WorldWideScience

Sample records for linear dynamics observed

  1. A simple method for identifying parameter correlations in partially observed linear dynamic models.

    Science.gov (United States)

    Li, Pu; Vu, Quoc Dong

    2015-12-14

    Parameter estimation represents one of the most significant challenges in systems biology. This is because biological models commonly contain a large number of parameters among which there may be functional interrelationships, thus leading to the problem of non-identifiability. Although identifiability analysis has been extensively studied by analytical as well as numerical approaches, systematic methods for remedying practically non-identifiable models have rarely been investigated. We propose a simple method for identifying pairwise correlations and higher order interrelationships of parameters in partially observed linear dynamic models. This is made by derivation of the output sensitivity matrix and analysis of the linear dependencies of its columns. Consequently, analytical relations between the identifiability of the model parameters and the initial conditions as well as the input functions can be achieved. In the case of structural non-identifiability, identifiable combinations can be obtained by solving the resulting homogenous linear equations. In the case of practical non-identifiability, experiment conditions (i.e. initial condition and constant control signals) can be provided which are necessary for remedying the non-identifiability and unique parameter estimation. It is noted that the approach does not consider noisy data. In this way, the practical non-identifiability issue, which is popular for linear biological models, can be remedied. Several linear compartment models including an insulin receptor dynamics model are taken to illustrate the application of the proposed approach. Both structural and practical identifiability of partially observed linear dynamic models can be clarified by the proposed method. The result of this method provides important information for experimental design to remedy the practical non-identifiability if applicable. The derivation of the method is straightforward and thus the algorithm can be easily implemented into a

  2. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.

    Science.gov (United States)

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kutz, J Nathan

    2016-01-01

    In this wIn this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.ork, we explore finite

  3. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control

    Science.gov (United States)

    Brunton, Steven L.; Brunton, Bingni W.; Proctor, Joshua L.; Kutz, J. Nathan

    2016-01-01

    In this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control. PMID:26919740

  4. Observer-based linear parameter varying H∞ tracking control for hypersonic vehicles

    Directory of Open Access Journals (Sweden)

    Yiqing Huang

    2016-11-01

    Full Text Available This article aims to develop observer-based linear parameter varying output feedback H∞ tracking controller for hypersonic vehicles. Due to the complexity of an original nonlinear model of the hypersonic vehicle dynamics, a slow–fast loop linear parameter varying polytopic model is introduced for system stability analysis and controller design. Then, a state observer is developed by linear parameter varying technique in order to estimate the unmeasured attitude angular for slow loop system. Also, based on the designed linear parameter varying state observer, a kind of attitude tracking controller is presented to reduce tracking errors for all bounded reference attitude angular inputs. The closed-loop linear parameter varying system is proved to be quadratically stable by Lypapunov function technique. Finally, simulation results show that the developed linear parameter varying H∞ controller has good tracking capability for reference commands.

  5. Dynamic Linear Models with R

    CERN Document Server

    Campagnoli, Patrizia; Petris, Giovanni

    2009-01-01

    State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.

  6. Observer-based distributed adaptive fault-tolerant containment control of multi-agent systems with general linear dynamics.

    Science.gov (United States)

    Ye, Dan; Chen, Mengmeng; Li, Kui

    2017-11-01

    In this paper, we consider the distributed containment control problem of multi-agent systems with actuator bias faults based on observer method. The objective is to drive the followers into the convex hull spanned by the dynamic leaders, where the input is unknown but bounded. By constructing an observer to estimate the states and bias faults, an effective distributed adaptive fault-tolerant controller is developed. Different from the traditional method, an auxiliary controller gain is designed to deal with the unknown inputs and bias faults together. Moreover, the coupling gain can be adjusted online through the adaptive mechanism without using the global information. Furthermore, the proposed control protocol can guarantee that all the signals of the closed-loop systems are bounded and all the followers converge to the convex hull with bounded residual errors formed by the dynamic leaders. Finally, a decoupled linearized longitudinal motion model of the F-18 aircraft is used to demonstrate the effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems

    Science.gov (United States)

    Antown, Fadi; Dragičević, Davor; Froyland, Gary

    2018-03-01

    The linear response of a dynamical system refers to changes to properties of the system when small external perturbations are applied. We consider the little-studied question of selecting an optimal perturbation so as to (i) maximise the linear response of the equilibrium distribution of the system, (ii) maximise the linear response of the expectation of a specified observable, and (iii) maximise the linear response of the rate of convergence of the system to the equilibrium distribution. We also consider the inhomogeneous, sequential, or time-dependent situation where the governing dynamics is not stationary and one wishes to select a sequence of small perturbations so as to maximise the overall linear response at some terminal time. We develop the theory for finite-state Markov chains, provide explicit solutions for some illustrative examples, and numerically apply our theory to stochastically perturbed dynamical systems, where the Markov chain is replaced by a matrix representation of an approximate annealed transfer operator for the random dynamical system.

  8. Parameter identifiability of linear dynamical systems

    Science.gov (United States)

    Glover, K.; Willems, J. C.

    1974-01-01

    It is assumed that the system matrices of a stationary linear dynamical system were parametrized by a set of unknown parameters. The question considered here is, when can such a set of unknown parameters be identified from the observed data? Conditions for the local identifiability of a parametrization are derived in three situations: (1) when input/output observations are made, (2) when there exists an unknown feedback matrix in the system and (3) when the system is assumed to be driven by white noise and only output observations are made. Also a sufficient condition for global identifiability is derived.

  9. Dynamical systems and linear algebra

    OpenAIRE

    Colonius, Fritz (Prof.)

    2007-01-01

    Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)

  10. Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.

    Science.gov (United States)

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2014-07-17

    Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.

  11. Dynamics and acceleration in linear structures

    International Nuclear Information System (INIS)

    Le Duff, J.

    1985-06-01

    Basic methods of linear acceleration are reviewed. Both cases of non relativistic and ultra relativistic particles are considered. Induction linac, radiofrequency quadrupole are mentioned. Fundamental parameters of accelerating structures are recalled; they are transit time factor, shunt impedance, quality factor and stored energy, phase velocity and group velocity, filling time, space harmonics in loaded waveguides. Energy gain in linear accelerating structures is considered through standing wave structures and travelling wave structures. Then particle dynamics in linear accelerators is studied: longitudinal motion, transverse motion and dynamics in RFQ

  12. The research of radar target tracking observed information linear filter method

    Science.gov (United States)

    Chen, Zheng; Zhao, Xuanzhi; Zhang, Wen

    2018-05-01

    Aiming at the problems of low precision or even precision divergent is caused by nonlinear observation equation in radar target tracking, a new filtering algorithm is proposed in this paper. In this algorithm, local linearization is carried out on the observed data of the distance and angle respectively. Then the kalman filter is performed on the linearized data. After getting filtered data, a mapping operation will provide the posteriori estimation of target state. A large number of simulation results show that this algorithm can solve above problems effectively, and performance is better than the traditional filtering algorithm for nonlinear dynamic systems.

  13. Non-Linear Dynamics of Saturn’s Rings

    Science.gov (United States)

    Esposito, Larry W.

    2015-11-01

    Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects

  14. Parametric Linear Dynamic Logic

    Directory of Open Access Journals (Sweden)

    Peter Faymonville

    2014-08-01

    Full Text Available We introduce Parametric Linear Dynamic Logic (PLDL, which extends Linear Dynamic Logic (LDL by temporal operators equipped with parameters that bound their scope. LDL was proposed as an extension of Linear Temporal Logic (LTL that is able to express all ω-regular specifications while still maintaining many of LTL's desirable properties like an intuitive syntax and a translation into non-deterministic Büchi automata of exponential size. But LDL lacks capabilities to express timing constraints. By adding parameterized operators to LDL, we obtain a logic that is able to express all ω-regular properties and that subsumes parameterized extensions of LTL like Parametric LTL and PROMPT-LTL. Our main technical contribution is a translation of PLDL formulas into non-deterministic Büchi word automata of exponential size via alternating automata. This yields a PSPACE model checking algorithm and a realizability algorithm with doubly-exponential running time. Furthermore, we give tight upper and lower bounds on optimal parameter values for both problems. These results show that PLDL model checking and realizability are not harder than LTL model checking and realizability.

  15. Window observers for linear systems

    Directory of Open Access Journals (Sweden)

    Utkin Vadim

    2000-01-01

    Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications

  16. Robust control and linear parameter varying approaches application to vehicle dynamics

    CERN Document Server

    Gaspar, Peter; Bokor, József

    2013-01-01

    Vehicles are complex systems (non-linear, multi-variable) where the abundance of embedded controllers should ensure better security. This book aims at emphasizing the interest and potential of Linear Parameter Varying methods within the framework of vehicle dynamics, e.g.   ·          proposed control-oriented model, complex enough to handle some system non linearities but still simple for control or observer design,   ·          take into account the adaptability of the vehicle's response to driving situations, to the driver request and/or to the road sollicitations,   ·          manage interactions between various actuators to optimize the dynamic behavior of vehicles.   This book results from the 32th International Summer School in Automatic that held in Grenoble, France, in September 2011, where recent methods (based on robust control and LPV technics), then applied to the control of vehicle dynamics, have been presented. After some theoretical background and a view on so...

  17. Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time

    Science.gov (United States)

    Wang, Yu

    1995-08-01

    The dynamic response and stability of a single-degree-of-freedom system with unsymmetric piecewise-linear/non-linear stiffness are analyzed using the finite element method in the time domain. Based on a Hamilton's weak principle, this method provides a simple and efficient approach for predicting all possible fundamental and sub-periodic responses. The stability of the steady state response is determined by using Floquet's theory without any special effort for calculating transition matrices. This method is applied to a number of examples, demonstrating its effectiveness even for a strongly non-linear problem involving both clearance and continuous stiffness non-linearities. Close agreement is found between available published findings and the predictions of the finite element in time approach, which appears to be an efficient and reliable alternative technique for non-linear dynamic response and stability analysis of periodic systems.

  18. Characterising non-linear dynamics in nocturnal breathing patterns of healthy infants using recurrence quantification analysis.

    Science.gov (United States)

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn

    2013-05-01

    Breathing dynamics vary between infant sleep states, and are likely to exhibit non-linear behaviour. This study applied the non-linear analytical tool recurrence quantification analysis (RQA) to 400 breath interval periods of REM and N-REM sleep, and then using an overlapping moving window. The RQA variables were different between sleep states, with REM radius 150% greater than N-REM radius, and REM laminarity 79% greater than N-REM laminarity. RQA allowed the observation of temporal variations in non-linear breathing dynamics across a night's sleep at 30s resolution, and provides a basis for quantifying changes in complex breathing dynamics with physiology and pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Dynamics of complexation of a charged dendrimer by linear polyelectrolyte: Computer modelling

    NARCIS (Netherlands)

    Lyulin, S.V.; Darinskii, A.A.; Lyulin, A.V.

    2007-01-01

    Brownian-dynamics simulations have been performed for complexes formed by a charged dendrimer and a long oppositely charged linear polyelectrolyte when overcharging phenomenon is always observed. After a complex formation the orientational mobility of the individual dendrimer bonds, the fluctuations

  20. Beam dynamics issues for linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1987-09-01

    In this paper we discuss various beam dynamics issues for linear colliders. The emphasis is to explore beam dynamics effects which lead to an effective dilution of the emittance of the beam and thus to a loss of luminosity. These considerations lead to various tolerances which are evaluated for a particular parameter set

  1. Residual generation with unknown input observer for linear systems in the presence of unmatched uncertainties

    International Nuclear Information System (INIS)

    Bagherpour, Esmaeel A.; HairiTazdi, Mohammad Reza; Mahjoob, Mohammad

    2014-01-01

    In this paper, we deal with residual vector generation for fault detection problems in linear systems via unknown input observer (UIO) when the so-called observer matching condition is not satisfied. Based on the relative degree between unknown input and output, a vector of the auxiliary output is introduced so that the observer matching condition is satisfied with respect to the vector. Auxiliary outputs are related to the derivatives of measured signals. However, differentiation leads to excessive amplification of measurement noise. A dynamically equivalent configuration of linear systems is developed using successive integrations to avoid differentiation. As such, auxiliary outputs are constructed without differentiation. Then, the equivalent dynamic system and its corresponding auxiliary outputs are used to generate the residual vector via an exponentially converging UIO. Fault detection in the generated residual vector is also investigated. Finally, the effectiveness of the proposed method is shown via numerical simulation.

  2. Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.

    Science.gov (United States)

    Cawkwell, M J; Niklasson, Anders M N

    2012-10-07

    Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.

  3. Non-Linear Dynamics of Saturn's Rings

    Science.gov (United States)

    Esposito, L. W.

    2016-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. Stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, that push the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like `straw' that can explain the halo morphology and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; this requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping explains both small and large particles at resonances. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating it as an asymmetric random walk with reflecting boundaries

  4. Dynamics of elliptic breathers in saturable nonlinear media with linear anisotropy

    International Nuclear Information System (INIS)

    Liang, Guo; Guo, Qi; Shou, Qian; Ren, Zhanmei

    2014-01-01

    We have introduced a class of dynamic elliptic breathers in saturable nonlinear media with linear anisotropy. Two kinds of evolution behavior for the dynamic breathers, rotations and molecule-like librations, are both predicted by the variational approach, and confirmed in numerical simulations. The dynamic elliptic breathers can rotate even though they have no initial orbital angular momentum (OAM). As the media are linear anisotropic, OAM is no longer conserved, and hence the angular velocity is not constant but a periodic function of the propagation distance. When the linear anisotropy is large enough, the dynamic elliptic breathers librate like molecules. The dynamic elliptic breathers are present in media with not only saturable nonlinearity but also nonlocal nonlinearity; indeed, they are universal in nonlinear media with linear anisotropy. (paper)

  5. On the identifiability of linear dynamical systems. [parameters observation in presence of white noise

    Science.gov (United States)

    Glover, K.; Willems, J. C.

    1973-01-01

    Consider the situation in which the unknown parameters of a stationary linear system may be parametrized by a set of unknown parameters. The question thus arises of when such a set of parameters can be uniquely identified on the basis of observed data. This problem is considered here both in the case of input and output observations and in the case of output observations in the presence of a white noise input. Conditions for local identifiability are derived for both situations and a sufficient condition for global identifiability is given for the former situation, i.e., when simultaneous input and output observations are available.

  6. Linear dynamic coupling in geared rotor systems

    Science.gov (United States)

    David, J. W.; Mitchell, L. D.

    1986-01-01

    The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.

  7. On the dynamic analysis of piecewise-linear networks

    OpenAIRE

    Heemels, W.P.M.H.; Camlibel, M.K.; Schumacher, J.M.

    2002-01-01

    Piecewise-linear (PL) modeling is often used to approximate the behavior of nonlinear circuits. One of the possible PL modeling methodologies is based on the linear complementarity problem, and this approach has already been used extensively in the circuits and systems community for static networks. In this paper, the object of study will be dynamic electrical circuits that can be recast as linear complementarity systems, i.e., as interconnections of linear time-invariant differential equatio...

  8. Structure Learning in Stochastic Non-linear Dynamical Systems

    Science.gov (United States)

    Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.

    2005-12-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.

  9. Non-Linear Dynamics and Fundamental Interactions

    CERN Document Server

    Khanna, Faqir

    2006-01-01

    The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.

  10. Dynamical symmetries of semi-linear Schrodinger and diffusion equations

    International Nuclear Information System (INIS)

    Stoimenov, Stoimen; Henkel, Malte

    2005-01-01

    Conditional and Lie symmetries of semi-linear 1D Schrodinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrodinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf 3 ) C . We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf 3 ) C are classified and the complete list of conditionally invariant semi-linear Schrodinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed

  11. Analysis of Nonlinear Dynamics in Linear Compressors Driven by Linear Motors

    Science.gov (United States)

    Chen, Liangyuan

    2018-03-01

    The analysis of dynamic characteristics of the mechatronics system is of great significance for the linear motor design and control. Steady-state nonlinear response characteristics of a linear compressor are investigated theoretically based on the linearized and nonlinear models. First, the influence factors considering the nonlinear gas force load were analyzed. Then, a simple linearized model was set up to analyze the influence on the stroke and resonance frequency. Finally, the nonlinear model was set up to analyze the effects of piston mass, spring stiffness, driving force as an example of design parameter variation. The simulating results show that the stroke can be obtained by adjusting the excitation amplitude, frequency and other adjustments, the equilibrium position can be adjusted by adjusting the DC input, and to make the more efficient operation, the operating frequency must always equal to the resonance frequency.

  12. Behavioral modeling of the dominant dynamics in input-output transfer of linear(ized) circuits

    NARCIS (Netherlands)

    Beelen, T.G.J.; Maten, ter E.J.W.; Sihaloho, H.J.; Eijndhoven, van S.J.L.

    2010-01-01

    We present a powerful procedure for determining both the dominant dynamics of the inputoutput transfer and the corresponding most influential circuit parameters of a linear(ized) circuit. The procedure consists of several steps in which a specific (sub)problem is solved and its solution is used in

  13. SiGe HBT linear-in-dB high dynamic range RF envelope detectors and wideband high linearity amplifiers

    OpenAIRE

    Pan, Hsuan-yu

    2010-01-01

    This research work aims on exploiting SiGe HBT technologies in high dynamic range wideband RF linear-in- dB envelope detectors and linear amplifiers. First, an improved all-npn broadband highly linear SiGe HBT differential amplifier is presented based on a variation of Caprio's Quad. A broadband linear amplifier with 46dBm OIP₃ at 20MHz, 34dBm OIP₃ at 1GHz, 6dB noise figure and 10.3dBm P₁dB is demonstrated. Second, an improved exact dynamic model of a fast-settling linear-in-dB Automatic Gain...

  14. Introduction to geometric nonlinear control; Linearization, observability, decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Respondek, W [Laboratoire de Mathematiques, INSA de Rouen (France)

    2002-07-15

    These notes are devoted to the problems of linearization, observability, and decoupling of nonlinear control systems. Together with notes of Bronislaw Jakubczyk in the same volume, they form an introduction to geometric methods in nonlinear control theory. In the first part we discuss equivalence of control systems. We consider various aspects of the problem: state-space and feedback equivalence, local and global equivalence, equivalence to linear and partially linear systems. In the second part we present the notion of observability and give a geometric rank condition for local observability and an algebraic characterization of local observability. We discuss unm observability, decompositions of non-observable systems, and properties of generic observable systems. In the third part we introduce the notion of invariant distributions and discuss disturbance decoupling and input-output decoupling. Many concepts and results are illustrated with examples. (author)

  15. Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D., E-mail: sergei.ivanov@uni-rostock.de; Kühn, Oliver [Institute of Physics, Rostock University, Universitätsplatz 3, 18055 Rostock (Germany)

    2015-06-28

    Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom.

  16. Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations

    International Nuclear Information System (INIS)

    Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D.; Kühn, Oliver

    2015-01-01

    Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom

  17. OBSERVATIONS OF LINEAR POLARIZATION IN A SOLAR CORONAL LOOP PROMINENCE SYSTEM OBSERVED NEAR 6173 Å

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Hilaire, Pascal; Martínez Oliveros, Juan-Carlos; Hudson, Hugh S.; Krucker, Säm; Bain, Hazel [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Schou, Jesper [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Couvidat, Sébastien, E-mail: shilaire@ssl.berkeley.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-05-10

    White-light observations by the Solar Dynamics Observatory's Helioseismic and Magnetic Imager of a loop-prominence system occurring in the aftermath of an X-class flare on 2013 May 13 near the eastern solar limb show a linearly polarized component, reaching up to ∼20% at an altitude of ∼33 Mm, about the maximum amount expected if the emission were due solely to Thomson scattering of photospheric light by the coronal material. The mass associated with the polarized component was 8.2 × 10{sup 14} g. At 15 Mm altitude, the brightest part of the loop was 3(±0.5)% linearly polarized, only about 20% of that expected from pure Thomson scattering, indicating the presence of an additional unpolarized component at wavelengths near Fe I (617.33 nm). We estimate the free electron density of the white-light loop system to possibly be as high as 1.8 × 10{sup 12} cm{sup –3}.

  18. Correlated Levy Noise in Linear Dynamical Systems

    International Nuclear Information System (INIS)

    Srokowski, T.

    2011-01-01

    Linear dynamical systems, driven by a non-white noise which has the Levy distribution, are analysed. Noise is modelled by a specific stochastic process which is defined by the Langevin equation with a linear force and the Levy distributed symmetric white noise. Correlation properties of the process are discussed. The Fokker-Planck equation driven by that noise is solved. Distributions have the Levy shape and their width, for a given time, is smaller than for processes in the white noise limit. Applicability of the adiabatic approximation in the case of the linear force is discussed. (author)

  19. The SR Approach: a new Estimation Method for Non-Linear and Non-Gaussian Dynamic Term Structure Models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Christensen, Bent Jesper

    This paper suggests a new and easy approach to estimate linear and non-linear dynamic term structure models with latent factors. We impose no distributional assumptions on the factors and they may therefore be non-Gaussian. The novelty of our approach is to use many observables (yields or bonds p...

  20. Partial Linearization of Mechanical Systems with Application to Observer Design

    NARCIS (Netherlands)

    Sarras, Ioannis; Venkatraman, Aneesh; Ortega, Romeo; Schaft, Arjan van der

    2008-01-01

    We consider general mechanical systems and establish a necessary and sufficient condition for the existence of a suitable change in the generalized momentum coordinates such that the new dynamics become linear in the transformed momenta. The class of systems which can be (partially) linearized by

  1. Nonlinear dynamics between linear and impact limits

    CERN Document Server

    Pilipchuk, Valery N; Wriggers, Peter

    2010-01-01

    This book examines nonlinear dynamic analyses based on the existence of strongly nonlinear but simple counterparts to the linear models and tools. Discusses possible application to periodic elastic structures with non-smooth or discontinuous characteristics.

  2. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    In recent years, the non-linear quantum dynamics of these states have revealed some striking features. It was found that under the action of a Hamil- tonian which is a non-linear function of the photon operator(s) only, an initial coherent state loses its coherent structure quickly due to quantum dephasing induced by the non-.

  3. Perception of the dynamic visual vertical during sinusoidal linear motion.

    Science.gov (United States)

    Pomante, A; Selen, L P J; Medendorp, W P

    2017-10-01

    The vestibular system provides information for spatial orientation. However, this information is ambiguous: because the otoliths sense the gravitoinertial force, they cannot distinguish gravitational and inertial components. As a consequence, prolonged linear acceleration of the head can be interpreted as tilt, referred to as the somatogravic effect. Previous modeling work suggests that the brain disambiguates the otolith signal according to the rules of Bayesian inference, combining noisy canal cues with the a priori assumption that prolonged linear accelerations are unlikely. Within this modeling framework the noise of the vestibular signals affects the dynamic characteristics of the tilt percept during linear whole-body motion. To test this prediction, we devised a novel paradigm to psychometrically characterize the dynamic visual vertical-as a proxy for the tilt percept-during passive sinusoidal linear motion along the interaural axis (0.33 Hz motion frequency, 1.75 m/s 2 peak acceleration, 80 cm displacement). While subjects ( n =10) kept fixation on a central body-fixed light, a line was briefly flashed (5 ms) at different phases of the motion, the orientation of which had to be judged relative to gravity. Consistent with the model's prediction, subjects showed a phase-dependent modulation of the dynamic visual vertical, with a subject-specific phase shift with respect to the imposed acceleration signal. The magnitude of this modulation was smaller than predicted, suggesting a contribution of nonvestibular signals to the dynamic visual vertical. Despite their dampening effect, our findings may point to a link between the noise components in the vestibular system and the characteristics of dynamic visual vertical. NEW & NOTEWORTHY A fundamental question in neuroscience is how the brain processes vestibular signals to infer the orientation of the body and objects in space. We show that, under sinusoidal linear motion, systematic error patterns appear in the

  4. Linear and nonlinear dynamic systems in financial time series prediction

    Directory of Open Access Journals (Sweden)

    Salim Lahmiri

    2012-10-01

    Full Text Available Autoregressive moving average (ARMA process and dynamic neural networks namely the nonlinear autoregressive moving average with exogenous inputs (NARX are compared by evaluating their ability to predict financial time series; for instance the S&P500 returns. Two classes of ARMA are considered. The first one is the standard ARMA model which is a linear static system. The second one uses Kalman filter (KF to estimate and predict ARMA coefficients. This model is a linear dynamic system. The forecasting ability of each system is evaluated by means of mean absolute error (MAE and mean absolute deviation (MAD statistics. Simulation results indicate that the ARMA-KF system performs better than the standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may suggest that the linear component found in the S&P500 return series is more dominant than the nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process provides an effective system for S&P500 time series prediction.

  5. Non-linear Dynamics of Speech in Schizophrenia

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Simonsen, Arndis; Weed, Ethan

    (regularity and complexity) of speech. Our aims are (1) to achieve a more fine-grained understanding of the speech patterns in schizophrenia than has previously been achieved using traditional, linear measures of prosody and fluency, and (2) to employ the results in a supervised machine-learning process......-effects inference. SANS and SAPS scores were predicted using a 10-fold cross-validated multiple linear regression. Both analyses were iterated 1000 to test for stability of results. Results: Voice dynamics allowed discrimination of patients with schizophrenia from healthy controls with a balanced accuracy of 85...

  6. Linear dynamical modes as new variables for data-driven ENSO forecast

    Science.gov (United States)

    Gavrilov, Andrey; Seleznev, Aleksei; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander; Kurths, Juergen

    2018-05-01

    A new data-driven model for analysis and prediction of spatially distributed time series is proposed. The model is based on a linear dynamical mode (LDM) decomposition of the observed data which is derived from a recently developed nonlinear dimensionality reduction approach. The key point of this approach is its ability to take into account simple dynamical properties of the observed system by means of revealing the system's dominant time scales. The LDMs are used as new variables for empirical construction of a nonlinear stochastic evolution operator. The method is applied to the sea surface temperature anomaly field in the tropical belt where the El Nino Southern Oscillation (ENSO) is the main mode of variability. The advantage of LDMs versus traditionally used empirical orthogonal function decomposition is demonstrated for this data. Specifically, it is shown that the new model has a competitive ENSO forecast skill in comparison with the other existing ENSO models.

  7. On non-linear dynamics of a coupled electro-mechanical system

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    Electro-mechanical devices are an example of coupled multi-disciplinary weakly non-linear systems. Dynamics of such systems is described in this paper by means of two mutually coupled differential equations. The first one, describing an electrical system, is of the first order and the second one...... excitation. The results are verified using a numerical model created in MATLAB Simulink environment. Effect of non-linear terms on dynamical response of the coupled system is investigated; the backbone and envelope curves are analyzed. The two phenomena, which exist in the electro-mechanical system: (a......, for mechanical system, is of the second order. The governing equations are coupled via linear and weakly non-linear terms. A classical perturbation method, a method of multiple scales, is used to find a steadystate response of the electro-mechanical system exposed to a harmonic close-resonance mechanical...

  8. MEMS linear and nonlinear statics and dynamics

    CERN Document Server

    Younis, Mohammad I

    2011-01-01

    MEMS Linear and Nonlinear Statics and Dynamics presents the necessary analytical and computational tools for MEMS designers to model and simulate most known MEMS devices, structures, and phenomena. This book also provides an in-depth analysis and treatment of the most common static and dynamic phenomena in MEMS that are encountered by engineers. Coverage also includes nonlinear modeling approaches to modeling various MEMS phenomena of a nonlinear nature, such as those due to electrostatic forces, squeeze-film damping, and large deflection of structures. The book also: Includes examples of nume

  9. Parallel beam dynamics simulation of linear accelerators

    International Nuclear Information System (INIS)

    Qiang, Ji; Ryne, Robert D.

    2002-01-01

    In this paper we describe parallel particle-in-cell methods for the large scale simulation of beam dynamics in linear accelerators. These techniques have been implemented in the IMPACT (Integrated Map and Particle Accelerator Tracking) code. IMPACT is being used to study the behavior of intense charged particle beams and as a tool for the design of next-generation linear accelerators. As examples, we present applications of the code to the study of emittance exchange in high intensity beams and to the study of beam transport in a proposed accelerator for the development of accelerator-driven waste transmutation technologies

  10. Nonoscillation of half-linear dynamic equations

    Czech Academy of Sciences Publication Activity Database

    Matucci, S.; Řehák, Pavel

    2010-01-01

    Roč. 60, č. 5 (2010), s. 1421-1429 ISSN 0898-1221 R&D Projects: GA AV ČR KJB100190701 Grant - others:GA ČR(CZ) GA201/07/0145 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear dynamic equation * time scale * (non)oscillation * Riccati technique Subject RIV: BA - General Mathematics Impact factor: 1.472, year: 2010 http://www.sciencedirect.com/science/article/pii/S0898122110004384

  11. Non-linear dynamics in Parkinsonism

    Directory of Open Access Journals (Sweden)

    Olivier eDarbin

    2013-12-01

    Full Text Available Over the last 30 years, the functions (and dysfunctions of the sensory-motor circuitry have been mostly conceptualized using linear modelizations which have resulted in two main models: the "rate hypothesis" and the "oscillatory hypothesis". In these two models, the basal ganglia data stream is envisaged as a random temporal combination of independent simple patterns issued from its probability distribution of interval interspikes or its spectrum of frequencies respectively.More recently, non-linear analyses have been introduced in the modelization of motor circuitry activities, and they have provided evidences that complex temporal organizations exist in basal ganglia neuronal activities. Regarding movement disorders, these complex temporal organizations in the basal ganglia data stream differ between conditions (i.e. parkinsonism, dyskinesia, healthy control and are responsive to treatments (i.e. L-DOPA,DBS. A body of evidence has reported that basal ganglia neuronal entropy (a marker for complexity/irregularity in time series is higher in hypokinetic state. In line with these findings, an entropy-based model has been recently formulated to introduce basal ganglia entropy as a marker for the alteration of motor processing and a factor of motor inhibition. Importantly, non-linear features have also been identified as a marker of condition and/or treatment effects in brain global signals (EEG, muscular activities (EMG or kinetic of motor symptoms (tremor, gait of patients with movement disorders. It is therefore warranted that the non-linear dynamics of motor circuitry will contribute to a better understanding of the neuronal dysfunctions underlying the spectrum of parkinsonian motor symptoms including tremor, rigidity and hypokinesia.

  12. Orbit dynamics for unstable linear motion

    International Nuclear Information System (INIS)

    Parzen, G.

    1997-01-01

    A treatment is given of the orbit dynamics for linear unstable motion that allows for the zeros in the beta function and makes no assumptions about the realness of the betatron and phase functions. The phase shift per turn is shown to be related to the beta function and the number of zeros the beta function goes through per turn. The solutions of the equations of motion are found in terms of the beta function

  13. Orbit dynamics for unstable linear motion

    International Nuclear Information System (INIS)

    Parzen, G.

    1996-04-01

    A treatment is given of the orbit dynamics for linear unstable motion that allows for the zeros in the beta function and makes no assumption about the realness of the betatron and phase functions. The phase shift per turn is shown to be related to the beta function and the number of zeros the beta function goes through per turn. The solutions of the equations of motion are found in terms of the beta function

  14. Disturbance attenuation of nonlinear control systems using an observer-based fuzzy feedback linearization control

    International Nuclear Information System (INIS)

    Chen, C.-C.; Hsu, C.-H.; Chen, Y.-J.; Lin, Y.-F.

    2007-01-01

    The almost disturbance decoupling and trajectory tracking of nonlinear control systems using an observer-based fuzzy feedback linearization control (FLC) is developed. Because not all of the state variables of the nonlinear dynamic equations are available, a nonlinear state observer is employed to estimate the state variables. The feedback linearization control guarantees the almost disturbance decoupling performance and the uniform ultimate bounded stability of the tracking error system. Once the tracking errors are driven to touch the global final attractor with the desired radius, the fuzzy logic control is immediately applied via human expert's knowledge to improve the convergence rate. One example, which cannot be solved by the first paper on the almost disturbance decoupling problem, is proposed in this paper to exploit the fact that the tracking and the almost disturbance decoupling performances are easily achieved by our proposed approach. In order to demonstrate the practical applicability, the study has investigated a pendulum control system

  15. Observability of linear control systems on Lie groups

    International Nuclear Information System (INIS)

    Ayala, V.; Hacibekiroglu, A.K.

    1995-01-01

    In this paper, we study the observability problem for a linear control system Σ on a Lie group G. The drift vector field of Σ is an infinitesimal automorphism of G and the control vectors are elements in the Lie algebra of G. We establish algebraic conditions to characterize locally and globally observability for Σ. As in the linear case on R n , these conditions are independent of the control vector. We give an algorithm on the co-tangent bundle of G to calculate the equivalence class of the neutral element. (author). 6 refs

  16. Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities

    Science.gov (United States)

    Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred

    2012-07-01

    The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in

  17. Beam dynamics in linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1990-09-01

    In this paper, we discuss some basic beam dynamics issues related to obtaining and preserving the luminosity of a next generation linear collider. The beams are extracted from a damping ring and compressed in length by the first bunch compressor. They are then accelerated in a preaccelerator linac up to an energy appropriate for injection into a high gradient linac. In many designs this pre-acceleration is followed by another bunch compression to reach a short bunch. After acceleration in the linac, the bunches are finally focused transversely to a small spot. 27 refs., 1 fig

  18. Observability of linear systems with saturated outputs

    NARCIS (Netherlands)

    Koplon, R.; Sontag, E.D.; Hautus, M.L.J.

    1994-01-01

    We present necessary and sufficient conditions for observability of the class of output-saturated systems. These are linear systems whose output passes through a saturation function before it can be measured.

  19. Short- and long-term variations in non-linear dynamics of heart rate variability

    DEFF Research Database (Denmark)

    Kanters, J K; Højgaard, M V; Agner, E

    1996-01-01

    OBJECTIVES: The purpose of the study was to investigate the short- and long-term variations in the non-linear dynamics of heart rate variability, and to determine the relationships between conventional time and frequency domain methods and the newer non-linear methods of characterizing heart rate...... rate and describes mainly linear correlations. Non-linear predictability is correlated with heart rate variability measured as the standard deviation of the R-R intervals and the respiratory activity expressed as power of the high-frequency band. The dynamics of heart rate variability changes suddenly...

  20. Dynamic Response Analysis of Linear Pulse Motor with Closed Loop Control

    OpenAIRE

    山本, 行雄; 山田, 一

    1989-01-01

    A linear pulse motor can translate digital signals into linear positions without a gear system. It is important to predict a dynamic response in order to the motor that has the good performance. In this report the maximum pulse rate and the maximum speed on the linear pulse motor are obtained by using the sampling theory.

  1. Beam dynamics simulation of a double pass proton linear accelerator

    Directory of Open Access Journals (Sweden)

    Kilean Hwang

    2017-04-01

    Full Text Available A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015NIMAER0168-900210.1016/j.nima.2015.05.056] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.

  2. Dynamics of edge currents in a linearly quenched Haldane model

    Science.gov (United States)

    Mardanya, Sougata; Bhattacharya, Utso; Agarwal, Amit; Dutta, Amit

    2018-03-01

    In a finite-time quantum quench of the Haldane model, the Chern number determining the topology of the bulk remains invariant, as long as the dynamics is unitary. Nonetheless, the corresponding boundary attribute, the edge current, displays interesting dynamics. For the case of sudden and adiabatic quenches the postquench edge current is solely determined by the initial and the final Hamiltonians, respectively. However for a finite-time (τ ) linear quench in a Haldane nanoribbon, we show that the evolution of the edge current from the sudden to the adiabatic limit is not monotonic in τ and has a turning point at a characteristic time scale τ =τ0 . For small τ , the excited states lead to a huge unidirectional surge in the edge current of both edges. On the other hand, in the limit of large τ , the edge current saturates to its expected equilibrium ground-state value. This competition between the two limits lead to the observed nonmonotonic behavior. Interestingly, τ0 seems to depend only on the Semenoff mass and the Haldane flux. A similar dynamics for the edge current is also expected in other systems with topological phases.

  3. Dynamical structure of linearized GL(4) gravities

    International Nuclear Information System (INIS)

    Aragone, C.; Restuccia, A.

    1978-01-01

    The physical content of the three more natural models of GL(4) gravity is analyzed, for the case of weak fields. It is shown that the first model is the linearized version of Yang's one-tensor-field gravity and is a scalar-tensor theory, with its scalar part contained in a symmetric tensor. The second and the third linearized models, which can both be derived from the fourth-order action postulated by Yang, are two-tensor decoupled systems. In both cases one of the tensors is the symmetric weak metric gravity tensor field. the second tensor appearing in these two models, representing the GL(4)-gauge field, is either a linearized symmetric affinity (in the second model) or a linearized but nonsymmetric affinity (for the third model). It is shown that in these last two cases the affinity contains a helicity-3 propagating field. Owing to the presence of helicity-3 fields it is shown that it is better to regard Yang's action as an action for a two-tensor system instead of trying to recover from a pure gravity (one-tensor-field) action. Finally, it is shown what is the dynamical structure of the second and third linearized two-tensor models which can be derived from Yang's action. (author)

  4. On the Convergence of Piecewise Linear Strategic Interaction Dynamics on Networks

    KAUST Repository

    Gharesifard, Bahman; Touri, Behrouz; Basar, Tamer; Shamma, Jeff S.

    2015-01-01

    We prove that the piecewise linear best-response dynamical systems of strategic interactions are asymptotically convergent to their set of equilibria on any weighted undirected graph. We study various features of these dynamical systems, including

  5. Efficient EBE treatment of the dynamic far-field in non-linear FE soil-structure interaction analyses

    NARCIS (Netherlands)

    Crouch, R.S.; Bennett, T.

    2000-01-01

    This paper presents results and observations from the use of a rigorous method of treating the dynamic far-field as part of a non-linear FE analysis. The technique de-veloped by Wolf and Song (referred to as the Scaled Boundary Finite-Element Method) is incorporated into a 3-D time-domain analysis

  6. Shear-transformation-zone theory of linear glassy dynamics.

    Science.gov (United States)

    Bouchbinder, Eran; Langer, J S

    2011-06-01

    We present a linearized shear-transformation-zone (STZ) theory of glassy dynamics in which the internal STZ transition rates are characterized by a broad distribution of activation barriers. For slowly aging or fully aged systems, the main features of the barrier-height distribution are determined by the effective temperature and other near-equilibrium properties of the configurational degrees of freedom. Our theory accounts for the wide range of relaxation rates observed in both metallic glasses and soft glassy materials such as colloidal suspensions. We find that the frequency-dependent loss modulus is not just a superposition of Maxwell modes. Rather, it exhibits an α peak that rises near the viscous relaxation rate and, for nearly jammed, glassy systems, extends to much higher frequencies in accord with experimental observations. We also use this theory to compute strain recovery following a period of large, persistent deformation and then abrupt unloading. We find that strain recovery is determined in part by the initial barrier-height distribution, but that true structural aging also occurs during this process and determines the system's response to subsequent perturbations. In particular, we find by comparison with experimental data that the initial deformation produces a highly disordered state with a large population of low activation barriers, and that this state relaxes quickly toward one in which the distribution is dominated by the high barriers predicted by the near-equilibrium analysis. The nonequilibrium dynamics of the barrier-height distribution is the most important of the issues raised and left unresolved in this paper.

  7. STABILITY, BIFURCATIONS AND CHAOS IN UNEMPLOYMENT NON-LINEAR DYNAMICS

    Directory of Open Access Journals (Sweden)

    Pagliari Carmen

    2013-07-01

    Full Text Available The traditional analysis of unemployment in relation to real output dynamics is based on some empirical evidences deducted from Okun’s studies. In particular the so called Okun’s Law is expressed in a linear mathematical formulation, which cannot explain the fluctuation of the variables involved. Linearity is an heavy limit for macroeconomic analysis and especially for every economic growth study which would consider the unemployment rate among the endogenous variables. This paper deals with an introductive study about the role of non-linearity in the investigation of unemployment dynamics. The main idea is the existence of a non-linear relation between the unemployment rate and the gap of GDP growth rate from its trend. The macroeconomic motivation of this idea moves from the consideration of two concatenate effects caused by a variation of the unemployment rate on the real output growth rate. These two effects are concatenate because there is a first effect that generates a secondary one on the same variable. When the unemployment rate changes, the first effect is the variation in the level of production in consequence of the variation in the level of such an important factor as labour force; the secondary effect is a consecutive variation in the level of production caused by the variation in the aggregate demand in consequence of the change of the individual disposal income originated by the previous variation of production itself. In this paper the analysis of unemployment dynamics is carried out by the use of the logistic map and the conditions for the existence of bifurcations (cycles are determined. The study also allows to find the range of variability of some characteristic parameters that might be avoided for not having an absolute unpredictability of unemployment dynamics (deterministic chaos: unpredictability is equivalent to uncontrollability because of the total absence of information about the future value of the variable to

  8. Linear and nonlinear dynamics of electron temperature gradient mode in non-Maxwellian plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zakir, U.; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar (Pakistan); Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, Islamabad (Pakistan); National Centre for Physics, Islamabad (Pakistan)

    2013-05-15

    The effect of non-Maxwellian distributed ions on electron temperature gradient mode is investigated. The linear dispersion relation of η{sub e}−mode is obtained which shows that the behavior of this mode changes in the presence of superthermal ions. The growth rate of η{sub e}−mode driven linear instability is found and is observed to modify due to nonthermal ions. However, it is found that this leaves the electron energy transport coefficient unchanged. In the nonlinear regime, a dipolar vortex solution is derived which indicates that the dynamic behavior of the vortices changes with the inclusion of kappa distributed ions. The importance of present study with respect to space and laboratory plasmas is also pointed out.

  9. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data.

    Science.gov (United States)

    Lewis, F L; Vamvoudakis, Kyriakos G

    2011-02-01

    Approximate dynamic programming (ADP) is a class of reinforcement learning methods that have shown their importance in a variety of applications, including feedback control of dynamical systems. ADP generally requires full information about the system internal states, which is usually not available in practical situations. In this paper, we show how to implement ADP methods using only measured input/output data from the system. Linear dynamical systems with deterministic behavior are considered herein, which are systems of great interest in the control system community. In control system theory, these types of methods are referred to as output feedback (OPFB). The stochastic equivalent of the systems dealt with in this paper is a class of partially observable Markov decision processes. We develop both policy iteration and value iteration algorithms that converge to an optimal controller that requires only OPFB. It is shown that, similar to Q -learning, the new methods have the important advantage that knowledge of the system dynamics is not needed for the implementation of these learning algorithms or for the OPFB control. Only the order of the system, as well as an upper bound on its "observability index," must be known. The learned OPFB controller is in the form of a polynomial autoregressive moving-average controller that has equivalent performance with the optimal state variable feedback gain.

  10. Radiative observables for linearized gravity on asymptotically flat spacetimes and their boundary induced states

    International Nuclear Information System (INIS)

    Benini, Marco; Dappiaggi, Claudio; Murro, Simone

    2014-01-01

    We discuss the quantization of linearized gravity on globally hyperbolic, asymptotically flat, vacuum spacetimes, and the construction of distinguished states which are both of Hadamard form and invariant under the action of all bulk isometries. The procedure, we follow, consists of looking for a realization of the observables of the theory as a sub-algebra of an auxiliary, non-dynamical algebra constructed on future null infinity ℑ + . The applicability of this scheme is tantamount to proving that a solution of the equations of motion for linearized gravity can be extended smoothly to ℑ + . This has been claimed to be possible provided that a suitable gauge fixing condition, first written by Geroch and Xanthopoulos [“Asymptotic simplicity is stable,” J. Math. Phys. 19, 714 (1978)], is imposed. We review its definition critically, showing that there exists a previously unnoticed obstruction in its implementation leading us to introducing the concept of radiative observables. These constitute an algebra for which a Hadamard state induced from null infinity and invariant under the action of all spacetime isometries exists and it is explicitly constructed

  11. Dynamic light scattering. Observation of polymer dynamics

    International Nuclear Information System (INIS)

    Hiroi, Takashi

    2015-01-01

    Dynamic light scattering is a technique to measure properties of polymer solutions such as size distribution. Principle of dynamic light scattering is briefly explained. Sometime dynamic light scattering is regarded as the observation of Doppler shift of scattered light. First, the difficulty for the direct observation of this Doppler shift is mentioned. Then the measurement by using a time correlation function is introduced. Measuring techniques for dynamic light scattering are also introduced. In addition to homodyne and heterodyne detection techniques, the technique called partial heterodyne method is also introduced. This technique is useful for the analysis of nonergodic medium such as polymer gels. Then the application of this technique to condensed suspension is briefly reviewed. As one of the examples, a dynamic light scattering microscope is introduced. By using this apparatus, we can measure the concentration dependence of the size distribution of polymer solutions. (author)

  12. Non-linear dynamic response of reactor containment

    International Nuclear Information System (INIS)

    Takemori, T.; Sotomura, K.; Yamada, M.

    1975-01-01

    A computer program was developed to investigate the elasto-plastic behavior of structures. This program is outlined and the problems of non-linear response of structures are discussed. Since the mode superposition method is only valid in an elastic analysis, the direct integration method was adopted here. As the sample model, an actual reactor containment (reactor building) of PWR plant was adopted. This building consists of three components, that is, a concrete internal structure, a steel containment vessel and a concrete outer shield wall. These components are resting on a rigid foundation mat. Therefore they were modeled with a lumped mass model respectively and coupled on the foundation. The following assumptions were employed to establish the properties of dynamic model: rocking and swaying springs of soil can be obtained from an elastic half-space solution, and the hysteretic characteristic of springs is bi-linear; springs connecting each mass are dealt with shear beams so that both bending and shear deflections can be included (Hysteretic characteristics of springs are linear, bi-linear and tri-linear for the internal structure, the containment vessel and the outer shield wall, respectively); generally, each damping coefficient is given for each mode in modal superposition (However, a damping matrix must be made directly in a non-linear response). Therefore the damping matrix of the model was made by combining the damping matrices [C] of each component obtained by Caughy's method and a damping value of the rocking and swaying by the half-space solution. On the basis of above conditions, the non-linear response of the structure was obtained and the difference between elastic and elasto-plastic analysis is presented

  13. Static and dynamic behaviour of antiferromagnetic linear chains

    International Nuclear Information System (INIS)

    Henkens, L.S.J.M.

    1977-01-01

    This thesis deals with an experimental study of the static and dynamic behaviour of s=1/2 heisenberg antiferromagnetic linear chains in the temperature range of 0,05K 4 , CuSeO 4 .5H 2 O, and CuBeF 4 .5H 2 O, all of which are isomorphic salts

  14. Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities

    Directory of Open Access Journals (Sweden)

    Y. N. Pavlov

    2015-01-01

    Full Text Available The subject of this work is the problem of identification of nonlinear dynamic systems based on the experimental data obtained by applying test signals to the system. The goal is to determinate coefficients of differential equations of systems by experimental frequency hodographs and separate similar, but different, in essence, forces: dissipative forces with the square of the first derivative in the motion equations and dissipative force from the action of dry friction. There was a proposal to use the harmonic linearization method to approximate each of the nonlinearity of "quadratic friction" and "dry friction" by linear friction with the appropriate harmonic linearization coefficient.Assume that a frequency transfer function of the identified system has a known form. Assume as well that there are disturbances while obtaining frequency characteristics of the realworld system. As a result, the points of experimentally obtained hodograph move randomly. Searching for solution of the identification problem was in the hodograph class, specified by the system model, which has the form of the frequency transfer function the same as the form of the frequency transfer function of the system identified. Minimizing a proximity criterion (measure of the experimentally obtained system hodograph and the system hodograph model for all the experimental points described and previously published by one of the authors allowed searching for the unknown coefficients of the frequenc ransfer function of the system model. The paper shows the possibility to identify a nonlinear dynamic system with multiple nonlinearities, obtained on the experimental samples of the frequency system hodograph. The proposed algorithm allows to select the nonlinearity of the type "quadratic friction" and "dry friction", i.e. also in the case where the nonlinearity is dependent on the same dynamic parameter, in particular, on the derivative of the system output value. For the dynamic

  15. A method for evaluating dynamical friction in linear ball bearings.

    Science.gov (United States)

    Fujii, Yusaku; Maru, Koichi; Jin, Tao; Yupapin, Preecha P; Mitatha, Somsak

    2010-01-01

    A method is proposed for evaluating the dynamical friction of linear bearings, whose motion is not perfectly linear due to some play in its internal mechanism. In this method, the moving part of a linear bearing is made to move freely, and the force acting on the moving part is measured as the inertial force given by the product of its mass and the acceleration of its centre of gravity. To evaluate the acceleration of its centre of gravity, the acceleration of two different points on it is measured using a dual-axis optical interferometer.

  16. Analytical study of dynamic aperture for storage ring by using successive linearization method

    International Nuclear Information System (INIS)

    Yang Jiancheng; Xia Jiawen; Wu Junxia; Xia Guoxing; Liu Wei; Yin Xuejun

    2004-01-01

    The determination of dynamic aperture is a critical issue in circular accelerator. In this paper, authors solved the equation of motion including non-linear forces by using successive linearization method and got a criterion for the determining of the dynamic aperture of the machine. Applying this criterion, a storage ring with FODO lattice has been studied. The results are agree well with the tracking results in a large range of linear turn (Q). The purpose is to improve our understanding of the mechanisms driving the particle motion in the presence of non-linear forces and got another mechanism driving instability of particle in storage ring-parametric resonance caused by 'fluctuating transfer matrices' at small amplification

  17. S-AMP for non-linear observation models

    DEFF Research Database (Denmark)

    Cakmak, Burak; Winther, Ole; Fleury, Bernard H.

    2015-01-01

    Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...

  18. Input design for linear dynamic systems using maxmin criteria

    DEFF Research Database (Denmark)

    Sadegh, Payman; Hansen, Lars H.; Madsen, Henrik

    1998-01-01

    This paper considers the problem of input design for maximizing the smallest eigenvalue of the information matrix for linear dynamic systems. The optimization of the smallest eigenvalue is of interest in parameter estimation and parameter change detection problems. We describe a simple cutting...

  19. Spin dynamics in storage rings and linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J. [Stanford Univ., CA (United States)

    1994-12-01

    The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included.

  20. Spin dynamics in storage rings and linear accelerators

    International Nuclear Information System (INIS)

    Irwin, J.

    1994-04-01

    The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included

  1. Analysis by numerical simulations of non-linear phenomenons in vertical pump rotor dynamic

    International Nuclear Information System (INIS)

    Bediou, J.; Pasqualini, G.

