorphous Si3B3N7: Structure and elastic properties

    Hannemann, A.; Schoen, J.C.; Jansen, M.; Putz, H.; Lengauer, T.

    2004-01-01

    We investigate the structure and elastic properties of the amorphous high-temperature ceramic a-Si 3 B 3 N 7 . Several different structural models are generated and their properties such as the radial and angular distribution functions, the degree of local order, the density, the bulk modulus and the phonon spectrum, are calculated and compared with the experiment. The best structural agreement between model and experimental observations is found for models exhibiting a certain degree of local ( 3 B 3 N 7 has not been synthesized by cooling from the melt but via the polymerization and subsequent pyrolysis of molecular precursors. Furthermore, we suggest that, due to the synthesis process, stable nanoscale cavities (diameter 3 )

  14. First-principles investigations on structural, elastic and mechanical properties of BNxAs1‑x ternary alloys

    Zhang, Junqin; Ma, Huihui; Zhao, Bin; Wei, Qun; Yang, Yintang

    2018-05-01

    A systematic investigation of the structural optimization, elastic and mechanical properties of the BNxAs1‑x ternary alloys are reported in the present work using the density-functional theory with the generalized gradient approximation (GGA) of the exchange-correlation functional. Some of the constants which are used to analyze the properties including elastic constants and modulus, and some parameters describing the elastic anisotropy and Debye temperature are also calculated. Our calculations were performed to evaluate the equilibrium lattice constant and band structure compared with the available theoretical works. On the one hand, our results might be expected to provide a theoretical basis for future study of BNxAs1‑x alloys towards elastic or mechanical properties. On the other hand, we draw a conclusion that BNxAs1‑x alloys show direct bandgap when x equals 0.25, 0.5 or 0.75. We obtained the elastic modulus, Poisson’s ratio and universal anisotropic index which are used to demonstrate the elastic anisotropy of these alloys which is proved according to our calculations. Also, we calculated the Debye temperature to illustrate covalent interactions and obtained the lower limit of the thermal conductivity for further research.

  15. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries.

    Huang, Angela H; Balestrini, Jenna L; Udelsman, Brooks V; Zhou, Kevin C; Zhao, Liping; Ferruzzi, Jacopo; Starcher, Barry C; Levene, Michael J; Humphrey, Jay D; Niklason, Laura E

    2016-06-01

    Tissue-engineered blood vessels (TEVs) are typically produced using the pulsatile, uniaxial circumferential stretch to mechanically condition and strengthen the arterial grafts. Despite improvements in the mechanical integrity of TEVs after uniaxial conditioning, these tissues fail to achieve critical properties of native arteries such as matrix content, collagen fiber orientation, and mechanical strength. As a result, uniaxially loaded TEVs can result in mechanical failure, thrombus, or stenosis on implantation. In planar tissue equivalents such as artificial skin, biaxial loading has been shown to improve matrix production and mechanical properties. To date however, multiaxial loading has not been examined as a means to improve mechanical and biochemical properties of TEVs during culture. Therefore, we developed a novel bioreactor that utilizes both circumferential and axial stretch that more closely simulates loading conditions in native arteries, and we examined the suture strength, matrix production, fiber orientation, and cell proliferation. After 3 months of biaxial loading, TEVs developed a formation of mature elastic fibers that consisted of elastin cores and microfibril sheaths. Furthermore, the distinctive features of collagen undulation and crimp in the biaxial TEVs were absent in both uniaxial and static TEVs. Relative to the uniaxially loaded TEVs, tissues that underwent biaxial loading remodeled and realigned collagen fibers toward a more physiologic, native-like organization. The biaxial TEVs also showed increased mechanical strength (suture retention load of 303 ± 14.53 g, with a wall thickness of 0.76 ± 0.028 mm) and increased compliance. The increase in compliance was due to combinatorial effects of mature elastic fibers, undulated collagen fibers, and collagen matrix orientation. In conclusion, biaxial stretching is a potential means to regenerate TEVs with improved matrix production, collagen organization, and mechanical

  16. Characterization of the elastic and viscoelastic properties of dentin by a nanoindentation creep test.

    Chuang, Shu-Fen; Lin, Shih-Yun; Wei, Pal-Jen; Han, Chang-Fu; Lin, Jen-Fin; Chang, Hsien-Chang

    2015-07-16

    Dentin is the main supporting structure of teeth, but its mechanical properties may be adversely affected by pathological demineralization. The purposes of this study were to develop a quantitative approach to characterize the viscoelastic properties of dentin after de- and re-mineralization, and to examine the elastic properties using a nanoindentation creep test. Dentin specimens were prepared to receive both micro- and nano-indentation tests at wet and dry states. These tests were repeatedly performed after demineralization (1% citric acid for 3 days) and remineralization (artificial saliva immersion for 28 days). The nanoindentation test was executed in a creep mode, and the resulting displacement-time responses were disintegrated into primary (transient) and secondary (viscous) creep. The structural changes and mineral densities of dentin were also examined under SEM and microCT, respectively. The results showed that demineralization removed superficial minerals of dentin to the depth of 400 μm, and affected its micro- and nano-hardness, especially in the hydrate state. Remineralization only repaired the minerals at the surface layer, and partially recovered the nanohardness. Both the primary the secondary creep increased in the demineralized dentin, while the hydration further enhanced creep deformation of untreated and remineralized dentin. Remineralization reduced the primary creep of dentin, but did not effectively increase the viscosity. In conclusion, water plasticization increases the transient and viscous creep strains of demineralized dentin and reduces load sustainability. The nanoindentation creep test is capable of analyzing the elastic and viscoelastic properties of dentin, and reveals crucial information about creep responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Calculating Effective Elastic Properties of Berea Sandstone Using Segmentation-less Method without Targets

    Ikeda, K.; Goldfarb, E. J.; Tisato, N.

    2017-12-01

    Digital rock physics (DRP) allows performing common laboratory experiments on numerical models to estimate, for example, rock hydraulic permeability. The standard procedure of DRP involves turning a rock sample into a numerical array using X-ray micro computed tomography (micro-CT). Each element of the array bears a value proportional to the X-ray attenuation of the rock at the element (voxel). However, the traditional DRP methodology, which includes segmentation, over-predicts rock moduli by significant amounts (e.g., 100%). Recently, a new methodology - the segmentation-less approach - has been proposed leading to more accurate DRP estimate of elastic moduli. This new method is based on homogenization theory. Typically, segmentation-less approach requires calibration points from known density objects, known as targets. Not all micro-CT datasets have these reference points. Here, we describe how we perform segmentation- and target-less DRP to estimate elastic properties of rocks (i.e., elastic moduli), which are crucial parameters to perform subsurface modeling. We calculate the elastic properties of a Berea sandstone sample that was scanned at a resolution of 40 microns per voxel. We transformed the CT images into density matrices using polynomial fitting curve with four calibration points: the whole rock, the center of quartz grains, the center of iron oxide grains, and the center of air-filled volumes. The first calibration point is obtained by assigning the density of the whole rock to the average of all CT-numbers in the dataset. Then, we locate the center of each phase by finding local extrema point in the dataset. The average CT-numbers of these center points are assigned the density equal to either pristine minerals (quartz and iron oxide) or air. Next, density matrices are transformed to porosity and moduli matrices by means of an effective medium theory. Finally, effective static bulk and shear modulus are numerically calculated by using a Matlab code

  18. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY OF DOUBLE SHELL DYNAMIC RESPONSE TO THE WASTE ELASTIC PROPERTIES

    MACKEY TC; ABATT FG; JOHNSON KI

    2009-01-16

    The purpose of this study was to determine the sensitivity of the dynamic response of the Hanford double-shell tanks (DSTs) to the assumptions regarding the constitutive properties of the contained waste. In all cases, the waste was modeled as a uniform linearly elastic material. The focus of the study was on the changes in the modal response of the tank and waste system as the extensional modulus (elastic modulus in tension and compression) and shear modulus of the waste were varied through six orders of magnitude. Time-history analyses were also performed for selected cases and peak horizontal reaction forces and axial stresses at the bottom of the primary tank were evaluated. Because the analysis focused on the differences in the responses between solid-filled and liquid-filled tanks, it is a comparative analysis rather than an analysis of record for a specific tank or set of tanks. The shear modulus was varied between 4 x 10{sup 3} Pa and 4.135 x 10{sup 9} Pa. The lowest value of shear modulus was sufficient to simulate the modal response of a liquid-containing tank, while the higher values are several orders of magnitude greater than the upper limit of expected properties for tank contents. The range of elastic properties used was sufficient to show liquid-like response at the lower values, followed by a transition range of semi-solid-like response to a clearly identifiable solid-like response. It was assumed that the mechanical properties of the tank contents were spatially uniform. Because sludge-like materials are expected only to exist in the lower part of the tanks, this assumption leads to an exaggeration of the effects of sludge-like materials in the tanks. The results of the study show that up to a waste shear modulus of at least 40,000 Pa, the modal properties of the tank and waste system are very nearly the same as for the equivalent liquid-containing tank. This suggests that the differences in critical tank responses between liquid-containing tanks

  19. Elastic properties of Na2 O–ZnO–ZnF2 –B2 O3 oxyfluoride glasses

    Administrator

    Elastic properties of borate glasses through ultrasound velocity measurements is one of the important techniques to elucidate the structure of glasses, since their properties have direct bearing on the bonding and interatomic forces. Sound velocity measurement at ultrasonic fre- quencies is used to determine the mechanical ...

  20. Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids

    Toher, Cormac; Oses, Corey; Plata, Jose J.; Hicks, David; Rose, Frisco; Levy, Ohad; de Jong, Maarten; Asta, Mark; Fornari, Marco; Buongiorno Nardelli, Marco; Curtarolo, Stefano

    2017-06-01

    Thorough characterization of the thermomechanical properties of materials requires difficult and time-consuming experiments. This severely limits the availability of data and is one of the main obstacles for the development of effective accelerated materials design strategies. The rapid screening of new potential materials requires highly integrated, sophisticated, and robust computational approaches. We tackled the challenge by developing an automated, integrated workflow with robust error-correction within the AFLOW framework which combines the newly developed "Automatic Elasticity Library" with the previously implemented GIBBS method. The first extracts the mechanical properties from automatic self-consistent stress-strain calculations, while the latter employs those mechanical properties to evaluate the thermodynamics within the Debye model. This new thermoelastic workflow is benchmarked against a set of 74 experimentally characterized systems to pinpoint a robust computational methodology for the evaluation of bulk and shear moduli, Poisson ratios, Debye temperatures, Grüneisen parameters, and thermal conductivities of a wide variety of materials. The effect of different choices of equations of state and exchange-correlation functionals is examined and the optimum combination of properties for the Leibfried-Schlömann prediction of thermal conductivity is identified, leading to improved agreement with experimental results than the GIBBS-only approach. The framework has been applied to the AFLOW.org data repositories to compute the thermoelastic properties of over 3500 unique materials. The results are now available online by using an expanded version of the REST-API described in the Appendix.

  1. Carotid intima-media thickness and elastic properties of aortas in normotensive children of hypertensive parents.

    Yildirim, Ali; Kosger, Pelin; Ozdemir, Gokmen; Sahin, Fezan Mutlu; Ucar, Birsen; Kilic, Zubeyir

    2015-09-01

    A significant correlation between hypertension history and high blood pressure has been observed with regard to age, race and gender. Investigating carotid intima-media thickness and aortic stiffness prior to the development of hypertension in children of hypertensive parents enabled us to evaluate these patients for subclinical atherosclerosis. We compared carotid intima-media thickness, aortic strain, distensibility, stiffness indices and elastic modulus in 67 normotensive children whose parents had a diagnosis of essential hypertension and 39 normotensive children with no parental history of hypertension. Although there were no significant differences between the two groups in terms of systolic blood pressure, diastolic blood pressure, average blood pressure and pulse pressure (P>0.05), systolic blood pressures were higher among patients 15 years and older in the study group. No significant differences were noted between the control and study groups regarding interventricular septal thickness, left-ventricular posterior wall thickness, left-ventricular systolic and diastolic diameter and aortic annulus diameter (P>0.05). The left atrium diameter was larger in the study group compared with that in the control group, mainly because of the values of the 15-year-old and older children (P=0.01). The mean, maximum and minimum values of carotid intima-media thickness were significantly different in the study group compared with the control group among all age groups (Pchildren of hypertensive parents compared with the control group (P=0.014, P=0.001, respectively). Although there were no differences between the study and control groups regarding aortic strain, aortic distensibility, elastic modulus and stiffness indices (P>0.05), aortic distensibility was lower, and aortic stiffness indices were higher among children 15 years and older in the study group. An increase in the carotid intima-media thickness in all age groups and a decrease in aortic elastic properties in

  2. Influence of loading and heating processes on elastic and geomechanical properties of eclogites and granulites

    Hem Bahadur Motra

    2018-02-01

    Full Text Available Increased knowledge of the elastic and geomechnical properties of rocks is important for numerous engineering and geoscience applications (e.g. petroleum geoscience, underground waste repositories, geothermal energy, earthquake studies, and hydrocarbon exploration. To assess the effect of pressure and temperature on seismic velocities and their anisotropy, laboratory experiments were conducted on metamorphic rocks. P- (Vp and S-wave (Vs velocities were determined on cubic samples of granulites and eclogites with an edge length of 43 mm in a triaxial multianvil apparatus using the ultrasonic pulse emission technique in dependence of changes in pressure and temperature. At successive isotropic pressure states up to 600 MPa and temperatures up to 600 °C, measurements were performed related to the sample coordinates given by the three principal fabric directions (x, y, z representing the foliation (xy-plane, the normal to the foliation (z-direction, and the lineation direction (x-direction. Progressive volumetric strain was logged by the discrete piston displacements. Cumulative errors in Vp and Vs are estimated to be <1%. Microcrack closure significantly contributes to the increase in seismic velocities and decrease in anisotropies for pressures up to 200–250 MPa. Characteristic P-wave anisotropies of about 10% are obtained for eclogite and 3–4% in a strongly retrogressed eclogite as well as granulites. The wave velocities were used to calculate the geomechanical properties (e.g. density, Poisson's ratio, volumetric strain, and elastic moduli at different pressure and temperature conditions. These results contribute to the reliable estimate of geomechanical properties of rocks.

  3. Effect of Water on Elastic and Creep Properties of Self-Standing Clay Films.

    Carrier, Benoit; Vandamme, Matthieu; Pellenq, Roland J-M; Bornert, Michel; Ferrage, Eric; Hubert, Fabien; Van Damme, Henri

    2016-02-09

    We characterized experimentally the elastic and creep properties of thin self-standing clay films, and how their mechanical properties evolved with relative humidity and water content. The films were made of clay montmorillonite SWy-2, obtained by evaporation of a clay suspension. Three types of films were manufactured, which differed by their interlayer cation: sodium, calcium, or a mixture of sodium with calcium. The orientational order of the films was characterized by X-ray diffractometry. The films were mechanically solicited in tension, the resulting strains being measured by digital image correlation. We measured the Young's modulus and the creep over a variety of relative humidities, on a full cycle of adsorption-desorption for what concerns the Young's modulus. Increasing relative humidity made the films less stiff and made them creep more. Both the elastic and creep properties depended significantly on the interlayer cation. For the Young's modulus, this dependence must originate from a scale greater than the scale of the clay layer. Also, hysteresis disappeared when plotting the Young's modulus versus water content instead of relative humidity. Independent of interlayer cation and of relative humidity greater than 60%, after a transient period, the creep of the films was always a logarithmic function of time. The experimental data gathered on these mesoscale systems can be of value for modelers who aim at predicting the mechanical behavior of clay-based materials (e.g., shales) at the engineering macroscopic scale from the one at the atomistic scale, for them to validate the first steps of their upscaling scheme. They provide also valuable reference data for bioinspired clay-based hybrid materials.

  4. Estimating the price elasticity of expenditure for prescription drugs in the presence of non-linear price schedules: an illustration from Quebec, Canada.

    Contoyannis, Paul; Hurley, Jeremiah; Grootendorst, Paul; Jeon, Sung-Hee; Tamblyn, Robyn

    2005-09-01

    The price elasticity of demand for prescription drugs is a crucial parameter of interest in designing pharmaceutical benefit plans. Estimating the elasticity using micro-data, however, is challenging because insurance coverage that includes deductibles, co-insurance provisions and maximum expenditure limits create a non-linear price schedule, making price endogenous (a function of drug consumption). In this paper we exploit an exogenous change in cost-sharing within the Quebec (Canada) public Pharmacare program to estimate the price elasticity of expenditure for drugs using IV methods. This approach corrects for the endogeneity of price and incorporates the concept of a 'rational' consumer who factors into consumption decisions the price they expect to face at the margin given their expected needs. The IV method is adapted from an approach developed in the public finance literature used to estimate income responses to changes in tax schedules. The instrument is based on the price an individual would face under the new cost-sharing policy if their consumption remained at the pre-policy level. Our preferred specification leads to expenditure elasticities that are in the low range of previous estimates (between -0.12 and -0.16). Naïve OLS estimates are between 1 and 4 times these magnitudes. (c) 2005 John Wiley & Sons, Ltd.

  5. Directional anisotropy, finite size effect and elastic properties of hexagonal boron nitride

    Thomas, Siby; Ajith, K M; Valsakumar, M C

    2016-01-01

    Classical molecular dynamics simulations have been performed to analyze the elastic and mechanical properties of two-dimensional (2D) hexagonal boron nitride (h-BN) using a Tersoff-type interatomic empirical potential. We present a systematic study of h-BN for various system sizes. Young’s modulus and Poisson’s ratio are found to be anisotropic for finite sheets whereas they are isotropic for the infinite sheet. Both of them increase with system size in accordance with a power law. It is concluded from the computed values of elastic constants that h-BN sheets, finite or infinite, satisfy Born’s criterion for mechanical stability. Due to the the strong in-plane sp 2 bonds and the small mass of boron and nitrogen atoms, h-BN possesses high longitudinal and shear velocities. The variation of bending rigidity with system size is calculated using the Foppl–von Karman approach by coupling the in-plane bending and out-of-plane stretching modes of the 2D h-BN. (paper)

  6. Elastic Properties and Structural Studies on Boro-Vanadate Glasses Containing Sulphate (SO42-) Ions

    Reddy, M. Sudhakar; Gowda, V. C. Veeranna; Reddy, C. Narayana

    2011-12-01

    Elastic properties of xLi2SO4-16 Li2O-(84-x) [0.7 B2O3-0.3 V2O5] where (5≤x≥30) glasses have been prepared by melt quenching method and structural investigations were carried out using ultrasonic pulse echo overlap technique at a frequency of 10 MHz and at 300 K. The molar volume increases and the density decreases with the increase of Li2SO4 concentration due to the incorporation of SO42- ions into the modified macromolecular network. The addition of Li2SO4 content leads to loose packing structure which is attributed to volume increasing effect and the reduction in the vibrations of borate and vanadate lattices. Increase in Li24SO results in decreasing cross link density which in turn decreases elastic moduli. The results are discussed in view of its network structure. The structural groups [VOO3/2]0 and [BO3/2]0 modify preferentially. This preference in modification is decided by the electronegativity (χ) of the structural groups.

