Gradient remediability in linear distributed parabolic systems ...
African Journals Online (AJOL)
The aim of this paper is the introduction of a new concept that concerned the analysis of a large class of distributed parabolic systems. It is the general concept of gradient remediability. More precisely, we study with respect to the gradient observation, the existence of an input operator (gradient efficient actuators) ensuring ...
Zhang, Langwen; Xie, Wei; Wang, Jingcheng
2017-11-01
In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min-max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.
Modeling of non-linear CHP efficiency curves in distributed energy systems
DEFF Research Database (Denmark)
Milan, Christian; Stadler, Michael; Cardoso, Gonçalo
2015-01-01
Distributed energy resources gain an increased importance in commercial and industrial building design. Combined heat and power (CHP) units are considered as one of the key technologies for cost and emission reduction in buildings. In order to make optimal decisions on investment and operation...... for these technologies, detailed system models are needed. These models are often formulated as linear programming problems to keep computational costs and complexity in a reasonable range. However, CHP systems involve variations of the efficiency for large nameplate capacity ranges and in case of part load operation......, which can be even of non-linear nature. Since considering these characteristics would turn the models into non-linear problems, in most cases only constant efficiencies are assumed. This paper proposes possible solutions to address this issue. For a mixed integer linear programming problem two...
LQR-Based Optimal Distributed Cooperative Design for Linear Discrete-Time Multiagent Systems.
Zhang, Huaguang; Feng, Tao; Liang, Hongjing; Luo, Yanhong
2017-03-01
In this paper, a novel linear quadratic regulator (LQR)-based optimal distributed cooperative design method is developed for synchronization control of general linear discrete-time multiagent systems on a fixed, directed graph. Sufficient conditions are derived for synchronization, which restrict the graph eigenvalues into a bounded circular region in the complex plane. The synchronizing speed issue is also considered, and it turns out that the synchronizing region reduces as the synchronizing speed becomes faster. To obtain more desirable synchronizing capacity, the weighting matrices are selected by sufficiently utilizing the guaranteed gain margin of the optimal regulators. Based on the developed LQR-based cooperative design framework, an approximate dynamic programming technique is successfully introduced to overcome the (partially or completely) model-free cooperative design for linear multiagent systems. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.
Decentralized Observer with a Consensus Filter for Distributed Discrete-Time Linear Systems
Acikmese, Behcet; Mandic, Milan
2011-01-01
This paper presents a decentralized observer with a consensus filter for the state observation of a discrete-time linear distributed systems. In this setup, each agent in the distributed system has an observer with a model of the plant that utilizes the set of locally available measurements, which may not make the full plant state detectable. This lack of detectability is overcome by utilizing a consensus filter that blends the state estimate of each agent with its neighbors' estimates. We assume that the communication graph is connected for all times as well as the sensing graph. It is proven that the state estimates of the proposed observer asymptotically converge to the actual plant states under arbitrarily changing, but connected, communication and sensing topologies. As a byproduct of this research, we also obtained a result on the location of eigenvalues, the spectrum, of the Laplacian for a family of graphs with self-loops.
Xu, Xiaole; Chen, Shengyong
2014-01-01
This paper investigates the finite-time consensus problem of leader-following multiagent systems. The dynamical models for all following agents and the leader are assumed the same general form of linear system, and the interconnection topology among the agents is assumed to be switching and undirected. We mostly consider the continuous-time case. By assuming that the states of neighbouring agents are known to each agent, a sufficient condition is established for finite-time consensus via a neighbor-based state feedback protocol. While the states of neighbouring agents cannot be available and only the outputs of neighbouring agents can be accessed, the distributed observer-based consensus protocol is proposed for each following agent. A sufficient condition is provided in terms of linear matrix inequalities to design the observer-based consensus protocol, which makes the multiagent systems achieve finite-time consensus under switching topologies. Then, we discuss the counterparts for discrete-time case. Finally, we provide an illustrative example to show the effectiveness of the design approach. PMID:24883367
A distributed-memory hierarchical solver for general sparse linear systems
Energy Technology Data Exchange (ETDEWEB)
Chen, Chao [Stanford Univ., CA (United States). Inst. for Computational and Mathematical Engineering; Pouransari, Hadi [Stanford Univ., CA (United States). Dept. of Mechanical Engineering; Rajamanickam, Sivasankaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Boman, Erik G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Darve, Eric [Stanford Univ., CA (United States). Inst. for Computational and Mathematical Engineering and Dept. of Mechanical Engineering
2017-12-20
We present a parallel hierarchical solver for general sparse linear systems on distributed-memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits the low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by every processor. We also provide various numerical results to demonstrate the versatility and scalability of the parallel algorithm.
Accelerated Cyclic Reduction: A Distributed-Memory Fast Solver for Structured Linear Systems
Chávez, Gustavo
2017-12-15
We present Accelerated Cyclic Reduction (ACR), a distributed-memory fast solver for rank-compressible block tridiagonal linear systems arising from the discretization of elliptic operators, developed here for three dimensions. Algorithmic synergies between Cyclic Reduction and hierarchical matrix arithmetic operations result in a solver that has O(kNlogN(logN+k2)) arithmetic complexity and O(k Nlog N) memory footprint, where N is the number of degrees of freedom and k is the rank of a block in the hierarchical approximation, and which exhibits substantial concurrency. We provide a baseline for performance and applicability by comparing with the multifrontal method with and without hierarchical semi-separable matrices, with algebraic multigrid and with the classic cyclic reduction method. Over a set of large-scale elliptic systems with features of nonsymmetry and indefiniteness, the robustness of the direct solvers extends beyond that of the multigrid solver, and relative to the multifrontal approach ACR has lower or comparable execution time and size of the factors, with substantially lower numerical ranks. ACR exhibits good strong and weak scaling in a distributed context and, as with any direct solver, is advantageous for problems that require the solution of multiple right-hand sides. Numerical experiments show that the rank k patterns are of O(1) for the Poisson equation and of O(n) for the indefinite Helmholtz equation. The solver is ideal in situations where low-accuracy solutions are sufficient, or otherwise as a preconditioner within an iterative method.
Accelerated Cyclic Reduction: A Distributed-Memory Fast Solver for Structured Linear Systems
Chá vez, Gustavo; Turkiyyah, George; Zampini, Stefano; Ltaief, Hatem; Keyes, David E.
2017-01-01
We present Accelerated Cyclic Reduction (ACR), a distributed-memory fast solver for rank-compressible block tridiagonal linear systems arising from the discretization of elliptic operators, developed here for three dimensions. Algorithmic synergies between Cyclic Reduction and hierarchical matrix arithmetic operations result in a solver that has O(kNlogN(logN+k2)) arithmetic complexity and O(k Nlog N) memory footprint, where N is the number of degrees of freedom and k is the rank of a block in the hierarchical approximation, and which exhibits substantial concurrency. We provide a baseline for performance and applicability by comparing with the multifrontal method with and without hierarchical semi-separable matrices, with algebraic multigrid and with the classic cyclic reduction method. Over a set of large-scale elliptic systems with features of nonsymmetry and indefiniteness, the robustness of the direct solvers extends beyond that of the multigrid solver, and relative to the multifrontal approach ACR has lower or comparable execution time and size of the factors, with substantially lower numerical ranks. ACR exhibits good strong and weak scaling in a distributed context and, as with any direct solver, is advantageous for problems that require the solution of multiple right-hand sides. Numerical experiments show that the rank k patterns are of O(1) for the Poisson equation and of O(n) for the indefinite Helmholtz equation. The solver is ideal in situations where low-accuracy solutions are sufficient, or otherwise as a preconditioner within an iterative method.
Multimoded rf delay line distribution system for the Next Linear Collider
Directory of Open Access Journals (Sweden)
S. G. Tantawi
2002-03-01
Full Text Available The delay line distribution system is an alternative to conventional pulse compression, which enhances the peak power of rf sources while matching the long pulse of those sources to the shorter filling time of accelerator structures. We present an implementation of this scheme that combines pairs of parallel delay lines of the system into single lines. The power of several sources is combined into a single waveguide delay line using a multimode launcher. The output mode of the launcher is determined by the phase coding of the input signals. The combined power is extracted from the delay line using mode-selective extractors, each of which extracts a single mode. Hence, the phase coding of the sources controls the output port of the combined power. The power is then fed to the local accelerator structures. We present a detailed design of such a system, including several implementation methods for the launchers, extractors, and ancillary high power rf components. The system is designed so that it can handle the 600 MW peak power required by the Next Linear Collider design while maintaining high efficiency.
SuperLU{_}DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems
Energy Technology Data Exchange (ETDEWEB)
Li, Xiaoye S.; Demmel, James W.
2002-03-27
In this paper, we present the main algorithmic features in the software package SuperLU{_}DIST, a distributed-memory sparse direct solver for large sets of linear equations. We give in detail our parallelization strategies, with focus on scalability issues, and demonstrate the parallel performance and scalability on current machines. The solver is based on sparse Gaussian elimination, with an innovative static pivoting strategy proposed earlier by the authors. The main advantage of static pivoting over classical partial pivoting is that it permits a priori determination of data structures and communication pattern for sparse Gaussian elimination, which makes it more scalable on distributed memory machines. Based on this a priori knowledge, we designed highly parallel and scalable algorithms for both LU decomposition and triangular solve and we show that they are suitable for large-scale distributed memory machines.
Distributed Radiation Monitoring System for Linear Accelerators based on CAN Bus
Kozak, T; Napieralski, A
2010-01-01
Abstract—Gamma and neutron radiation is produced during the normal operation of linear accelerators like Free-Electron Laser in Hamburg (FLASH) or X-ray Free Electron Laser (X-FEL). Gamma radiation cause general degeneration of electronics devices and neutron fluence can be a reason of soft error in memories and microcontrollers. X-FEL accelerator will be built only in one tunnel, therefore most of electronic control systems will be placed in radiation environment. Exposing control systems to radiation may lead to many errors and unexpected failure of the whole accelerator system. Thus, the radiation monitoring system able to monitor radiation doses produced near controlling systems is crucial. Knowledge of produced radiation doses allows to detect errors caused by radiation, make plans of essential exchange of control systems and prevent accelerator from serious damages. The paper presents the project of radiation monitoring system able to monitor radiation environment in real time.
FPGA and optical-network-based LLRF distributed control system for TESLA-XFEL linear accelerator
Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Czarski, Tomasz; Giergusiewicz, Wojciech; Jalmuzna, Wojciech; Olowski, Krysztof; Perkuszewski, Karol; Zielinski, Jerzy; Simrock, Stefan
2005-02-01
The work presents a structural and functional model of a distributed low level radio frequency (LLRF) control system for the TESLA-XFEL accelerator. The design of a system basing on the FPGA chips and multi-gigabit optical network was debated. The system design approach was fully parametric. The major emphasis is put on the methods of the functional and hardware concentration to use fully both: a very big transmission capacity of the optical fiber telemetric channels and very big processing power of the latest series of the, DSP enhanced and optical I/O equipped, FPGA chips. The subject of the work is the design of a universal, laboratory module of the LLRF sub-system. Initial parameters of the system model under the design are presented.
Non linear system become linear system
Directory of Open Access Journals (Sweden)
Petre Bucur
2007-01-01
Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.
International Nuclear Information System (INIS)
Suh Taesuk.
1990-01-01
This work addresses a method for obtaining an optimal dose distribution of stereotactic radiosurgery. Since stereotactic radiosurgery utilizes multiple noncoplanar arcs and a three-dimensional dose evaluation technique, many beam parameters and complex optimization criteria are included in the dose optimization. Consequently, a lengthy computation time is required to optimize even the simplest case by a trial and error method. The basic approach presented here is to use both an analytical and an experimental optimization to minimize the dose to critical organs while maintaining a dose shaped to the target. The experimental approach is based on shaping the target volumes using multiple isocenters from dose experience, or on field shaping using a beam's eye view technique. The analytical approach is to adapt computer-aided design optimization to find optimum parameters automatically. Three-dimensional approximate dose models are developed to simulate the exact dose model using a spherical or cylindrical coordinate system. Optimum parameters are found much faster with the use of computer-aided design optimization techniques. The implementation of computer-aided design algorithms with the approximate dose model and the application of the algorithms to several cases are discussed. It is shown that the approximate dose model gives dose distributions similar to those of the exact dose model, which makes the approximate dose model an attractive alternative to the exact dose model, and much more efficient in terms of computer-aided design and visual optimization
Callier, Frank M.; Desoer, Charles A.
1991-01-01
The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.
Ye, Dan; Chen, Mengmeng; Li, Kui
2017-11-01
In this paper, we consider the distributed containment control problem of multi-agent systems with actuator bias faults based on observer method. The objective is to drive the followers into the convex hull spanned by the dynamic leaders, where the input is unknown but bounded. By constructing an observer to estimate the states and bias faults, an effective distributed adaptive fault-tolerant controller is developed. Different from the traditional method, an auxiliary controller gain is designed to deal with the unknown inputs and bias faults together. Moreover, the coupling gain can be adjusted online through the adaptive mechanism without using the global information. Furthermore, the proposed control protocol can guarantee that all the signals of the closed-loop systems are bounded and all the followers converge to the convex hull with bounded residual errors formed by the dynamic leaders. Finally, a decoupled linearized longitudinal motion model of the F-18 aircraft is used to demonstrate the effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Salvado, José; Espírito-Santo, António; Calado, Maria
2012-01-01
This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.
Directory of Open Access Journals (Sweden)
Maria Calado
2012-06-01
Full Text Available This paper proposes a distributed system for analysis and monitoring (DSAM of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs. The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.
Mathematical methods linear algebra normed spaces distributions integration
Korevaar, Jacob
1968-01-01
Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector
Distributional chaos for linear operators
Czech Academy of Sciences Publication Activity Database
Bernardes Jr., N.C.; Bonilla, A.; Müller, Vladimír; Peris, A.
2013-01-01
Roč. 265, č. 9 (2013), s. 2143-2163 ISSN 0022-1236 R&D Projects: GA ČR GA201/09/0473 Institutional support: RVO:67985840 Keywords : distributional chaos * hypercyclic operators * irregular vectors Subject RIV: BA - General Mathematics Impact factor: 1.152, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022123613002450
Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang
2017-05-18
This paper investigates the time-varying formation robust tracking problems for high-order linear multiagent systems with a leader of unknown control input in the presence of heterogeneous parameter uncertainties and external disturbances. The followers need to accomplish an expected time-varying formation in the state space and track the state trajectory produced by the leader simultaneously. First, a time-varying formation robust tracking protocol with a totally distributed form is proposed utilizing the neighborhood state information. With the adaptive updating mechanism, neither any global knowledge about the communication topology nor the upper bounds of the parameter uncertainties, external disturbances and leader's unknown input are required in the proposed protocol. Then, in order to determine the control parameters, an algorithm with four steps is presented, where feasible conditions for the followers to accomplish the expected time-varying formation tracking are provided. Furthermore, based on the Lyapunov-like analysis theory, it is proved that the formation tracking error can converge to zero asymptotically. Finally, the effectiveness of the theoretical results is verified by simulation examples.
Directory of Open Access Journals (Sweden)
Tarek Hassan Mohamed
2015-12-01
Full Text Available This paper presented both the linear quadratic Gaussian technique (LQG and the coefficient diagram method (CDM as load frequency controllers in a multi-area power system to deal with the problem of variations in system parameters and load demand change. The full states of the system including the area frequency deviation have been estimated using the Kalman filter technique. The efficiency of the proposed control method has been checked using a digital simulation. Simulation results indicated that, with the proposed CDM + LQG technique, the system is robust in the face of parameter uncertainties and load disturbances. A comparison between the proposed technique and other schemes is carried out, confirming the superiority of the proposed CDM + LQG technique.
Linearization of the Lorenz system
International Nuclear Information System (INIS)
Li, Chunbiao; Sprott, Julien Clinton; Thio, Wesley
2015-01-01
A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation
Linearization of the Lorenz system
Energy Technology Data Exchange (ETDEWEB)
Li, Chunbiao, E-mail: goontry@126.com [School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Engineering Technology Research and Development Center of Jiangsu Circulation Modernization Sensor Network, Jiangsu Institute of Commerce, Nanjing 211168 (China); Sprott, Julien Clinton [Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 (United States); Thio, Wesley [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210 (United States)
2015-05-08
A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation.
2017-09-01
investigation into the factors which most strongly influence ROA size would be instructive. The genetic algorithm could be modified to assess ROA size and an...DISTRIBUTION SYSTEM WITH CONSTANT POWER LOADS 5. FUNDING NUMBERS REL95 REK4K 6. AUTHOR(S) Adam J. Mills 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND
Linear Power-Flow Models in Multiphase Distribution Networks: Preprint
Energy Technology Data Exchange (ETDEWEB)
Bernstein, Andrey; Dall' Anese, Emiliano
2017-05-26
This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- from advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.
Dynamical systems and linear algebra
Colonius, Fritz (Prof.)
2007-01-01
Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)
Liang, Hongjing; Zhang, Huaguang; Wang, Zhanshan
2015-11-01
This paper considers output synchronization of discrete-time multi-agent systems with directed communication topologies. The directed communication graph contains a spanning tree and the exosystem as its root. Distributed observer-based consensus protocols are proposed, based on the relative outputs of neighboring agents. A multi-step algorithm is presented to construct the observer-based protocols. In light of the discrete-time algebraic Riccati equation and internal model principle, synchronization problem is completed. At last, numerical simulation is provided to verify the effectiveness of the theoretical results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Van Steen, Maarten
2017-01-01
For this third edition of "Distributed Systems," the material has been thoroughly revised and extended, integrating principles and paradigms into nine chapters: 1. Introduction 2. Architectures 3. Processes 4. Communication 5. Naming 6. Coordination 7. Replication 8. Fault tolerance 9. Security A separation has been made between basic material and more specific subjects. The latter have been organized into boxed sections, which may be skipped on first reading. To assist in understanding the more algorithmic parts, example programs in Python have been included. The examples in the book leave out many details for readability, but the complete code is available through the book's Website, hosted at www.distributed-systems.net.
Correlated Levy Noise in Linear Dynamical Systems
International Nuclear Information System (INIS)
Srokowski, T.
2011-01-01
Linear dynamical systems, driven by a non-white noise which has the Levy distribution, are analysed. Noise is modelled by a specific stochastic process which is defined by the Langevin equation with a linear force and the Levy distributed symmetric white noise. Correlation properties of the process are discussed. The Fokker-Planck equation driven by that noise is solved. Distributions have the Levy shape and their width, for a given time, is smaller than for processes in the white noise limit. Applicability of the adiabatic approximation in the case of the linear force is discussed. (author)
Distributed CMOS Bidirectional Amplifiers Broadbanding and Linearization Techniques
El-Khatib, Ziad; Mahmoud, Samy A
2012-01-01
This book describes methods to design distributed amplifiers useful for performing circuit functions such as duplexing, paraphrase amplification, phase shifting power splitting and power combiner applications. A CMOS bidirectional distributed amplifier is presented that combines for the first time device-level with circuit-level linearization, suppressing the third-order intermodulation distortion. It is implemented in 0.13μm RF CMOS technology for use in highly linear, low-cost UWB Radio-over-Fiber communication systems. Describes CMOS distributed amplifiers for optoelectronic applications such as Radio-over-Fiber systems, base station transceivers and picocells; Presents most recent techniques for linearization of CMOS distributed amplifiers; Includes coverage of CMOS I-V transconductors, as well as CMOS on-chip inductor integration and modeling; Includes circuit applications for UWB Radio-over-Fiber networks.
International Nuclear Information System (INIS)
Wouters, Carmen; Fraga, Eric S.; James, Adrian M.
2015-01-01
The integration of distributed generation units and microgrids in the current grid infrastructure requires an efficient and cost effective local energy system design. A mixed-integer linear programming model is presented to identify such optimal design. The electricity as well as the space heating and cooling demands of a small residential neighbourhood are satisfied through the consideration and combined use of distributed generation technologies, thermal units and energy storage with an optional interconnection with the central grid. Moreover, energy integration is allowed in the form of both optimised pipeline networks and microgrid operation. The objective is to minimise the total annualised cost of the system to meet its yearly energy demand. The model integrates the operational characteristics and constraints of the different technologies for several scenarios in a South Australian setting and is implemented in GAMS. The impact of energy integration is analysed, leading to the identification of key components for residential energy systems. Additionally, a multi-microgrid concept is introduced to allow for local clustering of households within neighbourhoods. The robustness of the model is shown through sensitivity analysis, up-scaling and an effort to address the variability of solar irradiation. - Highlights: • Distributed energy system planning is employed on a small residential scale. • Full energy integration is employed based on microgrid operation and tri-generation. • An MILP for local clustering of households in multi-microgrids is developed. • Micro combined heat and power units are key components for residential microgrids
Feedback systems for linear colliders
Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G
1999-01-01
Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...
Linear Model for Optimal Distributed Generation Size Predication
Directory of Open Access Journals (Sweden)
Ahmed Al Ameri
2017-01-01
Full Text Available This article presents a linear model predicting optimal size of Distributed Generation (DG that addresses the minimum power loss. This method is based fundamentally on strong coupling between active power and voltage angle as well as between reactive power and voltage magnitudes. This paper proposes simplified method to calculate the total power losses in electrical grid for different distributed generation sizes and locations. The method has been implemented and tested on several IEEE bus test systems. The results show that the proposed method is capable of predicting approximate optimal size of DG when compared with precision calculations. The method that linearizes a complex model showed a good result, which can actually reduce processing time required. The acceptable accuracy with less time and memory required can help the grid operator to assess power system integrated within large-scale distribution generation.
Feedback Systems for Linear Colliders
International Nuclear Information System (INIS)
1999-01-01
Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an integral part of the design. Feedback requirements for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at high bandwidth and fast response. To correct for the motion of individual bunches within a train, both feedforward and feedback systems are planned. SLC experience has shown that feedback systems are an invaluable operational tool for decoupling systems, allowing precision tuning, and providing pulse-to-pulse diagnostics. Feedback systems for the NLC will incorporate the key SLC features and the benefits of advancing technologies
Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang
2017-11-01
This paper investigates the fault-tolerant time-varying formation control problems for high-order linear multi-agent systems in the presence of actuator failures. Firstly, a fully distributed formation control protocol is presented to compensate for the influences of both bias fault and loss of effectiveness fault. Using the adaptive online updating strategies, no global knowledge about the communication topology is required and the bounds of actuator failures can be unknown. Then an algorithm is proposed to determine the control parameters of the fault-tolerant formation protocol, where the time-varying formation feasible conditions and an approach to expand the feasible formation set are given. Furthermore, the stability of the proposed algorithm is proven based on the Lyapunov-like theory. Finally, two simulation examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Window observers for linear systems
Directory of Open Access Journals (Sweden)
Utkin Vadim
2000-01-01
Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications
Systems of Inhomogeneous Linear Equations
Scherer, Philipp O. J.
Many problems in physics and especially computational physics involve systems of linear equations which arise e.g. from linearization of a general nonlinear problem or from discretization of differential equations. If the dimension of the system is not too large standard methods like Gaussian elimination or QR decomposition are sufficient. Systems with a tridiagonal matrix are important for cubic spline interpolation and numerical second derivatives. They can be solved very efficiently with a specialized Gaussian elimination method. Practical applications often involve very large dimensions and require iterative methods. Convergence of Jacobi and Gauss-Seidel methods is slow and can be improved by relaxation or over-relaxation. An alternative for large systems is the method of conjugate gradients.
Linear collider systems and costs
International Nuclear Information System (INIS)
Loew, G.A.
1993-05-01
The purpose of this paper is to examine some of the systems and sub-systems involved in so-called ''conventional'' e + e - linear colliders and to study how their design affects the overall cost of these machines. There are presently a total of at least six 500 GeV c. of m. linear collider projects under study in the world. Aside from TESLA (superconducting linac at 1.3 GHz) and CLIC (two-beam accelerator with main linac at 30GHz), the other four proposed e + e - linear colliders can be considered ''conventional'' in that their main linacs use the proven technique of driving room temperature accelerator sections with pulsed klystrons and modulators. The centrally distinguishing feature between these projects is their main linac rf frequency: 3 GHz for the DESY machine, 11.424 GHz for the SLAC and JLC machines, and 14 GHz for the VLEPP machine. The other systems, namely the electron and positron sources, preaccelerators, compressors, damping rings and final foci, are fairly similar from project to project. Probably more than 80% of the cost of these linear colliders will be incurred in the two main linacs facing each other and it is therefore in their design and construction that major savings or extra costs may be found
Rf system specifications for a linear accelerator
International Nuclear Information System (INIS)
Young, A.; Eaton, L.E.
1992-01-01
A linear accelerator contains many systems; however, the most complex and costly is the RF system. The goal of an RF system is usually simply stated as maintaining the phase and amplitude of the RF signal within a given tolerance to accelerate the charged particle beam. An RF system that drives a linear accelerator needs a complete system specification, which should contain specifications for all the subsystems (i.e., high-power RF, low-level RF, RF generation/distribution, and automation control). This paper defines a format for the specifications of these subsystems and discusses each RF subsystem independently to provide a comprehensive understanding of the function of each subsystem. This paper concludes with an example of a specification spreadsheet allowing one to input the specifications of a subsystem. Thus, some fundamental parameters (i.e., the cost and size) of the RF system can be determined
Linear operator inequalities for strongly stable weakly regular linear systems
Curtain, RF
2001-01-01
We consider the question of the existence of solutions to certain linear operator inequalities (Lur'e equations) for strongly stable, weakly regular linear systems with generating operators A, B, C, 0. These operator inequalities are related to the spectral factorization of an associated Popov
Distributed coupling high efficiency linear accelerator
Tantawi, Sami G.; Neilson, Jeffrey
2016-07-19
A microwave circuit for a linear accelerator includes multiple monolithic metallic cell plates stacked upon each other so that the beam axis passes vertically through a central acceleration cavity of each plate. Each plate has a directional coupler with coupling arms. A first coupling slot couples the directional coupler to an adjacent directional coupler of an adjacent cell plate, and a second coupling slot couples the directional coupler to the central acceleration cavity. Each directional coupler also has an iris protrusion spaced from corners joining the arms, a convex rounded corner at a first corner joining the arms, and a corner protrusion at a second corner joining the arms.
System theory as applied differential geometry. [linear system
Hermann, R.
1979-01-01
The invariants of input-output systems under the action of the feedback group was examined. The approach used the theory of Lie groups and concepts of modern differential geometry, and illustrated how the latter provides a basis for the discussion of the analytic structure of systems. Finite dimensional linear systems in a single independent variable are considered. Lessons of more general situations (e.g., distributed parameter and multidimensional systems) which are increasingly encountered as technology advances are presented.
McDonald Generalized Linear Failure Rate Distribution
Directory of Open Access Journals (Sweden)
Ibrahim Elbatal
2014-10-01
Full Text Available We introduce in this paper a new six-parameters generalized version of the generalized linear failure rate (GLFR distribution which is called McDonald Generalized Linear failure rate (McGLFR distribution. The new distribution is quite flexible and can be used effectively in modeling survival data and reliability problems. It can have a constant, decreasing, increasing, and upside down bathtub-and bathtub shaped failure rate function depending on its parameters. It includes some well-known lifetime distributions as special sub-models. Some structural properties of the new distribution are studied. Moreover we discuss maximum likelihood estimation of the unknown parameters of the new model.
Directory of Open Access Journals (Sweden)
M. De la Sen
2009-01-01
Full Text Available This paper investigates the relations between the particular eigensolutions of a limiting functional differential equation of any order, which is the nominal (unperturbed linear autonomous differential equations, and the associate ones of the corresponding perturbed functional differential equation. Both differential equations involve point and distributed delayed dynamics including Volterra class dynamics. The proofs are based on a Perron-type theorem for functional equations so that the comparison is governed by the real part of a dominant zero of the characteristic equation of the nominal differential equation. The obtained results are also applied to investigate the global stability of the perturbed equation based on that of its corresponding limiting equation.
Accessing the distribution of linearly polarized gluons in unpolarized hadrons
Boer, Daniël; Brodsky, Stanley J.; Mulders, Piet J.; Pisano, Cristian
2011-01-01
Gluons inside unpolarized hadrons can be linearly polarized provided they have a nonzero transverse momentum. The simplest and theoretically safest way to probe this distribution of linearly polarized gluons is through cos(2 phi) asymmetries in heavy quark pair or dijet production in electron-hadron
Spatial linear flows of finite length with nonuniform intensity distribution
Directory of Open Access Journals (Sweden)
Mikhaylov Ivan Evgrafovich
2014-02-01
Full Text Available Irrotational flows produced by spatial linear flows of finite length with different uneven lows of discharge over the flow length are represented in cylindrical coordinate system. Flows with the length 2a are placed in infinite space filled with ideal (inviscid fluid. In “А” variant discharge is fading linearly downward along the length of the flow. In “B” variant in upper half of the flow (length a discharge is fading linearly downward, in lower half of the flow discharge is fading linearly from the middle point to lower end. In “C” variant discharge of the flow is growing linearly from upper and lower ends to middle point.Equations for discharge distribution along the length of the flow are provided for each variant. Equations consist of two terms and include two dimensional parameters and current coordinate that allows integrating on flow length. Analytical expressions are derived for speed potential functions and flow speed components for flow speeds produced by analyzed flows. These analytical expressions consist of dimensional parameters of discharge distribution patterns along the length of the flow. Flow lines equation (meridional sections of flow surfaces for variants “A”, “B”, “C” is unsolvable in quadratures. Flow lines plotting is proposed to be made by finite difference method. Equations for flow line plotting are provided for each variant. Calculations of these equations show that the analyzed flows have the following flow lines: “A” has confocal hyperbolical curves, “B” and “C” have confocal hyperboles. Flow surfaces are confocal hyperboloids produced by rotation of these hyperboles about the axis passing through the flows. In “A” variant the space filled with fluid is separated by vividly horizontal flow surface in two parts. In upper part that includes the smaller part of the flow length flow lines are oriented downward, in lower part – upward. The equation defining coordinate of
Dynamic linearization system for a radiation gauge
International Nuclear Information System (INIS)
Panarello, J.A.
1977-01-01
The linearization system and process converts a high resolution non-linear analog input signal, representative of the thickness of an object, into a high resolution linear analog output signal suitable for use in driving a variety of output devices. The system requires only a small amount of memory for storing pre-calculated non-linear correction coefficients. The system channels the input signal to separate circuit paths so that it may be used directly to; locate an appropriate correction coefficient; develop a correction term after an appropriate correction coefficient is located; and develop a linearized signal having the same high resolution inherent in the input signal. The system processes the linearized signal to compensate for the possible errors introduced by radiation source noise. The processed linearized signal is the high resolution linear analog output signal which accurately represents the thickness of the object being gauged
Linearly Polarized Gluons and the Higgs Transverse Momentum Distribution
Boer, Daniel; den Dunnen, Wilco J.; Pisano, Cristian; Schlegel, Marc; Vogelsang, Werner
2012-01-01
We study how gluons carrying linear polarization inside an unpolarized hadron contribute to the transverse momentum distribution of Higgs bosons produced in hadronic collisions. They modify the distribution produced by unpolarized gluons in a characteristic way that could be used to determine
Linear quadratic optimization for positive LTI system
Muhafzan, Yenti, Syafrida Wirma; Zulakmal
2017-05-01
Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.
Drinking Water Distribution Systems
Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.
On pole structure assignment in linear systems
Czech Academy of Sciences Publication Activity Database
Loiseau, J.-J.; Zagalak, Petr
2009-01-01
Roč. 82, č. 7 (2009), s. 1179-1192 ISSN 0020-7179 R&D Projects: GA ČR(CZ) GA102/07/1596 Institutional research plan: CEZ:AV0Z10750506 Keywords : linear systems * linear state feedback * pole structure assignment Subject RIV: BC - Control Systems Theory Impact factor: 1.124, year: 2009 http://library.utia.cas.cz/separaty/2009/AS/zagalak-on pole structure assignment in linear systems.pdf
Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution
Energy Technology Data Exchange (ETDEWEB)
Hamadameen, Abdulqader Othman [Optimization, Department of Mathematical Sciences, Faculty of Science, UTM (Malaysia); Zainuddin, Zaitul Marlizawati [Department of Mathematical Sciences, Faculty of Science, UTM (Malaysia)
2014-06-19
This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.
Displacement measurement system for linear array detector
International Nuclear Information System (INIS)
Zhang Pengchong; Chen Ziyu; Shen Ji
2011-01-01
It presents a set of linear displacement measurement system based on encoder. The system includes displacement encoders, optical lens and read out circuit. Displacement read out unit includes linear CCD and its drive circuit, two amplifier circuits, second order Butterworth low-pass filter and the binarization circuit. The coding way is introduced, and various parts of the experimental signal waveforms are given, and finally a linear experimental test results are given. The experimental results are satisfactory. (authors)
Numerical solution of large sparse linear systems
International Nuclear Information System (INIS)
Meurant, Gerard; Golub, Gene.
1982-02-01
This note is based on one of the lectures given at the 1980 CEA-EDF-INRIA Numerical Analysis Summer School whose aim is the study of large sparse linear systems. The main topics are solving least squares problems by orthogonal transformation, fast Poisson solvers and solution of sparse linear system by iterative methods with a special emphasis on preconditioned conjuguate gradient method [fr
Balanced truncation for linear switched systems
DEFF Research Database (Denmark)
Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef
2013-01-01
In this paper, we present a theoretical analysis of the model reduction algorithm for linear switched systems from Shaker and Wisniewski (2011, 2009) and . This algorithm is a reminiscence of the balanced truncation method for linear parameter varying systems (Wood et al., 1996) [3]. Specifically...
On the null distribution of Bayes factors in linear regression
We show that under the null, the 2 log (Bayes factor) is asymptotically distributed as a weighted sum of chi-squared random variables with a shifted mean. This claim holds for Bayesian multi-linear regression with a family of conjugate priors, namely, the normal-inverse-gamma prior, the g-prior, and...
Observability of linear systems with saturated outputs
Koplon, R.; Sontag, E.D.; Hautus, M.L.J.
1994-01-01
We present necessary and sufficient conditions for observability of the class of output-saturated systems. These are linear systems whose output passes through a saturation function before it can be measured.
Distributed Supervisory Protection Interlock System
International Nuclear Information System (INIS)
Walz, H.V.; Agostini, R.C.; Barker, L.; Cherkassky, R.; Constant, T.; Matheson, R.
1989-03-01
The Distributed Supervisory Protection Interlock System, DSPI, is under development at the Stanford Linear Accelerator Center for requirements in the areas of personnel protection, beam containment and equipment protection interlocks. The DSPI system, distributed over the application site, consists of segments with microprocessor-based controller and I/O modules, local area networks for communication, and a global supervisor computer. Segments are implemented with commercially available controller and I/O modules arranged in local interlock clusters, and associated software. Segments provide local interlock data acquisition, processing and control. Local area networks provide the communication backbone between segments and a global supervisor processor. The supervisor processor monitors the overall system, reports detail status and provides human interfaces. Details of an R and D test system, which will implement the requirements for personnel protection of 4 typical linear accelerator sectors, will be described. 4 refs., 2 figs
Distributing Correlation Coefficients of Linear Structure-Activity/Property Models
Directory of Open Access Journals (Sweden)
Sorana D. BOLBOACA
2011-12-01
Full Text Available Quantitative structure-activity/property relationships are mathematical relationships linking chemical structure and activity/property in a quantitative manner. These in silico approaches are frequently used to reduce animal testing and risk-assessment, as well as to increase time- and cost-effectiveness in characterization and identification of active compounds. The aim of our study was to investigate the pattern of correlation coefficients distribution associated to simple linear relationships linking the compounds structure with their activities. A set of the most common ordnance compounds found at naval facilities with a limited data set with a range of toxicities on aquatic ecosystem and a set of seven properties was studied. Statistically significant models were selected and investigated. The probability density function of the correlation coefficients was investigated using a series of possible continuous distribution laws. Almost 48% of the correlation coefficients proved fit Beta distribution, 40% fit Generalized Pareto distribution, and 12% fit Pert distribution.
Energy Technology Data Exchange (ETDEWEB)
Gurevich, S. G.