    1992-01-01

    Controlling dynamical behavior of main coolant pumps shaftlines is an interesting subject for the user and the constructor. The first is mainly concerned by the interpretation of on field observed behavior, monitoring, reliability and preventive maintenance of his machines. The second must in addition manage with sometimes contradictory requirements related to mechanical design and performances optimization (shaft diameter reduction, clearance,...). The use of numerical modeling is now a classical technique for simple analysis (rough prediction of critical speeds for instance) but is still limited, in particular for vertical shaftline especially when equipped with hydrodynamic bearings, due to the complexity of encountered phenomenons in that type of machine. The vertical position of the shaftline seems to be the origin of non linear dynamical behavior, the analysis of which, as presented in the following discussion, requires specific modelization of fluid film, particularly for hydrodynamic bearings. The low static load generally no longer allows use of stiffness and damping coefficients classically calculated by linearizing fluid film equations near a stable static equilibrium position. For the analysis of such machines, specific numerical models have been developed at Electricite de France in a package for general rotordynamics analysis. Numerical models are briefly described. Then an example is precisely presented and discussed to illustrate some considered phenomenons and their consequences on machine behavior. In this example, the authors interpret the observed behavior by using numerical models, and demonstrate the advantage of such analysis for better understanding of vertical pumps rotordynamic

  2. Linear Dynamics and Control of a Kinematic Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    Alvarez–Aguirre, Alejandro; García–Canseco, Eloísa; Scherpen, Jacquelien M.A.

    2010-01-01

    This paper presents a control systems approach for the modeling and control of a kinematic wobble–yoke Stirling engine. The linear dynamics of the Stirling engine are analyzed based on the dynamical model of the system, developed by these authors. We show that the Stirling engine can be viewed as a

  3. Linear dynamics and control of a kinematic wobble-yoke Stirling engine

    NARCIS (Netherlands)

    Alvarez Aguirre, A.; Garcia Canseco, E.; Scherpen, J.M.A.

    2010-01-01

    This paper presents a control systems approachfor the modeling and control of a kinematic wobbleyokeStirling engine. The linear dynamics of the Stirling engine are analyzed based on the dynamical model of the system, developed by the authors in [1]. We show that the Stirling engine can be viewed as

  4. Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae

    Science.gov (United States)

    Rosu, Grigore; Havelund, Klaus

    2001-01-01

    The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.

  5. Comparison of linear intrascan and interscan dynamic ranges of Orbitrap and ion-mobility time-of-flight mass spectrometers.

    Science.gov (United States)

    Kaufmann, Anton; Walker, Stephan

    2017-11-30

    The linear intrascan and interscan dynamic ranges of mass spectrometers are important in metabolome and residue analysis. A large linear dynamic range is mandatory if both low- and high-abundance ions have to be detected and quantitated in heavy matrix samples. These performance criteria, as provided by modern high-resolution mass spectrometry (HRMS), were systematically investigated. The comparison included two generations of Orbitraps, and an ion mobility quadrupole time-of-flight (QTOF) system In addition, different scan modes, as provided by the utilized instruments, were investigated. Calibration curves of different compounds covering a concentration range of five orders of magnitude were measured to evaluate the linear interscan dynamic range. The linear intrascan dynamic range and the resulting mass accuracy were evaluated by repeating these measurements in the presence of a very intense background. Modern HRMS instruments can show linear dynamic ranges of five orders of magnitude. Often, however, the linear dynamic range is limited by the detection capability (sensitivity and selectivity) and by the electrospray ionization. Orbitraps, as opposed to TOF instruments, show a reduced intrascan dynamic range. This is due to the limited C-trap and Orbitrap capacity. The tested TOF instrument shows poorer mass accuracies than the Orbitraps. In contrast, hyphenation with an ion-mobility device seems not to affect the linear dynamic range. The linear dynamic range of modern HRMS instrumentation has been significantly improved. This also refers to the virtual absence of systematic mass shifts at high ion abundances. The intrascan dynamic range of the current Orbitrap technology may still be a limitation when analyzing complex matrix extracts. On the other hand, the linear dynamic range is not only limited by the detector technology, but can also be shortened by peripheral devices, where the ionization and transfer of ions take place. Copyright © 2017 John Wiley

  6. Evaluation of linearly solvable Markov decision process with dynamic model learning in a mobile robot navigation task.

    Science.gov (United States)

    Kinjo, Ken; Uchibe, Eiji; Doya, Kenji

    2013-01-01

    Linearly solvable Markov Decision Process (LMDP) is a class of optimal control problem in which the Bellman's equation can be converted into a linear equation by an exponential transformation of the state value function (Todorov, 2009b). In an LMDP, the optimal value function and the corresponding control policy are obtained by solving an eigenvalue problem in a discrete state space or an eigenfunction problem in a continuous state using the knowledge of the system dynamics and the action, state, and terminal cost functions. In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in which the dynamics of the body and the environment have to be learned from experience. We first perform a simulation study of a pole swing-up task to evaluate the effect of the accuracy of the learned dynamics model on the derived the action policy. The result shows that a crude linear approximation of the non-linear dynamics can still allow solution of the task, despite with a higher total cost. We then perform real robot experiments of a battery-catching task using our Spring Dog mobile robot platform. The state is given by the position and the size of a battery in its camera view and two neck joint angles. The action is the velocities of two wheels, while the neck joints were controlled by a visual servo controller. We test linear and bilinear dynamic models in tasks with quadratic and Guassian state cost functions. In the quadratic cost task, the LMDP controller derived from a learned linear dynamics model performed equivalently with the optimal linear quadratic regulator (LQR). In the non-quadratic task, the LMDP controller with a linear dynamics model showed the best performance. The results demonstrate the usefulness of the LMDP framework in real robot control even when simple linear models are used for dynamics learning.

  7. Thermally driven molecular linear motors - A molecular dynamics study

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard Lawrence

    2009-01-01

    We conduct molecular dynamics simulations of a molecular linear motor consisting of coaxial carbon nanotubes with a long outer carbon nanotube confining and guiding the motion of an inner short, capsule-like nanotube. The simulations indicate that the motion of the capsule can be controlled by th...

  8. Evaluation of linearly solvable Markov decision process with dynamic model learning in a mobile robot navigation task

    Directory of Open Access Journals (Sweden)

    Ken eKinjo

    2013-04-01

    Full Text Available Linearly solvable Markov Decision Process (LMDP is a class of optimal control problem in whichthe Bellman’s equation can be converted into a linear equation by an exponential transformation ofthe state value function (Todorov, 2009. In an LMDP, the optimal value function and the correspondingcontrol policy are obtained by solving an eigenvalue problem in a discrete state space or an eigenfunctionproblem in a continuous state using the knowledge of the system dynamics and the action, state, andterminal cost functions.In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in whichthe dynamics of the body and the environment have to be learned from experience. We first perform asimulation study of a pole swing-up task to evaluate the effect of the accuracy of the learned dynam-ics model on the derived the action policy. The result shows that a crude linear approximation of thenonlinear dynamics can still allow solution of the task, despite with a higher total cost.We then perform real robot experiments of a battery-catching task using our Spring Dog mobile robotplatform. The state is given by the position and the size of a battery in its camera view and two neck jointangles. The action is the velocities of two wheels, while the neck joints were controlled by a visual servocontroller. We test linear and bilinear dynamic models in tasks with quadratic and Guassian state costfunctions. In the quadratic cost task, the LMDP controller derived from a learned linear dynamics modelperformed equivalently with the optimal linear quadratic controller (LQR. In the non-quadratic task, theLMDP controller with a linear dynamics model showed the best performance. The results demonstratethe usefulness of the LMDP framework in real robot control even when simple linear models are usedfor dynamics learning.

  9. Optimal Piecewise-Linear Approximation of the Quadratic Chaotic Dynamics

    Directory of Open Access Journals (Sweden)

    J. Petrzela

    2012-04-01

    Full Text Available This paper shows the influence of piecewise-linear approximation on the global dynamics associated with autonomous third-order dynamical systems with the quadratic vector fields. The novel method for optimal nonlinear function approximation preserving the system behavior is proposed and experimentally verified. This approach is based on the calculation of the state attractor metric dimension inside a stochastic optimization routine. The approximated systems are compared to the original by means of the numerical integration. Real electronic circuits representing individual dynamical systems are derived using classical as well as integrator-based synthesis and verified by time-domain analysis in Orcad Pspice simulator. The universality of the proposed method is briefly discussed, especially from the viewpoint of the higher-order dynamical systems. Future topics and perspectives are also provided

  10. Analysis of interactive fixed effects dynamic linear panel regression with measurement error

    OpenAIRE

    Nayoung Lee; Hyungsik Roger Moon; Martin Weidner

    2011-01-01

    This paper studies a simple dynamic panel linear regression model with interactive fixed effects in which the variable of interest is measured with error. To estimate the dynamic coefficient, we consider the least-squares minimum distance (LS-MD) estimation method.

  11. From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining.

    Science.gov (United States)

    Truccolo, Wilson

    2016-11-01

    This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics ("order parameters") inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. Published by Elsevier Ltd.

  12. Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis

    Science.gov (United States)

    Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel

    2013-01-01

    This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007

  13. Conserved linear dynamics of single-molecule Brownian motion

    KAUST Repository

    Serag, Maged F.

    2017-06-06

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  14. Conserved linear dynamics of single-molecule Brownian motion

    Science.gov (United States)

    Serag, Maged F.; Habuchi, Satoshi

    2017-06-01

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  15. Conserved linear dynamics of single-molecule Brownian motion

    KAUST Repository

    Serag, Maged F.; Habuchi, Satoshi

    2017-01-01

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  16. Quality of computerized blast load simulation for non-linear dynamic ...

    African Journals Online (AJOL)

    Quality of computerized blast load simulation for non-linear dynamic response ... commercial software system and a special-purpose, blast-specific software product to ... depend both on the analysis model of choice and the stand-off distances.

  17. Soil non-linearity and its effect on the dynamic behaviour of offshore platform foundations

    Energy Technology Data Exchange (ETDEWEB)

    Madshus, Christian

    1997-07-01

    This thesis focuses on non-linear soil response to the type of cyclic loading experienced under offshore gravity base platform foundations. These loads are dominated by a cyclic component around the main wave frequency, which may well mobilize soil non-linearity under severe sea-states. Superimposed on this main component are lower level higher frequency loads caused by resonant oscillations of the platform. The thesis presents results of specially designed triaxial tests to simulate this loading condition. The tests simultaneously applied two cyclic load components at different frequencies and amplitudes. The measured soil response to each component has been isolated through a frequency domain separation. It was found that the soil responds to the superimposed high frequency low level component as if the soil had a cyclically time-varying stiffness. If the superimposed component does not lead to load reversals, this stiffness variation is controlled by the frequency and amplitude of the main load component and by the hysteretic non-linearity of the soil. If the superimposed component causes reversals, the influence of the hysteretic non-linearity on the stiffness variation is reduced. The higher the degree of reversal, the more this influence it taken over by the variation in the instantaneous unloading-reloading stiffness of the soil. It was also found that this type of two-frequency cyclic soil testing is generally superior over conventional single-frequency testing in the way it enforces the soil to reveal several of its inherent properties not deducible from ordinary tests. Benefits of analyzing non-linear response in the frequency domain is demonstrated throughout this thesis. The ability of various theoretical soil models to simulate the observed soil behaviour under two-frequency cyclic loading has, been investigated through numerical analyses. It was found that only those models that are based on kinematic hardening are able to reproduce what was observed

  18. Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network.

    Science.gov (United States)

    Gilra, Aditya; Gerstner, Wulfram

    2017-11-27

    The brain needs to predict how the body reacts to motor commands, but how a network of spiking neurons can learn non-linear body dynamics using local, online and stable learning rules is unclear. Here, we present a supervised learning scheme for the feedforward and recurrent connections in a network of heterogeneous spiking neurons. The error in the output is fed back through fixed random connections with a negative gain, causing the network to follow the desired dynamics. The rule for Feedback-based Online Local Learning Of Weights (FOLLOW) is local in the sense that weight changes depend on the presynaptic activity and the error signal projected onto the postsynaptic neuron. We provide examples of learning linear, non-linear and chaotic dynamics, as well as the dynamics of a two-link arm. Under reasonable approximations, we show, using the Lyapunov method, that FOLLOW learning is uniformly stable, with the error going to zero asymptotically.

  19. Linear polarization observations of some X-ray sources

    International Nuclear Information System (INIS)

    Shakhovskoy, N.M.; Efimov, Yu.S.

    1975-01-01

    Multicolour linear polarization of optical radiation of the X-ray sources Sco X-1, Cyg X-2, Cyg X-1 and Her X-1 was measured at the Crimean Astrophysical Observatory in 1970-1973. These observations indicate that polarization of Sco X-1 in the ultraviolet, blue and red spectral regions appears to be variable. No statistically significant variations of polarization were found for the other three sources observed. (Auth.)

  20. Coupling of linearized gravity to nonrelativistic test particles: Dynamics in the general laboratory frame

    International Nuclear Information System (INIS)

    Speliotopoulos, A.D.; Chiao, Raymond Y.

    2004-01-01

    The coupling of gravity to matter is explored in the linearized gravity limit. The usual derivation of gravity-matter couplings within the quantum-field-theoretic framework is reviewed. A number of inconsistencies between this derivation of the couplings and the known results of tidal effects on test particles according to classical general relativity are pointed out. As a step towards resolving these inconsistencies, a general laboratory frame fixed on the worldline of an observer is constructed. In this frame, the dynamics of nonrelativistic test particles in the linearized gravity limit is studied, and their Hamiltonian dynamics is derived. It is shown that for stationary metrics this Hamiltonian reduces to the usual Hamiltonian for nonrelativistic particles undergoing geodesic motion. For nonstationary metrics with long-wavelength gravitational waves present (GWs), it reduces to the Hamiltonian for a nonrelativistic particle undergoing geodesic deviation motion. Arbitrary-wavelength GWs couple to the test particle through a vector-potential-like field N a , the net result of the tidal forces that the GW induces in the system, namely, a local velocity field on the system induced by tidal effects, as seen by an observer in the general laboratory frame. Effective electric and magnetic fields, which are related to the electric and magnetic parts of the Weyl tensor, are constructed from N a that obey equations of the same form as Maxwell's equations. A gedankin gravitational Aharonov-Bohm-type experiment using N a to measure the interference of quantum test particles is presented

  1. Full-order Luenberger observer based on fuzzy-logic control for sensorless field-oriented control of a single-sided linear induction motor.

    Science.gov (United States)

    Holakooie, Mohammad Hosein; Ojaghi, Mansour; Taheri, Asghar

    2016-01-01

    This paper investigates sensorless indirect field oriented control (IFOC) of SLIM with full-order Luenberger observer. The dynamic equations of SLIM are first elaborated to draw full-order Luenberger observer with some simplifying assumption. The observer gain matrix is derived from conventional procedure so that observer poles are proportional to SLIM poles to ensure the stability of system for wide range of linear speed. The operation of observer is significantly impressed by adaptive scheme. A fuzzy logic control (FLC) is proposed as adaptive scheme to estimate linear speed using speed tuning signal. The parameters of FLC are tuned using an off-line method through chaotic optimization algorithm (COA). The performance of the proposed observer is verified by both numerical simulation and real-time hardware-in-the-loop (HIL) implementation. Moreover, a detailed comparative study among proposed and other speed observers is obtained under different operation conditions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    CERN Document Server

    Eliasson, Peder

    2008-01-01

    The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Fina...

  3. The dynamic response of a linear brushless D.C. motor

    Energy Technology Data Exchange (ETDEWEB)

    Moghani, J.S.; Eastham, J.F. [Univ. of Bath (United Kingdom). School of Electrical and Electronic Engineering

    1995-12-31

    The paper describes the use of the Matlab Analogue Simulation Toolbox SIMULINK for the closed loop dynamic modeling of a linear brushless dc motor which is supplied from a delta-modulated inverter. The work is validated by experimental results taken from a large test rig. Linear version of all rotating machines are possible; a rotating machine can be notionally cut along a radial plane and unrolled to yield a linear version. The most popular form of linear machine, as judged by the quantities that have been produced is the linear induction motor. This has the advantage of first an inexpensive secondary that is often a simple iron backed conducting plate, and secondly the possibility of simple voltage control. The linear brushless synchronous motor is potentially more expensive to produce than its induction counterpart because of the permanent magnets which provide the excitation mmf and the necessity of an inverter supply. However the machine has a power factor efficiency product which can be double that of an induction motor together with about twice the tractive force per pole area.

  4. An algorithm for the solution of dynamic linear programs

    Science.gov (United States)

    Psiaki, Mark L.

    1989-01-01

    The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic Programs more practical for solving trajectory optimization problems. The ultimate goal is to being trajectory optimization solution speeds into the realm of real-time control. The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of the LP rank-1 updating procedure, although it may result in more changes of the active set that if pseudo constraints were relaxed in a non-stagewise fashion. The usual stability of closed-loop Linear/Quadratic optimally-controlled systems, if it carries over to strictly linear cost functions, implies that the saving due to reduced factor update effort may outweigh the cost of an increased number of updates. An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of the proposed pseudo constraint relaxation

  5. Diagnostic usefulness of segmental and linear enhancement in dynamic breast MRI

    International Nuclear Information System (INIS)

    Morakkabati-Spitz, N.; Leutner, C.; Schild, H.; Traeber, F.; Kuhl, C.

    2005-01-01

    The aim of this study was the evaluation of the diagnostic usefulness of ductal or segmental enhancement in dynamic breast MRI. Segmental and ductal enhancement have been established as the breast MRI hallmarks of intraductal breast cancer (DCIS); however, the positive predictive value of this imaging finding is still unknown. In our study, we analysed the overall prevalence of a segmental or a linear enhancement pattern on breast MRI for an unselected cohort of patients. The aim was to evaluate the diagnostic usefulness of segmental or linear enhancement. Second, we asked whether biopsy was necessary also in the absence of mammographic findings suggestive of DCIS. Prospective, consecutive evaluation of 1,003 patients undergoing bilateral dynamic breast MRI. Studies were interpreted by two experienced breast radiologists. A diagnostic or screening two-view mammogram was available for all patients. Biopsy or short-term breast MRI follow-up was recommended for patients showing a segmental or a linear enhancement pattern on breast MRI. The patients' final diagnoses were established by imaging guided excisional or core biopsy or by clinical plus conventional imaging follow-up for a period of 2 years. The prevalence of segmental or linear enhancement was determined for patients with a final diagnosis of benign breast disease compared with those with a diagnosis of breast cancer. One hundred twenty patients had invasive breast cancer, 24 patients had DCIS and 859 patients had unsuspicious breast MRI or benign breast disease. A segmental or a linear enhancement pattern was found for 50/1,003 (5%) patients (17 DCIS, 33 benign breast diseases). Accordingly, the positive predictive value of segmental and linear enhancement is 34% (17/50); the specificity of this criterion is 96% (826/859). For 4/24 (17%) patients, DCIS was visible as segmental or linear enhancement on dynamic breast MRI, whereas no abnormalities were visible on the corresponding mammogram. The overall

  6. Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.

    Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically-numerical tec......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...

  7. Note: A high dynamic range, linear response transimpedance amplifier.

    Science.gov (United States)

    Eckel, S; Sushkov, A O; Lamoreaux, S K

    2012-02-01

    We have built a high dynamic range (nine decade) transimpedance amplifier with a linear response. The amplifier uses junction-gate field effect transistors (JFETs) to switch between three different resistors in the feedback of a low input bias current operational amplifier. This allows for the creation of multiple outputs, each with a linear response and a different transimpedance gain. The overall bandwidth of the transimpedance amplifier is set by the bandwidth of the most sensitive range. For our application, we demonstrate a three-stage amplifier with transimpedance gains of approximately 10(9)Ω, 3 × 10(7)Ω, and 10(4)Ω with a bandwidth of 100 Hz.

  8. Feedback Linearized Aircraft Control Using Dynamic Cell Structure

    Science.gov (United States)

    Jorgensen, C. C.

    1998-01-01

    A Dynamic Cell Structure (DCS ) Neural Network was developed which learns a topology representing network (TRN) of F-15 aircraft aerodynamic stability and control derivatives. The network is combined with a feedback linearized tracking controller to produce a robust control architecture capable of handling multiple accident and off-nominal flight scenarios. This paper describes network and its performance for accident scenarios including differential stabilator lock, soft sensor failure, control, stability derivative variation, and turbulence.

  9. Linear and Nonlinear Analysis of Brain Dynamics in Children with Cerebral Palsy

    Science.gov (United States)

    Sajedi, Firoozeh; Ahmadlou, Mehran; Vameghi, Roshanak; Gharib, Masoud; Hemmati, Sahel

    2013-01-01

    This study was carried out to determine linear and nonlinear changes of brain dynamics and their relationships with the motor dysfunctions in CP children. For this purpose power of EEG frequency bands (as a linear analysis) and EEG fractality (as a nonlinear analysis) were computed in eyes-closed resting state and statistically compared between 26…

  10. Construction of exact invariants of time-dependent linear nonholonomic dynamical systems

    International Nuclear Information System (INIS)

    Fu Jingli; Jimenez, Salvador; Tang Yifa; Vazquez, Luis

    2008-01-01

    In this work, we build exact dynamical invariants for time-dependent, linear, nonholonomic Hamiltonian systems in two dimensions. Our aim is to obtain an additional insight into the theoretical understanding of generalized Hamilton canonical equations. In particular, we investigate systems represented by a quadratic Hamiltonian subject to linear nonholonomic constraints. We use a Lie algebraic method on the systems to build the invariants. The role and scope of these invariants is pointed out

  11. Construction of exact invariants of time-dependent linear nonholonomic dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Fu Jingli [Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)], E-mail: sqfujingli@163.com; Jimenez, Salvador [Departamento de Matematica Aplicada TTII, E.T.S.I. Telecomunicacion, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Tang Yifa [State Key Laboratory of Scientific and Engineering Computing, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, PO Box 2719, Beijing 100080 (China); Vazquez, Luis [Departamento de Matematica Aplicada Facultad de Informatica, Universidad Complutense de Madrid, 28040 Madrid (Spain); Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, 28850 Madrid (Spain)

    2008-03-03

    In this work, we build exact dynamical invariants for time-dependent, linear, nonholonomic Hamiltonian systems in two dimensions. Our aim is to obtain an additional insight into the theoretical understanding of generalized Hamilton canonical equations. In particular, we investigate systems represented by a quadratic Hamiltonian subject to linear nonholonomic constraints. We use a Lie algebraic method on the systems to build the invariants. The role and scope of these invariants is pointed out.

  12. DIESYS—dynamically non-linear dielectric elastomer energy generating synergetic structures: perspectives and challenges

    International Nuclear Information System (INIS)

    Antoniadis, I A; Venetsanos, D T; Papaspyridis, F G

    2013-01-01

    Dielectric elastomer based generators (DEGs) offer some unique properties over energy generators based on other materials. These properties include high energy density, high efficiency over a broad range of frequencies, low compliance, the ability to produce high strain, large area, low cost films with no toxic materials and wide range environmental tolerance. As further shown in this paper, DEG materials can also exhibit a non-linear dynamic behavior, enhancing broad-band energy transfer. More specifically, dielectric elastomer (DE) energy generating synergetic structures (DIESYS) are considered as dynamic energy absorbers. Two elementary characteristic DIESYS design concepts are examined, leading to a typical antagonistic configuration for in-plane oscillations and a typical synagonistic configuration for out-of-plane oscillations. Originally, all the DE elements of the structure are assumed to be always in tension during all the phases of the harvesting cycle, conforming to the traditional concept of operation of DE structures. As shown in this paper, the traditional always-in-tension concept results in a linear dynamic system response, despite the fact that the implemented (DE) parts are considered to have been made of a non-linear (hyperelastic) material. In contrast, the proposed loose-part concept ensures the appearance of a non-linear broad-band system response, enhancing energy transfer from the environmental source. (paper)

  13. Investigation, development, and application of optimal output feedback theory. Volume 3: The relationship between dynamic compensators and observers and Kalman filters

    Science.gov (United States)

    Broussard, John R.

    1987-01-01

    Relationships between observers, Kalman Filters and dynamic compensators using feedforward control theory are investigated. In particular, the relationship, if any, between the dynamic compensator state and linear functions of a discrete plane state are investigated. It is shown that, in steady state, a dynamic compensator driven by the plant output can be expressed as the sum of two terms. The first term is a linear combination of the plant state. The second term depends on plant and measurement noise, and the plant control. Thus, the state of the dynamic compensator can be expressed as an estimator of the first term with additive error given by the second term. Conditions under which a dynamic compensator is a Kalman filter are presented, and reduced-order optimal estimaters are investigated.

  14. Global Stability of Polytopic Linear Time-Varying Dynamic Systems under Time-Varying Point Delays and Impulsive Controls

    Directory of Open Access Journals (Sweden)

    M. de la Sen

    2010-01-01

    Full Text Available This paper investigates the stability properties of a class of dynamic linear systems possessing several linear time-invariant parameterizations (or configurations which conform a linear time-varying polytopic dynamic system with a finite number of time-varying time-differentiable point delays. The parameterizations may be timevarying and with bounded discontinuities and they can be subject to mixed regular plus impulsive controls within a sequence of time instants of zero measure. The polytopic parameterization for the dynamics associated with each delay is specific, so that (q+1 polytopic parameterizations are considered for a system with q delays being also subject to delay-free dynamics. The considered general dynamic system includes, as particular cases, a wide class of switched linear systems whose individual parameterizations are timeinvariant which are governed by a switching rule. However, the dynamic system under consideration is viewed as much more general since it is time-varying with timevarying delays and the bounded discontinuous changes of active parameterizations are generated by impulsive controls in the dynamics and, at the same time, there is not a prescribed set of candidate potential parameterizations.

  15. Non-linear beam dynamics tests in the LHC: LHC dynamic aperture MD on Beam 2 (24th of June 2012)

    CERN Document Server

    Maclean, E H; Persson, T H B; Redaelli, S; Schmidt, F; Tomas, R; Uythoven, J

    2013-01-01

    This MD note summarizes measurements performed on LHC Beam 2 during the non-linear machine development (MD) of 24 June 2012. The aim of the measurement was to observe the dynamic aperture of LHC Beam 2, and obtain turn-by-turn (TbT) betatron oscillation data, enabling the study of amplitude detuning and resonance driving terms (RDTs). The regular injections required by the MD also represented an opportunity to test a new coupling feedback routine based on the analysis of injection oscillation data. Initial measurements were performed on the nominal state of the LHC at injection. On completion of this study the Landau octupoles were turned off and corrections for higher-order chromaticities were implemented to reduce the non-linearity of the machine as far as possible. A second set of measurements were then performed. All studies were performed using the LHC aperture kicker (MKA).

  16. ECG denoising and fiducial point extraction using an extended Kalman filtering framework with linear and nonlinear phase observations.

    Science.gov (United States)

    Akhbari, Mahsa; Shamsollahi, Mohammad B; Jutten, Christian; Armoundas, Antonis A; Sayadi, Omid

    2016-02-01

    In this paper we propose an efficient method for denoising and extracting fiducial point (FP) of ECG signals. The method is based on a nonlinear dynamic model which uses Gaussian functions to model ECG waveforms. For estimating the model parameters, we use an extended Kalman filter (EKF). In this framework called EKF25, all the parameters of Gaussian functions as well as the ECG waveforms (P-wave, QRS complex and T-wave) in the ECG dynamical model, are considered as state variables. In this paper, the dynamic time warping method is used to estimate the nonlinear ECG phase observation. We compare this new approach with linear phase observation models. Using linear and nonlinear EKF25 for ECG denoising and nonlinear EKF25 for fiducial point extraction and ECG interval analysis are the main contributions of this paper. Performance comparison with other EKF-based techniques shows that the proposed method results in higher output SNR with an average SNR improvement of 12 dB for an input SNR of -8 dB. To evaluate the FP extraction performance, we compare the proposed method with a method based on partially collapsed Gibbs sampler and an established EKF-based method. The mean absolute error and the root mean square error of all FPs, across all databases are 14 ms and 22 ms, respectively, for our proposed method, with an advantage when using a nonlinear phase observation. These errors are significantly smaller than errors obtained with other methods. For ECG interval analysis, with an absolute mean error and a root mean square error of about 22 ms and 29 ms, the proposed method achieves better accuracy and smaller variability with respect to other methods.

  17. Approximating high-dimensional dynamics by barycentric coordinates with linear programming

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Yoshito, E-mail: yoshito@sat.t.u-tokyo.ac.jp; Aihara, Kazuyuki; Suzuki, Hideyuki [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Department of Mathematical Informatics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Shiro, Masanori [Department of Mathematical Informatics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Mathematical Neuroinformatics Group, Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, Nozomu; Mas, Paloma [Center for Research in Agricultural Genomics (CRAG), Consorci CSIC-IRTA-UAB-UB, Barcelona 08193 (Spain)

    2015-01-15

    The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.

  18. Approximating high-dimensional dynamics by barycentric coordinates with linear programming.

    Science.gov (United States)

    Hirata, Yoshito; Shiro, Masanori; Takahashi, Nozomu; Aihara, Kazuyuki; Suzuki, Hideyuki; Mas, Paloma

    2015-01-01

    The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.

  19. Approximating high-dimensional dynamics by barycentric coordinates with linear programming

    International Nuclear Information System (INIS)

    Hirata, Yoshito; Aihara, Kazuyuki; Suzuki, Hideyuki; Shiro, Masanori; Takahashi, Nozomu; Mas, Paloma

    2015-01-01

    The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data

  20. Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study.

    Science.gov (United States)

    Nimmegeers, Philippe; Lauwers, Joost; Telen, Dries; Logist, Filip; Impe, Jan Van

    2017-06-01

    In this work, both the structural and practical identifiability of the Anaerobic Digestion Model no. 1 (ADM1) is investigated, which serves as a relevant case study of large non-linear dynamic network models. The structural identifiability is investigated using the probabilistic algorithm, adapted to deal with the specifics of the case study (i.e., a large-scale non-linear dynamic system of differential and algebraic equations). The practical identifiability is analyzed using a Monte Carlo parameter estimation procedure for a 'non-informative' and 'informative' experiment, which are heuristically designed. The model structure of ADM1 has been modified by replacing parameters by parameter combinations, to provide a generally locally structurally identifiable version of ADM1. This means that in an idealized theoretical situation, the parameters can be estimated accurately. Furthermore, the generally positive structural identifiability results can be explained from the large number of interconnections between the states in the network structure. This interconnectivity, however, is also observed in the parameter estimates, making uncorrelated parameter estimations in practice difficult. Copyright © 2017. Published by Elsevier Inc.

  1. Dynamic generalized linear models for monitoring endemic diseases

    DEFF Research Database (Denmark)

    Lopes Antunes, Ana Carolina; Jensen, Dan; Hisham Beshara Halasa, Tariq

    2016-01-01

    The objective was to use a Dynamic Generalized Linear Model (DGLM) based on abinomial distribution with a linear trend, for monitoring the PRRS (Porcine Reproductive and Respiratory Syndrome sero-prevalence in Danish swine herds. The DGLM was described and its performance for monitoring control...... and eradication programmes based on changes in PRRS sero-prevalence was explored. Results showed a declining trend in PRRS sero-prevalence between 2007 and 2014 suggesting that Danish herds are slowly eradicating PRRS. The simulation study demonstrated the flexibility of DGLMs in adapting to changes intrends...... in sero-prevalence. Based on this, it was possible to detect variations in the growth model component. This study is a proof-of-concept, demonstrating the use of DGLMs for monitoring endemic diseases. In addition, the principles stated might be useful in general research on monitoring and surveillance...

  2. A Dynamic Linear Modeling Approach to Public Policy Change

    DEFF Research Database (Denmark)

    Loftis, Matthew; Mortensen, Peter Bjerre

    2017-01-01

    Theories of public policy change, despite their differences, converge on one point of strong agreement. The relationship between policy and its causes can and does change over time. This consensus yields numerous empirical implications, but our standard analytical tools are inadequate for testing...... them. As a result, the dynamic and transformative relationships predicted by policy theories have been left largely unexplored in time-series analysis of public policy. This paper introduces dynamic linear modeling (DLM) as a useful statistical tool for exploring time-varying relationships in public...... policy. The paper offers a detailed exposition of the DLM approach and illustrates its usefulness with a time series analysis of U.S. defense policy from 1957-2010. The results point the way for a new attention to dynamics in the policy process and the paper concludes with a discussion of how...

  3. Multimodal tuned dynamic absorber for split Stirling linear cryocooler

    Science.gov (United States)

    Veprik, A.; Tuito, A.

    2017-02-01

    Forthcoming low size, weight, power and price split Stirling linear cryocoolers may rely on electro-dynamically driven single-piston compressors and pneumatically driven expanders interconnected by the configurable transfer line. For compactness, compressor and expander units may be placed in a side-by-side manner, thus producing tonal vibration export comprising force and moment components. In vibration sensitive applications, this may result in excessive angular line of sight jitter and translational defocusing affecting the image quality. The authors present Multimodal Tuned Dynamic Absorber (MTDA), having one translational and two tilting modes essentially tuned to the driving frequency. The dynamic reactions (force and moment) produced by such a MTDA are simultaneously counterbalancing force and moment vibration export produced by the cryocooler. The authors reveal the design details, the method of fine modal tuning and outcomes of numerical simulation on attainable performance.

  4. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries

    International Nuclear Information System (INIS)

    Anderies, J M; Carpenter, S R; Steffen, Will; Rockström, Johan

    2013-01-01

    We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries. (letter)

  5. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries

    Science.gov (United States)

    Anderies, J. M.; Carpenter, S. R.; Steffen, Will; Rockström, Johan

    2013-12-01

    We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries.

  6. Projective Synchronization of Chaotic Discrete Dynamical Systems via Linear State Error Feedback Control

    Directory of Open Access Journals (Sweden)

    Baogui Xin

    2015-04-01

    Full Text Available A projective synchronization scheme for a kind of n-dimensional discrete dynamical system is proposed by means of a linear feedback control technique. The scheme consists of master and slave discrete dynamical systems coupled by linear state error variables. A kind of novel 3-D chaotic discrete system is constructed, to which the test for chaos is applied. By using the stability principles of an upper or lower triangular matrix, two controllers for achieving projective synchronization are designed and illustrated with the novel systems. Lastly some numerical simulations are employed to validate the effectiveness of the proposed projective synchronization scheme.

  7. Study on non-linear bistable dynamics model based EEG signal discrimination analysis method.

    Science.gov (United States)

    Ying, Xiaoguo; Lin, Han; Hui, Guohua

    2015-01-01

    Electroencephalogram (EEG) is the recording of electrical activity along the scalp. EEG measures voltage fluctuations generating from ionic current flows within the neurons of the brain. EEG signal is looked as one of the most important factors that will be focused in the next 20 years. In this paper, EEG signal discrimination based on non-linear bistable dynamical model was proposed. EEG signals were processed by non-linear bistable dynamical model, and features of EEG signals were characterized by coherence index. Experimental results showed that the proposed method could properly extract the features of different EEG signals.

  8. Stochastic linearization of turbulent dynamics of dispersive waves in equilibrium and non-equilibrium state

    International Nuclear Information System (INIS)

    Jiang, Shixiao W; Lu, Haihao; Zhou, Douglas; Cai, David

    2016-01-01

    Characterizing dispersive wave turbulence in the long time dynamics is central to understanding of many natural phenomena, e.g., in atmosphere ocean dynamics, nonlinear optics, and plasma physics. Using the β -Fermi–Pasta–Ulam nonlinear system as a prototypical example, we show that in thermal equilibrium and non-equilibrium steady state the turbulent state even in the strongly nonlinear regime possesses an effective linear stochastic structure in renormalized normal variables. In this framework, we can well characterize the spatiotemporal dynamics, which are dominated by long-wavelength renormalized waves. We further demonstrate that the energy flux is nearly saturated by the long-wavelength renormalized waves in non-equilibrium steady state. The scenario of such effective linear stochastic dynamics can be extended to study turbulent states in other nonlinear wave systems. (paper)

  9. Dynamic logic architecture based on piecewise-linear systems

    International Nuclear Information System (INIS)

    Peng Haipeng; Liu Fei; Li Lixiang; Yang Yixian; Wang Xue

    2010-01-01

    This Letter explores piecewise-linear systems to construct dynamic logic architecture. The proposed schemes can discriminate the two input signals and obtain 16 kinds of logic operations by different combinations of parameters and conditions for determining the output. Each logic cell performs more flexibly, that makes it possible to achieve complex logic operations more simply and construct computing architecture with less logic cells. We also analyze the various performances of our schemes under different conditions and the characteristics of these schemes.

  10. Simulation of dynamics of a permanent magnet linear actuator

    DEFF Research Database (Denmark)

    Yatchev, Ivan; Ritchie, Ewen

    2010-01-01

    Comparison of two approaches for the simulation of the dynamic behaviour of a permanent magnet linear actuator is presented. These are full coupled model, where the electromagnetic field, electric circuit and mechanical motion problems are solved simultaneously, and decoupled model, where first...... flexibility when the actuator response is required to be estimated for different external conditions, e.g. external circuit parameters or mechanical loads....

  11. Dynamic modeling and characteristics analysis of a modal-independent linear ultrasonic motor.

    Science.gov (United States)

    Li, Xiang; Yao, Zhiyuan; Zhou, Shengli; Lv, Qibao; Liu, Zhen

    2016-12-01

    In this paper, an integrated model is developed to analyze the fundamental characteristics of a modal-independent linear ultrasonic motor with double piezoelectric vibrators. The energy method is used to model the dynamics of the two piezoelectric vibrators. The interface forces are coupled into the dynamic equations of the two vibrators and the moving platform, forming a whole machine model of the motor. The behavior of the force transmission of the motor is analyzed via the resulting model to understand the drive mechanism. In particular, the relative contact length is proposed to describe the intermittent contact characteristic between the stator and the mover, and its role in evaluating motor performance is discussed. The relations between the output speed and various inputs to the motor and the start-stop transients of the motor are analyzed by numerical simulations, which are validated by experiments. Furthermore, the dead-zone behavior is predicted and clarified analytically using the proposed model, which is also observed in experiments. These results are useful for designing servo control scheme for the motor. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements.

    Directory of Open Access Journals (Sweden)

    Daniel Durstewitz

    2017-06-01

    Full Text Available The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a (lower-dimensional state space representation of the dynamics, but would wish to have access to its statistical properties and their generative equations for in-depth analysis. Recurrent neural networks (RNNs are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, and using inference through particle filters for comparison, the approach is applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC obtained during performance of a classical working memory task, delayed alternation. Models estimated from kernel-smoothed spike time data were able to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, however, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast maximum-likelihood estimation framework for PLRNNs that may enable to recover

  13. Extension to linear dynamics for hybrid stress finite element formulation based on additional displacements

    Science.gov (United States)

    Sumihara, K.

    Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.

  14. Linear dynamical quantum systems analysis, synthesis, and control

    CERN Document Server

    Nurdin, Hendra I

    2017-01-01

    This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...

  15. Modeling and analysis of linearized wheel-rail contact dynamics

    International Nuclear Information System (INIS)

    Soomro, Z.

    2014-01-01

    The dynamics of the railway vehicles are nonlinear and depend upon several factors including vehicle speed, normal load and adhesion level. The presence of contaminants on the railway track makes them unpredictable too. Therefore in order to develop an effective control strategy it is important to analyze the effect of each factor on dynamic response thoroughly. In this paper a linearized model of a railway wheel-set is developed and is later analyzed by varying the speed and adhesion level by keeping the normal load constant. A wheel-set is the wheel-axle assembly of a railroad car. Patch contact is the study of the deformation of solids that touch each other at one or more points. (author)

  16. Econometric testing on linear and nonlinear dynamic relation between stock prices and macroeconomy in China

    Science.gov (United States)

    Borjigin, Sumuya; Yang, Yating; Yang, Xiaoguang; Sun, Leilei

    2018-03-01

    Many researchers have realized that there is a strong correlation between stock prices and macroeconomy. In order to make this relationship clear, a lot of studies have been done. However, the causal relationship between stock prices and macroeconomy has still not been well explained. A key point is that, most of the existing research adopts linear and stable models to investigate the correlation of stock prices and macroeconomy, while the real causality of that may be nonlinear and dynamic. To fill this research gap, we investigate the nonlinear and dynamic causal relationships between stock prices and macroeconomy. Based on the case of China's stock prices and acroeconomy measures from January 1992 to March 2017, we compare the linear Granger causality test models with nonlinear ones. Results demonstrate that the nonlinear dynamic Granger causality is much stronger than linear Granger causality. From the perspective of nonlinear dynamic Granger causality, China's stock prices can be viewed as "national economic barometer". On the one hand, this study will encourage researchers to take nonlinearity and dynamics into account when they investigate the correlation of stock prices and macroeconomy; on the other hand, our research can guide regulators and investors to make better decisions.

  17. Self-consistent field theory based molecular dynamics with linear system-size scaling

    Energy Technology Data Exchange (ETDEWEB)

    Richters, Dorothee [Institute of Mathematics and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 9, D-55128 Mainz (Germany); Kühne, Thomas D., E-mail: kuehne@uni-mainz.de [Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)

    2014-04-07

    We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.

  18. A multi-dimensional dynamic linear model for monitoring slaughter pig production

    DEFF Research Database (Denmark)

    Jensen, Dan Børge; Cornou, Cecile; Toft, Nils

    Scientists and farmers still lack an efficient way to unify the large number of different types of data series, which are increasingly being generated in relation to automatic herd monitoring. Such a unifying model should be able to account for the correlations between the various types of data......, feed-and water consumption), measured at different levels of detail (individual pig and double-pen level) and with different observational frequencies (weekly and daily), using series collected for the Danish PigIT project. The presented three-dimensional model serves as a proof of concept......, resulting in a model which could potentially yield more information than can be gained from the individual components separately. Here we present such a model for monitoring slaughter pig production, in the form of a multivariate dynamic linear model. This model unifies three types of data (live weight...

  19. Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept.

    Science.gov (United States)

    Mazandarani, Mehran; Pariz, Naser

    2018-05-01

    This paper deals with sub-optimal control of a fuzzy linear dynamical system. The aim is to keep the state variables of the fuzzy linear dynamical system close to zero in an optimal manner. In the fuzzy dynamical system, the fuzzy derivative is considered as the granular derivative; and all the coefficients and initial conditions can be uncertain. The criterion for assessing the optimality is regarded as a granular integral whose integrand is a quadratic function of the state variables and control inputs. Using the relative-distance-measure (RDM) fuzzy interval arithmetic and calculus of variations, the optimal control law is presented as the fuzzy state variables feedback. Since the optimal feedback gains are obtained as fuzzy functions, they need to be defuzzified. This will result in the sub-optimal control law. This paper also sheds light on the restrictions imposed by the approaches which are based on fuzzy standard interval arithmetic (FSIA), and use strongly generalized Hukuhara and generalized Hukuhara differentiability concepts for obtaining the optimal control law. The granular eigenvalues notion is also defined. Using an RLC circuit mathematical model, it is shown that, due to their unnatural behavior in the modeling phenomenon, the FSIA-based approaches may obtain some eigenvalues sets that might be different from the inherent eigenvalues set of the fuzzy dynamical system. This is, however, not the case with the approach proposed in this study. The notions of granular controllability and granular stabilizability of the fuzzy linear dynamical system are also presented in this paper. Moreover, a sub-optimal control for regulating a Boeing 747 in longitudinal direction with uncertain initial conditions and parameters is gained. In addition, an uncertain suspension system of one of the four wheels of a bus is regulated using the sub-optimal control introduced in this paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Linear Dynamics Model for Steam Cooled Fast Power Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, H

    1968-04-15

    A linear analytical dynamic model is developed for steam cooled fast power reactors. All main components of such a plant are investigated on a general though relatively simple basis. The model is distributed in those parts concerning the core but lumped as to the external plant components. Coolant is considered as compressible and treated by the actual steam law. Combined use of analogue and digital computer seems most attractive.

  1. Criteria for stability of linear dynamical systems with multiple delays ...

    African Journals Online (AJOL)

    In this study we considered a linear Dynamical system with multiple delays and find suitable conditions on the systems parameters such that for a given initial function, we can define a mapping in a carefully chosen complete metric space on which the mapping has a unique fixed point. An asymptotic stability theory for the ...

  2. Observation of the state of the nuclear reactor core by means of non-linear observation algorithms

    International Nuclear Information System (INIS)

    Maciel Palacio, F.E.; Espana, M.D.

    1990-01-01

    A combined, variable-adaptive structure, non-linear observer was designed in order to observe the state of the nuclear reactor core, based on the Absolute Stability Theory. The observer was proved under noise and modelling error conditions. Successful results were obtained in the observation of the states in both cases, showing clear improvement in the observation due to the application of adaptive and variable structure ideas. (Author) [es

  3. Molecular Dynamics Simulations of a Linear Nanomotor Driven by Thermophoretic Forces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    Molecular Dynamics of a Linear Nanomotor Driven by Thermophoresis Harvey A. Zambrano1, Jens H. Walther1,2 and Richard L. Jaffe3 1Department of Mechanical Engineering, Fluid Mechanics, Technical University of Denmark, DK-2800 Lyngby, Denmark; 2Computational Science and Engineering Laboratory, ETH...... future molecular machines a complete understanding of the friction forces involved on the transport process at the molecular level have to be addressed.18 In this work we perform Molecular Dynamics (MD) simulations using the MD package FASTTUBE19 to study a molecular linear motor consisting of coaxial...... the valence forces within the CNT using Morse, harmonic angle and torsion potentials.19We include a nonbonded carbon-carbon Lennard-Jones potential to describe the vdW interaction between the carbon atoms within the double wall portion of the system. We equilibrate the system at 300K for 0.1 ns, by coupling...

  4. A variational formulation for linear models in coupled dynamic thermoelasticity

    International Nuclear Information System (INIS)

    Feijoo, R.A.; Moura, C.A. de.

    1981-07-01

    A variational formulation for linear models in coupled dynamic thermoelasticity which quite naturally motivates the design of a numerical scheme for the problem, is studied. When linked to regularization or penalization techniques, this algorithm may be applied to more general models, namely, the ones that consider non-linear constraints associated to variational inequalities. The basic postulates of Mechanics and Thermodynamics as well as some well-known mathematical techniques are described. A thorough description of the algorithm implementation with the finite-element method is also provided. Proofs for existence and uniqueness of solutions and for convergence of the approximations are presented, and some numerical results are exhibited. (Author) [pt

  5. A high linearity current mode multiplier/divider with a wide dynamic range

    International Nuclear Information System (INIS)

    Liao Pengfei; Luo Ping; Zhang Bo; Li Zhaoji

    2012-01-01

    A high linearity current mode multiplier/divider (CMM/D) with a wide dynamic range is presented. The proposed CMM/D is based on the voltage—current characteristic of the diode, thus wide dynamic range is achieved. In addition, high linearity is achieved because high accuracy current mirrors are adopted and the output current is insensitive to the temperature and device parameters of the fabrication process. Furthermore, no extra bias current for all input signals is required and thus power saving is realized. With proper selection of establishing the input terminal, the proposed circuit can perform as a multifunction circuit to be operated as a multiplier/divider, without changing its topology. The proposed circuit is implemented in a 0.25 μm BCD process and the chip area is 0.26 × 0.24 mm 2 . The simulation and measurement results show that the maximum static linearity error is ±1.8% and the total harmonic distortion is 0.4% while the input current ranges from 0 to 200 μA. (semiconductor integrated circuits)

  6. One testing method of dynamic linearity of an accelerometer

    Directory of Open Access Journals (Sweden)

    Lei Jing-Yu

    2015-01-01

    Full Text Available To effectively test dynamic linearity of an accelerometer over a wide rang of 104 g to about 20 × 104g, one published patent technology is first experimentally verified and analysed, and its deficient is presented, then based on stress wave propagation theory on the thin long bar, the relation between the strain signal and the corresponding acceleration signal is obtained, one special link of two coaxial projectile is developed. These two coaxial metal cylinders (inner cylinder and circular tube are used as projectiles, to prevent their mutual slip inside the gun barrel during movement, the one end of two projectiles is always fastened by small screws. Ti6-AL4-V bar with diameter of 30 mm is used to propagate loading stress pulse. The resultant compression wave can be measured by the strain gauges on the bar, and a half –sine strain pulse is obtained. The measuring accelerometer is attached on the other end of the bar by a vacuum clamp. In this clamp, the accelerometer only bear compression wave, the reflected tension pulse make the accelerometer off the bar. Using this system, dynamic linearity measurement of accelerometer can be easily tested in wider range of acceleration values. And a really measuring results are presented.

  7. Network Traffic Monitoring Using Poisson Dynamic Linear Models

    Energy Technology Data Exchange (ETDEWEB)

    Merl, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-05-09

    In this article, we discuss an approach for network forensics using a class of nonstationary Poisson processes with embedded dynamic linear models. As a modeling strategy, the Poisson DLM (PoDLM) provides a very flexible framework for specifying structured effects that may influence the evolution of the underlying Poisson rate parameter, including diurnal and weekly usage patterns. We develop a novel particle learning algorithm for online smoothing and prediction for the PoDLM, and demonstrate the suitability of the approach to real-time deployment settings via a new application to computer network traffic monitoring.

  8. Beam dynamics problems for next generation linear colliders

    International Nuclear Information System (INIS)

    Yokoya, Kaoru

    1990-01-01

    The most critical issue for the feasibility of high-energy e + e - linear colliders is obviously the development of intense microwave power sources. Remaining problems, however, are not trivial and in fact some of them require several order-of-magnitude improvement from the existing SLC parameters. The present report summarizes the study status of the beam dynamics problems of high energy linear colliders with an exaggeration on the beam-beam phenomenon at the interaction region. There are four laboratories having linear collider plans, SLAC, CERN, Novosibirsk-Protovino, and KEK. The parameters of these projects scatter in some range but seem to converge slowly if one recalls the status five years ago. The beam energy will be below 500GeV. The basic requirements to the damping ring are the short damping time and small equilibrium emittance. All the proposed designs make use of tight focusing optics and strong wiggler magnets to meet these requirements and seem to have no major problems at least compared with other problems in the colliders. One of the major problems in the linac is the transverse beam blow-up due to the wake field created by the head of the bunch and, in the case of multiple bunches per pulse, by the preceeding bunches. (N.K.)