  7. A first principle calculation of anisotropic elastic, mechanical and electronic properties of TiB

    Zhang, Junqin; Zhao, Bin; Ma, Huihui; Wei, Qun; Yang, Yintang

    2018-04-01

    The structural, mechanical and electronic properties of the NaCl-type structure TiB are theoretically calculated based on the first principles. The density of states of TiB shows obvious density peaks at -0.70eV. Furthermore, there exists a pseudogap at 0.71eV to the right of the Fermi level. The calculated structural and mechanical parameters (i.e., bulk modulus, shear modulus, Young's modulus, Poisson's ratio and universal elastic anisotropy index) were in good agreement both with the previously reported experimental values and theoretical results at zero pressure. The mechanical stability criterion proves that TiB at zero pressure is mechanistically stable and exhibits ductility. The universal anisotropic index and the 3D graphics of Young's modulus are also given in this paper, which indicates that TiB is anisotropy under zero pressure. Moreover, the effects of applied pressures on the structural, mechanical and anisotropic elastic of TiB were studied in the range from 0 to 100GPa. It was found that ductility and anisotropy of TiB were enhanced with the increase of pressure.

  8. Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals.

    Zhu, L-F; Friák, M; Lymperakis, L; Titrian, H; Aydin, U; Janus, A M; Fabritius, H-O; Ziegler, A; Nikolov, S; Hemzalová, P; Raabe, D; Neugebauer, J

    2013-04-01

    We employ ab initio calculations and investigate the single-crystalline elastic properties of (Ca,Mg)CO3 crystals covering the whole range of concentrations from pure calcite CaCO3 to pure magnesite MgCO3. Studying different distributions of Ca and Mg atoms within 30-atom supercells, our theoretical results show that the energetically most favorable configurations are characterized by elastic constants that nearly monotonously increase with the Mg content. Based on the first principles-derived single-crystalline elastic anisotropy, the integral elastic response of (Ca,Mg)CO3 polycrystals is determined employing a mean-field self-consistent homogenization method. As in case of single-crystalline elastic properties, the computed polycrystalline elastic parameters sensitively depend on the chemical composition and show a significant stiffening impact of Mg atoms on calcite crystals in agreement with the experimental findings. Our analysis also shows that it is not advantageous to use a higher-scale two-phase mix of stoichiometric calcite and magnesite instead of substituting Ca atoms by Mg ones on the atomic scale. Such two-phase composites are not significantly thermodynamically favorable and do not provide any strong additional stiffening effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression.

    Stokes, Ian A F; Laible, Jeffrey P; Gardner-Morse, Mack G; Costi, John J; Iatridis, James C

    2011-01-01

    Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force-time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity.

  10. First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    Yun-Jiang, Wang; Chong-Yu, Wang

    2009-01-01

    A model system consisting of Ni[001](100)/Ni 3 Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni 3 Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni 3 Al multilayer can be well predicted by the Voigt–Reuss–Hill rule of mixtures. (classical areas of phenomenology)

  11. Temperature effect on elastic properties of yttrium ferrite garnet Y3Fe5O12

    Burenkov, Yu.A.; Nikanorov, S.P.

    2002-01-01

    One studied temperature dependence of all independent elastic constants describing comprehensively elastic anisotropy of yttrium ferrite garnet within temperature wide range covering T c . One measured the Young modules for [100] and [110] crystallographic directions and the module of shift for [100] direction of specially pure single crystal of yttrium ferrite garnet within 20-600 deg C temperature range. One analyzed behavior of elastic modules and of elastic anisotropy factor near the critical temperature of magnetic phase transition [ru

  12. Thermostructural characterization and structural elastic property optimization of novel high luminosity LHC collimation materials at CERN

    Borg, M.; Bertarelli, A.; Carra, F.; Gradassi, P.; Guardia-Valenzuela, J.; Guinchard, M.; Izquierdo, G. Arnau; Mollicone, P.; Sacristan-de-Frutos, O.; Sammut, N.

    2018-03-01

    The CERN Large Hadron Collider is currently being upgraded to operate at a stored beam energy of 680 MJ through the High Luminosity upgrade. The LHC performance is dependent on the functionality of beam collimation systems, essential for safe beam cleaning and machine protection. A dedicated beam experiment at the CERN High Radiation to Materials facility is created under the HRMT-23 experimental campaign. This experiment investigates the behavior of three collimation jaws having novel composite absorbers made of copper diamond, molybdenum carbide graphite, and carbon fiber carbon, experiencing accidental scenarios involving the direct beam impact on the material. Material characterization is imperative for the design, execution, and analysis of such experiments. This paper presents new data and analysis of the thermostructural characteristics of some of the absorber materials commissioned within CERN facilities. In turn, characterized elastic properties are optimized through the development and implementation of a mixed numerical-experimental optimization technique.

  13. Elastic properties of a material composed of alternating layers of negative and positive Poisson's ratio

    Kocer, C.; McKenzie, D.R.; Bilek, M.M.

    2009-01-01

    The theory of elasticity predicts a variety of phenomena associated with solids that possess a negative Poisson's ratio. The fabrication of metamaterials with a 'designed' microstructure that exhibit a Poisson's ratio approaching the thermodynamic limits of 1/2 and -1 increases the likelihood of realising these phenomena for applications. In this work, we investigate the properties of a layered composite, with alternating layers of materials with negative and positive Poisson's ratio approaching the thermodynamic limits. Using the finite element method to simulate uniaxial loading and indentation of a free standing composite, we observed an increase in the resistance to mechanical deformation above the average value of the two materials. Even though the greatest increase in stiffness is gained as the thermodynamic limits are approached, a significant amount of added stiffness can be attained, provided that the Young's modulus of the negative Poisson's ratio material is not less than that of the positive Poisson's ratio material

  14. Calculated Changes in the Elastic Properties of MgCNi3 at the Superconducting Transition

    R. Abd-Shukor

    2013-01-01

    Full Text Available We calculated the elastic properties of MgCNi3 at the superconducting transition ( using various thermodynamic and acoustic data. From the calculations, a step discontinuity of 8 ppm in the bulk modulus, 7 ppm in the Young’s modulus, and 3 ppm in the longitudinal sound velocity ( is expected at . The step discontinuities at the transition temperature indicated the importance of lattice changes to the superconducting mechanism of MgCNi3. The Debye temperature was calculated to be 460 K. The electron-phonon coupling constants calculated in the weak and strong coupling limits of the BCS theory and the van Hove scenario showed that MgCNi3 is a moderately strong coupled superconductor.

  15. Thermostructural characterization and structural elastic property optimization of novel high luminosity LHC collimation materials at CERN

    M. Borg

    2018-03-01

    Full Text Available The CERN Large Hadron Collider is currently being upgraded to operate at a stored beam energy of 680 MJ through the High Luminosity upgrade. The LHC performance is dependent on the functionality of beam collimation systems, essential for safe beam cleaning and machine protection. A dedicated beam experiment at the CERN High Radiation to Materials facility is created under the HRMT-23 experimental campaign. This experiment investigates the behavior of three collimation jaws having novel composite absorbers made of copper diamond, molybdenum carbide graphite, and carbon fiber carbon, experiencing accidental scenarios involving the direct beam impact on the material. Material characterization is imperative for the design, execution, and analysis of such experiments. This paper presents new data and analysis of the thermostructural characteristics of some of the absorber materials commissioned within CERN facilities. In turn, characterized elastic properties are optimized through the development and implementation of a mixed numerical-experimental optimization technique.

  16. Removal properties of low-thermal-expansion materials with rotating-sphere elastic emission machining

    Masahiko Kanaoka et al

    2007-01-01

    Full Text Available Optical mirrors used in extreme ultraviolet lithography systems require a figure accuracy and a roughness of about 0.1 nm rms. In addition, mirror substrates must be low-thermal-expansion materials. Thus, in this study, we processed two low-thermal-expansion materials, ULE [K. Hrdina, B. Hanson, P. Fenn, R. Sabia, Proc. SPIE 4688 (2002 454.] (Corning Inc. and Zerodur [I. Mitra, M.J. Davis, J. Alkemper, Rolf Müller, H. Kohlmann, L. Aschke, E. Mörsen, S. Ritter, H. Hack, W. Pannhorst, Proc. SPIE 4688 (2002 462.] (SCHOTT AG, with elastic emission machining (EEM in order to evaluate the removal properties. Consequently, we successfully calculated the respective removal rates, because removal volumes were found to be proportional to process times in EEM. Moreover, we demonstrated that the surface roughness of Zerodur is reduced to 0.1 nm rms in the spatial wavelength range from 100 μm to 1 mm.

  17. Elasticity, electronic properties and hardness of MoC investigated by first principles calculations

    Liu, YangZhen; Jiang, YeHua; Feng, Jing; Zhou, Rong

    2013-01-01

    The crystal structure, cohesive energy, formation enthalpy, mechanical anisotropy, electronic properties and hardness of α−MoC, β−MoC and γ−MoC are investigated by the first-principles calculations. The elastic constants and the bulk moduli, shear moduli, Young's moduli are calculated. The Young's modulus values of α−MoC, β−MoC and γ−MoC are 395.6 GPa, 551.2 GPa and 399.5 GPa, respectively. The surface constructions of Young's moduli identify the mechanical anisotropy of molybdenum carbide, and the results show that anisotropy of α−MoC is stronger than others. The electronic structure indicates that the bonding behaviors of MoC are the combinations of covalent and metallic bonds. The hardness of β−MoC is obviously higher than those of α−MoC and γ−MoC

  18. Dynamic acousto-elastic testing of concrete with a coda-wave probe: comparison with standard linear and nonlinear ultrasonic techniques.

    Shokouhi, Parisa; Rivière, Jacques; Lake, Colton R; Le Bas, Pierre-Yves; Ulrich, T J

    2017-11-01

    The use of nonlinear acoustic techniques in solids consists in measuring wave distortion arising from compliant features such as cracks, soft intergrain bonds and dislocations. As such, they provide very powerful nondestructive tools to monitor the onset of damage within materials. In particular, a recent technique called dynamic acousto-elasticity testing (DAET) gives unprecedented details on the nonlinear elastic response of materials (classical and non-classical nonlinear features including hysteresis, transient elastic softening and slow relaxation). Here, we provide a comprehensive set of linear and nonlinear acoustic responses on two prismatic concrete specimens; one intact and one pre-compressed to about 70% of its ultimate strength. The two linear techniques used are Ultrasonic Pulse Velocity (UPV) and Resonance Ultrasound Spectroscopy (RUS), while the nonlinear ones include DAET (fast and slow dynamics) as well as Nonlinear Resonance Ultrasound Spectroscopy (NRUS). In addition, the DAET results correspond to a configuration where the (incoherent) coda portion of the ultrasonic record is used to probe the samples, as opposed to a (coherent) first arrival wave in standard DAET tests. We find that the two visually identical specimens are indistinguishable based on parameters measured by linear techniques (UPV and RUS). On the contrary, the extracted nonlinear parameters from NRUS and DAET are consistent and orders of magnitude greater for the damaged specimen than those for the intact one. This compiled set of linear and nonlinear ultrasonic testing data including the most advanced technique (DAET) provides a benchmark comparison for their use in the field of material characterization. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Structural, electronic, magnetic, elastic, and thermal properties of Co-based equiatomic quaternary Heusler alloys

    Paudel, Ramesh; Zhu, Jingchuan

    2018-05-01

    In this research work, we have predicted the physical properties of CoFeZrGe and CoFeZrSb for the first time by utilizing first principle calculations based on density functional theory. The exchange-correlation potentials are treated within the generalized-gradient approximation of Perdew-Burke and Ernzerhof (GGA-PBE). The investigated equilibrium lattice parameters of CoFeCrSi are in agreement with available theoretical data and for CoFeZrZ(Z = Ge,Sb) are 6.0013 and 6.2546 Å respectively. The calculated magnetic moments are 1.01μB /fu , 2μB /fu and 1μB /fu for CoFeZrZ(Z = Ge, Sb and Si) respectively, and agree with the Slater-Pauling rule, Mt =Zt - 24 . The CoFeZrGe, CoFeZrSb and CoFeZrSi composites showed half-metallic behaviour with 100 % spin polarization at equilibrium lattice parameters with band gap of 0.43, 0.70 and 0.59 eV for GGA and an improved band gap of 0.86, 1.01 and 1.08 for GGA + U respectively. Elastic properties are also discussed in this paper and it is found that all the materials are mechanically stable and ductile in nature. The CoFeZrSi alloy is found to be stiffer than CoFeZrZ(Z = Ge and Sb) alloys. The Debye temperatures are predicted by using calculated elastic constants. Moreover, the volume heat capacities (Cv) are investigated by utilizing the quasi-harmonic Debye model.

  20. Elastic properties of the aorta and factors affecting aortic stiffness in patients with

    Derya Tok

    2012-09-01

    Full Text Available Objectives: In this study, we evaluated aortic stiffnessand echocardiographic and laboratory factors affectingaortic stiffness in patients with metabolic syndrome(MetS.Materials and methods: Forty-six patients (25 male,mean age 47.3±6.5 years with the diagnosis of MetS accordingto the Adult Treatment Panel III Final Report criteriawere included. Forty-four age and gender matchedhealthy subjects (18 male, mean age 46.0±6.1 yearswere recruited as the control group. Aortic strain, distensibilityand stiffness index were calculated by M-modeechocardiography and diastolic parameters were measured.Results: Left ventricular mass index (LVMI, decelerationtime (DT, isovolumic relaxation time (IVRT wereincreased and mitral E/A ratio was decreased in patientswith MetS compared to controls. In the MetS patients,aortic distensibility was significantly decreased (10.4±3.5cm2.dyn-1.10-6 vs. 12.7±3.4 cm2.dyn-1.10-6, p=0.002,and ASI was significantly increased (6.5±2.0 vs. 3.2±0.8,p<0.001. ASI was positively correlated with triglycerides,fasting glucose, uric acid, hsCRP, LVMI, DT, IVRT andsystolic blood pressure level, and was negatively correlatedwith HDL-cholesterol and mitral E/A ratio. In regressionanalysis, hsCRP (p=0.05 and systolic blood pressurelevel (p<0.001 were independent predictors of ASI.Conclusions: ASI is increased in patients with MetS. Inthese patients; decrease in aortic elasticity properties wasassociated with left ventricular diastolic dysfunction. Highsystolic pressure and hsCRP levels were found to be independentpredictors of ASI.Key words: Metabolic syndrome, Echocardiography,elastic properties of aorta, hsCRP

  1. Computational study of structural, elastic and electronic properties of lithium disilicate (Li(2)Si(2)O(5)) glass-ceramic.

    Biskri, Zine Elabidine; Rached, Habib; Bouchear, Merzoug; Rached, Djamel

    2014-04-01

    The objective of this study is to investigate theoretically the structural, elastic and electronic properties of Lithium Disilicate (LD) crystal (Li2Si2O5), using the pseudo potential method based on Density Functional Theory (DFT) with the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA). The calculated structural properties namely the equilibrium lattice parameters and cell volume are in good agreement with the available experimental results. However, for the LD crystal elastic moduli: Shear modulus G, Young's modulus E and Poisson's ratio ν we have found a discrepancy between our theoretical values and experimental ones reported in polycrystalline sample containing LD crystals. The calculated elastic properties show that LD is more rigid compared with other components. We also investigated the mechanical stability of Li2Si2O5 compound and we have noticed that this compound is stable against elastic deformations. On the basis of shear to bulk modulus ratio analysis, we inferred that Li2Si2O5 compound is brittle in nature. In order to complete the fundamental characteristics of this compound we have measured the elastic anisotropy. Our results for the energy band structure and Density of States (DOS) show that Li2Si2O5 compound has an insulator characteristic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The structural, elastic, electronic properties and Debye temperature of Ni3Mo under pressure from first-principles

    Qi, Lei; Jin, Yuchun; Zhao, Yuhong; Yang, Xiaomin; Zhao, Hui; Han, Peide

    2015-01-01

    Highlights: • Structural, elastic, electronic properties and Debye temperature under pressure. • Higher hardness of Ni 3 Mo compound may be obtained when pressure increases. • Proper pressure can improve the ductility but excess pressure was just the opposite. • Ni 3 Mo compound has no structural phase transformation under pressure up to 30 GPa. • Debye temperatures increase with increasing pressure. - Abstract: With the help of first principles method based on density functional theory, the structural, elastic, electronic properties and Debye temperature of Ni 3 Mo binary compound under pressure are investigated. Our calculated structural parameters are in good agreement with experimental and previous theoretical results. The obtained elastic constants show that Ni 3 Mo compound is mechanically stable. Elastic properties such as bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio υ are calculated by the Voigt–Reuss–Hill method. The results of B/G under various pressures show that proper pressure can improve the ductility of Ni 3 Mo but excess pressure will make the ductility decrease. In addition, the density of states as a function of pressure is analyzed. The Debye temperature Θ D calculated from elastic constants increases along with the pressure

  3. Quantifying the Elastic Property of Nine Thigh Muscles Using Magnetic Resonance Elastography.

    Chakouch, Mashhour K; Charleux, Fabrice; Bensamoun, Sabine F

    2015-01-01

    Pathologies of the muscles can manifest different physiological and functional changes. To adapt treatment, it is necessary to characterize the elastic property (shear modulus) of single muscles. Previous studies have used magnetic resonance elastography (MRE), a technique based on MRI technology, to analyze the mechanical behavior of healthy and pathological muscles. The purpose of this study was to develop protocols using MRE to determine the shear modulus of nine thigh muscles at rest. Twenty-nine healthy volunteers (mean age = 26 ± 3.41 years) with no muscle abnormalities underwent MRE tests (1.5 T MRI). Five MRE protocols were developed to quantify the shear moduli of the nine following thigh muscles at rest: rectus femoris (RF), vastus medialis (VM), vastus intermedius (VI), vastus lateralis (VL), sartorius (Sr), gracilis (Gr), semimembranosus (SM), semitendinosus (ST), and biceps (BC). In addition, the shear modulus of the subcutaneous adipose tissue was analyzed. The gracilis, sartorius, and semitendinosus muscles revealed a significantly higher shear modulus (μ_Gr = 6.15 ± 0.45 kPa, μ_ Sr = 5.15 ± 0.19 kPa, and μ_ ST = 5.32 ± 0.10 kPa, respectively) compared to other tissues (from μ_ RF = 3.91 ± 0.16 kPa to μ_VI = 4.23 ± 0.25 kPa). Subcutaneous adipose tissue had the lowest value (μ_adipose tissue = 3.04 ± 0.12 kPa) of all the tissues tested. The different elasticities measured between the tissues may be due to variations in the muscles' physiological and architectural compositions. Thus, the present protocol could be applied to injured muscles to identify their behavior of elastic property. Previous studies on muscle pathology found that quantification of the shear modulus could be used as a clinical protocol to identify pathological muscles and to follow-up effects of treatments and therapies. These data could also be used for modelling purposes.