1955-07-01
Galerkin's method is applied to the solution of a linear partial differential equation of arbitrary order under specified initial and boundary conditions. An example is carried through in complete detail to illustrate the method. (auth)
Isolators Including Main Spring Linear Guide Systems
Goold, Ryan (Inventor); Buchele, Paul (Inventor); Hindle, Timothy (Inventor); Ruebsamen, Dale Thomas (Inventor)
2017-01-01
Embodiments of isolators, such as three parameter isolators, including a main spring linear guide system are provided. In one embodiment, the isolator includes first and second opposing end portions, a main spring mechanically coupled between the first and second end portions, and a linear guide system extending from the first end portion, across the main spring, and toward the second end portion. The linear guide system expands and contracts in conjunction with deflection of the main spring along the working axis, while restricting displacement and rotation of the main spring along first and second axes orthogonal to the working axis.
Linear systems a measurement based approach
Bhattacharyya, S P; Mohsenizadeh, D N
2014-01-01
This brief presents recent results obtained on the analysis, synthesis and design of systems described by linear equations. It is well known that linear equations arise in most branches of science and engineering as well as social, biological and economic systems. The novelty of this approach is that no models of the system are assumed to be available, nor are they required. Instead, a few measurements made on the system can be processed strategically to directly extract design values that meet specifications without constructing a model of the system, implicitly or explicitly. These new concepts are illustrated by applying them to linear DC and AC circuits, mechanical, civil and hydraulic systems, signal flow block diagrams and control systems. These applications are preliminary and suggest many open problems. The results presented in this brief are the latest effort in this direction and the authors hope these will lead to attractive alternatives to model-based design of engineering and other systems.
Directory of Open Access Journals (Sweden)
Yazhou Jiang
2016-04-01
Full Text Available The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. A comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD, is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs is introduced. Future research in a smart distribution environment is proposed.
Sallam, A A
2010-01-01
"Electricity distribution is the penultimate stage in the delivery of electricity to end users. The only book that deals with the key topics of interest to distribution system engineers, Electric Distribution Systems presents a comprehensive treatment of the subject with an emphasis on both the practical and academic points of view. Reviewing traditional and cutting-edge topics, the text is useful to practicing engineers working with utility companies and industry, undergraduate graduate and students, and faculty members who wish to increase their skills in distribution system automation and monitoring."--
Distributed Cooperative Secondary Control of Microgrids Using Feedback Linearization
DEFF Research Database (Denmark)
Bidram, Ali; Davoudi, Ali; Lewis, Frank
2013-01-01
This paper proposes a secondary voltage control of microgrids based on the distributed cooperative control of multi-agent systems. The proposed secondary control is fully distributed; each distributed generator (DG) only requires its own information and the information of some neighbors. The dist......This paper proposes a secondary voltage control of microgrids based on the distributed cooperative control of multi-agent systems. The proposed secondary control is fully distributed; each distributed generator (DG) only requires its own information and the information of some neighbors...... parameters can be tuned to obtain a desired response speed. The effectiveness of the proposed control methodology is verified by the simulation of a microgrid test system....
Final focus systems for linear colliders
International Nuclear Information System (INIS)
Erickson, R.A.
1987-11-01
The final focus system of a linear collider must perform two primary functions, it must focus the two opposing beams so that their transverse dimensions at the interaction point are small enough to yield acceptable luminosity, and it must steer the beams together to maintain collisions. In addition, the final focus system must transport the outgoing beams to a location where they can be recycled or safely dumped. Elementary optical considerations for linear collider final focus systems are discussed, followed by chromatic aberrations. The design of the final focus system of the SLAC Linear Collider (SLC) is described. Tuning and diagnostics and steering to collision are discussed. Most of the examples illustrating the concepts covered are drawn from the SLC, but the principles and conclusions are said to be generally applicable to other linear collider designs as well. 26 refs., 17 figs
On deformations of linear differential systems
Gontsov, R.R.; Poberezhnyi, V.A.; Helminck, G.F.
2011-01-01
This article concerns deformations of meromorphic linear differential systems. Problems relating to their existence and classification are reviewed, and the global and local behaviour of solutions to deformation equations in a neighbourhood of their singular set is analysed. Certain classical
Superconducting linear accelerator system for NSC
Indian Academy of Sciences (India)
59, No. 5. — journal of. November 2002 physics pp. 849–858. Superconducting linear accelerator system for NSC ... cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indige- ... Prototype resonator was.
Mullender, Sape J.
1987-01-01
In the past five years, distributed operating systems research has gone through a consolidation phase. On a large number of design issues there is now considerable consensus between different research groups. In this paper, an overview of recent research in distributed systems is given. In turn, the
Fast Solvers for Dense Linear Systems
Energy Technology Data Exchange (ETDEWEB)
Kauers, Manuel [Research Institute for Symbolic Computation (RISC), Altenbergerstrasse 69, A4040 Linz (Austria)
2008-10-15
It appears that large scale calculations in particle physics often require to solve systems of linear equations with rational number coefficients exactly. If classical Gaussian elimination is applied to a dense system, the time needed to solve such a system grows exponentially in the size of the system. In this tutorial paper, we present a standard technique from computer algebra that avoids this exponential growth: homomorphic images. Using this technique, big dense linear systems can be solved in a much more reasonable time than using Gaussian elimination over the rationals.
Pervasive Electricity Distribution System
Directory of Open Access Journals (Sweden)
Muhammad Usman Tahir
2017-06-01
Full Text Available Now a days a country cannot become economically strong until and unless it has enough electrical power to fulfil industrial and domestic needs. Electrical power being the pillar of any country’s economy, needs to be used in an efficient way. The same step is taken here by proposing a new system for energy distribution from substation to consumer houses, also it monitors the consumer consumption and record data. Unlike traditional manual Electrical systems, pervasive electricity distribution system (PEDS introduces a fresh perspective to monitor the feeder line status at distribution and consumer level. In this system an effort is taken to address the issues of electricity theft, manual billing, online monitoring of electrical distribution system and automatic control of electrical distribution points. The project is designed using microcontroller and different sensors, its GUI is designed in Labview software.
Signals and transforms in linear systems analysis
Wasylkiwskyj, Wasyl
2013-01-01
Signals and Transforms in Linear Systems Analysis covers the subject of signals and transforms, particularly in the context of linear systems theory. Chapter 2 provides the theoretical background for the remainder of the text. Chapter 3 treats Fourier series and integrals. Particular attention is paid to convergence properties at step discontinuities. This includes the Gibbs phenomenon and its amelioration via the Fejer summation techniques. Special topics include modulation and analytic signal representation, Fourier transforms and analytic function theory, time-frequency analysis and frequency dispersion. Fundamentals of linear system theory for LTI analogue systems, with a brief account of time-varying systems, are covered in Chapter 4 . Discrete systems are covered in Chapters 6 and 7. The Laplace transform treatment in Chapter 5 relies heavily on analytic function theory as does Chapter 8 on Z -transforms. The necessary background on complex variables is provided in Appendix A. This book is intended to...
Cooling water distribution system
Orr, Richard
1994-01-01
A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.
Linear integral equations and soliton systems
International Nuclear Information System (INIS)
Quispel, G.R.W.
1983-01-01
A study is presented of classical integrable dynamical systems in one temporal and one spatial dimension. The direct linearizations are given of several nonlinear partial differential equations, for example the Korteweg-de Vries equation, the modified Korteweg-de Vries equation, the sine-Gordon equation, the nonlinear Schroedinger equation, and the equation of motion for the isotropic Heisenberg spin chain; the author also discusses several relations between these equations. The Baecklund transformations of these partial differential equations are treated on the basis of a singular transformation of the measure (or equivalently of the plane-wave factor) occurring in the corresponding linear integral equations, and the Baecklund transformations are used to derive the direct linearization of a chain of so-called modified partial differential equations. Finally it is shown that the singular linear integral equations lead in a natural way to the direct linearizations of various nonlinear difference-difference equations. (Auth.)
STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS
Directory of Open Access Journals (Sweden)
Jorge Enrique Mayta Guillermo
2016-12-01
Full Text Available In this work we will analyze the stability of linear systems governed by a Markov chain, this family is known in the specialized literature as linear systems with Markov jumps or by its acronyms in English MJLS as it is denoted in [1]. Linear systems governed by a Markov chain are dynamic systems with abrupt changes. We give some denitions of stability for the MJLS system, where these types of stability are equivalent as long as the state space of the Markov chain is nite. Finally we present a theorem that characterizes the stochastic stability by means of an equation of the Lyapunov type. The result is a generalization of a theorem in classical theory.
Peer-Assisted Content Distribution with Random Linear Network Coding
DEFF Research Database (Denmark)
Hundebøll, Martin; Ledet-Pedersen, Jeppe; Sluyterman, Georg
2014-01-01
Peer-to-peer networks constitute a widely used, cost-effective and scalable technology to distribute bandwidth-intensive content. The technology forms a great platform to build distributed cloud storage without the need of a central provider. However, the majority of todays peer-to-peer systems...
Introduction to linear systems of differential equations
Adrianova, L Ya
1995-01-01
The theory of linear systems of differential equations is one of the cornerstones of the whole theory of differential equations. At its root is the concept of the Lyapunov characteristic exponent. In this book, Adrianova presents introductory material and further detailed discussions of Lyapunov exponents. She also discusses the structure of the space of solutions of linear systems. Classes of linear systems examined are from the narrowest to widest: 1)�autonomous, 2)�periodic, 3)�reducible to autonomous, 4)�nearly reducible to autonomous, 5)�regular. In addition, Adrianova considers the following: stability of linear systems and the influence of perturbations of the coefficients on the stability the criteria of uniform stability and of uniform asymptotic stability in terms of properties of the solutions several estimates of the growth rate of solutions of a linear system in terms of its coefficients How perturbations of the coefficients change all the elements of the spectrum of the system is defin...
Advanced Distribution Management System
Avazov, Artur; Sobinova, Lubov Anatolievna
2016-01-01
This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.
Advanced Distribution Management System
Avazov, Artur R.; Sobinova, Liubov A.
2016-02-01
This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.
Advanced Distribution Management System
Directory of Open Access Journals (Sweden)
Avazov Artur R.
2016-01-01
Full Text Available This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.
Final Focus Systems in Linear Colliders
International Nuclear Information System (INIS)
Raubenheimer, Tor
1998-01-01
In colliding beam facilities, the ''final focus system'' must demagnify the beams to attain the very small spot sizes required at the interaction points. The first final focus system with local chromatic correction was developed for the Stanford Linear Collider where very large demagnifications were desired. This same conceptual design has been adopted by all the future linear collider designs as well as the SuperConducting Supercollider, the Stanford and KEK B-Factories, and the proposed Muon Collider. In this paper, the over-all layout, physics constraints, and optimization techniques relevant to the design of final focus systems for high-energy electron-positron linear colliders are reviewed. Finally, advanced concepts to avoid some of the limitations of these systems are discussed
Generalized Cross-Gramian for Linear Systems
DEFF Research Database (Denmark)
Shaker, Hamid Reza
2012-01-01
The cross-gramian is a well-known matrix with embedded controllability and observability information. The cross-gramian is related to the Hankel operator and the Hankel singular values of a linear square system and it has several interesting properties. These properties make the cross...... square symmetric systems, the ordinary cross-gramian does not exist. To cope with this problem, a new generalized cross-gramian is introduced in this paper. In contrast to the ordinary cross-gramian, the generalized cross-gramian can be easily obtained for general linear systems and therefore can be used...
Linear dynamic coupling in geared rotor systems
David, J. W.; Mitchell, L. D.
1986-01-01
The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.
On output regulation for linear systems
Saberi, Ali; Stoorvogel, Antonie Arij; Sannuti, Peddapullaiah
For both continuous- and discrete-time systems, we revisit the output regulation problem for linear systems. We generalize the problem formulation in order • to expand the class of reference or disturbance signals, • to utilize the derivative or feedforward information of reference signals whenever
Linear response theory for quantum open systems
Wei, J. H.; Yan, YiJing
2011-01-01
Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.
When to call a linear system nonnegative
Nieuwenhuis, J.W.
1998-01-01
In this paper we will consider discrete time invariant linear systems that allow for an input-state-output representation with a finite dimensional state space, and that have a finite number of inputs and outputs. The basic issue in this paper is when to call these systems nonnegative. An important
Tikhonov theorem for linear hyperbolic systems
Tang , Ying; Prieur , Christophe; Girard , Antoine
2015-01-01
International audience; A class of linear systems of conservation laws with a small perturbation parameter is introduced. By setting the perturbation parameter to zero, two subsystems, the reduced system standing for the slow dynamics and the boundary-layer system representing the fast dynamics, are computed. It is first proved that the exponential stability of the full system implies the stability of both subsystems. Secondly, a counter example is given to indicate that the converse is not t...
A distribution management system
Energy Technology Data Exchange (ETDEWEB)
Verho, P.; Jaerventausta, P.; Kaerenlampi, M.; Paulasaari, H. [Tampere Univ. of Technology (Finland); Partanen, J. [Lappeenranta Univ. of Technology (Finland)
1996-12-31
The development of new distribution automation applications is considerably wide nowadays. One of the most interesting areas is the development of a distribution management system (DMS) as an expansion of the traditional SCADA system. At the power transmission level such a system is called an energy management system (EMS). The idea of these expansions is to provide supporting tools for control center operators in system analysis and operation planning. The needed data for new applications is mainly available in some existing systems. Thus the computer systems of utilities must be integrated. The main data source for the new applications in the control center are the AM/FM/GIS (i.e. the network database system), the SCADA, and the customer information system (CIS). The new functions can be embedded in some existing computer system. This means a strong dependency on the vendor of the existing system. An alternative strategy is to develop an independent system which is integrated with other computer systems using well-defined interfaces. The latter approach makes it possible to use the new applications in various computer environments, having only a weak dependency on the vendors of the other systems. In the research project this alternative is preferred and used in developing an independent distribution management system
A distribution management system
Energy Technology Data Exchange (ETDEWEB)
Verho, P; Jaerventausta, P; Kaerenlampi, M; Paulasaari, H [Tampere Univ. of Technology (Finland); Partanen, J [Lappeenranta Univ. of Technology (Finland)
1997-12-31
The development of new distribution automation applications is considerably wide nowadays. One of the most interesting areas is the development of a distribution management system (DMS) as an expansion of the traditional SCADA system. At the power transmission level such a system is called an energy management system (EMS). The idea of these expansions is to provide supporting tools for control center operators in system analysis and operation planning. The needed data for new applications is mainly available in some existing systems. Thus the computer systems of utilities must be integrated. The main data source for the new applications in the control center are the AM/FM/GIS (i.e. the network database system), the SCADA, and the customer information system (CIS). The new functions can be embedded in some existing computer system. This means a strong dependency on the vendor of the existing system. An alternative strategy is to develop an independent system which is integrated with other computer systems using well-defined interfaces. The latter approach makes it possible to use the new applications in various computer environments, having only a weak dependency on the vendors of the other systems. In the research project this alternative is preferred and used in developing an independent distribution management system
A distribution management system
Energy Technology Data Exchange (ETDEWEB)
Jaerventausta, P; Verho, P; Kaerenlampi, M; Pitkaenen, M [Tampere Univ. of Technology (Finland); Partanen, J [Lappeenranta Univ. of Technology (Finland)
1998-08-01
The development of new distribution automation applications is considerably wide nowadays. One of the most interesting areas is the development of a distribution management system (DMS) as an expansion to the traditional SCADA system. At the power transmission level such a system is called an energy management system (EMS). The idea of these expansions is to provide supporting tools for control center operators in system analysis and operation planning. Nowadays the SCADA is the main computer system (and often the only) in the control center. However, the information displayed by the SCADA is often inadequate, and several tasks cannot be solved by a conventional SCADA system. A need for new computer applications in control center arises from the insufficiency of the SCADA and some other trends. The latter means that the overall importance of the distribution networks is increasing. The slowing down of load-growth has often made network reinforcements unprofitable. Thus the existing network must be operated more efficiently. At the same time larger distribution areas are for economical reasons being monitored at one control center and the size of the operation staff is decreasing. The quality of supply requirements are also becoming stricter. The needed data for new applications is mainly available in some existing systems. Thus the computer systems of utilities must be integrated. The main data source for the new applications in the control center are the AM/FM/GIS (i.e. the network database system), the SCADA, and the customer information system (CIS). The new functions can be embedded in some existing computer system. This means a strong dependency on the vendor of the existing system. An alternative strategy is to develop an independent system which is integrated with other computer systems using well-defined interfaces. The latter approach makes it possible to use the new applications in various computer environments, having only a weak dependency on the
ITMETH, Iterative Routines for Linear System
International Nuclear Information System (INIS)
Greenbaum, A.
1989-01-01
1 - Description of program or function: ITMETH is a collection of iterative routines for solving large, sparse linear systems. 2 - Method of solution: ITMETH solves general linear systems of the form AX=B using a variety of methods: Jacobi iteration; Gauss-Seidel iteration; incomplete LU decomposition or matrix splitting with iterative refinement; diagonal scaling, matrix splitting, or incomplete LU decomposition with the conjugate gradient method for the problem AA'Y=B, X=A'Y; bi-conjugate gradient method with diagonal scaling, matrix splitting, or incomplete LU decomposition; and ortho-min method with diagonal scaling, matrix splitting, or incomplete LU decomposition. ITMETH also solves symmetric positive definite linear systems AX=B using the conjugate gradient method with diagonal scaling or matrix splitting, or the incomplete Cholesky conjugate gradient method
Adaptive distributed parameter and input estimation in linear parabolic PDEs
Mechhoud, Sarra
2016-01-01
In this paper, we discuss the on-line estimation of distributed source term, diffusion, and reaction coefficients of a linear parabolic partial differential equation using both distributed and interior-point measurements. First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.
RF phase distribution systems at the SLC
International Nuclear Information System (INIS)
Jobe, R.K.; Schwarz, H.D.
1989-04-01
Modern large linear accelerators require RF distribution systems with minimal phase drifts and errors. Through the use of existing RF coaxial waveguides, and additional installation of phase reference cables and monitoring equipment, stable RF distribution for the SLC has been achieved. This paper discusses the design and performance of SLAC systems, and some design considerations for future colliders. 6 refs., 4 figs
International Nuclear Information System (INIS)
Zacharov, B.
1976-01-01
In recent years, there has been a growing tendency in high-energy physics and in other fields to solve computational problems by distributing tasks among the resources of inter-coupled processing devices and associated system elements. This trend has gained further momentum more recently with the increased availability of low-cost processors and with the development of the means of data distribution. In two lectures, the broad question of distributed computing systems is examined and the historical development of such systems reviewed. An attempt is made to examine the reasons for the existence of these systems and to discern the main trends for the future. The components of distributed systems are discussed in some detail and particular emphasis is placed on the importance of standards and conventions in certain key system components. The ideas and principles of distributed systems are discussed in general terms, but these are illustrated by a number of concrete examples drawn from the context of the high-energy physics environment. (Auth.)
Conduction cooling systems for linear accelerator cavities
Kephart, Robert
2017-05-02
A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.
Stability analysis of linear switching systems with time delays
International Nuclear Information System (INIS)
Li Ping; Zhong Shouming; Cui Jinzhong
2009-01-01
The issue of stability analysis of linear switching system with discrete and distributed time delays is studied in this paper. An appropriate switching rule is applied to guarantee the stability of the whole switching system. Our results use a Riccati-type Lyapunov functional under a condition on the time delay. So, switching systems with mixed delays are developed. A numerical example is given to illustrate the effectiveness of our results.
A penalized framework for distributed lag non-linear models.
Gasparrini, Antonio; Scheipl, Fabian; Armstrong, Ben; Kenward, Michael G
2017-09-01
Distributed lag non-linear models (DLNMs) are a modelling tool for describing potentially non-linear and delayed dependencies. Here, we illustrate an extension of the DLNM framework through the use of penalized splines within generalized additive models (GAM). This extension offers built-in model selection procedures and the possibility of accommodating assumptions on the shape of the lag structure through specific penalties. In addition, this framework includes, as special cases, simpler models previously proposed for linear relationships (DLMs). Alternative versions of penalized DLNMs are compared with each other and with the standard unpenalized version in a simulation study. Results show that this penalized extension to the DLNM class provides greater flexibility and improved inferential properties. The framework exploits recent theoretical developments of GAMs and is implemented using efficient routines within freely available software. Real-data applications are illustrated through two reproducible examples in time series and survival analysis. © 2017 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.
Chaos as an intermittently forced linear system.
Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kaiser, Eurika; Kutz, J Nathan
2017-05-30
Understanding the interplay of order and disorder in chaos is a central challenge in modern quantitative science. Approximate linear representations of nonlinear dynamics have long been sought, driving considerable interest in Koopman theory. We present a universal, data-driven decomposition of chaos as an intermittently forced linear system. This work combines delay embedding and Koopman theory to decompose chaotic dynamics into a linear model in the leading delay coordinates with forcing by low-energy delay coordinates; this is called the Hankel alternative view of Koopman (HAVOK) analysis. This analysis is applied to the Lorenz system and real-world examples including Earth's magnetic field reversal and measles outbreaks. In each case, forcing statistics are non-Gaussian, with long tails corresponding to rare intermittent forcing that precedes switching and bursting phenomena. The forcing activity demarcates coherent phase space regions where the dynamics are approximately linear from those that are strongly nonlinear.The huge amount of data generated in fields like neuroscience or finance calls for effective strategies that mine data to reveal underlying dynamics. Here Brunton et al.develop a data-driven technique to analyze chaotic systems and predict their dynamics in terms of a forced linear model.
Modeling and analysis of linear hyperbolic systems of balance laws
Bartecki, Krzysztof
2016-01-01
This monograph focuses on the mathematical modeling of distributed parameter systems in which mass/energy transport or wave propagation phenomena occur and which are described by partial differential equations of hyperbolic type. The case of linear (or linearized) 2 x 2 hyperbolic systems of balance laws is considered, i.e., systems described by two coupled linear partial differential equations with two variables representing physical quantities, depending on both time and one-dimensional spatial variable. Based on practical examples of a double-pipe heat exchanger and a transportation pipeline, two typical configurations of boundary input signals are analyzed: collocated, wherein both signals affect the system at the same spatial point, and anti-collocated, in which the input signals are applied to the two different end points of the system. The results of this book emerge from the practical experience of the author gained during his studies conducted in the experimental installation of a heat exchange cente...
SNR Estimation in Linear Systems with Gaussian Matrices
Suliman, Mohamed Abdalla Elhag; Alrashdi, Ayed; Ballal, Tarig; Al-Naffouri, Tareq Y.
2017-01-01
This letter proposes a highly accurate algorithm to estimate the signal-to-noise ratio (SNR) for a linear system from a single realization of the received signal. We assume that the linear system has a Gaussian matrix with one sided left correlation. The unknown entries of the signal and the noise are assumed to be independent and identically distributed with zero mean and can be drawn from any distribution. We use the ridge regression function of this linear model in company with tools and techniques adapted from random matrix theory to achieve, in closed form, accurate estimation of the SNR without prior statistical knowledge on the signal or the noise. Simulation results show that the proposed method is very accurate.
SNR Estimation in Linear Systems with Gaussian Matrices
Suliman, Mohamed Abdalla Elhag
2017-09-27
This letter proposes a highly accurate algorithm to estimate the signal-to-noise ratio (SNR) for a linear system from a single realization of the received signal. We assume that the linear system has a Gaussian matrix with one sided left correlation. The unknown entries of the signal and the noise are assumed to be independent and identically distributed with zero mean and can be drawn from any distribution. We use the ridge regression function of this linear model in company with tools and techniques adapted from random matrix theory to achieve, in closed form, accurate estimation of the SNR without prior statistical knowledge on the signal or the noise. Simulation results show that the proposed method is very accurate.
Final focus systems for linear colliders
International Nuclear Information System (INIS)
Helm, R.; Irwin, J.
1992-08-01
Final focus systems for linear colliders present many exacting challenges in beam optics, component design, and beam quality. Efforts to resolve these problems as they relate to a new generation of linear colliders are under way at several laboratories around the world. We will outline criteria for final focus systems and discuss the current state of understanding and resolution of the outstanding problems. We will discuss tolerances on alignment, field quality and stability for optical elements, and the implications for beam parameters such as emittance, energy spread, bunch length, and stability in position and energy. Beam-based correction procedures, which in principle can alleviate many of the tolerances, will be described. Preliminary results from the Final Focus Test Beam (FFTB) under construction at SLAC will be given. Finally, we mention conclusions from operating experience at the Stanford Linear Collider (SLC)
Final focus systems for linear colliders
International Nuclear Information System (INIS)
Helm, R.; Irwing, J.
1992-01-01
Final focus systems for linear colliders present many exacting challenges in beam optics, component design, and beam quality. Efforts to resolve these problems as they relate to a new generation of linear colliders are under way at several laboratories around the world. We outline criteria for final focus systems and discuss the current state of understanding and resolution of the outstanding problems. We discuss tolerances on alignment, field quality and stability for optical elements, and the implications for beam parameters such as emittance, energy spread , bunch length, and stability in position and energy. Beam-based correction procedures, which in principle can alleviate many of the tolerances, are described. Preliminary results from the Final Focus Test Beam (FFTB) under construction at SLAC are given. Finally, we mention conclusions from operating experience at the Stanford Linear Collider (SLC). (Author) 16 refs., 4 tabs., 6 figs
Dual-range linearized transimpedance amplifier system
Wessendorf, Kurt O.
2010-11-02
A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).
Distributed Treatment Systems.
Zgonc, David; Plante, Luke
2017-10-01
This section presents a review of the literature published in 2016 on topics relating to distributed treatment systems. This review is divided into the following sections with multiple subsections under each: constituent removal; treatment technologies; and planning and treatment system management.
A note on the time decay of solutions for the linearized Wigner-Poisson system
Gamba, Irene; Gualdani, Maria; Sparber, Christof
2009-01-01
We consider the one-dimensional Wigner-Poisson system of plasma physics, linearized around a (spatially homogeneous) Lorentzian distribution and prove that the solution of the corresponding linearized problem decays to zero in time. We also give
Consys Linear Control System Design Software Package
International Nuclear Information System (INIS)
Diamantidis, Z.
1987-01-01
This package is created in order to help engineers, researchers, students and all who work on linear control systems. The software includes all time and frequency domain analysises, spectral analysises and networks, active filters and regulators design aids. The programmes are written on Hewlett Packard computer in Basic 4.0
Disturbance Decoupling of Switched Linear Systems
Yurtseven, E.; Heemels, W.P.M.H.; Camlibel, M.K.
2010-01-01
In this paper we consider disturbance decoupling problems for switched linear systems. We will provide necessary and sufficient conditions for three different versions of disturbance decoupling, which differ based on which signals are considered to be the disturbance. In the first version the
Uzawa method for fuzzy linear system
Ke Wang
2013-01-01
An Uzawa method is presented for solving fuzzy linear systems whose coefficient matrix is crisp and the right-hand side column is arbitrary fuzzy number vector. The explicit iterative scheme is given. The convergence is analyzed with convergence theorems and the optimal parameter is obtained. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.
Distributed Computerized Catalog System
Borgen, Richard L.; Wagner, David A.
1995-01-01
DarkStar Distributed Catalog System describes arbitrary data objects in unified manner, providing end users with versatile, yet simple search mechanism for locating and identifying objects. Provides built-in generic and dynamic graphical user interfaces. Design of system avoids some of problems of standard DBMS, and system provides more flexibility than do conventional relational data bases, or object-oriented data bases. Data-collection lattice partly hierarchical representation of relationships among collections, subcollections, and data objects.
Collimation systems in the next linear collider
International Nuclear Information System (INIS)
Merminga, N.; Irwin, J.; Helm, R.; Ruth, R.D.
1991-02-01
Experience indicates that beam collimation will be an essential element of the next generation e + E - linear colliders. A proposal for using nonlinear lenses to drive beam tails to large amplitudes was presented in a previous paper. Here we study the optimization of such systems including effects of wakefields and optical aberrations. Protection and design of the scrapers in these systems are discussed. 9 refs., 7 figs
Standard diffusive systems are well-posed linear systems
Matignon, Denis; Zwart, Heiko J.
2004-01-01
The class of well-posed linear systems as introduced by Salamon has become a well-understood class of systems, see e.g. the work of Weiss and the book of Staffans. Many partial partial differential equations with boundary control and point observation can be formulated as a well-posed linear system.
Parameter identifiability of linear dynamical systems
Glover, K.; Willems, J. C.
1974-01-01
It is assumed that the system matrices of a stationary linear dynamical system were parametrized by a set of unknown parameters. The question considered here is, when can such a set of unknown parameters be identified from the observed data? Conditions for the local identifiability of a parametrization are derived in three situations: (1) when input/output observations are made, (2) when there exists an unknown feedback matrix in the system and (3) when the system is assumed to be driven by white noise and only output observations are made. Also a sufficient condition for global identifiability is derived.
Stability problems for linear hyperbolic systems
International Nuclear Information System (INIS)
Eckhoff, K.S.
1975-05-01
The stability properties for the trivial solution of a general linear hyperbolic system of partial differential equations of the first order are studied. It is shown that results may be obtained by studying the stability properties of certain systems of ordinary differential equations which can be constructed from the hyperbolic system (the so-called transport equations). In some cases the associated stability problem for the transport equations can in fact be shown to be equivalent to the stability problem for the hyperbolic system, but in general the transport equations will only give the necessary conditions for stability. (Auth.)
Identification of general linear mechanical systems
Sirlin, S. W.; Longman, R. W.; Juang, J. N.
1983-01-01
Previous work in identification theory has been concerned with the general first order time derivative form. Linear mechanical systems, a large and important class, naturally have a second order form. This paper utilizes this additional structural information for the purpose of identification. A realization is obtained from input-output data, and then knowledge of the system input, output, and inertia matrices is used to determine a set of linear equations whereby we identify the remaining unknown system matrices. Necessary and sufficient conditions on the number, type and placement of sensors and actuators are given which guarantee identificability, and less stringent conditions are given which guarantee generic identifiability. Both a priori identifiability and a posteriori identifiability are considered, i.e., identifiability being insured prior to obtaining data, and identifiability being assured with a given data set.
Linear systems optimal and robust control
Sinha, Alok
2007-01-01
Introduction Overview Contents of the Book State Space Description of a Linear System Transfer Function of a Single Input/Single Output (SISO) System State Space Realizations of a SISO System SISO Transfer Function from a State Space Realization Solution of State Space Equations Observability and Controllability of a SISO System Some Important Similarity Transformations Simultaneous Controllability and Observability Multiinput/Multioutput (MIMO) Systems State Space Realizations of a Transfer Function Matrix Controllability and Observability of a MIMO System Matrix-Fraction Description (MFD) MFD of a Transfer Function Matrix for the Minimal Order of a State Space Realization Controller Form Realization from a Right MFD Poles and Zeros of a MIMO Transfer Function Matrix Stability Analysis State Feedback Control and Optimization State Variable Feedback for a Single Input System Computation of State Feedback Gain Matrix for a Multiinput System State Feedback Gain Matrix for a Multi...
Optimizing electrical distribution systems
International Nuclear Information System (INIS)
Scott, W.G.
1990-01-01
Electrical utility distribution systems are in the middle of an unprecedented technological revolution in planning, design, maintenance and operation. The prime movers of the revolution are the major economic shifts that affect decision making. The major economic influence on the revolution is the cost of losses (technical and nontechnical). The vehicle of the revolution is the computer, which enables decision makers to examine alternatives in greater depth and detail than their predecessors could. The more important elements of the technological revolution are: system planning, computers, load forecasting, analytical systems (primary systems, transformers and secondary systems), system losses and coming technology. The paper is directed towards the rather unique problems encountered by engineers of utilities in developing countries - problems that are being solved through high technology, such as the recent World Bank-financed engineering computer system for Sri Lanka. This system includes a DEC computer, digitizer, plotter and engineering software to model the distribution system via a digitizer, analyse the system and plot single-line diagrams. (author). 1 ref., 4 tabs., 6 figs
Ultra-high Frequency Linear Fiber Optic Systems
Lau, Kam
2011-01-01
This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...
Tanenbaum, A.S.; van Steen, M.R.
2016-01-01
For this third edition of "Distributed Systems," the material has been thoroughly revised and extended, integrating principles and paradigms into nine chapters: 1. Introduction 2. Architectures 3. Processes 4. Communication 5. Naming 6. Coordination 7. Replication 8. Fault tolerance 9. Security A
Storage and distribution/Linear programming for storage operations
Energy Technology Data Exchange (ETDEWEB)
Coleman, D
1978-07-15
The techniques of linear programing to solve storage problems as applied in a tank farm tie-in with refinery throughput operation include: (1) the time-phased model which works on storage and refinery operations input parameters, e.g., production, distribution, cracking, etc., and is capable of representing product stockpiling in slack periods to meet future peak demands, and investigating alternative strategies such as exchange deals and purchase and leasing of additional storage, and (2) the Monte Carlo simulation method, which inputs parameters, e.g., arrival of crude products at refinery, tankage size, likely demand for products, etc., as probability distributions rather than single values, and is capable of showing the average utilization of facilities, potential bottlenecks, investment required to achieve an increase in utilization, and to enable the user to predict total investment, cash flow, and profit emanating from the original financing decision. The increasing use of computer techniques to solve refinery and storage problems is attributed to potential savings resulting from more effective planning, reduced computer costs, ease of access and more usable software. Diagrams.
Distributed Optimization System
Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.
2004-11-30
A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.
Lectures on algebraic system theory: Linear systems over rings
Kamen, E. W.
1978-01-01
The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.
Daylighting System Based on Novel Design of Linear Fresnel lens
Directory of Open Access Journals (Sweden)
Thanh Tuan Pham
2017-10-01
Full Text Available In this paper, we present a design and optical simulation of a daylighting system using a novel design of linear Fresnel lens, which is constructed based on the conservation of optical path length and edge ray theorem. The linear Fresnel lens can achieve a high uniformity by using a new idea of design in which each groove of the lens distributes sunlight uniformly over the receiver so that the whole lens also uniformly distributes sunlight over the receiver. In this daylighting system, the novel design of linear Fresnel lens significantly improves the uniformity of collector and distributor. Therefore, it can help to improve the performance of the daylighting system. The structure of the linear Fresnel lenses is designed by using Matlab. Then, the structure of lenses is appreciated by ray tracing in LightToolsTM to find out the optimum lens shape. In addition, the simulation is performed by using LightToolsTM to estimate the efficiency of the daylighting system. The results show that the designed collector can achieve the efficiency of ~80% with the tolerance of ~0.60 and the concentration ratio of 340 times, while the designed distributor can reach a high uniformity of >90%.
Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit
2017-02-01
To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.
Distributed Data Management and Distributed File Systems
Girone, Maria
2015-01-01
The LHC program has been successful in part due to the globally distributed computing resources used for collecting, serving, processing, and analyzing the large LHC datasets. The introduction of distributed computing early in the LHC program spawned the development of new technologies and techniques to synchronize information and data between physically separated computing centers. Two of the most challenges services are the distributed file systems and the distributed data management systems. In this paper I will discuss how we have evolved from local site services to more globally independent services in the areas of distributed file systems and data management and how these capabilities may continue to evolve into the future. I will address the design choices, the motivations, and the future evolution of the computing systems used for High Energy Physics.
Representation of stress distributions inprismatic and cylindrical linear elements
Directory of Open Access Journals (Sweden)
Fernando Giménez-Palomares
2017-08-01
Full Text Available The loads applied on a linear structural element generate internal forces in the cross sections which, in turn, result in stresses along the element. The nature, extent and shape of stress distributions are required parameters to compute the strength of structural elements or machinery components in order to its analysis or design. In this work, it is presented a virtual laboratory which allows to obtain different stress distributions in an isostatic beam, prismatic or cylindrical, subjected to axial forces, shear forces and bending moments. The virtual laboratory permits a great interactivity, allowing the simulation of various real situations in which the user can modify the magnitude and direction of acting loads, and also the boundary conditions of the beam. The ultimate goal of this paper is to present a tool aimed to support the learning and teaching of subjects related to Elasticy and Strength of Materials that are found in bachelor university degrees.
Distributed System Design Checklist
Hall, Brendan; Driscoll, Kevin
2014-01-01
This report describes a design checklist targeted to fault-tolerant distributed electronic systems. Many of the questions and discussions in this checklist may be generally applicable to the development of any safety-critical system. However, the primary focus of this report covers the issues relating to distributed electronic system design. The questions that comprise this design checklist were created with the intent to stimulate system designers' thought processes in a way that hopefully helps them to establish a broader perspective from which they can assess the system's dependability and fault-tolerance mechanisms. While best effort was expended to make this checklist as comprehensive as possible, it is not (and cannot be) complete. Instead, we expect that this list of questions and the associated rationale for the questions will continue to evolve as lessons are learned and further knowledge is established. In this regard, it is our intent to post the questions of this checklist on a suitable public web-forum, such as the NASA DASHLink AFCS repository. From there, we hope that it can be updated, extended, and maintained after our initial research has been completed.