  9. Increasing Linear Dynamic Range of a CMOS Image Sensor

    Science.gov (United States)

    Pain, Bedabrata

    2007-01-01

    A generic design and a corresponding operating sequence have been developed for increasing the linear-response dynamic range of a complementary metal oxide/semiconductor (CMOS) image sensor. The design provides for linear calibrated dual-gain pixels that operate at high gain at a low signal level and at low gain at a signal level above a preset threshold. Unlike most prior designs for increasing dynamic range of an image sensor, this design does not entail any increase in noise (including fixed-pattern noise), decrease in responsivity or linearity, or degradation of photometric calibration. The figure is a simplified schematic diagram showing the circuit of one pixel and pertinent parts of its column readout circuitry. The conventional part of the pixel circuit includes a photodiode having a small capacitance, CD. The unconventional part includes an additional larger capacitance, CL, that can be connected to the photodiode via a transfer gate controlled in part by a latch. In the high-gain mode, the signal labeled TSR in the figure is held low through the latch, which also helps to adapt the gain on a pixel-by-pixel basis. Light must be coupled to the pixel through a microlens or by back illumination in order to obtain a high effective fill factor; this is necessary to ensure high quantum efficiency, a loss of which would minimize the efficacy of the dynamic- range-enhancement scheme. Once the level of illumination of the pixel exceeds the threshold, TSR is turned on, causing the transfer gate to conduct, thereby adding CL to the pixel capacitance. The added capacitance reduces the conversion gain, and increases the pixel electron-handling capacity, thereby providing an extension of the dynamic range. By use of an array of comparators also at the bottom of the column, photocharge voltages on sampling capacitors in each column are compared with a reference voltage to determine whether it is necessary to switch from the high-gain to the low-gain mode. Depending upon

  10. Inclusion of Linearized Moist Physics in Nasa's Goddard Earth Observing System Data Assimilation Tools

    Science.gov (United States)

    Holdaway, Daniel; Errico, Ronald; Gelaro, Ronaldo; Kim, Jong G.

    2013-01-01

    Inclusion of moist physics in the linearized version of a weather forecast model is beneficial in terms of variational data assimilation. Further, it improves the capability of important tools, such as adjoint-based observation impacts and sensitivity studies. A linearized version of the relaxed Arakawa-Schubert (RAS) convection scheme has been developed and tested in NASA's Goddard Earth Observing System data assimilation tools. A previous study of the RAS scheme showed it to exhibit reasonable linearity and stability. This motivates the development of a linearization of a near-exact version of the RAS scheme. Linearized large-scale condensation is included through simple conversion of supersaturation into precipitation. The linearization of moist physics is validated against the full nonlinear model for 6- and 24-h intervals, relevant to variational data assimilation and observation impacts, respectively. For a small number of profiles, sudden large growth in the perturbation trajectory is encountered. Efficient filtering of these profiles is achieved by diagnosis of steep gradients in a reduced version of the operator of the tangent linear model. With filtering turned on, the inclusion of linearized moist physics increases the correlation between the nonlinear perturbation trajectory and the linear approximation of the perturbation trajectory. A month-long observation impact experiment is performed and the effect of including moist physics on the impacts is discussed. Impacts from moist-sensitive instruments and channels are increased. The effect of including moist physics is examined for adjoint sensitivity studies. A case study examining an intensifying Northern Hemisphere Atlantic storm is presented. The results show a significant sensitivity with respect to moisture.

  11. Robust control of uncertain dynamic systems a linear state space approach

    CERN Document Server

    Yedavalli, Rama K

    2014-01-01

    This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the “real world” system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework Illustrates various systems level methodologies with examples and...

  12. Investigating circular patterns in linear polarization observations of Venus

    NARCIS (Netherlands)

    Mahapatra, G.; Stam, D.M.; Rossi, L.C.G.; Rodenhuis, M.; Snik, Frans; Keller, C.U.

    2017-01-01

    In this work, we analyse linear polarization data of the planet at a distance, obtained with the Extreme Polarimeter (ExPo) on the William Herschel Telescope
    on La Palma. These spatially resolved, high-accuracy polarization observations of Venus show faint circular patterns centered on the

  13. Linear and nonlinear dynamics of current-driven waves in dusty plasmas

    Science.gov (United States)

    Ahmad, Ali; Ali Shan, S.; Haque, Q.; Saleem, H.

    2012-09-01

    The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.

  14. Dynamic actuation of a novel laser-processed NiTi linear actuator

    International Nuclear Information System (INIS)

    Pequegnat, A; Daly, M; Wang, J; Zhou, Y; Khan, M I

    2012-01-01

    A novel laser processing technique, capable of locally modifying the shape memory effect, was applied to enhance the functionality of a NiTi linear actuator. By altering local transformation temperatures, an additional memory was imparted into a monolithic NiTi wire to enable dynamic actuation via controlled resistive heating. Characterizations of the actuator load, displacement and cyclic properties were conducted using a custom-built spring-biased test set-up. Monotonic tensile testing was also implemented to characterize the deformation behaviour of the martensite phase. Observed differences in the deformation behaviour of laser-processed material were found to affect the magnitude of the active strain. Furthermore, residual strain during cyclic actuation testing was found to stabilize after 150 cycles while the recoverable strain remained constant. This laser-processed actuator will allow for the realization of new applications and improved control methods for shape memory alloys. (paper)

  15. Non Linear Beam Dynamics Studies at SPEAR

    International Nuclear Information System (INIS)

    Terebilo, A.; Pellegrini, C.; Cornacchia, M.; Corbett, J.; Martin, D.

    2011-01-01

    The frequency map analysis of a Hamiltonian system recently introduced to accelerators physics in combination with turn-by-turn phase space measurements opens new experimental opportunities for studying non linear dynamic in storage rings. In this paper we report on the experimental program at SPEAR having the goal of measuring the frequency map of the machine. In this paper we discuss the accuracy of the instantaneous tune extraction from experimental data and demonstrate the possibility of the frequency map measurement. The instantaneous tune extraction technique can be applied to experimental tracking data with reasonable accuracy. Frequency map can be experimentally determined using the existing turn-by-turn phase space measurement techniques and NAFF instantaneous tune extraction.

  16. Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer

    Science.gov (United States)

    Pai, P. F.; Lee, S.-Y.

    2003-01-01

    This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.

  17. Dynamic stability of a vertically excited non-linear continuous system

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Fischer, Cyril

    2015-01-01

    Roč. 155, July (2015), s. 106-114 ISSN 0045-7949 R&D Projects: GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : non-linear systems * auto-parametric systems * semi-trivial solution * dynamic stability * system recovery * post- critical response Subject RIV: JM - Building Engineering Impact factor: 2.425, year: 2015 http://www.sciencedirect.com/science/article/pii/S0045794915000024

  18. On the Convergence of Piecewise Linear Strategic Interaction Dynamics on Networks

    KAUST Repository

    Gharesifard, Bahman

    2015-09-11

    We prove that the piecewise linear best-response dynamical systems of strategic interactions are asymptotically convergent to their set of equilibria on any weighted undirected graph. We study various features of these dynamical systems, including the uniqueness and abundance properties of the set of equilibria and the emergence of unstable equilibria. We also introduce the novel notions of social equivalence and social dominance on directed graphs, and demonstrate some of their interesting implications, including their correspondence to consensus and chromatic number of partite graphs. Examples illustrate our results.

  19. Application of Dynamic Systems Family for Synthesis of Fuzzy Control with Account of Non-linearities

    Directory of Open Access Journals (Sweden)

    Andriy Lozynskyy

    2016-01-01

    Full Text Available Dynamic system with nonlinearities has been considered. This system has been divided into a set of linear subsystems. A fuzzy controller of the considered system has been synthesized. It takes into account nonlinearities of the system and provides smooth switching between controllers of the linear subsystems. An unstable subsystem has been utilized, which provides better dynamic characteristics of the considered system. Comparison with traditional controller has been conducted. Corresponding qualitative and quantitative estimates have been provided. They testify the expediency of the proposed approach.

  20. An Observational Study of the Mesoscale Mistral Dynamics

    Science.gov (United States)

    Guenard, Vincent; Drobinski, Philippe; Caccia, Jean-Luc; Campistron, Bernard; Bench, Bruno

    2005-05-01

    We investigate the mesoscale dynamics of the mistral through the wind profiler observations of the MAP (autumn 1999) and ESCOMPTE (summer 2001) field campaigns. We show that the mistral wind field can dramatically change on a time scale less than 3 hours. Transitions from a deep to a shallow mistral are often observed at any season when the lower layers are stable. The variability, mainly attributed in summer to the mistral/land-sea breeze interactions on a 10-km scale, is highlighted by observations from the wind profiler network set up during ESCOMPTE. The interpretations of the dynamical mistral structure are performed through comparisons with existing basic theories. The linear theory of R. B. Smith [ Advances in Geophysics, Vol. 31, 1989, Academic Press, 1-41] and the shallow water theory [Schär, C. and Smith, R. B.: 1993a, J. Atmos. Sci. 50, 1373-1400] give some complementary explanations for the deep-to-shallow transition especially for the MAP mistral event. The wave breaking process induces a low-level jet (LLJ) downstream of the Alps that degenerates into a mountain wake, which in turn provokes the cessation of the mistral downstream of the Alps. Both theories indicate that the flow splits around the Alps and results in a persistent LLJ at the exit of the Rhône valley. The LLJ is strengthened by the channelling effect of the Rhône valley that is more efficient for north-easterly than northerly upstream winds despite the north-south valley axis. Summer moderate and weak mistral episodes are influenced by land-sea breezes and convection over land that induce a very complex interaction that cannot be accurately described by the previous theories.

  1. Sliding mode control-based linear functional observers for discrete-time stochastic systems

    Science.gov (United States)

    Singh, Satnesh; Janardhanan, Sivaramakrishnan

    2017-11-01

    Sliding mode control (SMC) is one of the most popular techniques to stabilise linear discrete-time stochastic systems. However, application of SMC becomes difficult when the system states are not available for feedback. This paper presents a new approach to design a SMC-based functional observer for discrete-time stochastic systems. The functional observer is based on the Kronecker product approach. Existence conditions and stability analysis of the proposed observer are given. The control input is estimated by a novel linear functional observer. This approach leads to a non-switching type of control, thereby eliminating the fundamental cause of chatter. Furthermore, the functional observer is designed in such a way that the effect of process and measurement noise is minimised. Simulation example is given to illustrate and validate the proposed design method.

  2. Peculiarities in power type comparison results for half-linear dynamic equations

    Czech Academy of Sciences Publication Activity Database

    Řehák, Pavel

    2012-01-01

    Roč. 42, č. 6 (2012), s. 1995-2013 ISSN 0035-7596 R&D Projects: GA AV ČR KJB100190701 Institutional support: RVO:67985840 Keywords : half-linear dynamic equation * time scale * comparison theorem Subject RIV: BA - General Mathematics Impact factor: 0.389, year: 2012 http://projecteuclid.org/euclid.rmjm/1361800616

  3. The dynamics of two linearly coupled Goodwin oscillators

    Science.gov (United States)

    Antonova, A. O.; Reznik, S. N.; Todorov, M. D.

    2017-10-01

    In this paper the Puu model of the interaction of Goodwin's business cycles for two regions is reconsidered. We investigated the effect of the accelerator coefficients and the Hicksian 'ceiling' and 'floor' parameters on the time dynamics of incomes for different values of marginal propensity to import. The cases when the periods of isolated Goodwin's cycles are close, and when they differ approximately twice are considered. By perturbation theory we obtained the formulas for slowly varying amplitudes and phase difference of weakly nonlinear coupled Goodwin oscillations. The coupled oscillations of two Goodwin's cycles with piecewise linear accelerators with only 'floor' are considered.

  4. Non-linear calculation of PCRV using dynamic relaxation

    International Nuclear Information System (INIS)

    Schnellenbach, G.

    1979-01-01

    A brief review is presented of a numerical method called the dynamic relaxation method for stress analysis of the concrete in prestressed concrete pressure vessels. By this method the three-dimensional elliptic differential equations of the continuum are changed into the four-dimensional hyperbolic differential equations known as wave equations. The boundary value problem of the static system is changed into an initial and boundary value problem for which a solution exists if the physical system is defined at time t=0. The effect of non-linear stress-strain behaviour of the material as well as creep and cracking are considered

  5. Reference-tracking feedforward control design for linear dynamical systems through signal decomposition

    NARCIS (Netherlands)

    Kasemsinsup, Y.; Romagnoli, R.; Heertjes, M.F.; Weiland, S.; Butler, H.

    2017-01-01

    In this work, we study a novel approach towards the reference-tracking feedforward control design for linear dynamical systems. By utilizing the superposition property and exploiting signal decomposition together with a quadratic optimization process, we obtain a feedforward design procedure for

  6. Seismic evaluation of a large nuclear pump bearing using non-linear dynamic analysis

    International Nuclear Information System (INIS)

    Huber, K.A.; Hugins, M.S.

    1983-01-01

    Hydrostatic bearings of a large vertical pump using sodium as the lubricant were critically examined to determine their ability to withstand seismic loads. Initial linear dynamics analyses predicted journal displacements to exceed bearing clearance by a ratio of 3:1. Equivalent time-history excitations were then developed from the response spectra to determine the number, magnitude, and duration of the bearing impact loads. Predicted loads were further reduced by 50% by modeling non-linear bearing characteristics normally present but not generally included in conventional linear analyses. Results are presented of the comprehensive design evaluation performed, based on these non-linear predictions, that assess stress, wear, and fatigue to demonstrate hydrostatic bearing integrity

  7. Position Control of Linear Synchronous Motor Drives with Exploitation of Forced Dynamics Control Principles

    Directory of Open Access Journals (Sweden)

    Jan Vittek

    2004-01-01

    Full Text Available Closed-loop position control of mechanisms directly driven by linear synchronous motors with permanent magnets is presented. The control strategy is based on forced dynamic control, which is a form of feedback linearisation, yielding a non-liner multivariable control law to obtain a prescribed linear speed dynamics together with the vector control condition of mutal orthogonality between the stator current and magnetic flux vectors (assuming perfect estimates of the plant parameters. Outer position control loop is closed via simple feedback with proportional gain. Simulations of the design control sysstem, including the drive with power electronic switching, predict the intended drive performance.

  8. On modulated complex non-linear dynamical systems

    International Nuclear Information System (INIS)

    Mahmoud, G.M.; Mohamed, A.A.; Rauh, A.

    1999-01-01

    This paper is concerned with the development of an approximate analytical method to investigate periodic solutions and their stability in the case of modulated non-linear dynamical systems whose equation of motion is describe. Such differential equations appear, for example, in problems of colliding particle beams in high-energy accelerators or one-mass systems with two or more degrees of freedom, e.g. rotors. The significance of periodic solutions lies on the fact that all non-periodic responses, if convergent, would approach to periodic solutions at the steady-state conditions. The example shows a good agreement between numerical and analytical results for small values of ε. The effect of the periodic modulation on the stability of the 2π-periodic solutions is discussed

  9. Approaches to linear local gauge-invariant observables in inflationary cosmologies

    Science.gov (United States)

    Fröb, Markus B.; Hack, Thomas-Paul; Khavkine, Igor

    2018-06-01

    We review and relate two recent complementary constructions of linear local gauge-invariant observables for cosmological perturbations in generic spatially flat single-field inflationary cosmologies. After briefly discussing their physical significance, we give explicit, covariant and mutually invertible transformations between the two sets of observables, thus resolving any doubts about their equivalence. In this way, we get a geometric interpretation and show the completeness of both sets of observables, while previously each of these properties was available only for one of them.

  10. Linear and nonlinear dynamics of current-driven waves in dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Ali [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Ali Shan, S.; Haque, Q. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Saleem, H. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan)

    2012-09-15

    The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.

  11. On the dynamical mass generation in gauge-invariant non-linear σ-models

    International Nuclear Information System (INIS)

    Diaz, A.; Helayel-Neto, J.A.; Smith, A.W.

    1987-12-01

    We argue that external gauge fields coupled in a gauge-invariant way to both the bosonic and supersymmetric two-dimensional non-linear σ-models acquire a dynamical mass term whenever the target space is restricted to be a group manifold. (author). 11 refs

  12. Proximity-interference wake-induced vibration at subcritical Re: Mechanism analysis using a linear dynamic model

    Science.gov (United States)

    Li, Xintao; Zhang, Weiwei; Gao, Chuanqiang

    2018-03-01

    Wake-induced vibration (WIV) contains rich and complex phenomena due to the flow interference between cylinders. The aim of the present study is to gain physical insight into the intrinsic dynamics of WIV via linear stability analysis (LSA) of the fluid-structure interaction (FSI) system. A reduced-order-model-based linear dynamic model, combined with the direct computational fluid dynamics/computational structural dynamics simulation method, is adopted to investigate WIV in two identical tandem cylinders at low Re. The spacing ratio L/D, with L as the center-to-center distance and D as the diameter of cylinders, is selected as 2.0 to consider the effect of proximity flow interference. Results show that extensive WIV along with the vortex shedding could occur at subcritical Re conditions due to the instability of one coupled mode (i.e., coupled mode I, CM-I) of the FSI system. The eigenfrequency of CM-I transfers smoothly from close to the reduced natural frequency of structure to the eigenfrequency of uncoupled wake mode as the reduced velocity U* increases. Thus, CM-I characterizes as the structure mode (SM) at low U*, while it characterizes as the wake mode (WM) at large U*. Mode conversion of CM-I is the primary cause of the "frequency transition" phenomenon observed in WIV responses. Furthermore, LSA indicates that there exists a critical mass ratio mcr*, below which no upper instability boundary of CM-I exists (Uup p e r *→∞ ). The unbounded instability of CM-I ultimately leads to the "infinite WIV" phenomenon. The neutral stability boundaries for WIV in the (Re, U*) plane are determined through LSA. It is shown that the lowest Re possible for WIV regarding the present configuration is R el o w e s t≈34 . LSA accurately captures the dynamics of WIV at subcritical Re and reveals that it is essentially a fluid-elastic instability problem. This work lays a good foundation for the investigation of WIV at supercritical high Re and gives enlightenment to the

  13. Minimal agent based model for financial markets II. Statistical properties of the linear and multiplicative dynamics

    Science.gov (United States)

    Alfi, V.; Cristelli, M.; Pietronero, L.; Zaccaria, A.

    2009-02-01

    We present a detailed study of the statistical properties of the Agent Based Model introduced in paper I [Eur. Phys. J. B, DOI: 10.1140/epjb/e2009-00028-4] and of its generalization to the multiplicative dynamics. The aim of the model is to consider the minimal elements for the understanding of the origin of the stylized facts and their self-organization. The key elements are fundamentalist agents, chartist agents, herding dynamics and price behavior. The first two elements correspond to the competition between stability and instability tendencies in the market. The herding behavior governs the possibility of the agents to change strategy and it is a crucial element of this class of models. We consider a linear approximation for the price dynamics which permits a simple interpretation of the model dynamics and, for many properties, it is possible to derive analytical results. The generalized non linear dynamics results to be extremely more sensible to the parameter space and much more difficult to analyze and control. The main results for the nature and self-organization of the stylized facts are, however, very similar in the two cases. The main peculiarity of the non linear dynamics is an enhancement of the fluctuations and a more marked evidence of the stylized facts. We will also discuss some modifications of the model to introduce more realistic elements with respect to the real markets.

  14. Linear system identification via backward-time observer models

    Science.gov (United States)

    Juang, Jer-Nan; Phan, Minh

    1993-01-01

    This paper presents an algorithm to identify a state-space model of a linear system using a backward-time approach. The procedure consists of three basic steps. First, the Markov parameters of a backward-time observer are computed from experimental input-output data. Second, the backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) from which a backward-time state-space model is realized using the Eigensystem Realization Algorithm. Third, the obtained backward-time state space model is converted to the usual forward-time representation. Stochastic properties of this approach will be discussed. Experimental results are given to illustrate when and to what extent this concept works.

  15. Brain-heart linear and nonlinear dynamics during visual emotional elicitation in healthy subjects.

    Science.gov (United States)

    Valenza, G; Greco, A; Gentili, C; Lanata, A; Toschi, N; Barbieri, R; Sebastiani, L; Menicucci, D; Gemignani, A; Scilingo, E P

    2016-08-01

    This study investigates brain-heart dynamics during visual emotional elicitation in healthy subjects through linear and nonlinear coupling measures of EEG spectrogram and instantaneous heart rate estimates. To this extent, affective pictures including different combinations of arousal and valence levels, gathered from the International Affective Picture System, were administered to twenty-two healthy subjects. Time-varying maps of cortical activation were obtained through EEG spectral analysis, whereas the associated instantaneous heartbeat dynamics was estimated using inhomogeneous point-process linear models. Brain-Heart linear and nonlinear coupling was estimated through the Maximal Information Coefficient (MIC), considering EEG time-varying spectra and point-process estimates defined in the time and frequency domains. As a proof of concept, we here show preliminary results considering EEG oscillations in the θ band (4-8 Hz). This band, indeed, is known in the literature to be involved in emotional processes. MIC highlighted significant arousal-dependent changes, mediated by the prefrontal cortex interplay especially occurring at intermediate arousing levels. Furthermore, lower and higher arousing elicitations were associated to not significant brain-heart coupling changes in response to pleasant/unpleasant elicitations.

  16. Perfect observables for the hierarchical non-linear O(N)-invariant σ-model

    International Nuclear Information System (INIS)

    Wieczerkowski, C.; Xylander, Y.

    1995-05-01

    We compute moving eigenvalues and the eigenvectors of the linear renormalization group transformation for observables along the renormalized trajectory of the hierarchical non-linear O(N)-invariant σ-model by means of perturbation theory in the running coupling constant. Moving eigenvectors are defined as solutions to a Callan-Symanzik type equation. (orig.)

  17. A non-linear model of economic production processes

    Science.gov (United States)

    Ponzi, A.; Yasutomi, A.; Kaneko, K.

    2003-06-01

    We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.

  18. Dynamical simulation of a linear sigma model near the critical point

    Energy Technology Data Exchange (ETDEWEB)

    Wesp, Christian; Meistrenko, Alex; Greiner, Carsten [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt, Max-von-Laue-Strasse 1, D-60438 Frankfurt (Germany); Hees, Hendrik van [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, D-60438 Frankfurt (Germany)

    2014-07-01

    The intention of this study is the search for signatures of the chiral phase transition. To investigate the impact of fluctuations, e.g. of the baryon number, on the transition or a critical point, the linear sigma model is treated in a dynamical 3+1D numerical simulation. Chiral fields are approximated as classical fields, quarks are described by quasi particles in a Vlasov equation. Additional dynamic is implemented by quark-quark and quark-sigma-field interaction. For a consistent description of field-particle interactions, a new Monte-Carlo-Langevin-like formalism has been developed and is discussed.

  19. On the representation of contextual probabilistic dynamics in the complex Hilbert space: Linear and nonlinear evolutions, Schrodinger dynamics

    International Nuclear Information System (INIS)

    Khrennikov, A.

    2005-01-01

    We constructed the representation of contextual probabilistic dynamics in the complex Hilbert space. Thus dynamics of the wave function can be considered as Hilbert space projection of realistic dynamics in a pre space. The basic condition for representing the pre space-dynamics is the law of statistical conservation of energy-conservation of probabilities. The construction of the dynamical representation is an important step in the development of contextual statistical viewpoint of quantum processes. But the contextual statistical model is essentially more general than the quantum one. Therefore in general the Hilbert space projection of the pre space dynamics can be nonlinear and even irreversible (but it is always unitary). There were found conditions of linearity and reversibility of the Hilbert space dynamical projection. We also found conditions for the conventional Schrodinger dynamics (including time-dependent Hamiltonians). We remark that in general even the Schrodinger dynamics is based just on the statistical conservation of energy; for individual systems the law of conservation of energy can be violated (at least in our theoretical model)

  20. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry I.

    2017-12-08

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  1. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry; Kasimov, Aslan R.

    2018-01-01

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  2. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry

    2018-03-20

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  3. Linearized supergravity with a dynamical preferred frame

    CERN Document Server

    Marakulin, Arthur

    2016-01-01

    We study supersymmetric extension of the Einstein-aether gravitational model where local Lorentz invariance is broken down to the subgroup of spatial rotations by a vacuum expectation value of a timelike vector field. By restricting to the level of linear perturbations around Lorentz-violating vacuum and using the superfield formalism we construct the most general action invariant under the linearized supergravity transformations. We show that, unlike its non-supersymmetric counterpart, the model contains only a single free dimensionless parameter, besides the usual dimensionful gravitational coupling. This makes the model highly predictive. An analysis of the spectrum of physical excitations reveal superluminal velocity of gravitons. The latter property leads to the extension of the gravitational multiplet by additional fermonic and bosonic states with helicities $\\pm 3/2$ and $\\pm 1$. We outline the observational constraints on the model following from its low-energy phenomenology.

  4. Dose reduction using a dynamic, piecewise-linear attenuator

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Scott S., E-mail: sshsieh@stanford.edu [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Fleischmann, Dominik [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States)

    2014-02-15

    Purpose: The authors recently proposed a dynamic, prepatient x-ray attenuator capable of producing a piecewise-linear attenuation profile customized to each patient and viewing angle. This attenuator was intended to reduce scatter-to-primary ratio (SPR), dynamic range, and dose by redistributing flux. In this work the authors tested the ability of the attenuator to reduce dose and SPR in simulations. Methods: The authors selected four clinical applications, including routine full field-of-view scans of the thorax and abdomen, and targeted reconstruction tasks for an abdominal aortic aneurysm and the pancreas. Raw data were estimated by forward projection of the image volume datasets. The dynamic attenuator was controlled to reduce dose while maintaining peak variance by solving a convex optimization problem, assuminga priori knowledge of the patient anatomy. In targeted reconstruction tasks, the noise in specific regions was given increased weighting. A system with a standard attenuator (or “bowtie filter”) was used as a reference, and used either convex optimized tube current modulation (TCM) or a standard TCM heuristic. The noise of the scan was determined analytically while the dose was estimated using Monte Carlo simulations. Scatter was also estimated using Monte Carlo simulations. The sensitivity of the dynamic attenuator to patient centering was also examined by shifting the abdomen in 2 cm intervals. Results: Compared to a reference system with optimized TCM, use of the dynamic attenuator reduced dose by about 30% in routine scans and 50% in targeted scans. Compared to the TCM heuristics which are typically used withouta priori knowledge, the dose reduction is about 50% for routine scans. The dynamic attenuator gives the ability to redistribute noise and variance and produces more uniform noise profiles than systems with a conventional bowtie filter. The SPR was also modestly reduced by 10% in the thorax and 24% in the abdomen. Imaging with the dynamic

  5. Dynamics of pre-strained bi-material elastic systems linearized three-dimensional approach

    CERN Document Server

    Akbarov, Surkay D

    2015-01-01

    This book deals with dynamics of pre-stressed or pre-strained bi-material elastic systems consisting of stack of pre-stressed layers, stack of pre-stressed layers and pre-stressed half space (or half plane), stack of pre-stressed layers as well as absolute rigid foundation, pre-stressed compound solid and hollow cylinders and pre-stressed sandwich hollow cylinders. The problems considered in the book relate to the dynamics of a moving and oscillating moving load, forced vibration caused by linearly located or point located time-harmonic forces acting to the foregoing systems. Moreover, a considerable part of the book relate to the problems regarding the near surface, torsional and axisymmetric longitudinal waves propagation and dispersion in the noted above bi-material elastic systems. The book carries out the investigations within the framework of the piecewise homogeneous body model with the use of the Three-Dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies.

  6. A Linear Dynamical Systems Approach to Streamflow Reconstruction Reveals History of Regime Shifts in Northern Thailand

    Science.gov (United States)

    Nguyen, Hung T. T.; Galelli, Stefano

    2018-03-01

    Catchment dynamics is not often modeled in streamflow reconstruction studies; yet, the streamflow generation process depends on both catchment state and climatic inputs. To explicitly account for this interaction, we contribute a linear dynamic model, in which streamflow is a function of both catchment state (i.e., wet/dry) and paleoclimatic proxies. The model is learned using a novel variant of the Expectation-Maximization algorithm, and it is used with a paleo drought record—the Monsoon Asia Drought Atlas—to reconstruct 406 years of streamflow for the Ping River (northern Thailand). Results for the instrumental period show that the dynamic model has higher accuracy than conventional linear regression; all performance scores improve by 45-497%. Furthermore, the reconstructed trajectory of the state variable provides valuable insights about the catchment history—e.g., regime-like behavior—thereby complementing the information contained in the reconstructed streamflow time series. The proposed technique can replace linear regression, since it only requires information on streamflow and climatic proxies (e.g., tree-rings, drought indices); furthermore, it is capable of readily generating stochastic streamflow replicates. With a marginal increase in computational requirements, the dynamic model brings more desirable features and value to streamflow reconstructions.

  7. Observations on the variability of linear polarization in late-type dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Huovelin, J.; Linnaluoto, S.; Tuominen, I.; Virtanen, H.

    1989-04-01

    Broadband (UBV) linear polarimetric observations of a sample of late-type (F7-K5) dwarfs are reported. The observations include ten stars and extend over a maximum of 20 nights. Seven stars show significant temporal variability of polarization, which could be interpreted as rotational modulation due to slowly varying magnetic regions. Magnetic intensification in saturated Zeeman sensitive absorption lines is suggested as the dominant effect connecting linear polarization with magnetic activity in the most active single late-type dwarfs, while the wavelength dependence in the less active stars could also be due to a combination of Rayleigh and Thomson scattering.

  8. Riccati inequality, disconjugacy, and reciprocity principle for linear Hamiltonian dynamic systems

    Czech Academy of Sciences Publication Activity Database

    Hilscher, R.; Řehák, Pavel

    2003-01-01

    Roč. 12, č. 1 (2003), s. 171-189 ISSN 1056-2176 R&D Projects: GA ČR GA201/01/0079; GA ČR GP201/01/P041 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : linear Hamiltonian dynamic systems * disconjugacy * Riccati inequality Subject RIV: BA - General Mathematics Impact factor: 0.256, year: 2002

  9. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    Directory of Open Access Journals (Sweden)

    Peder Eliasson

    2008-05-01

    Full Text Available The Compact Linear Collider (CLIC main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs, indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.

  10. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    Science.gov (United States)

    Eliasson, Peder

    2008-05-01

    The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.

  11. Simple estimating method of damages of concrete gravity dam based on linear dynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, T.; Kanenawa, K.; Yamaguchi, Y. [Public Works Research Institute, Tsukuba, Ibaraki (Japan). Hydraulic Engineering Research Group

    2004-07-01

    Due to the occurrence of large earthquakes like the Kobe Earthquake in 1995, there is a strong need to verify seismic resistance of dams against much larger earthquake motions than those considered in the present design standard in Japan. Problems exist in using nonlinear analysis to evaluate the safety of dams including: that the influence which the set material properties have on the results of nonlinear analysis is large, and that the results of nonlinear analysis differ greatly according to the damage estimation models or analysis programs. This paper reports the evaluation indices based on a linear dynamic analysis method and the characteristics of the progress of cracks in concrete gravity dams with different shapes using a nonlinear dynamic analysis method. The study concludes that if simple linear dynamic analysis is appropriately conducted to estimate tensile stress at potential locations of initiating cracks, the damage due to cracks would be predicted roughly. 4 refs., 1 tab., 13 figs.

  12. Chaotic dynamics and diffusion in a piecewise linear equation

    International Nuclear Information System (INIS)

    Shahrear, Pabel; Glass, Leon; Edwards, Rod

    2015-01-01

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems

  13. Chaotic dynamics and diffusion in a piecewise linear equation

    Science.gov (United States)

    Shahrear, Pabel; Glass, Leon; Edwards, Rod

    2015-03-01

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.

  14. Novel developments in linear modal description of piping system dynamic behavior

    International Nuclear Information System (INIS)

    Revesz, Z.

    1989-01-01

    Novel developments in dynamic analysis of piping systems are described. The ASME BPV Codes, 1986 describes methods that are considered as adequate to analyze piping systems under dynamic loading, and also states that the method described in the codes are not the only acceptable ones. With straightforward application of the principles and methods laid down in the code novel numerical techniques can be developed. These techniques allow to obtain correct, conservative estimates of the piping system response and to reduce the computed stresses the same time. Beyond that, the particular algorithm which is presented is also suitable to analyze systems which include non-linear (viscous) damping elements

  15. Suppression of chaos at slow variables by rapidly mixing fast dynamics through linear energy-preserving coupling

    OpenAIRE

    Abramov, Rafail V.

    2011-01-01

    Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation prop...

  16. Canonical-ensemble extended Lagrangian Born-Oppenheimer molecular dynamics for the linear scaling density functional theory.

    Science.gov (United States)

    Hirakawa, Teruo; Suzuki, Teppei; Bowler, David R; Miyazaki, Tsuyoshi

    2017-10-11

    We discuss the development and implementation of a constant temperature (NVT) molecular dynamics scheme that combines the Nosé-Hoover chain thermostat with the extended Lagrangian Born-Oppenheimer molecular dynamics (BOMD) scheme, using a linear scaling density functional theory (DFT) approach. An integration scheme for this canonical-ensemble extended Lagrangian BOMD is developed and discussed in the context of the Liouville operator formulation. Linear scaling DFT canonical-ensemble extended Lagrangian BOMD simulations are tested on bulk silicon and silicon carbide systems to evaluate our integration scheme. The results show that the conserved quantity remains stable with no systematic drift even in the presence of the thermostat.

  17. A simple linear regression method for quantitative trait loci linkage analysis with censored observations.

    Science.gov (United States)

    Anderson, Carl A; McRae, Allan F; Visscher, Peter M

    2006-07-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.

  18. A linear dynamic model for rotor-spun composite yarn spinning process

    International Nuclear Information System (INIS)

    Yang, R H; Wang, S Y

    2008-01-01

    A linear dynamic model is established for the stable rotor-spun composite yarn spinning process. Approximate oscillating frequencies in the vertical and horizontal directions are obtained. By suitable choice of certain processing parameters, the mixture construction after the convergent point can be optimally matched. The presented study is expected to provide a general pathway to understand the motion of the rotor-spun composite yarn spinning process

  19. A wideband large dynamic range and high linearity RF front-end for U-band mobile DTV

    International Nuclear Information System (INIS)

    Liu Rongjiang; Liu Shengyou; Guo Guiliang; Cheng Xu; Yan Yuepeng

    2013-01-01

    A wideband large dynamic range and high linearity U-band RF front-end for mobile DTV is introduced, and includes a noise-cancelling low-noise amplifier (LNA), an RF programmable gain amplifier (RFPGA) and a current communicating passive mixer. The noise/distortion cancelling structure and RC post-distortion compensation are employed to improve the linearity of the LNA. An RFPGA with five stages provides large dynamic range and fine gain resolution. A simple resistor voltage network in the passive mixer decreases the gate bias voltage of the mixing transistor, and optimum linearity and symmetrical mixing is obtained at the same time. The RF front-end is implemented in a 0.25 μm CMOS process. Tests show that it achieves an IIP3 (third-order intercept point) of −17 dBm, a conversion gain of 39 dB, and a noise figure of 5.8 dB. The RFPGA achieves a dynamic range of −36.2 to 23.5 dB with a resolution of 0.32 dB. (semiconductor integrated circuits)

  20. Hardy inequality on time scales and its application to half-linear dynamic equations

    Directory of Open Access Journals (Sweden)

    Řehák Pavel

    2005-01-01

    Full Text Available A time-scale version of the Hardy inequality is presented, which unifies and extends well-known Hardy inequalities in the continuous and in the discrete setting. An application in the oscillation theory of half-linear dynamic equations is given.

  1. Calculation model of non-linear dynamic deformation of composite multiphase rods

    Directory of Open Access Journals (Sweden)

    Mishchenko Andrey Viktorovich

    2014-05-01

    Full Text Available The method of formulating non-linear physical equations for multiphase rods is suggested in the article. Composite multiphase rods possess various structures, include shear, polar, radial and axial inhomogeneity. The Timoshenko’s hypothesis with the large rotation angles is used. The method is based on the approximation of longitudinal normal stress low by basic functions expansions regarding the linear viscosity low. The shear stresses are calculated with the equilibrium equation using the subsidiary function of the longitudinal shift force. The system of differential equations connecting the internal forces and temperature with abstract deformations are offered by the basic functions. The application of power functions with arbitrary index allows presenting the compact form equations. The functional coefficients in this system are the highest order rigidity characteristics. The whole multiphase cross-section rigidity characteristics are offered the sums of the rigidity characteristics of the same phases individually. The obtained system allows formulating the well-known particular cases. Among them: hard plasticity and linear elastic deformation, different module deformation and quadratic Gerstner’s low elastic deformation. The reform of differential equations system to the quasilinear is suggested. This system contains the secant variable rigidity characteristics depending on abstract deformations. This system includes the sum of the same uniform blocks of different order. The rods phases defined the various set of uniform blocks phase materials. The integration of dynamic, kinematic and physical equations taking into account initial and edge condition defines the full dynamical multiphase rods problem. The quasilinear physical equations allow getting the variable flexibility matrix of multiphase rod and rods system.

  2. Sliding mode based trajectory linearization control for hypersonic reentry vehicle via extended disturbance observer.

    Science.gov (United States)

    Xingling, Shao; Honglun, Wang

    2014-11-01

    This paper proposes a novel hybrid control framework by combing observer-based sliding mode control (SMC) with trajectory linearization control (TLC) for hypersonic reentry vehicle (HRV) attitude tracking problem. First, fewer control consumption is achieved using nonlinear tracking differentiator (TD) in the attitude loop. Second, a novel SMC that employs extended disturbance observer (EDO) to counteract the effect of uncertainties using a new sliding surface which includes the estimation error is integrated to address the tracking error stabilization issues in the attitude and angular rate loop, respectively. In addition, new results associated with EDO are examined in terms of dynamic response and noise-tolerant performance, as well as estimation accuracy. The key feature of the proposed compound control approach is that chattering free tracking performance with high accuracy can be ensured for HRV in the presence of multiple uncertainties under control constraints. Based on finite time convergence stability theory, the stability of the resulting closed-loop system is well established. Also, comparisons and extensive simulation results are presented to demonstrate the effectiveness of the control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Analysis of Instantaneous Linear, Nonlinear and Complex Cardiovascular Dynamics from Videophotoplethysmography.

    Science.gov (United States)

    Valenza, Gaetano; Iozzia, Luca; Cerina, Luca; Mainardi, Luca; Barbieri, Riccardo

    2018-05-01

    There is a fast growing interest in the use of non-contact devices for health and performance assessment in humans. In particular, the use of non-contact videophotoplethysmography (vPPG) has been recently demonstrated as a feasible way to extract cardiovascular information. Nevertheless, proper validation of vPPG-derived heartbeat dynamics is still missing. We aim to an in-depth validation of time-varying, linear and nonlinear/complex dynamics of the pulse rate variability extracted from vPPG. We apply inhomogeneous pointprocess nonlinear models to assess instantaneous measures defined in the time, frequency, and bispectral domains as estimated through vPPG and standard ECG. Instantaneous complexity measures, such as the instantaneous Lyapunov exponents and the recently defined inhomogeneous point-process approximate and sample entropy, were estimated as well. Video recordings were processed using our recently proposed method based on zerophase principal component analysis. Experimental data were gathered from 60 young healthy subjects (age: 24±3 years) undergoing postural changes (rest-to-stand maneuver). Group averaged results show that there is an overall agreement between linear and nonlinear/complexity indices computed from ECG and vPPG during resting state conditions. However, important differences are found, particularly in the bispectral and complexity domains, in recordings where the subjects has been instructed to stand up. Although significant differences exist between cardiovascular estimates from vPPG and ECG, it is very promising that instantaneous sympathovagal changes, as well as time-varying complex dynamics, were correctly identified, especially during resting state. In addition to a further improvement of the video signal quality, more research is advocated towards a more precise estimation of cardiovascular dynamics by a comprehensive nonlinear/complex paradigm specifically tailored to the non-contact quantification. Schattauer GmbH.

  4. Non-linear dynamical classification of short time series of the rössler system in high noise regimes.

    Science.gov (United States)

    Lainscsek, Claudia; Weyhenmeyer, Jonathan; Hernandez, Manuel E; Poizner, Howard; Sejnowski, Terrence J

    2013-01-01

    Time series analysis with delay differential equations (DDEs) reveals non-linear properties of the underlying dynamical system and can serve as a non-linear time-domain classification tool. Here global DDE models were used to analyze short segments of simulated time series from a known dynamical system, the Rössler system, in high noise regimes. In a companion paper, we apply the DDE model developed here to classify short segments of encephalographic (EEG) data recorded from patients with Parkinson's disease and healthy subjects. Nine simulated subjects in each of two distinct classes were generated by varying the bifurcation parameter b and keeping the other two parameters (a and c) of the Rössler system fixed. All choices of b were in the chaotic parameter range. We diluted the simulated data using white noise ranging from 10 to -30 dB signal-to-noise ratios (SNR). Structure selection was supervised by selecting the number of terms, delays, and order of non-linearity of the model DDE model that best linearly separated the two classes of data. The distances d from the linear dividing hyperplane was then used to assess the classification performance by computing the area A' under the ROC curve. The selected model was tested on untrained data using repeated random sub-sampling validation. DDEs were able to accurately distinguish the two dynamical conditions, and moreover, to quantify the changes in the dynamics. There was a significant correlation between the dynamical bifurcation parameter b of the simulated data and the classification parameter d from our analysis. This correlation still held for new simulated subjects with new dynamical parameters selected from each of the two dynamical regimes. Furthermore, the correlation was robust to added noise, being significant even when the noise was greater than the signal. We conclude that DDE models may be used as a generalizable and reliable classification tool for even small segments of noisy data.

  5. Clinical evaluation of the dynamic observing tonometer.

    Science.gov (United States)

    Morgan, Andrew J; Hosking, Sarah L; Salmon, John F

    2002-08-01

    The Dynamic Observing Tonometer (SmartLens, Ophthalmic Development Company AG, Zürich, Switzerland) is a diagnostic contact lens that allows continuous measurement of intraocular pressure, in addition to providing the investigator with a view of the posterior pole and anterior chamber angle. The purpose of this study was to determine the accuracy of this tonometer and the repeatability of the intraocular pressure measurements. The intraocular pressure was measured by Goldmann applanation tonometry in one randomly chosen eye of 40 subjects (median age 66 years, range 21-77 years). The intraocular pressure, pulse amplitude and 10-second continuous tonometric recordings were then taken using the Dynamic Observing Tonometer and a pneumatonometer. Accuracy was determined by calculating the mean bias and 95% limits of agreement of measurements made with the Dynamic Observing Tonometer against measurements made with the Goldmann and pneumatonometer. Repeatability was evaluated by calculating the differences between pairs of repeated measurements against the mean value and by calculating reliability coefficients. Intraocular pressure measurements made with the Dynamic Observing Tonometer had a mean bias of +2.1 mm Hg (95% limits of agreement: -4.0 to +8.2 mm Hg) compared with Goldmann tonometry. There was a reasonable correlation between Goldmann and Dynamic Observing Tonometer intraocular pressure readings (r = 0.78, P Tonometer was found to have a mean bias of +0.4 mm Hg (95% limits of agreement: -1.6 to +2.3 mm Hg) compared with the pneumatonometer (r = 0.78, P Tonometer reading was on average 0.4 mm Hg higher than the second (95% limits of agreement: -3.8 to +4.6 mm Hg) with a coefficient of reliability of 0.91. For pulse amplitude readings, the first reading was on average 0.1 mm Hg lower than the second (95% limits of agreement: -1.4 to +1.2 mm Hg) with a coefficient of reliability of 0.90. Intraocular pressure measurements taken with the Dynamic Observing Tonometer

  6. Dynamical diagnostics of the SST annual cycle in the eastern equatorial Pacific: part I a linear coupled framework

    Science.gov (United States)

    Chen, Ying-Ying; Jin, Fei-Fei

    2018-03-01

    The eastern equatorial Pacific has a pronounced westward propagating SST annual cycle resulting from ocean-atmosphere interactions with equatorial semiannual solar forcing and off-equatorial annual solar forcing conveyed to the equator. In this two-part paper, a simple linear coupled framework is proposed to quantify the internal dynamics and external forcing for a better understanding of the linear part of the dynamics annual cycle. It is shown that an essential internal dynamical factor is the SST damping rate which measures the coupled stability in a similar way as the Bjerknes instability index for the El Niño-Southern Oscillation. It comprises three major negative terms (dynamic damping due to the Ekman pumping feedback, mean circulation advection, and thermodynamic feedback) and two positive terms (thermocline feedback and zonal advection). Another dynamical factor is the westward-propagation speed that is mainly determined by the thermodynamic feedback, the Ekman pumping feedback, and the mean circulation. The external forcing is measured by the annual and semiannual forcing factors. These linear internal and external factors, which can be estimated from data, determine the amplitude of the annual cycle.

  7. Transfer matrix method for dynamics modeling and independent modal space vibration control design of linear hybrid multibody system

    Science.gov (United States)

    Rong, Bao; Rui, Xiaoting; Lu, Kun; Tao, Ling; Wang, Guoping; Ni, Xiaojun

    2018-05-01

    In this paper, an efficient method of dynamics modeling and vibration control design of a linear hybrid multibody system (MS) is studied based on the transfer matrix method. The natural vibration characteristics of a linear hybrid MS are solved by using low-order transfer equations. Then, by constructing the brand-new body dynamics equation, augmented operator and augmented eigenvector, the orthogonality of augmented eigenvector of a linear hybrid MS is satisfied, and its state space model expressed in each independent model space is obtained easily. According to this dynamics model, a robust independent modal space-fuzzy controller is designed for vibration control of a general MS, and the genetic optimization of some critical control parameters of fuzzy tuners is also presented. Two illustrative examples are performed, which results show that this method is computationally efficient and with perfect control performance.

  8. Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators

    International Nuclear Information System (INIS)

    Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; Jovicich, Jorge; D'Incerti, Ludovico

    2015-01-01

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D 2 ), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes

  9. Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: lminati@istituto-besta.it [Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy); Center for Mind/Brain Sciences, University of Trento, Trento (Italy); Chiesa, Pietro; Tabarelli, Davide; Jovicich, Jorge [Center for Mind/Brain Sciences, University of Trento, Trento (Italy); D' Incerti, Ludovico [Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)

    2015-03-15

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D{sub 2}), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

  10. Impact of quadratic non-linearity on the dynamics of periodic solutions of a wave equation

    International Nuclear Information System (INIS)

    Kolesov, Andrei Yu; Rozov, Nikolai Kh

    2002-01-01

    For the non-linear telegraph equation with homogeneous Dirichlet or Neumann conditions at the end-points of a finite interval the question of the existence and the stability of time-periodic solutions bifurcating from the zero equilibrium state is considered. The dynamics of these solutions under a change of the diffusion coefficient (that is, the coefficient of the second derivative with respect to the space variable) is investigated. For the Dirichlet boundary conditions it is shown that this dynamics substantially depends on the presence - or the absence - of quadratic terms in the non-linearity. More precisely, it is shown that a quadratic non-linearity results in the occurrence, under an unbounded decrease of diffusion, of an infinite sequence of bifurcations of each periodic solution. En route, the related issue of the limits of applicability of Yu.S. Kolesov's method of quasinormal forms to the construction of self-oscillations in singularly perturbed hyperbolic boundary value problems is studied

  11. Suppression of chaos at slow variables by rapidly mixing fast dynamics through linear energy-preserving coupling

    Science.gov (United States)

    Abramov, R. V.

    2011-12-01

    Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger chaotic system would result in general increase of chaos at the slow variables.

  12. On spurious detection of linear response and misuse of the fluctuation-dissipation theorem in finite time series

    Science.gov (United States)

    Gottwald, Georg A.; Wormell, J. P.; Wouters, Jeroen

    2016-09-01

    Using a sensitive statistical test we determine whether or not one can detect the breakdown of linear response given observations of deterministic dynamical systems. A goodness-of-fit statistics is developed for a linear statistical model of the observations, based on results for central limit theorems for deterministic dynamical systems, and used to detect linear response breakdown. We apply the method to discrete maps which do not obey linear response and show that the successful detection of breakdown depends on the length of the time series, the magnitude of the perturbation and on the choice of the observable. We find that in order to reliably reject the assumption of linear response for typical observables sufficiently large data sets are needed. Even for simple systems such as the logistic map, one needs of the order of 106 observations to reliably detect the breakdown with a confidence level of 95 %; if less observations are available one may be falsely led to conclude that linear response theory is valid. The amount of data required is larger the smaller the applied perturbation. For judiciously chosen observables the necessary amount of data can be drastically reduced, but requires detailed a priori knowledge about the invariant measure which is typically not available for complex dynamical systems. Furthermore we explore the use of the fluctuation-dissipation theorem (FDT) in cases with limited data length or coarse-graining of observations. The FDT, if applied naively to a system without linear response, is shown to be very sensitive to the details of the sampling method, resulting in erroneous predictions of the response.

  13. Optimal blood glucose control in diabetes mellitus treatment using dynamic programming based on Ackerman’s linear model

    Science.gov (United States)

    Pradanti, Paskalia; Hartono

    2018-03-01

    Determination of insulin injection dose in diabetes mellitus treatment can be considered as an optimal control problem. This article is aimed to simulate optimal blood glucose control for patient with diabetes mellitus. The blood glucose regulation of diabetic patient is represented by Ackerman’s Linear Model. This problem is then solved using dynamic programming method. The desired blood glucose level is obtained by minimizing the performance index in Lagrange form. The results show that dynamic programming based on Ackerman’s Linear Model is quite good to solve the problem.

  14. Design of coherent quantum observers for linear quantum systems

    International Nuclear Information System (INIS)

    Vuglar, Shanon L; Amini, Hadis

    2014-01-01

    Quantum versions of control problems are often more difficult than their classical counterparts because of the additional constraints imposed by quantum dynamics. For example, the quantum LQG and quantum H ∞ optimal control problems remain open. To make further progress, new, systematic and tractable methods need to be developed. This paper gives three algorithms for designing coherent quantum observers, i.e., quantum systems that are connected to a quantum plant and their outputs provide information about the internal state of the plant. Importantly, coherent quantum observers avoid measurements of the plant outputs. We compare our coherent quantum observers with a classical (measurement-based) observer by way of an example involving an optical cavity with thermal and vacuum noises as inputs. (paper)

  15. Essential uncontrollability of discrete linear, time-invariant, dynamical systems

    Science.gov (United States)

    Cliff, E. M.

    1975-01-01

    The concept of a 'best approximating m-dimensional subspace' for a given set of vectors in n-dimensional whole space is introduced. Such a subspace is easily described in terms of the eigenvectors of an associated Gram matrix. This technique is used to approximate an achievable set for a discrete linear time-invariant dynamical system. This approximation characterizes the part of the state space that may be reached using modest levels of control. If the achievable set can be closely approximated by a proper subspace of the whole space then the system is 'essentially uncontrollable'. The notion finds application in studies of failure-tolerant systems, and in decoupling.