  4. Non-Linear Rheological Properties and Neutron Scattering Investigation on Dilute Ring-Linear Blends

    Pyckhout-Hintzen, W.; Bras, A.R.; Wischnewski, A.

    in a filament stretching rheometer, followed by quenching, strong anisotropic scattering patterns were obtained which were described by affinely deformed rings which function as giant, polymeric chemical crosslinks or sliplinks and more or less isotropic topological contributions from the entangling...... with interpenetrating linear chains. At the same time the non-linear rheological and mechanical data fit to a non-affine slip-tube model as for moderately crosslinked networks and to interchain pressure models or a modified non-linear Doi-Edwards description for the observed strain hardening during the extensional...

  5. Elasticity, biodegradability and cell adhesive properties of chitosan/hyaluronan multilayer films

    Schneider, Aurore; Richert, Ludovic; Francius, Gregory; Voegel, Jean-Claude; Picart, Catherine [Present address: Universite de Montpellier II, CNRS-UMR 5539, cc107, Place Eugene Bataillon, 34 095 Montpellier Cedex 5 (France)

    2007-03-01

    In the bioengineering field, a recent and promising approach to modifying biomaterial surfaces is the layer-by-layer (LbL) technique used to build thin polyelectrolyte multilayer films. In this work, we focused on polyelectrolyte multilayer films made of two polysaccharides, chitosan (CHI) and hyaluronan (HA), and on the control of their physico-chemical and cell adhesive properties by chemical cross-linking. CHI/HA films were cross-linked using a water soluble carbodiimide and observed by confocal laser scanning microscopy (CLSM) with a fluorescently labeled CHI. Film thicknesses were similar for native and cross-linked films. The film nanometer roughness was measured by atomic force microscopy and was found to be higher for cross-linked films. Cross-linking the films also leads to a drastic change in film stiffness. The elastic modulus of the films (Young's modulus) as measured by AFM nano-indentation was about tenfold increased for cross-linked films as compared to native ones. From a biological point of view, cross-liked films are more resistant to enzymatic degradation by hyaluronidase. Furthermore, the increase in film stiffness has a favorable effect on the adhesion and spreading of chondrosarcoma cells. Thus, the CHI/HA cross-linked films could be used for various applications due to their adhesive properties and to their mechanical properties (including stability in enzymatic media)

  6. A property of assignment type mixed integer linear programming problems

    Benders, J.F.; van Nunen, J.A.E.E.

    1982-01-01

    In this paper we will proof that rather tight upper bounds can be given for the number of non-unique assignments that are achieved after solving the linear programming relaxation of some types of mixed integer linear assignment problems. Since in these cases the number of splitted assignments is

  7. Temperature-dependent elastic properties of Ti{sub 1−x}Al{sub x}N alloys

    Shulumba, Nina [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Functional Materials, Saarland University, D-66123 Saarbrücken (Germany); Hellman, Olle [Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125 (United States); Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Rogström, Lina; Raza, Zamaan; Tasnádi, Ferenc; Odén, Magnus [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Abrikosov, Igor A. [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Materials Modeling and Development Laboratory, NUST “MISIS,” 119049 Moscow (Russian Federation); LACOMAS Laboratory, Tomsk State University, 634050 Tomsk (Russian Federation)

    2015-12-07

    Ti{sub 1−x}Al{sub x}N is a technologically important alloy that undergoes a process of high temperature age-hardening that is strongly influenced by its elastic properties. We have performed first principles calculations of the elastic constants and anisotropy using the symmetry imposed force constant temperature dependent effective potential method, which include lattice vibrations and therefore the effects of temperature, including thermal expansion and intrinsic anharmonicity. These are compared with in situ high temperature x-ray diffraction measurements of the lattice parameter. We show that anharmonic effects are crucial to the recovery of finite temperature elasticity. The effects of thermal expansion and intrinsic anharmonicity on the elastic constants are of the same order, and cannot be considered separately. Furthermore, the effect of thermal expansion on elastic constants is such that the volume change induced by zero point motion has a significant effect. For TiAlN, the elastic constants soften non-uniformly with temperature: C{sub 11} decreases substantially when the temperature increases for all compositions, resulting in an increased anisotropy. These findings suggest that an increased Al content and annealing at higher temperatures will result in a harder alloy.

  8. Damage of the Interface Between an Orthodontic Bracket and Enamel - the Effect of Some Elastic Properties of the Adhesive Material

    Durgesh, B. H.; Alkheraif, A. A.; Al Sharawy, M.; Varrela, J.; Vallittu, P. K.

    2016-01-01

    The aim of this study was to investigate the magnitude of debonding stress of an orthodontic bracket bonded to the enamel with resin systems having different elastic properties. For the same purpose, sixty human premolars were randomly divided into four groups according to the adhesive system used for bonding brackets: G Fix flowable resin (GFI) with Everstick NET (ESN), GFI, G Aenial Universal Flow (GAU) with ESN, and GAU. The brackets were stressed in the occlusogingival direction on a universal testing machine. The values of debonding load and displacement were determined at the point of debonding. The elastic modulus of the tested materials was determined using nanoindentation. An analysis of variance showed a significant difference in the loads required to debond the bracket among the groups tested. The GAU group had the highest elastic modulus, followed by the GFI and ESN groups. ARI (Adhesive Remnant Index) scores demonstrated more remnants of the adhesive material on the bracket surface with adhesives having a higher elastic modulus. Taking into consideration results of the present in-vitro study, it can be concluded that the incorporation of a glass-fiber-reinforced composite resin (FRC) with a low elastic modulus between the orthodontic bracket and enamel increases the debonding force and strain more than with adhesive systems having a higher elastic modulus.

  9. Insight into the structural, electronic, elastic and optical properties of the alkali hydride compounds, XH (X = Rb and Cs)

    Jaradat, Raed; Abu-Jafar, Mohammed; Abdelraziq, Issam; Mousa, Ahmad; Ouahrani, Tarik; Khenata, Rabah

    2018-04-01

    The equilibrium structural parameters, electronic and optical properties of the alkali hydrides RbH and CsH compounds in rock-salt (RS) and cesium chloride (CsCl) structures have been studied using the full-potential linearized augmented plane-wave (FP-LAPW) method. Wu and Cohen generalized gradient approximation (WC-GGA) was used for the exchange-correlation potential to compute the equilibrium structural parameters, such as the lattice constant (a0), the bulk modulus (B) and bulk modulus first order pressure derivative (B'). In addition to the WC-GGA, the modified Becke Johnson (mBJ) scheme has been also used to overcome the underestimation of the band gap energies. RbH and CsH compounds are found to be semiconductors (wide energy-band gap) using the WC-GGA method, while they are insulators using the mBJ-GGA method. Elastic constants, mechanical and thermodynamic properties were obtained by using the IRelast package. RbH and CsH compounds at ambient pressure are mechanically stable in RS and CsCl structures; they satisfy the Born mechanical stability criteria. Elastic constants (Cij), bulk modulus (B), shear modulus (S) and Debye temperatures (θD) of RbH and CsH compounds decrease as the alkali radius increases. The RS structure of these compounds at ambient conditions is mechanically stronger than CsCl structure. RbH and CsH in RS and CsCl structures are suitable as dielectric compounds. The wide direct energy band gap for these compounds make them promising compounds for optoelectronic UV device applications. Both RbH and CsH have a wide absorption region, on the other hand RbH absorption is very huge compared to the CsH absorption, RbH is an excellent absorbent material, maximum absorption regions are located in the middle ultraviolet (MUV) region and far ultraviolet (FUV) region. The absorption coefficient α (w), imaginary part of the dielectric constant ɛ2(w) and the extinction coefficient k(w) vary in the same way. The present calculated results are in

  10. Application of Linear Viscoelastic Properties in Semianalytical Finite Element Method with Recursive Time Integration to Analyze Asphalt Pavement Structure

    Pengfei Liu

    2018-01-01

    Full Text Available Traditionally, asphalt pavements are considered as linear elastic materials in finite element (FE method to save computational time for engineering design. However, asphalt mixture exhibits linear viscoelasticity at small strain and low temperature. Therefore, the results derived from the elastic analysis will inevitably lead to discrepancies from reality. Currently, several FE programs have already adopted viscoelasticity, but the high hardware demands and long execution times render them suitable primarily for research purposes. Semianalytical finite element method (SAFEM was proposed to solve the abovementioned problem. The SAFEM is a three-dimensional FE algorithm that only requires a two-dimensional mesh by incorporating the Fourier series in the third dimension, which can significantly reduce the computational time. This paper describes the development of SAFEM to capture the viscoelastic property of asphalt pavements by using a recursive formulation. The formulation is verified by comparison with the commercial FE software ABAQUS. An application example is presented for simulations of creep deformation of the asphalt pavement. The investigation shows that the SAFEM is an efficient tool for pavement engineers to fast and reliably predict asphalt pavement responses; furthermore, the SAFEM provides a flexible, robust platform for the future development in the numerical simulation of asphalt pavements.

  11. First-principles study on the phase transition, elastic properties and electronic structure of Pt{sub 3}Al alloys under high pressure

    Liu, Yanjun [Key Laboratory of Oil and Gas Equipment of Ministry of Education, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Huang, Huawei [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power of China, Chengdu, Sichuan 610041 (China); Pan, Yong, E-mail: yongpanyn@163.com [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming 650106 (China); Zhao, Guanghui; Liang, Zheng [Key Laboratory of Oil and Gas Equipment of Ministry of Education, Southwest Petroleum University, Chengdu, Sichuan 610500 (China)

    2014-06-01

    Highlights: • The phase transition of Pt{sub 3}Al alloys occurs at 60 GPa. • The elastic modulus of Pt{sub 3}Al alloys increase with increasing pressure. • The cubic structure has good resistance to volume deformation under high pressure. • The pressure enhances the hybridization between Pt atom and Al atom. - Abstract: The phase transition, formation enthalpies, elastic properties and electronic structure of Pt{sub 3}Al alloys are studied using first-principle approach. The calculated results show that the pressure leads to phase transition from tetragonal structure to cubic structure at 60 GPa. With increasing pressure, the elastic constants, bulk modulus and shear modulus of these Pt{sub 3}Al alloys increase linearly and the bond lengths of Pt–Al metallic bonds and the peak at E{sub F} decrease. The cubic Pt{sub 3}Al alloy has excellent resistance to volume deformation under high pressure. We suggest that the phase transition is derived from the hybridization between Pt and Al atoms for cubic structure is stronger than that of tetragonal structure and forms the strong Pt–Al metallic bonds under high pressure.

  12. First-principles study on the phase transition, elastic properties and electronic structure of Pt3Al alloys under high pressure

    Liu, Yanjun; Huang, Huawei; Pan, Yong; Zhao, Guanghui; Liang, Zheng

    2014-01-01

    Highlights: • The phase transition of Pt 3 Al alloys occurs at 60 GPa. • The elastic modulus of Pt 3 Al alloys increase with increasing pressure. • The cubic structure has good resistance to volume deformation under high pressure. • The pressure enhances the hybridization between Pt atom and Al atom. - Abstract: The phase transition, formation enthalpies, elastic properties and electronic structure of Pt 3 Al alloys are studied using first-principle approach. The calculated results show that the pressure leads to phase transition from tetragonal structure to cubic structure at 60 GPa. With increasing pressure, the elastic constants, bulk modulus and shear modulus of these Pt 3 Al alloys increase linearly and the bond lengths of Pt–Al metallic bonds and the peak at E F decrease. The cubic Pt 3 Al alloy has excellent resistance to volume deformation under high pressure. We suggest that the phase transition is derived from the hybridization between Pt and Al atoms for cubic structure is stronger than that of tetragonal structure and forms the strong Pt–Al metallic bonds under high pressure

  13. Non-linear optical measurement of the twist elastic constant in thermotropic and DNA lyotropic chiral nematics

    Lucchetti, Liana; Fraccia, Tommaso P.; Ciciulla, Fabrizio; Bellini, Tommaso

    2017-01-01

    Throughout the whole history of liquid crystals science, the balancing of intrinsic elasticity with coupling to external forces has been the key strategy for most application and investigation. While the coupling of the optical field to the nematic director is at the base of a wealth of thoroughly described optical effects, a significant variety of geometries and materials have not been considered yet. Here we show that by adopting a simple cell geometry and measuring the optically induced bi...

  14. Non-linear optical measurement of the twist elastic constant in thermotropic and DNA lyotropic chiral nematics.

    Lucchetti, Liana; Fraccia, Tommaso P; Ciciulla, Fabrizio; Bellini, Tommaso

    2017-07-10

    Throughout the whole history of liquid crystals science, the balancing of intrinsic elasticity with coupling to external forces has been the key strategy for most application and investigation. While the coupling of the optical field to the nematic director is at the base of a wealth of thoroughly described optical effects, a significant variety of geometries and materials have not been considered yet. Here we show that by adopting a simple cell geometry and measuring the optically induced birefringence, we can readily extract the twist elastic coefficient K 22 of thermotropic and lyotropic chiral nematics (N*). The value of K 22 we obtain for chiral doped 5CB thermotropic N* well matches those reported in the literature. With this same strategy, we could determine for the first time K 22 of the N* phase of concentrated aqueous solutions of DNA oligomers, bypassing the limitations that so far prevented measuring the elastic constants of this class of liquid crystalline materials. The present study also enlightens the significant nonlinear optical response of DNA liquid crystals.

  15. Anisotropy and temperature dependence of structural, thermodynamic, and elastic properties of crystalline cellulose Iβ: a first-principles investigation

    ShunLi Shang; Louis G. Hector Jr.; Paul Saxe; Zi-Kui Liu; Robert J. Moon; Pablo D. Zavattieri

    2014-01-01

    Anisotropy and temperature dependence of structural, thermodynamic and elastic properties of crystalline cellulose Iβ were computed with first-principles density functional theory (DFT) and a semi-empirical correction for van der Waals interactions. Specifically, we report the computed temperature variation (up to 500...

  16. Anisotropy of the elastic properties of crystalline cellulose Iß from first principles density functional theory with Van der Waals interactions

    Fernando L. Dri; Louis G. Jr. Hector; Robert J. Moon; Pablo D. Zavattieri

    2013-01-01

    In spite of the significant potential of cellulose nanocrystals as functional nanoparticles for numerous applications, a fundamental understanding of the mechanical properties of defect-free, crystalline cellulose is still lacking. In this paper, the elasticity matrix for cellulose Iß with hydrogen bonding network A was calculated using ab initio...

  17. Modifying the MRI, elastic stiffness and electrical properties of polyvinyl alcohol cryogel using irradiation

    Goharian, Mehran; Moran, Gerald R.; Wilson, Kyle; Seymour, Colin; Jegatheesan, Aravinthan; Hill, Michael; Thompson, R. Terry; Campbell, Gordon

    2007-01-01

    The aim of this work was to study the effect of radiation on the elastic stiffness, electrical and MRI properties of polyvinyl alcohol (PVA)-based cryogel (PVA-C). The PVA-C samples were irradiated with a 60 C0 γ-source, at 2.18 x 10 6 Rads. The indentation measurements (an indication of elastic stiffness) reduced by about 14.6% for PVA-3C and 5.7% PVA-6C after irradiation, indicating that the material became harder/stiffer. It was found that MRI relaxation times provide an alternative and non-destructive method to evaluate the radiation effect on PVA-C. The T 1 of PVA-C that had undergone three freeze thaw cycles decreased with irradiation by 10%, 25% and 35% at 1 T, 1.89 T and 3 T respectively. The T 1 of PVA-C that had undergone six freeze thaw cycles decreased with irradiation by 18%, 15% and 11% at 1 T, 1.89 T and 3 T respectively. The T 2 of PVA-C decreased with irradiation only at 1T, however this change is hypothesized to be due to the interaction of two spin pools in the gel. The electrical conductivity (σ) and permittivity constant (ε) of the unirradiated and γ-irradiated PVA-C samples were measured at different frequencies in the range 40 Hz to 1 MHz. The results demonstrated that the conductivity increased with irradiation by 50% for PVA-3C (three freeze thaw cycles) and 75% for PVA-6C (six freeze thaw cycles) at frequencies greater than 1 KHz.The permittivity decreased with irradiation up to 25% for 3C and 35% for 6C at frequencies less than 1 KHz

  18. Laboratory ultrasonic pulse velocity logging for determination of elastic properties from rock core

    Blacklock, Natalie Erin

    During the development of deep underground excavations spalling and rockbursting have been recognized as significant mechanisms of violent brittle failure. In order to predict whether violent brittle failure will occur, it is important to identify the location of stiffness transitions that are associated with geologic structure. One approach to identify the effect of geologic structures is to apply borehole geophysical tools ahead of the tunnel advance. Stiffness transitions can be identified using mechanical property analysis surveys that combine acoustic velocity and density data to calculate acoustic estimates of elastic moduli. However, logistical concerns arise since the approach must be conducted at the advancing tunnel face. As a result, borehole mechanical property analyses are rarely used. Within this context, laboratory ultrasonic pulse velocity testing has been proposed as a potential alternative to borehole mechanical property analysis since moving the analysis to the laboratory would remove logistical constraints and improve safety for the evaluators. In addition to the traditional method of conducting velocity testing along the core axis, two new methodologies for point-focused testing were developed across the core diameter, and indirectly along intact lengths of drill core. The indirect test procedure was implemented in a continuous ultrasonic velocity test program along 573m of drill core to identify key geologic structures that generated transitions in ultrasonic elastic moduli. The test program was successful at identifying the location of geologic contacts, igneous intrusions, faults and shear structures. Ultrasonic values of Young's modulus and bulk modulus were determined at locations of significant velocity transitions to examine the potential for energy storage and energy release. Comparison of results from different ultrasonic velocity test configurations determined that the indirect test configuration provided underestimates for values of

  19. Effect of Coulomb interactions and Hartree-Fock exchange on structural, elastic, optoelectronic and magnetic properties of Co{sub 2}MnSi Heusler: A comparative study

    Lantri, T. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Bentata, S., E-mail: sam_bentata@yahoo.com [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Bouadjemi, B.; Benstaali, W. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Bouhafs, B. [Modelling and Simulation in Materials Science Laboratory, Djillali Liabès University of Sidi Bel-Abbès, 22000 Sidi Bel-Abbes (Algeria); Abbad, A. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Modelling and Simulation in Materials Science Laboratory, Djillali Liabès University of Sidi Bel-Abbès, 22000 Sidi Bel-Abbes (Algeria); Zitouni, A. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria)

    2016-12-01

    Using the first-principle calculations, we have investigated the structural, elastic, optoelectronic and magnetic properties of Co{sub 2}MnSi Heusler alloy. Based on the density functional theory (DFT) and hiring the full-potential linearized augmented plane wave (FP-LAPW) method, we have used five approaches: the Hybrid on-site exact exchange, the Local Spin Density Approximation (LSDA), the LSDA+U, the Generalized Gradient Approximation GGA and GGA+U; where the Hubbard on-site Coulomb interaction correction U is calculated by constraint local density approximation for Co and Mn atoms. Our results show that the highly-ordered Co{sub 2}MnSi alloy is a ductile, stiff and anisotropic material. It has a half-metallic ferromagnetic character with an integer magnetic moment of 5 µB which is in good agreement with the Slater-Pauling rule. - Highlights: • Each approach gives a half magnetic compound. • EECE gives the largest gap. • Elastic properties show a stiff, ductile and anisotropic material. • Electronic properties are similar for the five approaches. • Total magnetic moment is the same for the five approaches (5 µB).