An injection system for a linear accelerator
International Nuclear Information System (INIS)
Santos, A.C.R.
1978-03-01
An injection system for the Linear Accelerator is developed using the parameters of machines at the Centro Brasileiro de Pesquisas Fisicas and the Instituto Militar de Engenharia. The proposed system consists basically of a prebuncher and a chopper. The pre-buncher is used to improve the energy resolution and also to increase the accelerator target current. The chopper is used to remove from the beam the electrons that have no possibility of attaining the desired energy and that are usually lost in the walls and the cavity tube, thus producing undesirable background. Theoretical development of the chopper is performed in order to obtain its dimensions for future construction. The complete design the pre-buncher and its feed supply system and the experimental verication of its performance are also presented. It is intended to give the necessary information for the design and construction of the complete injection system proposed. (Author) [pt
Operator approach to linear control systems
Cheremensky, A
1996-01-01
Within the framework of the optimization problem for linear control systems with quadratic performance index (LQP), the operator approach allows the construction of a systems theory including a number of particular infinite-dimensional optimization problems with hardly visible concreteness. This approach yields interesting interpretations of these problems and more effective feedback design methods. This book is unique in its emphasis on developing methods for solving a sufficiently general LQP. Although this is complex material, the theory developed here is built on transparent and relatively simple principles, and readers with less experience in the field of operator theory will find enough material to give them a good overview of the current state of LQP theory and its applications. Audience: Graduate students and researchers in the fields of mathematical systems theory, operator theory, cybernetics, and control systems.
Electrical distribution system management
International Nuclear Information System (INIS)
Hajos, L.; Mortarulo, M.; Chang, K.; Sparks, T.
1990-01-01
This paper reports that maintenance of electrical system data is essential to the operation, maintenance, and modification of a nuclear station. Load and equipment changes affect equipment sizing, available short-circuit currents and protection coordination. System parameters must be maintained in a controlled manner to enable evaluation of proposed modifications and provide adequate verification and traceability. For this purpose, Public Service Electric and Gas Company has implemented a Verified and Validated Electric Distribution System Management (EDSM) program at the Hope Creek and Salem Nuclear Power Stations. EDSM program integrates computerized configuration management of electrical systems with calculational software the Technical Standard procedures. The software platform is PC-based. The Database Manager and Calculational programs have been linked together through a user friendly menu system. The database management nodule enable s assembly and maintenance of databases for individual loads, buses, and branches within the electrical systems with system access and approval controlled through electronic security incorporated within the database manger. Reports drawn from the database serve as the as-built and/or as-designed record of the system configurations. This module also creates input data files of network parameters in a format readable by the calculational modules. Calculations modules provide load flow, voltage drop, motor starting, and short-circuit analyses, as well as dynamic analyses of bus transfers
Planning Systems for Distributed Operations
Maxwell, Theresa G.
2002-01-01
This viewgraph representation presents an overview of the mission planning process involving distributed operations (such as the International Space Station (ISS)) and the computer hardware and software systems needed to support such an effort. Topics considered include: evolution of distributed planning systems, ISS distributed planning, the Payload Planning System (PPS), future developments in distributed planning systems, Request Oriented Scheduling Engine (ROSE) and Next Generation distributed planning systems.
Managing Distributed Knowledge Systems
DEFF Research Database (Denmark)
Sørensen, Brian Vejrum; Gelbuda, Modestas
2005-01-01
. This paper contributes to the research on organizations as distributed knowledge systems by addressing two weaknesses of the social practice literature. Firstly, it downplays the importance of formal structure and organizational design and intervention efforts by key organizational members. Secondly, it does......The article argues that the growth of de novo knowledge-based organization depends on managing and coordinating increasingly growing and, therefore, distributed knowledge. Moreover, the growth in knowledge is often accompanied by an increasing organizational complexity, which is a result...... of integrating new people, building new units and adding activities to the existing organization. It is argued that knowledge is not a stable capacity that belongs to any actor alone, but that it is rather an ongoing social accomplishment, which is created and recreated as actors engage in mutual activities...
Iterative solution of large linear systems
Young, David Matheson
1971-01-01
This self-contained treatment offers a systematic development of the theory of iterative methods. Its focal point resides in an analysis of the convergence properties of the successive overrelaxation (SOR) method, as applied to a linear system with a consistently ordered matrix. The text explores the convergence properties of the SOR method and related techniques in terms of the spectral radii of the associated matrices as well as in terms of certain matrix norms. Contents include a review of matrix theory and general properties of iterative methods; SOR method and stationary modified SOR meth
a Continuous-Time Positive Linear System
Directory of Open Access Journals (Sweden)
Kyungsup Kim
2013-01-01
Full Text Available This paper discusses a computational method to construct positive realizations with sparse matrices for continuous-time positive linear systems with multiple complex poles. To construct a positive realization of a continuous-time system, we use a Markov sequence similar to the impulse response sequence that is used in the discrete-time case. The existence of the proposed positive realization can be analyzed with the concept of a polyhedral convex cone. We provide a constructive algorithm to compute positive realizations with sparse matrices of some positive systems under certain conditions. A sufficient condition for the existence of a positive realization, under which the proposed constructive algorithm works well, is analyzed.
Distributed road assessment system
Beer, N. Reginald; Paglieroni, David W
2014-03-25
A system that detects damage on or below the surface of a paved structure or pavement is provided. A distributed road assessment system includes road assessment pods and a road assessment server. Each road assessment pod includes a ground-penetrating radar antenna array and a detection system that detects road damage from the return signals as the vehicle on which the pod is mounted travels down a road. Each road assessment pod transmits to the road assessment server occurrence information describing each occurrence of road damage that is newly detected on a current scan of a road. The road assessment server maintains a road damage database of occurrence information describing the previously detected occurrences of road damage. After the road assessment server receives occurrence information for newly detected occurrences of road damage for a portion of a road, the road assessment server determines which newly detected occurrences correspond to which previously detected occurrences of road damage.
International Nuclear Information System (INIS)
Petrila, Iulian; Bodale, Ilie; Rotarescu, Cristian; Stancu, Alexandru
2011-01-01
A comparative analysis between linear and non-linear energy barriers used for modeling statistical thermally-excited ferromagnetic systems is presented. The linear energy barrier is obtained by new symmetry considerations about the anisotropy energy and the link with the non-linear energy barrier is also presented. For a relevant analysis we compare the effects of linear and non-linear energy barriers implemented in two different models: Preisach-Neel and Ising-Metropolis. The differences between energy barriers which are reflected in different coercive field dependence of the temperature are also presented. -- Highlights: → The linear energy barrier is obtained from symmetry considerations. → The linear and non-linear energy barriers are calibrated and implemented in Preisach-Neel and Ising-Metropolis models. → The temperature and time effects of the linear and non-linear energy barriers are analyzed.
The new control system of the Saclay linear accelerator
International Nuclear Information System (INIS)
Gournay, J.F.; Gourcy, G.; Garreau, F.; Giraud, A.; Rouault, J.
1985-05-01
A new control system for the Safety Linear Accelerator is now being designed. The computer control architecture is based on 3 dedicated VME crates with MC68000 micro-processors: one crate with a disk-based operating system will run the high level application programs and the data base management facilities, another one will manage the man-machine communications and the third one will interface the system to the linac equipments. Communications between the VME microcomputers will be done through 16 bit parallel links. The software is modular and organized in specific layers, the data base is fully distributed. About 90% of the code is written in Fortran
New approach to solve symmetric fully fuzzy linear systems
Indian Academy of Sciences (India)
concepts of fuzzy set theory and then define a fully fuzzy linear system of equations. .... To represent the above problem as fully fuzzy linear system, we represent x .... Fully fuzzy linear systems can be solved by Linear programming approach, ...
Communication Facilities for Distributed Systems
Directory of Open Access Journals (Sweden)
V. Barladeanu
1997-01-01
Full Text Available The design of physical networks and communication protocols in Distributed Systems can have a direct impact on system efficiency and reliability. This paper tries to identify efficient mechanisms and paradigms for communication in distributed systems.
SLAP, Large Sparse Linear System Solution Package
International Nuclear Information System (INIS)
Greenbaum, A.
1987-01-01
1 - Description of program or function: SLAP is a set of routines for solving large sparse systems of linear equations. One need not store the entire matrix - only the nonzero elements and their row and column numbers. Any nonzero structure is acceptable, so the linear system solver need not be modified when the structure of the matrix changes. Auxiliary storage space is acquired and released within the routines themselves by use of the LRLTRAN POINTER statement. 2 - Method of solution: SLAP contains one direct solver, a band matrix factorization and solution routine, BAND, and several interactive solvers. The iterative routines are as follows: JACOBI, Jacobi iteration; GS, Gauss-Seidel Iteration; ILUIR, incomplete LU decomposition with iterative refinement; DSCG and ICCG, diagonal scaling and incomplete Cholesky decomposition with conjugate gradient iteration (for symmetric positive definite matrices only); DSCGN and ILUGGN, diagonal scaling and incomplete LU decomposition with conjugate gradient interaction on the normal equations; DSBCG and ILUBCG, diagonal scaling and incomplete LU decomposition with bi-conjugate gradient iteration; and DSOMN and ILUOMN, diagonal scaling and incomplete LU decomposition with ORTHOMIN iteration
Optimizing queries in distributed systems
Directory of Open Access Journals (Sweden)
Ion LUNGU
2006-01-01
Full Text Available This research presents the main elements of query optimizations in distributed systems. First, data architecture according with system level architecture in a distributed environment is presented. Then the architecture of a distributed database management system (DDBMS is described on conceptual level followed by the presentation of the distributed query execution steps on these information systems. The research ends with presentation of some aspects of distributed database query optimization and strategies used for that.
ROBUST MPC FOR STABLE LINEAR SYSTEMS
Directory of Open Access Journals (Sweden)
M.A. Rodrigues
2002-03-01
Full Text Available In this paper, a new model predictive controller (MPC, which is robust for a class of model uncertainties, is developed. Systems with stable dynamics and time-invariant model uncertainty are treated. The development herein proposed is focused on real industrial systems where the controller is part of an on-line optimization scheme and works in the output-tracking mode. In addition, the system has a time-varying number of degrees of freedom since some of the manipulated inputs may become constrained. Moreover, the number of controlled outputs may also vary during system operation. Consequently, the actual system may show operating conditions with a number of controlled outputs larger than the number of available manipulated inputs. The proposed controller uses a state-space model, which is aimed at the representation of the output-predicted trajectory. Based on this model, a cost function is proposed whereby the output error is integrated along an infinite prediction horizon. It is considered the case of multiple operating points, where the controller stabilizes a set of models corresponding to different operating conditions for the system. It is shown that closed-loop stability is guaranteed by the feasibility of a linear matrix optimization problem.
Optimal Control of Switching Linear Systems
Directory of Open Access Journals (Sweden)
Ali Benmerzouga
2004-06-01
Full Text Available A solution to the control of switching linear systems with input constraints was given in Benmerzouga (1997 for both the conventional enumeration approach and the new approach. The solution given there turned out to be not unique. The main objective in this work is to determine the optimal control sequences {Ui(k , i = 1,..., M ; k = 0, 1, ..., N -1} which transfer the system from a given initial state X0 to a specific target state XT (or to be as close as possible by using the same discrete time solution obtained in Benmerzouga (1997 and minimizing a running cost-to-go function. By using the dynamic programming technique, the optimal solution is found for both approaches given in Benmerzouga (1997. The computational complexity of the modified algorithm is also given.
Well logging system with linearity control
International Nuclear Information System (INIS)
Jones, J.M.
1973-01-01
Apparatus is described for controlling the gain of a nuclear well logging system comprising: (1) means for measuring the energy spectrum of gamma rays produced by earth formation materials surrounding a well borehole; (2) means for measuring the number of counts of a gamma rays having an energy falling within each of at least two predetermined energy band portions of the gamma ray energy spectrum; (3) means for generating a signal proportional to the ratio of the gamma ray counts and for comparing the ratio signal with at least one constant ratio calibration signal; (4) means for generating an error signal representative of the difference of the ratio signal and the constant ratio calibration signal; and (5) means for using the error signal to control the linearity of the well logging system. (author)
Linear concentration system; Sistema de concentracion lineal
Energy Technology Data Exchange (ETDEWEB)
Gonzalez Lugo, J.I; Leon Rovira, N; Aguayo Tellez, H [Instituto Tecnologico y de Estudios Superiores de Monterrey, Monterrey, Nuevo Leon (Mexico)]. E-mails: a00812662@itesm.mx; noel.leon@itesm.mx; haguayo@itesm.mx
2013-03-15
Solar linear concentration technologies to generate high temperatures are limited to the ranges of 200 to 500 degrees Celsius. While its performance has been tested through prototypes and pilot plants around the world, there are still areas of opportunity that can be exploited to obtain a linear concentration that achieves temperatures above this range in order to have a better use of the available solar energy. Because of this: It is possible to develop a linear concentration system that can track the sun with minimal movement of the absorber-receiver while maintaining temperatures above 850 degrees Celsius sufficient for industrial processes that require that temperature. The methodology consists of a series of stages (conceptual design, simulation, evaluation, development concept, results and validation) through which concepts are generated that allow design and evaluation of solar concentrator configurations with the help of simulation software. We have designed a linear parabolic concentrating system which comprises a set of mirrors segments with different focal lengths that works within the range of 600 degrees Celsius; however, it is advancing in the development of a double concentration to reach 850 degrees Celsius. [Spanish] Las tecnologias de concentracion lineal solar para generar altas temperaturas se ven limitadas a los rangos de 200 a 500 grados centigrados. Si bien su funcionamiento ha sido probado a traves de prototipos y plantas piloto alrededor del mundo, aun existen areas de oportunidad que pueden ser aprovechadas para obtener un sistema de concentracion lineal que permita alcanzar temperaturas mayores a este rango para asi tener un mejor aprovechamiento de la energia solar disponible. Debido a esto: Es posible desarrollar un sistema de concentracion lineal capaz de seguir la trayectoria del Sol con minimo movimiento del absorbedor-recibidor al mismo tiempo que mantiene temperaturas superiores a los 850 grados centigrados suficientes para
Directory of Open Access Journals (Sweden)
José Renato Munhoz
2001-08-01
Full Text Available Neste trabalho apresenta-se um modelo baseado em programação linear e programação de metas para apoiar decisões no processo de mistura e na distribuição de suco concentrado congelado de laranja. Explora-se a importância das decisões do processo de mistura para a análise da logística de distribuição do suco de laranja, além das decisões de transporte e armazenagem. O modelo utiliza conceitos conhecidos da literatura de problemas de mistura e planejamento da produção com múltiplos produtos, estágios e períodos, e foi resolvido por meio da linguagem de modelagem GAMS (General Algebraic Modeling System. Um estudo de caso foi realizado numa empresa de suco de laranja localizada no interior do estado de São Paulo, e os resultados preliminares obtidos são promissores.This work proposes a model based on linear programming and goal programming to support decisions in the blending process and distribution of frozen concentrated orange juice. This study explores the importance of blending decisions for the logistic analysis of the orange juice distribution, besides transportation and storage decisions. The model utilizes well-known concepts from the literature of blending problems and multistage, multiproduct and multiperiod production planning problems, and it was solved using the GAMS (General Algebraic Modeling System programming language. A case study was developed in an orange juice industry located in São Paulo State, and the preliminary results are promising.
A parallel solver for huge dense linear systems
Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.
2011-11-01
HDSS (Huge Dense Linear System Solver) is a Fortran Application Programming Interface (API) to facilitate the parallel solution of very large dense systems to scientists and engineers. The API makes use of parallelism to yield an efficient solution of the systems on a wide range of parallel platforms, from clusters of processors to massively parallel multiprocessors. It exploits out-of-core strategies to leverage the secondary memory in order to solve huge linear systems O(100.000). The API is based on the parallel linear algebra library PLAPACK, and on its Out-Of-Core (OOC) extension POOCLAPACK. Both PLAPACK and POOCLAPACK use the Message Passing Interface (MPI) as the communication layer and BLAS to perform the local matrix operations. The API provides a friendly interface to the users, hiding almost all the technical aspects related to the parallel execution of the code and the use of the secondary memory to solve the systems. In particular, the API can automatically select the best way to store and solve the systems, depending of the dimension of the system, the number of processes and the main memory of the platform. Experimental results on several parallel platforms report high performance, reaching more than 1 TFLOP with 64 cores to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors. New version program summaryProgram title: Huge Dense System Solver (HDSS) Catalogue identifier: AEHU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 87 062 No. of bytes in distributed program, including test data, etc.: 1 069 110 Distribution format: tar.gz Programming language: Fortran90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system
Linear Actuator System for the NASA Docking System
Dick, Brandon N.; Oesch, Christopher; Rupp, Timothy W.
2017-01-01
The Linear Actuator System (LAS) is a major sub-system within the NASA Docking System (NDS). The NDS Block 1 will be used on the Boeing Crew Space Transportation (CST-100) system to achieve docking with the International Space Station. Critical functions in the Soft Capture aspect of docking are performed by the LAS. This paper describes the general function of the LAS, the system's key requirements and technical challenges, and the development and qualification approach for the system.
Relative null controllability of linear systems with multiple delays in ...
African Journals Online (AJOL)
varying multiple delays in state and control are developed. If the uncontrolled system is uniformly asymptotically stable, and if the linear system is controllable, then the linear system is null controllable. Journal of the Nigerian Association of ...
Linear optical response of finite systems using multishift linear system solvers
Energy Technology Data Exchange (ETDEWEB)
Hübener, Hannes; Giustino, Feliciano [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)
2014-07-28
We discuss the application of multishift linear system solvers to linear-response time-dependent density functional theory. Using this technique the complete frequency-dependent electronic density response of finite systems to an external perturbation can be calculated at the cost of a single solution of a linear system via conjugate gradients. We show that multishift time-dependent density functional theory yields excitation energies and oscillator strengths in perfect agreement with the standard diagonalization of the response matrix (Casida's method), while being computationally advantageous. We present test calculations for benzene, porphin, and chlorophyll molecules. We argue that multishift solvers may find broad applicability in the context of excited-state calculations within density-functional theory and beyond.
Control system analysis for the perturbed linear accelerator rf system
Sung Il Kwon
2002-01-01
This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.
CONTROL SYSTEM ANALYSIS FOR THE PERTURBED LINEAR ACCELERATOR RF SYSTEM
International Nuclear Information System (INIS)
SUNG-IL KWON; AMY H. REGAN
2002-01-01
This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller
Quality monitored distributed voting system
Skogmo, David
1997-01-01
A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system.
Linear-array systems for aerospace NDE
International Nuclear Information System (INIS)
Smith, Robert A.; Willsher, Stephen J.; Bending, Jamie M.
1999-01-01
Rapid large-area inspection of composite structures for impact damage and multi-layered aluminum skins for corrosion has been a recognized priority for several years in both military and civil aerospace applications. Approaches to this requirement have followed two clearly different routes: the development of novel large-area inspection systems, and the enhancement of current ultrasonic or eddy-current methods to reduce inspection times. Ultrasonic inspection is possible with standard flaw detection equipment but the addition of a linear ultrasonic array could reduce inspection times considerably. In order to investigate their potential, 9-element and 17-element linear ultrasonic arrays for composites, and 64-element arrays for aluminum skins, have been developed to DERA specifications for use with the ANDSCAN area scanning system. A 5 m 2 composite wing surface has been scanned with a scan resolution of approximately 3 mm in 6 hours. With subsequent software and hardware improvements all four composite wing surfaces (top/bottom, left/right) of a military fighter aircraft can potentially be inspected in less than a day. Array technology has been very widely used in the medical ultrasound field although rarely above 10 MHz, whereas lap-joint inspection requires a pulse center-frequency of 12 to 20 MHz in order to resolve the separate interfaces in the lap joint. A 128 mm-long multi-element array of 5 mmx2 mm ultrasonic elements for use with the ANDSCAN scanning software was produced to a DERA specification by an NDT manufacturer with experience in the medical imaging field. This paper analyses the performance of the transducers that have been produced and evaluates their use in scanning systems of different configurations
Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory
Richtarik, Peter; Taká č, Martin
2017-01-01
We develop a family of reformulations of an arbitrary consistent linear system into a stochastic problem. The reformulations are governed by two user-defined parameters: a positive definite matrix defining a norm, and an arbitrary discrete or continuous distribution over random matrices. Our reformulation has several equivalent interpretations, allowing for researchers from various communities to leverage their domain specific insights. In particular, our reformulation can be equivalently seen as a stochastic optimization problem, stochastic linear system, stochastic fixed point problem and a probabilistic intersection problem. We prove sufficient, and necessary and sufficient conditions for the reformulation to be exact. Further, we propose and analyze three stochastic algorithms for solving the reformulated problem---basic, parallel and accelerated methods---with global linear convergence rates. The rates can be interpreted as condition numbers of a matrix which depends on the system matrix and on the reformulation parameters. This gives rise to a new phenomenon which we call stochastic preconditioning, and which refers to the problem of finding parameters (matrix and distribution) leading to a sufficiently small condition number. Our basic method can be equivalently interpreted as stochastic gradient descent, stochastic Newton method, stochastic proximal point method, stochastic fixed point method, and stochastic projection method, with fixed stepsize (relaxation parameter), applied to the reformulations.
Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory
Richtarik, Peter
2017-06-04
We develop a family of reformulations of an arbitrary consistent linear system into a stochastic problem. The reformulations are governed by two user-defined parameters: a positive definite matrix defining a norm, and an arbitrary discrete or continuous distribution over random matrices. Our reformulation has several equivalent interpretations, allowing for researchers from various communities to leverage their domain specific insights. In particular, our reformulation can be equivalently seen as a stochastic optimization problem, stochastic linear system, stochastic fixed point problem and a probabilistic intersection problem. We prove sufficient, and necessary and sufficient conditions for the reformulation to be exact. Further, we propose and analyze three stochastic algorithms for solving the reformulated problem---basic, parallel and accelerated methods---with global linear convergence rates. The rates can be interpreted as condition numbers of a matrix which depends on the system matrix and on the reformulation parameters. This gives rise to a new phenomenon which we call stochastic preconditioning, and which refers to the problem of finding parameters (matrix and distribution) leading to a sufficiently small condition number. Our basic method can be equivalently interpreted as stochastic gradient descent, stochastic Newton method, stochastic proximal point method, stochastic fixed point method, and stochastic projection method, with fixed stepsize (relaxation parameter), applied to the reformulations.
Model Predictive Control for Linear Complementarity and Extended Linear Complementarity Systems
Directory of Open Access Journals (Sweden)
Bambang Riyanto
2005-11-01
Full Text Available In this paper, we propose model predictive control method for linear complementarity and extended linear complementarity systems by formulating optimization along prediction horizon as mixed integer quadratic program. Such systems contain interaction between continuous dynamics and discrete event systems, and therefore, can be categorized as hybrid systems. As linear complementarity and extended linear complementarity systems finds applications in different research areas, such as impact mechanical systems, traffic control and process control, this work will contribute to the development of control design method for those areas as well, as shown by three given examples.
Thermodynamics of (1-alkanol + linear monoether) systems
International Nuclear Information System (INIS)
Gonzalez, Juan Antonio; Mozo, Ismael; Garcia de la Fuente, Isaias; Cobos, Jose Carlos; Riesco, Nicolas
2008-01-01
Densities, ρ, and speeds of sound, u, of systems formed by 1-heptanol, or 1-octanol, or 1-decanol and dibutylether have been measured at a temperature of (293.15, 298.15, and 303.15) K and atmospheric pressure using a vibrating tube densimeter and sound analyser Anton Paar model DSA-5000. The ρ and u values were used to calculate excess molar volumes, V E , and deviations from the ideal behaviour of the thermal expansion coefficient, Δα p and of the isentropic compressibilities, Δκ S . The available database on molar excess enthalpies, H E , and V E for (1-alkanol + linear monoether) systems was used to investigate interactional and structural effects in such mixtures. The enthalpy of the OH...O bonds is lower for methanol solutions, and for the remainder systems, it is practically independent of the mixture compounds. The V E variation with the chain length of the 1-alkanol points out the existence of structural effects for systems including longer 1-alkanols. The ERAS model is applied to the studied mixtures. ERAS represents quite accurately H E and V E data using parameters which consistently depend on the molecular structure
Identification problems in linear transformation system
International Nuclear Information System (INIS)
Delforge, Jacques.
1975-01-01
An attempt was made to solve the theoretical and numerical difficulties involved in the identification problem relative to the linear part of P. Delattre's theory of transformation systems. The theoretical difficulties are due to the very important problem of the uniqueness of the solution, which must be demonstrated in order to justify the value of the solution found. Simple criteria have been found when measurements are possible on all the equivalence classes, but the problem remains imperfectly solved when certain evolution curves are unknown. The numerical difficulties are of two kinds: a slow convergence of iterative methods and a strong repercussion of numerical and experimental errors on the solution. In the former case a fast convergence was obtained by transformation of the parametric space, while in the latter it was possible, from sensitivity functions, to estimate the errors, to define and measure the conditioning of the identification problem then to minimize this conditioning as a function of the experimental conditions [fr
Distributed Monitoring of the R2 Statistic for Linear Regression
National Aeronautics and Space Administration — The problem of monitoring a multivariate linear regression model is relevant in studying the evolving relationship between a set of input variables (features) and...
Process evaluation distributed system
Moffatt, Christopher L. (Inventor)
2006-01-01
The distributed system includes a database server, an administration module, a process evaluation module, and a data display module. The administration module is in communication with the database server for providing observation criteria information to the database server. The process evaluation module is in communication with the database server for obtaining the observation criteria information from the database server and collecting process data based on the observation criteria information. The process evaluation module utilizes a personal digital assistant (PDA). A data display module in communication with the database server, including a website for viewing collected process data in a desired metrics form, the data display module also for providing desired editing and modification of the collected process data. The connectivity established by the database server to the administration module, the process evaluation module, and the data display module, minimizes the requirement for manual input of the collected process data.
Distributed security in closed distributed systems
DEFF Research Database (Denmark)
Hernandez, Alejandro Mario
properties. This is also restricted to distributed systems in which the set of locations is known a priori. All this follows techniques borrowed from both the model checking and the static analysis communities. In the end, we reach a step towards solving the problem of enforcing security in distributed...... systems. We achieve the goal of showing how this can be done, though we restrict ourselves to closed systems and with a limited set of enforceable security policies. In this setting, our approach proves to be efficient. Finally, we achieve all this by bringing together several fields of Computer Science......The goal of the present thesis is to discuss, argue and conclude about ways to provide security to the information travelling around computer systems consisting of several known locations. When developing software systems, security of the information managed by these plays an important role...
Li, Xiaobo; Hu, Haofeng; Liu, Tiegen; Huang, Bingjing; Song, Zhanjie
2016-04-04
We consider the degree of linear polarization (DOLP) polarimetry system, which performs two intensity measurements at orthogonal polarization states to estimate DOLP. We show that if the total integration time of intensity measurements is fixed, the variance of the DOLP estimator depends on the distribution of integration time for two intensity measurements. Therefore, by optimizing the distribution of integration time, the variance of the DOLP estimator can be decreased. In this paper, we obtain the closed-form solution of the optimal distribution of integration time in an approximate way by employing Delta method and Lagrange multiplier method. According to the theoretical analyses and real-world experiments, it is shown that the variance of the DOLP estimator can be decreased for any value of DOLP. The method proposed in this paper can effectively decrease the measurement variance and thus statistically improve the measurement accuracy of the polarimetry system.
Normal form of linear systems depending on parameters
International Nuclear Information System (INIS)
Nguyen Huynh Phan.
1995-12-01
In this paper we resolve completely the problem to find normal forms of linear systems depending on parameters for the feedback action that we have studied for the special case of controllable linear systems. (author). 24 refs
PWR control system design using advanced linear and non-linear methodologies
International Nuclear Information System (INIS)
Rabindran, N.; Whitmarsh-Everiss, M.J.
2004-01-01
Consideration is here given to the methodology deployed for non-linear heuristic analysis in the time domain supported by multi-variable linear control system design methods for the purposes of operational dynamics and control system analysis. This methodology is illustrated by the application of structural singular value μ analysis to Pressurised Water Reactor control system design. (author)
Distribution System Pricing with Distributed Energy Resources
Energy Technology Data Exchange (ETDEWEB)
Hledik, Ryan [The Brattle Group, Cambridge, MA (United States); Lazar, Jim [The Regulatory Assistance Project, Montpelier, VT (United States); Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-08-16
Technological changes in the electric utility industry bring tremendous opportunities and significant challenges. Customers are installing clean sources of on-site generation such as rooftop solar photovoltaic (PV) systems. At the same time, smart appliances and control systems that can communicate with the grid are entering the retail market. Among the opportunities these changes create are a cleaner and more diverse power system, the ability to improve system reliability and system resilience, and the potential for lower total costs. Challenges include integrating these new resources in a way that maintains system reliability, provides an equitable sharing of system costs, and avoids unbalanced impacts on different groups of customers, including those who install distributed energy resources (DERs) and low-income households who may be the least able to afford the transition.
Linear Estimation of Standard Deviation of Logistic Distribution ...
African Journals Online (AJOL)
The paper presents a theoretical method based on order statistics and a FORTRAN program for computing the variance and relative efficiencies of the standard deviation of the logistic population with respect to the Cramer-Rao lower variance bound and the best linear unbiased estimators (BLUE\\'s) when the mean is ...
Superconducting linear accelerator system for NSC
Indian Academy of Sciences (India)
This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed ...
RBAC Administration in Distributed Systems
Dekker, M.A.C.; Crampton, J.; Etalle, Sandro
2007-01-01
Despite a large body of literature on the administration of RBAC policies in centralized systems, the problem of the administration of a distributed system has hardly been addressed. We present a formal system for modelling a distributed RBAC system and its administration. We define two basic
No-signaling quantum key distribution: solution by linear programming
Hwang, Won-Young; Bae, Joonwoo; Killoran, Nathan
2015-02-01
We outline a straightforward approach for obtaining a secret key rate using only no-signaling constraints and linear programming. Assuming an individual attack, we consider all possible joint probabilities. Initially, we study only the case where Eve has binary outcomes, and we impose constraints due to the no-signaling principle and given measurement outcomes. Within the remaining space of joint probabilities, by using linear programming, we get bound on the probability of Eve correctly guessing Bob's bit. We then make use of an inequality that relates this guessing probability to the mutual information between Bob and a more general Eve, who is not binary-restricted. Putting our computed bound together with the Csiszár-Körner formula, we obtain a positive key generation rate. The optimal value of this rate agrees with known results, but was calculated in a more straightforward way, offering the potential of generalization to different scenarios.
The new control system of the Saclay linear accelerator
International Nuclear Information System (INIS)
Gournay, J.F.
1985-10-01
A new control system for the Saclay Linear Accelerator designed during the two past years is now in operation. The computer control architecture is based on 3 dedicated VME crates: one crate with a disk-based operating system runs the high level application programs and the database management facilities, another one manages the man-machine communications and the third one interfaces the system to the linac equipments. At the present time, communications between the VME micro-computers are done through 16 bit parallel links. The software is modular and organized in specific layers, the database is fully distributed. About 90% of the code is written in Fortran. The present status of the system is discussed and the hardware and software developments are described
Identification of systems with distributed parameters
International Nuclear Information System (INIS)
Moret, J.M.
1990-10-01
The problem of finding a model for the dynamical response of a system with distributed parameters based on measured data is addressed. First a mathematical formalism is developed in order to obtain the specific properties of such a system. Then a linear iterative identification algorithm is proposed that includes these properties, and that produces better results than usual non linear minimisation techniques. This algorithm is further improved by an original data decimation that allow to artificially increase the sampling period without losing between sample information. These algorithms are tested with real laboratory data
Symmetric linear systems - An application of algebraic systems theory
Hazewinkel, M.; Martin, C.
1983-01-01
Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.
International Nuclear Information System (INIS)
Frank, T D
2005-01-01
Stationary distributions of processes are derived that involve a time delay and are defined by a linear stochastic neutral delay differential equation. The distributions are Gaussian distributions. The variances of the Gaussian distributions are either monotonically increasing or decreasing functions of the time delays. The variances become infinite when fixed points of corresponding deterministic processes become unstable. (letter to the editor)
The theory of a general quantum system interacting with a linear dissipative system
International Nuclear Information System (INIS)
Feynman, R.P.; Vernon, F.L.
2000-01-01
A formalism has been developed, using Feynman's space-time formulation of nonrelativistic quantum mechanics whereby the behavior of a system of interest, which is coupled to other external quantum systems, may be calculated in terms of its own variables only. It is shown that the effect of the external systems in such a formalism can always be included in a general class of functionals (influence functionals) of the coordinates of the system only. The properties of influence functionals for general systems are examined. Then, specific forms of influence functionals representing the effect of definite and random classical forces, linear dissipative systems at finite temperatures, and combinations of these are analyzed in detail. The linear system analysis is first done for perfectly linear systems composed of combinations of harmonic oscillators, loss being introduced by continuous distributions of oscillators. Then approximately linear systems and restrictions necessary for the linear behavior are considered. Influence functionals for all linear systems are shown to have the same form in terms of their classical response functions. In addition, a fluctuation-dissipation theorem is derived relating temperature and dissipation of the linear system to a fluctuating classical potential acting on the system of interest which reduces to the Nyquist-Johnson relation for noise in the case of electric circuits. Sample calculations of transition probabilities for the spontaneous emission of an atom in free space and in a cavity are made. Finally, a theorem is proved showing that within the requirements of linearity all sources of noise or quantum fluctuation introduced by maser-type amplification devices are accounted for by a classical calculation of the characteristics of the maser
A study on switched linear system identification using game ...
African Journals Online (AJOL)
A study on switched linear system identification using game-theoretic strategies and neural computing. ... This study deals with application of game-theoretic strategies and neural computing to switched linear ... AJOL African Journals Online.
Reduction of Linear Functional Systems using Fuhrmann's Equivalence
Directory of Open Access Journals (Sweden)
Mohamed S. Boudellioua
2016-11-01
Full Text Available Functional systems arise in the treatment of systems of partial differential equations, delay-differential equations, multidimensional equations, etc. The problem of reducing a linear functional system to a system containing fewer equations and unknowns was first studied by Serre. Finding an equivalent presentation of a linear functional system containing fewer equations and fewer unknowns can generally simplify both the study of the structural properties of the linear functional system and of different numerical analysis issues, and it can sometimes help in solving the linear functional system. In this paper, Fuhrmann's equivalence is used to present a constructive result on the reduction of under-determined linear functional systems to a single equation involving a single unknown. This equivalence transformation has been studied by a number of authors and has been shown to play an important role in the theory of linear functional systems.
Energy Technology Data Exchange (ETDEWEB)
Bernstein, Andrey [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Cong [Ecole Polytechnique Federale de Lausanne (EPFL); Le Boudec, Jean-Yves [Ecole Polytechnique Federale de Lausanne (EPFL)
2018-04-06
This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for the non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.
Distribution system modeling and analysis
Kersting, William H
2001-01-01
For decades, distribution engineers did not have the sophisticated tools developed for analyzing transmission systems-often they had only their instincts. Things have changed, and we now have computer programs that allow engineers to simulate, analyze, and optimize distribution systems. Powerful as these programs are, however, without a real understanding of the operating characteristics of a distribution system, engineers using the programs can easily make serious errors in their designs and operating procedures. Distribution System Modeling and Analysis helps prevent those errors. It gives readers a basic understanding of the modeling and operating characteristics of the major components of a distribution system. One by one, the author develops and analyzes each component as a stand-alone element, then puts them all together to analyze a distribution system comprising the various shunt and series devices for power-flow and short-circuit studies. He includes the derivation of all models and includes many num...
High density linear systems for fusion power
International Nuclear Information System (INIS)
Ellis, W.R.; Krakowski, R.A.
1975-01-01
The physics and technological limitations and uncertainties associated with the linear theta pinch are discussed in terms of a generalized energy balance, which has as its basis the ratio (Q/sub E/) of total electrical energy generated to net electrical energy consumed. Included in this total is the virtual energy of bred fissile fuel, if a hybrid blanket is used, as well as the actual of real energy deposited in the blanket by the fusion neutron. The advantages and disadvantages of the pulsed operation demanded by the linear theta pinch are also discussed
Application of local area networks to accelerator control systems at the Stanford Linear Accelerator
International Nuclear Information System (INIS)
Fox, J.D.; Linstadt, E.; Melen, R.