  16. Object-Oriented Parallel Particle-in-Cell Code for Beam Dynamics Simulation in Linear Accelerators

    International Nuclear Information System (INIS)

    Qiang, J.; Ryne, R.D.; Habib, S.; Decky, V.

    1999-01-01

    In this paper, we present an object-oriented three-dimensional parallel particle-in-cell code for beam dynamics simulation in linear accelerators. A two-dimensional parallel domain decomposition approach is employed within a message passing programming paradigm along with a dynamic load balancing. Implementing object-oriented software design provides the code with better maintainability, reusability, and extensibility compared with conventional structure based code. This also helps to encapsulate the details of communications syntax. Performance tests on SGI/Cray T3E-900 and SGI Origin 2000 machines show good scalability of the object-oriented code. Some important features of this code also include employing symplectic integration with linear maps of external focusing elements and using z as the independent variable, typical in accelerators. A successful application was done to simulate beam transport through three superconducting sections in the APT linac design

  17. Knotted solutions for linear and nonlinear theories: Electromagnetism and fluid dynamics

    Directory of Open Access Journals (Sweden)

    Daniel W.F. Alves

    2017-10-01

    Full Text Available We examine knotted solutions, the most simple of which is the “Hopfion”, from the point of view of relations between electromagnetism and ideal fluid dynamics. A map between fluid dynamics and electromagnetism works for initial conditions or for linear perturbations, allowing us to find new knotted fluid solutions. Knotted solutions are also found to be solutions of nonlinear generalizations of electromagnetism, and of quantum-corrected actions for electromagnetism coupled to other modes. For null configurations, electromagnetism can be described as a null pressureless fluid, for which we can find solutions from the knotted solutions of electromagnetism. We also map them to solutions of Euler's equations, obtained from a type of nonrelativistic reduction of the relativistic fluid equations.

  18. A Comparison between Linear IRT Observed-Score Equating and Levine Observed-Score Equating under the Generalized Kernel Equating Framework

    Science.gov (United States)

    Chen, Haiwen

    2012-01-01

    In this article, linear item response theory (IRT) observed-score equating is compared under a generalized kernel equating framework with Levine observed-score equating for nonequivalent groups with anchor test design. Interestingly, these two equating methods are closely related despite being based on different methodologies. Specifically, when…

  19. Compression dynamics of quasi-spherical wire arrays with different linear mass profiles

    International Nuclear Information System (INIS)

    Mitrofanov, K. N.; Aleksandrov, V. V.; Gritsuk, A. N.; Grabovski, E. V.; Frolov, I. N.; Laukhin, Ya. N.; Oleinik, G. M.; Ol’khovskaya, O. G.

    2016-01-01

    Results of experimental studies of the implosion of quasi-spherical wire (or metalized fiber) arrays are presented. The goal of the experiments was to achieve synchronous three-dimensional compression of the plasma produced in different regions of a quasi-spherical array into its geometrical center. To search for optimal synchronization conditions, quasi-spherical arrays with different initial profiles of the linear mass were used. The following dependences of the linear mass on the poloidal angle were used: m_l(θ) ∝ sin"–"1θ and m_l(θ) ∝ sin"–"2θ. The compression dynamics of such arrays was compared with that of quasi-spherical arrays without linear mass profiling, m_l(θ) = const. To verify the experimental data, the spatiotemporal dynamics of plasma compression in quasi-spherical arrays was studied using various diagnostics. The experiments on three-dimensional implosion of quasi-spherical arrays made it possible to study how the frozen-in magnetic field of the discharge current penetrates into the array. By measuring the magnetic field in the plasma of a quasi-spherical array, information is obtained on the processes of plasma production and formation of plasma flows from the wire/fiber regions with and without an additionally deposited mass. It is found that penetration of the magnetic flux depends on the initial linear mass profile m_l(θ) of the quasi-spherical array. From space-resolved spectral measurements and frame imaging of plasma X-ray emission, information is obtained on the dimensions and shape of the X-ray source formed during the implosion of a quasi-spherical array. The intensity of this source is estimated and compared with that of the Z-pinch formed during the implosion of a cylindrical array.

  20. A Solvable Dynamic Principal-Agent Model with Linear Marginal Productivity

    Directory of Open Access Journals (Sweden)

    Bing Liu

    2018-01-01

    Full Text Available We study how to design an optimal contract which provides incentives for agent to put forth the desired effort in a continuous time dynamic moral hazard model with linear marginal productivity. Using exponential utility and linear production, three different information structures, full information, hidden actions and hidden savings, are considered in the principal-agent model. Applying the stochastic maximum principle, we solve the model explicitly, where the agent’s optimization problem becomes the principal’s problem of choosing an optimal contract. The explicit solutions to our model allow us to analyze the distortion of allocations. The main effect of hidden actions is a reduction of effort, but the a smaller effect is on the consumption allocation. In the hidden saving case, the consumption distortion almost vanishes but the effort distortion is expanded. In our setting, the agent’s optimal effort is also reduced with the decline of marginal productivity.

  1. Analytical researches on the accelerating structures, wakefields, and beam dynamics for future linear colliders

    International Nuclear Information System (INIS)

    Gao, J.

    1996-01-01

    The research works presented in this memoir are oriented not only to the R and D programs towards future linear colliders, but also to the pedagogic purposes. The first part of this memoir (from Chapter 2 to Chapter 9) establishes an analytical framework of the disk-loaded slow wave accelerating structures with can be served as the advanced courses for the students who have got some basic trainings in the linear accelerator theories. The analytical formulae derived in this part describe clearly the properties of the disk-loaded accelerating structures, such as group velocity, shunt impedance, coupling coefficients κ and β, loss factors, and wake fields. The second part (from Chapter 11 to Chapter 13) gives the beam dynamics simulations and the final proposal of an S-Band Superconducting Linear Collider (SSLC) which is aimed to avoid the dark current problem in TESLA project. This memoir has not included all the works conducted since April 1992, such as beam dynamics simulations for CLIC Test Facility (CFT-2) and the design of High Charge Structures (HCS) (11π/12 mode) for CFT-2, in order to make this memoir more harmonious, coherent and continuous. (author)

  2. Sliding-Mode Observer for Speed and Position Sensorless Control of Linear-PMSM

    Directory of Open Access Journals (Sweden)

    Kazraji Saeed Masoumi

    2014-05-01

    Full Text Available The paper presents a sliding-mode observer that utilizes sigmoid function for speed and position sensorless control of permanent-magnet linear synchronous motor (PMLSM. In conventional sliding mode observer method there are the chattering phenomenon and the phase lag. Thus, in order to avoid the usage of the low pass filter and the phase compensator based on back EMF, in this paper a sliding mode observer with sigmoid function for detecting the back EMF in a PMLSM is designed to estimate the speed and the position of the rotor. Most of conventional sliding mode observers use sign or saturation functions which need low pass filter in order to detect back electromotive force (back EMF. In this paper a sigmoid function is used instead of discontinuous sign function to decrease undesirable chattering phenomenon. By reducing the chattering, detecting of the back EMF can be made directly from switching signal without any low pass filter. Thus the delay time in the proposed observer is eliminated because of the low pass filter. Furthermore, there is no need to compensate phase fault in position and speed estimating of linear-PMSM. Advantages of the proposed observer have been shown by simulation with MATLAB software.

  3. Hydrodynamic theory for quantum plasmonics: Linear-response dynamics of the inhomogeneous electron gas

    DEFF Research Database (Denmark)

    Yan, Wei

    2015-01-01

    We investigate the hydrodynamic theory of metals, offering systematic studies of the linear-response dynamics for an inhomogeneous electron gas. We include the quantum functional terms of the Thomas-Fermi kinetic energy, the von Weizsa¨cker kinetic energy, and the exchange-correlation Coulomb...... energies under the local density approximation. The advantages, limitations, and possible improvements of the hydrodynamic theory are transparently demonstrated. The roles of various parameters in the theory are identified. We anticipate that the hydrodynamic theory can be applied to investigate the linear...... response of complex metallic nanostructures, including quantum effects, by adjusting theory parameters appropriately....

  4. Adaptive Control for Linear Uncertain Systems with Unmodeled Dynamics Revisited via Optimal Control Modification

    Science.gov (United States)

    Nguyen, Nhan

    2013-01-01

    This paper presents the optimal control modification for linear uncertain plants. The Lyapunov analysis shows that the modification parameter has a limiting value depending on the nature of the uncertainty. The optimal control modification exhibits a linear asymptotic property that enables it to be analyzed in a linear time invariant framework for linear uncertain plants. The linear asymptotic property shows that the closed-loop plants in the limit possess a scaled input-output mapping. Using this property, we can derive an analytical closed-loop transfer function in the limit as the adaptive gain tends to infinity. The paper revisits the Rohrs counterexample problem that illustrates the nature of non-robustness of model-reference adaptive control in the presence of unmodeled dynamics. An analytical approach is developed to compute exactly the modification parameter for the optimal control modification that stabilizes the plant in the Rohrs counterexample. The linear asymptotic property is also used to address output feedback adaptive control for non-minimum phase plants with a relative degree 1.

  5. Solar Wind Proton Temperature Anisotropy: Linear Theory and WIND/SWE Observations

    Science.gov (United States)

    Hellinger, P.; Travnicek, P.; Kasper, J. C.; Lazarus, A. J.

    2006-01-01

    We present a comparison between WIND/SWE observations (Kasper et al., 2006) of beta parallel to p and T perpendicular to p/T parallel to p (where beta parallel to p is the proton parallel beta and T perpendicular to p and T parallel to p are the perpendicular and parallel proton are the perpendicular and parallel proton temperatures, respectively; here parallel and perpendicular indicate directions with respect to the ambient magnetic field) and predictions of the Vlasov linear theory. In the slow solar wind, the observed proton temperature anisotropy seems to be constrained by oblique instabilities, by the mirror one and the oblique fire hose, contrary to the results of the linear theory which predicts a dominance of the proton cyclotron instability and the parallel fire hose. The fast solar wind core protons exhibit an anticorrelation between beta parallel to c and T perpendicular to c/T parallel to c (where beta parallel to c is the core proton parallel beta and T perpendicular to c and T parallel to c are the perpendicular and parallel core proton temperatures, respectively) similar to that observed in the HELIOS data (Marsch et al., 2004).

  6. Controllability of Free-piston Stirling Engine/linear Alternator Driving a Dynamic Load

    Science.gov (United States)

    Kankam, M. David; Rauch, Jeffrey S.

    1994-01-01

    This paper presents the dynamic behavior of a Free-Piston Stirling Engine/linear alternator (FPSE/LA) driving a single-phase fractional horse-power induction motor. The controllability and dynamic stability of the system are discussed by means of sensitivity effects of variations in system parameters, engine controller, operating conditions, and mechanical loading on the induction motor. The approach used expands on a combined mechanical and thermodynamic formulation employed in a previous paper. The application of state-space technique and frequency domain analysis enhances understanding of the dynamic interactions. Engine-alternator parametric sensitivity studies, similar to those of the previous paper, are summarized. Detailed discussions are provided for parametric variations which relate to the engine controller and system operating conditions. The results suggest that the controllability of a FPSE-based power system is enhanced by proper operating conditions and built-in controls.

  7. Nonparametric adaptive estimation of linear functionals for low frequency observed Lévy processes

    OpenAIRE

    Kappus, Johanna

    2012-01-01

    For a Lévy process X having finite variation on compact sets and finite first moments, µ( dx) = xv( dx) is a finite signed measure which completely describes the jump dynamics. We construct kernel estimators for linear functionals of µ and provide rates of convergence under regularity assumptions. Moreover, we consider adaptive estimation via model selection and propose a new strategy for the data driven choice of the smoothing parameter.

  8. Impact of Cross-Axis Structural Dynamics on Validation of Linear Models for Space Launch System

    Science.gov (United States)

    Pei, Jing; Derry, Stephen D.; Zhou Zhiqiang; Newsom, Jerry R.

    2014-01-01

    A feasibility study was performed to examine the advisability of incorporating a set of Programmed Test Inputs (PTIs) during the Space Launch System (SLS) vehicle flight. The intent of these inputs is to provide validation to the preflight models for control system stability margins, aerodynamics, and structural dynamics. During October 2009, Ares I-X program was successful in carrying out a series of PTI maneuvers which provided a significant amount of valuable data for post-flight analysis. The resulting data comparisons showed excellent agreement with the preflight linear models across the frequency spectrum of interest. However unlike Ares I-X, the structural dynamics associated with the SLS boost phase configuration are far more complex and highly coupled in all three axes. This presents a challenge when implementing this similar system identification technique to SLS. Preliminary simulation results show noticeable mismatches between PTI validation and analytical linear models in the frequency range of the structural dynamics. An alternate approach was examined which demonstrates the potential for better overall characterization of the system frequency response as well as robustness of the control design.

  9. Magnetic field effects on ultrafast lattice compression dynamics of Si(111) crystal when excited by linearly-polarized femtosecond laser pulses

    Science.gov (United States)

    Hatanaka, Koji; Odaka, Hideho; Ono, Kimitoshi; Fukumura, Hiroshi

    2007-03-01

    Time-resolved X-ray diffraction measurements of Si (111) single crystal are performed when excited by linearly-polarized femtosecond laser pulses (780 nm, 260 fs, negatively-chirped, 1 kHz) under a magnetic field (0.47 T). Laser fluence on the sample surface is 40 mJ/cm^2, which is enough lower than the ablation threshold at 200 mJ/cm^2. Probing X-ray pulses of iron characteristic X-ray lines at 0.193604 and 0.193998 nm are generated by focusing femtosecond laser pulses onto audio-cassette tapes in air. Linearly-polarized femtosecond laser pulse irradiation onto Si(111) crystal surface induces transient lattice compression in the picosecond time range, which is confirmed by transient angle shift of X-ray diffraction to higher angles. Little difference of compression dynamics is observed when the laser polarization is changed from p to s-pol. without a magnetic field. On the other hand, under a magnetic field, the lattice compression dynamics changes when the laser is p-polarized which is vertical to the magnetic field vector. These results may be assigned to photo-carrier formation and energy-band distortion.

  10. Linear latent variable models: the lava-package

    DEFF Research Database (Denmark)

    Holst, Klaus Kähler; Budtz-Jørgensen, Esben

    2013-01-01

    are implemented including robust standard errors for clustered correlated data, multigroup analyses, non-linear parameter constraints, inference with incomplete data, maximum likelihood estimation with censored and binary observations, and instrumental variable estimators. In addition an extensive simulation......An R package for specifying and estimating linear latent variable models is presented. The philosophy of the implementation is to separate the model specification from the actual data, which leads to a dynamic and easy way of modeling complex hierarchical structures. Several advanced features...

  11. Dynamic linearization system for a radiation gauge

    International Nuclear Information System (INIS)

    Panarello, J.A.

    1977-01-01

    The linearization system and process converts a high resolution non-linear analog input signal, representative of the thickness of an object, into a high resolution linear analog output signal suitable for use in driving a variety of output devices. The system requires only a small amount of memory for storing pre-calculated non-linear correction coefficients. The system channels the input signal to separate circuit paths so that it may be used directly to; locate an appropriate correction coefficient; develop a correction term after an appropriate correction coefficient is located; and develop a linearized signal having the same high resolution inherent in the input signal. The system processes the linearized signal to compensate for the possible errors introduced by radiation source noise. The processed linearized signal is the high resolution linear analog output signal which accurately represents the thickness of the object being gauged

  12. Linear Algebraic Method for Non-Linear Map Analysis

    International Nuclear Information System (INIS)

    Yu, L.; Nash, B.

    2009-01-01

    We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.

  13. Physical and dynamical properties of the anomalous comet 249P/LINEAR

    Science.gov (United States)

    Fernández, Julio A.; Licandro, Javier; Moreno, Fernando; Sosa, Andrea; Cabrera-Lavers, Antonio; de León, Julia; Birtwhistle, Peter

    2017-10-01

    Images and low-resolution spectra of the near-Earth Jupiter family comet (JFC) 249P/LINEAR in the visible range obtained with the instrument OSIRIS in the 10.4 m Gran Telescopio Canarias (GTC) (La Palma, Spain) on January 3, 4, 6 and February 6, 2016 are presented, together with a series of images obtained with the 0.4m telescope of the Great Shefford Observatory obtained on Oct. 22 and 27, and Nov. 1 and 24, 2006. The reflectance spectrum of 249P is similar to that of a B-type asteroid. The comet has an absolute (visual) nuclear magnitude HV = 17.0 ± 0.4 , which corresponds to a radius of about 1-1.3 km for a geometric albedo ∼ 0.04 - 0.07 . From the analysis of GTC images using a Monte Carlo dust tail code we find that the time of maximum dust ejection rate was around 1.6 days before perihelion. The analysis of the dust tails during the 2006 and 2016 perihelion approaches reveals that, during both epochs, the comet repeated the same dust ejection pattern, with a similar short-lived activity period of about 20 days (FWHM) around perihelion and a dust loss rate peaking at 145 ± 50 kg/s. The total dust mass ejected during its last perihelion passage was (2.5 ± 0.9) × 108 kg, almost all this mass being emitted before the first observation of January 3, 2016. The activity onset, duration, and total ejected mass were very similar during the 2006 perihelion passage. This amount of dust mass is very low as compared with that from other active JFCs. The past orbital evolution of 249P and 100 clones were also followed over a time scale of ∼ 5 × 104 yr. The object and more than 60% of the clones remained bound to the near-Earth region for the whole computed period, keeping its perihelion distance within the range q ≃ 0.4 - 1.1 au. The combination of photometric and spectroscopic observations and dynamical studies show that the near-Earth comet 249P/LINEAR has several peculiar features that clearly differentiate it from typical JFCs. We may be in front of a new

  14. Quantifying temporal trends in fisheries abundance using Bayesian dynamic linear models: A case study of riverine Smallmouth Bass populations

    Science.gov (United States)

    Schall, Megan K.; Blazer, Vicki S.; Lorantas, Robert M.; Smith, Geoffrey; Mullican, John E.; Keplinger, Brandon J.; Wagner, Tyler

    2018-01-01

    Detecting temporal changes in fish abundance is an essential component of fisheries management. Because of the need to understand short‐term and nonlinear changes in fish abundance, traditional linear models may not provide adequate information for management decisions. This study highlights the utility of Bayesian dynamic linear models (DLMs) as a tool for quantifying temporal dynamics in fish abundance. To achieve this goal, we quantified temporal trends of Smallmouth Bass Micropterus dolomieu catch per effort (CPE) from rivers in the mid‐Atlantic states, and we calculated annual probabilities of decline from the posterior distributions of annual rates of change in CPE. We were interested in annual declines because of recent concerns about fish health in portions of the study area. In general, periods of decline were greatest within the Susquehanna River basin, Pennsylvania. The declines in CPE began in the late 1990s—prior to observations of fish health problems—and began to stabilize toward the end of the time series (2011). In contrast, many of the other rivers investigated did not have the same magnitude or duration of decline in CPE. Bayesian DLMs provide information about annual changes in abundance that can inform management and are easily communicated with managers and stakeholders.

  15. On the Boundary between Nonlinear Jump Phenomenon and Linear Response of Hypoid Gear Dynamics

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2011-01-01

    Full Text Available A nonlinear time-varying (NLTV dynamic model of a hypoid gear pair system with time-dependent mesh point, line-of-action vector, mesh stiffness, mesh damping, and backlash nonlinearity is formulated to analyze the transitional phase between nonlinear jump phenomenon and linear response. It is found that the classical jump discontinuity will occur if the dynamic mesh force exceeds the mean value of tooth mesh force. On the other hand, the propensity for the gear response to jump disappears when the dynamic mesh force is lower than the mean mesh force. Furthermore, the dynamic analysis is able to distinguish the specific tooth impact types from analyzing the behaviors of the dynamic mesh force. The proposed theory is general and also applicable to high-speed spur, helical and spiral bevel gears even though those types of gears are not the primary focus of this paper.

  16. X-ray phase imaging-From static observation to dynamic observation-

    International Nuclear Information System (INIS)

    Momose, A.; Yashiro, W.; Olbinado, M. P.; Harasse, S.

    2012-01-01

    We are attempting to expand the technology of X-ray grating phase imaging/tomography to enable dynamic observation. X-ray phase imaging has been performed mainly for static cases, and this challenge is significant since properties of materials (and hopefully their functions) would be understood by observing their dynamics in addition to their structure, which is an inherent advantage of X-ray imaging. Our recent activities in combination with white synchrotron radiation for this purpose are described. Taking advantage of the fact that an X-ray grating interferometer functions with X-rays of a broad energy bandwidth (and therefore high flux), movies of differential phase images and visibility images are obtained with a time resolution of a millisecond. The time resolution of X-ray phase tomography can therefore be a second. This study is performed as a part of a project to explore X-ray grating interferometry, and our other current activities are also briefly outlined.

  17. Quantum Optimal Control of Single Harmonic Oscillator under Quadratic Controls together with Linear Dipole Polarizability: A Fluctuation Free Expectation Value Dynamical Perspective

    International Nuclear Information System (INIS)

    Ayvaz, Muzaffer; Demiralp, Metin

    2011-01-01

    In this study, the optimal control equations for one dimensional quantum harmonic oscillator under the quadratic control operators together with linear dipole polarizability effects are constructed in the sense of Heisenberg equation of motion. A numerical technique based on the approximation to the non-commuting quantum mechanical operators from the fluctuation free expectation value dynamics perspective in the classical limit is also proposed for the solution of optimal control equations which are ODEs with accompanying boundary conditions. The dipole interaction of the system is considered to be linear, and the observable whose expectation value will be suppressed during the control process is considered to be quadratic in terms of position operator x. The objective term operator is also assumed to be quadratic.

  18. Parameterized Linear Longitudinal Airship Model

    Science.gov (United States)

    Kulczycki, Eric; Elfes, Alberto; Bayard, David; Quadrelli, Marco; Johnson, Joseph

    2010-01-01

    A parameterized linear mathematical model of the longitudinal dynamics of an airship is undergoing development. This model is intended to be used in designing control systems for future airships that would operate in the atmospheres of Earth and remote planets. Heretofore, the development of linearized models of the longitudinal dynamics of airships has been costly in that it has been necessary to perform extensive flight testing and to use system-identification techniques to construct models that fit the flight-test data. The present model is a generic one that can be relatively easily specialized to approximate the dynamics of specific airships at specific operating points, without need for further system identification, and with significantly less flight testing. The approach taken in the present development is to merge the linearized dynamical equations of an airship with techniques for estimation of aircraft stability derivatives, and to thereby make it possible to construct a linearized dynamical model of the longitudinal dynamics of a specific airship from geometric and aerodynamic data pertaining to that airship. (It is also planned to develop a model of the lateral dynamics by use of the same methods.) All of the aerodynamic data needed to construct the model of a specific airship can be obtained from wind-tunnel testing and computational fluid dynamics

  19. The brain as a dynamic physical system.

    Science.gov (United States)

    McKenna, T M; McMullen, T A; Shlesinger, M F

    1994-06-01

    The brain is a dynamic system that is non-linear at multiple levels of analysis. Characterization of its non-linear dynamics is fundamental to our understanding of brain function. Identifying families of attractors in phase space analysis, an approach which has proven valuable in describing non-linear mechanical and electrical systems, can prove valuable in describing a range of behaviors and associated neural activity including sensory and motor repertoires. Additionally, transitions between attractors may serve as useful descriptors for analysing state changes in neurons and neural ensembles. Recent observations of synchronous neural activity, and the emerging capability to record the spatiotemporal dynamics of neural activity by voltage-sensitive dyes and electrode arrays, provide opportunities for observing the population dynamics of neural ensembles within a dynamic systems context. New developments in the experimental physics of complex systems, such as the control of chaotic systems, selection of attractors, attractor switching and transient states, can be a source of powerful new analytical tools and insights into the dynamics of neural systems.

  20. Linear and non-linear simulation of joints contact surface using ...

    African Journals Online (AJOL)

    The joint modelling including non-linear effects needs accurate and precise study of their behaviors. When joints are under the dynamic loading, micro, macro- slip happens in contact surface which is non-linear reason of the joint contact surface. The non-linear effects of joint contact surface on total behavior of structure are ...

  1. Classical linear-control analysis applied to business-cycle dynamics and stability

    Science.gov (United States)

    Wingrove, R. C.

    1983-01-01

    Linear control analysis is applied as an aid in understanding the fluctuations of business cycles in the past, and to examine monetary policies that might improve stabilization. The analysis shows how different policies change the frequency and damping of the economic system dynamics, and how they modify the amplitude of the fluctuations that are caused by random disturbances. Examples are used to show how policy feedbacks and policy lags can be incorporated, and how different monetary strategies for stabilization can be analytically compared. Representative numerical results are used to illustrate the main points.

  2. BEAMPATH: a program library for beam dynamics simulation in linear accelerators

    International Nuclear Information System (INIS)

    Batygin, Y.K.

    1992-01-01

    A structured programming technique was used to develop software for space charge dominated beams investigation in linear accelerators. The method includes hierarchical program design using program independent modules and a flexible combination of modules to provide a most effective version of structure for every specific case of simulation. A modular program BEAMPATH was developed for 2D and 3D particle-in-cell simulation of beam dynamics in a structure containing RF gaps, radio-frequency quadrupoles (RFQ), multipole lenses, waveguides, bending magnets and solenoids. (author) 5 refs.; 2 figs

  3. A linear evolution for non-linear dynamics and correlations in realistic nuclei

    International Nuclear Information System (INIS)

    Levin, E.; Lublinsky, M.

    2004-01-01

    A new approach to high energy evolution based on a linear equation for QCD generating functional is developed. This approach opens a possibility for systematic study of correlations inside targets, and, in particular, inside realistic nuclei. Our results are presented as three new equations. The first one is a linear equation for QCD generating functional (and for scattering amplitude) that sums the 'fan' diagrams. For the amplitude this equation is equivalent to the non-linear Balitsky-Kovchegov equation. The second equation is a generalization of the Balitsky-Kovchegov non-linear equation to interactions with realistic nuclei. It includes a new correlation parameter which incorporates, in a model-dependent way, correlations inside the nuclei. The third equation is a non-linear equation for QCD generating functional (and for scattering amplitude) that in addition to the 'fan' diagrams sums the Glauber-Mueller multiple rescatterings

  4. Quadratic temporal finite element method for linear elastic structural dynamics based on mixed convolved action

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Kim, Dong Keon

    2016-01-01

    A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics

  5. Quadratic temporal finite element method for linear elastic structural dynamics based on mixed convolved action

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu [School of Architecture and Architectural Engineering, Hanyang University, Ansan (Korea, Republic of); Kim, Dong Keon [Dept. of Architectural Engineering, Dong A University, Busan (Korea, Republic of)

    2016-09-15

    A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics.

  6. Linear time series modeling of GPS-derived TEC observations over the Indo-Thailand region

    Science.gov (United States)

    Suraj, Puram Sai; Kumar Dabbakuti, J. R. K.; Chowdhary, V. Rajesh; Tripathi, Nitin K.; Ratnam, D. Venkata

    2017-12-01

    This paper proposes a linear time series model to represent the climatology of the ionosphere and to investigate the characteristics of hourly averaged total electron content (TEC). The GPS-TEC observation data at the Bengaluru international global navigation satellite system (GNSS) service (IGS) station (geographic 13.02°N , 77.57°E ; geomagnetic latitude 4.4°N ) have been utilized for processing the TEC data during an extended period (2009-2016) in the 24{th} solar cycle. Solar flux F10.7p index, geomagnetic Ap index, and periodic oscillation factors have been considered to construct a linear TEC model. It is evident from the results that solar activity effect on TEC is high. It reaches the maximum value (˜ 40 TECU) during the high solar activity (HSA) year (2014) and minimum value (˜ 15 TECU) during the low solar activity (LSA) year (2009). The larger magnitudes of semiannual variations are observed during the HSA periods. The geomagnetic effect on TEC is relatively low, with the highest being ˜ 4 TECU (March 2015). The magnitude of periodic variations can be seen more significantly during HSA periods (2013-2015) and less during LSA periods (2009-2011). The correlation coefficient of 0.89 between the observations and model-based estimations has been found. The RMSE between the observed TEC and model TEC values is 4.0 TECU (linear model) and 4.21 TECU (IRI2016 Model). Further, the linear TEC model has been validated at different latitudes over the northern low-latitude region. The solar component (F10.7p index) value decreases with an increase in latitude. The magnitudes of the periodic component become less significant with the increase in latitude. The influence of geomagnetic component becomes less significant at Lucknow GNSS station (26.76°N, 80.88°E) when compared to other GNSS stations. The hourly averaged TEC values have been considered and ionospheric features are well recovered with linear TEC model.

  7. Dynamic Moss Observed with Hi-C

    Science.gov (United States)

    Alexander, Caroline; Winebarger, Amy; Morton, Richard; Savage, Sabrina

    2014-01-01

    The High-resolution Coronal Imager (Hi-C), flown on 11 July 2012, has revealed an unprecedented level of detail and substructure within the solar corona. Hi-C imaged a large active region (AR11520) with 0.2-0.3'' spatial resolution and 5.5s cadence over a 5 minute period. An additional dataset with a smaller FOV, the same resolution, but with a higher temporal cadence (1s) was also taken during the rocket flight. This dataset was centered on a large patch of 'moss' emission that initially seemed to show very little variability. Image processing revealed this region to be much more dynamic than first thought with numerous bright and dark features observed to appear, move and disappear over the 5 minute observation. Moss is thought to be emission from the upper transition region component of hot loops so studying its dynamics and the relation between the bright/dark features and underlying magnetic features is important to tie the interaction of the different atmospheric layers together. Hi-C allows us to study the coronal emission of the moss at the smallest scales while data from SDO/AIA and HMI is used to give information on these structures at different heights/temperatures. Using the high temporal and spatial resolution of Hi-C the observed moss features were tracked and the distribution of displacements, speeds, and sizes were measured. This allows us to comment on both the physical processes occurring within the dynamic moss and the scales at which these changes are occurring.

  8. Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

    Science.gov (United States)

    Beardsell, Alec; Collier, William; Han, Tao

    2016-09-01

    There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.

  9. Plasma dynamics in solar macrospicules from high-cadence extreme-UV observations

    Science.gov (United States)

    Loboda, I. P.; Bogachev, S. A.

    2017-01-01

    Macrospicules are relatively large spicule-like formations found mainly over the polar coronal holes when observing in the transition region spectral lines. In this study, we took advantage of the two short series of observations in the He II 304 Å line obtained by the TESIS solar observatory with a cadence of up to 3.5 s to study the dynamics of macrospicules in unprecedented detail. We used a one-dimensional hydrodynamic method based on the assumption of their axial symmetry and on a simple radiative transfer model to reconstruct the evolution of the internal velocity field of 18 macrospicules from this dataset. Besides the internal dynamics, we studied the motion of the apparent end points of the same 18 macrospicules and found 15 of them to follow parabolic trajectories with high precision which correspond closely to the obtained velocity fields. We found that in a clear, unperturbed case these macrospicules move with a constant deceleration inconsistent with a purely ballistic motion and have roughly the same velocity along their entire axis, with the obtained decelerations typically ranging from 160 to 230 m s-2, and initial velocities from 80 to 130 km s-1. We also found a propagating acoustic wave for one of the macrospicules and a clear linear correlation between the initial velocities of the macrospicules and their decelerations, which indicates that they may be driven by magneto-acoustic shocks. Finally, we inverted our previous method by taking velocities from the parabolic fits to give rough estimates of the percentage of mass lost by 12 of the macrospicules. We found that typically from 10 to 30% of their observed mass fades out of the line (presumably being heated to higher coronal temperatures) with three exceptions of 50% and one of 80%.

  10. Poromechanical approach describing the moisture influence on the non-linear quasi-static and dynamic behaviour of porous building materials

    NARCIS (Netherlands)

    Carmeliet, J.; Abeele, van den K.E.A.

    2004-01-01

    The non-linear quasi-static and dynamic elastic behaviour of Berea sandstone has been experimentally analysed showing hysteresis and a strong influence of moisture especially in the lower saturation range. It is shown that non-linear hysteretic response originates within the "bond system" of the

  11. Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes.

    Science.gov (United States)

    Zhang, Lifu; Li, Chuxin; Zhong, Haizhe; Xu, Changwen; Lei, Dajun; Li, Ying; Fan, Dianyuan

    2016-06-27

    We have investigated the propagation dynamics of super-Gaussian optical beams in fractional Schrödinger equation. We have identified the difference between the propagation dynamics of super-Gaussian beams and that of Gaussian beams. We show that, the linear propagation dynamics of the super-Gaussian beams with order m > 1 undergo an initial compression phase before they split into two sub-beams. The sub-beams with saddle shape separate each other and their interval increases linearly with propagation distance. In the nonlinear regime, the super-Gaussian beams evolve to become a single soliton, breathing soliton or soliton pair depending on the order of super-Gaussian beams, nonlinearity, as well as the Lévy index. In two dimensions, the linear evolution of super-Gaussian beams is similar to that for one dimension case, but the initial compression of the input super-Gaussian beams and the diffraction of the splitting beams are much stronger than that for one dimension case. While the nonlinear propagation of the super-Gaussian beams becomes much more unstable compared with that for the case of one dimension. Our results show the nonlinear effects can be tuned by varying the Lévy index in the fractional Schrödinger equation for a fixed input power.

  12. Efficiency Improvement of a High Dynamic BLDC Linear Motor by Multiphase Control

    OpenAIRE

    Lemmens, Joris; Vanvlasselaer, Kris; Mulier, Kristof; Goossens, Stijn; Symens, Wim; Driesen, Johan

    2013-01-01

    This paper proposes a multiphase control strategy for a high dynamic brushless DC linear motor as an alternative for conventional three-phase field-oriented control. Analysis of the magnetic field waveforms shows that three-phase control is not optimal for the 6-slot 7-pole motor topology. Therefore, a multiphase control strategy is elaborated which injects currents proportional to the electromotive force into each of the nine stator coil groups. This results in a maximal alignment force ...

  13. On the internal stability of non-linear dynamic inversion: application to flight control

    Czech Academy of Sciences Publication Activity Database

    Alam, M.; Čelikovský, Sergej

    2017-01-01

    Roč. 11, č. 12 (2017), s. 1849-1861 ISSN 1751-8644 R&D Projects: GA ČR(CZ) GA17-04682S Institutional support: RVO:67985556 Keywords : flight control * non-linear dynamic inversion * stability Subject RIV: BC - Control Systems Theory OBOR OECD: Automation and control systems Impact factor: 2.536, year: 2016 http://library.utia.cas.cz/separaty/2017/TR/celikovsky-0476150.pdf

  14. Linear versus non-linear structural information limit in high-resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Van Aert, S.; Chen, J.H.; Van Dyck, D.

    2010-01-01

    A widely used performance criterion in high-resolution transmission electron microscopy (HRTEM) is the information limit. It corresponds to the inverse of the maximum spatial object frequency that is linearly transmitted with sufficient intensity from the exit plane of the object to the image plane and is limited due to partial temporal coherence. In practice, the information limit is often measured from a diffractogram or from Young's fringes assuming a weak phase object scattering beyond the inverse of the information limit. However, for an aberration corrected electron microscope, with an information limit in the sub-angstrom range, weak phase objects are no longer applicable since they do not scatter sufficiently in this range. Therefore, one relies on more strongly scattering objects such as crystals of heavy atoms observed along a low index zone axis. In that case, dynamical scattering becomes important such that the non-linear and linear interaction may be equally important. The non-linear interaction may then set the experimental cut-off frequency observed in a diffractogram. The goal of this paper is to quantify both the linear and the non-linear information transfer in terms of closed form analytical expressions. Whereas the cut-off frequency set by the linear transfer can be directly related with the attainable resolution, information from the non-linear transfer can only be extracted using quantitative, model-based methods. In contrast to the historic definition of the information limit depending on microscope parameters only, the expressions derived in this paper explicitly incorporate their dependence on the structure parameters as well. In order to emphasize this dependence and to distinguish from the usual information limit, the expressions derived for the inverse cut-off frequencies will be referred to as the linear and non-linear structural information limit. The present findings confirm the well-known result that partial temporal coherence has

  15. Design of advanced materials for linear and nonlinear dynamics

    DEFF Research Database (Denmark)

    Frandsen, Niels Morten Marslev

    to reveal the fundamental dynamic characteristics and thus the relevant design parameters.The thesis is built around the characterization of two one-dimensional, periodic material systems. The first is a nonlinear mass-spring chain with periodically varying material properties, representing a simple......The primary catalyst of this PhD project has been an ambition to design advanced materials and structural systems including, and possibly even exploiting, nonlinear phenomena such as nonlinear modal interaction leading to energy conversion between modes. An important prerequisite for efficient...... but general model of inhomogeneous structural materials with nonlinear material characteristics. The second material system is an “engineered” material in the sense that a classical structural element, a linear elastic and homogeneous rod, is “enhanced” by applying a mechanism on its surface, amplifying...

  16. Developing a dynamic virtual stimulation protocol to induce linear egomotion during orthostatic posture control test

    Directory of Open Access Journals (Sweden)

    Paulo José Guimarães Da-Silva

    Full Text Available Abstract Introduction In this work, the effect of a dynamic visual stimulation (DS protocol was used to induce egomotion, the center of pressure (COP displacement response. Methods DS was developed concerning the scenario structure (chessboard-pattern floor and furniture and luminance. To move the scenario in a discrete forward (or backward direction, the furniture is expanded (or reduced and the black and white background is reversed during floor translation while the luminance is increased (or reduced by steps of 2 cd/m2. This protocol was evaluated using COP signals from 29 healthy volunteers: standing on a force platform observing the virtual scene (1.72 × 1.16 m projected 1 m ahead (visual incidence angle: θl = 81.4° and θv = 60.2°, which moves with constant velocity (2 m/s during 250 ms. A set of 100 DS was applied in random order, interspersed by a 10 s of static scene. Results The Tukey post-hoc test (p < 0.001 indicated egomotion in the same direction of DS. COP displacement increased over stimulation (8.4 ± 1.7 to 22.6 ±5.3 mm, as well as time to recover stability (4.1 ± 0.4 to 7.2 ± 0.6 s. The peak of egomotion during DSF occurred 200 ms after DSB (Wilcoxon, p = 0.002. Conclusion The dynamic configuration of this protocol establishes virtual flow effects of linear egomotion dependent on the direction of the dynamic visual stimulation. This finding indicates the potential application of the proposed virtual dynamic stimulation protocol to investigate the cortical visual evoked response in postural control studies.

  17. Charge and pairing dynamics in the attractive Hubbard model: Mode coupling and the validity of linear-response theory

    Science.gov (United States)

    Bünemann, Jörg; Seibold, Götz

    2017-12-01

    Pump-probe experiments have turned out as a powerful tool in order to study the dynamics of competing orders in a large variety of materials. The corresponding analysis of the data often relies on standard linear-response theory generalized to nonequilibrium situations. Here we examine the validity of such an approach for the charge and pairing response of systems with charge-density wave and (or) superconducting (SC) order. Our investigations are based on the attractive Hubbard model which we study within the time-dependent Hartree-Fock approximation. In particular, we calculate the quench and pump-probe dynamics for SC and charge order parameters in order to analyze the frequency spectra and the coupling of the probe field to the specific excitations. Our calculations reveal that the "linear-response assumption" is justified for small to moderate nonequilibrium situations (i.e., pump pulses) in the case of a purely charge-ordered ground state. However, the pump-probe dynamics on top of a superconducting ground state is determined by phase and amplitude modes which get coupled far from the equilibrium state indicating the failure of the linear-response assumption.

  18. Expanding the linear dynamic range for quantitative liquid chromatography-high resolution mass spectrometry utilizing natural isotopologue signals

    International Nuclear Information System (INIS)

    Liu, Hanghui; Lam, Lily; Yan, Lin; Chi, Bert; Dasgupta, Purnendu K.

    2014-01-01

    Highlights: • Less abundant isotopologue ions were utilized to decrease detector saturation. • A 25–50 fold increase in the upper limit of dynamic range was demonstrated. • Linear dynamic range was expanded without compromising mass resolution. - Abstract: The linear dynamic range (LDR) for quantitative liquid chromatography–mass spectrometry can be extended until ionization saturation is reached by using a number of target isotopologue ions in addition to the normally used target ion that provides the highest sensitivity. Less abundant isotopologue ions extend the LDR: the lower ion abundance decreases the probability of ion detector saturation. Effectively the sensitivity decreases and the upper limit of the LDR increases. We show in this paper that the technique is particularly powerful with a high resolution time of flight mass spectrometer because the data for all ions are automatically acquired, and we demonstrated this for four small organic molecules; the upper limits of LDRs increased by 25–50 times

  19. Linear dynamic analysis of arbitrary thin shells modal superposition by using finite element method

    International Nuclear Information System (INIS)

    Goncalves Filho, O.J.A.

    1978-11-01

    The linear dynamic behaviour of arbitrary thin shells by the Finite Element Method is studied. Plane triangular elements with eighteen degrees of freedom each are used. The general equations of movement are obtained from the Hamilton Principle and solved by the Modal Superposition Method. The presence of a viscous type damping can be considered by means of percentages of the critical damping. An automatic computer program was developed to provide the vibratory properties and the dynamic response to several types of deterministic loadings, including temperature effects. The program was written in FORTRAN IV for the Burroughs B-6700 computer. (author)

  20. Linear response theory for quantum open systems

    OpenAIRE

    Wei, J. H.; Yan, YiJing

    2011-01-01

    Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.

  1. Observations of linear and nonlinear processes in the foreshock wave evolution

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2007-07-01

    Full Text Available Waves in the foreshock region are studied on the basis of a hypothesis that the linear process first excites the waves and further wave-wave nonlinearities distribute scatter the energy of the primary waves into a number of daughter waves. To examine this wave evolution scenario, the dispersion relations, the wave number spectra of the magnetic field energy, and the dimensionless cross helicity are determined from the observations made by the four Cluster spacecraft. The results confirm that the linear process is the ion/ion right-hand resonant instability, but the wave-wave interactions are not clearly identified. We discuss various reasons why the test for the wave-wave nonlinearities fails, and conclude that the higher order statistics would provide a direct evidence for the wave coupling phenomena.

  2. Spatiotemporal dynamics of Bose-Einstein condensates in linear- and circular-chain optical lattices

    International Nuclear Information System (INIS)

    Tsukada, N.

    2002-01-01

    We investigate the spatiotemporal dynamics of Bose-Einstein condensates in optical lattices that have a linear-or a circular-chain configuration with the tunneling couplings between nearest-neighbor lattice sites. A discrete nonlinear Schroedinger equation has been solved for various initial conditions and for a definite range of repulsive and attractive interatomic interactions. It is shown that the diversity of the spatiotemporal dynamics of the atomic population distribution such as a macroscopic self-trapping, bright and dark solitons, and symmetry breaking is derived from the positive and negative interatomic interactions. For the circular-chain configuration, two types of rotational modes are obtained as we introduce a definite relation for the initial phase conditions

  3. Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models.

    Science.gov (United States)

    Shah, A A; Xing, W W; Triantafyllidis, V

    2017-04-01

    In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.

  4. Bistable energy harvesting enhancement with an auxiliary linear oscillator

    Science.gov (United States)

    Harne, R. L.; Thota, M.; Wang, K. W.

    2013-12-01

    Recent work has indicated that linear vibrational energy harvesters with an appended degree-of-freedom (DOF) may be advantageous for introducing new dynamic forms to extend the operational bandwidth. Given the additional interest in bistable harvester designs, which exhibit a propitious snap through effect from one stable state to the other, it is a logical extension to explore the influence of an added DOF to a bistable system. However, bistable snap through is not a resonant phenomenon, which tempers the presumption that the dynamics induced by an additional DOF on bistable designs would inherently be beneficial as for linear systems. This paper presents two analytical formulations to assess the fundamental and superharmonic steady-state dynamics of an excited bistable energy harvester to which is attached an auxiliary linear oscillator. From an energy harvesting perspective, the model predicts that the additional linear DOF uniformly amplifies the bistable harvester response magnitude and generated power for excitation frequencies less than the attachment’s resonance while improved power density spans a bandwidth below this frequency. Analyses predict bandwidths having co-existent responses composed of a unique proportion of fundamental and superharmonic dynamics. Experiments validate key analytical predictions and observe the ability for the coupled system to develop an advantageous multi-harmonic interwell response when the initial conditions are insufficient for continuous high-energy orbit at the excitation frequency. Overall, the addition of an auxiliary linear oscillator to a bistable harvester is found to be an effective means of enhancing the energy harvesting performance and robustness.

  5. High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers

    Directory of Open Access Journals (Sweden)

    J.-M. Wu

    2012-06-01

    Full Text Available This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC for worldwide interoperability for microwave access (WiMAX receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA with noise cancellation, an RF bandpass filter (BPF, a downconverter with linearization, and an intermediate frequency (IF BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3 of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf of the RF front end by 3.5 dB.

  6. Intelligent control of non-linear dynamical system based on the adaptive neurocontroller

    Science.gov (United States)

    Engel, E.; Kovalev, I. V.; Kobezhicov, V.

    2015-10-01

    This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.

  7. Dynamics and control of quadcopter using linear model predictive control approach

    Science.gov (United States)

    Islam, M.; Okasha, M.; Idres, M. M.

    2017-12-01

    This paper investigates the dynamics and control of a quadcopter using the Model Predictive Control (MPC) approach. The dynamic model is of high fidelity and nonlinear, with six degrees of freedom that include disturbances and model uncertainties. The control approach is developed based on MPC to track different reference trajectories ranging from simple ones such as circular to complex helical trajectories. In this control technique, a linearized model is derived and the receding horizon method is applied to generate the optimal control sequence. Although MPC is computer expensive, it is highly effective to deal with the different types of nonlinearities and constraints such as actuators’ saturation and model uncertainties. The MPC parameters (control and prediction horizons) are selected by trial-and-error approach. Several simulation scenarios are performed to examine and evaluate the performance of the proposed control approach using MATLAB and Simulink environment. Simulation results show that this control approach is highly effective to track a given reference trajectory.

  8. Rail Brake System Using a Linear Induction Motor for Dynamic Braking

    Science.gov (United States)

    Sakamoto, Yasuaki; Kashiwagi, Takayuki; Tanaka, Minoru; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo

    One type of braking system for railway vehicles is the eddy current brake. Because this type of brake has the problem of rail heating, it has not been used for practical applications in Japan. Therefore, we proposed the use of a linear induction motor (LIM) for dynamic braking in eddy current brake systems. The LIM reduces rail heating and uses an inverter for self excitation. In this paper, we estimated the performance of an LIM from experimental results of a fundamental test machine and confirmed that the LIM generates an approximately constant braking force under constant current excitation. At relatively low frequencies, this braking force remains unaffected by frequency changes. The reduction ratio of rail heating is also approximately proportional to the frequency. We also confirmed that dynamic braking resulting in no electrical output can be used for drive control of the LIM. These characteristics are convenient for the realization of the LIM rail brake system.

  9. Structure and dynamics of ion clusters in linear octupole traps: Phase diagrams, chirality, and melting mechanisms

    International Nuclear Information System (INIS)

    Yurtsever, E.; Onal, E. D.; Calvo, F.

    2011-01-01

    The stable structures and melting dynamics of clusters of identical ions bound by linear octupole radiofrequency traps are theoretically investigated by global optimization methods and molecular dynamics simulations. By varying the cluster sizes in the range of 10-1000 ions and the extent of trap anisotropy by more than one order of magnitude, we find a broad variety of stable structures based on multiple rings at small sizes evolving into tubular geometries at large sizes. The binding energy of these clusters is well represented by two contributions arising from isotropic linear and octupolar traps. The structures generally exhibit strong size effects, and chiral arrangements spontaneously emerge in many crystals. Sufficiently large clusters form nested, coaxial tubes with different thermal stabilities. As in isotropic octupolar clusters, the inner tubes melt at temperatures that are lower than the overall melting point.

  10. Approach to assurance of reliability of linear accelerator operation observations

    International Nuclear Information System (INIS)

    Bakov, S.M.; Borovikov, A.A.; Kavkun, S.L.

    1994-01-01

    The system approach to solving the task of assuring reliability of observations over the linear accelerator operation is proposed. The basic principles of this method consist in application of dependences between the facility parameters, decrease in the number of the system apparatus channels for data acquisition without replacement of failed channel by reserve one. The signal commutation unit, the introduction whereof into the data acquisition system essentially increases the reliability of the measurement system on the account of active reserve, is considered detail. 8 refs. 6 figs

  11. Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Fumiya; Ando, Keita, E-mail: kando@mech.keio.ac.jp [Department of Mechanical Engineering, Keio University, Yokohama 223-8522 (Japan)

    2015-11-15

    Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh–Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh–Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.

  12. Multiscale Behavior of Viscous Fluids Dynamics: Experimental Observations

    Science.gov (United States)

    Arciniega-Ceballos, Alejandra; Spina, Laura; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The dynamics of Newtonian fluids with viscosities of mafic to intermediate silicate melts (10-1000 Pa s) during slow decompression present multi-time scale processes. To observe these processes we have performed several experiments on silicon oil saturated with Argon gas for 72 hours, in a Plexiglas autoclave. The slow decompression, dropping from 10 MPa to ambient pressure, acting as the excitation mechanism, triggered several processes with their own distinct timescales. These processes generate complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit flanked by high-speed video recordings. The analysis in time and frequency of these time series and their correlation with the associated high-speed imaging enables the characterization of distinct phases and the extraction of the individual processes during the evolution of decompression of these viscous fluids. We have observed fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution along the conduit. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the conduit system. Our observations point to the great potential of this experimental approach in the understanding of volcanic conduit dynamics and volcanic seismicity.

  13. Cross-code gyrokinetic verification and benchmark on the linear collisionless dynamics of the geodesic acoustic mode

    Science.gov (United States)

    Biancalani, A.; Bottino, A.; Ehrlacher, C.; Grandgirard, V.; Merlo, G.; Novikau, I.; Qiu, Z.; Sonnendrücker, E.; Garbet, X.; Görler, T.; Leerink, S.; Palermo, F.; Zarzoso, D.

    2017-06-01

    The linear properties of the geodesic acoustic modes (GAMs) in tokamaks are investigated by means of the comparison of analytical theory and gyrokinetic numerical simulations. The dependence on the value of the safety factor, finite-orbit-width of the ions in relation to the radial mode width, magnetic-flux-surface shaping, and electron/ion mass ratio are considered. Nonuniformities in the plasma profiles (such as density, temperature, and safety factor), electro-magnetic effects, collisions, and the presence of minority species are neglected. Also, only linear simulations are considered, focusing on the local dynamics. We use three different gyrokinetic codes: the Lagrangian (particle-in-cell) code ORB5, the Eulerian code GENE, and semi-Lagrangian code GYSELA. One of the main aims of this paper is to provide a detailed comparison of the numerical results and analytical theory, in the regimes where this is possible. This helps understanding better the behavior of the linear GAM dynamics in these different regimes, the behavior of the codes, which is crucial in the view of a future work where more physics is present, and the regimes of validity of each specific analytical dispersion relation.