  20. Theoretical simulations of the structural stabilities, elastic, thermodynamic and electronic properties of Pt3Sc and Pt3Y compounds

    Boulechfar, R.; Khenioui, Y.; Drablia, S.; Meradji, H.; Abu-Jafar, M.; Omran, S. Bin; Khenata, R.; Ghemid, S.

    2018-05-01

    Ab-initio calculations based on density functional theory have been performed to study the structural, electronic, thermodynamic and mechanical properties of intermetallic compounds Pt3Sc and Pt3Y using the full-potential linearized augmented plane wave(FP-LAPW) method. The total energy calculations performed for L12, D022 and D024 structures confirm the experimental phase stability. Using the generalized gradient approximation (GGA), the values of enthalpies formation are -1.23 eV/atom and -1.18 eV/atom for Pt3Sc and Pt3Y, respectively. The densities of states (DOS) spectra show the existence of a pseudo-gap at the Fermi level for both compounds which indicate the strong spd hybridization and directing covalent bonding. Furthermore, the density of states at the Fermi level N(EF), the electronic specific heat coefficient (γele) and the number of bonding electrons per atom are predicted in addition to the elastic constants (C11, C12 and C44). The shear modulus (GH), Young's modulus (E), Poisson's ratio (ν), anisotropy factor (A), ratio of B/GH and Cauchy pressure (C12-C44) are also estimated. These parameters show that the Pt3Sc and Pt3Y are ductile compounds. The thermodynamic properties were calculated using the quasi-harmonic Debye model to account for their lattice vibrations. In addition, the influence of the temperature and pressure was analyzed on the heat capacities (Cp and Cv), thermal expansion coefficient (α), Debye temperature (θD) and Grüneisen parameter (γ).

  1. A micromechanical approach to elastic and viscoelastic properties of fiber reinforced concrete

    Pasa Dutra, V.F.; Maghous, S.; Campos Filho, A.; Pacheco, A.R.

    2010-01-01

    Some aspects of the constitutive behavior of fiber reinforced concrete (FRC) are investigated within a micromechanical framework. Special emphasis is put on the prediction of creep of such materials. The linear elastic behavior is first examined by implementation of a Mori-Tanaka homogenization scheme. The micromechanical predictions for the overall stiffness prove to be very close to finite element solutions obtained from the numerical analysis of a representative elementary volume of FRC modeled as a randomly heterogeneous medium. The validation of the micromechanical concepts based on comparison with a set of experiments, shows remarkable predictive capabilities of the micromechanical representation. The second part of the paper is devoted to non-ageing viscoelasticity of FRC. Adopting a Zener model for the behavior of the concrete matrix and making use of the correspondence principle, the homogenized relaxation moduli are derived analytically. The validity of the model is established by mean of comparison with available experiment measurements of creep strain of steel fiber reinforced concrete under compressive load. Finally, the model predictions are compared to those derived from analytical models formulated within a one-dimensional setting.

  2. Electronic, optical, infrared, and elastic properties of KCdCO3F from first principles

    Huang, Xue-Qian; Xue, Han-Yu; Zhang, Can; Pang, Dong-Dong; Lv, Zhen-Long; Duan, Man-Yi

    2018-05-01

    KCdCO3F is a newly synthesized promising ultraviolet nonlinear optical crystal, but its structure is disputed and its fundamental properties have not been well studied. Here our first-principles study indicates that the structure with the space group P 6 bar c2 is energetically more stable than the P 6 bar m2 phase. We systematically investigated its electronic, optical, vibrational, infrared, and elastic properties. The results reveal that KCdCO3F is a direct-band-gap insulator with rather flat bands below the Fermi level. Analyses of its partial density of states revealed that the top (bottom) of its valence (conduction) band is formed by the O 2p (Cd 5s) orbital. It is a negative uniaxial crystal with ionic-covalent nature. Both infrared-active and Raman-active modes exist at its Brillouin zone center, and ions contribute more to its static dielectric constants. Its optical spectra in the visual and infrared ranges were studied, and their origins were revealed. Calculations indicate that KCdCO3F is mechanically stable but anisotropic since it is more vulnerable to shear stress and is easy to cleave along the c axis.

  3. Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steel

    Leuning, N., E-mail: nora.leuning@iem.rwth-aachen.de [Institute of Electrical Machines, RWTH Aachen University, D-52062 Aachen (Germany); Steentjes, S. [Institute of Electrical Machines, RWTH Aachen University, D-52062 Aachen (Germany); Schulte, M.; Bleck, W. [Steel Institute, RWTH Aachen University, D-52072 Aachen (Germany); Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, D-52062 Aachen (Germany)

    2016-11-01

    The magnetic properties of non-grain-oriented (NGO) electrical steels are highly susceptible to mechanical stresses, i.e., residual, external or thermal ones. For rotating electrical machines, mechanical stresses are inevitable and originate from different sources, e.g., material processing, machine manufacturing and operating conditions. The efficiency and specific losses are largely altered by different mechanical stress states. In this paper the effect of tensile stresses and plastic deformations on the magnetic properties of a 2.9 wt% Si electrical steel are studied. Particular attention is paid to the effect of magnetic anisotropy, i.e., the influence of the direction of applied mechanical stress with respect to the rolling direction. Due to mechanical stress, the induced anisotropy has to be evaluated as it is related to the stress-dependent magnetostriction constant and the grain alignment. - Highlights: • A detailed look at magnetic anisotropy of FeSi NGO electrical steel. • Study of magnetic behavior under elastic as well as plastic tensile stresses. • Correlation of magnetic behavior with microscopic deformation mechanisms. • Discussion of detrimental and beneficial effects of external stresses. • Loss separation at different polarizations and frequencies under increasing stress.

  4. A comparative approach to predicting effective dielectric, piezoelectric and elastic properties of PZT/PVDF composites

    Ahmad, Zeeshan; Prasad, Ashutosh; Prasad, K.

    2009-01-01

    The present study addresses the problem of quantitative prediction of effective relative permittivity, dielectric loss factor, piezoelectric charge coefficient, and Young's modulus of PZT/PVDF diphasic ceramic-polymer composite as a function of volume fraction of PZT in the different compositions. Theoretical results for effective relative permittivity derived from several dielectric mixture equations like those of Knott, Rother-Lichtenecker, Bruggeman, Maxwell-Wagner-Webmann-Skipetrov or Dias-Dasgupta, Furukawa, Lewin, Wiener, Jayasundere-Smith, Modified Cule-Torquato, Taylor, Poon-Shin and Rao et al. were fitted to the experimental data taken from previous works of Yamada et al. Similarly, the results for effective piezoelectric coefficient and Young's modulus, derived from different appropriate equations were fitted to the corresponding experimental data taken from the literature. The study revealed that only a few equations like modified Rother-Lichtenecker equation, Dias-Dasgupta equation and Rao equation for dielectric and piezoelectric properties while the four new equations developed in the present study of elastic property (Young's modulus) well fitted the corresponding experimental results. Further, the acceptable data put to various regression analyses showed that in most of the cases the third order polynomial regression analysis provided more acceptable fits.

  5. Elastic properties of superconducting bulk metallic glasses; Elastische Eigenschaften von supraleitenden massiven metallischen Glaesern

    Hempel, Marius

    2015-07-01

    Within the framework of this thesis the elastic properties of a superconducting bulk metallic glass between 10 mK and 300 K were first investigated. In order to measure the entire temperature range, in particular the low temperature part, new experimental techniques were developed. Using an inductive readout scheme for a double paddle oscillator it was possible to determine the internal friction and the relative change of sound velocity of bulk metallic glasses with high precision. This allowed for a detailed comparison of the data with different models. The analysis focuses on the low temperature regime where the properties of glassy materials are governed by atomic tunneling systems as described by the tunneling model. The influence of conduction electrons in the normal conducting state and quasiparticles in the superconducting state of the glass were accounted for in the theoretical description, resulting in a good agreement over a large temperature range between measured data and prediction of the tunneling model. This allowed for a direct determination of the coupling constant between electrons and tunneling systems. In the vicinity of the transition temperature Tc the data can only be described if a modified distribution function of the tunneling parameters is applied.

  6. The implicit effect of texturizing field on the elastic properties of magnetic elastomers revealed by SANS

    Balasoiu, M., E-mail: balas@jinr.ru [Joint Institute of Nuclear Research, Dubna (Russian Federation); Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Lebedev, V.T. [St.Petersburg Nuclear Physics Institute NRC KI, Gatchina (Russian Federation); Raikher, Yu.L. [Institute of Continuous Media Mechanics, Russian Academy of Sciences, Ural Branch, Perm (Russian Federation); Bica, I.; Bunoiu, M. [West University of Timisoara, Department of Physics (Romania)

    2017-06-01

    Small angle neutron scattering method (SANS) is used to characterize the structure properties of the polymer matrix of magnetic elastomers (MEs) of the same material content but with different magnetic textures. For that, series of silicone-rubber elastomers mixed with a ferrofluid and polymerized with/without external magnetic field were studied. In the species of pure rubber and the ME samples synthesized without field, SANS reveals a substantial number of large polymer coils (blobs) which are vertically prolate. The case of MEs polymerized under the magnetic field that is also vertically directed, is different. SANS data indicates that there the blobs are preferably elongated in the direction normal to the field. - Highlights: • SANS method is used to determine the structure of SR elastomers polymerized with ferrofluid in/no external magnetic field. • In the rubber and ME samples synthesized without field, SANS reveals a substantial number of vertically prolate blobs. • For MEs polymerized in vertical magnetic field, results that the blobs are elongated in the direction normal to the field. • Isotropic and texturized MEs differ by the filler structure and by intrinsic elastic properties of the matrix as well.

  7. Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steel

    Leuning, N.; Steentjes, S.; Schulte, M.; Bleck, W.; Hameyer, K.

    2016-01-01

    The magnetic properties of non-grain-oriented (NGO) electrical steels are highly susceptible to mechanical stresses, i.e., residual, external or thermal ones. For rotating electrical machines, mechanical stresses are inevitable and originate from different sources, e.g., material processing, machine manufacturing and operating conditions. The efficiency and specific losses are largely altered by different mechanical stress states. In this paper the effect of tensile stresses and plastic deformations on the magnetic properties of a 2.9 wt% Si electrical steel are studied. Particular attention is paid to the effect of magnetic anisotropy, i.e., the influence of the direction of applied mechanical stress with respect to the rolling direction. Due to mechanical stress, the induced anisotropy has to be evaluated as it is related to the stress-dependent magnetostriction constant and the grain alignment. - Highlights: • A detailed look at magnetic anisotropy of FeSi NGO electrical steel. • Study of magnetic behavior under elastic as well as plastic tensile stresses. • Correlation of magnetic behavior with microscopic deformation mechanisms. • Discussion of detrimental and beneficial effects of external stresses. • Loss separation at different polarizations and frequencies under increasing stress.

  8. Investigations of structural, elastic, electronic and thermodynamic properties of lutetium filled skutterudite LuFe4P12 under pressure effect: FP-LMTO method

    Boudia Keltouma

    2015-12-01

    Full Text Available Structural, elastic, electronic and thermodynamic properties of ternary cubic filled skutterudite compound were calculated. We have computed the elastic modulus and its pressure dependence. From the elastic parameter behavior, it is inferred that this compound is elastically stable and ductile in nature. Through the quasi-harmonic Debye model, in which phononic effects are considered, the effect of pressure P (0 to 50 GPa and temperature T (0 to 3000 °C on the lattice constant, elastic parameters, bulk modulus B, heat capacity, thermal expansion coefficient α, internal energy U, entropy S, Debye temperature θD, Helmholtz free energy A, and Gibbs free energy G are investigated.

  9. Elastic metamaterial beam with remotely tunable stiffness

    Qian, Wei [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Zhengyue [School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Xiaole [School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Lai, Yun [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Yellen, Benjamin B., E-mail: yellen@duke.edu [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)

    2016-02-07

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ∼30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  10. Elastic metamaterial beam with remotely tunable stiffness

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.

    2016-02-01

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  11. Structural, elastic and electronic Properties of isotropic cubic crystals of carbon and silicon nanotubes : Density functional based tight binding calculations.

    Alexander L. Ivanovskii

    2008-01-01

    Full Text Available Atomic models of cubic crystals (CC of carbon and graphene-like Si nanotubes are offered and their structural, cohesive, elastic and electronic properties are predicted by means of the DFTB method. Our main findings are that the isotropic crystals of carbon nanotubes adopt a very high elastic modulus B and low compressibility β, namely B = 650 GPa, β = 0.0015 1/GPa. In addition, these crystals preserve the initial conductivity type of their “building blocks”, i.e. isolated carbon and Si nanotubes. This feature may be important for design of materials with the selected conductivity type.

  12. Combined Determination of Elastic Properties and Structure of Coesite under Simulated Mantle Conditions

    Mueller, H. J.; Schilling, F. R.; Lauterjung, J.; Lathe, C.

    2001-12-01

    The high pressure SiO2-polymorph coesite seems to be an important mineral in the subduction process including crustal material (Chopin, 1984; Schreyer, 1995). The quartz to coesite transition is thus of fundamental importance to understand the processes within a subducting crust. Furthermore, the nature of the quartz to coesite transition is discussed controversially, because high pressure XRD-studies suggest an intermediate phase during the transformation process (Zinn et al., 1997). For the combined determination of elastic properties and structure a cubic multi-anvil high pressure apparatus (MAX80) was used. For the maximum sample volume of 20 mm3 the pressure limit is about 7GPa. The pressure is measured by use of NaCl as an internal pressure marker with calibrated PVT-data. The maximum temperature of about 2,000K is generated by an internal graphite heater and controlled by a thermocouple. The synchrotron beam (100x100 microns) is guided by a collimator through the sample between the anvils. For energy-dispersive X-ray diffraction, a Ge-solid state detector analyses the diffracted white beam at a fixed angle. The compressional and shear wave velocities were determined simultaneously by ultrasonic interferometry inside MAX80. Two of the six anvils are equipped with overtone polished lithium niobate transducers at their rear side, outside the volume under pressure, for generation and detection of ultrasonic waves between 10 and 60 MHz. Different buffer - reflector combinations and transducer arrangements were used to optimize the critical interference between both sample echoes. Therefore MAX80 is equipped for asymmetrical and symmetrical interferometric set-ups, i.e. compressional and shear waves are generated from the same or from two anvils, opposite to each other. We used for our transient measurements 3 natural fine-grained quartzites from Turkey and Germany. As a first step the pressure was increased gradually up to 4GPa at ambient temperature. At each

  13. Ab initio study of the structural, electronic, elastic and thermal properties of RMn{sub 2}Ge{sub 2} (R = Ca, Nd and Y) intermetallic compounds

    Miloud Abid, O.; Yakoubi, A. [Laboratoire d’Etudes des Matériaux et Instrumentations Expérimentales, Université Djilali Liabes de Sidi Bel-Abbes, 22000 (Algeria); Tadjer, A. [Modeling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, Sidi Bel-Abbes (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique de la Modélisation Mathématique (LPQ3M), Université de Mascara, 29000 (Algeria); Ahmed, R. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Murtaza, G. [Materials Modeling Laboratory, Department of Physics, Islamia College University, Peshawar (Pakistan); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Azam, Sikander [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic)

    2014-12-15

    Highlights: • The calculated structural parameters of RMn{sub 2}Ge{sub 2} (R = Ca, Nd and Y) compounds are found in good agreement with the experimental data. • The structural and band structure calculation reveals that these compounds are ferromagnetic brittle metals. • The elastic and thermodynamic properties for the herein studied compounds are investigated for the first time. - Abstract: Intermetallic RMn{sub 2}Ge{sub 2} ternary compounds have attracted considerable attention from researchers in recent years because they show strong indications for novel magnetic characteristics and they have the potential to reveal the mechanism of superlattices. The study of the paramagnetic, ferromagnetic and antiferromagnetic phases affirms the strong dependence to the distance between atomic species in these compounds. In this study, we investigated the structural, elastic, electronic and thermodynamic properties of the intermetallic RMn{sub 2}Ge{sub 2} (R = Ca, Nd and Y) compounds. To carry out this study, we used the full potential (FP) linearized (L) augmented plane wave plus local orbitals (APW + lo), a scheme of calculations developed within the frame work of density functional theory (DFT). To incorporate the exchange correlation (XC) energy and corresponding potential into the total energy calculations, local density approximation (LDA) parameterized by Perdew and Wang is taken into account. Analysis of the density of states (DOS) profile illustrates the conducting nature of these intermetallic compounds; with a predominantly contribution from the R and Mn-d states. At ambient conditions, calculations for elastic constants (C{sub 11}, C{sub 12}, C{sub 13}, C{sub 44}, C{sub 33} and C{sub 66}) are also performed, which point to their brittle character. In addition, the quasi harmonic Debye model was used to predict the thermal properties, together with relative expansion coefficients and heat capacity.