1983-03-01
The history and current status of SLAC's SDLC networks for distributed accelerator control systems are discussed. These local area networks have been used for instrumentation and control of the linear accelerator. Network topologies, protocols, physical links, and logical interconnections are discussed for specific applications in distributed data acquisition and control system, computer networks and accelerator operations
Analysis of Linear Hybrid Systems in CLP
DEFF Research Database (Denmark)
Banda, Gourinath; Gallagher, John Patrick
2009-01-01
In this paper we present a procedure for representing the semantics of linear hybrid automata (LHAs) as constraint logic programs (CLP); flexible and accurate analysis and verification of LHAs can then be performed using generic CLP analysis and transformation tools. LHAs provide an expressive...
Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel
El-Gebeily, M.; Yushau, B.
2008-01-01
In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…
Distributed systems status and control
Kreidler, David; Vickers, David
1990-01-01
Concepts are investigated for an automated status and control system for a distributed processing environment. System characteristics, data requirements for health assessment, data acquisition methods, system diagnosis methods and control methods were investigated in an attempt to determine the high-level requirements for a system which can be used to assess the health of a distributed processing system and implement control procedures to maintain an accepted level of health for the system. A potential concept for automated status and control includes the use of expert system techniques to assess the health of the system, detect and diagnose faults, and initiate or recommend actions to correct the faults. Therefore, this research included the investigation of methods by which expert systems were developed for real-time environments and distributed systems. The focus is on the features required by real-time expert systems and the tools available to develop real-time expert systems.
A SYSTEMIC VISION OF BIOLOGY: OVERCOMING LINEARITY
Directory of Open Access Journals (Sweden)
M. Mayer
2005-07-01
were used to build a hipermedia material. This technology permit overcomes a linear communication, improving the comprehension of the network perspective. The teachers speeches revealed their conceptual con- structions along the course, showed the development of the competences in identify interconnection points in the flow and chemical cycling of energy, compatible with a systemic view of life.
A note on the time decay of solutions for the linearized Wigner-Poisson system
Gamba, Irene
2009-01-01
We consider the one-dimensional Wigner-Poisson system of plasma physics, linearized around a (spatially homogeneous) Lorentzian distribution and prove that the solution of the corresponding linearized problem decays to zero in time. We also give an explicit algebraic decay rate.
Solving Fully Fuzzy Linear System of Equations in General Form
Directory of Open Access Journals (Sweden)
A. Yousefzadeh
2012-06-01
Full Text Available In this work, we propose an approach for computing the positive solution of a fully fuzzy linear system where the coefficient matrix is a fuzzy $nimes n$ matrix. To do this, we use arithmetic operations on fuzzy numbers that introduced by Kaffman in and convert the fully fuzzy linear system into two $nimes n$ and $2nimes 2n$ crisp linear systems. If the solutions of these linear systems don't satisfy in positive fuzzy solution condition, we introduce the constrained least squares problem to obtain optimal fuzzy vector solution by applying the ranking function in given fully fuzzy linear system. Using our proposed method, the fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.
Ultra-high Frequency Linear Fiber Optic Systems
Lau, Kam Y
2009-01-01
Designed for a one-semester course on fiber-optics systems and communication links, this book provides a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers.
Water Treatment Technology - Distribution Systems.
Ross-Harrington, Melinda; Kincaid, G. David
One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…
Privacy-Preserving Distributed Linear Regression on High-Dimensional Data
Directory of Open Access Journals (Sweden)
Gascón Adrià
2017-10-01
Full Text Available We propose privacy-preserving protocols for computing linear regression models, in the setting where the training dataset is vertically distributed among several parties. Our main contribution is a hybrid multi-party computation protocol that combines Yao’s garbled circuits with tailored protocols for computing inner products. Like many machine learning tasks, building a linear regression model involves solving a system of linear equations. We conduct a comprehensive evaluation and comparison of different techniques for securely performing this task, including a new Conjugate Gradient Descent (CGD algorithm. This algorithm is suitable for secure computation because it uses an efficient fixed-point representation of real numbers while maintaining accuracy and convergence rates comparable to what can be obtained with a classical solution using floating point numbers. Our technique improves on Nikolaenko et al.’s method for privacy-preserving ridge regression (S&P 2013, and can be used as a building block in other analyses. We implement a complete system and demonstrate that our approach is highly scalable, solving data analysis problems with one million records and one hundred features in less than one hour of total running time.
Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time
Wang, Yu
1995-08-01
The dynamic response and stability of a single-degree-of-freedom system with unsymmetric piecewise-linear/non-linear stiffness are analyzed using the finite element method in the time domain. Based on a Hamilton's weak principle, this method provides a simple and efficient approach for predicting all possible fundamental and sub-periodic responses. The stability of the steady state response is determined by using Floquet's theory without any special effort for calculating transition matrices. This method is applied to a number of examples, demonstrating its effectiveness even for a strongly non-linear problem involving both clearance and continuous stiffness non-linearities. Close agreement is found between available published findings and the predictions of the finite element in time approach, which appears to be an efficient and reliable alternative technique for non-linear dynamic response and stability analysis of periodic systems.
Random Linear Network Coding is Key to Data Survival in Highly Dynamic Distributed Storage
DEFF Research Database (Denmark)
Sipos, Marton A.; Fitzek, Frank; Roetter, Daniel Enrique Lucani
2015-01-01
Distributed storage solutions have become widespread due to their ability to store large amounts of data reliably across a network of unreliable nodes, by employing repair mechanisms to prevent data loss. Conventional systems rely on static designs with a central control entity to oversee...... and control the repair process. Given the large costs for maintaining and cooling large data centers, our work proposes and studies the feasibility of a fully decentralized systems that can store data even on unreliable and, sometimes, unavailable mobile devices. This imposes new challenges on the design...... as the number of available nodes varies greatly over time and keeping track of the system's state becomes unfeasible. As a consequence, conventional erasure correction approaches are ill-suited for maintaining data integrity. In this highly dynamic context, random linear network coding (RLNC) provides...
Reliability modelling and simulation of switched linear system ...
African Journals Online (AJOL)
Reliability modelling and simulation of switched linear system control using temporal databases. ... design of fault-tolerant real-time switching systems control and modelling embedded micro-schedulers for complex systems maintenance.
Directory of Open Access Journals (Sweden)
Mohammad Hosein Rezaei
2011-10-01
Full Text Available Transformers perform many functions such as voltage transformation, isolation and noise decoupling. They are indispensable components in electric power distribution system. However, at low frequencies (50 Hz, they are one of the heaviest and the most expensive equipment in an electrical distribution system. Nowadays, electronic power transformers are used instead of conventional power transformers that do voltage transformation and power delivery in power system by power electronic converter. In this paper, the structure of distribution electronic power transformer (DEPT are analized and then paid attention on the design of a linear-quadratic-regulator (LQR with integral action to improve dynamic performance of DEPT with voltage unbalance, voltage sags, voltage harmonics and voltage ﬂicker. The presentation control strategy is simulated by MATLAB/SIMULINK. In addition, the results that are in terms of dc-link reference voltage, input and output voltages clearly show that a better dynamic performance can be achieved by using the LQR method when compared to other techniques.
Energy balance in a system with quasispherical linear compression
International Nuclear Information System (INIS)
Es'kov, A.G.; Kozlov, N.P.; Kurtmullaev, R.K.; Semenov, V.N.; Khvesyuk, V.I.; Yaminskii, A.V.
1983-01-01
This letter reports the resists of some experimental studies and a numerical simulation of the Tor-linear fusion system, 1 in which a heavy plasma shell with a closed magnetic structure is compressed in a quasispherical manner. The parameters of the Tor-Linear, at the Kurchatov Institute of Atomic Energy in Moscow are as follows: The energy stored in the system which accelerates the linear is E = 0.5 MJ; the linear mass is m = 0.2 kg; the working volume of the linear module is 1.5 x 10 -3 m 3 ; the linear velocity is approx.10 3 m/s; the guiding field in the toriod in the linear is 1--10 x 10 21 m -3 ; and the intial volume of the plasma in the linear chamber is 2.5 x 10 -4 m 3 . In this series of experiments, new solutions were developed for all the systems of the plasma--linear complex of the Tor-Linear: to produce a plasma toroid, to transport it, and to trap it in the linear cavity
A Proposed Method for Solving Fuzzy System of Linear Equations
Directory of Open Access Journals (Sweden)
Reza Kargar
2014-01-01
Full Text Available This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval right hand side. Some conditions for the existence of a fuzzy or interval solution of m×n linear system are derived and also a practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the proposed method is illustrated by some numerical examples.
Pilkey, W. D.; Chen, Y. H.
1974-01-01
An indirect synthesis method is used in the efficient optimal design of multi-degree of freedom, multi-design element, nonlinear, transient systems. A limiting performance analysis which requires linear programming for a kinematically linear system is presented. The system is selected using system identification methods such that the designed system responds as closely as possible to the limiting performance. The efficiency is a result of the method avoiding the repetitive systems analyses accompanying other numerical optimization methods.
DEFF Research Database (Denmark)
Fitzek, Frank; Toth, Tamas; Szabados, Áron
2014-01-01
This paper advocates the use of random linear network coding for storage in distributed clouds in order to reduce storage and traffic costs in dynamic settings, i.e. when adding and removing numerous storage devices/clouds on-the-fly and when the number of reachable clouds is limited. We introduce...... various network coding approaches that trade-off reliability, storage and traffic costs, and system complexity relying on probabilistic recoding for cloud regeneration. We compare these approaches with other approaches based on data replication and Reed-Solomon codes. A simulator has been developed...... to carry out a thorough performance evaluation of the various approaches when relying on different system settings, e.g., finite fields, and network/storage conditions, e.g., storage space used per cloud, limited network use, and limited recoding capabilities. In contrast to standard coding approaches, our...
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.
Minimal solution of general dual fuzzy linear systems
International Nuclear Information System (INIS)
Abbasbandy, S.; Otadi, M.; Mosleh, M.
2008-01-01
Fuzzy linear systems of equations, play a major role in several applications in various area such as engineering, physics and economics. In this paper, we investigate the existence of a minimal solution of general dual fuzzy linear equation systems. Two necessary and sufficient conditions for the minimal solution existence are given. Also, some examples in engineering and economic are considered
Partial Linearization of Mechanical Systems with Application to Observer Design
Sarras, Ioannis; Venkatraman, Aneesh; Ortega, Romeo; Schaft, Arjan van der
2008-01-01
We consider general mechanical systems and establish a necessary and sufficient condition for the existence of a suitable change in the generalized momentum coordinates such that the new dynamics become linear in the transformed momenta. The class of systems which can be (partially) linearized by
Simultaneous Balancing and Model Reduction of Switched Linear Systems
Monshizadeh, Nima; Trentelman, Hendrikus; Camlibel, M.K.
2011-01-01
In this paper, first, balanced truncation of linear systems is revisited. Then, simultaneous balancing of multiple linear systems is investigated. Necessary and sufficient conditions are introduced to identify the case where simultaneous balancing is possible. The validity of these conditions is not
Energy Technology Data Exchange (ETDEWEB)
Benferhat, S.; Dubois, D.; Prade, H. [Universite Paul Sabatier, Toulouse (France)
1996-12-31
The authors have proposed in their previous works to view a set of default information of the form, {open_quotes}generally, from {alpha}{sub i} deduce {beta}{sub i}{close_quotes}, as the family of possibility distributions satisfying constraints expressing that the situations where {alpha}{sub 1} {beta}{sub i} is true are more possible than the situations where {alpha}{sub i} {beta}{sub i} is true. This provides a representation theorem for default reasoning obeying the System P of postulates proposed by Lehmann et al., and for which it also exists a semantics in terms of infinitesimal probabilities. This paper offers a detailed analysis of the structure of this family of possibility distributions by making use of two different orderings between them: the specificity ordering and the refinement ordering. It is shown that from a representation point of view, it is sufficient to consider the subset of linear possibility distributions which corresponds to all the possible completions of the default knowledge in agreement with the constraints. Surprisingly, it is also shown that a standard probabilistic semantics can be equivalently given to System P, without referring to infinitesimals, by using a special family of probability measures, here called acceptance functions, and that has been also recently considered by Snow in that perspective.
Linear System Control Using Stochastic Learning Automata
Ziyad, Nigel; Cox, E. Lucien; Chouikha, Mohamed F.
1998-01-01
This paper explains the use of a Stochastic Learning Automata (SLA) to control switching between three systems to produce the desired output response. The SLA learns the optimal choice of the damping ratio for each system to achieve a desired result. We show that the SLA can learn these states for the control of an unknown system with the proper choice of the error criteria. The results of using a single automaton are compared to using multiple automata.
Useful tools for non-linear systems: Several non-linear integral inequalities
Czech Academy of Sciences Publication Activity Database
Agahi, H.; Mohammadpour, A.; Mesiar, Radko; Vaezpour, M. S.
2013-01-01
Roč. 49, č. 1 (2013), s. 73-80 ISSN 0950-7051 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : Monotone measure * Comonotone functions * Integral inequalities * Universal integral Subject RIV: BA - General Mathematics Impact factor: 3.058, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-useful tools for non-linear systems several non-linear integral inequalities.pdf
Decentralized linear quadratic power system stabilizers for multi ...
Indian Academy of Sciences (India)
Introduction. Modern excitation systems considerably enhance the overall transient stability of power systems ..... to the local bus rather than the angle δ measured with respect to the remote bus. ... With this in view, the linear and nonlinear per-.
Linear analysis of rotationally invariant, radially variant tomographic imaging systems
International Nuclear Information System (INIS)
Huesmann, R.H.
1990-01-01
This paper describes a method to analyze the linear imaging characteristics of rotationally invariant, radially variant tomographic imaging systems using singular value decomposition (SVD). When the projection measurements from such a system are assumed to be samples from independent and identically distributed multi-normal random variables, the best estimate of the emission intensity is given by the unweighted least squares estimator. The noise amplification of this estimator is inversely proportional to the singular values of the normal matrix used to model projection and backprojection. After choosing an acceptable noise amplification, the new method can determine the number of parameters and hence the number of pixels that should be estimated from data acquired from an existing system with a fixed number of angles and projection bins. Conversely, for the design of a new system, the number of angles and projection bins necessary for a given number of pixels and noise amplification can be determined. In general, computing the SVD of the projection normal matrix has cubic computational complexity. However, the projection normal matrix for this class of rotationally invariant, radially variant systems has a block circulant form. A fast parallel algorithm to compute the SVD of this block circulant matrix makes the singular value analysis practical by asymptotically reducing the computation complexity of the method by a multiplicative factor equal to the number of angles squared
Fujibuchi, Toshioh; Yonai, Shunsuke; Yoshida, Masahiro; Sakae, Takeji; Watanabe, Hiroshi; Abe, Yoshihisa; Itami, Jun
2014-08-01
Photonuclear reactions generate neutrons in the head of the linear accelerator. Therefore, some parts of the linear accelerator can become activated. Such activated materials must be handled as radioactive waste. The authors attempted to investigate the distribution of induced radioactivity using photostimulable phosphor imaging plates. Autoradiographs were produced from some parts of the linear accelerator (the target, upper jaw, multileaf collimator and shielding). The levels of induced radioactivity were confirmed to be non-uniform within each part from the autoradiographs. The method was a simple and highly sensitive approach to evaluating the relative degree of activation of the linear accelerators, so that appropriate materials management procedures can be carried out.
A new active absorption system and its performance to linear and non-linear waves
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Clavero, M.; Frigaard, Peter Bak
2016-01-01
Highlights •An active absorption system for wavemakers has been developed. •The theory for flush mounted gauges has been extended to cover also small gaps. •The new system has been validated in a wave flume with wavemakers in both ends. •A generation and absorption procedure for highly non-linear...
The THUDSOS Distributed Operating System
Institute of Scientific and Technical Information of China (English)
廖先Zhi; 刘旭峰; 等
1991-01-01
The THUDSOS is a distributed operating system modeled as an abstract machine which provides decentralized control,transparency,availability,and reliability,as welol as a good degree of autonomy at each node,that makes our distributed system usable.Our operating system supports transparent access to data through network wide filesystem.The simultaneous access to any device is discussed for the case when the peripherals are treated as files.This operating system allows spawning of parallel application programs to solve problems in the fields,such as numerical analysis and artificial intelligence.
Energy efficient distributed computing systems
Lee, Young-Choon
2012-01-01
The energy consumption issue in distributed computing systems raises various monetary, environmental and system performance concerns. Electricity consumption in the US doubled from 2000 to 2005. From a financial and environmental standpoint, reducing the consumption of electricity is important, yet these reforms must not lead to performance degradation of the computing systems. These contradicting constraints create a suite of complex problems that need to be resolved in order to lead to 'greener' distributed computing systems. This book brings together a group of outsta
MAGNETIC INDUCTION DISTRIBUTION IN A LINEAR SYNCHRONUS MOTOR WITH MAGNETIC SUSPENSION
Directory of Open Access Journals (Sweden)
D.I. Parkhomenko
2013-02-01
Full Text Available Results of computer simulation and experimental investigations of magnetic induction distribution in a coaxial linear synchronous motor with magnetic suspension are presented. The magnetic induction distribution has been studied both in the motor air gap and on the runner surface.
On the Linear Relation between the Mean and the Standard Deviation of a Response Time Distribution
Wagenmakers, Eric-Jan; Brown, Scott
2007-01-01
Although it is generally accepted that the spread of a response time (RT) distribution increases with the mean, the precise nature of this relation remains relatively unexplored. The authors show that in several descriptive RT distributions, the standard deviation increases linearly with the mean. Results from a wide range of tasks from different…
On Optimal Feedback Control for Stationary Linear Systems
International Nuclear Information System (INIS)
Russell, David L.
2010-01-01
We study linear-quadratic optimal control problems for finite dimensional stationary linear systems AX+BU=Z with output Y=CX+DU from the viewpoint of linear feedback solution. We interpret solutions in relation to system robustness with respect to disturbances Z and relate them to nonlinear matrix equations of Riccati type and eigenvalue-eigenvector problems for the corresponding Hamiltonian system. Examples are included along with an indication of extensions to continuous, i.e., infinite dimensional, systems, primarily of elliptic type.
Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis
Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel
2013-01-01
This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007
Coordination control of distributed systems
Villa, Tiziano
2015-01-01
This book describes how control of distributed systems can be advanced by an integration of control, communication, and computation. The global control objectives are met by judicious combinations of local and nonlocal observations taking advantage of various forms of communication exchanges between distributed controllers. Control architectures are considered according to increasing degrees of cooperation of local controllers: fully distributed or decentralized control, control with communication between controllers, coordination control, and multilevel control. The book covers also topics bridging computer science, communication, and control, like communication for control of networks, average consensus for distributed systems, and modeling and verification of discrete and of hybrid systems. Examples and case studies are introduced in the first part of the text and developed throughout the book. They include: control of underwater vehicles, automated-guided vehicles on a container terminal, contro...
International Nuclear Information System (INIS)
Lee, Steve P.; Leu, Min Y.; Smathers, James B.; McBride, William H.; Parker, Robert G.; Withers, H. Rodney
1995-01-01
Purpose: Radiotherapy plans based on physical dose distributions do not necessarily entirely reflect the biological effects under various fractionation schemes. Over the past decade, the linear-quadratic (LQ) model has emerged as a convenient tool to quantify biological effects for radiotherapy. In this work, we set out to construct a mechanism to display biologically oriented dose distribution based on the LQ model. Methods and Materials: A computer program that converts a physical dose distribution calculated by a commercially available treatment planning system to a biologically effective dose (BED) distribution has been developed and verified against theoretical calculations. This software accepts a user's input of biological parameters for each structure of interest (linear and quadratic dose-response and repopulation kinetic parameters), as well as treatment scheme factors (number of fractions, fractional dose, and treatment time). It then presents a two-dimensional BED display in conjunction with anatomical structures. Furthermore, to facilitate clinicians' intuitive comparison with conventional fractionation regimen, a conversion of BED to normalized isoeffective dose (NID) is also allowed. Results: Two sample cases serve to illustrate the application of our tool in clinical practice. (a) For an orthogonal wedged pair of x-ray beams treating a maxillary sinus tumor, the biological effect at the ipsilateral mandible can be quantified, thus illustrates the so-called 'double-trouble' effects very well. (b) For a typical four-field, evenly weighted prostate treatment using 10 MV x-rays, physical dosimetry predicts a comparable dose at the femoral necks between an alternate two-fields/day and four-fields/day schups. However, our BED display reveals an approximate 21% higher BED for the two-fields/day scheme. This excessive dose to the femoral necks can be eliminated if the treatment is delivered with a 3:2 (anterio-posterior/posterio-anterior (AP
Linear theory for filtering nonlinear multiscale systems with model error.
Berry, Tyrus; Harlim, John
2014-07-08
In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online , as part of a filtering
Energy Technology Data Exchange (ETDEWEB)
Colin, G.
2006-10-15
Spark ignition engine control has become a major issue for the compliance with emissions legislation while ensuring driving comfort. Engine down-sizing is one of the promising ways to reduce fuel consumption and resulting CO{sub 2} emissions. Combining several existing technologies such as supercharging and variable valve actuation, down-sizing is a typical example of the problems encountered in Spark Ignited (SI) engine control: nonlinear systems with saturation of actuators; numerous major physical phenomena not measurable; limited computing time; control objectives (consumption, pollution, performance) often competing. A methodology of modelling and model-based control (internal model and predictive control) for these systems is also proposed and applied to the air path of the down-sized engine. Models, physicals and generics, are built to estimate in-cylinder air mass, residual burned gases mass and air scavenged mass from the intake to the exhaust. The complete and generic engine torque control architecture for the turbo-charged SI engine with variable cam-shaft timing was tested in simulation and experimentally (on engine and vehicle). These tests show that new possibilities are offered in order to decrease pollutant emissions and optimize engine efficiency. (author)
Linearization of Nonautonomous Impulsive System with Nonuniform Exponential Dichotomy
Directory of Open Access Journals (Sweden)
Yongfei Gao
2014-01-01
Full Text Available This paper gives a version of Hartman-Grobman theorem for the impulsive differential equations. We assume that the linear impulsive system has a nonuniform exponential dichotomy. Under some suitable conditions, we proved that the nonlinear impulsive system is topologically conjugated to its linear system. Indeed, we do construct the topologically equivalent function (the transformation. Moreover, the method to prove the topological conjugacy is quite different from those in previous works (e.g., see Barreira and Valls, 2006.
RBAC administration in distributed systems
Dekker, M.A.C.; Crampton, J.; Etalle, Sandro; Li, N.
Large and distributed access control systems are increasingly common, for example in health care. In such settings, access control policies may become very complex, thus complicating correct and efficient adminstration of the access control system. Despite being one of the most widely used access
On the discretization of linear fractional representations of LPV systems
Toth, R.; Lovera, M.; Heuberger, P.S.C.; Corno, M.; Hof, Van den P.M.J.
2012-01-01
Commonly, controllers for linear parameter-varying (LPV) systems are designed in continuous time using a linear fractional representation (LFR) of the plant. However, the resulting controllers are implemented on digital hardware. Furthermore, discrete-time LPV synthesis approaches require a
Automatic frequency control system for driving a linear accelerator
International Nuclear Information System (INIS)
Helgesson, A.L.
1976-01-01
An automatic frequency control system is described for maintaining the drive frequency applied to a linear accelerator to produce maximum particle output from the accelerator. The particle output amplitude is measured and the frequency of the radio frequency source powering the linear accelerator is adjusted to maximize particle output amplitude
Systems Measures of Water Distribution System Resilience
Energy Technology Data Exchange (ETDEWEB)
Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-01-01
Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.
Application of Nearly Linear Solvers to Electric Power System Computation
Grant, Lisa L.
To meet the future needs of the electric power system, improvements need to be made in the areas of power system algorithms, simulation, and modeling, specifically to achieve a time frame that is useful to industry. If power system time-domain simulations could run in real-time, then system operators would have situational awareness to implement online control and avoid cascading failures, significantly improving power system reliability. Several power system applications rely on the solution of a very large linear system. As the demands on power systems continue to grow, there is a greater computational complexity involved in solving these large linear systems within reasonable time. This project expands on the current work in fast linear solvers, developed for solving symmetric and diagonally dominant linear systems, in order to produce power system specific methods that can be solved in nearly-linear run times. The work explores a new theoretical method that is based on ideas in graph theory and combinatorics. The technique builds a chain of progressively smaller approximate systems with preconditioners based on the system's low stretch spanning tree. The method is compared to traditional linear solvers and shown to reduce the time and iterations required for an accurate solution, especially as the system size increases. A simulation validation is performed, comparing the solution capabilities of the chain method to LU factorization, which is the standard linear solver for power flow. The chain method was successfully demonstrated to produce accurate solutions for power flow simulation on a number of IEEE test cases, and a discussion on how to further improve the method's speed and accuracy is included.
THE FRANCHISE SYSTEM OF DISTRIBUTION.
The working relationships between franchise companies and their franchised dealers are analyzed. The benefits derived from the use of a franchisesise...system of distribution for both the franchisor and franchisee are determined. The principal problems encountered by the parties to the franchise ...agreement are isolated, and this method of distribution is evaluated from the standpoint of both the franchise company and franchised dealers and to assess its impact on the marketing economy of the nation.
Feedback linearizing control of a MIMO power system
Ilyes, Laszlo
Prior research has demonstrated that either the mechanical or electrical subsystem of a synchronous electric generator may be controlled using single-input single-output (SISO) nonlinear feedback linearization. This research suggests a new approach which applies nonlinear feedback linearization to a multi-input multi-output (MIMO) model of the synchronous electric generator connected to an infinite bus load model. In this way, the electrical and mechanical subsystems may be linearized and simultaneously decoupled through the introduction of a pair of auxiliary inputs. This allows well known, linear, SISO control methods to be effectively applied to the resulting systems. The derivation of the feedback linearizing control law is presented in detail, including a discussion on the use of symbolic math processing as a development tool. The linearizing and decoupling properties of the control law are validated through simulation. And finally, the robustness of the control law is demonstrated.
Portable, x-band, linear accelerator systems
International Nuclear Information System (INIS)
Schonberg, R.G.; Deruyter, H.; Fowkes, W.R.; Johnson, W.A.; Miller, R.H.; Potter, J.M.; Weaver, J.N.
1985-01-01
Three light-weight, x-band, electron accelerators have been developed to provide a series of highly portable sources of x-rays and neutrons for nondestructive testing. The 1.5 MeV x-ray unit has a 200 kW magnetron for an RF source and an air-cooled, traveling wave accelerating structure to minimize its weight. The 4 and 6 MeV units share the same drive system which contains a 1.2 MW magnetron. The 4 MeV unit uses a traveling-wave guide to produce x-rays and the 6MeV unit uses a standing-wave guide to produce x-rays or neutrons. The choice of 9.3 GHz was dictated by the availability of a high power coaxial magnetron and by the obvious dimensional and weight advantages of a higher frequency over the more common S-band frequencies around 3 GHz
Structure Learning in Stochastic Non-linear Dynamical Systems
Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.
2005-12-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.
Maintaining consistency in distributed systems
Birman, Kenneth P.
1991-01-01
In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability.
Distribution network strengthens sales systems
International Nuclear Information System (INIS)
Janoska, J.
2003-01-01
Liberalisation of the electricity market pushes Slovak distribution companies to upgrade their sale technologies. The first one to invest into a complex electronic sales system will be Stredoslovenska energetika, a.s., Zilina. The system worth 200 million Sk (4,83 million Euro) will be supplied by Polish software company Winuel. The company should also supply a software that would allow forecasting and planning of sales. The system should be fully operational by 2006. TREND has not managed to obtain information regarding plans Zapadoslovenska energetika - the largest and most active distribution company - might have in this area. In eastern Slovakia distribution company Vychodoslovenska energetika, a.s., Kosice has also started addressing this issue. (Author)
Portable, x-band, linear accelerator systems
International Nuclear Information System (INIS)
Schonberg, R.G.; Deruyter, H.; Fowkes, W.R.; Johnson, W.A.; Miller, R.H.; Potter, J.M.; Weaver, J.N.
1985-01-01
Three light-weight, x-band, electron accelerators have been developed to provide a series of highly portable sources of x-rays and neutrons for non-destructive testing. The 1.5 MeV x-ray unit has a 200 kW magnetron for an RF source and an air-cooled, traveling wave accelerating structure to minimize its weight. The 4 and 6 MeV units share the same drive system which contains a 1.2 MW magnetron. The 4 MeV unit uses a traveling-wave guide to produce x-rays and the 6MeV unit uses a standing-wave guide to produce x-rays or neutrons. The choice of 9.3 GHz was dictated by the availability of a high power coaxial magnetron and by the obvious dimensional and weight advantages of a higher frequency over the more common S-band frequencies around 3 GHz
Linear quadratic Gaussian balancing for discrete-time infinite-dimensional linear systems
Opmeer, MR; Curtain, RF
2004-01-01
In this paper, we study the existence of linear quadratic Gaussian (LQG)-balanced realizations for discrete-time infinite-dimensional systems. LQG-balanced realizations are those for which the smallest nonnegative self-adjoint solutions of the control and filter Riccati equations are equal. We show
Sparse Linear Solver for Power System Analysis Using FPGA
National Research Council Canada - National Science Library
Johnson, J. R; Nagvajara, P; Nwankpa, C
2005-01-01
.... Numerical solution to load flow equations are typically computed using Newton-Raphson iteration, and the most time consuming component of the computation is the solution of a sparse linear system...
Perfect commuting-operator strategies for linear system games
Cleve, Richard; Liu, Li; Slofstra, William
2017-01-01
Linear system games are a generalization of Mermin's magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solutions of a certain set of non-commutative equations. We investigate linear system games in the commuting-operator model of entanglement, where Alice and Bob's measurement operators act on a joint Hilbert space, and Alice's operators must commute with Bob's operators. We show that perfect strategies in this model correspond to possibly infinite-dimensional operator solutions of the non-commutative equations. The proof is based around a finitely presented group associated with the linear system which arises from the non-commutative equations.
A conceptual design of Final Focus Systems for linear colliders
International Nuclear Information System (INIS)
Brown, K.L.
1987-06-01
Linear colliders are a relatively recent development in the evolution of particle accelerators. This report discusses some of the approaches that have been considered for the design of Final Focus Systems to demagnify the beam exiting from a linac to the small size suitable for collisions at the interaction point. The system receiving the most attention is the one adopted for the SLAC Linear Collider. However, the theory and optical techniques discussed should be applicable to the design efforts for future machines
ON THE STABILIZATION OF THE LINEAR HYBRID SYSTEM STRUCTURE
Directory of Open Access Journals (Sweden)
Kirillov
2014-11-01
Full Text Available The linear control hybrid system, consisting of a fi- nite set of subsystems (modes having different dimensions, is considered. The moments of reset time are determined by some complementary function – evolutionary time. This function satisfies the special complementary ordinary differential equation. The mode stabilization problem is solved for some class of piecewise linear controls. The method of stabilization relies on the set of invariant planes, the existence of which is due to the special form of the hybrid system.
Iterative algorithms for large sparse linear systems on parallel computers
Adams, L. M.
1982-01-01
Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.
Simultaneous Balancing and Model Reduction of Switched Linear Systems
Monshizadeh, Nima; Trentelman, Hendrikus; Camlibel, M.K.
2011-01-01
In this paper, first, balanced truncation of linear systems is revisited. Then, simultaneous balancing of multiple linear systems is investigated. Necessary and sufficient conditions are introduced to identify the case where simultaneous balancing is possible. The validity of these conditions is not limited to a certain type of balancing, and they are applicable for different types of balancing corresponding to different equations, like Lyapunov or Riccati equations. The results obtained are ...
Linear VSS and Distributed Commitments Based on Secret Sharing and Pairwise Checks
DEFF Research Database (Denmark)
Fehr, Serge; Maurer, Ueli M.
2002-01-01
. VSS and DC are main building blocks for unconditional secure multi-party computation protocols. This general approach covers all known linear VSS and DC schemes. The main theorem states that the security of a scheme is equivalent to a pure linear-algebra condition on the linear mappings (e.......g. described as matrices and vectors) describing the scheme. The security of all known schemes follows as corollaries whose proofs are pure linear-algebra arguments, in contrast to some hybrid arguments used in the literature. Our approach is demonstrated for the CDM DC scheme, which we generalize to be secure......We present a general treatment of all non-cryptographic (i.e., information-theoretically secure) linear veriable-secret-sharing (VSS) and distributed-commitment (DC) schemes, based on an underlying secret sharing scheme, pairwise checks between players, complaints, and accusations of the dealer...
Distributed Cooperative Current-Sharing Control of Parallel Chargers Using Feedback Linearization
Directory of Open Access Journals (Sweden)
Jiangang Liu
2014-01-01
Full Text Available We propose a distributed current-sharing scheme to address the output current imbalance problem for the parallel chargers in the energy storage type light rail vehicle system. By treating the parallel chargers as a group of agents with output information sharing through communication network, the current-sharing control problem is recast as the consensus tracking problem of multiagents. To facilitate the design, input-output feedback linearization is first applied to transform the nonidentical nonlinear charging system model into the first-order integrator. Then, a general saturation function is introduced to design the cooperative current-sharing control law which can guarantee the boundedness of the proposed control. The cooperative stability of the closed-loop system under fixed and dynamic communication topologies is rigorously proved with the aid of Lyapunov function and LaSalle invariant principle. Simulation using a multicharging test system further illustrates that the output currents of parallel chargers are balanced using the proposed control.
Solar photovoltaic water pumping system using a new linear actuator
Andrada Gascón, Pedro; Castro, Javier
2007-01-01
In this paper a photovoltaic solar pumping system using a new linear actuator is presented. This linear actuator is a double-sided flat two-phase variable-reluctance linear stepper motor that moves a piston-type water pump with the help of a rope, a pulley and a counterweight. The entire actuator pump ensemble is controlled by a simple electronic unit that manages the electric power generated by a photovoltaic array. The proposed system is suitable for rural communities in developing...
Phase and amplitude detection system for the Stanford Linear Accelerator
International Nuclear Information System (INIS)
Fox, J.D.; Schwarz, H.D.
1983-01-01
A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system
International Nuclear Information System (INIS)
Chen, H.-H.; Chen, C.-S.; Lee, C.-I
2009-01-01
This paper investigates the synchronization of unidirectional and bidirectional coupled unified chaotic systems. A balanced coupling coefficient control method is presented for global asymptotic synchronization using the Lyapunov stability theorem and a minimum scheme with no constraints/constraints. By using the result of the above analysis, the balanced coupling coefficients are then designed to achieve the chaos synchronization of linearly coupled unified chaotic systems. The feasibility and effectiveness of the proposed chaos synchronization scheme are verified via numerical simulations.
Stability, performance and sensitivity analysis of I.I.D. jump linear systems
Chávez Fuentes, Jorge R.; González, Oscar R.; Gray, W. Steven
2018-06-01
This paper presents a symmetric Kronecker product analysis of independent and identically distributed jump linear systems to develop new, lower dimensional equations for the stability and performance analysis of this type of systems than what is currently available. In addition, new closed form expressions characterising multi-parameter relative sensitivity functions for performance metrics are introduced. The analysis technique is illustrated with a distributed fault-tolerant flight control example where the communication links are allowed to fail randomly.
Compressed sensing for distributed systems
Coluccia, Giulio; Magli, Enrico
2015-01-01
This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to...
Dissipative open systems theory as a foundation for the thermodynamics of linear systems.
Delvenne, Jean-Charles; Sandberg, Henrik
2017-03-06
In this paper, we advocate the use of open dynamical systems, i.e. systems sharing input and output variables with their environment, and the dissipativity theory initiated by Jan Willems as models of thermodynamical systems, at the microscopic and macroscopic level alike. We take linear systems as a study case, where we show how to derive a global Lyapunov function to analyse networks of interconnected systems. We define a suitable notion of dynamic non-equilibrium temperature that allows us to derive a discrete Fourier law ruling the exchange of heat between lumped, discrete-space systems, enriched with the Maxwell-Cattaneo correction. We complete these results by a brief recall of the steps that allow complete derivation of the dissipation and fluctuation in macroscopic systems (i.e. at the level of probability distributions) from lossless and deterministic systems.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).