  14. A computational methodology for a micro launcher engine test bench using a combined linear static and dynamic in frequency response analysis

    Directory of Open Access Journals (Sweden)

    Ion DIMA

    2017-03-01

    Full Text Available This article aims to provide a quick methodology to determine the critical values of the forces, displacements and stress function of frequency, under a combined linear static (101 Solution - Linear Static and dynamic load in frequency response (108 Solution - Frequency Response, Direct Method, applied to a micro launcher engine test bench, using NASTRAN 400 Solution - Implicit Nonlinear. NASTRAN/PATRAN software is used. Practically in PATRAN the preprocessor has to define a linear or nonlinear static load at step 1 and a dynamic in frequency response load (time dependent at step 2. In Analyze the following options are chosen: for Solution Type Implicit Nonlinear Solution (SOL 400 is selected, for Subcases Static Load and Transient Dynamic is chosen and for Subcase Select the two cases static and dynamic will be selected. NASTRAN solver will overlap results from static analysis with the dynamic analysis. The running time will be reduced three times if using Krylov solver. NASTRAN SYSTEM (387 = -1 instruction is used in order to activate Krylov option. Also, in Analysis the OP2 Output Format shall be selected, meaning that in bdf NASTRAN input file the PARAM POST 1 instruction shall be written. The structural damping can be defined in two different ways: either at the material card or using the PARAM, G, 0.05 instruction (in this example a damping coefficient by 5% was used. The SDAMPING instruction in pair with TABDMP1 work only for dynamic in frequency response, modal method, or in direct method with viscoelastic material, not for dynamic in frequency response, direct method (DFREQ, with linear elastic material. The Direct method – DFREQ used in this example is more accurate. A set in translation of boundary conditions was used and defined at the base of the test bench.

  15. Mixed integer linear programming model for dynamic supplier selection problem considering discounts

    Directory of Open Access Journals (Sweden)

    Adi Wicaksono Purnawan

    2018-01-01

    Full Text Available Supplier selection is one of the most important elements in supply chain management. This function involves evaluation of many factors such as, material costs, transportation costs, quality, delays, supplier capacity, storage capacity and others. Each of these factors varies with time, therefore, supplier identified for one period is not necessarily be same for the next period to supply the same product. So, mixed integer linear programming (MILP was developed to overcome the dynamic supplier selection problem (DSSP. In this paper, a mixed integer linear programming model is built to solve the lot-sizing problem with multiple suppliers, multiple periods, multiple products and quantity discounts. The buyer has to make a decision for some products which will be supplied by some suppliers for some periods cosidering by discount. To validate the MILP model with randomly generated data. The model is solved by Lingo 16.

  16. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.

    Science.gov (United States)

    Ott, William; Rivas, Mauricio A; West, James

    2015-12-01

    Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ N using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C 1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time- T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).

  17. Linear and nonlinear dynamic analysis by boundary element method. Ph.D. Thesis, 1986 Final Report

    Science.gov (United States)

    Ahmad, Shahid

    1991-01-01

    An advanced implementation of the direct boundary element method (BEM) applicable to free-vibration, periodic (steady-state) vibration and linear and nonlinear transient dynamic problems involving two and three-dimensional isotropic solids of arbitrary shape is presented. Interior, exterior, and half-space problems can all be solved by the present formulation. For the free-vibration analysis, a new real variable BEM formulation is presented which solves the free-vibration problem in the form of algebraic equations (formed from the static kernels) and needs only surface discretization. In the area of time-domain transient analysis, the BEM is well suited because it gives an implicit formulation. Although the integral formulations are elegant, because of the complexity of the formulation it has never been implemented in exact form. In the present work, linear and nonlinear time domain transient analysis for three-dimensional solids has been implemented in a general and complete manner. The formulation and implementation of the nonlinear, transient, dynamic analysis presented here is the first ever in the field of boundary element analysis. Almost all the existing formulation of BEM in dynamics use the constant variation of the variables in space and time which is very unrealistic for engineering problems and, in some cases, it leads to unacceptably inaccurate results. In the present work, linear and quadratic isoparametric boundary elements are used for discretization of geometry and functional variations in space. In addition, higher order variations in time are used. These methods of analysis are applicable to piecewise-homogeneous materials, such that not only problems of the layered media and the soil-structure interaction can be analyzed but also a large problem can be solved by the usual sub-structuring technique. The analyses have been incorporated in a versatile, general-purpose computer program. Some numerical problems are solved and, through comparisons

  18. On non-linear dynamics and an optimal control synthesis of the action potential of membranes (ideal and non-ideal cases) of the Hodgkin-Huxley (HH) mathematical model

    International Nuclear Information System (INIS)

    Chavarette, Fabio Roberto; Balthazar, Jose Manoel; Rafikov, Marat; Hermini, Helder Anibal

    2009-01-01

    In this paper, we have studied the plasmatic membrane behavior using an electric circuit developed by Hodgkin and Huxley in 1952 and have dealt with the variation of the amount of time related to the potassium and sodium conductances in the squid axon. They developed differential equations for the propagation of electric signals; the dynamics of the Hodgkin-Huxley model have been extensively studied both from the view point of its their biological implications and as a test bed for numerical methods, which can be applied to more complex models. Recently, an irregular chaotic movement of the action potential of the membrane was observed for a number of techniques of control with the objective to stabilize the variation of this potential. This paper analyzes the non-linear dynamics of the Hodgkin-Huxley mathematical model, and we present some modifications in the governing equations of the system in order to make it a non-ideal one (taking into account that the energy source has a limited power supply). We also developed an optimal linear control design for the action potential of membranes. Here, we discuss the conditions that allow the use of control linear feedback for this kind of non-linear system.

  19. A Dantzig-Wolfe decomposition algorithm for linear economic model predictive control of dynamically decoupled subsystems

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Standardi, Laura; Edlund, Kristian

    2014-01-01

    This paper presents a warm-started Dantzig–Wolfe decomposition algorithm tailored to economic model predictive control of dynamically decoupled subsystems. We formulate the constrained optimal control problem solved at each sampling instant as a linear program with state space constraints, input...... limits, input rate limits, and soft output limits. The objective function of the linear program is related directly to the cost of operating the subsystems, and the cost of violating the soft output constraints. Simulations for large-scale economic power dispatch problems show that the proposed algorithm...... is significantly faster than both state-of-the-art linear programming solvers, and a structure exploiting implementation of the alternating direction method of multipliers. It is also demonstrated that the control strategy presented in this paper can be tuned using a weighted ℓ1-regularization term...

  20. Modelling the influence of sensory dynamics on linear and nonlinear driver steering control

    Science.gov (United States)

    Nash, C. J.; Cole, D. J.

    2018-05-01

    A recent review of the literature has indicated that sensory dynamics play an important role in the driver-vehicle steering task, motivating the design of a new driver model incorporating human sensory systems. This paper presents a full derivation of the linear driver model developed in previous work, and extends the model to control a vehicle with nonlinear tyres. Various nonlinear controllers and state estimators are compared with different approximations of the true system dynamics. The model simulation time is found to increase significantly with the complexity of the controller and state estimator. In general the more complex controllers perform best, although with certain vehicle and tyre models linearised controllers perform as well as a full nonlinear optimisation. Various extended Kalman filters give similar results, although the driver's sensory dynamics reduce control performance compared with full state feedback. The new model could be used to design vehicle systems which interact more naturally and safely with a human driver.

  1. Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines

    International Nuclear Information System (INIS)

    Batygin, Y.

    2004-01-01

    A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented

  2. Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Batygin, Y.

    2004-10-28

    A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented.

  3. Comparison of the Tangent Linear Properties of Tracer Transport Schemes Applied to Geophysical Problems.

    Science.gov (United States)

    Kent, James; Holdaway, Daniel

    2015-01-01

    A number of geophysical applications require the use of the linearized version of the full model. One such example is in numerical weather prediction, where the tangent linear and adjoint versions of the atmospheric model are required for the 4DVAR inverse problem. The part of the model that represents the resolved scale processes of the atmosphere is known as the dynamical core. Advection, or transport, is performed by the dynamical core. It is a central process in many geophysical applications and is a process that often has a quasi-linear underlying behavior. However, over the decades since the advent of numerical modelling, significant effort has gone into developing many flavors of high-order, shape preserving, nonoscillatory, positive definite advection schemes. These schemes are excellent in terms of transporting the quantities of interest in the dynamical core, but they introduce nonlinearity through the use of nonlinear limiters. The linearity of the transport schemes used in Goddard Earth Observing System version 5 (GEOS-5), as well as a number of other schemes, is analyzed using a simple 1D setup. The linearized version of GEOS-5 is then tested using a linear third order scheme in the tangent linear version.

  4. Observational and Dynamical Wave Climatologies. VOS vs Satellite Data

    Science.gov (United States)

    Grigorieva, Victoria; Badulin, Sergei; Chernyshova, Anna

    2013-04-01

    The understanding physics of wind-driven waves is crucially important for fundamental science and practical applications. This is why experimental efforts are targeted at both getting reliable information on sea state and elaborating effective tools of the sea wave forecasting. The global Visual Wave Observations and satellite data from the GLOBWAVE project of the European Space Agency are analyzed in the context of these two viewpoints. Within the first "observational" aspect we re-analyze conventional climatologies of all basic wave parameters for the last decades [5]. An alternative "dynamical" climatology is introduced as a tool of prediction of dynamical features of sea waves on global scales. The features of wave dynamics are studied in terms of one-parametric dependencies of wave heights on wave periods following the theoretical concept of self-similar wind-driven seas [3, 1, 4] and recently proposed approach to analysis of Voluntary Observing Ship (VOS) data [2]. Traditional "observational" climatologies based on VOS and satellite data collections demonstrate extremely consistent pictures for significant wave heights and dominant periods. On the other hand, collocated satellite and VOS data show significant differences in wave heights, wind speeds and, especially, in wave periods. Uncertainties of visual wave observations can explain these differences only partially. We see the key reason of this inconsistency in the methods of satellite data processing which are based on formal application of data interpolation methods rather than on up-to-date physics of wind-driven waves. The problem is considered within the alternative climatology approach where dynamical criteria of wave height-to-period linkage are used for retrieving wave periods and constructing physically consistent dynamical climatology. The key dynamical parameter - exponent R of one-parametric dependence Hs ~ TR shows dramatically less pronounced latitudinal dependence as compared to observed Hs

  5. Ulysses observations of magnetic waves due to newborn interstellar pickup ions. I. New observations and linear analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bradford E. [Physics Department, Florida State University, Tallahassee, FL (United States); Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH (United States); Murphy, Neil [Jet Propulsion Laboratory, Mail Stop 180-600, 4800 Oak Grove Drive, Pasadena, CA (United States); Nuno, Raquel G., E-mail: bc13h@my.fsu.edu, E-mail: Charles.Smith@unh.edu, E-mail: Phil.Isenberg@unh.edu, E-mail: Bernie.Vasquez@unh.edu, E-mail: Neil.Murphy@jpl.nasa.gov, E-mail: raquel.nuno@asu.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States)

    2014-04-01

    We have examined Ulysses magnetic field data using dynamic spectrogram techniques that compute wave amplitude, polarization, and direction of propagation over a broad range of frequencies and time. Events were identified that showed a strong polarization signature and an enhancement of power above the local proton gyrofrequency. We perform a statistical study of 502 wave events in an effort to determine when, where, and why they are observed. Most notably, we find that waves arising from newborn interstellar pickup ions are relatively rare and difficult to find. The quantities normally employed in theories of wave growth are neutral atom density and quantities related to their ionization and the subsequent dynamics such as wind speed, solar wind flux, and magnetic field orientation. We find the observations of waves to be largely uncorrelated to these quantities except for mean field direction where quasi-radial magnetic fields are favored and solar wind proton flux where wave observations appear to be favored by low flux conditions which runs contrary to theoretical expectations of wave generation. It would appear that an explanation based on source physics and instability growth rates alone is not adequate to account for the times when these waves are seen.

  6. Single Particle Linear and Nonlinear Dynamics

    International Nuclear Information System (INIS)

    Cai, Y

    2004-01-01

    I will give a comprehensive review of existing particle tracking tools to assess long-term particle stability for small and large accelerators in the presence of realistic magnetic imperfections and machine misalignments. The emphasis will be on the tracking and analysis tools based upon the differential algebra, Lie operator, and ''polymorphism''. Using these tools, a uniform linear and non-linear analysis will be outlined as an application of the normal form

  7. Inferring internal properties of Earth's core dynamics and their evolution from surface observations and a numerical geodynamo model

    Directory of Open Access Journals (Sweden)

    J. Aubert

    2011-10-01

    Full Text Available Over the past decades, direct three-dimensional numerical modelling has been successfully used to reproduce the main features of the geodynamo. Here we report on efforts to solve the associated inverse problem, aiming at inferring the underlying properties of the system from the sole knowledge of surface observations and the first principle dynamical equations describing the convective dynamo. To this end we rely on twin experiments. A reference model time sequence is first produced and used to generate synthetic data, restricted here to the large-scale component of the magnetic field and its rate of change at the outer boundary. Starting from a different initial condition, a second sequence is next run and attempts are made to recover the internal magnetic, velocity and buoyancy anomaly fields from the sparse surficial data. In order to reduce the vast underdetermination of this problem, we use stochastic inversion, a linear estimation method determining the most likely internal state compatible with the observations and some prior knowledge, and we also implement a sequential evolution algorithm in order to invert time-dependent surface observations. The prior is the multivariate statistics of the numerical model, which are directly computed from a large number of snapshots stored during a preliminary direct run. The statistics display strong correlation between different harmonic degrees of the surface observations and internal fields, provided they share the same harmonic order, a natural consequence of the linear coupling of the governing dynamical equations and of the leading influence of the Coriolis force. Synthetic experiments performed with a weakly nonlinear model yield an excellent quantitative retrieval of the internal structure. In contrast, the use of a strongly nonlinear (and more realistic model results in less accurate static estimations, which in turn fail to constrain the unobserved small scales in the time integration of the

  8. Observations of linear polarization in deep minima of WW Vul

    International Nuclear Information System (INIS)

    Grinin, V.P.; Kiselev, N.N.; Minikulov, N.Kh.; Chernova, G.P.; AN Tadzhikskoj SSR, Dushanbe. Inst. Astrofiziki)

    1988-01-01

    In the course of patrol photometric and polarimetric observations of WW Vul, initiated in 1986 in the Crimea and Sanglok, a broad photometrical minimum was registered, the deepest part of which being composed of three consecutive weakenings of brightness. The increase of linear polarization up to 5-6% (in V band) was observed in each of them. The analysis of the observational data shows, that the main part of polarized light occurs due to scattering of star radiation by dust particles of the circumstellar envelope. the contribution of this polarized radiation increases when the occultation of the star by the opaque dust cloud weakenes the direct (non-polarized) radiation of the star. Additional source of light polarization is the alignement of non-spherical particles in the dust cloud, which are responsible for occultation. Some arguments are given in favor to the idea, that the asymmetry axis of the circumstellar disc - like envelope of WW Vul is oriented parallel to the local interstellar magnetic field. If and alignment of non-spherical particles is caused by magnetic field of the disc, magnetic lines should follow the plane of the disc. The observations confirm the hypothesis, that the source of blue emission, observed in deep minima of such type stars, is the scattered radiation of circumstellar dust

  9. Single Particle Linear and Nonlinear Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y

    2004-06-25

    I will give a comprehensive review of existing particle tracking tools to assess long-term particle stability for small and large accelerators in the presence of realistic magnetic imperfections and machine misalignments. The emphasis will be on the tracking and analysis tools based upon the differential algebra, Lie operator, and ''polymorphism''. Using these tools, a uniform linear and non-linear analysis will be outlined as an application of the normal form.

  10. Linearizing feedforward/feedback attitude control

    Science.gov (United States)

    Paielli, Russell A.; Bach, Ralph E.

    1991-01-01

    An approach to attitude control theory is introduced in which a linear form is postulated for the closed-loop rotation error dynamics, then the exact control law required to realize it is derived. The nonminimal (four-component) quaternion form is used to attitude because it is globally nonsingular, but the minimal (three-component) quaternion form is used for attitude error because it has no nonlinear constraints to prevent the rotational error dynamics from being linearized, and the definition of the attitude error is based on quaternion algebra. This approach produces an attitude control law that linearizes the closed-loop rotational error dynamics exactly, without any attitude singularities, even if the control errors become large.

  11. A linear model for estimation of neurotransmitter response profiles from dynamic PET data

    OpenAIRE

    Normandin, M.D.; Schiffer, W.K.; Morris, E.D.

    2011-01-01

    The parametric ntPET model (p-ntPET) estimates the kinetics of neurotransmitter release from dynamic PET data with receptor-ligand radiotracers. Here we introduce a linearization (lp-ntPET) that is computationally efficient and can be applied to single-scan data. lp-ntPET employs a non-invasive reference region input function and extends the LSRRM of Alpert et al. (2003) using basis functions to characterize the time course of neurotransmitter activation. In simulation studies, the temporal p...

  12. How linear response shaped models of neural circuits and the quest for alternatives.

    Science.gov (United States)

    Herfurth, Tim; Tchumatchenko, Tatjana

    2017-10-01

    In the past decades, many mathematical approaches to solve complex nonlinear systems in physics have been successfully applied to neuroscience. One of these tools is the concept of linear response functions. However, phenomena observed in the brain emerge from fundamentally nonlinear interactions and feedback loops rather than from a composition of linear filters. Here, we review the successes achieved by applying the linear response formalism to topics, such as rhythm generation and synchrony and by incorporating it into models that combine linear and nonlinear transformations. We also discuss the challenges encountered in the linear response applications and argue that new theoretical concepts are needed to tackle feedback loops and non-equilibrium dynamics which are experimentally observed in neural networks but are outside of the validity regime of the linear response formalism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dynamic analysis of Free-Piston Stirling Engine/Linear Alternator-load system-experimentally validated

    Science.gov (United States)

    Kankam, M. David; Rauch, Jeffrey S.; Santiago, Walter

    1992-01-01

    This paper discusses the effects of variations in system parameters on the dynamic behavior of the Free-Piston Stirling Engine/Linear Alternator (FPSE/LA)-load system. The mathematical formulations incorporate both the mechanical and thermodynamic properties of the FPSE, as well as the electrical equations of the connected load. A state-space technique in the frequency domain is applied to the resulting system of equations to facilitate the evaluation of parametric impacts on the system dynamic stability. Also included is a discussion on the system transient stability as affected by sudden changes in some key operating conditions. Some representative results are correlated with experimental data to verify the model and analytic formulation accuracies. Guidelines are given for ranges of the system parameters which will ensure an overall stable operation.

  14. Quantum dynamics of a vibronically coupled linear chain using a surrogate Hamiltonian approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeong H., E-mail: myeong.lee@warwick.ac.uk; Troisi, Alessandro [Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-06-07

    Vibronic coupling between the electronic and vibrational degrees of freedom has been reported to play an important role in charge and exciton transport in organic photovoltaic materials, molecular aggregates, and light-harvesting complexes. Explicitly accounting for effective vibrational modes rather than treating them as a thermal environment has been shown to be crucial to describe the effect of vibronic coupling. We present a methodology to study dissipative quantum dynamics of vibronically coupled systems based on a surrogate Hamiltonian approach, which is in principle not limited by Markov approximation or weak system-bath interaction, using a vibronic basis. We apply vibronic surrogate Hamiltonian method to a linear chain system and discuss how different types of relaxation process, intramolecular vibrational relaxation and intermolecular vibronic relaxation, influence population dynamics of dissipative vibronic systems.

  15. Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems.

    Science.gov (United States)

    Lucarini, Valerio; Faranda, Davide; Wouters, Jeroen; Kuna, Tobias

    2014-01-01

    In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the chosen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan-Yorke dimension of the attractor. Preliminary numerical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.

  16. Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems

    Science.gov (United States)

    Lucarini, Valerio; Faranda, Davide; Wouters, Jeroen; Kuna, Tobias

    2014-02-01

    In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the chosen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan-Yorke dimension of the attractor. Preliminary numerical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.

  17. Linear Accelerators

    International Nuclear Information System (INIS)

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics

  18. Dynamics of random Boolean networks under fully asynchronous stochastic update based on linear representation.

    Directory of Open Access Journals (Sweden)

    Chao Luo

    Full Text Available A novel algebraic approach is proposed to study dynamics of asynchronous random Boolean networks where a random number of nodes can be updated at each time step (ARBNs. In this article, the logical equations of ARBNs are converted into the discrete-time linear representation and dynamical behaviors of systems are investigated. We provide a general formula of network transition matrices of ARBNs as well as a necessary and sufficient algebraic criterion to determine whether a group of given states compose an attractor of length[Formula: see text] in ARBNs. Consequently, algorithms are achieved to find all of the attractors and basins in ARBNs. Examples are showed to demonstrate the feasibility of the proposed scheme.

  19. Homogenized approach for the non linear dynamic analysis of entire masonry buildings by means of rigid plate elements and damaging interfaces

    Science.gov (United States)

    Bertolesi, Elisa; Milani, Gabriele

    2017-07-01

    The present paper is devoted to the analysis of entire 3D masonry structures adopting a Rigid Body and Spring-Mass (HRBSM) model. A series of non linear static and dynamic analyses are conducted with respect to two structures with technical relevance. The elementary cell is discretized by means of three-noded plane stress elements and non-linear interfaces. At a structural level, the non-linear analyses are performed replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage (RBSM) by means of which both in and out of plane mechanisms are allowed. In order to validate the proposed model for the analyses of full scale structures subjected to seismic actions, two different examples are critically discussed, namely a church façade and an in-scale masonry building, both subjected to dynamic excitation. The results obtained are compared with experimental or numerical results available in literature.

  20. Finite-Time H∞ Filtering for Linear Continuous Time-Varying Systems with Uncertain Observations

    Directory of Open Access Journals (Sweden)

    Huihong Zhao

    2012-01-01

    Full Text Available This paper is concerned with the finite-time H∞ filtering problem for linear continuous time-varying systems with uncertain observations and ℒ2-norm bounded noise. The design of finite-time H∞ filter is equivalent to the problem that a certain indefinite quadratic form has a minimum and the filter is such that the minimum is positive. The quadratic form is related to a Krein state-space model according to the Krein space linear estimation theory. By using the projection theory in Krein space, the finite-time H∞ filtering problem is solved. A numerical example is given to illustrate the performance of the H∞ filter.

  1. Collective behaviour of linear perturbation waves observed through the energy density spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Scarsoglio, S [Department of Water Engineering, Politecnico di Torino (Italy); De Santi, F; Tordella, D, E-mail: stefania.scarsoglio@polito.it [Department of Aeronautics and Space Engineering, Politecnico di Torino (Italy)

    2011-12-22

    We consider the collective behaviour of small three-dimensional transient perturbations in sheared flows. In particular, we observe their varied life history through the temporal evolution of the amplification factor. The spectrum of wave vectors considered fills the range from the size of the external flow scale to the size of the very short dissipative waves. We observe that the amplification factor distribution is scale-invariant. In the condition we analyze, the system is subject to all the physical processes included in the linearized Navier-Stokes equations. With the exception of the nonlinear interaction, these features are the same as those characterizing the turbulent state. The linearized perturbative system offers a great variety of different transient behaviours associated to the parameter combination present in the initial conditions. For the energy spectrum computed by freezing each wave at the instant where its asymptotic condition is met, we ask whether this system is able to show a power-law scaling analogous to the Kolmogorov argument. At the moment, for at least two typical shear flows, the bluff-body wake and the plane Poiseuille flow, the answer is yes.

  2. Transverse beam dynamics in non-linear Fixed Field Alternating Gradient accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Haj, Tahar M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-02

    In this paper, we present some aspects of the transverse beam dynamics in Fixed Field Ring Accelerators (FFRA): we start from the basic principles in order to derive the linearized transverse particle equations of motion for FFRA, essentially FFAGs and cyclotrons are considered here. This is a simple extension of a previous work valid for linear lattices that we generalized by including the bending terms to ensure its correctness for FFAG lattice. The space charge term (contribution of the internal coulombian forces of the beam) is contained as well, although it is not discussed here. The emphasis is on the scaling FFAG type: a collaboration work is undertaken in view of better understanding the properties of the 150 MeV scaling FFAG at KURRI in Japan, and progress towards high intensity operation. Some results of the benchmarking work between different codes are presented. Analysis of certain type of field imperfections revealed some interesting features about this machine that explain some of the experimental results and generalize the concept of a scaling FFAG to a non-scaling one for which the tune variations obey a well-defined law.

  3. Application of linear logic to simulation

    Science.gov (United States)

    Clarke, Thomas L.

    1998-08-01

    Linear logic, since its introduction by Girard in 1987 has proven expressive and powerful. Linear logic has provided natural encodings of Turing machines, Petri nets and other computational models. Linear logic is also capable of naturally modeling resource dependent aspects of reasoning. The distinguishing characteristic of linear logic is that it accounts for resources; two instances of the same variable are considered differently from a single instance. Linear logic thus must obey a form of the linear superposition principle. A proportion can be reasoned with only once, unless a special operator is applied. Informally, linear logic distinguishes two kinds of conjunction, two kinds of disjunction, and also introduces a modal storage operator that explicitly indicates propositions that can be reused. This paper discuses the application of linear logic to simulation. A wide variety of logics have been developed; in addition to classical logic, there are fuzzy logics, affine logics, quantum logics, etc. All of these have found application in simulations of one sort or another. The special characteristics of linear logic and its benefits for simulation will be discussed. Of particular interest is a connection that can be made between linear logic and simulated dynamics by using the concept of Lie algebras and Lie groups. Lie groups provide the connection between the exponential modal storage operators of linear logic and the eigen functions of dynamic differential operators. Particularly suggestive are possible relations between complexity result for linear logic and non-computability results for dynamical systems.

  4. Boundary Control of Linear Uncertain 1-D Parabolic PDE Using Approximate Dynamic Programming.

    Science.gov (United States)

    Talaei, Behzad; Jagannathan, Sarangapani; Singler, John

    2018-04-01

    This paper develops a near optimal boundary control method for distributed parameter systems governed by uncertain linear 1-D parabolic partial differential equations (PDE) by using approximate dynamic programming. A quadratic surface integral is proposed to express the optimal cost functional for the infinite-dimensional state space. Accordingly, the Hamilton-Jacobi-Bellman (HJB) equation is formulated in the infinite-dimensional domain without using any model reduction. Subsequently, a neural network identifier is developed to estimate the unknown spatially varying coefficient in PDE dynamics. Novel tuning law is proposed to guarantee the boundedness of identifier approximation error in the PDE domain. A radial basis network (RBN) is subsequently proposed to generate an approximate solution for the optimal surface kernel function online. The tuning law for near optimal RBN weights is created, such that the HJB equation error is minimized while the dynamics are identified and closed-loop system remains stable. Ultimate boundedness (UB) of the closed-loop system is verified by using the Lyapunov theory. The performance of the proposed controller is successfully confirmed by simulation on an unstable diffusion-reaction process.

  5. Non-linear dynamics of wind turbine wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2006-01-01

    The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced...

  6. A strongly coupled open system with a non-linear bath: fluctuation-dissipation and Langevin dynamics

    Science.gov (United States)

    Bhadra, Chitrak

    2018-03-01

    The study of Langevin dynamics and fluctuation-dissipation relation (FDR) for a generic probe system (represented by a mass M ), bilinearly coupled to a bath of harmonic oscillators, has been a standard paradigm for the microscopic theory of stochastic processes for several decades. The question that we probe in this paper is, how robust the structure of the classical FDR is, when one replaces the harmonic bath by an anharmonic one in the limit of strong system-bath coupling? Such a picture carries the signature of the probe system in the zeroth order through a nonlocal time kernel. We observe that the two-time noise correlations hold a rich structure from which the usual FDR emerges only in the leading order of perturbation. Beyond this order, multiple time scales and nontrivial dependence on the temperature starts to manifest. These new aspects conspire to break the time-translational invariance of the noise-correlations. Several other interesting features show up and we discuss them methodically through rigorous calculations order-by-order in perturbation. This formalistic derivation along with a specific example of non-linearity can be easily applied to a huge range of processes and statistical observables that fall under the purview of a system-reservoir theory.

  7. Modeling and comparison of superconducting linear actuators for highly dynamic motion

    Directory of Open Access Journals (Sweden)

    Bruyn B.J.H. de

    2015-12-01

    Full Text Available This paper presents a numerical modeling method for AC losses in highly dynamic linear actuators with high temperature superconducting (HTS tapes. The AC losses and generated force of two actuators, with different placement of the cryostats, are compared. In these actuators, the main loss component in the superconducting tapes are hysteresis losses, which result from both the non-sinusoidal phase currents and movement of the permanent magnets. The modeling method, based on the H-formulation of the magnetic fields, takes into account permanent magnetization and movement of permanent magnets. Calculated losses as function of the peak phase current of both superconducting actuators are compared to those of an equivalent non-cryogenic actuator.

  8. Chaos as an intermittently forced linear system.

    Science.gov (United States)

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kaiser, Eurika; Kutz, J Nathan

    2017-05-30

    Understanding the interplay of order and disorder in chaos is a central challenge in modern quantitative science. Approximate linear representations of nonlinear dynamics have long been sought, driving considerable interest in Koopman theory. We present a universal, data-driven decomposition of chaos as an intermittently forced linear system. This work combines delay embedding and Koopman theory to decompose chaotic dynamics into a linear model in the leading delay coordinates with forcing by low-energy delay coordinates; this is called the Hankel alternative view of Koopman (HAVOK) analysis. This analysis is applied to the Lorenz system and real-world examples including Earth's magnetic field reversal and measles outbreaks. In each case, forcing statistics are non-Gaussian, with long tails corresponding to rare intermittent forcing that precedes switching and bursting phenomena. The forcing activity demarcates coherent phase space regions where the dynamics are approximately linear from those that are strongly nonlinear.The huge amount of data generated in fields like neuroscience or finance calls for effective strategies that mine data to reveal underlying dynamics. Here Brunton et al.develop a data-driven technique to analyze chaotic systems and predict their dynamics in terms of a forced linear model.

  9. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming

    KAUST Repository

    Kouramas, K.I.; Faí sca, N.P.; Panos, C.; Pistikopoulos, E.N.

    2011-01-01

    This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques

  10. Dynamics of atom-field probability amplitudes in a coupled cavity system with Kerr non-linearity

    Energy Technology Data Exchange (ETDEWEB)

    Priyesh, K. V.; Thayyullathil, Ramesh Babu [Department of Physics, Cochin University of Science and Technology, Cochin (India)

    2014-01-28

    We have investigated the dynamics of two cavities coupled together via photon hopping, filled with Kerr non-linear medium and each containing a two level atom in it. The evolution of various atom (field) state probabilities of the coupled cavity system in two excitation sub space are obtained numerically. Detailed analysis has been done by taking different initial conditions of the system, with various coupling strengths and by varying the susceptibility of the medium. The role of susceptibility factor, on the dynamics atom field probability has been examined. In a coupled cavity system with strong photon hopping it is found that the susceptibility factor modifies the behaviour of probability amplitudes.

  11. General formulae for polarization observables in deuteron electrodisintegration and linear relations

    International Nuclear Information System (INIS)

    Arenhoevel, H.; Leidemann, W.; Tomusiak, E.L.

    1993-01-01

    Formal expressions are derived for all possible polarization observables in deuteron electrodisintegration with longitudinally polarized incoming electrons, oriented deuteron targets and polarization analysis of outgoing nucleons. They are given in terms of general structure functions which can be determined experimentally. These structure functions are Hermitean forms of the T-matrix elements which, in principle, allow the determination of all T-matrix elements up to an arbitrary common phase. Since the set of structure functions is overcomplete, linear relations among various structure functions exist which are derived explicitly

  12. A Linear Tetranuclear Dysprosium(III) Compound Showing Single-Molecule Magnet Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Hongshan; Xu, Gong Feng; Guo, Yun-Nan; Gamez, Patrick; Beavers, Christine M; Teat, Simon J; Tang, Jinkui

    2010-04-20

    Although magnetic measurements reveal a single-relaxation time for a linear tetranuclear Dy(III) compound, the wide distribution of the relaxation time observed clearly suggests the presence of two slightly different anisotropic centres, therefore opening new avenues for investigating the relaxation dynamics of lanthanide aggregates.

  13. A Quasi-Dynamic Optimal Control Strategy for Non-Linear Multivariable Processes Based upon Non-Quadratic Objective Functions

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1984-10-01

    Full Text Available The problem of systematic derivation of a quasi-dynamic optimal control strategy for a non-linear dynamic process based upon a non-quadratic objective function is investigated. The wellknown LQG-control algorithm does not lead to an optimal solution when the process disturbances have non-zero mean. The relationships between the proposed control algorithm and LQG-control are presented. The problem of how to constrain process variables by means of 'penalty' - terms in the objective function is dealt with separately.

  14. Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models

    Science.gov (United States)

    Mazzoleni, Maurizio; Alfonso, Leonardo; Chacon-Hurtado, Juan; Solomatine, Dimitri

    2015-09-01

    Catastrophic floods cause significant socio-economical losses. Non-structural measures, such as real-time flood forecasting, can potentially reduce flood risk. To this end, data assimilation methods have been used to improve flood forecasts by integrating static ground observations, and in some cases also remote sensing observations, within water models. Current hydrologic and hydraulic research works consider assimilation of observations coming from traditional, static sensors. At the same time, low-cost, mobile sensors and mobile communication devices are becoming also increasingly available. The main goal and innovation of this study is to demonstrate the usefulness of assimilating uncertain streamflow observations that are dynamic in space and intermittent in time in the context of two different semi-distributed hydrological model structures. The developed method is applied to the Brue basin, where the dynamic observations are imitated by the synthetic observations of discharge. The results of this study show how model structures and sensors locations affect in different ways the assimilation of streamflow observations. In addition, it proves how assimilation of such uncertain observations from dynamic sensors can provide model improvements similar to those of streamflow observations coming from a non-optimal network of static physical sensors. This can be a potential application of recent efforts to build citizen observatories of water, which can make the citizens an active part in information capturing, evaluation and communication, helping simultaneously to improvement of model-based flood forecasting.

  15. Nonlinear dynamical system identification using unscented Kalman filter

    Science.gov (United States)

    Rehman, M. Javvad ur; Dass, Sarat Chandra; Asirvadam, Vijanth Sagayan

    2016-11-01

    Kalman Filter is the most suitable choice for linear state space and Gaussian error distribution from decades. In general practical systems are not linear and Gaussian so these assumptions give inconsistent results. System Identification for nonlinear dynamical systems is a difficult task to perform. Usually, Extended Kalman Filter (EKF) is used to deal with non-linearity in which Jacobian method is used for linearizing the system dynamics, But it has been observed that in highly non-linear environment performance of EKF is poor. Unscented Kalman Filter (UKF) is proposed here as a better option because instead of analytical linearization of state space, UKF performs statistical linearization by using sigma point calculated from deterministic samples. Formation of the posterior distribution is based on the propagation of mean and covariance through sigma points.

  16. Observability of discretized partial differential equations

    Science.gov (United States)

    Cohn, Stephen E.; Dee, Dick P.

    1988-01-01

    It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.

  17. Reconstructing latent dynamical noise for better forecasting observables

    Science.gov (United States)

    Hirata, Yoshito

    2018-03-01

    I propose a method for reconstructing multi-dimensional dynamical noise inspired by the embedding theorem of Muldoon et al. [Dyn. Stab. Syst. 13, 175 (1998)] by regarding multiple predictions as different observables. Then, applying the embedding theorem by Stark et al. [J. Nonlinear Sci. 13, 519 (2003)] for a forced system, I produce time series forecast by supplying the reconstructed past dynamical noise as auxiliary information. I demonstrate the proposed method on toy models driven by auto-regressive models or independent Gaussian noise.

  18. Non-linear simulations of ELMs in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Lessig, Alexander; Hoelzl, Matthias; Orain, Francois; Guenter, Sibylle [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, 85748 Garching (Germany); Becoulet, Marina; Huysmans, Guido [CEA-IRFM, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Collaboration: the ASDEX Upgrade Team

    2016-07-01

    Large edge localized modes (ELMs) are a severe concern for the operation of future tokamak devices like ITER or DEMO due to the high transient heat loads induced on divertor targets and wall structures. It is therefore important to study ELMs both theoretically and experimentally in order to obtain a comprehensive understanding of the underlying mechanisms which is necessary for the prediction of ELM properties and the design of ELM mitigation systems. Using the non-linear MHD code JOREK, we have performed first simulations of full ELM crashes in ASDEX Upgrade, taking into account a large number of toroidal Fourier harmonics. The evolution of the toroidal mode spectrum has been investigated. In particular, we confirm the previously observed non-linear drive of linearly sub-dominant low-n components in the early non-linear phase of the ELM crash. Preliminary comparisons of the simulations with experimental observations regarding heat and particle losses, pedestal evolution and heat deposition patterns are shown. On the long run we aim at code validation as well as an improved understanding of the ELM dynamics and possibly a better characterization of different ELM types.

  19. From observational to dynamic genetics

    Directory of Open Access Journals (Sweden)

    Claire M. A. Haworth

    2014-01-01

    Full Text Available Twin and family studies have shown that most traits are at least moderately heritable. But what are the implications of finding genetic influence for the design of intervention and prevention programs? For complex traits, heritability does not mean immutability, and research has shown that genetic influences can change with age, context and in response to behavioural and drug interventions. The most significant implications for intervention will come when we move from observational genetics to investigating dynamic genetics, including genetically sensitive interventions. Future interventions should be designed to overcome genetic risk and draw upon genetic strengths by changing the environment.

  20. Input/Output linearizing control of a nuclear reactor

    International Nuclear Information System (INIS)

    Perez C, V.

    1994-01-01

    The feedback linearization technique is an approach to nonlinear control design. The basic idea is to transform, by means of algebraic methods, the dynamics of a nonlinear control system into a full or partial linear system. As a result of this linearization process, the well known basic linear control techniques can be used to obtain some desired dynamic characteristics. When full linearization is achieved, the method is referred to as input-state linearization, whereas when partial linearization is achieved, the method is referred to as input-output linearization. We will deal with the latter. By means of input-output linearization, the dynamics of a nonlinear system can be decomposed into an external part (input-output), and an internal part (unobservable). Since the external part consists of a linear relationship among the output of the plant and the auxiliary control input mentioned above, it is easy to design such an auxiliary control input so that we get the output to behave in a predetermined way. Since the internal dynamics of the system is known, we can check its dynamics behavior on order of to ensure that the internal states are bounded. The linearization method described here can be applied to systems with one-input/one-output, as well as to systems with multiple-inputs/multiple-outputs. Typical control problems such as stabilization and reference path tracking can be solved using this technique. In this work, the input/output linearization theory is presented, as well as the problem of getting the output variable to track some desired trayectories. Further, the design of an input/output control system applied to the nonlinear model of a research nuclear reactor is included, along with the results obtained by computer simulation. (Author)

  1. Linear hypergeneralization of learned dynamics across movement speeds reveals anisotropic, gain-encoding primitives for motor adaptation.

    Science.gov (United States)

    Joiner, Wilsaan M; Ajayi, Obafunso; Sing, Gary C; Smith, Maurice A

    2011-01-01

    The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays in a pattern consistent with the existence of motor primitives that display narrow Gaussian tuning. However, few studies have examined the generalization of motor adaptation across movement speeds. Following adaptation to linear velocity-dependent dynamics during point-to-point reaching arm movements at one speed, we tested the ability of subjects to transfer this adaptation to short-duration higher-speed movements aimed at the same target. We found near-perfect linear extrapolation of the trained adaptation with respect to both the magnitude and the time course of the velocity profiles associated with the high-speed movements: a 69% increase in movement speed corresponded to a 74% extrapolation of the trained adaptation. The close match between the increase in movement speed and the corresponding increase in adaptation beyond what was trained indicates linear hypergeneralization. Computational modeling shows that this pattern of linear hypergeneralization across movement speeds is not compatible with previous models of adaptation in which motor primitives display isotropic Gaussian tuning of motor output around their preferred velocities. Instead, we show that this generalization pattern indicates that the primitives involved in the adaptation to viscous dynamics display anisotropic tuning in velocity space and encode the gain between motor output and motion state rather than motor output itself.

  2. Modified Newtonian Dynamics (MOND: Observational Phenomenology and Relativistic Extensions

    Directory of Open Access Journals (Sweden)

    Stacy S. McGaugh

    2012-09-01

    Full Text Available A wealth of astronomical data indicate the presence of mass discrepancies in the Universe. The motions observed in a variety of classes of extragalactic systems exceed what can be explained by the mass visible in stars and gas. Either (i there is a vast amount of unseen mass in some novel form - dark matter - or (ii the data indicate a breakdown of our understanding of dynamics on the relevant scales, or (iii both. Here, we first review a few outstanding challenges for the dark matter interpretation of mass discrepancies in galaxies, purely based on observations and independently of any alternative theoretical framework. We then show that many of these puzzling observations are predicted by one single relation - Milgrom's law - involving an acceleration constant a_0 (or a characteristic surface density Σ_† = a_0∕G on the order of the square-root of the cosmological constant in natural units. This relation can at present most easily be interpreted as the effect of a single universal force law resulting from a modification of Newtonian dynamics (MOND on galactic scales. We exhaustively review the current observational successes and problems of this alternative paradigm at all astrophysical scales, and summarize the various theoretical attempts (TeVeS, GEA, BIMOND, and others made to effectively embed this modification of Newtonian dynamics within a relativistic theory of gravity.

  3. Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics

    Science.gov (United States)

    Halverson, Jonathan D.; Lee, Won Bo; Grest, Gary S.; Grosberg, Alexander Y.; Kremer, Kurt

    2011-05-01

    Molecular dynamics simulations were conducted to investigate the dynamic properties of melts of nonconcatenated ring polymers and compared to melts of linear polymers. The longest rings were composed of N = 1600 monomers per chain which corresponds to roughly 57 entanglement lengths for comparable linear polymers. The ring melts were found to diffuse faster than their linear counterparts, with both architectures approximately obeying a D ˜ N-2.4 scaling law for large N. The mean-square displacement of the center-of-mass of the rings follows a sub-diffusive behavior for times and distances beyond the ring extension , neither compatible with the Rouse nor the reptation model. The rings relax stress much faster than linear polymers, and the zero-shear viscosity was found to vary as η0 ˜ N1.4 ± 0.2 which is much weaker than the N3.4 behavior of linear chains, not matching any commonly known model for polymer dynamics when compared to the observed mean-square displacements. These findings are discussed in view of the conformational properties of the rings presented in the preceding paper [J. D. Halverson, W. Lee, G. S. Grest, A. Y. Grosberg, and K. Kremer, J. Chem. Phys. 134, 204904 (2011)], 10.1063/1.3587137.

  4. Linear perturbation of spherically symmetric flows: a first-order upwind scheme for the gas dynamics equations in Lagrangian coordinates

    International Nuclear Information System (INIS)

    Clarisse, J.M.

    2007-01-01

    A numerical scheme for computing linear Lagrangian perturbations of spherically symmetric flows of gas dynamics is proposed. This explicit first-order scheme uses the Roe method in Lagrangian coordinates, for computing the radial spherically symmetric mean flow, and its linearized version, for treating the three-dimensional linear perturbations. Fulfillment of the geometric conservation law discrete formulations for both the mean flow and its perturbation is ensured. This scheme capabilities are illustrated by the computation of free-surface mode evolutions at the boundaries of a spherical hollow shell undergoing an homogeneous cumulative compression, showing excellent agreement with reference results. (author)

  5. PWR control system design using advanced linear and non-linear methodologies

    International Nuclear Information System (INIS)

    Rabindran, N.; Whitmarsh-Everiss, M.J.

    2004-01-01

    Consideration is here given to the methodology deployed for non-linear heuristic analysis in the time domain supported by multi-variable linear control system design methods for the purposes of operational dynamics and control system analysis. This methodology is illustrated by the application of structural singular value μ analysis to Pressurised Water Reactor control system design. (author)

  6. Decentralized Observer with a Consensus Filter for Distributed Discrete-Time Linear Systems

    Science.gov (United States)

    Acikmese, Behcet; Mandic, Milan

    2011-01-01

    This paper presents a decentralized observer with a consensus filter for the state observation of a discrete-time linear distributed systems. In this setup, each agent in the distributed system has an observer with a model of the plant that utilizes the set of locally available measurements, which may not make the full plant state detectable. This lack of detectability is overcome by utilizing a consensus filter that blends the state estimate of each agent with its neighbors' estimates. We assume that the communication graph is connected for all times as well as the sensing graph. It is proven that the state estimates of the proposed observer asymptotically converge to the actual plant states under arbitrarily changing, but connected, communication and sensing topologies. As a byproduct of this research, we also obtained a result on the location of eigenvalues, the spectrum, of the Laplacian for a family of graphs with self-loops.

  7. High-order sliding mode observer for fractional commensurate linear systems with unknown input

    KAUST Repository

    Belkhatir, Zehor; Laleg-Kirati, Taous-Meriem

    2017-01-01

    In this paper, a high-order sliding mode observer (HOSMO) is proposed for the joint estimation of the pseudo-state and the unknown input of fractional commensurate linear systems with single unknown input and a single output. The convergence of the proposed observer is proved using a Lyapunov-based approach. In addition, an enhanced variant of the proposed fractional-HOSMO is introduced to avoid the peaking phenomenon and thus to improve the estimation results in the transient phase. Simulation results are provided to illustrate the performance of the proposed fractional observer in both noise-free and noisy cases. The effect of the observer’s gains on the estimated pseudo-state and unknown input is also discussed.

  8. High-order sliding mode observer for fractional commensurate linear systems with unknown input

    KAUST Repository

    Belkhatir, Zehor

    2017-05-20

    In this paper, a high-order sliding mode observer (HOSMO) is proposed for the joint estimation of the pseudo-state and the unknown input of fractional commensurate linear systems with single unknown input and a single output. The convergence of the proposed observer is proved using a Lyapunov-based approach. In addition, an enhanced variant of the proposed fractional-HOSMO is introduced to avoid the peaking phenomenon and thus to improve the estimation results in the transient phase. Simulation results are provided to illustrate the performance of the proposed fractional observer in both noise-free and noisy cases. The effect of the observer’s gains on the estimated pseudo-state and unknown input is also discussed.

  9. Model Predictive Control for Linear Complementarity and Extended Linear Complementarity Systems

    Directory of Open Access Journals (Sweden)

    Bambang Riyanto

    2005-11-01

    Full Text Available In this paper, we propose model predictive control method for linear complementarity and extended linear complementarity systems by formulating optimization along prediction horizon as mixed integer quadratic program. Such systems contain interaction between continuous dynamics and discrete event systems, and therefore, can be categorized as hybrid systems. As linear complementarity and extended linear complementarity systems finds applications in different research areas, such as impact mechanical systems, traffic control and process control, this work will contribute to the development of control design method for those areas as well, as shown by three given examples.

  10. A Comparison of Closed-Loop Performance of Multirotor Configurations Using Non-Linear Dynamic Inversion Control

    Directory of Open Access Journals (Sweden)

    Murray L. Ireland

    2015-06-01

    Full Text Available Multirotor is the umbrella term for the family of unmanned aircraft, which include the quadrotor, hexarotor and other vertical take-off and landing (VTOL aircraft that employ multiple main rotors for lift and control. Development and testing of novel multirotor designs has been aided by the proliferation of 3D printing and inexpensive flight controllers and components. Different multirotor configurations exhibit specific strengths, while presenting unique challenges with regards to design and control. This article highlights the primary differences between three multirotor platforms: a quadrotor; a fully-actuated hexarotor; and an octorotor. Each platform is modelled and then controlled using non-linear dynamic inversion. The differences in dynamics, control and performance are then discussed.

  11. Doubly Periodic Traveling Waves in a Cellular Neural Network with Linear Reaction

    Directory of Open Access Journals (Sweden)

    Lin JianJhong

    2009-01-01

    Full Text Available Szekeley observed that the dynamic pattern of the locomotion of salamanders can be explained by periodic vector sequences generated by logical neural networks. Such sequences can mathematically be described by "doubly periodic traveling waves" and therefore it is of interest to propose dynamic models that may produce such waves. One such dynamic network model is built here based on reaction-diffusion principles and a complete discussion is given for the existence of doubly periodic waves as outputs. Since there are 2 parameters in our model and 4 a priori unknown parameters involved in our search of solutions, our results are nontrivial. The reaction term in our model is a linear function and hence our results can also be interpreted as existence criteria for solutions of a nontrivial linear problem depending on 6 parameters.

  12. Automatic tracking of dynamical evolutions of oceanic mesoscale eddies with satellite observation data

    Science.gov (United States)

    Sun, Liang; Li, Qiu-Yang

    2017-04-01

    The oceanic mesoscale eddies play a major role in ocean climate system. To analyse spatiotemporal dynamics of oceanic mesoscale eddies, the Genealogical Evolution Model (GEM) based on satellite data is developed, which is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, a mononuclear eddy detection method was firstly developed with simple segmentation strategies, e.g. watershed algorithm. The algorithm is very fast by searching the steepest descent path. Second, the GEM uses a two-dimensional similarity vector (i.e. a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the ''missing eddy" problem (temporarily lost eddy in tracking). Third, for tracking when an eddy splits, GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O (LM(N+1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distribution in the Northern Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". GEM is useful not only for

  13. Hybrid dynamical systems observation and control

    CERN Document Server

    Defoort, Michael

    2015-01-01

    This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systems – systems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...

  14. Option Valuation with Observable Volatility and Jump Dynamics

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity...... dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing...

  15. Option Valuation with Observable Volatility and Jump Dynamics

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    2015-01-01

    Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity...... dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing...