  14. Comparison of linear-elastic-plastic, and fully plastic failure models in the assessment of piping integrity

    Streit, R.D.

    1981-01-01

    The failure evaluation of Pressurized Water Reactor (PWR) primary coolant loop pipe is often based on a plastic limit load criterion; i.e., failure occurs when the stress on the pipe section exceeds the material flow stress. However, in addition the piping system must be safe against crack propagation at stresses less than those leading to plastic instability. In this paper, elastic, elastic-plastic, and fully-plastic failure models are evaluated, and the requirements for piping integrity based on these models are compared. The model yielding the 'more' critical criteria for the given geometry and loading conditions defines the appropriate failure criterion. The pipe geometry and loading used in this study was choosen based on an evaluation of a guillotine break in a PWR primary coolant loop. It is assumed that the piping may contain cracks. Since a deep circumferential crack, can lead to a guillotine pipe break without prior leaking and thus without warning it is the focus of the failure model comparison study. The hot leg pipe, a 29 in. I.D. by 2.5 in. wall thickness stainless pipe, was modeled in this investigation. Cracks up to 90% through the wall were considered. The loads considered in this evaluation result from the internal pressure, dead weight, and seismic stresses. For the case considered, the internal pressure contributes the most to the failure loading. The maximum moment stress due to the dead weight and seismic moments are simply added to the pressure stress. Thus, with the circumferential crack geometry and uniform pressure stress, the problem is axisymmetric. It is analyzed using NIKE2D--an implicit, finite deformation, finite element code for analyzing two-dimensional elastic-plastic problems. (orig./GL)

  15. System and method to create three-dimensional images of non-linear acoustic properties in a region remote from a borehole

    Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves

    2013-01-01

    In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

  16. First-principles study of the structural, phonon, elastic, and thermodynamic properties of Al_3Ta compound under high pressure

    W. Leini

    2018-03-01

    Full Text Available We have investigated the phonon, elastic and thermodynamic properties of L1_2 phase Al_3Ta by density functional theory approach combining with quasi-harmonic approximation model. The results of phonon band structure shows that L1_2 phase Al_3Ta possesses dynamical stability in the pressure range from 0 to 80 GPa due to the absence of imaginary frequencies. The pressure dependences of the elastic constants C_ij, bulk modulus B, shear modulus G, Young's modulus Y, B/G and Poisson's ratio ν have been analysed. The elastic constants are satisfied with mechanical stability criteria up to the external pressure of 80 GPa. The results of the elastic properties studies show that Al_3Ta compound possesses a higher hardness, improved ductility and plasticity under higher pressures. Further, we systematically investigate the thermodynamic properties, such as the Debye temperature Θ, heat capacity C_p, and thermal expansion coefficient α, and provide the relationships between thermal parameters and pressure.

  17. First-principles calculations of the electronic, vibrational, and elastic properties of the magnetic laminate Mn2GaC

    Thore, A.; Dahlqvist, M.; Alling, B.; Rosén, J.

    2014-01-01

    In this paper, we report the by first-principles predicted properties of the recently discovered magnetic MAX phase Mn 2 GaC. The electronic band structure and vibrational dispersion relation, as well as the electronic and vibrational density of states, have been calculated. The band structure close to the Fermi level indicates anisotropy with respect to electrical conductivity, while the distribution of the electronic and vibrational states for both Mn and Ga depend on the chosen relative orientation of the Mn spins across the Ga sheets in the Mn–Ga–Mn trilayers. In addition, the elastic properties have been calculated, and from the five elastic constants, the Voigt bulk modulus is determined to be 157 GPa, the Voigt shear modulus 93 GPa, and the Young's modulus 233 GPa. Furthermore, Mn 2 GaC is found relatively elastically isotropic, with a compression anisotropy factor of 0.97, and shear anisotropy factors of 0.9 and 1, respectively. The Poisson's ratio is 0.25. Evaluated elastic properties are compared to theoretical and experimental results for M 2 AC phases where M = Ti, V, Cr, Zr, Nb, Ta, and A = Al, S, Ge, In, Sn.

  18. Some fundamental definitions of the elastic parameters for homogenous isotropic linear materials in road design and analysis

    De Beer, Morris

    2008-07-01

    Full Text Available - wave and ρ the material density. The elastic moduli P-wave modulus, M, is defined so that M = K + 4µ / 3 and M can then be determined by Equation 11, with a known speed Vp P MV 2 ρ = (11) It should however also... gas (such as air within compacted road materials), the adiabatic bulk modulus KS is approximately given by pKS κ= (4) Where: κ is the adiabatic index, (sometimes calledγ ); p is the pressure. In a fluid (such as moisture...

  19. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

    Lawrence, S. K.; Somerday, B. P.; Ingraham, M. D.; Bahr, D. F.

    2018-04-01

    Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases 22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases 20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yielding in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal a direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.

  20. Structural, electronic and elastic properties of the cubic CaTiO{sub 3} under pressure: A DFT study

    Tariq, Saad, E-mail: saadigi@hotmail.com; Ahmed, Afaq; Tariq, Samar [Centre of Excellence in Solid State Physics, University of Punjab, Lahore, 54000 (Pakistan); Saad, Saher [Centre for High Energy Physics, University of the Punjab, Lahore (Pakistan)

    2015-07-15

    Using highly accurate FP-LAPW method with GGA approximation structural, electronic and elastic properties of cubic CaTiO{sub 3} have been calculated from 0-120 GPa range of pressure. It is observed that lattice constant, bond length and anisotropy factor decrease with increase in pressure. Also the brittle nature and indirect band-gap of the compound become ductile and direct band-gap respectively at 120 GPa. Moduli of elasticity, density of the material, Debye temperature and wave elastic wave velocities increase with increase in pressure. Spin dependent DOS’s plots show invariant anti-ferromagnetic nature of the compound under pressure. Our calculated results are in good agreement with available theoretical and experimental results.

  1. Structural, electronic and elastic properties of the cubic CaTiO3 under pressure: A DFT study

    Saad Tariq

    2015-07-01

    Full Text Available Using highly accurate FP-LAPW method with GGA approximation structural, electronic and elastic properties of cubic CaTiO3 have been calculated from 0-120 GPa range of pressure. It is observed that lattice constant, bond length and anisotropy factor decrease with increase in pressure. Also the brittle nature and indirect band-gap of the compound become ductile and direct band-gap respectively at 120 GPa. Moduli of elasticity, density of the material, Debye temperature and wave elastic wave velocities increase with increase in pressure. Spin dependent DOS’s plots show invariant anti-ferromagnetic nature of the compound under pressure. Our calculated results are in good agreement with available theoretical and experimental results.

  2. First-principles investigations on structural, elastic, electronic properties and Debye temperature of orthorhombic Ni3Ta under pressure

    Li, Pan; Zhang, Jianxin; Ma, Shiyu; Jin, Huixin; Zhang, Youjian; Zhang, Wenyang

    2018-06-01

    The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν are calculated by the Voigt-Reuss-Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature ΘD calculated from elastic modulus increases along with the pressure.

  3. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2012-01-01

    Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…

  4. Elastic Properties of Novel Co- and CoNi-Based Superalloys Determined through Bayesian Inference and Resonant Ultrasound Spectroscopy

    Goodlet, Brent R.; Mills, Leah; Bales, Ben; Charpagne, Marie-Agathe; Murray, Sean P.; Lenthe, William C.; Petzold, Linda; Pollock, Tresa M.

    2018-06-01

    Bayesian inference is employed to precisely evaluate single crystal elastic properties of novel γ -γ ' Co- and CoNi-based superalloys from simple and non-destructive resonant ultrasound spectroscopy (RUS) measurements. Nine alloys from three Co-, CoNi-, and Ni-based alloy classes were evaluated in the fully aged condition, with one alloy per class also evaluated in the solution heat-treated condition. Comparisons are made between the elastic properties of the three alloy classes and among the alloys of a single class, with the following trends observed. A monotonic rise in the c_{44} (shear) elastic constant by a total of 12 pct is observed between the three alloy classes as Co is substituted for Ni. Elastic anisotropy ( A) is also increased, with a large majority of the nearly 13 pct increase occurring after Co becomes the dominant constituent. Together the five CoNi alloys, with Co:Ni ratios from 1:1 to 1.5:1, exhibited remarkably similar properties with an average A 1.8 pct greater than the Ni-based alloy CMSX-4. Custom code demonstrating a substantial advance over previously reported methods for RUS inversion is also reported here for the first time. CmdStan-RUS is built upon the open-source probabilistic programing language of Stan and formulates the inverse problem using Bayesian methods. Bayesian posterior distributions are efficiently computed with Hamiltonian Monte Carlo (HMC), while initial parameterization is randomly generated from weakly informative prior distributions. Remarkably robust convergence behavior is demonstrated across multiple independent HMC chains in spite of initial parameterization often very far from actual parameter values. Experimental procedures are substantially simplified by allowing any arbitrary misorientation between the specimen and crystal axes, as elastic properties and misorientation are estimated simultaneously.

  5. Asymptotic properties for half-linear difference equations

    Cecchi, M.; Došlá, Z.; Marini, M.; Vrkoč, Ivo

    2006-01-01

    Roč. 131, č. 4 (2006), s. 347-363 ISSN 0862-7959 R&D Projects: GA ČR(CZ) GA201/04/0580 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear second order difference equation * nonoscillatory solutions * Riccati difference equation Subject RIV: BA - General Mathematics

  6. On spectral properties of linear combinations of idempotents

    Du, H.-K.; Deng, Ch-Y.; Mbekhta, M.; Müller, Vladimír

    2007-01-01

    Roč. 180, č. 3 (2007), s. 211-217 ISSN 0039-3223 R&D Projects: GA ČR(CZ) GA201/06/0128 Institutional research plan: CEZ:AV0Z10190503 Keywords : linear combinations of idempotents * closed range * complemented subspaces Subject RIV: BA - General Mathematics Impact factor: 0.568, year: 2007

  7. Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the energy conversion efficiency

    Yamashita, Osamu

    2009-01-01

    The new thermal rate equations were built up by taking the linear and non-linear components in the temperature dependences of the Seebeck coefficient α, the electrical resistivity ρ and thermal conductivity κ of a thermoelectric (TE) material into the thermal rate equations on the assumption that their temperature dependences are expressed by a quadratic function of temperature T. The energy conversion efficiency η for a single TE element was formulated using the new thermal rate ones proposed here. By applying it to the high-performance half-Heusler compound, the non-linear component in the temperature dependence of α among those of the TE properties has the greatest effect on η, so that η/η 0 was increased by 11% under the condition of T = 510 K and ΔT = 440 K, where η 0 is a well-known conventional energy conversion efficiency. It was thus found that the temperature dependences of TE properties have a significant influence on η. When one evaluates the accurate achievement rate of η exp obtained experimentally for a TE generator, therefore, η exp should be compared with η the estimated from the theoretical expression proposed here, not with η 0 , particularly when there is a strong non-linearity in the temperature dependence of TE properties.

  8. Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture

    Rietbergen, van B.; Odgaard, A.; Kabel, J.; Huiskes, H.W.J.

    1996-01-01

    A method is presented to find orthotropic elastic symmetries and constants directly from the elastic coefficients in the overall stiffness matrix of trabecular bone test specimens. Contrary to earlier developed techniques, this method does not require pure orthotropic behavior or additional fabric

  9. Dependence of Some Mechanical Properties of Elastic Bands on the Length and Load Time

    Triana, C. A.; Fajardo, F.

    2012-01-01

    We present a study of the maximum stress supported by elastics bands of nitrile as a function of the natural length and the load time. The maximum tension of rupture and the corresponding variation in length were found by measuring the elongation of an elastic band when a mass is suspended from its free end until it reaches the breaking point. The…

  10. First-principles study on electronic, optic, elastic, dynamic and thermodynamic properties of RbH compound

    Gulebaglan Sinem Erden

    2015-01-01

    Full Text Available We performed first-principles calculations to obtain the electronic, optical, elastic, lattice-dynamical and thermodynamic properties of RbH compound with rock salt structure. The ground-state properties, i.e., the lattice constant and the band gap were investigated using a plane wave pseudopotential method within density functional theory. The calculated lattice constant, bulk modulus, energy band gap and elastic constants are reported and compared with previous theoretical and experimental results. Our calculated results and the previous results which are obtained from literature are in a good agreement. Moreover, real and imaginary parts of complex dielectric function, reflectivity spectrum, absorption, extinction coefficient and loss function as a function of photon energy and refractive index with respect to photon wavelength were calculated. In addition, temperature dependent thermodynamic properties such as Helmholtz free energy, internal energy, entropy and specific heat have been studied.

  11. First-principles study of structural stability and elastic property of pre-perovskite PbTiO3

    Liu Yong; Ni Li-Hong; Ren Zhao-Hui; Xu Gang; Li Xiang; Song Chen-Lu; Han Gao-Rong

    2012-01-01

    The structural stability and the elastic properties of a novel structure of lead titanate, which is named pre- perovskite PbTiO 3 (PP-PTO) and is constructed with TiO 6 octahedral columns arranged in a one-dimensional manner, are investigated by using first-principles calculations. PP-PTO is energetically unstable compared with conventional perovskite phases, however it is mechanically stable. The equilibrium transition pressures for changing from pre- perovskite to cubic and tetragonal phases are −0.5 GPa and −1.4 GPa, respectively, with first-order characteristics. Further, the differences in elastic properties between pre-perovskite and conventional perovskite phases are discussed for the covalent bonding network, which shows a highly anisotropic character in PP-PTO. This study provides a crucial insight into the structural stabilities of PP-PTO and conventional perovskite. (condensed matter: structural, mechanical, and thermal properties)

  12. Some practical results for calculating the elastic properties of cubic polycrystals with texture measured by neutron diffraction

    Lychagina, T.A.; Brokmeier, H.G.

    1999-01-01

    Complete text of publication follows. It is well known that the elastic properties of a polycrystalline material are strongly dependent on the one hand the single crystal elastic properties and on the other hand its crystallographic texture [1]. The calculation of these properties needs the quantitative texture given by the orientation distribution function (ODF), which represents texture mathematically. By a given set of experimental pole figures a number of programs are available to calculate the ODF, which might have an influence on the resulting properties. The aim of this work is to compare elastic properties of cubic materials calculated with ODFs obtained by different methods. The calculations were carried out on a cold rolled Al-6%Mg alloy sheet and on a copper rod. Experimental pole figures were obtained by means of neutron diffraction [2] and used for ODF calculation. The conformity between different results will be discussed. (author) [1] H.J. Bunge 1982, Texture Analysis in Material Science - Mathematical Methods, Butterworth, London.; [2] H.G. Brokmeier, U. Zink, R. Schnieber, B. Witassek, Material Science Forum (1998), 273-275, 277

  13. Systematic study of the elastic properties of Mn3AC antiperovskite with A = Zn, Al, Ga, In, Tl, Ge and Sn

    Medkour, Y.; Roumili, A.; Maouche, D.; Saoudi, A.; Louail, L.

    2012-01-01

    Highlights: ► Single crystal elastic constants C 11 , C 12 and C 44 were calculated. ► Elastic moduli for polycrystalline aggregate were obtained. ► Increasing the atomic number of A element reduces B, G′, Y and v. ► Mn 3 AlC has a high melting point and light weight. - Abstract: First principle calculations were made to investigate the elastic properties of Mn 3 AC antiperovskites, A = Zn, Al, Ga, In, Tl, Ge and Sn. The estimated equilibrium lattice parameters are in agreement with the experimental ones. From the single crystal elastic constants we have calculated the polycrystalline elastic moduli: the bulk modulus B, shear modulus G, tetragonal shear modulus G′, Young’s modulus Y, Cauchy’s pressure CP, Poisson’s ratio v, elastic anisotropy factor and Pugh’s criterion G/B. Using Debye’s approximation we have deduced the elastic wave velocities and Debye’s temperature.

  14. Material and elastic properties of Al-tobermorite in ancient roman seawater concrete

    Jackson, Marie D.

    2013-05-28

    The material characteristics and elastic properties of aluminum-substituted 11 Å tobermorite in the relict lime clasts of 2000-year-old Roman seawater harbor concrete are described with TG-DSC and 29Si MAS NMR studies, along with nanoscale tomography, X-ray microdiffraction, and high-pressure X-ray diffraction synchrotron radiation applications. The crystals have aluminum substitution for silicon in tetrahedral bridging and branching sites and 11.49(3) Å interlayer (002) spacing. With prolonged heating to 350°C, the crystals exhibit normal behavior. The experimentally measured isothermal bulk modulus at zero pressure, K0, 55 ±5 GPa, is less than ab initio and molecular dynamics models for ideal tobermorite with a double-silicate chain structure. Even so, K0, is substantially higher than calcium-aluminum-silicate-hydrate binder (C-A-S-H) in slag concrete. Based on nanoscale tomographic study, the crystal clusters form a well connected solid, despite having about 52% porosity. In the pumiceous cementitious matrix, Al-tobermorite with 11.27 Å interlayer spacing is locally associated with phillipsite, similar to geologic occurrences in basaltic tephra. The ancient concretes provide a sustainable prototype for producing Al-tobermorite in high-performance concretes with natural volcanic pozzolans. © 2013 The American Ceramic Society.