DEFF Research Database (Denmark)
Tahani, Mojtaba; Kavari, Ghazale; Masdari, Mehran
2017-01-01
This study is aimed to aerodynamically design a 1 mega-Watt horizontal axis wind turbine in order to obtain the maximum power coefficient by linearizing the chord and twist distributions. A new linearization method has been used for chord and twist distributions by crossing tangent line through...... the geometry of the blades determines the power generated by rotor, designing the blade is a very important issue. Herein, calculations are done for different types of airfoil families namely Risø-A1-21, Risø-A1-18, S809, S814 and Du 93-W-210. Hence, the effect of selecting different airfoil families is also...
Noiseless Linear Amplifiers in Entanglement-Based Continuous-Variable Quantum Key Distribution
Directory of Open Access Journals (Sweden)
Yichen Zhang
2015-06-01
Full Text Available We propose a method to improve the performance of two entanglement-based continuous-variable quantum key distribution protocols using noiseless linear amplifiers. The two entanglement-based schemes consist of an entanglement distribution protocol with an untrusted source and an entanglement swapping protocol with an untrusted relay. Simulation results show that the noiseless linear amplifiers can improve the performance of these two protocols, in terms of maximal transmission distances, when we consider small amounts of entanglement, as typical in realistic setups.
Solution of generalized shifted linear systems with complex symmetric matrices
International Nuclear Information System (INIS)
Sogabe, Tomohiro; Hoshi, Takeo; Zhang, Shao-Liang; Fujiwara, Takeo
2012-01-01
We develop the shifted COCG method [R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara, Linear algebraic calculation of Green’s function for large-scale electronic structure theory, Phys. Rev. B 73 (165108) (2006) 1–9] and the shifted WQMR method [T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, On a weighted quasi-residual minimization strategy of the QMR method for solving complex symmetric shifted linear systems, Electron. Trans. Numer. Anal. 31 (2008) 126–140] for solving generalized shifted linear systems with complex symmetric matrices that arise from the electronic structure theory. The complex symmetric Lanczos process with a suitable bilinear form plays an important role in the development of the methods. The numerical examples indicate that the methods are highly attractive when the inner linear systems can efficiently be solved.
Enhanced distributed energy resource system
Atcitty, Stanley [Albuquerque, NM; Clark, Nancy H [Corrales, NM; Boyes, John D [Albuquerque, NM; Ranade, Satishkumar J [Las Cruces, NM
2007-07-03
A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.
Economic MPC for a linear stochastic system of energy units
DEFF Research Database (Denmark)
Jørgensen, John Bagterp; Sokoler, Leo Emil; Standardi, Laura
2016-01-01
This paper summarizes comprehensively the work in four recent PhD theses from the Technical University of Denmark related to Economic MPC of future power systems. Future power systems will consist of a large number of decentralized power producers and a large number of controllable power consumers...... in addition to stochastic power producers such as wind turbines and solar power plants. Control of such large scale systems requires new control algorithms. In this paper, we formulate the control of such a system as an Economic Model Predictive Control (MPC) problem. When the power producers and controllable...... power consumers have linear dynamics, the Economic MPC may be expressed as a linear program. We provide linear models for a number of energy units in an energy system, formulate an Economic MPC for coordination of such a system. We indicate how advances in computational MPC makes the solutions...
Stability analysis of switched linear systems defined by graphs
Athanasopoulos, N.; Lazar, M.
2014-01-01
We present necessary and sufficient conditions for global exponential stability for switched discrete-time linear systems, under arbitrary switching, which is constrained within a set of admissible transitions. The class of systems studied includes the family of systems under arbitrary switching,
Euclidean null controllability of linear systems with delays in state ...
African Journals Online (AJOL)
Sufficient conditions are developed for the Euclidean controllability of linear systems with delay in state and in control. Namely, if the uncontrolled system is uniformly asymptotically stable and the control equation proper, then the control system is Euclidean null controllable. Journal of the Nigerian Association of ...
Incremental Closed-loop Identification of Linear Parameter Varying Systems
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Trangbæk, Klaus
2011-01-01
, closed-loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can be extended...
Stability and response bounds of non-conservative linear systems
DEFF Research Database (Denmark)
Pommer, Christian
2003-01-01
For a linear system of second order differential equations the stability is studied by Lyapunov's direct method. The Lyapunov matrix equation is solved and a sufficient condition for stability is expressed by the system matrices. For a system which satisfies the condition for stability the Lyapunov...
Linear Optimization of Frequency Spectrum Assignments Across System
2016-03-01
selection tools, frequency allocation, transmission optimization, electromagnetic maneuver warfare, electronic protection, assignment model 15. NUMBER ...Characteristics Modeled ...............................................................29 Table 10. Antenna Systems Modeled , Number of Systems and...surveillance EW early warning GAMS general algebraic modeling system GHz gigahertz IDE integrated development environment ILP integer linear program
Distributed Systems: The Hard Problems
CERN. Geneva
2015-01-01
**Nicholas Bellerophon** works as a client services engineer at Basho Technologies, helping customers setup and run distributed systems at scale in the wild. He has also worked in massively multiplayer games, and recently completed a live scalable simulation engine. He is an avid TED-watcher with interests in many areas of the arts, science, and engineering, including of course high-energy physics.
Distribution system analysis and automation
Gers, Juan
2013-01-01
A comprehensive guide to techniques that allow engineers to simulate, analyse and optimise power distribution systems which combined with automation, underpin the emerging concept of the "smart grid". This book is supported by theoretical concepts with real-world applications and MATLAB exercises.
Turboelectric Distributed Propulsion System Modelling
Liu, Chengyuan
2013-01-01
The Blended-Wing-Body is a conceptual aircraft design with rear-mounted, over wing engines. Turboelectric distributed propulsion system with boundary layer ingestion has been considered for this aircraft. It uses electricity to transmit power from the core turbine to the fans, therefore dramatically increases bypass ratio to reduce fuel consumption and noise. This dissertation presents methods on designing the TeDP system, evaluating effects of boundary layer ingestion, modelling engine perfo...
A Distributed User Information System
1990-03-01
NOE08 Department of Computer Science NOVO 8 1990 University of Maryland S College Park, MD 20742 D Abstract Current user information database technology ...Transactions on Computer Systems, May 1988. [So189] K. Sollins. A plan for internet directory services. Technical report, DDN Network Information Center...2424 A Distributed User Information System DTiC Steven D. Miller, Scott Carson, and Leo Mark DELECTE Institute for Advanced Computer Studies and
The ATLAS distributed analysis system
International Nuclear Information System (INIS)
Legger, F
2014-01-01
In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of Grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high and steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. Both the user support techniques and the direct feedback of users have been effective in improving the success rate and user experience when utilizing the distributed computing environment. In this contribution a description of the main components, activities and achievements of ATLAS distributed analysis is given. Several future improvements being undertaken will be described.
The ATLAS distributed analysis system
Legger, F.; Atlas Collaboration
2014-06-01
In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of Grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high and steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. Both the user support techniques and the direct feedback of users have been effective in improving the success rate and user experience when utilizing the distributed computing environment. In this contribution a description of the main components, activities and achievements of ATLAS distributed analysis is given. Several future improvements being undertaken will be described.
Stability analysis of switched linear systems defined by graphs
Athanasopoulos, Nikolaos; Lazar, Mircea
2015-01-01
We present necessary and sufficient conditions for global exponential stability for switched discrete-time linear systems, under arbitrary switching, which is constrained within a set of admissible transitions. The class of systems studied includes the family of systems under arbitrary switching, periodic systems, and systems with minimum and maximum dwell time specifications. To reach the result, we describe the set of rules that define the admissible transitions with a weighted directed gra...
A convex optimization approach for solving large scale linear systems
Directory of Open Access Journals (Sweden)
Debora Cores
2017-01-01
Full Text Available The well-known Conjugate Gradient (CG method minimizes a strictly convex quadratic function for solving large-scale linear system of equations when the coefficient matrix is symmetric and positive definite. In this work we present and analyze a non-quadratic convex function for solving any large-scale linear system of equations regardless of the characteristics of the coefficient matrix. For finding the global minimizers, of this new convex function, any low-cost iterative optimization technique could be applied. In particular, we propose to use the low-cost globally convergent Spectral Projected Gradient (SPG method, which allow us to extend this optimization approach for solving consistent square and rectangular linear system, as well as linear feasibility problem, with and without convex constraints and with and without preconditioning strategies. Our numerical results indicate that the new scheme outperforms state-of-the-art iterative techniques for solving linear systems when the symmetric part of the coefficient matrix is indefinite, and also for solving linear feasibility problems.
Stochastic linear hybrid systems: Modeling, estimation, and application
Seah, Chze Eng
Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS
Kar, Soummya; Moura, José M. F.
2011-08-01
The paper considers gossip distributed estimation of a (static) distributed random field (a.k.a., large scale unknown parameter vector) observed by sparsely interconnected sensors, each of which only observes a small fraction of the field. We consider linear distributed estimators whose structure combines the information \\emph{flow} among sensors (the \\emph{consensus} term resulting from the local gossiping exchange among sensors when they are able to communicate) and the information \\emph{gathering} measured by the sensors (the \\emph{sensing} or \\emph{innovations} term.) This leads to mixed time scale algorithms--one time scale associated with the consensus and the other with the innovations. The paper establishes a distributed observability condition (global observability plus mean connectedness) under which the distributed estimates are consistent and asymptotically normal. We introduce the distributed notion equivalent to the (centralized) Fisher information rate, which is a bound on the mean square error reduction rate of any distributed estimator; we show that under the appropriate modeling and structural network communication conditions (gossip protocol) the distributed gossip estimator attains this distributed Fisher information rate, asymptotically achieving the performance of the optimal centralized estimator. Finally, we study the behavior of the distributed gossip estimator when the measurements fade (noise variance grows) with time; in particular, we consider the maximum rate at which the noise variance can grow and still the distributed estimator being consistent, by showing that, as long as the centralized estimator is consistent, the distributed estimator remains consistent.
A comparison between linear and toroidal Extrap systems
International Nuclear Information System (INIS)
Lehnert, B.
1988-09-01
The Extrap scheme consists of a Z-pinch immersed in an octupole field generated by currents in a set of external conductors. A comparison between linear and toroidal Extrap geometry is made in this paper. As compared to toroidal systems, linear geometry has the advantages of relative simplicity and of a current drive by means of electrodes. Linear devices are convenient for basic studies of Extrap, at moderately high pinch currents and plasma temperatures. Within the parameter ranges of experiments at high pinch currents and plasma temperatures, linear systems have on the other hand some substantial disadvantages, on account of the plasma interaction with the end regions. This results in a limitation of the energy confinement time, and leads in the case of an ohmically heated plasma to excessively high plasma densities and small pinch radii which also complicate the introduction of the external conductors. (author)
Linear local stability of electrostatic drift modes in helical systems
International Nuclear Information System (INIS)
Yamagishi, O.; Nakajima, N.; Sugama, H.; Nakamura, Y.
2003-01-01
We investigate the stability of the drift wave in helical systems. For this purpose, we solve the linear local gyrokinetic-Poisson equation, in the electrostatic regime. As a model of helical plasmas, Large helical Device (LHD) is considered. The equation we apply is rather exact in the framework of linear gyrokinetic theory, where only the approximation is the ballooning representation. In this paper, we consider only collisionless cases. All the frequency regime can be naturally reated without any assumptions, and in such cases, ion temperature gradient modes (ITG), trapped electron modes (TEM), and electron temperature gradient modes (ETG) are expected to become unstable linearly independently. (orig.)
Distributed optimization system and method
Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.
2003-06-10
A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.
H 2 guaranteed cost control of discrete linear systems
Directory of Open Access Journals (Sweden)
Colmenares W.
2000-01-01
Full Text Available This paper presents necessary and sufficient conditions for the existence of a quadratically stabilizing output feedback controller which also assures H 2 guaranteed cost performance on a discrete linear uncertain system where the uncertainty is of the norm bounded type. The conditions are presented as a collection of linear matrix inequalities.The solution, however requires a search over a scalar parameter space.
Structured Control of Affine Linear Parameter Varying Systems
DEFF Research Database (Denmark)
Adegas, Fabiano Daher; Stoustrup, Jakob
2011-01-01
This paper presents a new procedure to design structured controllers for discrete-time afﬁne linear parametervarying systems (A LPV). The class of control structures includes decentralized of any order, ﬁxed order output feedback, simultaneous plant-control design, among others. A parametervarying...... non-convex condition for an upper bound on the induced L2-norm performance is solved by an iterative linear matrix inequalities (LMI) optimization algorithm. Numerical examples demostrate the effectiveness of the proposed approach....
World-wide distribution automation systems
International Nuclear Information System (INIS)
Devaney, T.M.
1994-01-01
A worldwide power distribution automation system is outlined. Distribution automation is defined and the status of utility automation is discussed. Other topics discussed include a distribution management system, substation feeder, and customer functions, potential benefits, automation costs, planning and engineering considerations, automation trends, databases, system operation, computer modeling of system, and distribution management systems
Power profiling of Cholesky and QR factorizations on distributed memory systems
Bosilca, George; Ltaief, Hatem; Dongarra, Jack
2012-01-01
with a dynamic distributed scheduler (DAGuE) to leverage distributed memory systems. We present performance results (Gflop/s) as well as the power profile (Watts) of two common dense factorizations needed to solve linear systems of equations, namely
The use of linear programming in optimization of HDR implant dose distributions
International Nuclear Information System (INIS)
Jozsef, Gabor; Streeter, Oscar E.; Astrahan, Melvin A.
2003-01-01
The introduction of high dose rate brachytherapy enabled optimization of dose distributions to be used on a routine basis. The objective of optimization is to homogenize the dose distribution within the implant while simultaneously satisfying dose constraints on certain points. This is accomplished by varying the time the source dwells at different locations. As the dose at any point is a linear function of the dwell times, a linear programming approach seems to be a natural choice. The dose constraints are inherently linear inequalities. Homogeneity requirements are linearized by minimizing the maximum deviation of the doses at points inside the implant from a prescribed dose. The revised simplex method was applied for the solution of this linear programming problem. In the homogenization process the possible source locations were chosen as optimization points. To avoid the problem of the singular value of the dose at a source location from the source itself we define the 'self-contribution' as the dose at a small distance from the source. The effect of varying this distance is discussed. Test cases were optimized for planar, biplanar and cylindrical implants. A semi-irregular, fan-like implant with diverging needles was also investigated. Mean central dose calculation based on 3D Delaunay-triangulation of the source locations was used to evaluate the dose distributions. The optimization method resulted in homogeneous distributions (for brachytherapy). Additional dose constraints--when applied--were satisfied. The method is flexible enough to include other linear constraints such as the inclusion of the centroids of the Delaunay-triangulation for homogenization, or limiting the maximum allowable dwell time
On the stability of non-linear systems
International Nuclear Information System (INIS)
Guelman, M.
1968-09-01
A study is made of the absolute stability of nonlinear systems, using Liapounov's second method and taking into account the results obtained from V.M. Popov's work. The results already established are first presented, in particular concerning the frequency domain criterions for absolute stability of automatic control systems containing one single non linearity. The results have been extended to show the existence of a limiting parabola. New use is then made of the methods studied for deriving absolute stability criterions for a system containing a different type of non linearity. Finally, the results obtained are considered from the point of view of Aizerman's conjecture. (author) [fr
Applications of equivalent linearization approaches to nonlinear piping systems
International Nuclear Information System (INIS)
Park, Y.; Hofmayer, C.; Chokshi, N.
1997-01-01
The piping systems in nuclear power plants, even with conventional snubber supports, are highly complex nonlinear structures under severe earthquake loadings mainly due to various mechanical gaps in support structures. Some type of nonlinear analysis is necessary to accurately predict the piping responses under earthquake loadings. The application of equivalent linearization approaches (ELA) to seismic analyses of nonlinear piping systems is presented. Two types of ELA's are studied; i.e., one based on the response spectrum method and the other based on the linear random vibration theory. The test results of main steam and feedwater piping systems supported by snubbers and energy absorbers are used to evaluate the numerical accuracy and limitations
Distributed Persistent Identifiers System Design
Directory of Open Access Journals (Sweden)
Pavel Golodoniuc
2017-06-01
Full Text Available The need to identify both digital and physical objects is ubiquitous in our society. Past and present persistent identifier (PID systems, of which there is a great variety in terms of technical and social implementation, have evolved with the advent of the Internet, which has allowed for globally unique and globally resolvable identifiers. PID systems have, by in large, catered for identifier uniqueness, integrity, and persistence, regardless of the identifier’s application domain. Trustworthiness of these systems has been measured by the criteria first defined by Bütikofer (2009 and further elaborated by Golodoniuc 'et al'. (2016 and Car 'et al'. (2017. Since many PID systems have been largely conceived and developed by a single organisation they faced challenges for widespread adoption and, most importantly, the ability to survive change of technology. We believe that a cause of PID systems that were once successful fading away is the centralisation of support infrastructure – both organisational and computing and data storage systems. In this paper, we propose a PID system design that implements the pillars of a trustworthy system – ensuring identifiers’ independence of any particular technology or organisation, implementation of core PID system functions, separation from data delivery, and enabling the system to adapt for future change. We propose decentralisation at all levels — persistent identifiers and information objects registration, resolution, and data delivery — using Distributed Hash Tables and traditional peer-to-peer networks with information replication and caching mechanisms, thus eliminating the need for a central PID data store. This will increase overall system fault tolerance thus ensuring its trustworthiness. We also discuss important aspects of the distributed system’s governance, such as the notion of the authoritative source and data integrity
State space and input-output linear systems
Delchamps, David F
1988-01-01
It is difficult for me to forget the mild sense of betrayal I felt some ten years ago when I discovered, with considerable dismay, that my two favorite books on linear system theory - Desoer's Notes for a Second Course on Linear Systems and Brockett's Finite Dimensional Linear Systems - were both out of print. Since that time, of course, linear system theory has undergone a transformation of the sort which always attends the maturation of a theory whose range of applicability is expanding in a fashion governed by technological developments and by the rate at which such advances become a part of engineering practice. The growth of the field has inspired the publication of some excellent books; the encyclopedic treatises by Kailath and Chen, in particular, come immediately to mind. Nonetheless, I was inspired to write this book primarily by my practical needs as a teacher and researcher in the field. For the past five years, I have taught a one semester first year gradu ate level linear system theory course i...
Unification of three linear models for the transient visual system
Brinker, den A.C.
1989-01-01
Three different linear filters are considered as a model describing the experimentally determined triphasic impulse responses of discs. These impulse responses arc associated with the transient visual system. Each model reveals a different feature of the system. Unification of the models is
Punctuated equilibrium in a non-linear system of action
J.S. Timmermans (Jos)
2008-01-01
textabstractColeman's equilibrium model of social development, the Linear System of Action, is extended to cover the dynamics of societal transitions. The model implemented has the characteristics of a dissipative system. A variation and selection algorithm favoring the retention of relatively
Lag synchronization of chaotic systems with time-delayed linear
Indian Academy of Sciences (India)
In this paper, the lag synchronization of chaotic systems with time-delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differential equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic systems.
INPUT-OUTPUT STRUCTURE OF LINEAR-DIFFERENTIAL ALGEBRAIC SYSTEMS
KUIJPER, M; SCHUMACHER, JM
Systems of linear differential and algebraic equations occur in various ways, for instance, as a result of automated modeling procedures and in problems involving algebraic constraints, such as zero dynamics and exact model matching. Differential/algebraic systems may represent an input-output
Frequency Interval Cross Gramians for Linear and Bilinear Systems
DEFF Research Database (Denmark)
Jazlan, Ahmad; Sreeram, Victor; Shaker, Hamid Reza
2017-01-01
In many control engineering problems, it is desired to analyze the systems at particular frequency intervals of interest. This paper focuses on the development of frequency interval cross gramians for both linear and bilinear systems. New generalized Sylvester equations for calculating the freque...
Switching control of linear systems for generating chaos
International Nuclear Information System (INIS)
Liu Xinzhi; Teo, Kok-Lay; Zhang Hongtao; Chen Guanrong
2006-01-01
In this paper, a new switching method is developed, which can be applied to generating different types of chaos or chaos-like dynamics from two or more linear systems. A numerical simulation is given to illustrate the generated chaotic dynamic behavior of the systems with some variable parameters. Finally, a circuit is built to realize various chaotic dynamical behaviors
New approach to solve symmetric fully fuzzy linear systems
Indian Academy of Sciences (India)
In this paper, we present a method to solve fully fuzzy linear systems with symmetric coefﬁcient matrix. The symmetric coefﬁcient matrix is decomposed into two systems of equations by using Cholesky method and then a solution can be obtained. Numerical examples are given to illustrate our method.
Criteria for stability of linear dynamical systems with multiple delays ...
African Journals Online (AJOL)
In this study we considered a linear Dynamical system with multiple delays and find suitable conditions on the systems parameters such that for a given initial function, we can define a mapping in a carefully chosen complete metric space on which the mapping has a unique fixed point. An asymptotic stability theory for the ...
A data-acquisition system for high speed linear CCD
International Nuclear Information System (INIS)
Liu Zhiyan; Chen Xiangcai; Jiang Xiaoshan; Zhang Hongyu; Liang Zhongwang; Xiang Haisheng; Hu Jun
2010-01-01
A data-acquisition system for high speed linear CCD (Charge Coupled device) is mainly introduced. The optical fiber transmission technology is used. The data is sent to PC through USB or PCI interface. The construction of the system, the design of the PCI interface hardware, software design and the design of the control program running on host computer are also introduced. (authors)
Partial Synchronization Manifolds for Linearly Time-Delay Coupled Systems
Steur, Erik; van Leeuwen, Cees; Michiels, Wim
2014-01-01
Sometimes a network of dynamical systems shows a form of incomplete synchronization characterized by synchronization of some but not all of its systems. This type of incomplete synchronization is called partial synchronization. Partial synchronization is associated with the existence of partial synchronization manifolds, which are linear invariant subspaces of C, the state space of the network of systems. We focus on partial synchronization manifolds in networks of system...
Distributed hierarchical radiation monitoring system
International Nuclear Information System (INIS)
Barak, D.
1985-01-01
A solution to the problem of monitoring the radiation levels in and around a nuclear facility is presented in this paper. This is a private case of a large scale general purpose data acqisition system with high reliability, availability and short maintenance time. The physical layout of the detectors in the plant, and the strict control demands dictated a distributed and hierarchical system. The system is comprised of three levels, each level contains modules. Level one contains the Control modules which collects data from groups of detectors and executes emergency local control tasks. In level two are the Group controllers which concentrate data from the Control modules, and enable local display and communication. The system computer is in level three, enabling the plant operator to receive information from the detectors and execute control tasks. The described system was built and is operating successfully for about two years. (author)
The linear sizes tolerances and fits system modernization
Glukhov, V. I.; Grinevich, V. A.; Shalay, V. V.
2018-04-01
The study is carried out on the urgent topic for technical products quality providing in the tolerancing process of the component parts. The aim of the paper is to develop alternatives for improving the system linear sizes tolerances and dimensional fits in the international standard ISO 286-1. The tasks of the work are, firstly, to classify as linear sizes the elements additionally linear coordinating sizes that determine the detail elements location and, secondly, to justify the basic deviation of the tolerance interval for the element's linear size. The geometrical modeling method of real details elements, the analytical and experimental methods are used in the research. It is shown that the linear coordinates are the dimensional basis of the elements linear sizes. To standardize the accuracy of linear coordinating sizes in all accuracy classes, it is sufficient to select in the standardized tolerance system only one tolerance interval with symmetrical deviations: Js for internal dimensional elements (holes) and js for external elements (shafts). The main deviation of this coordinating tolerance is the average zero deviation, which coincides with the nominal value of the coordinating size. Other intervals of the tolerance system are remained for normalizing the accuracy of the elements linear sizes with a fundamental change in the basic deviation of all tolerance intervals is the maximum deviation corresponding to the limit of the element material: EI is the lower tolerance for the of the internal elements (holes) sizes and es is the upper tolerance deviation for the outer elements (shafts) sizes. It is the sizes of the material maximum that are involved in the of the dimensional elements mating of the shafts and holes and determine the fits type.
Damped oscillations of linear systems a mathematical introduction
Veselić, Krešimir
2011-01-01
The theory of linear damped oscillations was originally developed more than hundred years ago and is still of vital research interest to engineers, mathematicians and physicists alike. This theory plays a central role in explaining the stability of mechanical structures in civil engineering, but it also has applications in other fields such as electrical network systems and quantum mechanics. This volume gives an introduction to linear finite dimensional damped systems as they are viewed by an applied mathematician. After a short overview of the physical principles leading to the linear system model, a largely self-contained mathematical theory for this model is presented. This includes the geometry of the underlying indefinite metric space, spectral theory of J-symmetric matrices and the associated quadratic eigenvalue problem. Particular attention is paid to the sensitivity issues which influence numerical computations. Finally, several recent research developments are included, e.g. Lyapunov stability and ...
Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems
Antown, Fadi; Dragičević, Davor; Froyland, Gary
2018-03-01
The linear response of a dynamical system refers to changes to properties of the system when small external perturbations are applied. We consider the little-studied question of selecting an optimal perturbation so as to (i) maximise the linear response of the equilibrium distribution of the system, (ii) maximise the linear response of the expectation of a specified observable, and (iii) maximise the linear response of the rate of convergence of the system to the equilibrium distribution. We also consider the inhomogeneous, sequential, or time-dependent situation where the governing dynamics is not stationary and one wishes to select a sequence of small perturbations so as to maximise the overall linear response at some terminal time. We develop the theory for finite-state Markov chains, provide explicit solutions for some illustrative examples, and numerically apply our theory to stochastically perturbed dynamical systems, where the Markov chain is replaced by a matrix representation of an approximate annealed transfer operator for the random dynamical system.
Pang, Yu; Zhang, Kunning; Yang, Zhen; Jiang, Song; Ju, Zhenyi; Li, Yuxing; Wang, Xuefeng; Wang, Danyang; Jian, Muqiang; Zhang, Yingying; Liang, Renrong; Tian, He; Yang, Yi; Ren, Tian-Ling
2018-03-27
Recently, wearable pressure sensors have attracted tremendous attention because of their potential applications in monitoring physiological signals for human healthcare. Sensitivity and linearity are the two most essential parameters for pressure sensors. Although various designed micro/nanostructure morphologies have been introduced, the trade-off between sensitivity and linearity has not been well balanced. Human skin, which contains force receptors in a reticular layer, has a high sensitivity even for large external stimuli. Herein, inspired by the skin epidermis with high-performance force sensing, we have proposed a special surface morphology with spinosum microstructure of random distribution via the combination of an abrasive paper template and reduced graphene oxide. The sensitivity of the graphene pressure sensor with random distribution spinosum (RDS) microstructure is as high as 25.1 kPa -1 in a wide linearity range of 0-2.6 kPa. Our pressure sensor exhibits superior comprehensive properties compared with previous surface-modified pressure sensors. According to simulation and mechanism analyses, the spinosum microstructure and random distribution contribute to the high sensitivity and large linearity range, respectively. In addition, the pressure sensor shows promising potential in detecting human physiological signals, such as heartbeat, respiration, phonation, and human motions of a pushup, arm bending, and walking. The wearable pressure sensor array was further used to detect gait states of supination, neutral, and pronation. The RDS microstructure provides an alternative strategy to improve the performance of pressure sensors and extend their potential applications in monitoring human activities.
DEFF Research Database (Denmark)
Bajric, Anela
A single mass Bouc-Wen oscillator with linear static restoring force contribution is approximated by an equivalent linear system. The aim of the linearized model is to emulate the correct force-displacement response of the Bouc-Wenmodel with characteristic hysteretic behaviour. The linearized mod...
The ATLAS Distributed Analysis System
Legger, F; The ATLAS collaboration; Pacheco Pages, A; Stradling, A
2013-01-01
In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high but steadily improving; grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters ...
The ATLAS Distributed Analysis System
Legger, F; The ATLAS collaboration
2014-01-01
In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high but steadily improving; grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters ...
Linearly and nonlinearly bidirectionally coupled synchronization of hyperchaotic systems
International Nuclear Information System (INIS)
Zhou Jin; Lu Junan; Wu Xiaoqun
2007-01-01
To date, there have been many results about unidirectionally coupled synchronization of chaotic systems. However, much less work is reported on bidirectionally-coupled synchronization. In this paper, we investigate the synchronization of two bidirectionally coupled Chen hyperchaotic systems, which are coupled linearly and nonlinearly respectively. Firstly, linearly coupled synchronization of two hyperchaotic Chen systems is investigated, and a theorem on how to choose the coupling coefficients are developed to guarantee the global asymptotical synchronization of two coupled hyperchaotic systems. Analysis shows that the choice of the coupling coefficients relies on the bound of the chaotic system. Secondly, the nonlinearly coupled synchronization is studied; a sufficient condition for the locally asymptotical synchronization is derived, which is independent of the bound of the hyperchaotic system. Finally, numerical simulations are included to verify the effectiveness and feasibility of the developed theorems
Linear dynamical quantum systems analysis, synthesis, and control
Nurdin, Hendra I
2017-01-01
This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...
Distributed optimal coordination for distributed energy resources in power systems
DEFF Research Database (Denmark)
Wu, Di; Yang, Tao; Stoorvogel, A.
2017-01-01
Driven by smart grid technologies, distributed energy resources (DERs) have been rapidly developing in recent years for improving reliability and efficiency of distribution systems. Emerging DERs require effective and efficient coordination in order to reap their potential benefits. In this paper......, we consider an optimal DER coordination problem over multiple time periods subject to constraints at both system and device levels. Fully distributed algorithms are proposed to dynamically and automatically coordinate distributed generators with multiple/single storages. With the proposed algorithms...
Nonautonomous linear system of the terrestrial carbon cycle
Luo, Y.
2012-12-01
Carbon cycle has been studied by uses of observation through various networks, field and laboratory experiments, and simulation models. Much less has been done on theoretical thinking and analysis to understand fundament properties of carbon cycle and then guide observatory, experimental, and modeling research. This presentation is to explore what would be the theoretical properties of terrestrial carbon cycle and how those properties can be used to make observatory, experimental, and modeling research more effective. Thousands of published data sets from litter decomposition and soil incubation studies almost all indicate that decay processes of litter and soil organic carbon can be well described by first order differential equations with one or more pools. Carbon pool dynamics in plants and soil after disturbances (e.g., wildfire, clear-cut of forests, and plows of soil for cropping) and during natural recovery or ecosystem restoration also exhibit characteristics of first-order linear systems. Thus, numerous lines of empirical evidence indicate that the terrestrial carbon cycle can be adequately described as a nonautonomous linear system. The linearity reflects the nature of the carbon cycle that carbon, once fixed by photosynthesis, is linearly transferred among pools within an ecosystem. The linear carbon transfer, however, is modified by nonlinear functions of external forcing variables. In addition, photosynthetic carbon influx is also nonlinearly influenced by external variables. This nonautonomous linear system can be mathematically expressed by a first-order linear ordinary matrix equation. We have recently used this theoretical property of terrestrial carbon cycle to develop a semi-analytic solution of spinup. The new methods have been applied to five global land models, including NCAR's CLM and CABLE models and can computationally accelerate spinup by two orders of magnitude. We also use this theoretical property to develop an analytic framework to
Refined Fuchs inequalities for systems of linear differential equations
International Nuclear Information System (INIS)
Gontsov, R R
2004-01-01
We refine the Fuchs inequalities obtained by Corel for systems of linear meromorphic differential equations given on the Riemann sphere. Fuchs inequalities enable one to estimate the sum of exponents of the system over all its singular points. We refine these well-known inequalities by considering the Jordan structure of the leading coefficient of the Laurent series for the matrix of the right-hand side of the system in the neighbourhood of a singular point
The graphics software of the Saclay linear accelerator control system
International Nuclear Information System (INIS)
Gournay, J.F.
1987-06-01
The Control system of the Saclay Linear Accelerator is based upon modern technology hardware. In the graphic software, pictures are created in exactly the same manner for all the graphic devices supported by the system. The informations used to draw a picture are stored in an array called a graphic segment. Three output primitives are used to add graphic material in a segment. Three coordinate systems are defined
Chaos synchronization of a unified chaotic system via partial linearization
International Nuclear Information System (INIS)
Yu Yongguang; Li Hanxiong; Duan Jian
2009-01-01
A partial linearization method is proposed for realizing the chaos synchronization of an unified chaotic system. Through synchronizing partial state of the chaotic systems can result in the synchronization of their entire states, and the resulting controller is singularity free. The results can be easily extended to the synchronization of other similar chaotic systems. Simulation results are conducted to show the effectiveness of the method.
Small Aircraft Data Distribution System
Chazanoff, Seth L.; Dinardo, Steven J.
2012-01-01
The CARVE Small Aircraft Data Distribution System acquires the aircraft location and attitude data that is required by the various programs running on a distributed network. This system distributes the data it acquires to the data acquisition programs for inclusion in their data files. It uses UDP (User Datagram Protocol) to broadcast data over a LAN (Local Area Network) to any programs that might have a use for the data. The program is easily adaptable to acquire additional data and log that data to disk. The current version also drives displays using precision pitch and roll information to aid the pilot in maintaining a level-level attitude for radar/radiometer mapping beyond the degree available by flying visually or using a standard gyro-driven attitude indicator. The software is designed to acquire an array of data to help the mission manager make real-time decisions as to the effectiveness of the flight. This data is displayed for the mission manager and broadcast to the other experiments on the aircraft for inclusion in their data files. The program also drives real-time precision pitch and roll displays for the pilot and copilot to aid them in maintaining the desired attitude, when required, during data acquisition on mapping lines.
Experimental quantum computing to solve systems of linear equations.
Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei
2013-06-07
Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.
Periodic solutions of asymptotically linear Hamiltonian systems without twist conditions
Energy Technology Data Exchange (ETDEWEB)
Cheng Rong [Coll. of Mathematics and Physics, Nanjing Univ. of Information Science and Tech., Nanjing (China); Dept. of Mathematics, Southeast Univ., Nanjing (China); Zhang Dongfeng [Dept. of Mathematics, Southeast Univ., Nanjing (China)
2010-05-15
In dynamical system theory, especially in many fields of applications from mechanics, Hamiltonian systems play an important role, since many related equations in mechanics can be written in an Hamiltonian form. In this paper, we study the existence of periodic solutions for a class of Hamiltonian systems. By applying the Galerkin approximation method together with a result of critical point theory, we establish the existence of periodic solutions of asymptotically linear Hamiltonian systems without twist conditions. Twist conditions play crucial roles in the study of periodic solutions for asymptotically linear Hamiltonian systems. The lack of twist conditions brings some difficulty to the study. To the authors' knowledge, very little is known about the case, where twist conditions do not hold. (orig.)
Theoretical analysis of balanced truncation for linear switched systems
DEFF Research Database (Denmark)
Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef
2012-01-01
In this paper we present theoretical analysis of model reduction of linear switched systems based on balanced truncation, presented in [1,2]. More precisely, (1) we provide a bound on the estimation error using L2 gain, (2) we provide a system theoretic interpretation of grammians and their singu......In this paper we present theoretical analysis of model reduction of linear switched systems based on balanced truncation, presented in [1,2]. More precisely, (1) we provide a bound on the estimation error using L2 gain, (2) we provide a system theoretic interpretation of grammians...... for showing this independence is realization theory of linear switched systems. [1] H. R. Shaker and R. Wisniewski, "Generalized gramian framework for model/controller order reduction of switched systems", International Journal of Systems Science, Vol. 42, Issue 8, 2011, 1277-1291. [2] H. R. Shaker and R....... Wisniewski, "Switched Systems Reduction Framework Based on Convex Combination of Generalized Gramians", Journal of Control Science and Engineering, 2009....
Linear-constraint wavefront control for exoplanet coronagraphic imaging systems
Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean
2017-01-01
A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.
Directory of Open Access Journals (Sweden)
M. S. MANNA
2011-12-01
Full Text Available The development of electromagnetic devices as machines, transformers, heating devices confronts the engineers with several problems. For the design of an optimized geometry and the prediction of the operational behaviour an accurate knowledge of the dependencies of the field quantities inside the magnetic circuits is necessary. This paper provides the eddy current and core flux density distribution analysis in linear induction motor. Magnetic flux in the air gap of the Linear Induction Motor (LIM is reduced to various losses such as end effects, fringes, effect, skin effects etc. The finite element based software package COMSOL Multiphysics Inc. USA is used to get the reliable and accurate computational results for optimization the performance of Linear Induction Motor (LIM. The geometrical characteristics of LIM are varied to find the optimal point of thrust and minimum flux leakage during static and dynamic conditions.