  16. Numerical insight into the seismic behavior of eight masonry towers in Northern Italy: FE pushover vs non-linear dynamic analyses

    International Nuclear Information System (INIS)

    Milani, Gabriele; Valente, Marco

    2015-01-01

    This study presents some FE results regarding the behavior under horizontal loads of eight existing masonry towers located in the North-East of Italy. The towers, albeit unique for geometric and architectural features, show some affinities which justify a comparative analysis, as for instance the location and the similar masonry material. Their structural behavior under horizontal loads is therefore influenced by geometrical issues, such as slenderness, walls thickness, perforations, irregularities, presence of internal vaults, etc., all features which may be responsible for a peculiar output. The geometry of the towers is deduced from both existing available documentation and in-situ surveys. On the basis of such geometrical data, a detailed 3D realistic mesh is conceived, with a point by point characterization of each single geometric element. The FE models are analysed under seismic loads acting along geometric axes of the plan section, both under non-linear static (pushover) and non-linear dynamic excitation assumptions. A damage-plasticity material model exhibiting softening in both tension and compression, already available in the commercial code Abaqus, is used for masonry. Pushover analyses are performed with both G1 and G2 horizontal loads distribution, according to Italian code requirements, along X+/− and Y+/− directions. Non-linear dynamic analyses are performed along both X and Y directions with a real accelerogram scaled to different peak ground accelerations. Some few results are presented in this paper. It is found that the results obtained with pushover analyses reasonably well fit expensive non-linear dynamic simulations, with a slightly less conservative trend

  17. Numerical insight into the seismic behavior of eight masonry towers in Northern Italy: FE pushover vs non-linear dynamic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Gabriele, E-mail: milani@stru.polimi.it, E-mail: gabriele.milani@polimi.it; Valente, Marco [Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)

    2015-12-31

    This study presents some FE results regarding the behavior under horizontal loads of eight existing masonry towers located in the North-East of Italy. The towers, albeit unique for geometric and architectural features, show some affinities which justify a comparative analysis, as for instance the location and the similar masonry material. Their structural behavior under horizontal loads is therefore influenced by geometrical issues, such as slenderness, walls thickness, perforations, irregularities, presence of internal vaults, etc., all features which may be responsible for a peculiar output. The geometry of the towers is deduced from both existing available documentation and in-situ surveys. On the basis of such geometrical data, a detailed 3D realistic mesh is conceived, with a point by point characterization of each single geometric element. The FE models are analysed under seismic loads acting along geometric axes of the plan section, both under non-linear static (pushover) and non-linear dynamic excitation assumptions. A damage-plasticity material model exhibiting softening in both tension and compression, already available in the commercial code Abaqus, is used for masonry. Pushover analyses are performed with both G1 and G2 horizontal loads distribution, according to Italian code requirements, along X+/− and Y+/− directions. Non-linear dynamic analyses are performed along both X and Y directions with a real accelerogram scaled to different peak ground accelerations. Some few results are presented in this paper. It is found that the results obtained with pushover analyses reasonably well fit expensive non-linear dynamic simulations, with a slightly less conservative trend.

  18. Gain scheduled linear quadratic control for quadcopter

    Science.gov (United States)

    Okasha, M.; Shah, J.; Fauzi, W.; Hanouf, Z.

    2017-12-01

    This study exploits the dynamics and control of quadcopters using Linear Quadratic Regulator (LQR) control approach. The quadcopter’s mathematical model is derived using the Newton-Euler method. It is a highly manoeuvrable, nonlinear, coupled with six degrees of freedom (DOF) model, which includes aerodynamics and detailed gyroscopic moments that are often ignored in many literatures. The linearized model is obtained and characterized by the heading angle (i.e. yaw angle) of the quadcopter. The adopted control approach utilizes LQR method to track several reference trajectories including circle and helix curves with significant variation in the yaw angle. The controller is modified to overcome difficulties related to the continuous changes in the operating points and eliminate chattering and discontinuity that is observed in the control input signal. Numerical non-linear simulations are performed using MATLAB and Simulink to illustrate to accuracy and effectiveness of the proposed controller.

  19. Non linear stability analysis of parallel channels with natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Ashish Mani; Singh, Suneet, E-mail: suneet.singh@iitb.ac.in

    2016-12-01

    Highlights: • Nonlinear instabilities in natural circulation loop are studied. • Generalized Hopf points, Sub and Supercritical Hopf bifurcations are identified. • Bogdanov–Taken Point (BT Point) is observed by nonlinear stability analysis. • Effect of parameters on stability of system is studied. - Abstract: Linear stability analysis of two-phase flow in natural circulation loop is quite extensively studied by many researchers in past few years. It can be noted that linear stability analysis is limited to the small perturbations only. It is pointed out that such systems typically undergo Hopf bifurcation. If the Hopf bifurcation is subcritical, then for relatively large perturbation, the system has unstable limit cycles in the (linearly) stable region in the parameter space. Hence, linear stability analysis capturing only infinitesimally small perturbations is not sufficient. In this paper, bifurcation analysis is carried out to capture the non-linear instability of the dynamical system and both subcritical and supercritical bifurcations are observed. The regions in the parameter space for which subcritical and supercritical bifurcations exist are identified. These regions are verified by numerical simulation of the time-dependent, nonlinear ODEs for the selected points in the operating parameter space using MATLAB ODE solver.

  20. A nearly-linear computational-cost scheme for the forward dynamics of an N-body pendulum

    Science.gov (United States)

    Chou, Jack C. K.

    1989-01-01

    The dynamic equations of motion of an n-body pendulum with spherical joints are derived to be a mixed system of differential and algebraic equations (DAE's). The DAE's are kept in implicit form to save arithmetic and preserve the sparsity of the system and are solved by the robust implicit integration method. At each solution point, the predicted solution is corrected to its exact solution within given tolerance using Newton's iterative method. For each iteration, a linear system of the form J delta X = E has to be solved. The computational cost for solving this linear system directly by LU factorization is O(n exp 3), and it can be reduced significantly by exploring the structure of J. It is shown that by recognizing the recursive patterns and exploiting the sparsity of the system the multiplicative and additive computational costs for solving J delta X = E are O(n) and O(n exp 2), respectively. The formulation and solution method for an n-body pendulum is presented. The computational cost is shown to be nearly linearly proportional to the number of bodies.

  1. Optimal Stochastic Control Problem for General Linear Dynamical Systems in Neuroscience

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2017-01-01

    Full Text Available This paper considers a d-dimensional stochastic optimization problem in neuroscience. Suppose the arm’s movement trajectory is modeled by high-order linear stochastic differential dynamic system in d-dimensional space, the optimal trajectory, velocity, and variance are explicitly obtained by using stochastic control method, which allows us to analytically establish exact relationships between various quantities. Moreover, the optimal trajectory is almost a straight line for a reaching movement; the optimal velocity bell-shaped and the optimal variance are consistent with the experimental Fitts law; that is, the longer the time of a reaching movement, the higher the accuracy of arriving at the target position, and the results can be directly applied to designing a reaching movement performed by a robotic arm in a more general environment.

  2. Non linear dynamics of memristor based 3rd order oscillatory system

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-23

    In this paper, we report for the first time the nonlinear dynamics of three memristor based phase shift oscillators, and consider them as a plausible solution for the realization of parametric oscillation as an autonomous linear time variant system. Sustained oscillation is reported through oscillating resistance while time dependent poles are present. The memristor based phase shift oscillator is explored further by varying the parameters so as to present the resistance of the memristor as a time varying parameter, thus potentially eliminating the need of external periodic forces in order for it to oscillate. Multi memristors, used simultaneously with similar and different parameters, are investigated in this paper. Mathematical formulas for analyzing such oscillators are verified with simulation results and are found to be in good agreement. © 2011 Elsevier Ltd. All rights reserved.

  3. Non-linear Dynamic Analysis of Steel Hollow I-core Sandwich Panel under Air Blast Loading

    Directory of Open Access Journals (Sweden)

    Asghar Vatani Oskouei

    2015-12-01

    Full Text Available In this paper, the non-linear dynamic response of novel steel sandwich panel with hollow I-core subjected to blast loading was studied. Special emphasis is placed on the evaluation of midpoint displacements and energy dissipation of the models. Several parameters such as boundary conditions, strain rate, mesh dependency and asymmetrical loading are considered in this study. The material and geometric non-linearities are also considered in the numerical simulation. The results obtained are compared with available experimental data to verify the developed FE model. Modeling techniques are described in detail. According to the results, sandwich panels with hollow I-core allowed more plastic deformation and energy dissipation and less midpoint displacement than conventional I-core sandwich panels and also equivalent solid plate with the same weight and material.

  4. A critical oscillation constant as a variable of time scales for half-linear dynamic equations

    Czech Academy of Sciences Publication Activity Database

    Řehák, Pavel

    2010-01-01

    Roč. 60, č. 2 (2010), s. 237-256 ISSN 0139-9918 R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : dynamic equation * time scale * half-linear equation * (non)oscillation criteria * Hille-Nehari criteria * Kneser criteria * critical constant * oscillation constant * Hardy inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0009-7

  5. Earth Observation of Vegetation Dynamics in Global Drylands

    DEFF Research Database (Denmark)

    Tian, Feng

    Land degradation in global drylands has been a concern related to both the local livelihoods and the changes in terrestrial biosphere, especially in the context of substantial global environmental changes. Earth Observation (EO) provides a unique way to assess the vegetation dynamics over the past...

  6. Non-linear soil-structure interaction

    International Nuclear Information System (INIS)

    Wolf, J.P.

    1984-01-01

    The basic equation of motion to analyse the interaction of a non-linear structure and an irregular soil with the linear unbounded soil is formulated in the time domain. The contribution of the unbounded soil involves convolution integrals of the dynamic-stiffness coefficients in the time domain and the corresponding motions. As another possibility, a flexibility formulation fot the contribution of the unbounded soil using the dynamic-flexibility coefficients in the time domain, together with the direct-stiffness method for the structure and the irregular soil can be applied. As an example of a non-linear soil-structure-interaction analysis, the partial uplift of the basemat of a structure is examined. (Author) [pt

  7. Normal form analysis of linear beam dynamics in a coupled storage ring

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Woodley, Mark D.

    2004-01-01

    The techniques of normal form analysis, well known in the literature, can be used to provide a straightforward characterization of linear betatron dynamics in a coupled lattice. Here, we consider both the beam distribution and the betatron oscillations in a storage ring. We find that the beta functions for uncoupled motion generalize in a simple way to the coupled case. Defined in the way that we propose, the beta functions remain well behaved (positive and finite) under all circumstances, and have essentially the same physical significance for the beam size and betatron oscillation amplitude as in the uncoupled case. Application of this analysis to the online modeling of the PEP-II rings is also discussed

  8. Observation of narrowband intrinsic spectra of Brillouin dynamic gratings.

    Science.gov (United States)

    Song, Kwang Yong; Yoon, Hyuk Jin

    2010-09-01

    We experimentally demonstrate that the reflection spectrum of a Brillouin dynamic grating in a polarization-maintaining fiber can be much narrower than the intrinsic linewidth of the stimulated Brillouin scattering, matching well with the theory of a fiber Bragg grating in terms of the linewidth and the reflectivity. A 3 dB bandwidth as narrow as 10.5 MHz is observed with the Brillouin dynamic grating generated in a 9 m uniform fiber.

  9. Dynamic analysis and electronic circuit implementation of a novel 3D autonomous system without linear terms

    Science.gov (United States)

    Kengne, J.; Jafari, S.; Njitacke, Z. T.; Yousefi Azar Khanian, M.; Cheukem, A.

    2017-11-01

    Mathematical models (ODEs) describing the dynamics of almost all continuous time chaotic nonlinear systems (e.g. Lorenz, Rossler, Chua, or Chen system) involve at least a nonlinear term in addition to linear terms. In this contribution, a novel (and singular) 3D autonomous chaotic system without linear terms is introduced. This system has an especial feature of having two twin strange attractors: one ordinary and one symmetric strange attractor when the time is reversed. The complex behavior of the model is investigated in terms of equilibria and stability, bifurcation diagrams, Lyapunov exponent plots, time series and Poincaré sections. Some interesting phenomena are found including for instance, period-doubling bifurcation, antimonotonicity (i.e. the concurrent creation and annihilation of periodic orbits) and chaos while monitoring the system parameters. Compared to the (unique) case previously reported by Xu and Wang (2014) [31], the system considered in this work displays a more 'elegant' mathematical expression and experiences richer dynamical behaviors. A suitable electronic circuit (i.e. the analog simulator) is designed and used for the investigations. Pspice based simulation results show a very good agreement with the theoretical analysis.

  10. Wigglers and single-particle dynamics in the NLC damping rings

    International Nuclear Information System (INIS)

    Venturini, Marco; Wolski, Andrzej; Dragt, Alex

    2003-01-01

    Wiggler insertions are expected to occupy a significant portion of the lattice of the Next Linear Collider (NLC) Main Damping Rings (MDR) and have a noticeable impact on the single-particle beam dynamics. Starting from a realistic 3D representation of the magnetic fields we calculate the transfer maps for the wigglers, accounting for linear and nonlinear effects, and we study the beam dynamics with particular attention paid to the Dynamic Aperture(DA). A DA reduction is observed but appears to remain within acceptable limits

  11. Linearized dynamical approach to current algebra

    International Nuclear Information System (INIS)

    Scadron, M.D.

    1995-07-01

    We study the original motivations searching for a nonlinear chiral Lagrangian to replace the linear sigma model while manifesting all the successful properties of current algebra and partial conservation of axial currents (PCAC). (author). 26 refs

  12. Dynamic Stochastic Superresolution of sparsely observed turbulent systems

    International Nuclear Information System (INIS)

    Branicki, M.; Majda, A.J.

    2013-01-01

    Real-time capture of the relevant features of the unresolved turbulent dynamics of complex natural systems from sparse noisy observations and imperfect models is a notoriously difficult problem. The resulting lack of observational resolution and statistical accuracy in estimating the important turbulent processes, which intermittently send significant energy to the large-scale fluctuations, hinders efficient parameterization and real-time prediction using discretized PDE models. This issue is particularly subtle and important when dealing with turbulent geophysical systems with an vast range of interacting spatio-temporal scales and rough energy spectra near the mesh scale of numerical models. Here, we introduce and study a suite of general Dynamic Stochastic Superresolution (DSS) algorithms and show that, by appropriately filtering sparse regular observations with the help of cheap stochastic exactly solvable models, one can derive stochastically ‘superresolved’ velocity fields and gain insight into the important characteristics of the unresolved dynamics, including the detection of the so-called black swans. The DSS algorithms operate in Fourier domain and exploit the fact that the coarse observation network aliases high-wavenumber information into the resolved waveband. It is shown that these cheap algorithms are robust and have significant skill on a test bed of turbulent solutions from realistic nonlinear turbulent spatially extended systems in the presence of a significant model error. In particular, the DSS algorithms are capable of successfully capturing time-localized extreme events in the unresolved modes, and they provide good and robust skill for recovery of the unresolved processes in terms of pattern correlation. Moreover, we show that DSS improves the skill for recovering the primary modes associated with the sparse observation mesh which is equally important in applications. The skill of the various DSS algorithms depends on the energy spectrum

  13. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Directory of Open Access Journals (Sweden)

    B. Buongiorno Nardelli

    2012-10-01

    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  14. A rationale for the observed non-linearity in pressure tube creep sag with time in service

    International Nuclear Information System (INIS)

    Sedran, P.J.

    2013-01-01

    In 2012, a paper was presented at the CNS SGC Conference which included an explanation for measured non-linear trends in Pressure Tube (PT) creep sag. The section of the 2012 paper covering this topic was revised and is presented as the main subject of this paper. The practical applications for the prediction of long-term Fuel Channel (FC) creep sag include the analysis of Calandria Tube - Liquid Injection Nozzle (CT-LIN) contact, and fuel passage and PT replacement assessments. The current practice for predicting FC creep sag in life cycle management applications is to use a linear model for creep sag versus time in service. However, PT sag measurements from the Point Lepreau Generating Station (PLGS) and Gentilly-2 (G-2) have displayed a non-linear trend with a creep sag rate that is decreasing with time in service. As an example, for PT F06 in PLGS, a 60% reduction in the nominal creep sag rate was observed for measurements taken 18 years apart. Subsequently, it was found that a 56% reduction in the creep sag rate for F06 over 18 years could be attributed to a fundamental geometric property of the PT creep sag profile. In addition, a further 1.6% decrease in the creep sag rate of the CT over the same period could be attributed to bending stress reductions due to the deformation of the CT. The resultant reduction in the PT creep sag rate for F06 was predicted to be 57.6%, closely matching the observed PT creep sag rate reduction of 60%. Therefore, this paper provides a rationale to explain the observed non-linear trends in PT creep sag, the use of which could benefit stations engaging in asset management as a means of FC life extension. This paper presents a summary of the worked performed to correlate the observed reductions in PT creep sag rate to the geometrical properties of the PT creep sag profile and the predicted bending stress reductions in the CT. (author)

  15. On the dynamic analysis of piecewise-linear networks

    NARCIS (Netherlands)

    Heemels, WPMH; Camlibel, MK; Schumacher, JM

    Piecewise-linear (PL) modeling is often used to approximate the behavior of nonlinear circuits. One of the possible PL modeling methodologies is based on the linear complementarity problem, and this approach has already been used extensively in the circuits and systems community for static networks.

  16. Dynamic observation by PET in epilepsy

    International Nuclear Information System (INIS)

    Shimizu, Hiroyuki; Ishijima, Buichi; Iio, Masaaki.

    1990-01-01

    Before the era when positron emission tomography (PET) has emerged, much controversy has existed concerning regional cerebral blood flow in partial epilepsy. In 1979, PET revealed that cerebral blood flow is decreased during the interictal period, but is remarkably increased in the intraictal phase. In this paper, historical process of dynamic observation in epilepsy is reviewed. Potential use and limitations of PET in the clinical setting are discussed in view of the scanning methods and the relationships between PET and electroencephalograms, magnetic resonance imaging, and surgical treatment. (N.K.) 106 refs

  17. The minimal linear σ model for the Goldstone Higgs

    International Nuclear Information System (INIS)

    Feruglio, F.; Gavela, M.B.; Kanshin, K.; Machado, P.A.N.; Rigolin, S.; Saa, S.

    2016-01-01

    In the context of the minimal SO(5) linear σ-model, a complete renormalizable Lagrangian -including gauge bosons and fermions- is considered, with the symmetry softly broken to SO(4). The scalar sector describes both the electroweak Higgs doublet and the singlet σ. Varying the σ mass would allow to sweep from the regime of perturbative ultraviolet completion to the non-linear one assumed in models in which the Higgs particle is a low-energy remnant of some strong dynamics. We analyze the phenomenological implications and constraints from precision observables and LHC data. Furthermore, we derive the d≤6 effective Lagrangian in the limit of heavy exotic fermions.

  18. A Dynamic Range Enhanced Readout Technique with a Two-Step TDC for High Speed Linear CMOS Image Sensors

    Directory of Open Access Journals (Sweden)

    Zhiyuan Gao

    2015-11-01

    Full Text Available This paper presents a dynamic range (DR enhanced readout technique with a two-step time-to-digital converter (TDC for high speed linear CMOS image sensors. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A column-parallel ADC based on a two-step TDC is utilized to improve the conversion rate. The conversion is divided into coarse phase and fine phase. An error calibration scheme is also proposed to correct quantization errors caused by propagation delay skew within −Tclk~+Tclk. A linear CMOS image sensor pixel array is designed in the 0.13 μm CMOS process to verify this DR-enhanced high speed readout technique. The post simulation results indicate that the dynamic range of readout circuit is 99.02 dB and the ADC achieves 60.22 dB SNDR and 9.71 bit ENOB at a conversion rate of 2 MS/s after calibration, with 14.04 dB and 2.4 bit improvement, compared with SNDR and ENOB of that without calibration.

  19. Dynamic analysis of aircraft impact using the linear elastic finite element codes FINEL, SAP and STARDYNE

    International Nuclear Information System (INIS)

    Lundsager, P.; Krenk, S.

    1975-08-01

    The static and dynamic response of a cylindrical/ spherical containment to a Boeing 720 impact is computed using 3 different linear elastic computer codes: FINEL, SAP and STARDYNE. Stress and displacement fields are shown together with time histories for a point in the impact zone. The main conclusions from this study are: - In this case the maximum dynamic load factors for stress and displacements were close to 1, but a static analysis alone is not fully sufficient. - More realistic load time histories should be considered. - The main effects seem to be local. The present study does not indicate general collapse from elastic stresses alone. - Further study of material properties at high rates is needed. (author)

  20. New conditions on synchronization of networks of linearly coupled dynamical systems with non-Lipschitz right-hand sides.

    Science.gov (United States)

    Liu, Bo; Lu, Wenlian; Chen, Tianping

    2012-01-01

    In this paper, we study synchronization of networks of linearly coupled dynamical systems. The node dynamics of the network can be very general, which may not satisfy the QUAD condition. We derive sufficient conditions for synchronization, which can be regarded as extensions of previous results. These results can be employed to networks of coupled systems, of which, in particular, the node dynamics have non-Lipschitz or even discontinuous right-hand sides. We also give several corollaries where the synchronization of some specific non-QUAD systems can be deduced. As an application, we propose a scheme to realize synchronization of coupled switching systems via coupling the signals which drive the switchings. Examples with numerical simulations are also provided to illustrate the theoretical results. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Nonlinear dynamics and control strategies: On a energy harvester vibrating system with a linear form to non-ideal motor torquet

    Directory of Open Access Journals (Sweden)

    de Pontes B. R.

    2012-07-01

    Full Text Available In this paper, we deal with the research of a vibrating model of an energy harvester device, including the nonlinearities in the model of the piezoelectric coupling and the non-ideal excitation. We show, using numerical simulations, in the analysis of the dynamic responses, that the harvested power is influenced by non-linear vibrations of the structure. Chaotic behavior was also observed, causing of the loss of energy throughout the simulation time. Using a perturbation technique, we find an approximate analytical solution for the non-ideal system. Then, we apply both two control techniques, to keep the considered system, into a stable condition. Both the State Dependent Ricatti Equation (SDRE control as the feedback control by changing the energy of the oscillator, were efficient in controlling of the considered non-ideal system.

  2. Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system.

    Science.gov (United States)

    Mrugalski, Marcin; Luzar, Marcel; Pazera, Marcin; Witczak, Marcin; Aubrun, Christophe

    2016-03-01

    The paper is devoted to the problem of the robust actuator fault diagnosis of the dynamic non-linear systems. In the proposed method, it is assumed that the diagnosed system can be modelled by the recurrent neural network, which can be transformed into the linear parameter varying form. Such a system description allows developing the designing scheme of the robust unknown input observer within H∞ framework for a class of non-linear systems. The proposed approach is designed in such a way that a prescribed disturbance attenuation level is achieved with respect to the actuator fault estimation error, while guaranteeing the convergence of the observer. The application of the robust unknown input observer enables actuator fault estimation, which allows applying the developed approach to the fault tolerant control tasks. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Low-Rank Linear Dynamical Systems for Motor Imagery EEG.

    Science.gov (United States)

    Zhang, Wenchang; Sun, Fuchun; Tan, Chuanqi; Liu, Shaobo

    2016-01-01

    The common spatial pattern (CSP) and other spatiospectral feature extraction methods have become the most effective and successful approaches to solve the problem of motor imagery electroencephalography (MI-EEG) pattern recognition from multichannel neural activity in recent years. However, these methods need a lot of preprocessing and postprocessing such as filtering, demean, and spatiospectral feature fusion, which influence the classification accuracy easily. In this paper, we utilize linear dynamical systems (LDSs) for EEG signals feature extraction and classification. LDSs model has lots of advantages such as simultaneous spatial and temporal feature matrix generation, free of preprocessing or postprocessing, and low cost. Furthermore, a low-rank matrix decomposition approach is introduced to get rid of noise and resting state component in order to improve the robustness of the system. Then, we propose a low-rank LDSs algorithm to decompose feature subspace of LDSs on finite Grassmannian and obtain a better performance. Extensive experiments are carried out on public dataset from "BCI Competition III Dataset IVa" and "BCI Competition IV Database 2a." The results show that our proposed three methods yield higher accuracies compared with prevailing approaches such as CSP and CSSP.

  4. Lie Algebraic Treatment of Linear and Nonlinear Beam Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Alex J. Dragt; Filippo Neri; Govindan Rangarajan; David Douglas; Liam M. Healy; Robert D. Ryne

    1988-12-01

    The purpose of this paper is to present a summary of new methods, employing Lie algebraic tools, for characterizing beam dynamics in charged-particle optical systems. These methods are applicable to accelerator design, charged-particle beam transport, electron microscopes, and also light optics. The new methods represent the action of each separate element of a compound optical system, including all departures from paraxial optics, by a certain operator. The operators for the various elements can then be concatenated, following well-defined rules, to obtain a resultant operator that characterizes the entire system. This paper deals mostly with accelerator design and charged-particle beam transport. The application of Lie algebraic methods to light optics and electron microscopes is described elsewhere (1, see also 44). To keep its scope within reasonable bounds, they restrict their treatment of accelerator design and charged-particle beam transport primarily to the use of Lie algebraic methods for the description of particle orbits in terms of transfer maps. There are other Lie algebraic or related approaches to accelerator problems that the reader may find of interest (2). For a general discussion of linear and nonlinear problems in accelerator physics see (3).

  5. A Partially Observed Markov Decision Process for Dynamic Pricing

    OpenAIRE

    Yossi Aviv; Amit Pazgal

    2005-01-01

    In this paper, we develop a stylized partially observed Markov decision process (POMDP) framework to study a dynamic pricing problem faced by sellers of fashion-like goods. We consider a retailer that plans to sell a given stock of items during a finite sales season. The objective of the retailer is to dynamically price the product in a way that maximizes expected revenues. Our model brings together various types of uncertainties about the demand, some of which are resolvable through sales ob...

  6. Single-polymer dynamics under constraints: scaling theory and computer experiment

    International Nuclear Information System (INIS)

    Milchev, Andrey

    2011-01-01

    The relaxation, diffusion and translocation dynamics of single linear polymer chains in confinement is briefly reviewed with emphasis on the comparison between theoretical scaling predictions and observations from experiment or, most frequently, from computer simulations. Besides cylindrical, spherical and slit-like constraints, related problems such as the chain dynamics in a random medium and the translocation dynamics through a nanopore are also considered. Another particular kind of confinement is imposed by polymer adsorption on attractive surfaces or selective interfaces-a short overview of single-chain dynamics is also contained in this survey. While both theory and numerical experiments consider predominantly coarse-grained models of self-avoiding linear chain molecules with typically Rouse dynamics, we also note some recent studies which examine the impact of hydrodynamic interactions on polymer dynamics in confinement. In all of the aforementioned cases we focus mainly on the consequences of imposed geometric restrictions on single-chain dynamics and try to check our degree of understanding by assessing the agreement between theoretical predictions and observations. (topical review)

  7. Numerical solution of a non-linear conservation law applicable to the interior dynamics of partially molten planets

    Science.gov (United States)

    Bower, Dan J.; Sanan, Patrick; Wolf, Aaron S.

    2018-01-01

    The energy balance of a partially molten rocky planet can be expressed as a non-linear diffusion equation using mixing length theory to quantify heat transport by both convection and mixing of the melt and solid phases. Crucially, in this formulation the effective or eddy diffusivity depends on the entropy gradient, ∂S / ∂r , as well as entropy itself. First we present a simplified model with semi-analytical solutions that highlights the large dynamic range of ∂S / ∂r -around 12 orders of magnitude-for physically-relevant parameters. It also elucidates the thermal structure of a magma ocean during the earliest stage of crystal formation. This motivates the development of a simple yet stable numerical scheme able to capture the large dynamic range of ∂S / ∂r and hence provide a flexible and robust method for time-integrating the energy equation. Using insight gained from the simplified model, we consider a full model, which includes energy fluxes associated with convection, mixing, gravitational separation, and conduction that all depend on the thermophysical properties of the melt and solid phases. This model is discretised and evolved by applying the finite volume method (FVM), allowing for extended precision calculations and using ∂S / ∂r as the solution variable. The FVM is well-suited to this problem since it is naturally energy conserving, flexible, and intuitive to incorporate arbitrary non-linear fluxes that rely on lookup data. Special attention is given to the numerically challenging scenario in which crystals first form in the centre of a magma ocean. The computational framework we devise is immediately applicable to modelling high melt fraction phenomena in Earth and planetary science research. Furthermore, it provides a template for solving similar non-linear diffusion equations that arise in other science and engineering disciplines, particularly for non-linear functional forms of the diffusion coefficient.

  8. A Regularized Linear Dynamical System Framework for Multivariate Time Series Analysis.

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2015-01-01

    Linear Dynamical System (LDS) is an elegant mathematical framework for modeling and learning Multivariate Time Series (MTS). However, in general, it is difficult to set the dimension of an LDS's hidden state space. A small number of hidden states may not be able to model the complexities of a MTS, while a large number of hidden states can lead to overfitting. In this paper, we study learning methods that impose various regularization penalties on the transition matrix of the LDS model and propose a regularized LDS learning framework (rLDS) which aims to (1) automatically shut down LDSs' spurious and unnecessary dimensions, and consequently, address the problem of choosing the optimal number of hidden states; (2) prevent the overfitting problem given a small amount of MTS data; and (3) support accurate MTS forecasting. To learn the regularized LDS from data we incorporate a second order cone program and a generalized gradient descent method into the Maximum a Posteriori framework and use Expectation Maximization to obtain a low-rank transition matrix of the LDS model. We propose two priors for modeling the matrix which lead to two instances of our rLDS. We show that our rLDS is able to recover well the intrinsic dimensionality of the time series dynamics and it improves the predictive performance when compared to baselines on both synthetic and real-world MTS datasets.

  9. Characterization of the Dynamics of Climate Systems and Identification of Missing Mechanisms Impacting the Long Term Predictive Capabilities of Global Climate Models Utilizing Dynamical Systems Approaches to the Analysis of Observed and Modeled Climate

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Uma S. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Atmospheric Sciences; Wackerbauer, Renate [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Physics; Polyakov, Igor V. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Atmospheric Sciences; Newman, David E. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Physics; Sanchez, Raul E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fusion Energy Division; Univ. Carlos III de Madrid (Spain)

    2015-11-13

    The goal of this research was to apply fractional and non-linear analysis techniques in order to develop a more complete characterization of climate change and variability for the oceanic, sea ice and atmospheric components of the Earth System. This research applied two measures of dynamical characteristics of time series, the R/S method of calculating the Hurst exponent and Renyi entropy, to observational and modeled climate data in order to evaluate how well climate models capture the long-term dynamics evident in observations. Fractional diffusion analysis was applied to ARGO ocean buoy data to quantify ocean transport. Self organized maps were applied to North Pacific sea level pressure and analyzed in ways to improve seasonal predictability for Alaska fire weather. This body of research shows that these methods can be used to evaluate climate models and shed light on climate mechanisms (i.e., understanding why something happens). With further research, these methods show promise for improving seasonal to longer time scale forecasts of climate.

  10. Microscopic observation of magnon bound states and their dynamics.

    Science.gov (United States)

    Fukuhara, Takeshi; Schauß, Peter; Endres, Manuel; Hild, Sebastian; Cheneau, Marc; Bloch, Immanuel; Gross, Christian

    2013-10-03

    The existence of bound states of elementary spin waves (magnons) in one-dimensional quantum magnets was predicted almost 80 years ago. Identifying signatures of magnon bound states has so far remained the subject of intense theoretical research, and their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting in which to find such bound states by tracking the spin dynamics with single-spin and single-site resolution following a local excitation. Here we use in situ correlation measurements to observe two-magnon bound states directly in a one-dimensional Heisenberg spin chain comprising ultracold bosonic atoms in an optical lattice. We observe the quantum dynamics of free and bound magnon states through time-resolved measurements of two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single-magnon excitations. We also determine the decay time of bound magnons, which is probably limited by scattering on thermal fluctuations in the system. Our results provide a new way of studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.

  11. Breaking of ensembles of linear and nonlinear oscillators

    International Nuclear Information System (INIS)

    Buts, V.A.

    2016-01-01

    Some results concerning the study of the dynamics of ensembles of linear and nonlinear oscillators are stated. It is shown that, in general, a stable ensemble of linear oscillator has a limited number of oscillators. This number has been defined for some simple models. It is shown that the features of the dynamics of linear oscillators can be used for conversion of the low-frequency energy oscillations into high frequency oscillations. The dynamics of coupled nonlinear oscillators in most cases is chaotic. For such a case, it is shown that the statistical characteristics (moments) of chaotic motion can significantly reduce potential barriers that keep the particles in the capture region

  12. Structure dynamics with regard to non-linear support behavior; Dynamische Strukturberechnung unter Beruecksichtigung nichtlinearen Lagerverhaltens

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, W. [Technischer Ueberwachungs-Verein Nord e.V., Hamburg (Germany)

    2000-07-01

    Because of modifications to a feed-water line of a power plant structural calculations of the pipework were performed. As a result of a linear (modal) analysis very high restraint forces on the supports were calculated. In order to reduce conservatisms in the calculation the model was optimized with regard to the support stiffnesses and nonlinear behavior of slide bearings, guides and shock absorbers were taken into account. The main result of the non-linear analysis, which was performed by methods of direct-integration, was that nonlinearity yields evident differences in structural frequencies and in energy dissipation (damping) in comparison to the linear analysis. The high restraint forces on the supports became smaller for most of the supports but at some points the forces of the non-linear analysis were even higher. So the conservatism of the linear analysis is not fully valid for the whole structure. The relevance of the non-linear effects in dynamic piping calculations is shown by comparing the calculation result with measurements which were performed on structures in the plant. (orig.) [German] Im Rahmen der Aenderung der Speisewasserleitung einer Kraftwerksanlage wurde die Struktur neu berechnet. Die Analysen mit einem linearen Modell (modal), das ueblicherweise verwendet wird, ergaben hohe Lasten an Halterungen. Zum Abbau von Konservativitaeten wurde eine realistischere Modellierung durch die Beruecksichtigung des nichtlinearen Verhaltens der in der Anlage befindlichen Gleitlager, Fuehrungen und Stossbremsen in der Berechnung vorgenommen. Die Untersuchungen haben ergeben, dass durch die Nichtlinearitaet das Frequenzverhalten der Struktur und die Dissipation von Energie durch Reibvorgaenge wesentlich beeinflusst werden. Des Weiteren ist festzustellen, dass aus linearen Analysen nicht uneingeschraenkt konservative Ergebnisse gewonnen werden. Die Relevanz der Beruecksichtigung des nichtlinearen Lagerverhaltens bei einer dynamischen Strukturberechnung wird

  13. Theory of linear physical systems theory of physical systems from the viewpoint of classical dynamics, including Fourier methods

    CERN Document Server

    Guillemin, Ernst A

    2013-01-01

    An eminent electrical engineer and authority on linear system theory presents this advanced treatise, which approaches the subject from the viewpoint of classical dynamics and covers Fourier methods. This volume will assist upper-level undergraduates and graduate students in moving from introductory courses toward an understanding of advanced network synthesis. 1963 edition.

  14. Robust Dynamics and Control of a Partially Observed Markov Chain

    International Nuclear Information System (INIS)

    Elliott, R. J.; Malcolm, W. P.; Moore, J. P.

    2007-01-01

    In a seminal paper, Martin Clark (Communications Systems and Random Process Theory, Darlington, 1977, pp. 721-734, 1978) showed how the filtered dynamics giving the optimal estimate of a Markov chain observed in Gaussian noise can be expressed using an ordinary differential equation. These results offer substantial benefits in filtering and in control, often simplifying the analysis and an in some settings providing numerical benefits, see, for example Malcolm et al. (J. Appl. Math. Stoch. Anal., 2007, to appear).Clark's method uses a gauge transformation and, in effect, solves the Wonham-Zakai equation using variation of constants. In this article, we consider the optimal control of a partially observed Markov chain. This problem is discussed in Elliott et al. (Hidden Markov Models Estimation and Control, Applications of Mathematics Series, vol. 29, 1995). The innovation in our results is that the robust dynamics of Clark are used to compute forward in time dynamics for a simplified adjoint process. A stochastic minimum principle is established

  15. MIRO Observation of Comet C/2002 T7 (LINEAR) Water Line Spectrum

    Science.gov (United States)

    Lee, Seungwon; Frerking, Margaret; Hofstadter, Mark; Gulkis, Samuel; von Allmen, Paul; Crovisier, Jaques; Biver, Nicholas; Bockelee-Morvan, Dominique

    2011-01-01

    Comet C/2002 T7 (LINEAR) was observed with the Microwave Instrument for Rosetta Orbiter (MIRO) on April 30, 2004, between 5 hr and 16 hr UT. The comet was 0.63AU distance from the Sun and 0.68AU distance from the MIRO telescope at the time of the observations. The water line involving the two lowest rotational levels at 556.936 GHz is observed at 557.070 GHz due to a large Doppler frequency shift. The detected water line spectrum is interpreted using a non local thermal equilibrium (Non-LTE) molecular excitation and radiative transfer model. Several synthetic spectra are calculated with various coma profiles that are plausible for the comet at the time of observations. The coma profile is modeled with three characteristic parameters: outgassing rate, a constant expansion velocity, and a constant gas temperature. The model calculation result shows that for the distant line observation where contributions from a large coma space is averaged, the combination of the outgassing rate and the gas expansion velocity determines the line shape while the gas temperature has a negligible effect. The comparison between the calculated spectra and the MIRO measured spectrum suggests that the outgassing rate of the comet is about 2.0x1029 molecules/second and its gas expansion velocity about 1.2 km/s at the time of the observations.

  16. Stability of Coulomb crystals in a linear Paul trap with storage-ring-like confinement

    DEFF Research Database (Denmark)

    Kjærgaard, Niels; Mølhave, Kristian; Drewsen, Michael

    2002-01-01

    We report experiments on the stability of ion Coulomb crystals in a linear Paul trap with storage-ring-like confinement. The transverse dynamics of charged particles in a trap of this type is analogous to that of a fast beam traveling through a channel with periodic, magnetic alternating gradient...... confinement. The experimentally observed stability conditions for stationary crystals comply remarkably well with current theory of crystalline plasmas and beams.......We report experiments on the stability of ion Coulomb crystals in a linear Paul trap with storage-ring-like confinement. The transverse dynamics of charged particles in a trap of this type is analogous to that of a fast beam traveling through a channel with periodic, magnetic alternating gradient...

  17. Ghosts in high dimensional non-linear dynamical systems: The example of the hypercycle

    International Nuclear Information System (INIS)

    Sardanyes, Josep

    2009-01-01

    Ghost-induced delayed transitions are analyzed in high dimensional non-linear dynamical systems by means of the hypercycle model. The hypercycle is a network of catalytically-coupled self-replicating RNA-like macromolecules, and has been suggested to be involved in the transition from non-living to living matter in the context of earlier prebiotic evolution. It is demonstrated that, in the vicinity of the saddle-node bifurcation for symmetric hypercycles, the persistence time before extinction, T ε , tends to infinity as n→∞ (being n the number of units of the hypercycle), thus suggesting that the increase in the number of hypercycle units involves a longer resilient time before extinction because of the ghost. Furthermore, by means of numerical analysis the dynamics of three large hypercycle networks is also studied, focusing in their extinction dynamics associated to the ghosts. Such networks allow to explore the properties of the ghosts living in high dimensional phase space with n = 5, n = 10 and n = 15 dimensions. These hypercyclic networks, in agreement with other works, are shown to exhibit self-maintained oscillations governed by stable limit cycles. The bifurcation scenarios for these hypercycles are analyzed, as well as the effect of the phase space dimensionality in the delayed transition phenomena and in the scaling properties of the ghosts near bifurcation threshold

  18. Geometric phase effects in low-energy dynamics near conical intersections: A study of the multidimensional linear vibronic coupling model

    International Nuclear Information System (INIS)

    Joubert-Doriol, Loïc; Ryabinkin, Ilya G.; Izmaylov, Artur F.

    2013-01-01

    In molecular systems containing conical intersections (CIs), a nontrivial geometric phase (GP) appears in the nuclear and electronic wave functions in the adiabatic representation. We study GP effects in nuclear dynamics of an N-dimensional linear vibronic coupling (LVC) model. The main impact of GP on low-energy nuclear dynamics is reduction of population transfer between the local minima of the LVC lower energy surface. For the LVC model, we proposed an isometric coordinate transformation that confines non-adiabatic effects within a two-dimensional subsystem interacting with an N − 2 dimensional environment. Since environmental modes do not couple electronic states, all GP effects originate from nuclear dynamics within the subsystem. We explored when the GP affects nuclear dynamics of the isolated subsystem, and how the subsystem-environment interaction can interfere with GP effects. Comparing quantum dynamics with and without GP allowed us to devise simple rules to determine significance of the GP for nuclear dynamics in this model

  19. Intra- and inter-observer variability and accuracy in the determination of linear and angular measurements in computed tomography

    International Nuclear Information System (INIS)

    Christiansen, E.L.; Thompson, J.R.; Kopp, S.

    1986-01-01

    The observer variability and accuracy of linear and angular computed tomography (CT) software measurements in the transaxial plane were investigated for the temporomandibular joint with the General Electric 8800 CT/N Scanner. A dried and measured human mandible was embedded in plastic and scanned in vitro. Sixteen observers participated in the study. The following measurements were tested: inter- and extra-condylar distances, transverse condylar dimension, condylar angulation, and the plastic base of the specimen. Three frozen cadaveric heads were similarly scanned and measured in situ. Intra- and inter-observer variabilities were lowest for the specimen base and highest for condylar angulation. Neuroradiologists had the lowest variability as a group, and the radiology residents and paramedical personell had the highest, but the differences were small. No significant difference was found between CT and macroscopic measurement of the mandible. In situ measurement by CT of condyles with structural changes in the transaxial plane was, however, subject to substantial error. It was concluded that transaxial linear measurements of the condylar processes free of significant structural changes had an error and an accuracy well within acceptable limits. The error for angular measurements was significantly greater than the error for linear measurements

  20. Quantum linear Boltzmann equation

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Hornberger, Klaus

    2009-01-01

    We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.

  1. Observations of dynamic stall on Darrieus wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, N.; Shibuya, S. [Department of Mechanical and Production Engineering, Niigata University, 8050 Ikarashi 2, 950-2181 Niigata (Japan)

    2001-02-01

    Flow field around a Darrieus wind turbine blade in dynamic stall is studied by flow visualization and particle image velocimetry (PIV) measurement in stationary and rotating frames of reference. The experiment is carried out using the small-scale Darrieus wind turbine in a water tunnel. The unsteady nature of the dynamic stall observed by the flow visualization is quantitatively reproduced in the instantaneous velocity distributions by PIV measurement, which describes the successive shedding of two pairs of stall vortices from the blade moving upstream. The mechanism of dynamic stall is due to the successive generation of separation on the inner surface of the blade followed by the formation of roll-up vortices from the outer surface. Although the qualitative nature of the dynamic stall is independent of the tip-speed ratios, the blade angle for stall appearance and the growth rate of the stall vortices are influenced by the change in tip-speed ratios.

  2. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming

    KAUST Repository

    Kouramas, K.I.

    2011-08-01

    This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques. The algorithm features two key steps: (i) a dynamic programming step, in which the mp-MPC problem is decomposed into a set of smaller subproblems in which only the current control, state variables, and constraints are considered, and (ii) a multi-parametric programming step, in which each subproblem is solved as a convex multi-parametric programming problem, to derive the control variables as an explicit function of the states. The key feature of the proposed method is that it overcomes potential limitations of previous methods for solving multi-parametric programming problems with dynamic programming, such as the need for global optimization for each subproblem of the dynamic programming step. © 2011 Elsevier Ltd. All rights reserved.

  3. Zero-dynamics principle for perfect quantum memory in linear networks

    International Nuclear Information System (INIS)

    Yamamoto, Naoki; James, Matthew R

    2014-01-01

    In this paper, we study a general linear networked system that contains a tunable memory subsystem; that is, it is decoupled from an optical field for state transportation during the storage process, while it couples to the field during the writing or reading process. The input is given by a single photon state or a coherent state in a pulsed light field. We then completely and explicitly characterize the condition required on the pulse shape achieving the perfect state transfer from the light field to the memory subsystem. The key idea to obtain this result is the use of zero-dynamics principle, which in our case means that, for perfect state transfer, the output field during the writing process must be a vacuum. A useful interpretation of the result in terms of the transfer function is also given. Moreover, a four-node network composed of atomic ensembles is studied as an example, demonstrating how the input field state is transferred to the memory subsystem and what the input pulse shape to be engineered for perfect memory looks like. (paper)

  4. Zero-dynamics principle for perfect quantum memory in linear networks

    Science.gov (United States)

    Yamamoto, Naoki; James, Matthew R.

    2014-07-01

    In this paper, we study a general linear networked system that contains a tunable memory subsystem; that is, it is decoupled from an optical field for state transportation during the storage process, while it couples to the field during the writing or reading process. The input is given by a single photon state or a coherent state in a pulsed light field. We then completely and explicitly characterize the condition required on the pulse shape achieving the perfect state transfer from the light field to the memory subsystem. The key idea to obtain this result is the use of zero-dynamics principle, which in our case means that, for perfect state transfer, the output field during the writing process must be a vacuum. A useful interpretation of the result in terms of the transfer function is also given. Moreover, a four-node network composed of atomic ensembles is studied as an example, demonstrating how the input field state is transferred to the memory subsystem and what the input pulse shape to be engineered for perfect memory looks like.

  5. Dynamical heterogeneities and mechanical non-linearities: Modeling the onset of plasticity in polymer in the glass transition.

    Science.gov (United States)

    Masurel, R J; Gelineau, P; Lequeux, F; Cantournet, S; Montes, H

    2017-12-27

    In this paper we focus on the role of dynamical heterogeneities on the non-linear response of polymers in the glass transition domain. We start from a simple coarse-grained model that assumes a random distribution of the initial local relaxation times and that quantitatively describes the linear viscoelasticity of a polymer in the glass transition regime. We extend this model to non-linear mechanics assuming a local Eyring stress dependence of the relaxation times. Implementing the model in a finite element mechanics code, we derive the mechanical properties and the local mechanical fields at the beginning of the non-linear regime. The model predicts a narrowing of distribution of relaxation times and the storage of a part of the mechanical energy --internal stress-- transferred to the material during stretching in this temperature range. We show that the stress field is not spatially correlated under and after loading and follows a Gaussian distribution. In addition the strain field exhibits shear bands, but the strain distribution is narrow. Hence, most of the mechanical quantities can be calculated analytically, in a very good approximation, with the simple assumption that the strain rate is constant.

  6. Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles.

    Science.gov (United States)

    Fonseca, P Z G; Aranas, E B; Millen, J; Monteiro, T S; Barker, P F

    2016-10-21

    Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.

  7. Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles

    Science.gov (United States)

    Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.

    2016-10-01

    Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.

  8. Motion Tree Delineates Hierarchical Structure of Protein Dynamics Observed in Molecular Dynamics Simulation.

    Directory of Open Access Journals (Sweden)

    Kei Moritsugu

    Full Text Available Molecular dynamics (MD simulations of proteins provide important information to understand their functional mechanisms, which are, however, likely to be hidden behind their complicated motions with a wide range of spatial and temporal scales. A straightforward and intuitive analysis of protein dynamics observed in MD simulation trajectories is therefore of growing significance with the large increase in both the simulation time and system size. In this study, we propose a novel description of protein motions based on the hierarchical clustering of fluctuations in the inter-atomic distances calculated from an MD trajectory, which constructs a single tree diagram, named a "Motion Tree", to determine a set of rigid-domain pairs hierarchically along with associated inter-domain fluctuations. The method was first applied to the MD trajectory of substrate-free adenylate kinase to clarify the usefulness of the Motion Tree, which illustrated a clear-cut dynamics picture of the inter-domain motions involving the ATP/AMP lid and the core domain together with the associated amplitudes and correlations. The comparison of two Motion Trees calculated from MD simulations of ligand-free and -bound glutamine binding proteins clarified changes in inherent dynamics upon ligand binding appeared in both large domains and a small loop that stabilized ligand molecule. Another application to a huge protein, a multidrug ATP binding cassette (ABC transporter, captured significant increases of fluctuations upon binding a drug molecule observed in both large scale inter-subunit motions and a motion localized at a transmembrane helix, which may be a trigger to the subsequent structural change from inward-open to outward-open states to transport the drug molecule. These applications demonstrated the capabilities of Motion Trees to provide an at-a-glance view of various sizes of functional motions inherent in the complicated MD trajectory.

  9. Universal Linear Scaling of Permeability and Time for Heterogeneous Fracture Dissolution

    Science.gov (United States)

    Wang, L.; Cardenas, M. B.

    2017-12-01

    Fractures are dynamically changing over geological time scale due to mechanical deformation and chemical reactions. However, the latter mechanism remains poorly understood with respect to the expanding fracture, which leads to a positively coupled flow and reactive transport processes, i.e., as a fracture expands, so does its permeability (k) and thus flow and reactive transport processes. To unravel this coupling, we consider a self-enhancing process that leads to fracture expansion caused by acidic fluid, i.e., CO2-saturated brine dissolving calcite fracture. We rigorously derive a theory, for the first time, showing that fracture permeability increases linearly with time [Wang and Cardenas, 2017]. To validate this theory, we resort to the direct simulation that solves the Navier-Stokes and Advection-Diffusion equations with a moving mesh according to the dynamic dissolution process in two-dimensional (2D) fractures. We find that k slowly increases first until the dissolution front breakthrough the outbound when we observe a rapid k increase, i.e., the linear time-dependence of k occurs. The theory agrees well with numerical observations across a broad range of Peclet and Damkohler numbers through homogeneous and heterogeneous 2D fractures. Moreover, the theory of linear scaling relationship between k and time matches well with experimental observations of three-dimensional (3D) fractures' dissolution. To further attest to our theory's universality for 3D heterogeneous fractures across a broad range of roughness and correlation length of aperture field, we develop a depth-averaged model that simulates the process-based reactive transport. The simulation results show that, regardless of a wide variety of dissolution patterns such as the presence of dissolution fingers and preferential dissolution paths, the linear scaling relationship between k and time holds. Our theory sheds light on predicting permeability evolution in many geological settings when the self

  10. The linear-non-linear frontier for the Goldstone Higgs

    International Nuclear Information System (INIS)

    Gavela, M.B.; Saa, S.; Kanshin, K.; Machado, P.A.N.

    2016-01-01

    The minimal SO(5)/SO(4) σ-model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone-boson ancestry. Varying the σ mass allows one to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry-breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy-fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators. (orig.)

  11. The linear-non-linear frontier for the Goldstone Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Gavela, M.B.; Saa, S. [IFT-UAM/CSIC, Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, Madrid (Spain); Kanshin, K. [Universita di Padova, Dipartimento di Fisica e Astronomia ' G. Galilei' , Padua (Italy); INFN, Padova (Italy); Machado, P.A.N. [IFT-UAM/CSIC, Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, Madrid (Spain); Fermi National Accelerator Laboratory, Theoretical Physics Department, Batavia, IL (United States)

    2016-12-15

    The minimal SO(5)/SO(4) σ-model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone-boson ancestry. Varying the σ mass allows one to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry-breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy-fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators. (orig.)