  15. High-pressure structural and elastic properties of Tl₂O₃

    Gomis, O., E-mail: osgohi@fis.upv.es; Vilaplana, R. [Centro de Tecnologías Físicas, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Santamaría-Pérez, D. [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, 46100 Burjassot (Spain); Earth Sciences Department, University College London, Gower Street, WC1E 6BT London (United Kingdom); Ruiz-Fuertes, J. [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, 46100 Burjassot (Spain); Geowissenschaften, Goethe-Universität, Altenhöferallee 1, 60438 Frankfurt am Main (Germany); Sans, J. A.; Manjón, F. J.; Mollar, M. [Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); and others

    2014-10-07

    The structural properties of Thallium (III) oxide (Tl₂O₃) have been studied both experimentally and theoretically under compression at room temperature. X-ray powder diffraction measurements up to 37.7 GPa have been complemented with ab initio total-energy calculations. The equation of state of Tl₂O₃ has been determined and compared to related compounds. It has been found experimentally that Tl₂O₃ remains in its initial cubic bixbyite-type structure up to 22.0 GPa. At this pressure, the onset of amorphization is observed, being the sample fully amorphous at 25.2 GPa. The sample retains the amorphous state after pressure release. To understand the pressure-induced amorphization process, we have studied theoretically the possible high-pressure phases of Tl₂O₃. Although a phase transition is theoretically predicted at 5.8 GPa to the orthorhombic Rh₂O₂-II-type structure and at 24.2 GPa to the orthorhombic α-Gd₂S₃-type structure, neither of these phases were observed experimentally, probably due to the hindrance of the pressure-driven phase transitions at room temperature. The theoretical study of the elastic behavior of the cubic bixbyite-type structure at high-pressure shows that amorphization above 22 GPa at room temperature might be caused by the mechanical instability of the cubic bixbyite-type structure which is theoretically predicted above 23.5 GPa.

  16. Uncovering New Thermal and Elastic Properties of Nanostructured Materials Using Coherent EUV Light

    Hernandez Charpak, Jorge Nicolas

    Advances in nanofabrication have pushed the characteristic dimensions of nanosystems well below 100nm, where physical properties are often significantly different from their bulk counterparts, and accurate models are lacking. Critical technologies such as thermoelectrics for energy harvesting, nanoparticle-mediated thermal therapy, nano-enhanced photovoltaics, and efficient thermal management in integrated circuits depend on our increased understanding of the nanoscale. However, traditional microscopic characterization tools face fundamental limits at the nanoscale. Theoretical efforts to build a fundamental picture of nanoscale thermal dynamics lack experimental validation and still struggle to account for newly reported behaviors. Moreover, precise characterization of the elastic behavior of nanostructured systems is needed for understanding the unique physics that become apparent in small-scale systems, such as thickness-dependent or fabrication-dependent elastic properties. In essence, our ability to fabricate nanosystems has outstripped our ability to understand and characterize them. In my PhD thesis, I present the development and refinement of coherent extreme ultraviolet (EUV) nanometrology, a novel tool used to probe material properties at the intrinsic time- and length-scales of nanoscale dynamics. By extending ultrafast photoacoustic and thermal metrology techniques to very short probing wavelengths using tabletop coherent EUV beams from high-harmonic upconversion (HHG) of femtosecond lasers, coherent EUV nanometrology allows for a new window into nanoscale physics, previously unavailable with traditional techniques. Using this technique, I was able to probe both thermal and acoustic dynamics in nanostructured systems with characteristic dimensions below 50nm with high temporal (sub-ps) and spatial (size and spacing of the nanoscale heat sources with the phonon spectrum of a material. This makes our technique one of the only experimental routes to

  17. Constraining properties of high-density matter in neutron stars with magneto-elastic oscillations

    Gabler, Michael; Cerdá-Durán, Pablo; Stergioulas, Nikolaos; Font, José A.; Müller, Ewald

    2018-05-01

    We discuss torsional oscillations of highly magnetized neutron stars (magnetars) using two-dimensional, magneto-elastic-hydrodynamical simulations. Our model is able to explain both the low- and high-frequency quasi-periodic oscillations (QPOs) observed in magnetars. The analysis of these oscillations provides constraints on the breakout magnetic-field strength, on the fundamental QPO frequency, and on the frequency of a particularly excited overtone. By performing a new set of simulations, we are able to derive for the first time empirical relations for a self consistent model including a superfluid core which describe these constraints quantitatively. We use these relations to generically constrain properties of high-density matter in neutron stars, employing Bayesian analysis. In spite of current uncertainties and computational approximations, our model-dependent Bayesian posterior estimates for SGR 1806-20 yield a magnetic-field strength \\bar{B}˜ 2.1^{+1.3}_{-1.0}× 10^{15} G and a crust thickness of Δ r = 1.6^{+0.7}_{-0.6} km, which are both in remarkable agreement with observational and theoretical expectations, respectively (1σ error bars are indicated). Our posteriors also favour the presence of a superfluid phase in the core, a relatively low stellar compactness, M/R star, and high shear speeds at the base of the crust, cs > 1.4 × 108 cm s-1. Although the procedure laid out here still has large uncertainties, these constraints could become tighter when additional observations become available.

  18. Effect of elastic constants of liquid crystals in their electro-optical properties

    Parang, Z.; Ghaffary, T.; Gharahbeigi, M. M.

    Recently following the success of the density functional theory (DFT) in obtaining the structure and thermodynamics of homogeneous and inhomogeneous classical systems such as simple fluids, dipolar fluid and binary hard spheres, this theory was also applied to obtain the density profile of a molecular fluid in between hard planar walls by Kalpaxis and Rickayzen. In the theory of molecular fluids, the direct correlation function (DCF) can be used to calculate the equation of state, free energy, phase transition, elastic constants, etc. It is well known that the hard core molecular models play an important role in understanding complex liquids such as liquid crystals. In this paper, a classical fluid of nonspherical molecules is studied. The required homogeneous (DCF) is obtained by solving Orenstein-Zernike (OZ) integral equation numerically. Some of the molecules in the liquid crystals have a sphere shape and this kind of molecular fluid is considered here. The DCF sphere of the molecular fluid is calculated and it will be shown that the results are in good agreement with the pervious works and the results of computer simulation. Finally the electro-optical properties of ellipsoid liquid crystal using DCF of these molecules are calculated.

  19. Electronic, elastic, and optical properties of monolayer BC{sub 2}N

    Jiao, Lina; Hu, Meng; Peng, Yusi; Luo, Yanting; Li, Chunmei; Chen, Zhiqian, E-mail: chen_zq@swu.edu.cn

    2016-12-15

    The structural stability, electronic structure, elasticity, and optical properties of four types of monolayer BC{sub 2}N have been investigated from first principles using calculation based on density functional theory. The results show that the structural stability of BC{sub 2}N increases with the number of C–C and B–N bonds. By calculating the two-dimensional Young's modulus, shear modulus, Poisson's ratio, and shear anisotropic factors in different directions, four structures present various anisotropies and the most stable structure is almost isotropic. For C-type BC{sub 2}N, the values of two-dimensional Young's modulus, shear modulus, and bulk modulus (309, 128, 195 GPa m{sup −1}), are smaller than those of graphene (343, 151, 208) but bigger than those of h-BN (286, 185, 116). Furthermore, the dielectric function, refractive index, reflectivity, absorption coefficient, and energy loss spectrum are also calculated to investigate the mechanism underpinning the optical transitions in BC{sub 2}N, revealing monolayer BC{sub 2}N as a candidate window material. - Graphical abstract: Schematic diagram of BC{sub 2}N under the biaxial tensile strain. Changes in the valence-band top and the conduction-band bottom of BC{sub 2}N with increasing strain.

  20. Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation.

    García-Rodríguez, J; Martínez-Reina, J

    2017-02-01

    Woven bone is a type of tissue that forms mainly during fracture healing or fetal bone development. Its microstructure can be modeled as a composite with a matrix of mineral (hydroxyapatite) and inclusions of collagen fibrils with a more or less random orientation. In the present study, its elastic properties were estimated as a function of composition (degree of mineralization) and fibril orientation. A self-consistent homogenization scheme considering randomness of inclusions' orientation was used for this purpose. Lacuno-canalicular porosity in the form of periodically distributed void inclusions was also considered. Assuming collagen fibrils to be uniformly oriented in all directions led to an isotropic tissue with a Young's modulus [Formula: see text] GPa, which is of the same order of magnitude as that of woven bone in fracture calluses. By contrast, assuming fibrils to have a preferential orientation resulted in a Young's modulus in the preferential direction of 9-16 GPa depending on the mineral content of the tissue. These results are consistent with experimental evidence for woven bone in foetuses, where collagen fibrils are aligned to a certain extent.

  1. First-principles study of the elastic and thermodynamic properties of thorium hydrides at high pressure

    Zhang Xiao-Lin; Wu Yuan-Yuan; Shao Xiao-Hong; Lu Yong; Zhang Ping

    2016-01-01

    The high pressure behaviors of Th 4 H 15 and ThH 2 are investigated by using the first-principles calculations based on the density functional theory (DFT). From the energy–volume relations, the bct phase of ThH 2 is more stable than the fcc phase at ambient conditions. At high pressure, the bct ThH 2 and bcc Th 4 H 15 phases are more brittle than they are at ambient pressure from the calculated elastic constants and the Poisson ratio. The thermodynamic stability of the bct phase ThH 2 is determined from the calculated phonon dispersion. In the pressure domain of interest, the phonon dispersions of bcc Th 4 H 15 and bct ThH 2 are positive, indicating the dynamical stability of these two phases, while the fcc ThH 2 is unstable. The thermodynamic properties including the lattice vibration energy, entropy, and specific heat are predicted for these stable phases. The vibrational free energy decreases with the increase of the temperature, and the entropy and the heat capacity are proportional to the temperature and inversely proportional to the pressure. As the pressure increases, the resistance to the external pressure is strengthened for Th 4 H 15 and ThH 2 . (paper)

  2. First-principles study of the elastic and thermodynamic properties of thorium hydrides at high pressure

    Xiao-Lin, Zhang; Yuan-Yuan, Wu; Xiao-Hong, Shao; Yong, Lu; Ping, Zhang

    2016-05-01

    The high pressure behaviors of Th4H15 and ThH2 are investigated by using the first-principles calculations based on the density functional theory (DFT). From the energy-volume relations, the bct phase of ThH2 is more stable than the fcc phase at ambient conditions. At high pressure, the bct ThH2 and bcc Th4H15 phases are more brittle than they are at ambient pressure from the calculated elastic constants and the Poisson ratio. The thermodynamic stability of the bct phase ThH2 is determined from the calculated phonon dispersion. In the pressure domain of interest, the phonon dispersions of bcc Th4H15 and bct ThH2 are positive, indicating the dynamical stability of these two phases, while the fcc ThH2 is unstable. The thermodynamic properties including the lattice vibration energy, entropy, and specific heat are predicted for these stable phases. The vibrational free energy decreases with the increase of the temperature, and the entropy and the heat capacity are proportional to the temperature and inversely proportional to the pressure. As the pressure increases, the resistance to the external pressure is strengthened for Th4H15 and ThH2. Project supported by the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of China.

  3. FP-LAPW calculations of the elastic, electronic and thermoelectric properties of the filled skutterudite CeRu{sub 4}Sb{sub 12}

    Shankar, A., E-mail: amitshan2009@gmail.com [Condensed Matter Theory Group, Department of Physics, Mizoram University, 796004 (India); Rai, D.P. [Department of Physics, Pachhunga University College, Aizawl 796001 (India); Chettri, Sandeep [Condensed Matter Theory Group, Department of Physics, Mizoram University, 796004 (India); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Département de Technologie, Université de Mascara, 29000 (Algeria); Thapa, R.K. [Condensed Matter Theory Group, Department of Physics, Mizoram University, 796004 (India)

    2016-08-15

    We have investigated the electronic structure, elastic and thermoelectric properties of the filled skutterudite CeRu{sub 4}Sb{sub 12} using the density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) approach is used to perform the calculations presented here. The electronic structure calculation suggests an indirect band gap semiconducting nature of the material with energy band gap of 0.08 eV. The analysis of the elastic constants at relaxed positions reveals the ductile nature of the sample material with covalent contribution in the inter-atomic bonding. The narrow band gap semiconducting nature with high value of Seebeck coefficient suggests the possibility of the thermoelectric application of the material. The analysis of the thermal transport properties confirms the result obtained from the energy band structure of the material with high thermopower and dimensionless figure of merit 0.19 at room temperature.

  4. Linear Polarization Properties of Parsec-Scale AGN Jets

    Alexander B. Pushkarev

    2017-12-01

    Full Text Available We used 15 GHz multi-epoch Very Long Baseline Array (VLBA polarization sensitive observations of 484 sources within a time interval 1996–2016 from the MOJAVE program, and also from the NRAO data archive. We have analyzed the linear polarization characteristics of the compact core features and regions downstream, and their changes along and across the parsec-scale active galactic nuclei (AGN jets. We detected a significant increase of fractional polarization with distance from the radio core along the jet as well as towards the jet edges. Compared to quasars, BL Lacs have a higher degree of polarization and exhibit more stable electric vector position angles (EVPAs in their core features and a better alignment of the EVPAs with the local jet direction. The latter is accompanied by a higher degree of linear polarization, suggesting that compact bright jet features might be strong transverse shocks, which enhance magnetic field regularity by compression.

  5. Linear and nonlinear optical properties of borate crystals as ...

    Unknown

    crystal series, with an accuracy acceptable for materials development/design, and answer the questions often ... Optical property; nonlinear optical crystals; first principles calculation. 1. ..... system, and is not in concept suitable to excitation pro-.

  6. Structural and Interfacial Properties of Hyperbranched-Linear Polymer Surfactant

    Qiang, Taotao; Bu, Qiaoqiao; Huang, Zhaofeng; Wang, Xuechuan

    2014-01-01

    With oleic acid grafting modification, a series of hyperbranched-linear polymer surfactants (HLPS) were prepared by hydroxyl-terminated hyperbranched polymer (HBP), which was gained through a step synthesis method using trimethylolpropane and AB2 monomer. The AB2 monomers were obtained through the Michael addition reaction of methyl acrylate and diethanol amine. The structures of HLPS were characterised by Fourier transform infrared spectrophotometer and nuclear magnetic resonance (NMR), whic...

  7. Robust and Elastic Polymer Membranes with Tunable Properties for Gas Separation.

    Cao, Peng-Fei; Li, Bingrui; Hong, Tao; Xing, Kunyue; Voylov, Dmitry N; Cheng, Shiwang; Yin, Panchao; Kisliuk, Alexander; Mahurin, Shannon M; Sokolov, Alexei P; Saito, Tomonori

    2017-08-09

    Polymer membranes with the capability to process a massive volume of gas are especially attractive for practical applications of gas separation. Although much effort has been devoted to develop novel polymer membranes with increased selectivity, the overall gas-separation performance and lifetime of membrane are still negatively affected by the weak mechanical performance, low plasticization resistance and poor physical aging tolerance. Recently, elastic polymer membranes with tunable mechanical properties have been attracting significant attentions due to their tremendous potential applications. Herein, we report a series of urethane-rich PDMS-based polymer networks (U-PDMS-NW) with improved mechanical performance for gas separation. The cross-link density of U-PDMS-NWs is tailored by varying the molecular weight (M n ) of PDMS. The U-PDMS-NWs show up to 400% elongation and tunable Young's modulus (1.3-122.2 MPa), ultimate tensile strength (1.1-14.3 MPa), and toughness (0.7-24.9 MJ/m 3 ). All of the U-PDMS-NWs exhibit salient gas-separation performance with excellent thermal resistance and aging tolerance, high gas permeability (>100 Barrer), and tunable gas selectivity (up to α[P CO 2 /P N 2 ] ≈ 41 and α[P CO 2 /P CH 4 ] ≈ 16). With well-controlled mechanical properties and gas-separation performance, these U-PDMS-NW can be used as a polymer-membrane platform not only for gas separation but also for other applications such as microfluidic channels and stretchable electronic devices.

  8. A new preconditioner update strategy for the solution of sequences of linear systems in structural mechanics: application to saddle point problems in elasticity

    Mercier, Sylvain; Gratton, Serge; Tardieu, Nicolas; Vasseur, Xavier

    2017-12-01

    Many applications in structural mechanics require the numerical solution of sequences of linear systems typically issued from a finite element discretization of the governing equations on fine meshes. The method of Lagrange multipliers is often used to take into account mechanical constraints. The resulting matrices then exhibit a saddle point structure and the iterative solution of such preconditioned linear systems is considered as challenging. A popular strategy is then to combine preconditioning and deflation to yield an efficient method. We propose an alternative that is applicable to the general case and not only to matrices with a saddle point structure. In this approach, we consider to update an existing algebraic or application-based preconditioner, using specific available information exploiting the knowledge of an approximate invariant subspace or of matrix-vector products. The resulting preconditioner has the form of a limited memory quasi-Newton matrix and requires a small number of linearly independent vectors. Numerical experiments performed on three large-scale applications in elasticity highlight the relevance of the new approach. We show that the proposed method outperforms the deflation method when considering sequences of linear systems with varying matrices.

  9. Stability, elastic and magnetostrictive properties of γ-Fe{sub 4}C and its derivatives from first principles theory

    Zhang, Yun; Wang, Zhe [Department of Physics, Xiangtan University, Xiangtan, 411105 Hunan (China); Cao, Juexian, E-mail: jxcao@xtu.edu.cn [Department of Physics, Xiangtan University, Xiangtan, 411105 Hunan (China); Beijing Computational Science Reasearch Center, 100084 Beijing (China)

    2014-11-15

    Using the first-principles full-potential linearized augmented plane-wave method, we investigated the stability, elastic and magnetostrictive properties of γ-Fe{sub 4}C and its derivatives. From the formation energy, we show that the most preferable configuration for MFe{sub 3}C (M=Pd, Pt, Rh, Ir) is that the M atom occupies the corner 1a position rather than 3c position. These derivatives are ductile due to high B/G values except for IrFe{sub 3}C. The calculated tetragonal magnetostrictive coefficient λ{sub 001} value for γ-Fe{sub 4}C is −380 ppm, which is larger than the value of Fe{sub 83}Ga{sub 17} (+207 ppm). Due to the strong SOC coupling strength constant (ξ) of Pt, the calculated λ{sub 001} of PtFe{sub 3}C is −691 ppm, which is increased by 80% compared to that of γ-Fe{sub 4}C. We demonstrate the origin of giant magnetostriction coefficient in terms of electronic structures and their responses to the tetragonal lattice distortion. - Highlights: • The most preferable site for M atom of MFe{sub 3}C (M=Pd, Pt, Rh, Ir) is the corner position. • The magnetostrictive coefficient for γ-Fe{sub 4}C is −380 ppm, larger than the value of Fe{sub 83}Ga{sub 17}. • The calculated λ{sub 001} of PtFe{sub 3}C is −691 ppm, which is increased by 80% compared to that of γ-Fe{sub 4}C.