Electron linear accelerator system for natural rubber vulcanization
Rimjaem, S.; Kongmon, E.; Rhodes, M. W.; Saisut, J.; Thongbai, C.
2017-09-01
Development of an electron accelerator system, beam diagnostic instruments, an irradiation apparatus and electron beam processing methodology for natural rubber vulcanization is underway at the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The project is carried out with the aims to improve the qualities of natural rubber products. The system consists of a DC thermionic electron gun, 5-cell standing-wave radio-frequency (RF) linear accelerator (linac) with side-coupling cavities and an electron beam irradiation apparatus. This system is used to produce electron beams with an adjustable energy between 0.5 and 4 MeV and a pulse current of 10-100 mA at a pulse repetition rate of 20-400 Hz. An average absorbed dose between 160 and 640 Gy is expected to be archived for 4 MeV electron beam when the accelerator is operated at 400 Hz. The research activities focus firstly on assembling of the accelerator system, study on accelerator properties and electron beam dynamic simulations. The resonant frequency of the RF linac in π/2 operating mode is 2996.82 MHz for the operating temperature of 35 °C. The beam dynamic simulations were conducted by using the code ASTRA. Simulation results suggest that electron beams with an average energy of 4.002 MeV can be obtained when the linac accelerating gradient is 41.7 MV/m. The rms transverse beam size and normalized rms transverse emittance at the linac exit are 0.91 mm and 10.48 π mm·mrad, respectively. This information can then be used as the input data for Monte Carlo simulations to estimate the electron beam penetration depth and dose distribution in the natural rubber latex. The study results from this research will be used to define optimal conditions for natural rubber vulcanization with different electron beam energies and doses. This is very useful for development of future practical industrial accelerator units.
International Nuclear Information System (INIS)
Murakami, H.; Hirai, T.; Nakata, M.; Kobori, T.; Mizukoshi, K.; Takenaka, Y.; Miyagawa, N.
1989-01-01
Many of the equipment systems of nuclear power plants contain a number of non-linearities, such as gap and friction, due to their mechanical functions. It is desirable to take such non-linearities into account appropriately for the evaluation of the aseismic soundness. However, in usual design works, linear analysis method with rough assumptions is applied from engineering point of view. An equivalent linearization method is considered to be one of the effective analytical techniques to evaluate non-linear responses, provided that errors to a certain extent are tolerated, because it has greater simplicity in analysis and economization in computing time than non-linear analysis. The objective of this paper is to investigate the applicability of the equivalent linearization method to evaluate the maximum earthquake response of equipment systems such as the CANDU Fuelling Machine which has multiple non- linearities
Design techniques for large scale linear measurement systems
International Nuclear Information System (INIS)
Candy, J.V.
1979-03-01
Techniques to design measurement schemes for systems modeled by large scale linear time invariant systems, i.e., physical systems modeled by a large number (> 5) of ordinary differential equations, are described. The techniques are based on transforming the physical system model to a coordinate system facilitating the design and then transforming back to the original coordinates. An example of a three-stage, four-species, extraction column used in the reprocessing of spent nuclear fuel elements is presented. The basic ideas are briefly discussed in the case of noisy measurements. An example using a plutonium nitrate storage vessel (reprocessing) with measurement uncertainty is also presented
Decentralized linear quadratic power system stabilizers for multi ...
Indian Academy of Sciences (India)
Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not ...
Force analysis of linear induction motor for magnetic levitation system
Kuijpers, A.A.; Nemlioglu, C.; Sahin, F.; Verdel, A.J.D.; Compter, J.C.; Lomonova, E.
2010-01-01
This paper presents the analyses of thrust and normal forces of linear induction motor (LIM) segments which are implemented in a rotating ring system. To obtain magnetic levitation in a cost effective and sustainable way, decoupled control of thrust and normal forces is required. This study includes
Input design for linear dynamic systems using maxmin criteria
DEFF Research Database (Denmark)
Sadegh, Payman; Hansen, Lars H.; Madsen, Henrik
1998-01-01
This paper considers the problem of input design for maximizing the smallest eigenvalue of the information matrix for linear dynamic systems. The optimization of the smallest eigenvalue is of interest in parameter estimation and parameter change detection problems. We describe a simple cutting...
Generating Nice Linear Systems for Matrix Gaussian Elimination
Homewood, L. James
2004-01-01
In this article an augmented matrix that represents a system of linear equations is called nice if a sequence of elementary row operations that reduces the matrix to row-echelon form, through matrix Gaussian elimination, does so by restricting all entries to integers in every step. Many instructors wish to use the example of matrix Gaussian…
Robust self-triggered MPC for constrained linear systems
Brunner, F.D.; Heemels, W.P.M.H.; Allgöwer, F.
2014-01-01
In this paper we propose a robust self-triggered model predictive control algorithm for linear systems with additive bounded disturbances and hard constraints on the inputs and state. In self-triggered control, at every sampling instant the time until the next sampling instant is computed online
Stability Analysis for Multi-Parameter Linear Periodic Systems
DEFF Research Database (Denmark)
Seyranian, A.P.; Solem, Frederik; Pedersen, Pauli
1999-01-01
This paper is devoted to stability analysis of general linear periodic systems depending on real parameters. The Floquet method and perturbation technique are the basis of the development. We start out with the first and higher-order derivatives of the Floquet matrix with respect to problem...
Relative controllability and null controllability of linear delay systems ...
African Journals Online (AJOL)
Necessary and sufficient conditions are established for the relative, absolute controllability and null controllability of the generalized linear delay system and its discrete prototype. The paper presents illuminating examples on previous controllability results by Manitius and Olbrot [7] and carries over the results of Onwuatu [8] ...
Time-optimal feedback control for linear systems
International Nuclear Information System (INIS)
Mirica, S.
1976-01-01
The paper deals with the results of qualitative investigations of the time-optimal feedback control for linear systems with constant coefficients. In the first section, after some definitions and notations, two examples are given and it is shown that even the time-optimal control problem for linear systems with constant coefficients which looked like ''completely solved'' requires a further qualitative investigation of the stability to ''permanent perturbations'' of optimal feedback control. In the second section some basic results of the linear time-optimal control problem are reviewed. The third section deals with the definition of Boltyanskii's ''regular synthesis'' and its connection to Filippov's theory of right-hand side discontinuous differential equations. In the fourth section a theorem is proved concerning the stability to perturbations of time-optimal feedback control for linear systems with scalar control. In the last two sections it is proved that, if the matrix which defines the system has only real eigenvalues or is three-dimensional, the time-optimal feedback control defines a regular synthesis and therefore is stable to perturbations. (author)
Video distribution system cost model
Gershkoff, I.; Haspert, J. K.; Morgenstern, B.
1980-01-01
A cost model that can be used to systematically identify the costs of procuring and operating satellite linked communications systems is described. The user defines a network configuration by specifying the location of each participating site, the interconnection requirements, and the transmission paths available for the uplink (studio to satellite), downlink (satellite to audience), and voice talkback (between audience and studio) segments of the network. The model uses this information to calculate the least expensive signal distribution path for each participating site. Cost estimates are broken downy by capital, installation, lease, operations and maintenance. The design of the model permits flexibility in specifying network and cost structure.
Visualizing measurement for 3D smooth density distributions by means of linear programming
International Nuclear Information System (INIS)
Tayama, Norio; Yang, Xue-dong
1994-01-01
This paper is concerned with a theoretical possibility of a new visualizing measurement method based on an optimum 3D reconstruction from a few selected projections. A theory of optimum 3D reconstruction by a linear programming is discussed, utilizing a few projections for sampled 3D smooth-density-distribution model which satisfies the condition of the 3D sampling theorem. First by use of the sampling theorem, it is shown that we can set up simultaneous simple equations which corresponds to the case of the parallel beams. Then we solve the simultaneous simple equations by means of linear programming algorithm, and we can get an optimum 3D density distribution images with minimum error in the reconstruction. The results of computer simulation with the algorithm are presented. (author)
Evolution of the Argonne Tandem Linear Accelerator System (ATLAS) control system
International Nuclear Information System (INIS)
Power, M.; Munson, F.
2012-01-01
Given that the Argonne Tandem Linear Accelerator System (ATLAS) recently celebrated its 25. anniversary, this paper will explore the past, present, and future of the ATLAS Control System, and how it has evolved along with the accelerator and control system technology. ATLAS as we know it today, originated with a Tandem Van de Graff in the sixties. With the addition of the Booster section in the late seventies, came the first computerized control. ATLAS itself was placed into service on June 25, 1985, and was the world's first superconducting linear accelerator for ions. Since its dedication as a National User Facility, more than a thousand experiments by more than 2,000 users worldwide, have taken advantage of the unique capabilities it provides. Today, ATLAS continues to be a user facility for physicists who study the particles that form the heart of atoms. Its most recent addition, CARIBU (Californium Rare Isotope Breeder Upgrade), creates special beams that feed into ATLAS. ATLAS is similar to a living organism, changing and responding to new technological challenges and research needs. As it continues to evolve, so does the control system: from the original days using a DEC PDP-11/34 computer and two CAMAC crates, to a DEC Alpha computer running Vsystem software and more than twenty CAMAC crates, to distributed computers and VME systems. Future upgrades are also in the planning stages that will continue to evolve the control system. (authors)
Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco
2012-04-01
During the last years, more and more mechanical applications saw the introduction of active control strategies. In particular, the need of improving the performances and/or the system health is very often associated to vibration suppression. This goal can be achieved considering both passive and active solutions. In this sense, many active control strategies have been developed, such as the Independent Modal Space Control (IMSC) or the resonant controllers (PPF, IRC, . . .). In all these cases, in order to tune and optimize the control strategy, the knowledge of the system dynamic behaviour is very important and it can be achieved both considering a numerical model of the system or through an experimental identification process. Anyway, dealing with non-linear or time-varying systems, a tool able to online identify the system parameters becomes a key-point for the control logic synthesis. The aim of the present work is the definition of a real-time technique, based on ARMAX models, that estimates the system parameters starting from the measurements of piezoelectric sensors. These parameters are returned to the control logic, that automatically adapts itself to the system dynamics. The problem is numerically investigated considering a carbon-fiber plate model forced through a piezoelectric patch.
Observability of linear control systems on Lie groups
International Nuclear Information System (INIS)
Ayala, V.; Hacibekiroglu, A.K.
1995-01-01
In this paper, we study the observability problem for a linear control system Σ on a Lie group G. The drift vector field of Σ is an infinitesimal automorphism of G and the control vectors are elements in the Lie algebra of G. We establish algebraic conditions to characterize locally and globally observability for Σ. As in the linear case on R n , these conditions are independent of the control vector. We give an algorithm on the co-tangent bundle of G to calculate the equivalence class of the neutral element. (author). 6 refs
International Nuclear Information System (INIS)
Song, Xizi; Xu, Yanbin; Dong, Feng
2017-01-01
Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results. (paper)
Monitoring and control system of the Saclay electron linear accelerator
International Nuclear Information System (INIS)
Lafontaine, Antoine
1974-01-01
A description is given of the automatic monitoring and control system of the 60MeV electron linear accelerator of the Centre d'Etudes Nucleaires de Saclay. The paper is mostly concerned with the programmation of the system. However, in a real time device, there is a very close association between computer and electronics, the latter are therefore described in details and make up most of the paper. [fr
A new timing system for the Stanford Linear Collider
International Nuclear Information System (INIS)
Paffrath, L.; Bernstein, D.; Kang, H.; Koontz, R.; Leger, G.; Pierce, W.; Ross, M.; Wilmunder, A.
1985-01-01
In order to be able to meet the goals of the Stanford Linear Collider, a much more precise timing system had to be implemented. This paper describes the specification and design of this system, and the results obtained from its use on 1/3 of the SLAC linac. The functions of various elements are described, and a programmable delay unit (PDU) is described in detail
Hyperchaotic encryption based on multi-scroll piecewise linear Systems
Czech Academy of Sciences Publication Activity Database
García-Martínez, M.; Ontanon-García, L.J.; Campos-Cantón, E.; Čelikovský, Sergej
2015-01-01
Roč. 270, č. 1 (2015), s. 413-424 ISSN 0096-3003 R&D Projects: GA ČR GA13-20433S Institutional support: RVO:67985556 Keywords : Hyperchaotic encryption * Piecewise linear systems * Stream cipher * Pseudo-random bit generator * Chaos theory * Multi-scrollattractors Subject RIV: BC - Control Systems Theory Impact factor: 1.345, year: 2015 http://library.utia.cas.cz/separaty/2015/TR/celikovsky-0446895.pdf
Global Linear Representations of Nonlinear Systems and the Adjoint Map
Banks, S.P.
1988-01-01
In this paper we shall study the global linearization of nonlinear systems on a manifold by two methods. The first consists of an expansion of the vector field in the space of square integrable vector fields. In the second method we use the adjoint representation of the Lie algebra vector fields to obtain an infinite-dimensional matrix representation of the system. A connection between the two approaches will be developed.
Comments on new iterative methods for solving linear systems
Directory of Open Access Journals (Sweden)
Wang Ke
2017-06-01
Full Text Available Some new iterative methods were presented by Du, Zheng and Wang for solving linear systems in [3], where it is shown that the new methods, comparing to the classical Jacobi or Gauss-Seidel method, can be applied to more systems and have faster convergence. This note shows that their methods are suitable for more matrices than positive matrices which the authors suggested through further analysis and numerical examples.
A representation theorem for linear discrete-space systems
Directory of Open Access Journals (Sweden)
Sandberg Irwin W.
1998-01-01
Full Text Available The cornerstone of the theory of discrete-time single-input single-output linear systems is the idea that every such system has an input–output map H that can be represented by a convolution or the familiar generalization of a convolution. This thinking involves an oversight which is corrected in this note by adding an additional term to the representation.
A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems
Czech Academy of Sciences Publication Activity Database
Benzi, M.; Tůma, Miroslav
1998-01-01
Roč. 19, č. 3 (1998), s. 968-994 ISSN 1064-8275 R&D Projects: GA ČR GA201/93/0067; GA AV ČR IAA230401 Keywords : large sparse systems * interative methods * preconditioning * approximate inverse * sparse linear systems * sparse matrices * incomplete factorizations * conjugate gradient -type methods Subject RIV: BA - General Mathematics Impact factor: 1.378, year: 1998
Design and performance of the Stanford Linear Collider Control System
International Nuclear Information System (INIS)
Melen, R.E.
1984-10-01
The success of the Stanford Linear Collider (SLC) will be dependent upon the implementation of a very large advanced computer-based instrumentation and control system. This paper describes the architectural design of this system as well as a critique of its performance. This critique is based on experience obtained from its use in the control and monitoring of 1/3 of the SLAC linac and in support of an expensive experimental machine physics experimental program. 11 references, 3 figures
Universal Linear Precoding for NBI-Proof Widely Linear Equalization in MC Systems
Directory of Open Access Journals (Sweden)
Donatella Darsena
2007-09-01
Full Text Available In multicarrier (MC systems, transmitter redundancy, which is introduced by means of finite-impulse response (FIR linear precoders, allows for perfect or zero-forcing (ZF equalization of FIR channels (in the absence of noise. Recently, it has been shown that the noncircular or improper nature of some symbol constellations offers an intrinsic source of redundancy, which can be exploited to design efficient FIR widely-linear (WL receiving structures for MC systems operating in the presence of narrowband interference (NBI. With regard to both cyclic-prefixed and zero-padded transmission techniques, it is shown in this paper that, with appropriately designed precoders, it is possible to synthesize in both cases WL-ZF universal equalizers, which guarantee perfect symbol recovery for any FIR channel. Furthermore, it is theoretically shown that the intrinsic redundancy of the improper symbol sequence also enables WL-ZF equalization, based on the minimum mean output-energy criterion, with improved NBI suppression capabilities. Finally, results of numerical simulations are presented, which assess the merits of the proposed precoding designs and validate the theoretical analysis carried out.
Distribution system protection with communication technologies
DEFF Research Database (Denmark)
Wei, Mu; Chen, Zhe
2010-01-01
Due to the communication technologies’ involvement in the distribution power system, the time-critical protection function may be implemented more accurately, therefore distribution power systems’ stability, reliability and security could be improved. This paper presents an active distribution...
Self-Tuning Control of Linear Systems Followed by Deadzones
Directory of Open Access Journals (Sweden)
K. Kazlauskas
2014-02-01
Full Text Available The aim of the present paper is to increase the efficiency of self-tuning generalized minimum variance (GMV control of linear time-invariant (LTI systems followed by deadzone nonlinearities. An approach, based on reordering of observations to be processed for the reconstruction of an unknown internal signal that acts between LTI system and a static nonlinear block of the closed-loop Wiener system, has been developed. The results of GMV self-tuning control of the second order LTI system with an ordinary deadzone are given.
Algorithmic Approach to Abstracting Linear Systems by Timed Automata
DEFF Research Database (Denmark)
Sloth, Christoffer; Wisniewski, Rafael
2011-01-01
This paper proposes an LMI-based algorithm for abstracting dynamical systems by timed automata, which enables automatic formal verification of linear systems. The proposed abstraction is based on partitioning the state space of the system using positive invariant sets, generated by Lyapunov...... functions. This partitioning ensures that the vector field of the dynamical system is transversal to all facets of the cells, which induces some desirable properties of the abstraction. The algorithm is based on identifying intersections of level sets of quadratic Lyapunov functions, and determining...
Mean Transit Time and Mean Residence Time for Linear Diffusion–Convection–Reaction Transport System
Directory of Open Access Journals (Sweden)
Jacek Waniewski
2007-01-01
Full Text Available Characteristic times for transport processes in biological systems may be evaluated as mean transit times (MTTs (for transit states or mean residence times (MRT (for steady states. It is shown in a general framework of a (linear reaction–diffusion–convection equation that these two times are related. Analytical formulas are also derived to calculate moments of exit time distribution using solutions for a stationary state of the system.
Loss Allocation in a Distribution System with Distributed Generation Units
DEFF Research Database (Denmark)
Lund, Torsten; Nielsen, Arne Hejde; Sørensen, Poul Ejnar
2007-01-01
In Denmark, a large part of the electricity is produced by wind turbines and combined heat and power plants (CHPs). Most of them are connected to the network through distribution systems. This paper presents a new algorithm for allocation of the losses in a distribution system with distributed...... generation. The algorithm is based on a reduced impedance matrix of the network and current injections from loads and production units. With the algorithm, the effect of the covariance between production and consumption can be evaluated. To verify the theoretical results, a model of the distribution system...
Focal points and principal solutions of linear Hamiltonian systems revisited
Šepitka, Peter; Šimon Hilscher, Roman
2018-05-01
In this paper we present a novel view on the principal (and antiprincipal) solutions of linear Hamiltonian systems, as well as on the focal points of their conjoined bases. We present a new and unified theory of principal (and antiprincipal) solutions at a finite point and at infinity, and apply it to obtain new representation of the multiplicities of right and left proper focal points of conjoined bases. We show that these multiplicities can be characterized by the abnormality of the system in a neighborhood of the given point and by the rank of the associated T-matrix from the theory of principal (and antiprincipal) solutions. We also derive some additional important results concerning the representation of T-matrices and associated normalized conjoined bases. The results in this paper are new even for completely controllable linear Hamiltonian systems. We also discuss other potential applications of our main results, in particular in the singular Sturmian theory.
Fundamentals of linear systems for physical scientists and engineers
Puri, N N
2009-01-01
Thanks to the advent of inexpensive computing, it is possible to analyze, compute, and develop results that were unthinkable in the '60s. Control systems, telecommunications, robotics, speech, vision, and digital signal processing are but a few examples of computing applications. While there are many excellent resources available that focus on one or two topics, few books cover most of the mathematical techniques required for a broader range of applications. Fundamentals of Linear Systems for Physical Scientists and Engineers is such a resource. The book draws from diverse areas of engineering and the physical sciences to cover the fundamentals of linear systems. Assuming no prior knowledge of complex mathematics on the part of the reader, the author uses his nearly 50 years of teaching experience to address all of the necessary mathematical techniques. Original proofs, hundreds of examples, and proven theorems illustrate and clarify the material. An extensive table provides Lyapunov functions for differentia...
Computer Based Dose Control System on Linear Accelerator
International Nuclear Information System (INIS)
Taxwim; Djoko-SP; Widi-Setiawan; Agus-Budi Wiyatna
2000-01-01
The accelerator technology has been used for radio therapy. DokterKaryadi Hospital in Semarang use electron or X-ray linear accelerator (Linac)for cancer therapy. One of the control parameter of linear accelerator isdose rate. It is particle current or amount of photon rate to the target. Thecontrol of dose rate in linac have been done by adjusting repetition rate ofanode pulse train of electron source. Presently the control is stillproportional control. To enhance the quality of the control result (minimalstationer error, velocity and stability), the dose control system has beendesigned by using the PID (Proportional Integral Differential) controlalgorithm and the derivation of transfer function of control object.Implementation of PID algorithm control system is done by giving an input ofdose error (the different between output dose and dose rate set point). Theoutput of control system is used for correction of repetition rate set pointfrom pulse train of electron source anode. (author)
Linear and nonlinear dynamic systems in financial time series prediction
Directory of Open Access Journals (Sweden)
Salim Lahmiri
2012-10-01
Full Text Available Autoregressive moving average (ARMA process and dynamic neural networks namely the nonlinear autoregressive moving average with exogenous inputs (NARX are compared by evaluating their ability to predict financial time series; for instance the S&P500 returns. Two classes of ARMA are considered. The first one is the standard ARMA model which is a linear static system. The second one uses Kalman filter (KF to estimate and predict ARMA coefficients. This model is a linear dynamic system. The forecasting ability of each system is evaluated by means of mean absolute error (MAE and mean absolute deviation (MAD statistics. Simulation results indicate that the ARMA-KF system performs better than the standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may suggest that the linear component found in the S&P500 return series is more dominant than the nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process provides an effective system for S&P500 time series prediction.
Galerkin projection methods for solving multiple related linear systems
Energy Technology Data Exchange (ETDEWEB)
Chan, T.F.; Ng, M.; Wan, W.L.
1996-12-31
We consider using Galerkin projection methods for solving multiple related linear systems A{sup (i)}x{sup (i)} = b{sup (i)} for 1 {le} i {le} s, where A{sup (i)} and b{sup (i)} are different in general. We start with the special case where A{sup (i)} = A and A is symmetric positive definite. The method generates a Krylov subspace from a set of direction vectors obtained by solving one of the systems, called the seed system, by the CG method and then projects the residuals of other systems orthogonally onto the generated Krylov subspace to get the approximate solutions. The whole process is repeated with another unsolved system as a seed until all the systems are solved. We observe in practice a super-convergence behaviour of the CG process of the seed system when compared with the usual CG process. We also observe that only a small number of restarts is required to solve all the systems if the right-hand sides are close to each other. These two features together make the method particularly effective. In this talk, we give theoretical proof to justify these observations. Furthermore, we combine the advantages of this method and the block CG method and propose a block extension of this single seed method. The above procedure can actually be modified for solving multiple linear systems A{sup (i)}x{sup (i)} = b{sup (i)}, where A{sup (i)} are now different. We can also extend the previous analytical results to this more general case. Applications of this method to multiple related linear systems arising from image restoration and recursive least squares computations are considered as examples.
Siragusa, Enrico; Haiminen, Niina; Utro, Filippo; Parida, Laxmi
2017-10-09
Computer simulations can be used to study population genetic methods, models and parameters, as well as to predict potential outcomes. For example, in plant populations, predicting the outcome of breeding operations can be studied using simulations. In-silico construction of populations with pre-specified characteristics is an important task in breeding optimization and other population genetic studies. We present two linear time Simulation using Best-fit Algorithms (SimBA) for two classes of problems where each co-fits two distributions: SimBA-LD fits linkage disequilibrium and minimum allele frequency distributions, while SimBA-hap fits founder-haplotype and polyploid allele dosage distributions. An incremental gap-filling version of previously introduced SimBA-LD is here demonstrated to accurately fit the target distributions, allowing efficient large scale simulations. SimBA-hap accuracy and efficiency is demonstrated by simulating tetraploid populations with varying numbers of founder haplotypes, we evaluate both a linear time greedy algoritm and an optimal solution based on mixed-integer programming. SimBA is available on http://researcher.watson.ibm.com/project/5669.
Quantum distribution function of nonequilibrium system
International Nuclear Information System (INIS)
Sogo, Kiyoshi; Fujimoto, Yasushi.
1990-03-01
A path integral representation is derived for the Wigner distribution function of a nonequilibrium system coupled with heat bath. Under appropriate conditions, the Wigner distribution function approaches an equilibrium distribution, which manifests shifting and broadening of spectral lines due to the interaction with heat bath. It is shown that the equilibrium distribution becomes the quantum canonical distribution in the vanishing coupling constant limit. (author)
Electric Power Distribution System Model Simplification Using Segment Substitution
Energy Technology Data Exchange (ETDEWEB)
Reiman, Andrew P.; McDermott, Thomas E.; Akcakaya, Murat; Reed, Gregory F.
2018-05-01
Quasi-static time-series (QSTS) simulation is used to simulate the behavior of distribution systems over long periods of time (typically hours to years). The technique involves repeatedly solving the load-flow problem for a distribution system model and is useful for distributed energy resource (DER) planning. When a QSTS simulation has a small time step and a long duration, the computational burden of the simulation can be a barrier to integration into utility workflows. One way to relieve the computational burden is to simplify the system model. The segment substitution method of simplifying distribution system models introduced in this paper offers model bus reduction of up to 98% with a simplification error as low as 0.2% (0.002 pu voltage). In contrast to existing methods of distribution system model simplification, which rely on topological inspection and linearization, the segment substitution method uses black-box segment data and an assumed simplified topology.
Electric Power Distribution System Model Simplification Using Segment Substitution
International Nuclear Information System (INIS)
Reiman, Andrew P.; McDermott, Thomas E.; Akcakaya, Murat; Reed, Gregory F.
2017-01-01
Quasi-static time-series (QSTS) simulation is used to simulate the behavior of distribution systems over long periods of time (typically hours to years). The technique involves repeatedly solving the load-flow problem for a distribution system model and is useful for distributed energy resource (DER) planning. When a QSTS simulation has a small time step and a long duration, the computational burden of the simulation can be a barrier to integration into utility workflows. One way to relieve the computational burden is to simplify the system model. The segment substitution method of simplifying distribution system models introduced in this paper offers model bus reduction of up to 98% with a simplification error as low as 0.2% (0.002 pu voltage). Finally, in contrast to existing methods of distribution system model simplification, which rely on topological inspection and linearization, the segment substitution method uses black-box segment data and an assumed simplified topology.
Directory of Open Access Journals (Sweden)
Athanasios D. Karageorgos
2009-01-01
Full Text Available In many applications, and generally speaking in many dynamical differential systems, the problem of transferring the initial state of the system to a desired state in (almost zero-time time is desirable but difficult to achieve. Theoretically, this can be achieved by using a linear combination of Dirac -function and its derivatives. Obviously, such an input is physically unrealizable. However, we can think of it approximately as a combination of small pulses of very high magnitude and infinitely small duration. In this paper, the approximation process of the distributional behaviour of higher-order linear descriptor (regular differential systems is presented. Thus, new analytical formulae based on linear algebra methods and generalized inverses theory are provided. Our approach is quite general and some significant conditions are derived. Finally, a numerical example is presented and discussed.
A Linear Algebra Framework for Static High Performance Fortran Code Distribution
Directory of Open Access Journals (Sweden)
Corinne Ancourt
1997-01-01
Full Text Available High Performance Fortran (HPF was developed to support data parallel programming for single-instruction multiple-data (SIMD and multiple-instruction multiple-data (MIMD machines with distributed memory. The programmer is provided a familiar uniform logical address space and specifies the data distribution by directives. The compiler then exploits these directives to allocate arrays in the local memories, to assign computations to elementary processors, and to migrate data between processors when required. We show here that linear algebra is a powerful framework to encode HPF directives and to synthesize distributed code with space-efficient array allocation, tight loop bounds, and vectorized communications for INDEPENDENT loops. The generated code includes traditional optimizations such as guard elimination, message vectorization and aggregation, and overlap analysis. The systematic use of an affine framework makes it possible to prove the compilation scheme correct.
The Planetary Data System Distributed Inventory System
Hughes, J. Steven; McMahon, Susan K.
1996-01-01
The advent of the World Wide Web (Web) and the ability to easily put data repositories on-line has resulted in a proliferation of digital libraries. The heterogeneity of the underlying systems, the autonomy of the individual sites, and distributed nature of the technology has made both interoperability across the sites and the search for resources within a site major research topics. This article will describe a system that addresses both issues using standard Web protocols and meta-data labels to implement an inventory of on-line resources across a group of sites. The success of this system is strongly dependent on the existence of and adherence to a standards architecture that guides the management of meta-data within participating sites.
Energy Management of Smart Distribution Systems
Ansari, Bananeh
Electric power distribution systems interface the end-users of electricity with the power grid. Traditional distribution systems are operated in a centralized fashion with the distribution system owner or operator being the only decision maker. The management and control architecture of distribution systems needs to gradually transform to accommodate the emerging smart grid technologies, distributed energy resources, and active electricity end-users or prosumers. The content of this document concerns with developing multi-task multi-objective energy management schemes for: 1) commercial/large residential prosumers, and 2) distribution system operator of a smart distribution system. The first part of this document describes a method of distributed energy management of multiple commercial/ large residential prosumers. These prosumers not only consume electricity, but also generate electricity using their roof-top solar photovoltaics systems. When photovoltaics generation is larger than local consumption, excess electricity will be fed into the distribution system, creating a voltage rise along the feeder. Distribution system operator cannot tolerate a significant voltage rise. ES can help the prosumers manage their electricity exchanges with the distribution system such that minimal voltage fluctuation occurs. The proposed distributed energy management scheme sizes and schedules each prosumer's ES to reduce the electricity bill and mitigate voltage rise along the feeder. The second part of this document focuses on emergency energy management and resilience assessment of a distribution system. The developed emergency energy management system uses available resources and redundancy to restore the distribution system's functionality fully or partially. The success of the restoration maneuver depends on how resilient the distribution system is. Engineering resilience terminology is used to evaluate the resilience of distribution system. The proposed emergency energy
An extended GS method for dense linear systems
Niki, Hiroshi; Kohno, Toshiyuki; Abe, Kuniyoshi
2009-09-01
Davey and Rosindale [K. Davey, I. Rosindale, An iterative solution scheme for systems of boundary element equations, Internat. J. Numer. Methods Engrg. 37 (1994) 1399-1411] derived the GSOR method, which uses an upper triangular matrix [Omega] in order to solve dense linear systems. By applying functional analysis, the authors presented an expression for the optimum [Omega]. Moreover, Davey and Bounds [K. Davey, S. Bounds, A generalized SOR method for dense linear systems of boundary element equations, SIAM J. Comput. 19 (1998) 953-967] also introduced further interesting results. In this note, we employ a matrix analysis approach to investigate these schemes, and derive theorems that compare these schemes with existing preconditioners for dense linear systems. We show that the convergence rate of the Gauss-Seidel method with preconditioner PG is superior to that of the GSOR method. Moreover, we define some splittings associated with the iterative schemes. Some numerical examples are reported to confirm the theoretical analysis. We show that the EGS method with preconditioner produces an extremely small spectral radius in comparison with the other schemes considered.
Essential uncontrollability of discrete linear, time-invariant, dynamical systems
Cliff, E. M.
1975-01-01
The concept of a 'best approximating m-dimensional subspace' for a given set of vectors in n-dimensional whole space is introduced. Such a subspace is easily described in terms of the eigenvectors of an associated Gram matrix. This technique is used to approximate an achievable set for a discrete linear time-invariant dynamical system. This approximation characterizes the part of the state space that may be reached using modest levels of control. If the achievable set can be closely approximated by a proper subspace of the whole space then the system is 'essentially uncontrollable'. The notion finds application in studies of failure-tolerant systems, and in decoupling.
Kalman filtering for time-delayed linear systems
Institute of Scientific and Technical Information of China (English)
LU Xiao; WANG Wei
2006-01-01
This paper is to study the linear minimum variance estimation for discrete- time systems. A simple approach to the problem is presented by developing re-organized innovation analysis for the systems with instantaneous and double time-delayed measurements. It is shown that the derived estimator involves solving three different standard Kalman filtering with the same dimension as the original system. The obtained results form the basis for solving some complicated problems such as H∞ fixed-lag smoothing, preview control, H∞ filtering and control with time delays.
Fundamental Matrix for a Class of Point Delay Linear Systems
International Nuclear Information System (INIS)
Sen, M. de la; Alastruey, C. F.
1998-01-01
It is difficult to establish explicit analytic forms for fundamental matrices of delayed linear systems. In this paper, an explicit form of exponential type is given for such a matrix in the case of punctual delays. The existence of real and complex fundamental matrices, for the case of real parameterizations of the differential system, is studied and discussed. Some additional commutativity properties involving the matrices parameters and the fundamental matrices as well as explicit expressions for the solution of the delayed differential system are also given. (Author)
Control of Non-linear Marine Cooling System
DEFF Research Database (Denmark)
Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon
2011-01-01
We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non-linearitie......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....
Coherent versus Measurement Feedback: Linear Systems Theory for Quantum Information
Directory of Open Access Journals (Sweden)
Naoki Yamamoto
2014-11-01
Full Text Available To control a quantum system via feedback, we generally have two options in choosing a control scheme. One is the coherent feedback, which feeds the output field of the system, through a fully quantum device, back to manipulate the system without involving any measurement process. The other one is measurement-based feedback, which measures the output field and performs a real-time manipulation on the system based on the measurement results. Both schemes have advantages and disadvantages, depending on the system and the control goal; hence, their comparison in several situations is important. This paper considers a general open linear quantum system with the following specific control goals: backaction evasion, generation of a quantum nondemolished variable, and generation of a decoherence-free subsystem, all of which have important roles in quantum information science. Some no-go theorems are proven, clarifying that those goals cannot be achieved by any measurement-based feedback control. On the other hand, it is shown that, for each control goal there exists a coherent feedback controller accomplishing the task. The key idea to obtain all the results is system theoretic characterizations of the above three notions in terms of controllability and observability properties or transfer functions of linear systems, which are consistent with their standard definitions.
Distributed-Order Dynamic Systems Stability, Simulation, Applications and Perspectives
Jiao, Zhuang; Podlubny, Igor
2012-01-01
Distributed-order differential equations, a generalization of fractional calculus, are of increasing importance in many fields of science and engineering from the behaviour of complex dielectric media to the modelling of nonlinear systems. This Brief will broaden the toolbox available to researchers interested in modeling, analysis, control and filtering. It contains contextual material outlining the progression from integer-order, through fractional-order to distributed-order systems. Stability issues are addressed with graphical and numerical results highlighting the fundamental differences between constant-, integer-, and distributed-order treatments. The power of the distributed-order model is demonstrated with work on the stability of noncommensurate-order linear time-invariant systems. Generic applications of the distributed-order operator follow: signal processing and viscoelastic damping of a mass–spring set up. A new general approach to discretization of distributed-order derivatives and integrals ...
Optimal linear precoding for indoor visible light communication system
Sifaou, Houssem
2017-07-31
Visible light communication (VLC) is an emerging technique that uses light-emitting diodes (LED) to combine communication and illumination. It is considered as a promising scheme for indoor wireless communication that can be deployed at reduced costs while offering high data rate performance. In this paper, we focus on the design of the downlink of a multi-user VLC system. Inherent to multi-user systems is the interference caused by the broadcast nature of the medium. Linear precoding based schemes are among the most popular solutions that have recently been proposed to mitigate inter-user interference. This paper focuses on the design of the optimal linear precoding scheme that solves the max-min signal-to-interference-plus-noise ratio (SINR) problem. The performance of the proposed precoding scheme is studied under different working conditions and compared with the classical zero-forcing precoding. Simulations have been provided to illustrate the high gain of the proposed scheme.