  12. Non-linear dynamics and alternating 'flip' solutions in ferrofluidic Taylor-Couette flow

    Science.gov (United States)

    Altmeyer, Sebastian

    2018-04-01

    This study treats with the influence of a symmetry-breaking transversal magnetic field on the nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined between two concentric independently rotating cylinders. We detected alternating 'flip' solutions which are flow states featuring typical characteristics of slow-fast-dynamics in dynamical systems. The flip corresponds to a temporal change in the axial wavenumber and we find them to appear either as pure 2-fold axisymmetric (due to the symmetry-breaking nature of the applied transversal magnetic field) or involving non-axisymmetric, helical modes in its interim solution. The latter ones show features of typical ribbon solutions. In any case the flip solutions have a preferential first axial wavenumber which corresponds to the more stable state (slow dynamics) and second axial wavenumber, corresponding to the short appearing more unstable state (fast dynamics). However, in both cases the flip time grows exponential with increasing the magnetic field strength before the flip solutions, living on 2-tori invariant manifolds, cease to exist, with lifetime going to infinity. Further we show that ferrofluidic flow turbulence differ from the classical, ordinary (usually at high Reynolds number) turbulence. The applied magnetic field hinders the free motion of ferrofluid partials and therefore smoothen typical turbulent quantities and features so that speaking of mildly chaotic dynamics seems to be a more appropriate expression for the observed motion.

  13. Competitive inhibition can linearize dose-response and generate a linear rectifier.

    Science.gov (United States)

    Savir, Yonatan; Tu, Benjamin P; Springer, Michael

    2015-09-23

    Many biological responses require a dynamic range that is larger than standard bi-molecular interactions allow, yet the also ability to remain off at low input. Here we mathematically show that an enzyme reaction system involving a combination of competitive inhibition, conservation of the total level of substrate and inhibitor, and positive feedback can behave like a linear rectifier-that is, a network motif with an input-output relationship that is linearly sensitive to substrate above a threshold but unresponsive below the threshold. We propose that the evolutionarily conserved yeast SAGA histone acetylation complex may possess the proper physiological response characteristics and molecular interactions needed to perform as a linear rectifier, and we suggest potential experiments to test this hypothesis. One implication of this work is that linear responses and linear rectifiers might be easier to evolve or synthetically construct than is currently appreciated.

  14. A new approach to estimate ice dynamic rates using satellite observations in East Antarctica

    Directory of Open Access Journals (Sweden)

    B. Kallenberg

    2017-05-01

    Full Text Available Mass balance changes of the Antarctic ice sheet are of significant interest due to its sensitivity to climatic changes and its contribution to changes in global sea level. While regional climate models successfully estimate mass input due to snowfall, it remains difficult to estimate the amount of mass loss due to ice dynamic processes. It has often been assumed that changes in ice dynamic rates only need to be considered when assessing long-term ice sheet mass balance; however, 2 decades of satellite altimetry observations reveal that the Antarctic ice sheet changes unexpectedly and much more dynamically than previously expected. Despite available estimates on ice dynamic rates obtained from radar altimetry, information about ice sheet changes due to changes in the ice dynamics are still limited, especially in East Antarctica. Without understanding ice dynamic rates, it is not possible to properly assess changes in ice sheet mass balance and surface elevation or to develop ice sheet models. In this study we investigate the possibility of estimating ice sheet changes due to ice dynamic rates by removing modelled rates of surface mass balance, firn compaction, and bedrock uplift from satellite altimetry and gravity observations. With similar rates of ice discharge acquired from two different satellite missions we show that it is possible to obtain an approximation of the rate of change due to ice dynamics by combining altimetry and gravity observations. Thus, surface elevation changes due to surface mass balance, firn compaction, and ice dynamic rates can be modelled and correlated with observed elevation changes from satellite altimetry.

  15. A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere.

    Science.gov (United States)

    Rossi, Sergio; Anfodillo, Tommaso; Cufar, Katarina; Cuny, Henri E; Deslauriers, Annie; Fonti, Patrick; Frank, David; Gricar, Jozica; Gruber, Andreas; King, Gregory M; Krause, Cornelia; Morin, Hubert; Oberhuber, Walter; Prislan, Peter; Rathgeber, Cyrille B K

    2013-12-01

    Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1-9 years per site from 1998 to 2011. The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern. The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions.

  16. Dynamic acousto-elastic testing of concrete with a coda-wave probe: comparison with standard linear and nonlinear ultrasonic techniques.

    Science.gov (United States)

    Shokouhi, Parisa; Rivière, Jacques; Lake, Colton R; Le Bas, Pierre-Yves; Ulrich, T J

    2017-11-01

    The use of nonlinear acoustic techniques in solids consists in measuring wave distortion arising from compliant features such as cracks, soft intergrain bonds and dislocations. As such, they provide very powerful nondestructive tools to monitor the onset of damage within materials. In particular, a recent technique called dynamic acousto-elasticity testing (DAET) gives unprecedented details on the nonlinear elastic response of materials (classical and non-classical nonlinear features including hysteresis, transient elastic softening and slow relaxation). Here, we provide a comprehensive set of linear and nonlinear acoustic responses on two prismatic concrete specimens; one intact and one pre-compressed to about 70% of its ultimate strength. The two linear techniques used are Ultrasonic Pulse Velocity (UPV) and Resonance Ultrasound Spectroscopy (RUS), while the nonlinear ones include DAET (fast and slow dynamics) as well as Nonlinear Resonance Ultrasound Spectroscopy (NRUS). In addition, the DAET results correspond to a configuration where the (incoherent) coda portion of the ultrasonic record is used to probe the samples, as opposed to a (coherent) first arrival wave in standard DAET tests. We find that the two visually identical specimens are indistinguishable based on parameters measured by linear techniques (UPV and RUS). On the contrary, the extracted nonlinear parameters from NRUS and DAET are consistent and orders of magnitude greater for the damaged specimen than those for the intact one. This compiled set of linear and nonlinear ultrasonic testing data including the most advanced technique (DAET) provides a benchmark comparison for their use in the field of material characterization. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Nonequilibrium molecular dynamics study of ring polymer melts under shear and elongation flows: A comparison with their linear analogs

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jeongha; Kim, Jinseong; Baig, Chunggi, E-mail: cbaig@unist.ac.kr [Department of Chemical Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)

    2016-07-15

    We present detailed results for the structural and rheological properties of unknotted and unconcatenated ring polyethylene (PE) melts under shear and elongation flows via direct atomistic nonequilibrium molecular dynamics simulations. Short (C{sub 78}H{sub 156}) and long (C{sub 400}H{sub 800}) ring PE melts were subjected to planar Couette flow (PCF) and planar elongational flow (PEF) across a wide range of strain rates from linear to highly nonlinear flow regimes. The results are analyzed in detail through a direct comparison with those of the corresponding linear polymers. We found that, in comparison to their linear analogs, ring melts possess rather compact chain structures at or near the equilibrium state and exhibit a considerably lesser degree of structural deformation with respect to the applied flow strength under both PCF and PEF. The large structural resistance of ring polymers against an external flow field is attributed to the intrinsic closed-loop configuration of the ring and the topological constraint of nonconcatenation between ring chains in the melt. As a result, there appears to be a substantial discrepancy between ring and linear systems in terms of their structural and rheological properties such as chain orientation, the distribution of chain dimensions, viscosity, flow birefringence, hydrostatic pressure, the pair correlation function, and potential interaction energies. The findings and conclusions drawn in this work would be a useful guide in future exploration of the characteristic dynamical and relaxation mechanisms of ring polymers in bulk or confined systems under flowing conditions.

  18. Magnetically levitated railway with common reaction rail for a linear motor drive and an electro dynamic side guidance arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, R

    1977-04-07

    The invention concerns a magnetically levitated railway with common reaction rail for the linear motor drive and the electrical side guidance arrangement. While the electro-dynamic hovering process requires a high electrical conductivity of the reaction rails in order to reduce eddy current losses, these should show a relatively high resistance for the asynchronous linear motor to reduce losses of propelling force. These contradictory requirements can be fulfilled for a common reaction rail made of homogeneous material of high electrical conductivity according to the invention, by providing slits at right angles to the driving axis in the part of the reaction rail allocated to the linear motor. Thus the guidance system retains a low ohmic resistance, while the part of the reaction rail allocated to the windings of the linear motor has a relatively low ohmic secondary resistance, by which the border and end effects which reduce the propelling force can be appreciably reduced.

  19. Observation of Dynamical Super-Efimovian Expansion in a Unitary Fermi Gas

    Science.gov (United States)

    Deng, Shujin; Diao, Pengpeng; Li, Fang; Yu, Qianli; Yu, Shi; Wu, Haibin

    2018-03-01

    We report an observation of a dynamical super Efimovian expansion in a strongly interacting Fermi gas by engineering time dependent external harmonic trap frequencies. When the trap frequency is tailored as [1 /4 t2+1 /t2λ log2(t /t*)]1/2, where t* and λ are two controllable parameters, and the change is faster than a critical value, the expansion of such a quantum gas shows novel dynamics that share the same characteristics as the super Efimov effect. A clear double-log periodicity with discrete geometric scaling emerges for the cloud size in the expansion. The universality of such scaling dynamics is verified both in the noninteracting and in the unitarity limit of Fermi gas. Moreover, the measured energy scaling reveals that the potential and internal energy also show double-log periodicity with a π /2 phase difference, but the total energy is monotonically decreased. Observing super Efimovian evolution represents a paradigm in probing universal properties and allows us in a new way to study many-body nonequilibrium dynamics with experiments.

  20. Observation and analysis of oscillations in linear accelerators

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1991-11-01

    This report discusses the following on oscillation in linear accelerators: Betatron Oscillations; Betatron Oscillations at High Currents; Transverse Profile Oscillations; Transverse Profile Oscillations at High Currents.; Oscillation and Profile Transient Jitter; and Feedback on Transverse Oscillations

  1. Assimilating irregularly spaced sparsely observed turbulent signals with hierarchical Bayesian reduced stochastic filters

    International Nuclear Information System (INIS)

    Brown, Kristen A.; Harlim, John

    2013-01-01

    In this paper, we consider a practical filtering approach for assimilating irregularly spaced, sparsely observed turbulent signals through a hierarchical Bayesian reduced stochastic filtering framework. The proposed hierarchical Bayesian approach consists of two steps, blending a data-driven interpolation scheme and the Mean Stochastic Model (MSM) filter. We examine the potential of using the deterministic piecewise linear interpolation scheme and the ordinary kriging scheme in interpolating irregularly spaced raw data to regularly spaced processed data and the importance of dynamical constraint (through MSM) in filtering the processed data on a numerically stiff state estimation problem. In particular, we test this approach on a two-layer quasi-geostrophic model in a two-dimensional domain with a small radius of deformation to mimic ocean turbulence. Our numerical results suggest that the dynamical constraint becomes important when the observation noise variance is large. Second, we find that the filtered estimates with ordinary kriging are superior to those with linear interpolation when observation networks are not too sparse; such robust results are found from numerical simulations with many randomly simulated irregularly spaced observation networks, various observation time intervals, and observation error variances. Third, when the observation network is very sparse, we find that both the kriging and linear interpolations are comparable

  2. Vortex, ULF wave and Aurora Observation after Solar Wind Dynamic Pressure Change

    Science.gov (United States)

    Shi, Q.

    2017-12-01

    Here we will summarize our recent study and show some new results on the Magnetosphere and Ionosphere Response to Dynamic Pressure Change/disturbances in the Solar Wind and foreshock regions. We study the step function type solar wind dynamic pressure change (increase/decrease) interaction with the magnetosphere using THEMIS satellites at both dayside and nightside in different geocentric distances. Vortices generated by the dynamic pressure change passing along the magnetopause are found and compared with model predictions. ULF waves and vortices are excited in the dayside and nightside plasma sheet when dynamic pressure change hit the magnetotail. The related ionospheric responses, such as aurora and TCVs, are also investigated. We compare Global MHD simulations with the observations. We will also show some new results that dayside magnetospheric FLRs might be caused by foreshock structures.Shi, Q. Q. et al. (2013), THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events, J. Geophys. Res. Space Physics, 118, doi:10.1029/2012JA017984. Shi, Q. Q. et al. (2014), Solar wind pressure pulse-driven magnetospheric vortices and their global consequences, J. Geophys. Res. Space Physics, 119, doi:10.1002/2013JA019551. Tian, A.M. et al.(2016), Dayside magnetospheric and ionospheric responses to solar wind pressure increase: Multispacecraft and ground observations, J. Geophys. Res., 121, doi:10.1002/2016JA022459. Shen, X.C. et al.(2015), Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: THEMIS observations, J. Geophys. Res., 120, doi:10.1002/2014JA020913Zhao, H. Y. et al. (2016), Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease, J. Geophys. Res. Space Physics, 121, doi:10.1002/2015JA021646. Shen, X. C., et al. (2017), Dayside magnetospheric ULF wave frequency modulated by a solar wind dynamic pressure negative impulse, J. Geophys. Res

  3. Efficient Estimation of Non-Linear Dynamic Panel Data Models with Application to Smooth Transition Models

    DEFF Research Database (Denmark)

    Gørgens, Tue; Skeels, Christopher L.; Wurtz, Allan

    This paper explores estimation of a class of non-linear dynamic panel data models with additive unobserved individual-specific effects. The models are specified by moment restrictions. The class includes the panel data AR(p) model and panel smooth transition models. We derive an efficient set...... of moment restrictions for estimation and apply the results to estimation of panel smooth transition models with fixed effects, where the transition may be determined endogenously. The performance of the GMM estimator, both in terms of estimation precision and forecasting performance, is examined in a Monte...

  4. On the Dynamics of Two-Dimensional Capillary-Gravity Solitary Waves with a Linear Shear Current

    Directory of Open Access Journals (Sweden)

    Dali Guo

    2014-01-01

    Full Text Available The numerical study of the dynamics of two-dimensional capillary-gravity solitary waves on a linear shear current is presented in this paper. The numerical method is based on the time-dependent conformal mapping. The stability of different kinds of solitary waves is considered. Both depression wave and large amplitude elevation wave are found to be stable, while small amplitude elevation wave is unstable to the small perturbation, and it finally evolves to be a depression wave with tails, which is similar to the irrotational capillary-gravity waves.

  5. Observation of a structural transition for coulomb crystals in a linear Paul trap

    DEFF Research Database (Denmark)

    Kjærgaard, N.; Drewsen, M.

    2003-01-01

    A structural transition for laser cooled ion Coulomb crystals in a linear Paul trap just above the stability limit of parametrically resonant excitation of bulk plasma modes has been observed. In contrast to the usual spheroidal shell structures present below the stability limit, the ions arrange...... in a "string-of-disks" configuration. The spheroidal envelopes of the string-of-disks structures are in agreement with results from cold fluid theory usually valid for ion Coulomb crystals if the ion systems are assumed to be rotating collectively....

  6. Observation of a structural transition for Coulomb crystals in a linear Paul trap

    International Nuclear Information System (INIS)

    Kjaergaard, Niels; Drewsen, Michael

    2003-01-01

    A structural transition for laser cooled ion Coulomb crystals in a linear Paul trap just above the stability limit of parametrically resonant excitation of bulk plasma modes has been observed. In contrast to the usual spheroidal shell structures present below the stability limit, the ions arrange in a 'string-of-disks' configuration. The spheroidal envelopes of the string-of-disks structures are in agreement with results from cold fluid theory usually valid for ion Coulomb crystals if the ion systems are assumed to be rotating collectively

  7. A Modern Picture of Barred Galaxy Dynamics

    Science.gov (United States)

    Petersen, Michael; Weinberg, Martin; Katz, Neal

    2018-01-01

    Observations of disk galaxies suggest that bars are responsible for altering global galaxy parameters (e.g. structures, gas fraction, star formation rate). The canonical understanding of the mechanisms underpinning bar-driven secular dynamics in disk galaxies has been largely built upon the analysis of linear theory, despite galactic bars being clearly demonstrated to be nonlinear phenomena in n-body simulations. We present simulations of barred Milky Way-like galaxy models designed to elucidate nonlinear barred galaxy dynamics. We have developed two new methodologies for analyzing n-body simulations that give the best of both powerful analytic linear theory and brute force simulation analysis: orbit family identification and multicomponent torque analysis. The software will be offered publicly to the community for their own simulation analysis.The orbit classifier reveals that the details of kinematic components in galactic disks (e.g. the bar, bulge, thin disk, and thick disk components) are powerful discriminators of evolutionary paradigms (i.e. violent instabilities and secular evolution) as well as the basic parameters of the dark matter halo (mass distribution, angular momentum distribution). Multicomponent torque analysis provides a thorough accounting of the transfer of angular momentum between orbits, global patterns, and distinct components in order to better explain the underlying physics which govern the secular evolution of barred disk galaxies.Using these methodologies, we are able to identify the successes and failures of linear theory and traditional n-body simulations en route to a detailed understanding of the control bars exhibit over secular evolution in galaxies. We present explanations for observed physical and velocity structures in observations of barred galaxies alongside predictions for how structures will vary with dynamical properties from galaxy to galaxy as well as over the lifetime of a galaxy, finding that the transfer of angular

  8. Earthquake related dynamic groundwater pressure changes observed at the Kamaishi Mine

    International Nuclear Information System (INIS)

    Sasaki, Shunji; Yasuike, Shinji; Komada, Hiroya; Kobayashi, Yoshimasa; Kawamura, Makoto; Aoki, Kazuhiro

    1999-01-01

    From 342 seismic records observed at the Kamaishi Mine form 1990 to 1998, a total of 92 data whose acceleration is greater than 1 gal or ground water pressure is greater than 1 kPa were selected and dynamic ground water pressure changes associated with earthquakes were studied. The results obtained are as follows: (1) A total of 27 earthquakes accompanied by static ground water pressure changes were observed. Earthquake-related static ground water pressure changes are smaller than 1/10 of the annual range of ground water pressure changes. There is also a tendency that the ground water pressure changes recovers to its original trend in several weeks after earthquakes. (2) Dynamic ground water pressure changes associated with earthquakes occur when P-waves arrive. However, the largest dynamic ground water pressure changes occur on S-wave part arrivals where the amplitude of seismic wave is the largest. A positive correlation is recognized between the maximum value of velocity wave form and that of dynamic ground water pressure changes. (3) The characteristic of dynamic change in ground water pressure due to earthquakes can be explained qualitatively by mechanism in which the P-wave converted from an incident SV wave propagates along the borehole. (author)

  9. Compressor Surge Control Design Using Linear Matrix Inequality Approach

    OpenAIRE

    Uddin, Nur; Gravdahl, Jan Tommy

    2017-01-01

    A novel design for active compressor surge control system (ASCS) using linear matrix inequality (LMI) approach is presented and including a case study on piston-actuated active compressor surge control system (PAASCS). The non-linear system dynamics of the PAASCS is transformed into linear parameter varying (LPV) system dynamics. The system parameters are varying as a function of the compressor performance curve slope. A compressor surge stabilization problem is then formulated as a LMI probl...

  10. Fault Diagnosis in Dynamic Systems Using Fuzzy Interacting Observers

    Directory of Open Access Journals (Sweden)

    N. V. Kolesov

    2013-01-01

    Full Text Available A method of fault diagnosis in dynamic systems based on a fuzzy approach is proposed. The new method possesses two basic specific features which distinguish it from the other known fuzzy methods based on the application of fuzzy logic and a bank of state observers. First, this method uses a bank of interacting observers instead of traditional independent observers. The second specific feature of the proposed method is the assumption that there is no strict boundary between the serviceable and disabled technical states of the system, which makes it possible to specify a decision making rule for fault diagnosis.

  11. SAP-4, Static and Dynamic Linear System Stress Analysis for Various Structures

    International Nuclear Information System (INIS)

    Zawadzki, S.

    1984-01-01

    1 - Description of problem or function: SAP4 is a structural analysis program for determining the static and dynamic response of linear systems. The structural systems to be analyzed may be composed of combinations of a number of different structural elements. Currently the program contains the following element types - (a) three-dimensional truss element, (b) three-dimensional beam element, (c) plane stress and plane strain element, (d) two-dimensional axisymmetric solid, (e) three-dimensional solid, (f) variable-number nodes thick shell and three-dimensional element, (g) thin-plate or thin-shell element, (h) boundary element, and (i) pipe element (tangent and bend). 2 - Method of solution: The formation of the structure matrices is carried out in the same way in a static or dynamic analysis. The static analysis is continued by solving the equations of equilibrium followed by the computation of element stresses. In a dynamic analysis the choice is between frequency calculations only, frequency calculations followed by response history analysis, frequency calculations followed by response spectrum analysis, or response history analysis by direct integration. To obtain the frequencies and vibration mode shapes, solution routines are used which calculate the required eigenvalues and eigenvectors directly without a transformation of the structure stiffness matrix and mass matrix to a reduced form. To perform the direct integration an unconditionally stable scheme is used, which also operates on the original structure stiffness matrix and mass matrix. In this manner the program operation and input data required for a dynamic analysis are simple extensions of those needed for a static analysis. 3 - Restrictions on the complexity of the problem: The capacity of the program depends mainly on the total number of nodal points in the system, the number of eigenvalues needed in the dynamic analysis, and the computer used. There is practically no restriction on the number of

  12. A high sensitive 66 dB linear dynamic range receiver for 3-D laser radar

    Science.gov (United States)

    Ma, Rui; Zheng, Hao; Zhu, Zhangming

    2017-08-01

    This study presents a CMOS receiver chip realized in 0.18 μm standard CMOS technology and intended for high precision 3-D laser radar. The chip includes an adjustable gain transimpedance pre-amplifier, a post-amplifier and two timing comparators. An additional feedback is employed in the regulated cascode transimpedance amplifier to decrease the input impedance, and a variable gain transimpedance amplifier controlled by digital switches and analog multiplexer is utilized to realize four gain modes, extending the input dynamic range. The measurement shows that the highest transimpedance of the channel is 50 k {{Ω }}, the uncompensated walk error is 1.44 ns in a wide linear dynamic range of 66 dB (1:2000), and the input referred noise current is 2.3 pA/\\sqrt{{Hz}} (rms), resulting in a very low detectable input current of 1 μA with SNR = 5.

  13. Non linear identification applied to PWR steam generators

    International Nuclear Information System (INIS)

    Poncet, B.

    1982-11-01

    For the precise industrial purpose of PWR nuclear power plant steam generator water level control, a natural method is developed where classical techniques seem not to be efficient enough. From this essentially non-linear practical problem, an input-output identification of dynamic systems is proposed. Through Homodynamic Systems, characterized by a regularity property which can be found in most industrial processes with balance set, state form realizations are built, which resolve the exact joining of local dynamic behaviors, in both discrete and continuous time cases, avoiding any load parameter. Specifically non-linear modelling analytical means, which have no influence on local joined behaviors, are also pointed out. Non-linear autoregressive realizations allow us to perform indirect adaptive control under constraint of an admissible given dynamic family [fr

  14. A Simple Linear Regression Method for Quantitative Trait Loci Linkage Analysis With Censored Observations

    OpenAIRE

    Anderson, Carl A.; McRae, Allan F.; Visscher, Peter M.

    2006-01-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using...

  15. Nonlinear dynamics and cavity cooling of levitated nanoparticles

    Science.gov (United States)

    Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.

    2016-09-01

    We investigate a dynamic nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. An optical cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, whilst simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. Through the rich sideband structure displayed by the cavity output we can observe cooling of the linear and non-linear particle's motion. Here we present an experimental setup which allows full control over the cavity resonant frequencies, and shows cooling of the particle's motion as a function of the detuning. This work paves the way to strong-coupled quantum dynamics between a cavity and a mesoscopic object largely decoupled from its environment.

  16. Communication: Relationship between solute localization and diffusion in a dynamically constrained polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, David M.; Jawahery, Sudi; Silverstein, Joshua S.; Forrey, Christopher [Center for Devices and Radiological Health, FDA, Silver Spring, Maryland 20993 (United States)

    2016-07-21

    We investigate the link between dynamic localization, characterized by the Debye–Waller factor, 〈u{sup 2}〉, and solute self-diffusivity, D, in a polymer system using atomistic molecular dynamics simulations and vapor sorption experiments. We find a linear relationship between lnD and 1/〈u{sup 2}〉 over more than four decades of D, encompassing most of the glass formation regime. The observed linearity is consistent with the Langevin dynamics in a periodically varying potential field and may offer a means to rapidly assess diffusion based on the characterization of dynamic localization.

  17. Observation and control of coherent torsional dynamics in a quinquethiophene molecule.

    Science.gov (United States)

    Cirmi, Giovanni; Brida, Daniele; Gambetta, Alessio; Piacenza, Manuel; Della Sala, Fabio; Favaretto, Laura; Cerullo, Giulio; Lanzani, Guglielmo

    2010-07-28

    By applying femtosecond pump-probe spectroscopy to a substituted quinquethiophene molecule in solution, we observe in the time domain the coherent torsional dynamics that drives planarization of the excited state. Our interpretation is based on numerical modeling of the ground and excited state potential energy surfaces and simulation of wavepacket dynamics, which reveals two symmetric excited state deactivation pathways per oscillation period. We use the acquired knowledge on torsional dynamics to coherently control the excited state population with a pump-dump scheme, exploiting the non-stationary Franck-Condon overlap between ground and excited states.

  18. Transmission of linear regression patterns between time series: from relationship in time series to complex networks.

    Science.gov (United States)

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui

    2014-07-01

    The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.

  19. LINEAR AND NON-LINEAR ANALYSES OF CABLE-STAYED STEEL FRAME SUBJECTED TO SEISMIC ACTIONS

    Directory of Open Access Journals (Sweden)

    Marko Đuran

    2017-01-01

    Full Text Available In this study, linear and non-linear dynamic analyses of a cable-stayed steel frame subjected to seismic actions are performed. The analyzed cable-stayed frame is the main supporting structure of a wide-span sports hall. Since the complex dynamic behavior of cable-stayed structures results in significant geometric nonlinearity, a nonlinear time history analysis is conducted. As a reference, an analysis using the European standard approach, the so-called linear modal response spectrum method, is also performed. The analyses are conducted for different seismic actions considering dependence on the response spectrums for various ground types and the corresponding artificially generated accelerograms. Despite fundamental differences between the two analyses, results indicate that the modal response spectrum analysis is surprisingly consistent with the internal forces and bending moment distributions of the nonlinear time history analysis. However, significantly smaller values of bending moments, internal forces, and displacements are obtained with the response spectrum analysis.

  20. On structural identifiability analysis of the cascaded linear dynamic systems in isotopically non-stationary 13C labelling experiments.

    Science.gov (United States)

    Lin, Weilu; Wang, Zejian; Huang, Mingzhi; Zhuang, Yingping; Zhang, Siliang

    2018-06-01

    The isotopically non-stationary 13C labelling experiments, as an emerging experimental technique, can estimate the intracellular fluxes of the cell culture under an isotopic transient period. However, to the best of our knowledge, the issue of the structural identifiability analysis of non-stationary isotope experiments is not well addressed in the literature. In this work, the local structural identifiability analysis for non-stationary cumomer balance equations is conducted based on the Taylor series approach. The numerical rank of the Jacobian matrices of the finite extended time derivatives of the measured fractions with respect to the free parameters is taken as the criterion. It turns out that only one single time point is necessary to achieve the structural identifiability analysis of the cascaded linear dynamic system of non-stationary isotope experiments. The equivalence between the local structural identifiability of the cascaded linear dynamic systems and the local optimum condition of the nonlinear least squares problem is elucidated in the work. Optimal measurements sets can then be determined for the metabolic network. Two simulated metabolic networks are adopted to demonstrate the utility of the proposed method. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. On the non-linear dynamics of potential relaxation oscillations in bounded plasmas

    International Nuclear Information System (INIS)

    Krssak, M.; Skalny, J.D.; Gyergyek, T.; Cercek, M.

    2007-01-01

    Plasma in a 1-dimensional diode is studied theoretically and the computer simulations are used for verification of the theoretical model. When collector in the diode is biased positively, a double-layer is created in the system and consequently, we are able to observe oscillations of the potential, density and other plasma parameters. When external periodic forcing is applied, spectra of these oscillations are changed and effects of synchronisation and periodic pulling can be observed. Both of these effects are of non-linear nature and a good explanation is found using the analogy with Van der Pol oscillators. Following [1] and [2] approximate analytical solutions are found and then compared with computer simulations obtained using a 1-dimensional particle-in-cell code XPDP1. (author)

  2. Mobile Charge Generation Dynamics in P3HT:PCBM Observed by Time-Resolved Terahertz Spectroscopy

    DEFF Research Database (Denmark)

    Cooke, D. G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2012-01-01

    Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale.......Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale....

  3. Mobile charge generation dynamics in P3HT: PCBM observed by time-resolved terahertz spectroscopy

    DEFF Research Database (Denmark)

    Cooke, D. G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2012-01-01

    Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale.......Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale....

  4. From 6D superconformal field theories to dynamic gauged linear sigma models

    Science.gov (United States)

    Apruzzi, Fabio; Hassler, Falk; Heckman, Jonathan J.; Melnikov, Ilarion V.

    2017-09-01

    Compactifications of six-dimensional (6D) superconformal field theories (SCFTs) on four- manifolds generate a large class of novel two-dimensional (2D) quantum field theories. We consider in detail the case of the rank-one simple non-Higgsable cluster 6D SCFTs. On the tensor branch of these theories, the gauge group is simple and there are no matter fields. For compactifications on suitably chosen Kähler surfaces, we present evidence that this provides a method to realize 2D SCFTs with N =(0 ,2 ) supersymmetry. In particular, we find that reduction on the tensor branch of the 6D SCFT yields a description of the same 2D fixed point that is described in the UV by a gauged linear sigma model (GLSM) in which the parameters are promoted to dynamical fields, that is, a "dynamic GLSM" (DGLSM). Consistency of the model requires the DGLSM to be coupled to additional non-Lagrangian sectors obtained from reduction of the antichiral two-form of the 6D theory. These extra sectors include both chiral and antichiral currents, as well as spacetime filling noncritical strings of the 6D theory. For each candidate 2D SCFT, we also extract the left- and right-moving central charges in terms of data of the 6D SCFT and the compactification manifold.

  5. Comparison of linear and nonlinear implementation of the compartmental tissue uptake model for dynamic contrast-enhanced MRI.

    Science.gov (United States)

    Kallehauge, Jesper F; Sourbron, Steven; Irving, Benjamin; Tanderup, Kari; Schnabel, Julia A; Chappell, Michael A

    2017-06-01

    Fitting tracer kinetic models using linear methods is much faster than using their nonlinear counterparts, although this comes often at the expense of reduced accuracy and precision. The aim of this study was to derive and compare the performance of the linear compartmental tissue uptake (CTU) model with its nonlinear version with respect to their percentage error and precision. The linear and nonlinear CTU models were initially compared using simulations with varying noise and temporal sampling. Subsequently, the clinical applicability of the linear model was demonstrated on 14 patients with locally advanced cervical cancer examined with dynamic contrast-enhanced magnetic resonance imaging. Simulations revealed equal percentage error and precision when noise was within clinical achievable ranges (contrast-to-noise ratio >10). The linear method was significantly faster than the nonlinear method, with a minimum speedup of around 230 across all tested sampling rates. Clinical analysis revealed that parameters estimated using the linear and nonlinear CTU model were highly correlated (ρ ≥ 0.95). The linear CTU model is computationally more efficient and more stable against temporal downsampling, whereas the nonlinear method is more robust to variations in noise. The two methods may be used interchangeably within clinical achievable ranges of temporal sampling and noise. Magn Reson Med 77:2414-2423, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  6. Hydration dynamics in water clusters via quantum molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Turi, László, E-mail: turi@chem.elte.hu [Department of Physical Chemistry, Eötvös Loránd University, Budapest 112, P. O. Box 32, H-1518 (Hungary)

    2014-05-28

    We have investigated the hydration dynamics in size selected water clusters with n = 66, 104, 200, 500, and 1000 water molecules using molecular dynamics simulations. To study the most fundamental aspects of relaxation phenomena in clusters, we choose one of the simplest, still realistic, quantum mechanically treated test solute, an excess electron. The project focuses on the time evolution of the clusters following two processes, electron attachment to neutral equilibrated water clusters and electron detachment from an equilibrated water cluster anion. The relaxation dynamics is significantly different in the two processes, most notably restoring the equilibrium final state is less effective after electron attachment. Nevertheless, in both scenarios only minor cluster size dependence is observed. Significantly different relaxation patterns characterize electron detachment for interior and surface state clusters, interior state clusters relaxing significantly faster. This observation may indicate a potential way to distinguish surface state and interior state water cluster anion isomers experimentally. A comparison of equilibrium and non-equilibrium trajectories suggests that linear response theory breaks down for electron attachment at 200 K, but the results converge to reasonable agreement at higher temperatures. Relaxation following electron detachment clearly belongs to the linear regime. Cluster relaxation was also investigated using two different computational models, one preferring cavity type interior states for the excess electron in bulk water, while the other simulating non-cavity structure. While the cavity model predicts appearance of several different hydrated electron isomers in agreement with experiment, the non-cavity model locates only cluster anions with interior excess electron distribution. The present simulations show that surface isomers computed with the cavity predicting potential show similar dynamical behavior to the interior clusters of

  7. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    Science.gov (United States)

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  8. Satellite observation of particulate organic carbon dynamics in ...

    Science.gov (United States)

    Particulate organic carbon (POC) plays an important role in coastal carbon cycling and the formation of hypoxia. Yet, coastal POC dynamics are often poorly understood due to a lack of long-term POC observations and the complexity of coastal hydrodynamic and biogeochemical processes that influence POC sources and sinks. Using field observations and satellite ocean color products, we developed a nw multiple regression algorithm to estimate POC on the Louisiana Continental Shelf (LCS) from satellite observations. The algorithm had reliable performance with mean relative error (MRE) of ?40% and root mean square error (RMSE) of ?50% for MODIS and SeaWiFS images for POC ranging between ?80 and ?1200 mg m23, and showed similar performance for a large estuary (Mobile Bay). Substantial spatiotemporal variability in the satellite-derived POC was observed on the LCS, with high POC found on the inner shelf (satellite data with carefully developed algorithms can greatly increase

  9. Observing Bridge Dynamic Deflection in Green Time by Information Technology

    Science.gov (United States)

    Yu, Chengxin; Zhang, Guojian; Zhao, Yongqian; Chen, Mingzhi

    2018-01-01

    As traditional surveying methods are limited to observe bridge dynamic deflection; information technology is adopted to observe bridge dynamic deflection in Green time. Information technology used in this study means that we use digital cameras to photograph the bridge in red time as a zero image. Then, a series of successive images are photographed in green time. Deformation point targets are identified and located by Hough transform. With reference to the control points, the deformation values of these deformation points are obtained by differencing the successive images with a zero image, respectively. Results show that the average measurement accuracies of C0 are 0.46 pixels, 0.51 pixels and 0.74 pixels in X, Z and comprehensive direction. The average measurement accuracies of C1 are 0.43 pixels, 0.43 pixels and 0.67 pixels in X, Z and comprehensive direction in these tests. The maximal bridge deflection is 44.16mm, which is less than 75mm (Bridge deflection tolerance value). Information technology in this paper can monitor bridge dynamic deflection and depict deflection trend curves of the bridge in real time. It can provide data support for the site decisions to the bridge structure safety.

  10. Dynamics of coupled phantom and tachyon fields

    Energy Technology Data Exchange (ETDEWEB)

    Shahalam, M. [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Pathak, S.D.; Li, Shiyuan [Shandong University, School of Physics, Jinan (China); Myrzakulov, R. [Eurasian National University, Department of General and Theoretical Physics, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Wang, Anzhong [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Baylor University, Department of Physics, GCAP-CASPER, Waco, TX (United States)

    2017-10-15

    In this paper, we apply the dynamical analysis to a coupled phantom field with scaling potential taking particular forms of the coupling (linear and combination of linear), and present phase space analysis. We investigate if there exists a late time accelerated scaling attractor that has the ratio of dark energy and dark matter densities of the order one. We observe that the scrutinized couplings cannot alleviate the coincidence problem, however, they acquire stable late time accelerated solutions. We also discuss a coupled tachyon field with inverse square potential assuming linear coupling. (orig.)

  11. Dynamics of coupled phantom and tachyon fields

    International Nuclear Information System (INIS)

    Shahalam, M.; Pathak, S.D.; Li, Shiyuan; Myrzakulov, R.; Wang, Anzhong

    2017-01-01

    In this paper, we apply the dynamical analysis to a coupled phantom field with scaling potential taking particular forms of the coupling (linear and combination of linear), and present phase space analysis. We investigate if there exists a late time accelerated scaling attractor that has the ratio of dark energy and dark matter densities of the order one. We observe that the scrutinized couplings cannot alleviate the coincidence problem, however, they acquire stable late time accelerated solutions. We also discuss a coupled tachyon field with inverse square potential assuming linear coupling. (orig.)

  12. Inferring network topology from complex dynamics

    International Nuclear Information System (INIS)

    Shandilya, Srinivas Gorur; Timme, Marc

    2011-01-01

    Inferring the network topology from dynamical observations is a fundamental problem pervading research on complex systems. Here, we present a simple, direct method for inferring the structural connection topology of a network, given an observation of one collective dynamical trajectory. The general theoretical framework is applicable to arbitrary network dynamical systems described by ordinary differential equations. No interference (external driving) is required and the type of dynamics is hardly restricted in any way. In particular, the observed dynamics may be arbitrarily complex; stationary, invariant or transient; synchronous or asynchronous and chaotic or periodic. Presupposing a knowledge of the functional form of the dynamical units and of the coupling functions between them, we present an analytical solution to the inverse problem of finding the network topology from observing a time series of state variables only. Robust reconstruction is achieved in any sufficiently long generic observation of the system. We extend our method to simultaneously reconstructing both the entire network topology and all parameters appearing linear in the system's equations of motion. Reconstruction of network topology and system parameters is viable even in the presence of external noise that distorts the original dynamics substantially. The method provides a conceptually new step towards reconstructing a variety of real-world networks, including gene and protein interaction networks and neuronal circuits.

  13. Robust Adaptive Dynamic Programming of Two-Player Zero-Sum Games for Continuous-Time Linear Systems.

    Science.gov (United States)

    Fu, Yue; Fu, Jun; Chai, Tianyou

    2015-12-01

    In this brief, an online robust adaptive dynamic programming algorithm is proposed for two-player zero-sum games of continuous-time unknown linear systems with matched uncertainties, which are functions of system outputs and states of a completely unknown exosystem. The online algorithm is developed using the policy iteration (PI) scheme with only one iteration loop. A new analytical method is proposed for convergence proof of the PI scheme. The sufficient conditions are given to guarantee globally asymptotic stability and suboptimal property of the closed-loop system. Simulation studies are conducted to illustrate the effectiveness of the proposed method.

  14. Long-range correlation in synchronization and syncopation tapping: a linear phase correction model.

    Directory of Open Access Journals (Sweden)

    Didier Delignières

    Full Text Available We propose in this paper a model for accounting for the increase in long-range correlations observed in asynchrony series in syncopation tapping, as compared with synchronization tapping. Our model is an extension of the linear phase correction model for synchronization tapping. We suppose that the timekeeper represents a fractal source in the system, and that a process of estimation of the half-period of the metronome, obeying a random-walk dynamics, combines with the linear phase correction process. Comparing experimental and simulated series, we show that our model allows accounting for the experimentally observed pattern of serial dependence. This model complete previous modeling solutions proposed for self-paced and synchronization tapping, for a unifying framework of event-based timing.

  15. Option Valuation with Observable Volatility and Jump Dynamics

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunou, Bruno; Jeon, Yoontae

    Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity...... dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing...... for straightforward filtering and estimation of the model. Our model belongs to the affine class enabling us to derive the conditional characteristic function so that option values can be computed rapidly without simulation. When estimated on S&P500 index options and returns the new model performs well compared...

  16. Constraining Relativistic Generalizations of Modified Newtonian Dynamics with Gravitational Waves.

    Science.gov (United States)

    Chesler, Paul M; Loeb, Abraham

    2017-07-21

    In the weak-field limit of general relativity, gravitational waves obey linear equations and propagate at the speed of light. These properties of general relativity are supported by the observation of ultrahigh-energy cosmic rays as well as by LIGO's recent detection of gravitation waves. We argue that two existing relativistic generalizations of modified Newtonian dynamics, namely, the generalized Einstein-aether theory and bimetric modified Newtonian dynamics, display fatal inconsistencies with these observations.

  17. Robust Adaptive Stabilization of Linear Time-Invariant Dynamic Systems by Using Fractional-Order Holds and Multirate Sampling Controls

    Directory of Open Access Journals (Sweden)

    S. Alonso-Quesada

    2010-01-01

    Full Text Available This paper presents a strategy for designing a robust discrete-time adaptive controller for stabilizing linear time-invariant (LTI continuous-time dynamic systems. Such systems may be unstable and noninversely stable in the worst case. A reduced-order model is considered to design the adaptive controller. The control design is based on the discretization of the system with the use of a multirate sampling device with fast-sampled control signal. A suitable on-line adaptation of the multirate gains guarantees the stability of the inverse of the discretized estimated model, which is used to parameterize the adaptive controller. A dead zone is included in the parameters estimation algorithm for robustness purposes under the presence of unmodeled dynamics in the controlled dynamic system. The adaptive controller guarantees the boundedness of the system measured signal for all time. Some examples illustrate the efficacy of this control strategy.

  18. Beam dynamics verification in linacs of linear colliders

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1989-01-01

    The SLAC two-mile linac has been upgraded to accelerate high current, low emittance electron and positron beams to be used in the SLAC Linear Collider (SLC). After the upgrade was completed, extensive beam studies were made to verify that the design criteria have been met. These tests involved the measurement of emittance, beam phase space orientation, energy dispersion, trajectory oscillations, bunch length, energy spectrum and wakefields. The methods, the systems and the data cross checks are compared for the various measurements. Implications for the next linear collider are discussed. 12 refs., 13 figs., 2 tabs

  19. Linearly scaling and almost Hamiltonian dielectric continuum molecular dynamics simulations through fast multipole expansions

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludig–Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)

    2015-11-14

    Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.

  20. Nonlinear price impact from linear models

    Science.gov (United States)

    Patzelt, Felix; Bouchaud, Jean-Philippe

    2017-12-01

    The impact of trades on asset prices is a crucial aspect of market dynamics for academics, regulators, and practitioners alike. Recently, universal and highly nonlinear master curves were observed for price impacts aggregated on all intra-day scales (Patzelt and Bouchaud 2017 arXiv:1706.04163). Here we investigate how well these curves, their scaling, and the underlying return dynamics are captured by linear ‘propagator’ models. We find that the classification of trades as price-changing versus non-price-changing can explain the price impact nonlinearities and short-term return dynamics to a very high degree. The explanatory power provided by the change indicator in addition to the order sign history increases with increasing tick size. To obtain these results, several long-standing technical issues for model calibration and testing are addressed. We present new spectral estimators for two- and three-point cross-correlations, removing the need for previously used approximations. We also show when calibration is unbiased and how to accurately reveal previously overlooked biases. Therefore, our results contribute significantly to understanding both recent empirical results and the properties of a popular class of impact models.

  1. Duality in linearized gravity

    International Nuclear Information System (INIS)

    Henneaux, Marc; Teitelboim, Claudio

    2005-01-01

    We show that duality transformations of linearized gravity in four dimensions, i.e., rotations of the linearized Riemann tensor and its dual into each other, can be extended to the dynamical fields of the theory so as to be symmetries of the action and not just symmetries of the equations of motion. Our approach relies on the introduction of two superpotentials, one for the spatial components of the spin-2 field and the other for their canonically conjugate momenta. These superpotentials are two-index, symmetric tensors. They can be taken to be the basic dynamical fields and appear locally in the action. They are simply rotated into each other under duality. In terms of the superpotentials, the canonical generator of duality rotations is found to have a Chern-Simons-like structure, as in the Maxwell case

  2. Robustness of Linear Systems towards Multi-Dissipative Pertubations

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Poulsen, Niels Kjølstad

    1997-01-01

    We consider the question of robust stability of a linear time invariant plant subject to dynamic perturbations, which are dissipative in the sense of Willems with respect to several quadratic supply rates. For instance, parasitic dynamics are often both small gain and passive. We reduce several...... robustness analysis questions to linear matrix inequalities: robust stability, robust H2 performance and robust performance in presence of disturbances with finite signal-to-noise ratios...

  3. Field-reversed configuration produced by a linear theta-pinch, Tupa-1

    International Nuclear Information System (INIS)

    Kayama, M.E.; Boeckelmann, H.K.; Sakanaka, P.H.; Machida, M.

    1987-01-01

    The formation of field reversed configuration, FRC, in one meter mirrorless linear theta-pinch device Tupa-I was observed. This configuration was studied during the first half magnetic cycle of ringing main bank discharge using magnetic probes. The separatrix radius by the exclude flux probe and the ion temperature by visible spectroscopy were measured. The plasma dynamics was observed by the image converter camera. A clear indication of the formation of FRC due to reconnection of the antiparallel bias to the main field and a fast reconnection, less than 0.2 microsec, that is explained in terms of forced reconnection driven by the Kruskal-Schwarzschild instability, are also observed. (author) [pt

  4. Dynamic Surface Adaptive Robust Control of Unmanned Marine Vehicles with Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Pengchao Zhang

    2018-01-01

    Full Text Available This paper presents a dynamic surface adaptive robust control method with disturbance observer for unmanned marine vehicles (UMV. It uses adaptive law to estimate and compensate the disturbance observer error. Dynamic surface is introduced to solve the “differential explosion” caused by the virtual control derivation in traditional backstepping method. The final controlled system is proved to be globally uniformly bounded based on Lyapunov stability theory. Simulation results illustrate the effectiveness of the proposed controller, which can realize the three-dimensional trajectory tracking for UMV with the systematic uncertainty and time-varying disturbances.

  5. The effect of the observer vantage point on perceived distortions in linear perspective images.

    Science.gov (United States)

    Todorović, Dejan

    2009-01-01

    Some features of linear perspective images may look distorted. Such distortions appear in two drawings by Jan Vredeman de Vries involving perceived elliptical, instead of circular, pillars and tilted, instead of upright, columns. Distortions may be due to factors intrinsic to the images, such as violations of the so-called Perkins's laws, or factors extrinsic to them, such as observing the images from positions different from their center of projection. When the correct projection centers for the two drawings were reconstructed, it was found that they were very close to the images and, therefore, practically unattainable in normal observation. In two experiments, enlarged versions of images were used as stimuli, making the positions of the projection centers attainable for observers. When observed from the correct positions, the perceived distortions disappeared or were greatly diminished. Distortions perceived from other positions were smaller than would be predicted by geometrical analyses, possibly due to flatness cues in the images. The results are relevant for the practical purposes of creating faithful impressions of 3-D spaces using 2-D images.

  6. A Hierarchical and Dynamic Seascape Framework for Scaling and Comparing Ocean Biodiversity Observations

    Science.gov (United States)

    Kavanaugh, M.; Muller-Karger, F. E.; Montes, E.; Santora, J. A.; Chavez, F.; Messié, M.; Doney, S. C.

    2016-02-01

    The pelagic ocean is a complex system in which physical, chemical and biological processes interact to shape patterns on multiple spatial and temporal scales and levels of ecological organization. Monitoring and management of marine seascapes must consider a hierarchical and dynamic mosaic, where the boundaries, extent, and location of features change with time. As part of a Marine Biodiversity Observing Network demonstration project, we conducted a multiscale classification of dynamic coastal seascapes in the northeastern Pacific and Gulf of Mexico using multivariate satellite and modeled data. Synoptic patterns were validated using mooring and ship-based observations that spanned multiple trophic levels and were collected as part of several long-term monitoring programs, including the Monterey Bay and Florida Keys National Marine Sanctuaries. Seascape extent and habitat diversity varied as a function of both seasonal and interannual forcing. We discuss the patterns of in situ observations in the context of seascape dynamics and the effect on rarefaction, spatial patchiness, and tracking and comparing ecosystems through time. A seascape framework presents an effective means to translate local biodiversity measurements to broader spatiotemporal scales, scales relevant for modeling the effects of global change and enabling whole-ecosystem management in the dynamic ocean.

  7. Observing Clonal Dynamics across Spatiotemporal Axes: A Prelude to Quantitative Fitness Models for Cancer.

    Science.gov (United States)

    McPherson, Andrew W; Chan, Fong Chun; Shah, Sohrab P

    2018-02-01

    The ability to accurately model evolutionary dynamics in cancer would allow for prediction of progression and response to therapy. As a prelude to quantitative understanding of evolutionary dynamics, researchers must gather observations of in vivo tumor evolution. High-throughput genome sequencing now provides the means to profile the mutational content of evolving tumor clones from patient biopsies. Together with the development of models of tumor evolution, reconstructing evolutionary histories of individual tumors generates hypotheses about the dynamics of evolution that produced the observed clones. In this review, we provide a brief overview of the concepts involved in predicting evolutionary histories, and provide a workflow based on bulk and targeted-genome sequencing. We then describe the application of this workflow to time series data obtained for transformed and progressed follicular lymphomas (FL), and contrast the observed evolutionary dynamics between these two subtypes. We next describe results from a spatial sampling study of high-grade serous (HGS) ovarian cancer, propose mechanisms of disease spread based on the observed clonal mixtures, and provide examples of diversification through subclonal acquisition of driver mutations and convergent evolution. Finally, we state implications of the techniques discussed in this review as a necessary but insufficient step on the path to predictive modelling of disease dynamics. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  8. 1988 linear accelerator conference proceedings

    International Nuclear Information System (INIS)

    1989-06-01

    This report contains papers presented at the 1988 Linear Accelerator Conference. A few topics covered are beam dynamics; beam transport; superconducting components; free electron lasers; ion sources; and klystron research

  9. Innervation zones of fasciculating motor units: observations by a linear electrode array.

    Science.gov (United States)

    Jahanmiri-Nezhad, Faezeh; Barkhaus, Paul E; Rymer, William Z; Zhou, Ping

    2015-01-01

    This study examines the innervation zone (IZ) in the biceps brachii muscle in healthy subjects and those with amyotrophic lateral sclerosis (ALS) using a 20-channel linear electromyogram (EMG) electrode array. Raster plots of individual waveform potentials were studied to estimate the motor unit IZ. While this work mainly focused on fasciculation potentials (FPs), a limited number of motor unit potentials (MUPs) from voluntary activity of 12 healthy and seven ALS subjects were also examined. Abnormal propagation of MUPs and scattered IZs were observed in fasciculating units, compared with voluntarily activated MUPs in healthy and ALS subjects. These findings can be related to muscle fiber reinnervation following motor neuron degeneration in ALS and the different origin sites of FPs compared with voluntary MUPs.