  10. Effects of a high mean stress on the high cycle fatigue life of PWA 1480 and correlation of data by linear elastic fracture mechanics

    Majumdar, S.; Kwasny, R.

    1985-01-01

    High-cycle fatigue tests using 5-mm-diameter smooth specimens were performed on the single crystal alloy PWA 1480 (001 axis) at 70F (room temperature) in air and at 100F (538C) in vacuum (10 to the -6 power torr). Tests were conducted at zero mean stress as well as at high tensile mean stress. The results indicate that, although a tensile mean stress, in general, reduces life, the reduction in fatigue strength, for a given mean stress at a life of one million cycles, is much less than what is predicted by the usual linear Goodman plot. Further, the material appears to be significantly more resistant to mean stress effects at 1000F than at 70F. Metallographic examinations of failed specimens indicate that failures in all cases are initiated from micropores of sizes of the order of 30 to 40 microns. Since the macroscopic stress-strain response in all cases was observed to be linear elastic, linear elastic fracture mechanics (LEFM) analyses were carried out to determine the crack growth curves of the material assuming that crack initiation from a micropore (a sub o = 40 microns) occurs very early in life. The results indicate that the calculated crack growth rates at an R (defined as the ratio between minimum stress to maximum stress) value of zero are approximately the same at 70F as at 1000F. However, the calculated crack growth rates at other R ratios, both positive and negative, tend to be higher at 70F than at 1000F. Calculated threshold effects at large R values tend to be independent of temperature in the temperature regime studied. They are relatively constant with increasing R ratio up to a value of about 0.6, beyond which the calculated threshold stress intensity factor range decreases rapidly with increasing R ratios.

  11. Contact-resonance atomic force microscopy for nanoscale elastic property measurements: Spectroscopy and imaging

    Stan, G.; Krylyuk, S.; Davydov, A.V.; Vaudin, M.D.; Bendersky, L.A.; Cook, R.F.

    2009-01-01

    Quantitative measurements of the elastic modulus of nanosize systems and nanostructured materials are provided with great accuracy and precision by contact-resonance atomic force microscopy (CR-AFM). As an example of measuring the elastic modulus of nanosize entities, we used the CR-AFM technique to measure the out-of-plane indentation modulus of tellurium nanowires. A size-dependence of the indentation modulus was observed for the investigated tellurium nanowires with diameters in the range 20-150 nm. Over this diameter range, the elastic modulus of the outer layers of the tellurium nanowires experienced significant enhancement due to a pronounced surface stiffening effect. Quantitative estimations for the elastic moduli of the outer and inner parts of tellurium nanowires of reduced diameter are made with a core-shell structure model. Besides localized elastic modulus measurements, we have also developed a unique CR-AFM imaging capability to map the elastic modulus over a micrometer-scale area. We used this CR-AFM capability to construct indentation modulus maps at the junction between two adjacent facets of a tellurium microcrystal. The clear contrast observed in the elastic moduli of the two facets indicates the different surface crystallography of these facets.

  12. Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX2: X = S, Se, Te)

    Sharma, Sheetal; Verma, A.S.; Jindal, V.K.

    2014-01-01

    Graphical abstract: - Highlights: • FP-LAPW method has been used to compute the solid state properties of AgGaX 2 (X = S, Se, Te). • Electronic and optical properties reported with recently developed mBJ potential. • Thermal expansion, heat capacity, Debye temperature, entropy and Grüneisen parameter were evaluated. • Hardness was calculated for the first time at different temperature and pressure. - Abstract: We have performed ab initio calculations for the structural, electronic, optical, elastic and thermal properties of the silver gallium dichalcogenides (AgGaX 2 : X = S, Se, Te). In this study, we have used the accurate full potential linearized augmented plane wave (FP-LAPW) method to find the equilibrium structural parameters and to compute the six elastic constants (C 11 , C 12 , C 13 , C 33 , C 44 and C 66 ). We have reported electronic and optical properties with the recently developed density functional theory of Tran and Blaha, and this theory is used along with the Wu-Cohen generalized gradient approximation (WC-GGA) for the exchange-correlation potential. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients and optical conductivities were calculated for photon energies up to 40 eV. The thermodynamical properties such as thermal expansion, heat capacity, debye temperature, entropy, Grüneisen parameter and bulk modulus were calculated employing the quasi-harmonic Debye model at different temperatures (0–900 K) and pressures (0–8 GPa) and the silent results were interpreted. Hardness of the materials was calculated for the first time at different temperatures and pressures

  13. Optimizing Thermal-Elastic Properties of C/C–SiC Composites Using a Hybrid Approach and PSO Algorithm

    Xu, Yingjie; Gao, Tian

    2016-01-01

    Carbon fiber-reinforced multi-layered pyrocarbon–silicon carbide matrix (C/C–SiC) composites are widely used in aerospace structures. The complicated spatial architecture and material heterogeneity of C/C–SiC composites constitute the challenge for tailoring their properties. Thus, discovering the intrinsic relations between the properties and the microstructures and sequentially optimizing the microstructures to obtain composites with the best performances becomes the key for practical applications. The objective of this work is to optimize the thermal-elastic properties of unidirectional C/C–SiC composites by controlling the multi-layered matrix thicknesses. A hybrid approach based on micromechanical modeling and back propagation (BP) neural network is proposed to predict the thermal-elastic properties of composites. Then, a particle swarm optimization (PSO) algorithm is interfaced with this hybrid model to achieve the optimal design for minimizing the coefficient of thermal expansion (CTE) of composites with the constraint of elastic modulus. Numerical examples demonstrate the effectiveness of the proposed hybrid model and optimization method. PMID:28773343

  14. Mechanical Properties of Potato- Starch Linear Low Density ...

    The mechanical properties of potato-starch filled LLDPE such as Young's Modulus, tensile strength and elongation at break were studied. Apart from the Young's Modulus, the tensile strength and elongation at break reduced with increased starch content. This is attributed to poor adhesion between starch and the polymer ...

  15. Elastic Properties of Hard Films Multi-Layer Protective Coatings by Light Scattering

    Sooryakumar, R

    2000-01-01

    ... (silicon oxynitride and ZnSe) and free-standing membranes (SiN). These harmonics provide a direct means to investigate the longitudinal and transverse sound velocities and thereby to determine the C11 and C44 elastic constants...

  16. Elasticity and physico-chemical properties during drinking water biofilm formation.

    Abe, Yumiko; Polyakov, Pavel; Skali-Lami, Salaheddine; Francius, Grégory

    2011-08-01

    Atomic force microscope techniques and multi-staining fluorescence microscopy were employed to study the steps in drinking water biofilm formation. During the formation of a conditioning layer, surface hydrophobic forces increased and the range of characteristic hydrophobic forces diversified with time, becoming progressively complex in macromolecular composition, which in return triggered irreversible cellular adhesion. AFM visualization of 1 to 8 week drinking water biofilms showed a spatially discontinuous and heterogeneous distribution comprising an extensive network of filamentous fungi in which biofilm aggregates were embedded. The elastic modulus of 40-day-old biofilms ranged from 200 to 9000 kPa, and the biofilm deposits with a height >0.5 μm had an elastic modulus water biofilms were composed of a soft top layer and a basal layer with significantly higher elastic modulus values falling in the range of fungal elasticity.

  17. Free volume and elastic properties changes in Cu-Zr-Ti-Pd bulk glassy alloy on heating

    Louzguine-Luzgin, Dmitri V.; Yavari, Alain Reza; Fukuhara, Mikio; Ota, Katsumi; Xie, Guoqiang; Vaughan, Gavin; Inoue, Akihisa

    2007-01-01

    The variation of free volume and elastic properties of the Cu 55 Zr 30 Ti 10 Pd 5 glassy alloy on heating was studied. The structure changes on heating were studied by synchrotron X-ray diffraction, differential scanning and isothermal calorimetries. The studied glassy alloy shows a rather high Poisson's ratio exceeding 0.42 which is maintained after the structure relaxation and primary devitrification. Young's and Shear modules decrease upon primary devitrification while Bulk modulus exhibits a maximum after structural relaxation

  18. The determination of the elastic properties of an anisotropic polycrystalline graphite using neutron diffraction and ultrasonic measurements

    Lokajíček, Tomáš; Lukáš, Petr; Nikitin, A. N.; Papushkin, I.V.; Sumin, V. V.; Vasin, R.N.

    2010-01-01

    Roč. 49, č. 4 (2010), s. 1374-1384 ISSN 0008-6223 R&D Projects: GA ČR GA205/08/0676 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z10480505 Keywords : extruded graphite * elastic properties * neutron diffraction * ultrasonic sounding * thermal-expansion * self-consistent * young moduls * porosity * stress * rocks Subject RIV: DB - Geology ; Mineralogy Impact factor: 4.893, year: 2010

  19. Alteration of the superconducting properties of A15 compounds and elementary composite superconductors by non-hydrostatic elastic strain

    Welch, D.O.

    1979-01-01

    Elastic strains alter (usually, but not always, adversely) the critical temperatures, magnetic fields, and current densities of superconducting A15 compounds; non-hydrostatic strain states are particularly effective in this regard. This paper is a review of the experimental evidence, obtained by a variety of techniques, concerning the strain dependence of the critical properties of a number of A15 compounds and a discussion of theoretical models for describing such effects

  20. Electronic, elastic, thermodynamic properties and structure disorder of {gamma}-AlON solid solution from ab initio calculations

    Wang, Yuezhong, E-mail: wyzphysics@163.com [Department of Physics and Key Laboratory for Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Tianjin Jinhang Institute of Technical Physics, Tianjin 300192 (China); Lu, Tiecheng, E-mail: lutiecheng@scu.edu.cn [Department of Physics and Key Laboratory for Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); International Center for Material Physics, Chinese Academy of Sciences, Shenyang 110015 (China); Zhang, Rongshi [Tianjin Jinhang Institute of Technical Physics, Tianjin 300192 (China); Jiang, Shengli; Qi, Jianqi; Wang, Ying [Department of Physics and Key Laboratory for Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Chen, Qingyun [Department of Physics and Key Laboratory for Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); National Defense Key Discipline Laboratory of Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010 (China); Miao, Naihua [Physique Theorique des Materiaux, Universite de Liege, Sart Tilman B-4000 (Belgium); He, Duanwei [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610064 (China)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer We reassess the chemical bonding character of {gamma}-AlON which shows strong ionicity. Black-Right-Pointing-Pointer {gamma}-AlON single-crystals exhibit highly elastic anisotropy. Black-Right-Pointing-Pointer The thermodynamic properties are investigated in a wider temperature/pressure range. Black-Right-Pointing-Pointer {gamma}-AlON is an O/N partially disordered structure. - Abstract: Spinel aluminium oxynitride ({gamma}-AlON), as a kind of transparent ceramic material expectable, is studied using the ab initio density functional method, in terms of electronic, elastic, thermodynamic properties and structure disorder. The results show that {gamma}-AlON exhibits strong ionicity, as quantitatively expressed by (Al{sub O}{sup 2.43+}){sub 15}(Al{sub T}{sup 2.41+}){sub 8}(O{sup 1.64-}){sub 27}(N{sup 2.27-}){sub 5} from our reassessment of the ionic character. We summarize and speculate that the considered oxynitride single-crystals exhibit highly elastic anisotropy. The interpretation of the thermodynamic properties of {gamma}-AlON according to quasi-harmonic Debye model confirm the available experiments and are extended to a wider temperature/pressure range. This material holds high elastic strength under extreme environments, where dB/dT absolute value is less than 0.03 GPa/K, independent of the pressure. Finally, we study the O/N structure disorder character of {gamma}-AlON solid solution by investigating nine possible crystal structures. It is found that {gamma}-AlON should be partially disordered, and in fact, the O/N ordering has a significant effect on the properties.

  1. Electronic, elastic, thermodynamic properties and structure disorder of γ-AlON solid solution from ab initio calculations

    Wang, Yuezhong; Lu, Tiecheng; Zhang, Rongshi; Jiang, Shengli; Qi, Jianqi; Wang, Ying; Chen, Qingyun; Miao, Naihua; He, Duanwei

    2013-01-01

    Highlights: ► We reassess the chemical bonding character of γ-AlON which shows strong ionicity. ► γ-AlON single-crystals exhibit highly elastic anisotropy. ► The thermodynamic properties are investigated in a wider temperature/pressure range. ► γ-AlON is an O/N partially disordered structure. - Abstract: Spinel aluminium oxynitride (γ-AlON), as a kind of transparent ceramic material expectable, is studied using the ab initio density functional method, in terms of electronic, elastic, thermodynamic properties and structure disorder. The results show that γ-AlON exhibits strong ionicity, as quantitatively expressed by (Al O 2.43+ ) 15 (Al T 2.41+ ) 8 (O 1.64- ) 27 (N 2.27- ) 5 from our reassessment of the ionic character. We summarize and speculate that the considered oxynitride single-crystals exhibit highly elastic anisotropy. The interpretation of the thermodynamic properties of γ-AlON according to quasi-harmonic Debye model confirm the available experiments and are extended to a wider temperature/pressure range. This material holds high elastic strength under extreme environments, where dB/dT absolute value is less than 0.03 GPa/K, independent of the pressure. Finally, we study the O/N structure disorder character of γ-AlON solid solution by investigating nine possible crystal structures. It is found that γ-AlON should be partially disordered, and in fact, the O/N ordering has a significant effect on the properties.

  2. Effect of AlF3 on the Density and Elastic Properties of Zinc Tellurite Glass Systems

    Sidek, Haji Abdul Aziz; Rosmawati, Shaharuddin; Halimah, Mohamed Kamari; Matori, Khamirul Amin; Talib, Zainal Abidin

    2012-01-01

    This paper presents the results of the physical and elastic properties of the ternary zinc oxyfluoro tellurite glass system. Systematic series of glasses (AlF3)x(ZnO)y(TeO2)z with x = 0–19, y = 0–20 and z = 80, 85, 90 mol% were synthesized by the conventional rapid melt quenching technique. The composition dependence of the physical, mainly density and molar volume, and elastic properties is discussed in term of the AlF3 modifiers addition that are expected to produce quite substantial changes in their physical properties. The absence of any crystalline peaks in the X-ray diffraction (XRD) patterns of the present glass samples indicates the amorphous nature. The addition of AlF3 lowered the values of the densities in ternary oxyfluorotellurite glass systems. The longitudinal and transverse ultrasonic waves propagated in each glass sample were measured using a MBS8020 ultrasonic data acquisition system. All the velocity data were taken at 5 MHz frequency and room temperature. The longitudinal modulus (L), shear modulus (G), Young’s modulus (E), bulk modulus (K) and Poisson’s ratio (σ) are obtained from both velocities data and their respective density. Experimental data shows the density and elastic moduli of each AlF3-ZnO-TeO2 series are found strongly depend upon the glass composition. The addition of AlF3 modifiers into the zinc tellurite causes substantial changes in their density, molar volume as well as their elastic properties.

  3. PROPERTIES OF INTERSTELLAR TURBULENCE FROM GRADIENTS OF LINEAR POLARIZATION MAPS

    Burkhart, Blakesley; Lazarian, A.; Gaensler, B. M.

    2012-01-01

    Faraday rotation of linearly polarized radio signals provides a very sensitive probe of fluctuations in the interstellar magnetic field and ionized gas density resulting from magnetohydrodynamic (MHD) turbulence. We used a set of statistical tools to analyze images of the spatial gradient of linearly polarized radio emission (|∇P|) for both observational data from a test image of the Southern Galactic Plane Survey (SGPS) and isothermal three-dimensional simulations of MHD turbulence. Visually, in both observations and simulations, a complex network of filamentary structures is seen. Our analysis shows that the filaments in |∇P| can be produced both by interacting shocks and random fluctuations characterizing the non-differentiable field of MHD turbulence. The latter dominates for subsonic turbulence, while the former is only present in supersonic turbulence. We show that supersonic and subsonic turbulence exhibit different distributions as well as different morphologies in the maps of |∇P|. Particularly, filaments produced by shocks show a characteristic 'double jump' profile at the sites of shock fronts resulting from delta function-like increases in the density and/or magnetic field, while those produced by subsonic turbulence show a single jump profile. In order to quantitatively characterize these differences, we use the topology tool known as the genus curve as well as the probability distribution function moments of the image distribution. We find that higher values for the moments correspond to cases of |∇P| with larger sonic Mach numbers. The genus analysis of the supersonic simulations of |∇P| reveals a 'swiss cheese' topology, while the subsonic cases have characteristics of a 'clump' topology. Based on the analysis of the genus and the higher order moments, the SGPS test region data have a distribution and morphology that match subsonic- to transonic-type turbulence, which confirms what is now expected for the warm ionized medium.

  4. PROPERTIES OF INTERSTELLAR TURBULENCE FROM GRADIENTS OF LINEAR POLARIZATION MAPS

    Burkhart, Blakesley; Lazarian, A. [Astronomy Department, University of Wisconsin, Madison, 475 N. Charter St., WI 53711 (United States); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia)

    2012-04-20

    Faraday rotation of linearly polarized radio signals provides a very sensitive probe of fluctuations in the interstellar magnetic field and ionized gas density resulting from magnetohydrodynamic (MHD) turbulence. We used a set of statistical tools to analyze images of the spatial gradient of linearly polarized radio emission (|{nabla}P|) for both observational data from a test image of the Southern Galactic Plane Survey (SGPS) and isothermal three-dimensional simulations of MHD turbulence. Visually, in both observations and simulations, a complex network of filamentary structures is seen. Our analysis shows that the filaments in |{nabla}P| can be produced both by interacting shocks and random fluctuations characterizing the non-differentiable field of MHD turbulence. The latter dominates for subsonic turbulence, while the former is only present in supersonic turbulence. We show that supersonic and subsonic turbulence exhibit different distributions as well as different morphologies in the maps of |{nabla}P|. Particularly, filaments produced by shocks show a characteristic 'double jump' profile at the sites of shock fronts resulting from delta function-like increases in the density and/or magnetic field, while those produced by subsonic turbulence show a single jump profile. In order to quantitatively characterize these differences, we use the topology tool known as the genus curve as well as the probability distribution function moments of the image distribution. We find that higher values for the moments correspond to cases of |{nabla}P| with larger sonic Mach numbers. The genus analysis of the supersonic simulations of |{nabla}P| reveals a 'swiss cheese' topology, while the subsonic cases have characteristics of a 'clump' topology. Based on the analysis of the genus and the higher order moments, the SGPS test region data have a distribution and morphology that match subsonic- to transonic-type turbulence, which confirms what is now

  5. Linear, non-linear and thermal properties of single crystal of LHMHCl

    Kulshrestha, Shobha; Shrivastava, A. K.