Solution of the fully fuzzy linear systems using iterative techniques
International Nuclear Information System (INIS)
Dehghan, Mehdi; Hashemi, Behnam; Ghatee, Mehdi
2007-01-01
This paper mainly intends to discuss the iterative solution of fully fuzzy linear systems which we call FFLS. We employ Dubois and Prade's approximate arithmetic operators on LR fuzzy numbers for finding a positive fuzzy vector x-tilde which satisfies A-tildex-tilde=b, where A-tilde and b-tilde are a fuzzy matrix and a fuzzy vector, respectively. Please note that the positivity assumption is not so restrictive in applied problems. We transform FFLS and propose iterative techniques such as Richardson, Jacobi, Jacobi overrelaxation (JOR), Gauss-Seidel, successive overrelaxation (SOR), accelerated overrelaxation (AOR), symmetric and unsymmetric SOR (SSOR and USSOR) and extrapolated modified Aitken (EMA) for solving FFLS. In addition, the methods of Newton, quasi-Newton and conjugate gradient are proposed from nonlinear programming for solving a fully fuzzy linear system. Various numerical examples are also given to show the efficiency of the proposed schemes
Solution methods for large systems of linear equations in BACCHUS
International Nuclear Information System (INIS)
Homann, C.; Dorr, B.
1993-05-01
The computer programme BACCHUS is used to describe steady state and transient thermal-hydraulic behaviour of a coolant in a fuel element with intact geometry in a fast breeder reactor. In such computer programmes generally large systems of linear equations with sparse matrices of coefficients, resulting from discretization of coolant conservation equations, must be solved thousands of times giving rise to large demands of main storage and CPU time. Direct and iterative solution methods of the systems of linear equations, available in BACCHUS, are described, giving theoretical details and experience with their use in the programme. Besides use of a method of lines, a Runge-Kutta-method, for solution of the partial differential equation is outlined. (orig.) [de
Nonautonomous linear Hamiltonian systems oscillation, spectral theory and control
Johnson, Russell; Novo, Sylvia; Núñez, Carmen; Fabbri, Roberta
2016-01-01
This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hami...
Optimal approximation of linear systems by artificial immune response
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This paper puts forward a novel artificial immune response algorithm for optimal approximation of linear systems. A quaternion model of artificial immune response is proposed for engineering computing. The model abstracts four elements, namely, antigen, antibody, reaction rules among antibodies, and driving algorithm describing how the rules are applied to antibodies, to simulate the process of immune response. Some reaction rules including clonal selection rules, immunological memory rules and immune regulation rules are introduced. Using the theorem of Markov chain, it is proofed that the new model is convergent. The experimental study on the optimal approximation of a stable linear system and an unstable one show that the approximate models searched by the new model have better performance indices than those obtained by some existing algorithms including the differential evolution algorithm and the multi-agent genetic algorithm.
Large linear magnetoresistivity in strongly inhomogeneous planar and layered systems
International Nuclear Information System (INIS)
Bulgadaev, S.A.; Kusmartsev, F.V.
2005-01-01
Explicit expressions for magnetoresistance R of planar and layered strongly inhomogeneous two-phase systems are obtained, using exact dual transformation, connecting effective conductivities of in-plane isotropic two-phase systems with and without magnetic field. These expressions allow to describe the magnetoresistance of various inhomogeneous media at arbitrary concentrations x and magnetic fields H. All expressions show large linear magnetoresistance effect with different dependencies on the phase concentrations. The corresponding plots of the x- and H-dependencies of R(x,H) are represented for various values, respectively, of magnetic field and concentrations at some values of inhomogeneity parameter. The obtained results show a remarkable similarity with the existing experimental data on linear magnetoresistance in silver chalcogenides Ag 2+δ Se. A possible physical explanation of this similarity is proposed. It is shown that the random, stripe type, structures of inhomogeneities are the most suitable for a fabrication of magnetic sensors and a storage of information at room temperatures
Linear Quantum Systems: Non-Classical States and Robust Stability
2016-06-29
has a history going back some 50 years, to the birth of modern control theory with Kalman’s foundational work on filtering and LQG optimal control...realizability conditions. DISTRIBUTION A. Approved for public release: distribution unlimited. 8 Shi Wang, Matthew R James H- Infinity control of...physical model for a quantum measurement-based feedback control system with time delay is presented for the H- infinity control. Luis Augusto
Maximization of energy in the output of a linear system
International Nuclear Information System (INIS)
Dudley, D.G.
1976-01-01
A time-limited signal which, when passed through a linear system, maximizes the total output energy is considered. Previous work has shown that the solution is given by the eigenfunction associated with the maximum eigenvalue in a Hilbert-Schmidt integral equation. Analytical results are available for the case where the transfer function is a low-pass filter. This work is extended by obtaining a numerical solution to the integral equation which allows results for reasonably general transfer functions
Linear Quantum Systems: Non-Classical States and Robust Stability
2016-06-29
modulation and entanglement in a compound gradient echo memory, Physical Review A 93(2) 023809 2016. We present a theoretical model for a Kerr...Carvalho, M. Hedges and M R James, Analysis of the operation of gradient echo memories using a quantum input-output model, New Journal of Physics , 15...new structured uncertainty methods that ensure robust stability of quantum systems based on nominal linear models, and (v) physical realizability
Dynamic logic architecture based on piecewise-linear systems
International Nuclear Information System (INIS)
Peng Haipeng; Liu Fei; Li Lixiang; Yang Yixian; Wang Xue
2010-01-01
This Letter explores piecewise-linear systems to construct dynamic logic architecture. The proposed schemes can discriminate the two input signals and obtain 16 kinds of logic operations by different combinations of parameters and conditions for determining the output. Each logic cell performs more flexibly, that makes it possible to achieve complex logic operations more simply and construct computing architecture with less logic cells. We also analyze the various performances of our schemes under different conditions and the characteristics of these schemes.
CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM
Directory of Open Access Journals (Sweden)
S.H. Nasseri
2011-07-01
Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.
CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM
Directory of Open Access Journals (Sweden)
S.H. Nasseri
2009-10-01
Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.
Efficient Preconditioning of Sequences of Nonsymmetric Linear Systems
Czech Academy of Sciences Publication Activity Database
Duintjer Tebbens, Jurjen; Tůma, Miroslav
2007-01-01
Roč. 29, č. 5 (2007), s. 1918-1941 ISSN 1064-8275 R&D Projects: GA AV ČR 1ET400300415; GA AV ČR KJB100300703 Institutional research plan: CEZ:AV0Z10300504 Keywords : preconditioned iterative methods * sparse matrices * sequences of linear algebraic systems * incomplete factorizations * factorization updates * Gauss–Jordan transformations * minimum spanning tree Subject RIV: BA - General Mathematics Impact factor: 1.784, year: 2007
AZTEC: A parallel iterative package for the solving linear systems
Energy Technology Data Exchange (ETDEWEB)
Hutchinson, S.A.; Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States)
1996-12-31
We describe a parallel linear system package, AZTEC. The package incorporates a number of parallel iterative methods (e.g. GMRES, biCGSTAB, CGS, TFQMR) and preconditioners (e.g. Jacobi, Gauss-Seidel, polynomial, domain decomposition with LU or ILU within subdomains). Additionally, AZTEC allows for the reuse of previous preconditioning factorizations within Newton schemes for nonlinear methods. Currently, a number of different users are using this package to solve a variety of PDE applications.
Feedback Linearization Controller for a Wind Energy Power System
Directory of Open Access Journals (Sweden)
Muthana Alrifai
2016-09-01
Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.
Linear circuits, systems and signal processing: theory and application
International Nuclear Information System (INIS)
Byrnes, C.I.; Saeks, R.E.; Martin, C.F.
1988-01-01
In part because of its universal role as a first approximation of more complicated behaviour and in part because of the depth and breadth of its principle paradigms, the study of linear systems continues to play a central role in control theory and its applications. Enhancing more traditional applications to aerospace and electronics, application areas such as econometrics, finance, and speech and signal processing have contributed to a renaissance in areas such as realization theory and classical automatic feedback control. Thus, the last few years have witnessed a remarkable research effort expended in understanding both new algorithms and new paradigms for modeling and realization of linear processes and in the analysis and design of robust control strategies. The papers in this volume reflect these trends in both the theory and applications of linear systems and were selected from the invited and contributed papers presented at the 8th International Symposium on the Mathematical Theory of Networks and Systems held in Phoenix on June 15-19, 1987
Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities
Directory of Open Access Journals (Sweden)
Y. N. Pavlov
2015-01-01
Full Text Available The subject of this work is the problem of identification of nonlinear dynamic systems based on the experimental data obtained by applying test signals to the system. The goal is to determinate coefficients of differential equations of systems by experimental frequency hodographs and separate similar, but different, in essence, forces: dissipative forces with the square of the first derivative in the motion equations and dissipative force from the action of dry friction. There was a proposal to use the harmonic linearization method to approximate each of the nonlinearity of "quadratic friction" and "dry friction" by linear friction with the appropriate harmonic linearization coefficient.Assume that a frequency transfer function of the identified system has a known form. Assume as well that there are disturbances while obtaining frequency characteristics of the realworld system. As a result, the points of experimentally obtained hodograph move randomly. Searching for solution of the identification problem was in the hodograph class, specified by the system model, which has the form of the frequency transfer function the same as the form of the frequency transfer function of the system identified. Minimizing a proximity criterion (measure of the experimentally obtained system hodograph and the system hodograph model for all the experimental points described and previously published by one of the authors allowed searching for the unknown coefficients of the frequenc ransfer function of the system model. The paper shows the possibility to identify a nonlinear dynamic system with multiple nonlinearities, obtained on the experimental samples of the frequency system hodograph. The proposed algorithm allows to select the nonlinearity of the type "quadratic friction" and "dry friction", i.e. also in the case where the nonlinearity is dependent on the same dynamic parameter, in particular, on the derivative of the system output value. For the dynamic
The Impact of Connecting Distributed Generation to the Distribution System
Directory of Open Access Journals (Sweden)
E. V. Mgaya
2007-01-01
Full Text Available This paper deals with the general problem of utilizing of renewable energy sources to generate electric energy. Recent advances in renewable energy power generation technologies, e.g., wind and photovoltaic (PV technologies, have led to increased interest in the application of these generation devices as distributed generation (DG units. This paper presents the results of an investigation into possible improvements in the system voltage profile and reduction of system losses when adding wind power DG (wind-DG to a distribution system. Simulation results are given for a case study, and these show that properly sized wind DGs, placed at carefully selected sites near key distribution substations, could be very effective in improving the distribution system voltage profile and reducing power losses, and hence could improve the effective capacity of the system.
Control and operation of distributed generation in distribution systems
DEFF Research Database (Denmark)
Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte
2011-01-01
Many distribution systems nowadays have significant penetration of distributed generation (DG)and thus, islanding operation of these distribution systems is becoming a viable option for economical and technical reasons. The DG should operate optimally during both grid-connected and island...... algorithm, which uses average rate of change off requency (Af5) and real power shift RPS), in the islanded mode. RPS will increase or decrease the power set point of the generator with increasing or decreasing system frequency, respectively. Simulation results show that the proposed method can operate...
Linear filtering of systems with memory and application to finance
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available We study the linear filtering problem for systems driven by continuous Gaussian processes V ( 1 and V ( 2 with memory described by two parameters. The processes V ( j have the virtue that they possess stationary increments and simple semimartingale representations simultaneously. They allow for straightforward parameter estimations. After giving the semimartingale representations of V ( j by innovation theory, we derive Kalman-Bucy-type filtering equations for the systems. We apply the result to the optimal portfolio problem for an investor with partial observations. We illustrate the tractability of the filtering algorithm by numerical implementations.
Analysis of Known Linear Distributed Average Consensus Algorithms on Cycles and Paths
Directory of Open Access Journals (Sweden)
Jesús Gutiérrez-Gutiérrez
2018-03-01
Full Text Available In this paper, we compare six known linear distributed average consensus algorithms on a sensor network in terms of convergence time (and therefore, in terms of the number of transmissions required. The selected network topologies for the analysis (comparison are the cycle and the path. Specifically, in the present paper, we compute closed-form expressions for the convergence time of four known deterministic algorithms and closed-form bounds for the convergence time of two known randomized algorithms on cycles and paths. Moreover, we also compute a closed-form expression for the convergence time of the fastest deterministic algorithm considered on grids.
Parametric Linear Hybrid Automata for Complex Environmental Systems Modeling
Directory of Open Access Journals (Sweden)
Samar Hayat Khan Tareen
2015-07-01
Full Text Available Environmental systems, whether they be weather patterns or predator-prey relationships, are dependent on a number of different variables, each directly or indirectly affecting the system at large. Since not all of these factors are known, these systems take on non-linear dynamics, making it difficult to accurately predict meaningful behavioral trends far into the future. However, such dynamics do not warrant complete ignorance of different efforts to understand and model close approximations of these systems. Towards this end, we have applied a logical modeling approach to model and analyze the behavioral trends and systematic trajectories that these systems exhibit without delving into their quantification. This approach, formalized by René Thomas for discrete logical modeling of Biological Regulatory Networks (BRNs and further extended in our previous studies as parametric biological linear hybrid automata (Bio-LHA, has been previously employed for the analyses of different molecular regulatory interactions occurring across various cells and microbial species. As relationships between different interacting components of a system can be simplified as positive or negative influences, we can employ the Bio-LHA framework to represent different components of the environmental system as positive or negative feedbacks. In the present study, we highlight the benefits of hybrid (discrete/continuous modeling which lead to refinements among the fore-casted behaviors in order to find out which ones are actually possible. We have taken two case studies: an interaction of three microbial species in a freshwater pond, and a more complex atmospheric system, to show the applications of the Bio-LHA methodology for the timed hybrid modeling of environmental systems. Results show that the approach using the Bio-LHA is a viable method for behavioral modeling of complex environmental systems by finding timing constraints while keeping the complexity of the model
Response of Non-Linear Systems to Renewal Impulses by Path Integration
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Iwankiewicz, R.
The cell-to-cell mapping (path integration) technique has been devised for MDOF non-linear and non-hysteretic systems subjected to random trains of impulses driven by an ordinary renewal point process with gamma-distributed integer parameter interarrival times (an Erlang process). Since the renewal...... point process has not independent increments the state vector of the system, consisting of the generalized displacements and velocities, is not a Markov process. Initially it is shown how the indicated systems can be converted to an equivalent Poisson driven system at the expense of introducing...... additional discrete-valued state variables for which the stochastic equations are also formulated....
Islanding Operation of Distribution System with Distributed Generations
DEFF Research Database (Denmark)
Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte
2010-01-01
The growing interest in distributed generations (DGs) due to environmental concern and various other reasons have resulted in significant penetration of DGs in many distribution system worldwide. DGs come with many benefits. One of the benefits is improved reliability by supplying load during power...
Development of a linear induction motor based artificial muscle system.
Gruber, A; Arguello, E; Silva, R
2013-01-01
We present the design of a linear induction motor based on electromagnetic interactions. The engine is capable of producing a linear movement from electricity. The design consists of stators arranged in parallel, which produce a magnetic field sufficient to displace a plunger along its axial axis. Furthermore, the winding has a shell and cap of ferromagnetic material that amplifies the magnetic field. This produces a force along the length of the motor that is similar to that of skeletal muscle. In principle, the objective is to use the engine in the development of an artificial muscle system for prosthetic applications, but it could have multiple applications, not only in the medical field, but in other industries.
Synchronization and Control of Linearly Coupled Singular Systems
Directory of Open Access Journals (Sweden)
Fang Qingxiang
2013-01-01
Full Text Available The synchronization and control problem of linearly coupled singular systems is investigated. The uncoupled dynamical behavior at each node is general and can be chaotic or, otherwise the coupling matrix is not assumed to be symmetrical. Some sufficient conditions for globally exponential synchronization are derived based on Lyapunov stability theory. These criteria, which are in terms of linear matrix inequality (LMI, indicate that the left and right eigenvectors corresponding to eigenvalue zero of the coupling matrix play key roles in the stability analysis of the synchronization manifold. The controllers are designed for state feedback control and pinning control, respectively. Finally, a numerical example is provided to illustrate the effectiveness of the proposed conditions.
Demultiplexing of photonic temporal modes by a linear system
Xu, Shuang; Shen, H. Z.; Yi, X. X.
2018-03-01
Temporally and spatially overlapping but field-orthogonal photonic temporal modes (TMs) that intrinsically span a high-dimensional Hilbert space are recently suggested as a promising means of encoding information on photons. Presently, the realization of photonic TM technology, particularly to retrieve the information it carries, i.e., demultiplexing of photonic TMs, is mostly dependent on nonlinear medium and frequency conversion. Meanwhile, its miniaturization, simplification, and optimization remain the focus of research. In this paper, we propose a scheme of TM demultiplexing using linear systems consisting of resonators with linear couplings. Specifically, we examine a unidirectional array of identical resonators with short environment correlations. For both situations with and without tunable couplers, propagation formulas are derived to demonstrate photonic TM demultiplexing capabilities. The proposed scheme, being entirely feasible with current technologies, might find potential applications in quantum information processing.
Linear and Non-Linear Dielectric Response of Periodic Systems from Quantum Monte Carlo
Umari, Paolo
2006-03-01
We present a novel approach that allows to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wavefunction, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence. The polarization is sampled through forward-walking. This approach has been validated for the case of the polarizability of an isolated hydrogen atom, and then applied to a periodic system. We then calculate the linear susceptibility and second-order hyper-susceptibility of molecular-hydrogen chains whith different bond-length alternations, and assess the quality of nodal surfaces derived from density-functional theory or from Hartree-Fock. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.P. Umari, A.J. Williamson, G. Galli, and N. MarzariPhys. Rev. Lett. 95, 207602 (2005).
Distribution functions for the linear region of the S-N curve
Energy Technology Data Exchange (ETDEWEB)
Mueller, Christian; Waechter, Michael; Masendorf, Rainer; Esderts, Alfons [TU Clausthal, Clausthal-Zellerfeld (Germany). Inst. for Plant Engineering and Fatigue Analysis
2017-08-01
This study establishes a database containing the results of fatigue tests from the linear region of the S-N curve using sources from the literature. Each set of test results originates from testing metallic components on a single load level. Eighty-nine test series with sample sizes of 14 ≤ n ≤ 500 are included in the database, resulting in a sum of 6,086 individual test results. The test series are tested in terms of the type of distribution function (log-normal or 2-parameter Weibull) using the Shapiro-Wilk test, the Anderson-Darling test and probability plots. The majority of the tested individual test results follows a log-normal distribution.
Directory of Open Access Journals (Sweden)
Dobrislav Dobrev∗
2017-02-01
Full Text Available We provide an accurate closed-form expression for the expected shortfall of linear portfolios with elliptically distributed risk factors. Our results aim to correct inaccuracies that originate in Kamdem (2005 and are present also in at least thirty other papers referencing it, including the recent survey by Nadarajah et al. (2014 on estimation methods for expected shortfall. In particular, we show that the correction we provide in the popular multivariate Student t setting eliminates understatement of expected shortfall by a factor varying from at least four to more than 100 across different tail quantiles and degrees of freedom. As such, the resulting economic impact in ﬁnancial risk management applications could be signiﬁcant. We further correct such errors encountered also in closely related results in Kamdem (2007 and 2009 for mixtures of elliptical distributions. More generally, our ﬁndings point to the extra scrutiny required when deploying new methods for expected shortfall estimation in practice.
Low jitter RF distribution system
Wilcox, Russell; Doolittle, Lawrence; Huang, Gang
2012-09-18
A timing signal distribution system includes an optical frequency stabilized laser signal amplitude modulated at an rf frequency. A transmitter box transmits a first portion of the laser signal and receive a modified optical signal, and outputs a second portion of the laser signal and a portion of the modified optical signal. A first optical fiber carries the first laser signal portion and the modified optical signal, and a second optical fiber carries the second portion of the laser signal and the returned modified optical signal. A receiver box receives the first laser signal portion, shifts the frequency of the first laser signal portion outputs the modified optical signal, and outputs an electrical signal on the basis of the laser signal. A detector at the end of the second optical fiber outputs a signal based on the modified optical signal. An optical delay sensing circuit outputs a data signal based on the detected modified optical signal. An rf phase detect and correct signal circuit outputs a signal corresponding to a phase stabilized rf signal based on the data signal and the frequency received from the receiver box.
Recovery coefficients as a test of system linearity of response in PET
International Nuclear Information System (INIS)
Geworski, L.; Munz, D.L.; Knoop, B.; Hofmann, M.; Knapp, W.H.
2002-01-01
Aim: New imaging protocols have created an increasing demand for quantitation in dedicated PET. Besides attenuation and scatter correction the recovery correction, accounting for the instrument's limited spatial resolution, has gained importance. For clinical practicability these corrections should work independent from the object, i.e. from the actual distribution of emitter and absorber. Aim of the study was to test this object independency, i.e. system linearity of response, by comparing recovery coefficients (RC) determined for different object geometries. In fact, this comparison may serve as a final test on system linearity of response, as measured on the quantitative accuracy by which the activity concentration in small lesions can be recovered. Method: For hot and cold spot imaging situations spatial distribution of activity is different. Therefore, scatter correction algorithm has to deal with different scatter distributions. If all factors disturbing system linearity, specifically scatter and attenuation, are corrected to a sufficient degree of accuracy, the system behaves linearly resulting in the theoretical relationship. CSRC = (1-HSRC). Thus, this equation, applied hot and cold spot measurements, will serve as a test on the effectiveness of the corrections and, hence, as a test of system linearity of response. Following IEC standard procedures (IEC 61675-1) measurements were done with and without interplane septa (2D/3D) on an ECAT EXACT 922 using a cylindrical phantom containing six spheres of different diameters (10 mm - 40 mm). All data were corrected for attenuation (transmission scan) and scatter (2D: deconvolution, 3D: scatter model), as implemented in the scanner's standard software. Recovery coefficients were determined for cold (CSRC) and hot (HSRC) lesions using both 2D and 3D acquisition mode. Results: CSRC directly measured versus CSRC calculated according to eq. (1) from HSRC resulted in an excellent agreement for both 2D and 3D data
Kovacs-Like Memory Effect in Athermal Systems: Linear Response Analysis
Plata, Carlos; Prados, Antonio
2017-10-01
We analyse the emergence of Kovacs-like memory effects in athermal systems within the linear response regime. This is done by starting from both the master equation for the probability distribution and the equations for the physically relevant moments. The general results are applied to a general class of models with conserved momentum and non-conserved energy. Our theoretical predictions, obtained within the first Sonine approximation, show an excellent agreement with the numerical results.
Linearization Technologies for Broadband Radio-Over-Fiber Transmission Systems
Directory of Open Access Journals (Sweden)
Xiupu Zhang
2014-11-01
Full Text Available Linearization technologies that can be used for linearizing RoF transmission are reviewed. Three main linearization methods, i.e. electrical analog linearization, optical linearization, and electrical digital linearization are presented and compared. Analog linearization can be achieved using analog predistortion circuits, and can be used for suppression of odd order nonlinear distortion components, such as third and fifth order. Optical linearization includes mixed-polarization, dual-wavelength, optical channelization and the others, implemented in optical domain, to suppress both even and odd order nonlinear distortion components, such as second and third order. Digital predistortion has been a widely used linearization method for RF power amplifiers. However, digital linearization that requires analog to digital converter is severely limited to hundreds of MHz bandwidth. Instead, analog and optical linearization provide broadband linearization with up to tens of GHz. Therefore, for broadband radio over fiber transmission that can be used for future broadband cloud radio access networks, analog and optical linearization are more appropriate than digital linearization. Generally speaking, both analog and optical linearization are able to improve spur-free dynamic range greater than 10 dB over tens of GHz. In order for current digital linearization to be used for broadband radio over fiber transmission, the reduced linearization complexity and increased linearization bandwidth are required. Moreover, some digital linearization methods in which the complexity can be reduced, such as Hammerstein type, may be more promising and require further investigation.
Control of Linear Parameter Varying Systems with Applications
Mohammadpour, Javad
2012-01-01
Control of Linear Parameter Varying Systems with Applications compiles state-of-the-art contributions on novel analytical and computational methods to address system modeling and identification, complexity reduction, performance analysis and control design for time-varying and nonlinear systems in the LPV framework. The book has an interdisciplinary character by emphasizing techniques that can be commonly applied in various engineering fields. It also includes a rich collection of illustrative applications in diverse domains to substantiate the effectiveness of the design methodologies and provide pointers to open research directions. The book is divided into three parts. The first part collects chapters of a more tutorial character on the background of LPV systems modeling and control. The second part gathers chapters devoted to the theoretical advancement of LPV analysis and synthesis methods to cope with the design constraints such as uncertainties and time delay. The third part of the volume showcases con...
Core reset system design for linear induction accelerator
International Nuclear Information System (INIS)
Durga Praveen Kumar, D.; Mitra, S.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.
2006-01-01
A repetitive pulsed power system based Linear Induction Accelerator (LIA-200) is being developed at BARC to get an electron beam of 200keV, 5kA, 50ns, 10-100 Hz. Amorphous core is the heart of these accelerators. It serves various functions in different subsystems viz. pulse power modulator, pulse transformer, magnetic switches and induction cavities. One of the factors that make the magnetic components compact is utilization of the total flux swing available in the core. In the present system, magnetic switches, pulse transformers, and induction cavity are designed to avail the full flux swing available in the core. For achieving this objective, flux density in the core has to be kept at the reverse saturation, before the main pulse is applied. The electrical circuit which makes it possible is called the core reset system. In this paper the details of core reset system designed for LIA-200 are described. (author)
International Nuclear Information System (INIS)
Meeks, S.L.; Buatti, J.M.; Eyster, B.; Kendrick, L.A.
1999-01-01
Linear accelerator (linac) radiosurgery utilizes non-coplanar arc therapy delivered through circular collimators. Generally, spherically symmetric arc sets are used, resulting in nominally spherical dose distributions. Various treatment planning parameters may be manipulated to provide dose conformation to irregular lesions. Iterative manipulation of these variables can be a difficult and time-consuming task, because (a) understanding the effect of these parameters is complicated and (b) three-dimensional (3D) dose calculations are computationally expensive. This manipulation can be simplified, however, because the prescription isodose surface for all single isocentre distributions can be approximated by conic sections. In this study, the effects of treatment planning parameter manipulation on the dimensions of the treatment isodose surface were determined empirically. These dimensions were then fitted to analytic functions, assuming that the dose distributions were characterized as conic sections. These analytic functions allowed real-time approximation of the 3D isodose surface. Iterative plan optimization, either manual or automated, is achieved more efficiently using this real time approximation of the dose matrix. Subsequent to iterative plan optimization, the analytic function is related back to the appropriate plan parameters, and the dose distribution is determined using conventional dosimetry calculations. This provides a pseudo-inverse approach to radiosurgery optimization, based solely on geometric considerations. (author)
Magnetic Flux Distribution of Linear Machines with Novel Three-Dimensional Hybrid Magnet Arrays
Directory of Open Access Journals (Sweden)
Nan Yao
2017-11-01
Full Text Available The objective of this paper is to propose a novel tubular linear machine with hybrid permanent magnet arrays and multiple movers, which could be employed for either actuation or sensing technology. The hybrid magnet array produces flux distribution on both sides of windings, and thus helps to increase the signal strength in the windings. The multiple movers are important for airspace technology, because they can improve the system’s redundancy and reliability. The proposed design concept is presented, and the governing equations are obtained based on source free property and Maxwell equations. The magnetic field distribution in the linear machine is thus analytically formulated by using Bessel functions and harmonic expansion of magnetization vector. Numerical simulation is then conducted to validate the analytical solutions of the magnetic flux field. It is proved that the analytical model agrees with the numerical results well. Therefore, it can be utilized for the formulation of signal or force output subsequently, depending on its particular implementation.
Distributed Monitoring of the R(sup 2) Statistic for Linear Regression
Bhaduri, Kanishka; Das, Kamalika; Giannella, Chris R.
2011-01-01
The problem of monitoring a multivariate linear regression model is relevant in studying the evolving relationship between a set of input variables (features) and one or more dependent target variables. This problem becomes challenging for large scale data in a distributed computing environment when only a subset of instances is available at individual nodes and the local data changes frequently. Data centralization and periodic model recomputation can add high overhead to tasks like anomaly detection in such dynamic settings. Therefore, the goal is to develop techniques for monitoring and updating the model over the union of all nodes data in a communication-efficient fashion. Correctness guarantees on such techniques are also often highly desirable, especially in safety-critical application scenarios. In this paper we develop DReMo a distributed algorithm with very low resource overhead, for monitoring the quality of a regression model in terms of its coefficient of determination (R2 statistic). When the nodes collectively determine that R2 has dropped below a fixed threshold, the linear regression model is recomputed via a network-wide convergecast and the updated model is broadcast back to all nodes. We show empirically, using both synthetic and real data, that our proposed method is highly communication-efficient and scalable, and also provide theoretical guarantees on correctness.
A Distribution-class Locational Marginal Price (DLMP) Index for Enhanced Distribution Systems
Akinbode, Oluwaseyi Wemimo
The smart grid initiative is the impetus behind changes that are expected to culminate into an enhanced distribution system with the communication and control infrastructure to support advanced distribution system applications and resources such as distributed generation, energy storage systems, and price responsive loads. This research proposes a distribution-class analog of the transmission LMP (DLMP) as an enabler of the advanced applications of the enhanced distribution system. The DLMP is envisioned as a control signal that can incentivize distribution system resources to behave optimally in a manner that benefits economic efficiency and system reliability and that can optimally couple the transmission and the distribution systems. The DLMP is calculated from a two-stage optimization problem; a transmission system OPF and a distribution system OPF. An iterative framework that ensures accurate representation of the distribution system's price sensitive resources for the transmission system problem and vice versa is developed and its convergence problem is discussed. As part of the DLMP calculation framework, a DCOPF formulation that endogenously captures the effect of real power losses is discussed. The formulation uses piecewise linear functions to approximate losses. This thesis explores, with theoretical proofs, the breakdown of the loss approximation technique when non-positive DLMPs/LMPs occur and discusses a mixed integer linear programming formulation that corrects the breakdown. The DLMP is numerically illustrated in traditional and enhanced distribution systems and its superiority to contemporary pricing mechanisms is demonstrated using price responsive loads. Results show that the impact of the inaccuracy of contemporary pricing schemes becomes significant as flexible resources increase. At high elasticity, aggregate load consumption deviated from the optimal consumption by up to about 45 percent when using a flat or time-of-use rate. Individual load
RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEMS
Directory of Open Access Journals (Sweden)
Popescu V.S.
2012-04-01
Full Text Available Power distribution systems are basic parts of power systems and reliability of these systems at present is a key issue for power engineering development and requires special attention. Operation of distribution systems is accompanied by a number of factors that produce random data a large number of unplanned interruptions. Research has shown that the predominant factors that have a significant influence on the reliability of distribution systems are: weather conditions (39.7%, defects in equipment(25% and unknown random factors (20.1%. In the article is studied the influence of random behavior and are presented estimations of reliability of predominantly rural electrical distribution systems.
Review on Islanding Operation of Distribution System with Distributed Generation
DEFF Research Database (Denmark)
Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte
2011-01-01
The growing environmental concern and various benefits of distributed generation (DG) have resulted in significant penetration of DG in many distribution systems worldwide. One of the major expected benefits of DG is the improvement in the reliability of power supply by supplying load during power...... outage by operating in an island mode. However, there are many challenges to overcome before islanding operation of a distribution system with DG can become a viable solution in future. This paper reviews some of the major challenges with islanding operation and explores some possible solutions...
Failure modes and natural control time for distributed vibrating systems
International Nuclear Information System (INIS)
Reid, R.M.
1994-01-01
The eigenstructure of the Gram matrix of frequency exponentials is used to study linear vibrating systems of hyperbolic type with distributed control. Using control norm as a practical measure of controllability and the vibrating string as a prototype, it is demonstrated that hyperbolic systems have a natural control time, even when only finitely many modes are excited. For shorter control times there are identifiable control failure modes which can be steered to zero only with very high cost in control norm. Both natural control time and the associated failure modes are constructed for linear fluids, strings, and beams, making note of the essential algorithms and Mathematica code, and displaying results graphically
Distributed radiation protection console system
International Nuclear Information System (INIS)
Chhokra, R.S.; Deshpande, V.K.; Mishra, H.; Rajeev, K.P.; Thakur, Bipla B.; Munj, Niket
2004-01-01
Radiation exposure control is one of the most important aspects in any nuclear facility . It encompasses continuous monitoring of the various areas of the facility to detect any increase in the radiation level and/or the air activity level beyond preset limits and alarm the O and M personnel working in these areas. Detection and measurement of radiation level and the air activity level is carried out by a number of monitors installed in the areas. These monitors include Area Gamma Monitors, Continuous Air Monitors, Pu-In-Air Monitors, Criticality Monitors etc. Traditionally, these measurements are displayed and recorded on a Central Radiation Protection Console(CRPC), which is located in the central control room of the facility. This methodology suffers from the shortcoming that any worker required to enter a work area will have to inquire about the radiation status of the area either from the CRPC or will get to know the same directly from the installed only after entering the area. This shortcoming can lead to avoidable delays in attending to the work or to unwanted exposure. The authors have designed and developed a system called Distributed Radiation Protection Console (DRPC) to overcome this shortcoming. A DRPC is a console which is located outside the entrance of a given area and displays the radiation status of the area. It presents to health physicist and the plant operators a graphic over-view of the radiation and air activity levels in the particular area of the plant. It also provides audio visual annunciation of the alarm status. Each radioactive area in a nuclear facility will have its own DRPC, which will receive as its inputs the analog and digital signals from radiation monitoring instruments installed in the area and would not only show those readings on its video graphic screen but will also provide warning messages and instructions to the personnel entering the active areas. The various DRPCs can be integrated into a Local Area Network, where the
Practical application of equivalent linearization approaches to nonlinear piping systems
International Nuclear Information System (INIS)
Park, Y.J.; Hofmayer, C.H.
1995-01-01
The use of mechanical energy absorbers as an alternative to conventional hydraulic and mechanical snubbers for piping supports has attracted a wide interest among researchers and practitioners in the nuclear industry. The basic design concept of energy absorbers (EA) is to dissipate the vibration energy of piping systems through nonlinear hysteretic actions of EA exclamation point s under design seismic loads. Therefore, some type of nonlinear analysis needs to be performed in the seismic design of piping systems with EA supports. The equivalent linearization approach (ELA) can be a practical analysis tool for this purpose, particularly when the response approach (RSA) is also incorporated in the analysis formulations. In this paper, the following ELA/RSA methods are presented and compared to each other regarding their practice and numerical accuracy: Response approach using the square root of sum of squares (SRSS) approximation (denoted RS in this paper). Classical ELA based on modal combinations and linear random vibration theory (denoted CELA in this paper). Stochastic ELA based on direct solution of response covariance matrix (denoted SELA in this paper). New algorithms to convert response spectra to the equivalent power spectral density (PSD) functions are presented for both the above CELA and SELA methods. The numerical accuracy of the three EL are studied through a parametric error analysis. Finally, the practicality of the presented analysis is demonstrated in two application examples for piping systems with EA supports
A RECIPE FOR LINEAR COLLIDER FINAL FOCUS SYSTEM DESIGN
International Nuclear Information System (INIS)
Seryi, Andrei
2003-01-01
The design of Final Focus systems for linear colliders is challenging because of the large demagnifications needed to produce nanometer-sized beams at the interaction point. Simple first- and second-order matrix matching have proven insufficient for this task, and minimization of third- and higher-order aberrations is essential. An appropriate strategy is required for the latter to be successful. A recipe for Final Focus design, and a set of computational tools used to implement this approach, are described herein. An example of the use of this procedure is given
Periodic orbits from Δ-modulation of stable linear systems
Xia, X.; Zinober, A.
2004-01-01
The Î�-modulated control of a single input, discrete time, linear stable system is investigated. The modulation direction is given by cTx where c â��Rn/{0} is a given, otherwise arbitrary, vector. We obtain necessary and sufficient conditions for the existence of periodic points of a finite order. Some concrete results about the existence of a certain order of periodic points are also derived. We also study the relationship between certain polyhedra and the periodicity of the Î�-modulated orb...
Probing LINEAR Collider Final Focus Systems in SuperKEKB
Thrane, Paul Conrad Vaagen
2017-01-01
A challenge for future linear collider final focus systems is the large chromaticity produced by the final quadrupoles. SuperKEKB will be correcting high levels of chromaticity using the traditional scheme which has been also proposed for the CLIC FFS. We present early simulation results indicating that lowering β*у in the SuperKEKB Low Energy Ring might be possible given on-axis injection and low bunch current, opening the possibility of testing chromaticity correction beyond FFTB level, similar to ILC and approaching that of CLIC. CLIC – Note – 1077
Optimal Robust Fault Detection for Linear Discrete Time Systems
Directory of Open Access Journals (Sweden)
Nike Liu
2008-01-01
Full Text Available This paper considers robust fault-detection problems for linear discrete time systems. It is shown that the optimal robust detection filters for several well-recognized robust fault-detection problems, such as ℋ−/ℋ∞, ℋ2/ℋ∞, and ℋ∞/ℋ∞ problems, are the same and can be obtained by solving a standard algebraic Riccati equation. Optimal filters are also derived for many other optimization criteria and it is shown that some well-studied and seeming-sensible optimization criteria for fault-detection filter design could lead to (optimal but useless fault-detection filters.