  10. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra

    International Nuclear Information System (INIS)

    Frost, Gerald V; Epstein, Howard E; Walker, Donald A

    2014-01-01

    Widespread increases in Arctic tundra productivity have been documented for decades using coarse-scale satellite observations, but finer-scale observations indicate that changes have been very uneven, with a high degree of landscape- and regional-scale heterogeneity. Here we analyze time-series of the Normalized Difference Vegetation Index (NDVI) observed by Landsat (1984–2012), to assess landscape- and regional-scale variability of tundra vegetation dynamics in the northwest Siberian Low Arctic, a little-studied region with varied soils, landscape histories, and permafrost attributes. We also estimate spatio-temporal rates of land-cover change associated with expansion of tall alder (Alnus) shrublands, by integrating Landsat time-series with very-high-resolution imagery dating to the mid-1960s. We compiled Landsat time-series for eleven widely-distributed landscapes, and performed linear regression of NDVI values on a per-pixel basis. We found positive net NDVI trends (‘greening’) in nine of eleven landscapes. Net greening occurred in alder shrublands in all landscapes, and strong greening tended to correspond to shrublands that developed since the 1960s. Much of the spatial variability of greening within landscapes was linked to landscape physiography and permafrost attributes, while between-landscape variability largely corresponded to differences in surficial geology. We conclude that continued increases in tundra productivity in the region are likely in upland tundra landscapes with fine-textured, cryoturbated soils; these areas currently tend to support discontinuous vegetation cover, but are highly susceptible to rapid increases in vegetation cover, as well as land-cover changes associated with the development of tall shrublands. (paper)

  11. Influence of fusion dynamics on fission observables: A multidimensional analysis

    Science.gov (United States)

    Schmitt, C.; Mazurek, K.; Nadtochy, P. N.

    2018-01-01

    An attempt to unfold the respective influence of the fusion and fission stages on typical fission observables, and namely the neutron prescission multiplicity, is proposed. A four-dimensional dynamical stochastic Langevin model is used to calculate the decay by fission of excited compound nuclei produced in a wide set of heavy-ion collisions. The comparison of the results from such a calculation and experimental data is discussed, guided by predictions of the dynamical deterministic HICOL code for the compound-nucleus formation time. While the dependence of the latter on the entrance-channel properties can straigthforwardly explain some observations, a complex interplay between the various parameters of the reaction is found to occur in other cases. A multidimensional analysis of the respective role of these parameters, including entrance-channel asymmetry, bombarding energy, compound-nucleus fissility, angular momentum, and excitation energy, is proposed. It is shown that, depending on the size of the system, apparent inconsistencies may be deduced when projecting onto specific ordering parameters. The work suggests the possibility of delicate compensation effects in governing the measured fission observables, thereby highlighting the necessity of a multidimensional discussion.

  12. Global dynamics for switching systems and their extensions by linear differential equations.

    Science.gov (United States)

    Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin

    2018-03-15

    Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.

  13. Global dynamics for switching systems and their extensions by linear differential equations

    Science.gov (United States)

    Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin

    2018-03-01

    Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.

  14. Non-linear dynamics of the passivity breakdown of iron in acidic solutions

    CERN Document Server

    Sazou, D

    2003-01-01

    Breakdown of the iron passivity in acid solutions accompanied by current oscillations was investigated by using electrochemical techniques, which reveal the non-linear dynamical response of the system in the current-potential (I-E) and current-time (I-t) planes. Current oscillations of the Fe-electrolyte electrochemical system were studied in the (a) absence and (b) presence of chlorides. In case (a) two oscillatory regions were distinguished; one at low potentials associated with the formation-dissolution of a ferrous salt and another at higher potentials associated with the formation-breakdown of the oxide film. Chaotic oscillations appear in the former region whereas periodic oscillations of a relaxation type appear in the latter region. In case (b), complex periodic and aperiodic oscillations are induced by small amounts of chlorides due to pitting corrosion. Pitting corrosion is a multistage localized process of a great technological importance. It consists of a local breakdown of the passive oxide film ...

  15. Observations of non-linear plasmon damping in dense plasmas

    Science.gov (United States)

    Witte, B. B. L.; Sperling, P.; French, M.; Recoules, V.; Glenzer, S. H.; Redmer, R.

    2018-05-01

    We present simulations using finite-temperature density-functional-theory molecular-dynamics to calculate dynamic dielectric properties in warm dense aluminum. The comparison between exchange-correlation functionals in the Perdew, Burke, Ernzerhof approximation, Strongly Constrained and Appropriately Normed Semilocal Density Functional, and Heyd, Scuseria, Ernzerhof (HSE) approximation indicates evident differences in the electron transition energies, dc conductivity, and Lorenz number. The HSE calculations show excellent agreement with x-ray scattering data [Witte et al., Phys. Rev. Lett. 118, 225001 (2017)] as well as dc conductivity and absorption measurements. These findings demonstrate non-Drude behavior of the dynamic conductivity above the Cooper minimum that needs to be taken into account to determine optical properties in the warm dense matter regime.

  16. Non linear dynamic of Langmuir and electromagnetic waves in space plasmas

    International Nuclear Information System (INIS)

    Guede, Jose Ricardo Abalde

    1995-11-01

    The aim of this work is to study the nonlinear dynamics of Langmuir and electromagnetic waves in space plasmas. Firstly, the generalized Zakharov equations are derived which are used to study the hybrid parametric instability involving the generation of daughter Langmuir, electromagnetic and ion-acoustic waves induced by two counter-propagating Langmuir pump waves with different amplitudes based on a coupled dispersion relation. Secondly, starting from the generalized Zakharov equations the linear and nonlinear coupled mode theories of three-wave and four-wave parametric interactions are developed, respectively. In three-waves processes, a Langmuir wave decays into another Langmuir wave and an ion-acoustic wave (electrostatic parametric decay) or into an electromagnetic wave and an ion-acoustic wave (electromagnetic parametric decay). In four-wave (modulational) processes, the interaction involves two wave triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplet the coupling of a pump wave with a low-frequency wave generate an anti-Stokes wave. These modulational processes are convective and resonant processes wherein the low-frequency modes are Eigenmodes of plasma and are known as the stimulated modulational processes. Four such processes are investigated in this thesis: two with Langmuir pump waves (electrostatic and hybrid stimulated modulation processes) and the other two with electromagnetic pump waves (stimulated modulation Brillouin scattering and electromagnetic stimulated modulation process). Applications of the theoretical results in space plasmas are discussed. In particular, it is shown that the electrostatic and electromagnetic parametric decay processes of Langmuir waves can model the generation and modulation of radio emissions and Langmuir waves in the

  17. Exploring the top-Higgs FCNC couplings at polarized linear colliders with top spin observables

    Energy Technology Data Exchange (ETDEWEB)

    Melić, Blaženka; Patra, Monalisa [Institut Ruđer Bošković, Theoretical Physics Division,Bijenička 54, HR-10000 Zagreb (Croatia)

    2017-01-11

    We study the nature of flavor changing neutral couplings of the top quark with the Higgs boson and the up/charm quark in the tt̄ production at linear colliders. There are previous bounds on such tqH couplings at both, linear and hadronic colliders, with the assumption that the top couples equally to the left and the right handed fermions. In this paper we examine chirality of the tqH coupling and construct different observables which will be sensitive to it. The kinematics of the emitted q from t→qH in tt̄ production is discussed and it was found that the polar angle distribution of q is sensitive to the chiral nature of tqH couplings. The observables in the context of top-antitop spin correlations, which are sensitive to new physics in the top decay are considered using different spin-quantization bases. It was found that in particular the off-diagonal basis can be useful to distinguish among the chiral tqH couplings. The sensitivity of the unpolarized ILC in probing the couplings at the 3σ level at √s = 500 GeV and L = 500 fb{sup −1} is also studied, resulting in predicted BR(t→qH)<1.19×10{sup −3}. This limit is further improved to BR(t→qH)<8.84×10{sup −4} with the inclusion of initial beam polarization of left handed electrons and right handed positrons.

  18. Dispersions in Semi-Classical Dynamics

    International Nuclear Information System (INIS)

    Zielinska-Pfabe, M.; Gregoire, C.

    1987-01-01

    Dispersions around mean values of one-body observables are obtained by restoring classical many-body correlations in Vlasov and Landau-Vlasov dynamics. The method is applied to the calculation of fluctuations in mass, charge and linear momentum in heavy-ion collisions. Results are compared to those obtained by the Balian-Veneroni variational principle in semi-classical approximation

  19. Application of non-linear discretetime feedback regulators with assignable closed-loop dynamics

    Directory of Open Access Journals (Sweden)

    Dubljević Stevan

    2003-01-01

    Full Text Available In the present work the application of a new approach is demonstrated to a discrete-time state feedback regulator synthesis with feedback linearization and pole-placement for non-linear discrete-time systems. Under the simultaneous implementation of a non-linear coordinate transformation and a non-linear state feedback law computed through the solution of a system of non-linear functional equations, both the feedback linearization and pole-placement design objectives were accomplished. The non-linear state feedback regulator synthesis method was applied to a continuous stirred tank reactor (CSTR under non-isothermal operating conditions that exhibits steady-state multiplicity. The control objective was to regulate the reactor at the middle unstable steady state by manipulating the rate of input heat in the reactor. Simulation studies were performed to evaluate the performance of the proposed non-linear state feedback regulator, as it was shown a non-linear state feedback regulator clearly outperformed a standard linear one, especially in the presence of adverse disturbance under which linear regulation at the unstable steady state was not feasible.

  20. Non-Markovian linear response theory for quantum open systems and its applications.

    Science.gov (United States)

    Shen, H Z; Li, D X; Yi, X X

    2017-01-01

    The Kubo formula is an equation that expresses the linear response of an observable due to a time-dependent perturbation. It has been extended from closed systems to open systems in recent years under the Markovian approximation, but is barely explored for open systems in non-Markovian regimes. In this paper, we derive a formula for the linear response of an open system to a time-independent external field. This response formula is available for both Markovian and non-Markovian dynamics depending on parameters in the spectral density of the environment. As an illustration of the theory, the Hall conductance of a two-band system subjected to environments is derived and discussed. With the tight-binding model, we point out the Hall conductance changes from Markovian to non-Markovian dynamics by modulating the spectral density of the environment. Our results suggest a way to the controlling of the system response, which has potential applications for quantum statistical mechanics and condensed matter physics.

  1. ALMA Long Baseline Observations of the Dynamical Atmospheres of AGB Stars

    Science.gov (United States)

    Vlemmings, Wouter

    2018-04-01

    I will present the current status of ALMA long baseline observations of W Hya, R Leo, R Dor and Mira. We have recently obtained band 4, 6 and 7 observations of the line and continuum emission tracing the temperature and dynamics in their extended atmosphere. Our preliminary analysis confirms our previous detection of a hotspot on W Hya, and reveals unexpected lines in most of the sources, as well as possible fast rotation in the atmopshere of one of the stars. The observations show the unique power of ALMA in observing the extended stellar atmospheres.

  2. The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission

    Science.gov (United States)

    Breuillard, H.; Le Contel, O.; Chust, T.; Berthomier, M.; Retino, A.; Turner, D. L.; Nakamura, R.; Baumjohann, W.; Cozzani, G.; Catapano, F.; Alexandrova, A.; Mirioni, L.; Graham, D. B.; Argall, M. R.; Fischer, D.; Wilder, F. D.; Gershman, D. J.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu. V.; Marklund, G.; Ergun, R. E.; Goodrich, K. A.; Ahmadi, N.; Burch, J. L.; Torbert, R. B.; Needell, G.; Chutter, M.; Rau, D.; Dors, I.; Russell, C. T.; Magnes, W.; Strangeway, R. J.; Bromund, K. R.; Wei, H.; Plaschke, F.; Anderson, B. J.; Le, G.; Moore, T. E.; Giles, B. L.; Paterson, W. R.; Pollock, C. J.; Dorelli, J. C.; Avanov, L. A.; Saito, Y.; Lavraud, B.; Fuselier, S. A.; Mauk, B. H.; Cohen, I. J.; Fennell, J. F.

    2018-01-01

    Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency ˜100 Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2fce by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.

  3. Observations of the dynamics of ionic potassium-38 in brain

    International Nuclear Information System (INIS)

    Duncan, C.C.; Lambrecht, R.M.; Bennett, G.W.; Rescigno, A.; Ment, L.R.

    1984-01-01

    Short time course potassium dynamics in brain were investigated in the cat. 38 K (T1/2 . 7.6m) was prepared on the BNL 60'' cyclotron by the 40 Ar(p, 3n) 38 K reaction. Positron decay in brain was measured by the limited angle of view positron camera (LAPC). Radioactivity corrected for physical decay following intravenous bolus injection of 38 K showed an initial peak followed by a washout phase with a subsequent monotonic increase. The slope of the washout phase was linearly related to PaCO2 and the subsequent monotonic increase paralleled the arterial concentration of the tracer. No significant changes in 38 K radioactivity were determined following coma producing levels of phenobarbital or seizure producing doses of potassium penicillin as compared to control

  4. New Equating Methods and Their Relationships with Levine Observed Score Linear Equating under the Kernel Equating Framework

    Science.gov (United States)

    Chen, Haiwen; Holland, Paul

    2010-01-01

    In this paper, we develop a new curvilinear equating for the nonequivalent groups with anchor test (NEAT) design under the assumption of the classical test theory model, that we name curvilinear Levine observed score equating. In fact, by applying both the kernel equating framework and the mean preserving linear transformation of…

  5. A New Linearization Technique Using Multi-sinh Doublet

    Directory of Open Access Journals (Sweden)

    CEHAN, V.

    2009-06-01

    Full Text Available In this paper a new linearization technique using multi-sinh doublet, implemented with a second generation current conveyor is presented. This new linearization technique is compared with the one based on multi-tanh doublets with linearization series connected diodes on the branches. The comparative study of the two linearization techniques is carried out using both dynamic range analysis, expressed by linearity error and the THD value calculation of output current, and the noise behavior of the two analyzed doublets. For the multi-sinh linearization technique proposed in the paper a method which assures the increase of the dynamic range, keeping the transconductance value constant is presented. This is done by using two design parameters: the number of series connected diodes N, which specifies the desired linear operating range and the k emitters areas ratio of the input stage transistors, which establishes the transconductance value. In the paper is also shown that if the transconductances of the two analyzed doublets are identical, and for the same values of N and k parameters, respectively, the current consumption of the multi-sinh doublet is always smaller than for the multi-tanh doublet.

  6. Piecewise Linear-Linear Latent Growth Mixture Models with Unknown Knots

    Science.gov (United States)

    Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R.

    2013-01-01

    Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…

  7. Calculation of relative tube/tube support plate displacements in steam generators under accident condition loads using non-linear dynamic analysis methodologies

    International Nuclear Information System (INIS)

    Smith, R.E.; Waisman, R.; Hu, M.H.; Frick, T.M.

    1995-01-01

    A non-linear analysis has been performed to determine relative motions between tubes and tube support plates (TSP) during a steam line break (SLB) event for steam generators. The SLB event results in blowdown of steam and water out of the steam generator. The fluid blowdown generates pressure drops across the TSPS, resulting in out-of-plane motion. The SLB induced pressure loads are calculated with a computer program that uses a drift-flux modeling of the two-phase flow. In order to determine the relative tube/TSP motions, a nonlinear dynamic time-history analysis is performed using a structural model that considers all of the significant component members relative to the tube support system. The dynamic response of the structure to the pressure loads is calculated using a special purpose computer program. This program links the various substructures at common degrees of freedom into a combined mass and stiffness matrix. The program accounts for structural non-linearities, including potential tube and TSP interaction at any given tube position. The program also accounts for structural damping as part of the dynamic response. Incorporating all of the above effects, the equations of motion are solved to give TSP displacements at the reduced set of DOF. Using the displacement results from the dynamic analysis, plate stresses are then calculated using the detailed component models. Displacements form the dynamic analysis are imposed as boundary conditions at the DOF locations, and the finite element program then solves for the overall distorted geometry. Calculations are also performed to assure that assumptions regarding elastic response of the various structural members and support points are valid

  8. Local linear viscoelasticity of confined fluids.

    Science.gov (United States)

    Hansen, J S; Daivis, P J; Todd, B D

    2007-04-14

    In this paper the authors propose a novel method to study the local linear viscoelasticity of fluids confined between two walls. The method is based on the linear constitutive equation and provides details about the real and imaginary parts of the local complex viscosity. They apply the method to a simple atomic fluid undergoing zero mean oscillatory flow using nonequilibrium molecular dynamics simulations. The method shows that the viscoelastic properties of the fluid exhibit dramatic spatial changes near the wall-fluid boundary due to the high density in this region. It is also shown that the real part of the viscosity converges to the frequency dependent local shear viscosity sufficiently far away from the wall. This also provides valuable information about the transport properties in the fluid, in general. The viscosity is compared with predictions from the local average density model. The two methods disagree in that the local average density model predicts larger viscosity variations near the wall-fluid boundary than what is observed through the method presented here.

  9. Quantum dynamical effects as a singular perturbation for observables in open quasi-classical nonlinear mesoscopic systems

    International Nuclear Information System (INIS)

    Berman, G.P.; Borgonovi, F.; Dalvit, D.A.R.

    2009-01-01

    We review our results on a mathematical dynamical theory for observables for open many-body quantum nonlinear bosonic systems for a very general class of Hamiltonians. We show that non-quadratic (nonlinear) terms in a Hamiltonian provide a singular 'quantum' perturbation for observables in some 'mesoscopic' region of parameters. In particular, quantum effects result in secular terms in the dynamical evolution, that grow in time. We argue that even for open quantum nonlinear systems in the deep quasi-classical region, these quantum effects can survive after decoherence and relaxation processes take place. We demonstrate that these quantum effects in open quantum systems can be observed, for example, in the frequency Fourier spectrum of the dynamical observables, or in the corresponding spectral density of noise. Estimates are presented for Bose-Einstein condensates, low temperature mechanical resonators, and nonlinear optical systems prepared in large amplitude coherent states. In particular, we show that for Bose-Einstein condensate systems the characteristic time of deviation of quantum dynamics for observables from the corresponding classical dynamics coincides with the characteristic time-scale of the well-known quantum nonlinear effect of phase diffusion.

  10. Design and analysis approach for linear aerospike nozzle

    International Nuclear Information System (INIS)

    Khan, S.U.; Khan, A.A.; Munir, A.

    2014-01-01

    The paper presents an aerodynamic design of a simplified linear aerospike nozzle and its detailed exhaust flow analysis with no spike truncation. Analytical method with isentropic planar flow was used to generate the nozzle contour through MATLAB . The developed code produces a number of outputs comprising nozzle wall profile, flow properties along the nozzle wall, thrust coefficient, thrust, as well as amount of nozzle truncation. Results acquired from design code and numerical analyses are compared for observing differences. The numerical analysis adopted an inviscid model carried out through commercially available and reliable computational fluid dynamics (CFD) software. Use of the developed code would assist the readers to perform quick analysis of different aerodynamic design parameters for the aerospike nozzle that has tremendous scope of application in future launch vehicles. Keyword: Rocket propulsion, Aerospike Nozzle, Control Design, Computational Fluid Dynamics. (author)

  11. Recent Updates to the GEOS-5 Linear Model

    Science.gov (United States)

    Holdaway, Dan; Kim, Jong G.; Errico, Ron; Gelaro, Ronald; Mahajan, Rahul

    2014-01-01

    Global Modeling and Assimilation Office (GMAO) is close to having a working 4DVAR system and has developed a linearized version of GEOS-5.This talk outlines a series of improvements made to the linearized dynamics, physics and trajectory.Of particular interest is the development of linearized cloud microphysics, which provides the framework for 'all-sky' data assimilation.

  12. Efficient Brownian Dynamics of rigid colloids in linear flow fields based on the grand mobility matrix

    Science.gov (United States)

    Palanisamy, Duraivelan; den Otter, Wouter K.

    2018-05-01

    We present an efficient general method to simulate in the Stokesian limit the coupled translational and rotational dynamics of arbitrarily shaped colloids subject to external potential forces and torques, linear flow fields, and Brownian motion. The colloid's surface is represented by a collection of spherical primary particles. The hydrodynamic interactions between these particles, here approximated at the Rotne-Prager-Yamakawa level, are evaluated only once to generate the body's (11 × 11) grand mobility matrix. The constancy of this matrix in the body frame, combined with the convenient properties of quaternions in rotational Brownian Dynamics, enables an efficient simulation of the body's motion. Simulations in quiescent fluids yield correct translational and rotational diffusion behaviour and sample Boltzmann's equilibrium distribution. Simulations of ellipsoids and spherical caps under shear, in the absence of thermal fluctuations, yield periodic orbits in excellent agreement with the theories by Jeffery and Dorrepaal. The time-varying stress tensors provide the Einstein coefficient and viscosity of dilute suspensions of these bodies.

  13. A linear model of population dynamics

    Science.gov (United States)

    Lushnikov, A. A.; Kagan, A. I.

    2016-08-01

    The Malthus process of population growth is reformulated in terms of the probability w(n,t) to find exactly n individuals at time t assuming that both the birth and the death rates are linear functions of the population size. The master equation for w(n,t) is solved exactly. It is shown that w(n,t) strongly deviates from the Poisson distribution and is expressed in terms either of Laguerre’s polynomials or a modified Bessel function. The latter expression allows for considerable simplifications of the asymptotic analysis of w(n,t).

  14. Stochastic modeling of mode interactions via linear parabolized stability equations

    Science.gov (United States)

    Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo

    2017-11-01

    Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.

  15. Non-linear flow law of rockglacier creep determined from geomorphological observations: A case study from the Murtèl rockglacier (Engadin, SE Switzerland)

    Science.gov (United States)

    Frehner, Marcel; Amschwand, Dominik; Gärtner-Roer, Isabelle

    2016-04-01

    Rockglaciers consist of unconsolidated rock fragments (silt/sand-rock boulders) with interstitial ice; hence their creep behavior (i.e., rheology) may deviate from the simple and well-known flow-laws for pure ice. Here we constrain the non-linear viscous flow law that governs rockglacier creep based on geomorphological observations. We use the Murtèl rockglacier (upper Engadin valley, SE Switzerland) as a case study, for which high-resolution digital elevation models (DEM), time-lapse borehole deformation data, and geophysical soundings exist that reveal the exterior and interior architecture and dynamics of the landform. Rockglaciers often feature a prominent furrow-and-ridge topography. For the Murtèl rockglacier, Frehner et al. (2015) reproduced the wavelength, amplitude, and distribution of the furrow-and-ridge morphology using a linear viscous (Newtonian) flow model. Arenson et al. (2002) presented borehole deformation data, which highlight the basal shear zone at about 30 m depth and a curved deformation profile above the shear zone. Similarly, the furrow-and-ridge morphology also exhibits a curved geometry in map view. Hence, the surface morphology and the borehole deformation data together describe a curved 3D geometry, which is close to, but not quite parabolic. We use a high-resolution DEM to quantify the curved geometry of the Murtèl furrow-and-ridge morphology. We then calculate theoretical 3D flow geometries using different non-linear viscous flow laws. By comparing them to the measured curved 3D geometry (i.e., both surface morphology and borehole deformation data), we can determine the most adequate flow-law that fits the natural data best. Linear viscous models result in perfectly parabolic flow geometries; non-linear creep leads to localized deformation at the sides and bottom of the rockglacier while the deformation in the interior and top are less intense. In other words, non-linear creep results in non-parabolic flow geometries. Both the

  16. Static states and dynamic behaviour of charges: observation and control by scanning probe microscopy

    International Nuclear Information System (INIS)

    Ishii, Masashi

    2010-01-01

    This paper reviews charges that locally functionalize materials. Microscopic analyses and operation of charges using various scanning probe microscopy (SPM) techniques have revealed static, quasi-static/quasi-dynamic and dynamic charge behaviours. Charge-sensitive SPM has allowed for the visualization of the distribution of functionalized charges in electronic devices. When used as bit data in a memory system, the charges can be operated by SPM. The behaviour of quasi-static/quasi-dynamic charges is discussed here. In the data-writing process, spatially dispersive charges rather than a fast injection rate are introduced, but the technical problems can be solved by using nanostructures. Careful charge operations using SPM should realize a memory with a larger density than Tbit/inch 2 . Dynamic charges have been introduced in physical analyses and chemical processes. Although the observable timescale is limited by the SPM system response time of the order of several seconds, dynamics such as photon-induced charge redistributions and probe-assisted chemical reactions are observed. (topical review)

  17. Static states and dynamic behaviour of charges: observation and control by scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Masashi, E-mail: ISHII.Masashi@nims.go.j [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2010-05-05

    This paper reviews charges that locally functionalize materials. Microscopic analyses and operation of charges using various scanning probe microscopy (SPM) techniques have revealed static, quasi-static/quasi-dynamic and dynamic charge behaviours. Charge-sensitive SPM has allowed for the visualization of the distribution of functionalized charges in electronic devices. When used as bit data in a memory system, the charges can be operated by SPM. The behaviour of quasi-static/quasi-dynamic charges is discussed here. In the data-writing process, spatially dispersive charges rather than a fast injection rate are introduced, but the technical problems can be solved by using nanostructures. Careful charge operations using SPM should realize a memory with a larger density than Tbit/inch{sup 2}. Dynamic charges have been introduced in physical analyses and chemical processes. Although the observable timescale is limited by the SPM system response time of the order of several seconds, dynamics such as photon-induced charge redistributions and probe-assisted chemical reactions are observed. (topical review)

  18. A Novel Method of Robust Trajectory Linearization Control Based on Disturbance Rejection

    Directory of Open Access Journals (Sweden)

    Xingling Shao

    2014-01-01

    Full Text Available A novel method of robust trajectory linearization control for a class of nonlinear systems with uncertainties based on disturbance rejection is proposed. Firstly, on the basis of trajectory linearization control (TLC method, a feedback linearization based control law is designed to transform the original tracking error dynamics to the canonical integral-chain form. To address the issue of reducing the influence made by uncertainties, with tracking error as input, linear extended state observer (LESO is constructed to estimate the tracking error vector, as well as the uncertainties in an integrated manner. Meanwhile, the boundedness of the estimated error is investigated by theoretical analysis. In addition, decoupled controller (which has the characteristic of well-tuning and simple form based on LESO is synthesized to realize the output tracking for closed-loop system. The closed-loop stability of the system under the proposed LESO-based control structure is established. Also, simulation results are presented to illustrate the effectiveness of the control strategy.

  19. Tracking atmospheric boundary layer dynamics with water vapor D-excess observations

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    Stable isotope water vapor observations present a history of hydrological processes that have impacted on an air mass. Consequently, there is scope to improve our knowledge of how different processes impact on humidity budgets by determining the isotopic end members of these processes and combining them with in-situ water vapor measurements. These in-situ datasets are still rare and cover a limited geographical expanse, so expanding the available data can improve our ability to define isotopic end members and knowledge about atmospheric humidity dynamics. Using data collected from an intensive field campaign across a semi-arid grassland site in eastern Australia, we combine multiple methods including in-situ stable isotope observations to study humidity dynamics associated with the growth and decay of the atmospheric boundary layer and the stable nocturnal boundary layer. The deuterium-excess (D-excess) in water vapor is traditionally thought to reflect the sea surface temperature and relative humidity at the point of evaporation over the oceans. However, a number of recent studies suggest that land-atmosphere interactions are also important in setting the D-excess of water vapor. These studies have shown a highly robust diurnal cycle for the D-excess over a range of sites that could be exploited to better understand variations in atmospheric humidity associated with boundary layer dynamics. In this study we use surface radon concentrations as a tracer of surface layer dynamics and combine these with the D-excess observations. The radon concentrations showed an overall trend that was inversely proportional to the D-excess, with early morning entrainment of air from the residual layer of the previous day both diluting the radon concentration and increasing the D-excess, followed by accumulation of radon at the surface and a decrease in the D-excess as the stable nocturnal layer developed in the late afternoon and early evening. The stable nocturnal boundary layer

  20. WATER PRODUCTION IN COMETS 2001 Q4 (NEAT) AND 2002 T7 (LINEAR) DETERMINED FROM SOHO/SWAN OBSERVATIONS

    International Nuclear Information System (INIS)

    Combi, M. R.; Lee, Y.; Maekinen, J. T. T.; Bertaux, J.-L.; Quemerais, E.

    2009-01-01

    The SWAN all-sky camera on the Solar and Heliospheric Observatory (SOHO) spacecraft detected the hydrogen Lyman-alpha (Lyα) comae of comets 2001 Q4 NEAT and 2002 T7 LINEAR for large portions of their perihelion apparitions in 2003 and 2004. C/2001 Q4 NEAT was observed from 2003 September 14 through 2004 November 2, covering heliocentric distances from 3.23 AU before perihelion to 2.75 AU after, and C/2002 T7 LINEAR was observed from 2003 December 4 through 2004 August 6, covering heliocentric distances from 2.52 AU before perihelion to 2.09 AU after. We combined the full set of comet specific and full-sky observations and used our time-resolved model (TRM), which enables us to extract continuous values of the daily-average value of the water production rate throughout most of this entire period. The average power-law fit to the production rate variation of C/2001 Q4 NEAT with heliocentric distance, r, gives 3.5 x 10 29 r -1.7 and that for C/2002 T7 LINEAR gives 4.6 x 10 29 r -2.0 . Both comets show roughly a factor of 2 asymmetry in activity about perihelion, being more active before perihelion. C/2001 Q4 NEAT showed a production rate outburst about 30 days before perihelion (2004 April 15) and then a large extended increase above the nominal trend from 50 to 70 days after perihelion (2004 July 5-July 25).

  1. Fractal diffusion coefficient from dynamical zeta functions

    Energy Technology Data Exchange (ETDEWEB)

    Cristadoro, Giampaolo [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, D 01187 Dresden (Germany)

    2006-03-10

    Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero. (letter to the editor)

  2. Fractal diffusion coefficient from dynamical zeta functions

    International Nuclear Information System (INIS)

    Cristadoro, Giampaolo

    2006-01-01

    Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero. (letter to the editor)

  3. Dynamical dark energy vs. Λ = const in light of observations

    Science.gov (United States)

    Solà Peracaula, Joan; de Cruz Pérez, Javier; Gómez-Valent, Adrià

    2018-02-01

    After about two decades of the first observational papers confirming the accelerated expansion of the universe, we are still facing the question whether the cause of it is a rigid cosmological constant Λ-term or a mildly evolving dynamical dark energy (DDE). While studies focusing mainly on CMB measurements do not perceive signs of physics beyond the ΛCDM, in this work we show that if we take a large string SNIa+BAO+H(z)+LSS+CMB of modern cosmological observations, in which not only the CMB but also a rich sample of large-scale structure formation data are included, one can extract ∼3.3σ signs of DDE using a simple XCDM parameterization. These signs can be enhanced up to near 3.8σ in the context of the running vacuum model (RVM), in which the vacuum energy density is in interaction with dark matter. Recently, the RVM has been shown to provide an efficient and economical solution to the σ8 -tension, which is one of the intriguing phenomenological problems that has not been possible to solve within the ΛCDM so far. This fact contributes to strengthen the possibility that dynamical vacuum energy, or in general DDE, could be presently favored by the observations.

  4. OBSERVATIONAL AND DYNAMICAL CHARACTERIZATION OF MAIN-BELT COMET P/2010 R2 (La Sagra)

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Henry H.; Yang Bin; Haghighipour, Nader; Jedicke, Robert; Wainscoat, Richard J.; Denneau, Larry; Kaluna, Heather M.; Kleyna, Jan [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu HI 96822 (United States); Novakovic, Bojan [Department of Astronomy, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade (Serbia); Abe, Shinsuke; Chen Wenping; Ip, Wing; Kinoshita, Daisuke [Institute of Astronomy, National Central University, 300 Jhongda Rd, Jhongli 32001, Taiwan (China); Fitzsimmons, Alan; Lacerda, Pedro [Astronomy Research Centre, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Granvik, Mikael [Department of Physics, P.O. Box 64, 00014 University of Helsinki (Finland); Grav, Tommy [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Knight, Matthew M. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Lisse, Carey M. [Planetary Exploration Group, Space Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Maclennan, Eric, E-mail: hsieh@ifa.hawaii.edu [Department of Physics and Astronomy, Northern Arizona University, 602 South Humphreys Street, Flagstaff, AZ 86011 (United States); and others

    2012-05-15

    We present observations of the recently discovered comet-like main-belt object P/2010 R2 (La Sagra) obtained by Pan-STARRS1 and the Faulkes Telescope-North on Haleakala in Hawaii, the University of Hawaii 2.2 m, Gemini-North, and Keck I telescopes on Mauna Kea, the Danish 1.54 m telescope (operated by the MiNDSTEp consortium) at La Silla, and the Isaac Newton Telescope on La Palma. An antisolar dust tail is observed to be present from 2010 August through 2011 February, while a dust trail aligned with the object's orbit plane is also observed from 2010 December through 2011 August. Assuming typical phase darkening behavior, P/La Sagra is seen to increase in brightness by >1 mag between 2010 August and December, suggesting that dust production is ongoing over this period. These results strongly suggest that the observed activity is cometary in nature (i.e., driven by the sublimation of volatile material), and that P/La Sagra is therefore the most recent main-belt comet to be discovered. We find an approximate absolute magnitude for the nucleus of H{sub R} = 17.9 {+-} 0.2 mag, corresponding to a nucleus radius of {approx}0.7 km, assuming an albedo of p = 0.05. Comparing the observed scattering surface areas of the dust coma to that of the nucleus when P/La Sagra was active, we find dust-to-nucleus area ratios of A{sub d} /A{sub N} = 30-60, comparable to those computed for fellow main-belt comets 238P/Read and P/2008 R1 (Garradd), and one to two orders of magnitude larger than for two other main-belt comets (133P/Elst-Pizarro and 176P/LINEAR). Using optical spectroscopy to search for CN emission, we do not detect any conclusive evidence of sublimation products (i.e., gas emission), finding an upper limit CN production rate of Q{sub CN} < 6 Multiplication-Sign 10{sup 23} mol s{sup -1}, from which we infer an H{sub 2}O production rate of Q{sub H{sub 2O}} < 10{sup 26} mol s{sup -1}. Numerical simulations indicate that P/La Sagra is dynamically stable for >100 Myr

  5. OBSERVATIONAL AND DYNAMICAL CHARACTERIZATION OF MAIN-BELT COMET P/2010 R2 (La Sagra)

    International Nuclear Information System (INIS)

    Hsieh, Henry H.; Yang Bin; Haghighipour, Nader; Jedicke, Robert; Wainscoat, Richard J.; Denneau, Larry; Kaluna, Heather M.; Kleyna, Jan; Novaković, Bojan; Abe, Shinsuke; Chen Wenping; Ip, Wing; Kinoshita, Daisuke; Fitzsimmons, Alan; Lacerda, Pedro; Granvik, Mikael; Grav, Tommy; Knight, Matthew M.; Lisse, Carey M.; Maclennan, Eric

    2012-01-01

    We present observations of the recently discovered comet-like main-belt object P/2010 R2 (La Sagra) obtained by Pan-STARRS1 and the Faulkes Telescope-North on Haleakala in Hawaii, the University of Hawaii 2.2 m, Gemini-North, and Keck I telescopes on Mauna Kea, the Danish 1.54 m telescope (operated by the MiNDSTEp consortium) at La Silla, and the Isaac Newton Telescope on La Palma. An antisolar dust tail is observed to be present from 2010 August through 2011 February, while a dust trail aligned with the object's orbit plane is also observed from 2010 December through 2011 August. Assuming typical phase darkening behavior, P/La Sagra is seen to increase in brightness by >1 mag between 2010 August and December, suggesting that dust production is ongoing over this period. These results strongly suggest that the observed activity is cometary in nature (i.e., driven by the sublimation of volatile material), and that P/La Sagra is therefore the most recent main-belt comet to be discovered. We find an approximate absolute magnitude for the nucleus of H R = 17.9 ± 0.2 mag, corresponding to a nucleus radius of ∼0.7 km, assuming an albedo of p = 0.05. Comparing the observed scattering surface areas of the dust coma to that of the nucleus when P/La Sagra was active, we find dust-to-nucleus area ratios of A d /A N = 30-60, comparable to those computed for fellow main-belt comets 238P/Read and P/2008 R1 (Garradd), and one to two orders of magnitude larger than for two other main-belt comets (133P/Elst-Pizarro and 176P/LINEAR). Using optical spectroscopy to search for CN emission, we do not detect any conclusive evidence of sublimation products (i.e., gas emission), finding an upper limit CN production rate of Q CN 23 mol s –1 , from which we infer an H 2 O production rate of Q H 2 O 26 mol s –1 . Numerical simulations indicate that P/La Sagra is dynamically stable for >100 Myr, suggesting that it is likely native to its current location and that its composition is

  6. Multiscale asymmetric orthogonal wavelet kernel for linear programming support vector learning and nonlinear dynamic systems identification.

    Science.gov (United States)

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2014-05-01

    Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.

  7. Assessment of linear and nonlinear/complex heartbeat dynamics in subclinical depression (dysphoria).

    Science.gov (United States)

    Greco, Alberto; Messerotti Benvenuti, Simone; Gentili, Claudio; Palomba, Daniela; Scilingo, Enzo Pasquale; Valenza, Gaetano

    2018-03-29

    Depression is one of the leading causes of disability worldwide. Most previous studies have focused on major depression, and studies on subclinical depression, such as those on so-called dysphoria, have been overlooked. Indeed, dysphoria is associated with a high prevalence of somatic disorders, and a reduction of quality of life and life expectancy. In current clinical practice, dysphoria is assessed using psychometric questionnaires and structured interviews only, without taking into account objective pathophysiological indices. To address this problem, in this study we investigated heartbeat linear and nonlinear dynamics to derive objective autonomic nervous system biomarkers of dysphoria. Sixty undergraduate students participated in the study: according to clinical evaluation, 24 of them were dysphoric. Extensive group-wise statistics was performed to characterize the pathological and control groups. Moreover, a recursive feature elimination algorithm based on a K-NN classifier was carried out for the automatic recognition of dysphoria at a single-subject level. The results showed that the most significant group-wise differences referred to increased heartbeat complexity (particularly for fractal dimension, sample entropy and recurrence plot analysis) with regards to the healthy controls, confirming dysfunctional nonlinear sympatho-vagal dynamics in mood disorders. Furthermore, a balanced accuracy of 79.17% was achieved in automatically distinguishing dysphoric patients from controls, with the most informative power attributed to nonlinear, spectral and polyspectral quantifiers of cardiovascular variability. This study experimentally supports the assessment of dysphoria as a defined clinical condition with specific characteristics which are different both from healthy, fully euthymic controls and from full-blown major depression.

  8. Dynamical chaos in a linear 3. alpha. system. Dinamicheskij khaos v linejnoj 3. alpha. -sisteme

    Energy Technology Data Exchange (ETDEWEB)

    Bolotin, Yu L; Gonchar, V Yu; Chekanov, N A [AN Ukrainskoj SSR, Kharkov (Ukrainian SSR). Fiziko-Tekhnicheskij Inst.; Vinitskij, S I [Joint Inst. for Nuclear Research, Dubna (USSR)

    1989-01-01

    Classical dynamics of the motion of a molecular model of the carbon nucleus, which is a linear 3{alpha} system with realistic {alpha}{alpha} interaction is studied. Transition from a regular to a chaos motion in the nuclear molecule is shown to occur with growing energy more rapidly than in model problems with polynomial potentials. It is found that in a small region of the phase space the motion remains regular at energies higher than the 3{alpha}-system dissociation threshold. This is probably related to the C{sub 3v}-symmetry violation. Formulas for the quasiclassical spectrum of the 3{alpha} system are obtained with the use of the Birkhoff normal form.

  9. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles

    Energy Technology Data Exchange (ETDEWEB)

    Speck, Thomas [Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz (Germany); Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut [Institut für Theoretische Physik II, Heinrich-Heine-Universität, D-40225 Düsseldorf (Germany)

    2015-06-14

    Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.

  10. Random Linear Network Coding is Key to Data Survival in Highly Dynamic Distributed Storage

    DEFF Research Database (Denmark)

    Sipos, Marton A.; Fitzek, Frank; Roetter, Daniel Enrique Lucani

    2015-01-01

    Distributed storage solutions have become widespread due to their ability to store large amounts of data reliably across a network of unreliable nodes, by employing repair mechanisms to prevent data loss. Conventional systems rely on static designs with a central control entity to oversee...... and control the repair process. Given the large costs for maintaining and cooling large data centers, our work proposes and studies the feasibility of a fully decentralized systems that can store data even on unreliable and, sometimes, unavailable mobile devices. This imposes new challenges on the design...... as the number of available nodes varies greatly over time and keeping track of the system's state becomes unfeasible. As a consequence, conventional erasure correction approaches are ill-suited for maintaining data integrity. In this highly dynamic context, random linear network coding (RLNC) provides...

  11. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    International Nuclear Information System (INIS)

    Ekdahl, Carl A.; Abeyta, Epifanio O.; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A.; Garnett, Robert; Harrison, James F.; Johnson, Jeffrey B.; Jacquez, Edward B.; Mccuistian, Brian T.; Montoya, Nicholas A.; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M.; Seitz, Gerald; Schulze, Martin; Bender, Howard A.; Broste, William B.; Carlson, Carl A.; Frayer, Daniel K.; Johnson, Douglas E.; Tom, C.Y.; Williams, John; Hughes, Thomas; Anaya, Richard; Caporaso, George; Chambers, Frank; Chen, Yu-Jiuan; Falabella, Steve; Guethlein, Gary; Raymond, Brett; Richardson, Roger; Trainham, C.; Watson, Jim; Weir, John; Genoni, Thomas; Toma, Carsten

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 (micro)s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  12. Linear and non-linear Modified Gravity forecasts with future surveys

    Science.gov (United States)

    Casas, Santiago; Kunz, Martin; Martinelli, Matteo; Pettorino, Valeria

    2017-12-01

    Modified Gravity theories generally affect the Poisson equation and the gravitational slip in an observable way, that can be parameterized by two generic functions (η and μ) of time and space. We bin their time dependence in redshift and present forecasts on each bin for future surveys like Euclid. We consider both Galaxy Clustering and Weak Lensing surveys, showing the impact of the non-linear regime, with two different semi-analytical approximations. In addition to these future observables, we use a prior covariance matrix derived from the Planck observations of the Cosmic Microwave Background. In this work we neglect the information from the cross correlation of these observables, and treat them as independent. Our results show that η and μ in different redshift bins are significantly correlated, but including non-linear scales reduces or even eliminates the correlation, breaking the degeneracy between Modified Gravity parameters and the overall amplitude of the matter power spectrum. We further apply a Zero-phase Component Analysis and identify which combinations of the Modified Gravity parameter amplitudes, in different redshift bins, are best constrained by future surveys. We extend the analysis to two particular parameterizations of μ and η and consider, in addition to Euclid, also SKA1, SKA2, DESI: we find in this case that future surveys will be able to constrain the current values of η and μ at the 2-5% level when using only linear scales (wavevector k < 0 . 15 h/Mpc), depending on the specific time parameterization; sensitivity improves to about 1% when non-linearities are included.

  13. Linear accelerator modeling: development and application

    International Nuclear Information System (INIS)

    Jameson, R.A.; Jule, W.D.

    1977-01-01

    Most of the parameters of a modern linear accelerator can be selected by simulating the desired machine characteristics in a computer code and observing how the parameters affect the beam dynamics. The code PARMILA is used at LAMPF for the low-energy portion of linacs. Collections of particles can be traced with a free choice of input distributions in six-dimensional phase space. Random errors are often included in order to study the tolerances which should be imposed during manufacture or in operation. An outline is given of the modifications made to the model, the results of experiments which indicate the validity of the model, and the use of the model to optimize the longitudinal tuning of the Alvarez linac

  14. Investigation of switch designs for the dynamic load current multiplier scheme on the SPHYNX microsecond linear transformer driver

    International Nuclear Information System (INIS)

    Maysonnave, T.; Bayol, F.; Demol, G.; Almeida, T. d'; Lassalle, F.; Morell, A.; Grunenwald, J.; Chuvatin, A.S.; Pecastaing, L.; De Ferron, A.S.

    2014-01-01

    SPHINX is a microsecond linear transformer driver LTD, used essentially for implosion of Z-pinch loads in direct drive mode. It can deliver a 6-MA current pulse within 800 ns into a Z-pinch load. The dynamic load current multiplier concept enables the current pulse to be modified by increasing its amplitude while reducing its rise time before being delivered to the load. This compact system is made up of concentric electrodes (auto transformer), a dynamic flux extruder (cylindrical wire array), a vacuum convolute (eight post-holes), and a vacuum closing switch, which is the key component of the system. Several different schemes are investigated for designing a vacuum switch suitable for operating the dynamic load current multiplier on the SPHINX generator for various applications, including isentropic compression experiments and Z-pinch radiation effects studies. In particular, the design of a compact vacuum surface switch and a multichannel vacuum switch, located upstream of the load are studied. Electrostatic simulations supporting the switch designs are presented along with test bed experiments. Initial results from shots on the SPHINX driver are also presented. (authors)

  15. The role of model dynamics in ensemble Kalman filter performance for chaotic systems

    Science.gov (United States)

    Ng, G.-H.C.; McLaughlin, D.; Entekhabi, D.; Ahanin, A.

    2011-01-01

    The ensemble Kalman filter (EnKF) is susceptible to losing track of observations, or 'diverging', when applied to large chaotic systems such as atmospheric and ocean models. Past studies have demonstrated the adverse impact of sampling error during the filter's update step. We examine how system dynamics affect EnKF performance, and whether the absence of certain dynamic features in the ensemble may lead to divergence. The EnKF is applied to a simple chaotic model, and ensembles are checked against singular vectors of the tangent linear model, corresponding to short-term growth and Lyapunov vectors, corresponding to long-term growth. Results show that the ensemble strongly aligns itself with the subspace spanned by unstable Lyapunov vectors. Furthermore, the filter avoids divergence only if the full linearized long-term unstable subspace is spanned. However, short-term dynamics also become important as non-linearity in the system increases. Non-linear movement prevents errors in the long-term stable subspace from decaying indefinitely. If these errors then undergo linear intermittent growth, a small ensemble may fail to properly represent all important modes, causing filter divergence. A combination of long and short-term growth dynamics are thus critical to EnKF performance. These findings can help in developing practical robust filters based on model dynamics. ?? 2011 The Authors Tellus A ?? 2011 John Wiley & Sons A/S.

  16. Investigating the performances of a 1 MV high pulsed power linear transformer driver: from beam dynamics to x radiation

    Science.gov (United States)

    Maisonny, R.; Ribière, M.; Toury, M.; Plewa, J. M.; Caron, M.; Auriel, G.; d'Almeida, T.

    2016-12-01

    The performance of a 1 MV pulsed high-power linear transformer driver accelerator were extensively investigated based on a numerical approach which utilizes both electromagnetic and Monte Carlo simulations. Particle-in-cell calculations were employed to examine the beam dynamics throughout the magnetically insulated transmission line which governs the coupling between the generator and the electron diode. Based on the information provided by the study of the beam dynamics, and using Monte Carlo methods, the main properties of the resulting x radiation were predicted. Good agreement was found between these simulations and experimental results. This work provides a detailed understanding of mechanisms affecting the performances of this type of high current, high-voltage pulsed accelerator, which are very promising for a growing number of applications.

  17. Switching control of linear systems for generating chaos

    International Nuclear Information System (INIS)

    Liu Xinzhi; Teo, Kok-Lay; Zhang Hongtao; Chen Guanrong

    2006-01-01

    In this paper, a new switching method is developed, which can be applied to generating different types of chaos or chaos-like dynamics from two or more linear systems. A numerical simulation is given to illustrate the generated chaotic dynamic behavior of the systems with some variable parameters. Finally, a circuit is built to realize various chaotic dynamical behaviors

  18. Dynamical chaos of plasma ions in electrostatic waves

    International Nuclear Information System (INIS)

    Fasoli, A.; Kleiber, R.; Tran, M.Q.; Paris, P.J.; Skiff, F.

    1992-09-01

    Chaos generated by the interaction between charged particles and electrostatic plasma waves has been observed in a linear magnetized plasma. The macroscopic wave properties, the kinetic ion dielectric response and the microscopic heating mechanisms have been investigated via optical diagnostic techniques based on laser induced fluorescence. Observations of test-particle dynamical evolution indicate an exponential separation of initially close ion trajectories. (author) 5 figs., 20 refs

  19. ADAPTIVE FLUX OBSERVER FOR PERMANENT MAGNET SYNCHRONOUS MOTORS

    Directory of Open Access Journals (Sweden)

    A. A. Bobtsov

    2015-01-01

    Full Text Available The paper deals with the observer design problem for a flux in permanent magnet synchronous motors. It is assumed that some electrical parameters such as resistance and inductance are known numbers. But the flux, the angle and the speed of the rotor are unmeasurable. The new robust approach to design an adaptive flux observer is proposed that guarantees globally boundedness of all signals and, moreover, exponential convergence to zero of observer error between the true flux value and an estimate obtained from the adaptive observer. The problem of an adaptive flux observer design has been solved with using the trigonometrical properties and linear filtering which ensures cancellation of unknown terms arisen after mathematical calculations. The key idea is the new parameterization of the dynamical model containing unknown parameters and depending on measurable current and voltage in the motor. By applying the Pythagorean trigonometric identity the linear equation has found that does not contain any functions depending on angle or angular velocity of the rotor. Using dynamical first-order filters the standard regression model is obtained that consists of unknown constant parameters and measurable functions of time. Then the gradient-like estimator is designed to reconstruct unknown parameters, and it guarantees boundedness of all signals in the system. The proposition is proved that if the regressor satisfies the persistent excitation condition, meaning the “frequency-rich” signal, then all errors in observer exponentially converges to zero. It is shown that observer error for the flux explicitly depends on estimator errors. Exponential convergence of parameter estimation errors to zero yields exponential convergence of the flux observer error to zero. The numerical example is considered.

  20. Nonlinear dynamics of structures

    CERN Document Server

    Oller, Sergio

    2014-01-01

    This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics.   This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects.   Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution  are studied, and the theoretical concepts and its programming algorithms are presented.