    2018-05-01

    The single crystal of amino acid of L-histidine monohydrochloride was grown by slow evaporation technique at room temperature. High optical quality and appropriate size of crystals were grown under optimized growth conditions. The grown crystals were transparent. Crystals are characterized with different characterizations such as Solubility test, UV-Visible, optical band gap (Eg). With the help of optical data to be calculate absorption coefficient (α), extinction coefficient (k), refractive index (n), dielectric constant (ɛ). These optical constants are shows favorable conditions for photonics devices. Second harmonic generation (NLO) test show the green light emission which is confirm that crystal have properties for laser application. Thermal stability of grown crystal is confirmed by TG/DTA.

  6. Numerical simulation of shear and the Poynting effects by the finite element method: An application of the generalised empirical inequalities in non-linear elasticity

    Angela Mihai, L.

    2013-03-01

    Finite element simulations of different shear deformations in non-linear elasticity are presented. We pay particular attention to the Poynting effects in hyperelastic materials, complementing recent theoretical findings by showing these effects manifested by specific models. As the finite element method computes uniform deformations exactly, for simple shear deformation and pure shear stress, the Poynting effect is represented exactly, while for the generalised shear and simple torsion, where the deformation is non-uniform, the solution is approximated efficiently and guaranteed computational bounds on the magnitude of the Poynting effect are obtained. The numerical results further indicate that, for a given elastic material, the same sign effect occurs under different shearing mechanisms, showing the genericity of the Poynting effect under a variety of shearing loads. In order to derive numerical models that exhibit either the positive or the negative Poynting effect, the so-called generalised empirical inequalities, which are less restrictive than the usual empirical inequalities involving material parameters, are assumed. © 2012 Elsevier Ltd.

  7. Topographical variation of the elastic properties of articular cartilage in the canine knee.

    Jurvelin, J S; Arokoski, J P; Hunziker, E B; Helminen, H J

    2000-06-01

    Equilibrium response of articular cartilage to indentation loading is controlled by the thickness (h) and elastic properties (shear modulus, mu, and Poisson's ratio, nu) of the tissue. In this study, we characterized topographical variation of Poisson's ratio of the articular cartilage in the canine knee joint (N=6). Poisson's ratio was measured using a microscopic technique. In this technique, the shape change of the cartilage disk was visualized while the cartilage was immersed in physiological solution and compressed in unconfined geometry. After a constant 5% axial strain, the lateral strain was measured during stress relaxation. At equilibrium, the lateral-to-axial strain ratio indicates the Poisson's ratio of the tissue. Indentation (equilibrium) data from our prior study (Arokoski et al., 1994. International Journal of Sports Medicine 15, 254-260) was re-analyzed using the Poisson's ratio results at the test site to derive values for shear and aggregate moduli. The lowest Poisson's ratio (0.070+/-0.016) located at the patellar surface of femur (FPI) and the highest (0.236+/-0.026) at the medial tibial plateau (TMI). The stiffest cartilage was found at the patellar groove of femur (micro=0.964+/-0.189MPa, H(a)=2.084+/-0. 409MPa) and the softest at the tibial plateaus (micro=0.385+/-0. 062MPa, H(a)=1.113+/-0.141MPa). Comparison of the mechanical results and the biochemical composition of the tissue (Jurvelin et al., 1988. Engineering in Medicine 17, 157-162) at the matched sites of the canine knee joint indicated a negative correlation between the Poisson's ratio and collagen-to-PG content ratio. This is in harmony with our previous findings which suggested that, in unconfined compression, the degree of lateral expansion in different tissue zones is related to collagen-to-PG ratio of the zone.

  8. Effect of silver doping on the elastic properties of CdS nanoparticles

    Dey, P. C.; Das, R.

    2018-05-01

    CdS and Ag doped CdS (CdS/Ag) nanoparticles have been prepared via chemical method from a Cadmium acetate precursor and Thiourea. The synthesized CdS and CdS/Ag nanoparticles have been characterized by the X-ray Diffraction and High Resolution Transmission Electron Microscope. Here, these nanoparticles have been synthesized at room temperature and all the characterization have also been done at room temperature only. The XRD results reveal that the products are crystalline with cubic zinc blende structure. HRTEM images show that the prepared nanoparticles are nearly spherical in shape. Williamson-Hall method and Size-Strain Plot (SSP) have been used to study the individual contribution of crystalline sizes and lattice strain on the peak broadening of the CdS and CdS/Ag nanoparticles. The different modified model of Williamson-Hall method such as, uniform deformation model, uniform stress deformation model and uniform energy density deformation model and SSP method have been used to calculate the different physical parameter such as lattice strain, stress and energy density for all diffraction peaks of the XRD, corresponding to the CdS and silver doped CdS (CdS/Ag). The obtained results reveal that the average particle size of the prepared CdS and CdS/Ag nanoparticles estimated from the HRTEM images, Williamson-Hall analysis and SSP method are highly correlated with each other. Further, all these result confirms that doping of Ag significantly affects the elastic properties of CdS.

  9. The effect of antiphase boundaries on the elastic properties of Ni–Mn–Ga austenite and premartensite

    Seiner, Hanuš; Sedlák, Petr; Bodnárová, Lucie; Landa, Michal; Drahokoupil, Jan; Kopecký, Vít; Kopeček, Jaromír; Heczko, Oleg

    2013-01-01

    The evolution of elastic properties with temperature and magnetic field was studied in two differently heat-treated single crystals of the Ni–Mn–Ga magnetic shape memory alloy using resonant ultrasound spectroscopy. Quenching and slow furnace cooling were used to obtain different densities of antiphase boundaries. We found that the crystals exhibited pronounced differences in the c′ elastic coefficient and related shear damping in high-temperature ferromagnetic phases (austenite and premartensite). The difference can be ascribed to the formation of fine magnetic domain patterns and pinning of the magnetic domain walls on antiphase boundaries in the material with a high density of antiphase boundaries due to quenching. The fine domain pattern arising from mutual interactions between antiphase boundaries and ferromagnetic domain walls effectively reduces the magnetocrystalline anisotropy and amplifies the contribution of magnetostriction to the elastic response of the material. As a result, the anomalous elastic softening prior to martensite transformation is significantly enhanced in the quenched sample. Thus, for any comparison of experimental data and theoretical calculations the microstructural changes induced by specific heat treatment must be taken into account. (paper)

  10. Structure and linear spectroscopic properties of near IR polymethine dyes

    Webster, Scott; Padilha, Lazaro A.; Hu Honghua; Przhonska, Olga V.; Hagan, David J.; Van Stryland, Eric W.; Bondar, Mikhail V.; Davydenko, Iryna G.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2008-01-01

    We performed a detailed experimental investigation and quantum-chemical analysis of a new series of near IR polymethine dyes with 5-butyl-7,8-dihydrobenzo[cd]furo[2,3-f]indolium terminal groups. We also synthesized and studied two neutral dyes, squaraine and tetraone, with the same terminal groups and performed a comparison of the spectroscopic properties of this set of 'near IR' dyes (polymethine, squaraine, and tetraone) with an analogous set of 'visible' dyes with simpler benzo[e]indolium terminal groups. From these measurements, we find that the dyes with dihydrobenzo[cd]furo[2,3-f]indolium terminal groups are characterized by a remarkably large shift ∼300 nm (∼200 nm for tetraone) of their absorption bands towards the red region. We discuss the difference in electronic structure for these molecules and show that the 'near IR' dyes are characterized by an additional weak fluorescence band from the higher lying excited states connected with the terminal groups. Absorption spectra for the longest polymethines are solvent-dependent and are characterized by a broadening of the main band in polar solvents, which is explained by ground state symmetry breaking and reduced charge delocalization within the polymethine chromophore. The results of these experiments combined with the agreement of quantum chemical calculations moves us closer to a predictive capability for structure-property relations in cyanine-like molecules

  11. Ab initio study of structural, elastic, and vibrational properties of transition-metal disilicides NbSi2 and TaSi2 in hexagonal C40 structure

    Ertürk, Esra; Gürel, Tanju

    2018-05-01

    We present an ab initio study of structural, elastic and vibrational properties of transition-metal disilicides NbSi2 and TaSi2. The calculations have been carried out within the density-functional theory and linear-response formalism using norm-conserving pseudopotentials and a plane-wave basis. The calculated lattice parameters, bulk moduli, and elastic constants agree well with previous theoretical and experimental results. The calculated phonon frequencies at the Brillouin zone center are in good agreement with the reported Raman spectra and provide reference values for the future infrared and neutron phonon measurements. Phonon dispersion relations, mode Grüneisen parameters, and total and partial phonon density of states are also discussed. Mode Grüneisen parameters of NbSi2 and TaSi2 at Brillouin zone center show similar trends and all values are found to be positive. From phonon dispersion relations and phonon density of states, we have found a gap around 200 cm-1 for TaSi2, where the frequencies below this gap mainly belong to Ta vibrations and frequencies above the gap is mainly related with Si vibrations. In the case of NbSi2, there is no such gap and both Nb and Si atoms contribute to the phonon density of states in an energy range of 150-270 cm-1.

  12. On some properties of the block linear multi-step methods | Chollom ...

    The convergence, stability and order of Block linear Multistep methods have been determined in the past based on individual members of the block. In this paper, methods are proposed to examine the properties of the entire block. Some Block Linear Multistep methods have been considered, their convergence, stability and ...

  13. Some properties of the Boltzmann elastic collision operator; Quelques proprietes particulieres de l'operateur de collision elastique de Boltzmann

    Delcroix, J. L. [Ecole Normale Superieure (France); Salmon, J. [Commissariat a l' energie atomique et aux energies alternatives - CEA (France)

    1959-07-01

    The authors point out some properties (an important one is a variational property) of the Boltzmann elastic collision operator, valid in a more general framework than that of the Lorentz gas. Reprint of a paper published in 'Le journal de physique et le radium', tome 20, Jun 1959, p. 594-596 [French] Les auteurs mettent en evidence quelques proprietes (dont notamment une propriete variationnelle) de l'operateur de collision elastique de Boltzmann valables dans un cadre plus general que celui du gaz de Lorentz. Reproduction d'un article publie dans 'Le journal de physique et le radium', tome 20, Jun 1959, p. 594-596.

  14. Molecular dynamics simulations of Gay-Berne nematic liquid crystal: Elastic properties from direct correlation functions

    Stelzer, J.; Trebin, H.R.; Longa, L.

    1994-08-01

    We report NVT and NPT molecular dynamics simulations of a Gay-Berne nematic liquid crystal using generalization of recently proposed algorithm by Toxvaerd [Phys. Rev. E47, 343, 1993]. On the basis of these simulations the Oseen-Zoher-Frank elastic constants K 11 , K 22 and K 33 as well as the surface constants K 13 and K 24 have been calculated within the framework of the direct correlation function approach of Lipkin et al. [J. Chem. Phys. 82, 472 (1985)]. The angular coefficients of the direct pair correlation function, which enter the final formulas, have been determined from the computer simulation data for the pair correlation function of the nematic by combining the Ornstein-Zernike relation and the Wienier-Hopf factorization scheme. The unoriented nematic approximation has been assumed when constructing the reference, isotropic state of Lipkin et al. By an extensive study of the model over a wide range of temperatures, densities and pressures a very detailed information has been provided about elastic behaviour of the Gay-Berne nematic. Interestingly, it is found that the results for the surface elastic constants are qualitatively different than those obtained with the help of analytical approximations for the isotropic, direct pair correlation function. For example, the values of the surface elastic constants are negative and an order of magnitude smaller than the bulk elasticity. (author). 30 refs, 9 figs

  15. Structural, electronic, elastic and thermal properties of Li{sub 2}AgSb. First-principles calculations

    Li, Ji-Hong [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Longdong Univ., Qingyang (China). College of Physics and Electronic Engineering; Zhu, Xu-Hui [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Sichuan Univ., Chengdu (China). Key Laboratory of High Energy Density Physics and Technology of Ministry of Education; Ji, Guang-Fu [Chinese Academy of Engineering Physics, Mianyang (China). National Key Laboratory of Shock Wave and Detonation Physics

    2015-07-01

    Based on the first-principles density functional theory calculations combined with the quasi-harmonic Debye model, the pressure dependencies of the structural, elastic, electronic and thermal properties of Li{sub 2}AgSb were systematically investigated. The calculated lattice parameters and unit cell volume of Li{sub 2}AgSb at the ground state were in good agreement with the available experimental data. The obtained elastic constants, the bulk modulus and the shear modulus revealed that Li{sub 2}AgSb is mechanically stable and behaves in a ductile manner under the applied pressure. The elasticity-relevant properties, the Young's modulus and the Poisson's ratio showed that pressure can enhance the stiffness of Li{sub 2}AgSb and that Li{sub 2}AgSb is mechanically stable up to 20 GPa. The characteristics of the band structure and the partial density of states of Li{sub 2}AgSb were analysed, showing that Li{sub 2}AgSb is a semiconductor with a direct band gap of 217 meV at 0 GPa and that the increasing pressure can make the band structure of Li{sub 2}AgSb become an indirect one. Studies have shown that, unlike temperature, pressure has little effect on the heat capacity and the thermal expansion coefficient of Li{sub 2}AgSb.

  16. Size-dependent elastic moduli and vibrational properties of fivefold twinned copper nanowires

    Zheng, Y. G.; Zhao, Y. T.; Ye, H. F.; Zhang, H. W.

    2014-08-01

    Based on atomistic simulations, the elastic moduli and vibration behaviors of fivefold twinned copper nanowires are investigated in this paper. Simulation results show that the elastic (i.e., Young’s and shear) moduli exhibit size dependence due to the surface effect. The effective Young’s modulus is found to decrease slightly whereas the effective shear modulus increases slightly with the increase in the wire radius. Both moduli tend to approach certain values at a larger radius and can be suitably described by core-shell composite structure models. Furthermore, we show by comparing simulation results and continuum predictions that, provided the effective Young’s and shear moduli are used, classic elastic theory can be applied to describe the small-amplitude vibration of fivefold twinned copper nanowires. Moreover, for the transverse vibration, the Timoshenko beam model is more suitable because shear deformation becomes apparent.

  17. Size-dependent elastic moduli and vibrational properties of fivefold twinned copper nanowires

    Zheng, Y G; Zhao, Y T; Ye, H F; Zhang, H W

    2014-01-01

    Based on atomistic simulations, the elastic moduli and vibration behaviors of fivefold twinned copper nanowires are investigated in this paper. Simulation results show that the elastic (i.e., Young’s and shear) moduli exhibit size dependence due to the surface effect. The effective Young’s modulus is found to decrease slightly whereas the effective shear modulus increases slightly with the increase in the wire radius. Both moduli tend to approach certain values at a larger radius and can be suitably described by core-shell composite structure models. Furthermore, we show by comparing simulation results and continuum predictions that, provided the effective Young’s and shear moduli are used, classic elastic theory can be applied to describe the small-amplitude vibration of fivefold twinned copper nanowires. Moreover, for the transverse vibration, the Timoshenko beam model is more suitable because shear deformation becomes apparent. (paper)

  18. Acoustic examinations of elastic and inelastic properties of high-pressure polyethylene with different radiation prehistory

    Kardashev, B.K.; Nikanorov, S.P.; Kravchenko, V.S.; Malinov, V.I.; Punin, V.T.

    2007-01-01

    The influence of vibrational deformation amplitude on the dynamic elasticity modulus and internal friction of high-pressure polyethylene samples with different histories is studied. Acoustic measurements are made by a resonance method using the longitudinal vibrations of a composite piezoelectric vibrator at a frequency of ∼ 100 kHz. It is found that the microplasticity remains almost unaffected upon irradiation and aging, while the elasticity modulus and breaking elongation per unit length considerably depend on the history and are clearly correlated with each other. The observed effects are explained by the fact that atom-atom interaction and defects inside polymer macromolecules substantially influence the elastic modulus and breaking strength, while the inelastic microplastic strain is most likely associated with molecule-molecule interaction, which is insignificantly affected by irradiation [ru

  19. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part I: Micro-structural characterization and geometric modeling

    Han, Fei; Azdoud, Yan; Lubineau, Gilles

    2014-01-01

    A computational strategy to predict the elastic properties of carbon nanotube-reinforced polymer composites is proposed in this two-part paper. In Part I, the micro-structural characteristics of these nano-composites are discerned

  20. Ab initio study of the elastic properties of single and polycrystal TiO{sub 2}, ZrO{sub 2} and HfO{sub 2} in the cotunnite structure

    Caravaca, M A; Mino, J C; Perez, V J [Departamento de Fisico-Quimica, Facultad de Ingenieria, UNNE, Avenida Las Heras 727, CP 3500, Resistencia (Argentina); Casali, R A; Ponce, C A [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales y Agrimensura UNNE, Avenida Libertad 5600, CP 3400, Corrientes (Argentina)

    2009-01-07

    In this work, we study theoretically the elastic properties of the orthorhombic (Pnma) high-pressure phase of IV-B group oxides: titania, zirconia and hafnia. By means of the self-consistent SIESTA code, pseudopotentials, density functional theory in the LDA and GGA approximations, the total energies, hydrostatic pressures and stress tensor components are calculated. From the stress-strain relationships, in the linear regime, the elastic constants C{sub ij} are determined. Derived elastic constants, such as bulk, Young's and shear modulus, Poisson coefficient and brittle/ductile behavior are estimated with the polycrystalline approach, using Voigt-Reuss-Hill theories. We have found that C{sub 11}, C{sub 22} and C{sub 33} elastic constants of hafnia and zirconia show increased strength with respect to the experimental values of the normal phase, P 2{sub 1}/c. A similar situation applies to titania if these constants are compared with its normal phase, rutile. However, shear elastic constants C{sub 44}, C{sub 55} and C{sub 66} are similar to the values found in the normal phase. This fact increases the compound anisotropy as well as its ductile behavior. The dependence of unit-cell volumes under hydrostatic pressures is also analyzed. P-V data, fitted to third-order Birch-Murnaghan equations of state, provide the bulk modulus B{sub 0} and its pressure derivatives B'{sub 0}. In this case, LDA estimations show good agreement with respect to recent measured bulk moduli of ZrO{sub 2} and HfO{sub 2}. Thermo-acoustic properties, e.g. the propagation speed of transverse, longitudinal elastic waves together with associated Debye temperatures, are also estimated.