A novel linear switched reluctance motor for railway transportation systems
International Nuclear Information System (INIS)
Daldaban, Ferhat; Ustkoyuncu, Nurettin
2010-01-01
This paper presents the design and realization of a new linear switched reluctance motor (LSRM) structure, especially suitable for high-speed railway systems. The new model has a double active stator configuration and provides high force for many applications with low cost. The characteristics of the LSRM are obtained by using finite element analysis (FEA) and analytical calculations. The results of the FEA and analytical calculations are presented, and compared with experimental results. In addition, a classical double-sided LSRM (DSLSRM) is modeled with the same specifications of the new motor structure and the results are compared.
Novel Approach to Linear Accelerator Superconducting Magnet System
International Nuclear Information System (INIS)
Kashikhin, Vladimir
2011-01-01
Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.
Considering system non-linearity in transmission pricing
International Nuclear Information System (INIS)
Oloomi-Buygi, M.; Salehizadeh, M. Reza
2008-01-01
In this paper a new approach for transmission pricing is presented. The contribution of a contract on power flow of a transmission line is used as extent-of-use criterion for transmission pricing. In order to determine the contribution of each contract on power flow of each transmission line, first the contribution of each contract on each voltage angle is determined, which is called voltage angle decomposition. To this end, DC power flow is used to compute a primary solution for voltage angle decomposition. To consider the impacts of system non-linearity on voltage angle decomposition, a method is presented to determine the share of different terms of sine argument in sine value. Then the primary solution is corrected in different iterations of decoupled Newton-Raphson power flow using the presented sharing method. The presented approach is applied to a 4-bus test system and IEEE 30-bus test system and the results are analyzed. (author)
Data acquisition system for linear PSD based neutron diffractometer
International Nuclear Information System (INIS)
Pande, S.S.; Borkar, S.P.; Behere, Anita; Ghodgaonkar, M.D.
2001-01-01
Single or multi-PSD configurations are used in different neutron diffractometer setups. A data acquisition system is developed to serve the gross requirements of all the diffractometer setups. It is also customized to specific requirements of different setups. The hardware is developed as a Transputer based add-on card. Most of the hardware functionality is handled in the Transputer program thus improving throughput of the system. The card can handle 16 RDCs, a few motor controls and on/off controls. The software comprises of a front-end Windows98 application, a Transputer program and a device driver. The data acquisition system performs data acquisition, analysis, display and storage. Analysis includes converting raw data of linear PSD to equiangular format, merging and clubbing the data to make a continuous equiangular spectrum. Calibration of individual PSD is a crucial activity in correctly merging the data coming from PSDs. (author)
Control and Operation of Islanded Distribution System
DEFF Research Database (Denmark)
Mahat, Pukar
deviation and real power shift. When a distribution system, with all its generators operating at maximum power, is islanded, the frequency will go down if the total load is more than the total generation. An under-frequency load shedding procedure for islanded distribution systems with DG unit(s) based...... states. Short circuit power also changes when some of the generators in the distribution system are disconnected. This may result in elongation of fault clearing time and hence disconnection of equipments (including generators) in the distribution system or unnecessary operation of protective devices...... operational challenges. But, on the other hand, it has also opened up some opportunities. One opportunity/challenge is an islanded operation of a distribution system with DG unit(s). Islanding is a situation in which a distribution system becomes electrically isolated from the remainder of the power system...
DIAMONDS: Engineering Distributed Object Systems
National Research Council Canada - National Science Library
Cheng, Evan
1997-01-01
This report describes DIAMONDS, a research project at Syracuse University, that is dedicated to producing both a methodology and corresponding tools to assist in the development of heterogeneous distributed software...
Water sample-collection and distribution system
Brooks, R. R.
1978-01-01
Collection and distribution system samples water from six designated stations, filtered if desired, and delivers it to various analytical sensors. System may be controlled by Water Monitoring Data Acquisition System or operated manually.
The ATLAS distributed analysis system
Legger, F.
2014-01-01
In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During...
Research in Distributed Real-Time Systems
Mukkamala, R.
1997-01-01
This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.
Statistical distributions of earthquakes and related non-linear features in seismic waves
International Nuclear Information System (INIS)
Apostol, B.-F.
2006-01-01
A few basic facts in the science of the earthquakes are briefly reviewed. An accumulation, or growth, model is put forward for the focal mechanisms and the critical focal zone of the earthquakes, which relates the earthquake average recurrence time to the released seismic energy. The temporal statistical distribution for average recurrence time is introduced for earthquakes, and, on this basis, the Omori-type distribution in energy is derived, as well as the distribution in magnitude, by making use of the semi-empirical Gutenberg-Richter law relating seismic energy to earthquake magnitude. On geometric grounds, the accumulation model suggests the value r = 1/3 for the Omori parameter in the power-law of energy distribution, which leads to β = 1,17 for the coefficient in the Gutenberg-Richter recurrence law, in fair agreement with the statistical analysis of the empirical data. Making use of this value, the empirical Bath's law is discussed for the average magnitude of the aftershocks (which is 1.2 less than the magnitude of the main seismic shock), by assuming that the aftershocks are relaxation events of the seismic zone. The time distribution of the earthquakes with a fixed average recurrence time is also derived, the earthquake occurrence prediction is discussed by means of the average recurrence time and the seismicity rate, and application of this discussion to the seismic region Vrancea, Romania, is outlined. Finally, a special effect of non-linear behaviour of the seismic waves is discussed, by describing an exact solution derived recently for the elastic waves equation with cubic anharmonicities, its relevance, and its connection to the approximate quasi-plane waves picture. The properties of the seismic activity accompanying a main seismic shock, both like foreshocks and aftershocks, are relegated to forthcoming publications. (author)
Yu, Jimin; Yang, Chenchen; Tang, Xiaoming; Wang, Ping
2018-03-01
This paper investigates the H ∞ control problems for uncertain linear system over networks with random communication data dropout and actuator saturation. The random data dropout process is modeled by a Bernoulli distributed white sequence with a known conditional probability distribution and the actuator saturation is confined in a convex hull by introducing a group of auxiliary matrices. By constructing a quadratic Lyapunov function, effective conditions for the state feedback-based H ∞ controller and the observer-based H ∞ controller are proposed in the form of non-convex matrix inequalities to take the random data dropout and actuator saturation into consideration simultaneously, and the problem of non-convex feasibility is solved by applying cone complementarity linearization (CCL) procedure. Finally, two simulation examples are given to demonstrate the effectiveness of the proposed new design techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Final focus system tuning studies towards Compact Linear Collider feasibility
Marin, E.; Latina, A.; Tomás, R.; Schulte, D.
2018-01-01
In this paper we present the latest results regarding the tuning study of the baseline design of the final focus system of the Compact Linear Collider (CLIC-FFS). CLIC aims to provide collisions to the experiments at a luminosity above 1034 c m-2 s-1 . In order to deliver such luminosity in a single pass machine, the vertical beam size at the interaction point (IP) is reduced to about 1 nm, which imposes unprecedented tuning difficulties to the system. In previous studies, 90% of the machines reached 90% of the nominal luminosity at the expense of 18 000 luminosity measurements, when considering beam position monitor errors and transverse misalignments of magnets for a single beam case. In the present study, additional static imperfections as, roll misalignments, strength v2.epss are included. Moreover both e- and e+ beamlines are properly simulated. A new tuning procedure based on linear and nonlinear knobs is implemented to effectively cure the most relevant beam size aberrations at the IP. The obtained results for single and double beam studies under solely static imperfections are presented.
Distributed Cooperative Control of Nonlinear and Non-identical Multi-agent Systems
DEFF Research Database (Denmark)
Bidram, Ali; Lewis, Frank; Davoudi, Ali
2013-01-01
This paper exploits input-output feedback linearization technique to implement distributed cooperative control of multi-agent systems with nonlinear and non-identical dynamics. Feedback linearization transforms the synchronization problem for a nonlinear and heterogeneous multi-agent system...... for electric power microgrids. The effectiveness of the proposed control is verified by simulating a microgrid test system....
On Distributed Port-Hamiltonian Process Systems
Lopezlena, Ricardo; Scherpen, Jacquelien M.A.
2004-01-01
In this paper we use the term distributed port-Hamiltonian Process Systems (DPHPS) to refer to the result of merging the theory of distributed Port-Hamiltonian systems (DPHS) with the theory of process systems (PS). Such concept is useful for combining the systematic interconnection of PHS with the
Distributed Cognition and Distributed Morality: Agency, Artifacts and Systems.
Heersmink, Richard
2017-04-01
There are various philosophical approaches and theories describing the intimate relation people have to artifacts. In this paper, I explore the relation between two such theories, namely distributed cognition and distributed morality theory. I point out a number of similarities and differences in these views regarding the ontological status they attribute to artifacts and the larger systems they are part of. Having evaluated and compared these views, I continue by focussing on the way cognitive artifacts are used in moral practice. I specifically conceptualise how such artifacts (a) scaffold and extend moral reasoning and decision-making processes, (b) have a certain moral status which is contingent on their cognitive status, and (c) whether responsibility can be attributed to distributed systems. This paper is primarily written for those interested in the intersection of cognitive and moral theory as it relates to artifacts, but also for those independently interested in philosophical debates in extended and distributed cognition and ethics of (cognitive) technology.
Efficient Feedforward Linearization Technique Using Genetic Algorithms for OFDM Systems
Directory of Open Access Journals (Sweden)
García Paloma
2010-01-01
Full Text Available Feedforward is a linearization method that simultaneously offers wide bandwidth and good intermodulation distortion suppression; so it is a good choice for Orthogonal Frequency Division Multiplexing (OFDM systems. Feedforward structure consists of two loops, being necessary an accurate adjustment between them along the time, and when temperature, environmental, or operating changes are produced. Amplitude and phase imbalances of the circuit elements in both loops produce mismatched effects that lead to degrade its performance. A method is proposed to compensate these mismatches, introducing two complex coefficients calculated by means of a genetic algorithm. A full study is carried out to choose the optimal parameters of the genetic algorithm applied to wideband systems based on OFDM technologies, which are very sensitive to nonlinear distortions. The method functionality has been verified by means of simulation.
On modulated complex non-linear dynamical systems
International Nuclear Information System (INIS)
Mahmoud, G.M.; Mohamed, A.A.; Rauh, A.
1999-01-01
This paper is concerned with the development of an approximate analytical method to investigate periodic solutions and their stability in the case of modulated non-linear dynamical systems whose equation of motion is describe. Such differential equations appear, for example, in problems of colliding particle beams in high-energy accelerators or one-mass systems with two or more degrees of freedom, e.g. rotors. The significance of periodic solutions lies on the fact that all non-periodic responses, if convergent, would approach to periodic solutions at the steady-state conditions. The example shows a good agreement between numerical and analytical results for small values of ε. The effect of the periodic modulation on the stability of the 2π-periodic solutions is discussed
Thermodynamic Optimality criteria for biological systems in linear irreversible thermodynamics
International Nuclear Information System (INIS)
Chimal, J C; Sánchez, N; Ramírez, PR
2017-01-01
In this paper the methodology of the so-called Linear Irreversible Thermodynamics (LIT) is applied; although traditionally used locally to study general systems in non-equilibrium states in which it is consider both internal and external contributions to the entropy increments in order to analyze the efficiency of two coupled processes with generalized fluxes J 1 , J 2 and their corresponding forces X 1 , X 2 . We extend the former analysis to takes into account two different operating regimes namely: Omega Function and Efficient Power criterion, respectively. Results show analogies in the optimal performance between and we can say that there exist a criteria of optimization which can be used specially for biological systems where a good design of the biological parameters made by nature at maximum efficient power conditions lead to more efficient engines than those at the maximum power conditions or ecological conditions. (paper)
Linear system identification via backward-time observer models
Juang, Jer-Nan; Phan, Minh
1993-01-01
This paper presents an algorithm to identify a state-space model of a linear system using a backward-time approach. The procedure consists of three basic steps. First, the Markov parameters of a backward-time observer are computed from experimental input-output data. Second, the backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) from which a backward-time state-space model is realized using the Eigensystem Realization Algorithm. Third, the obtained backward-time state space model is converted to the usual forward-time representation. Stochastic properties of this approach will be discussed. Experimental results are given to illustrate when and to what extent this concept works.
Applying Distributed Object Technology to Distributed Embedded Control Systems
DEFF Research Database (Denmark)
Jørgensen, Bo Nørregaard; Dalgaard, Lars
2012-01-01
In this paper, we describe our Java RMI inspired Object Request Broker architecture MicroRMI for use with networked embedded devices. MicroRMI relieves the software developer from the tedious and error-prone job of writing communication protocols for interacting with such embedded devices. MicroR...... in developing control systems for distributed embedded platforms possessing severe resource restrictions.......RMI supports easy integration of high-level application specific control logic with low-level device specific control logic. Our experience from applying MicroRMI in the context of a distributed robotics control application, clearly demonstrates that it is feasible to use distributed object technology...
Thermal Distribution System | Energy Systems Integration Facility | NREL
Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows low as 10% of its full load level). The 60-ton chiller cools water with continuous thermal control
Design of Distributed Engine Control Systems with Uncertain Delay.
Directory of Open Access Journals (Sweden)
Xiaofeng Liu
Full Text Available Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS. Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.
Design of Distributed Engine Control Systems with Uncertain Delay.
Liu, Xiaofeng; Li, Yanxi; Sun, Xu
Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.
Distributed systems for protecting nuclear power stations
International Nuclear Information System (INIS)
Jover, P.
1980-05-01
The advantages of distributed control systems for the control of nuclear power stations are obviously of great interest. Some years ago, EPRI, (Electric Power Research Institute) showed that multiplexing the signals is technically feasible, that it enables the availability specifications to be met and costs to be reduced. Since then, many distributed control systems have been proposed by the manufacturers. This note offers some comments on the application of the distribution concept to protection systems -what should be distributed- and ends with a brief description of a protection system based on microprocessors for the pressurized power stations now being built in France [fr
Directory of Open Access Journals (Sweden)
Boaz Nash
2006-03-01
Full Text Available Linear dynamics in a storage ring can be described by the one-turn map matrix. In the case of a resonance where two of the eigenvalues of this matrix are degenerate, a coupling perturbation causes a mixing of the uncoupled eigenvectors. A perturbation formalism is developed to find eigenvalues and eigenvectors of the one-turn map near such a linear resonance. Damping and diffusion due to synchrotron radiation can be obtained by integrating their effects over one turn, and the coupled eigenvectors can be used to find the coupled damping and diffusion coefficients. Expressions for the coupled equilibrium emittances and beam distribution moments are then derived. In addition to the conventional instabilities at the sum, integer, and half-integer resonances, it is found that the coupling can cause an instability through antidamping near a sum resonance even when the symplectic dynamics are stable. As one application of this formalism, the case of linear synchrobetatron coupling is analyzed where the coupling is caused by dispersion in the rf cavity, or by a crab cavity. Explicit closed-form expressions for the sum/difference resonances are given along with the integer/half-integer resonances. The integer and half-integer resonances caused by coupling require particular care. We find an example of this with the case of a crab cavity for the integer resonance of the synchrotron tune. Whether or not there is an instability is determined by the value of the horizontal betatron tune, a unique feature of these coupling-caused integer or half-integer resonances. Finally, the coupled damping and diffusion coefficients along with the equilibrium invariants and projected emittances are plotted as a function of the betatron and synchrotron tunes for an example storage ring based on PEP-II.
Fernández-Fernández, Mario; Rodríguez-González, Pablo; García Alonso, J Ignacio
2016-10-01
We have developed a novel, rapid and easy calculation procedure for Mass Isotopomer Distribution Analysis based on multiple linear regression which allows the simultaneous calculation of the precursor pool enrichment and the fraction of newly synthesized labelled proteins (fractional synthesis) using linear algebra. To test this approach, we used the peptide RGGGLK as a model tryptic peptide containing three subunits of glycine. We selected glycine labelled in two 13 C atoms ( 13 C 2 -glycine) as labelled amino acid to demonstrate that spectral overlap is not a problem in the proposed methodology. The developed methodology was tested first in vitro by changing the precursor pool enrichment from 10 to 40% of 13 C 2 -glycine. Secondly, a simulated in vivo synthesis of proteins was designed by combining the natural abundance RGGGLK peptide and 10 or 20% 13 C 2 -glycine at 1 : 1, 1 : 3 and 3 : 1 ratios. Precursor pool enrichments and fractional synthesis values were calculated with satisfactory precision and accuracy using a simple spreadsheet. This novel approach can provide a relatively rapid and easy means to measure protein turnover based on stable isotope tracers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Modeling exposure–lag–response associations with distributed lag non-linear models
Gasparrini, Antonio
2014-01-01
In biomedical research, a health effect is frequently associated with protracted exposures of varying intensity sustained in the past. The main complexity of modeling and interpreting such phenomena lies in the additional temporal dimension needed to express the association, as the risk depends on both intensity and timing of past exposures. This type of dependency is defined here as exposure–lag–response association. In this contribution, I illustrate a general statistical framework for such associations, established through the extension of distributed lag non-linear models, originally developed in time series analysis. This modeling class is based on the definition of a cross-basis, obtained by the combination of two functions to flexibly model linear or nonlinear exposure-responses and the lag structure of the relationship, respectively. The methodology is illustrated with an example application to cohort data and validated through a simulation study. This modeling framework generalizes to various study designs and regression models, and can be applied to study the health effects of protracted exposures to environmental factors, drugs or carcinogenic agents, among others. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:24027094
Distributed computer systems theory and practice
Zedan, H S M
2014-01-01
Distributed Computer Systems: Theory and Practice is a collection of papers dealing with the design and implementation of operating systems, including distributed systems, such as the amoeba system, argus, Andrew, and grapevine. One paper discusses the concepts and notations for concurrent programming, particularly language notation used in computer programming, synchronization methods, and also compares three classes of languages. Another paper explains load balancing or load redistribution to improve system performance, namely, static balancing and adaptive load balancing. For program effici
Linear homotopy solution of nonlinear systems of equations in geodesy
Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.
2010-01-01
A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.
Directory of Open Access Journals (Sweden)
J. Szilagyi
2009-05-01
Full Text Available Under simplifying conditions catchment-scale vapor pressure at the drying land surface can be calculated as a function of its watershed-representative temperature (<T_{s}> by the wet-surface equation (WSE, similar to the wet-bulb equation in meteorology for calculating the dry-bulb thermometer vapor pressure of the Complementary Relationship of evaporation. The corresponding watershed ET rate,
Online Scheduling in Distributed Message Converter Systems
Risse, Thomas; Wombacher, Andreas; Surridge, Mike; Taylor, Steve; Aberer, Karl
The optimal distribution of jobs among hosts in distributed environments is an important factor to achieve high performance. The optimal strategy depends on the application. In this paper we present a new online scheduling strategy for distributed EDI converter system. The strategy is based on the
Event-triggered output feedback control for distributed networked systems.
Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa
2016-01-01
This paper addresses the problem of output-feedback communication and control with event-triggered framework in the context of distributed networked control systems. The design problem of the event-triggered output-feedback control is proposed as a linear matrix inequality (LMI) feasibility problem. The scheme is developed for the distributed system where only partial states are available. In this scheme, a subsystem uses local observers and share its information to its neighbors only when the subsystem's local error exceeds a specified threshold. The developed method is illustrated by using a coupled cart example from the literature. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Radii of Solvability and Unsolvability of Linear Systems
Czech Academy of Sciences Publication Activity Database
Hladík, M.; Rohn, Jiří
2016-01-01
Roč. 503, 15 August (2016), s. 120-134 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : interval matrix * linear equations * linear inequalities * matrix norm Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016
Directory of Open Access Journals (Sweden)
Yueyang Li
2014-01-01
Full Text Available This paper investigates the H∞ fixed-lag fault estimator design for linear discrete time-varying (LDTV systems with intermittent measurements, which is described by a Bernoulli distributed random variable. Through constructing a novel partially equivalent dynamic system, the fault estimator design is converted into a deterministic quadratic minimization problem. By applying the innovation reorganization technique and the projection formula in Krein space, a necessary and sufficient condition is obtained for the existence of the estimator. The parameter matrices of the estimator are derived by recursively solving two standard Riccati equations. An illustrative example is provided to show the effectiveness and applicability of the proposed algorithm.
Numerical Study of Concentration Characteristics of Linear Fresnel Reflector System
International Nuclear Information System (INIS)
Lee, Hyun Jin; Kim, Jong Kyu; Lee, Sang Nam
2015-01-01
In this study, we numerically investigated the concentration characteristics of a linear Fresnel reflector system that can drive a solar thermal absorption refrigeration system to be installed in Saudi Arabia. Using an optical modeling program based on the Monte Carlo ray-tracing method, we simulated the concentrated solar flux, concentration efficiency, and concentrated solar energy on four representative days of the year - the vernal equinox, summer solstice, autumnal equinox, and winter solstice. Except the winter solstice, the concentrations were approximately steady from 9 AM to 15 PM, and the concentration efficiencies exceed 70%. Moreover, the maximum solar flux around the solar receiver center changes only within the range of 13.0 - 14.6 kW/m 2 . When we investigated the effects of the receiver installation height, reflector width, and reflector gap, the optimal receiver installation height was found to be 5 m. A smaller reflector width had a greater concentration efficiency. However, the design of the reflector width should be based on the capacity of the refrigeration system because it dominantly affects the concentrated solar energy. The present study was an essential prerequisite for thermal analyses of the solar receiver. Thus, an optical-thermal integration study in the future will assist with the performance prediction and design of the entire system
Numerical Study of Concentration Characteristics of Linear Fresnel Reflector System
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyun Jin [Kookmin Univ., Seoul (Korea, Republic of); Kim, Jong Kyu; Lee, Sang Nam [Korea Institute of Energy Research, Daejeon (Korea, Republic of)
2015-12-15
In this study, we numerically investigated the concentration characteristics of a linear Fresnel reflector system that can drive a solar thermal absorption refrigeration system to be installed in Saudi Arabia. Using an optical modeling program based on the Monte Carlo ray-tracing method, we simulated the concentrated solar flux, concentration efficiency, and concentrated solar energy on four representative days of the year - the vernal equinox, summer solstice, autumnal equinox, and winter solstice. Except the winter solstice, the concentrations were approximately steady from 9 AM to 15 PM, and the concentration efficiencies exceed 70%. Moreover, the maximum solar flux around the solar receiver center changes only within the range of 13.0 - 14.6 kW/m{sup 2}. When we investigated the effects of the receiver installation height, reflector width, and reflector gap, the optimal receiver installation height was found to be 5 m. A smaller reflector width had a greater concentration efficiency. However, the design of the reflector width should be based on the capacity of the refrigeration system because it dominantly affects the concentrated solar energy. The present study was an essential prerequisite for thermal analyses of the solar receiver. Thus, an optical-thermal integration study in the future will assist with the performance prediction and design of the entire system.
Periodic inventory system in cafeteria using linear programming
Usop, Mohd Fais; Ishak, Ruzana; Hamdan, Ahmad Ridhuan
2017-11-01
Inventory management is an important factor in running a business. It plays a big role of managing the stock in cafeteria. If the inventories are failed to be managed wisely, it will affect the profit of the cafeteria. Therefore, the purpose of this study is to find the solution of the inventory management in cafeteria. Most of the cafeteria in Malaysia did not manage their stock well. Therefore, this study is to propose a database system of inventory management and to develop the inventory model in cafeteria management. In this study, new database system to improve the management of the stock in a weekly basis will be provided using Linear Programming Model to get the optimal range of the inventory needed for selected categories. Data that were collected by using the Periodic Inventory System at the end of the week within three months period being analyzed by using the Food Stock-take Database. The inventory model was developed from the collected data according to the category of the inventory in the cafeteria. Results showed the effectiveness of using the Periodic Inventory System and will be very helpful to the cafeteria management in organizing the inventory. Moreover, the findings in this study can reduce the cost of operation and increased the profit.
Protection of Distribution Systems with Distributed Energy Resources
DEFF Research Database (Denmark)
Bak-Jensen, Birgitte; Browne, Matthew; Calone, Roberto
of 17 months of work of the Joint Working Group B5/C6.26/CIRED “Protection of Distribution Systems with Distributed Energy Resources”. The working group used the CIGRE report TB421 “The impact of Renewable Energy Sources and Distributed Generation on Substation Protection and Automation”, published...... by WG B5.34 as the entry document for the work on this report. In doing so, the group aligned the content and the scope of this report, the network structures considered, possible islanding, standardized communication and adaptive protection, interface protection, connection schemes and protection...... are listed (chapter 3). The first main part of the report starts with a summary of the backgrounds on DER and current practices in protection at the distribution level (chapter 4). This chapter contains an analysis of CIGRE TB421, protection relevant characteristics of DER, a review of current practices...
Incomplete factorization technique for positive definite linear systems
International Nuclear Information System (INIS)
Manteuffel, T.A.
1980-01-01
This paper describes a technique for solving the large sparse symmetric linear systems that arise from the application of finite element methods. The technique combines an incomplete factorization method called the shifted incomplete Cholesky factorization with the method of generalized conjugate gradients. The shifted incomplete Cholesky factorization produces a splitting of the matrix A that is dependent upon a parameter α. It is shown that if A is positive definite, then there is some α for which this splitting is possible and that this splitting is at least as good as the Jacobi splitting. The method is shown to be more efficient on a set of test problems than either direct methods or explicit iteration schemes
Stability and complexity of small random linear systems
Hastings, Harold
2010-03-01
We explore the stability of the small random linear systems, typically involving 10-20 variables, motivated by dynamics of the world trade network and the US and Canadian power grid. This report was prepared as an account of work sponsored by an agency of the US Government. Neither the US Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the US Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the US Government or any agency thereof.
IMPROVING THE PERFORMANCE OF THE LINEAR SYSTEMS SOLVERS USING CUDA
Directory of Open Access Journals (Sweden)
BOGDAN OANCEA
2012-05-01
Full Text Available Parallel computing can offer an enormous advantage regarding the performance for very large applications in almost any field: scientific computing, computer vision, databases, data mining, and economics. GPUs are high performance many-core processors that can obtain very high FLOP rates. Since the first idea of using GPU for general purpose computing, things have evolved and now there are several approaches to GPU programming: CUDA from NVIDIA and Stream from AMD. CUDA is now a popular programming model for general purpose computations on GPU for C/C++ programmers. A great number of applications were ported to CUDA programming model and they obtain speedups of orders of magnitude comparing to optimized CPU implementations. In this paper we present an implementation of a library for solving linear systems using the CCUDA framework. We present the results of performance tests and show that using GPU one can obtain speedups of about of approximately 80 times comparing with a CPU implementation.
Compressive System Identification in the Linear Time-Invariant framework
Toth, Roland
2011-12-01
Selection of an efficient model parametrization (model order, delay, etc.) has crucial importance in parametric system identification. It navigates a trade-off between representation capabilities of the model (structural bias) and effects of over-parametrization (variance increase of the estimates). There exists many approaches to this widely studied problem in terms of statistical regularization methods and information criteria. In this paper, an alternative ℓ 1 regularization scheme is proposed for estimation of sparse linear-regression models based on recent results in compressive sensing. It is shown that the proposed scheme provides consistent estimation of sparse models in terms of the so-called oracle property, it is computationally attractive for large-scale over-parameterized models and it is applicable in case of small data sets, i.e., underdetermined estimation problems. The performance of the approach w.r.t. other regularization schemes is demonstrated in an extensive Monte Carlo study. © 2011 IEEE.
Strategy Guideline. Compact Air Distribution Systems
Energy Technology Data Exchange (ETDEWEB)
Burdick, Arlan [IBACOS, Inc., Pittsburgh, PA (United States)
2013-06-01
This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.
Kartono; Suryadi, D.; Herman, T.
2018-01-01
This study aimed to analyze the enhancement of non-linear learning (NLL) in the online tutorial (OT) content to students’ knowledge of normal distribution application (KONDA). KONDA is a competence expected to be achieved after students studied the topic of normal distribution application in the course named Education Statistics. The analysis was performed by quasi-experiment study design. The subject of the study was divided into an experimental class that was given OT content in NLL model and a control class which was given OT content in conventional learning (CL) model. Data used in this study were the results of online objective tests to measure students’ statistical prior knowledge (SPK) and students’ pre- and post-test of KONDA. The statistical analysis test of a gain score of KONDA of students who had low and moderate SPK’s scores showed students’ KONDA who learn OT content with NLL model was better than students’ KONDA who learn OT content with CL model. Meanwhile, for students who had high SPK’s scores, the gain score of students who learn OT content with NLL model had relatively similar with the gain score of students who learn OT content with CL model. Based on those findings it could be concluded that the NLL model applied to OT content could enhance KONDA of students in low and moderate SPK’s levels. Extra and more challenging didactical situation was needed for students in high SPK’s level to achieve the significant gain score.
Rubio, Francisco J.
2016-02-09
We study Bayesian linear regression models with skew-symmetric scale mixtures of normal error distributions. These kinds of models can be used to capture departures from the usual assumption of normality of the errors in terms of heavy tails and asymmetry. We propose a general noninformative prior structure for these regression models and show that the corresponding posterior distribution is proper under mild conditions. We extend these propriety results to cases where the response variables are censored. The latter scenario is of interest in the context of accelerated failure time models, which are relevant in survival analysis. We present a simulation study that demonstrates good frequentist properties of the posterior credible intervals associated with the proposed priors. This study also sheds some light on the trade-off between increased model flexibility and the risk of over-fitting. We illustrate the performance of the proposed models with real data. Although we focus on models with univariate response variables, we also present some extensions to the multivariate case in the Supporting Information.
Internet and redefining tourism distribution system
Directory of Open Access Journals (Sweden)
Đelić Tanja
2004-01-01
Full Text Available Since the introduction, computerized systems that manage reservation systems, rapidly became inevitable distribution channel for all service companies in tourist industry. GDS in reality using communication network connects service offer, selling personnel and air companies.
DC Distribution Systems and Microgrids
DEFF Research Database (Denmark)
Dragicevic, Tomislav; Anvari-Moghaddam, Amjad; Quintero, Juan Carlos Vasquez
2017-01-01
summarized. Due to its attractive characteristics in terms of compliance with modern generation, storage and electronic load technologies, high reliability and current carrying capacity, as well as simple control, DC systems are already an indispensable part of power systems. Moreover, the existing......A qualitative overview of different hardware topologies and control systems for DC MGs has been presented in this chapter. Some challenges and design considerations of DC protections systems have also been discussed. Finally, applications of DC MGs in emerging smart grid applications have been...... challenges such as protection issues will be effectively resolved in the near future due to fast progress of semiconductor technology which is a key enabler cheap and reliable future DC solid-state protection systems. Therefore, it is the view of the author that more and more DC systems will appear...
Directory of Open Access Journals (Sweden)
Xin Su
2015-01-01
Full Text Available There have been many studies regarding antenna polarization; however, there have been few publications on the analysis of the channel capacity for polarized antenna systems using the beamforming technique. According to Chung et al., the channel capacity is determined by the density of scatterers and the transmission power, which is obtained based on the assumption that scatterers are uniformly distributed on a 3D spherical scattering model. However, it contradicts the practical scenario, where scatterers may not be uniformly distributed under outdoor environment, and lacks the consideration of fading channel gain. In this study, we derive the channel capacity of polarized uniform linear array (PULA systems using the beamforming technique in a practical scattering environment. The results show that, for PULA systems, the channel capacity, which is boosted by beamforming diversity, can be determined using the channel gain, beam radiation pattern, and beamforming diversity order (BDO, where the BDO is dependent on the antenna characteristics and array configurations.
Effects of pole flux distribution in a homopolar linear synchronous machine
Balchin, M. J.; Eastham, J. F.; Coles, P. C.
1994-05-01
Linear forms of synchronous electrical machine are at present being considered as the propulsion means in high-speed, magnetically levitated (Maglev) ground transportation systems. A homopolar form of machine is considered in which the primary member, which carries both ac and dc windings, is supported on the vehicle. Test results and theoretical predictions are presented for a design of machine intended for driving a 100 passenger vehicle at a top speed of 400 km/h. The layout of the dc magnetic circuit is examined to locate the best position for the dc winding from the point of view of minimum core weight. Measurements of flux build-up under the machine at different operating speeds are given for two types of secondary pole: solid and laminated. The solid pole results, which are confirmed theoretically, show that this form of construction is impractical for high-speed drives. Measured motoring characteristics are presented for a short length of machine which simulates conditions at the leading and trailing ends of the full-sized machine. Combination of the results with those from a cylindrical version of the machine make it possible to infer the performance of the full-sized traction machine. This gives 0.8 pf and 0.9 efficiency at 300 km/h, which is much better than the reported performance of a comparable linear induction motor (0.52 pf and 0.82 efficiency). It is therefore concluded that in any projected high-speed Maglev systems, a linear synchronous machine should be the first choice as the propulsion means.
Economic Models and Algorithms for Distributed Systems
Neumann, Dirk; Altmann, Jorn; Rana, Omer F
2009-01-01
Distributed computing models for sharing resources such as Grids, Peer-to-Peer systems, or voluntary computing are becoming increasingly popular. This book intends to discover fresh avenues of research and amendments to existing technologies, aiming at the successful deployment of commercial distributed systems
Hybrid solar lighting distribution systems and components
Muhs, Jeffrey D [Lenoir City, TN; Earl, Dennis D [Knoxville, TN; Beshears, David L [Knoxville, TN; Maxey, Lonnie C [Powell, TN; Jordan, John K [Oak Ridge, TN; Lind, Randall F [Lenoir City, TN
2011-07-05
A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.
Formal Specification of Distributed Information Systems
Vis, J.; Brinksma, Hendrik; de By, R.A.; de By, R.A.
The design of distributed information systems tends to be complex and therefore error-prone. However, in the field of monolithic, i.e. non-distributed, information systems much has already been achieved, and by now, the principles of their design seem to be fairly well-understood. The past decade
Silver disinfection in water distribution systems
Silvestry Rodriguez, Nadia
Silver was evaluated as disinfectant to maintain water quality in water distribution system. It was used to inhibit growth of two opportunistic bacteria in planktonik form and in biofilm formation in Robbins devices with stainless steel and PVC surfaces. The results of this work show that silver is a potential secondary disinfectant to be used in water distribution systems.
Rapid Prototyping of Formally Modelled Distributed Systems
Buchs, Didier; Buffo, Mathieu; Titsworth, Frances M.
1999-01-01
This paper presents various kinds of prototypes, used in the prototyping of formally modelled distributed systems. It presents the notions of prototyping techniques and prototype evolution, and shows how to relate them to the software life-cycle. It is illustrated through the use of the formal modelling language for distributed systems CO-OPN/2.
Programming a Distributed System Using Shared Objects
Tanenbaum, A.S.; Bal, H.E.; Kaashoek, M.F.
1993-01-01
Building the hardware for a high-performance distributed computer system is a lot easier than building its software. The authors describe a model for programming distributed systems based on abstract data types that can be replicated on all machines that need them. Read operations are done locally,
BIOFILMS IN DRINKING WATER DISTRIBUTION SYSTEMS
Virtually anywhere a surface comes into contact with the water in a distribution system, one can find biofilms. Biofilms are formed in distribution system pipelines when microbial cells attach to pipe surfaces and multiply to form a film or slime layer on the pipe. Probably withi...
Grid-connected distributed solar power systems
Moyle, R.; Chernoff, H.; Schweizer, T.
This paper discusses some important, though often ignored, technical and economic issues of distributed solar power systems: protection of the utility system and nonsolar customers requires suitable interfaced equipment. Purchase criteria must mirror reality; most analyses use life-cycle costing with low discount rates - most buyers use short payback periods. Distributing, installing, and marketing small, distributed solar systems is more costly than most analyses estimate. Results show that certain local conditions and uncommon purchase considerations can combine to make small, distributed solar power attractive, but lower interconnect costs (per kW), lower marketing and product distribution costs, and more favorable purchase criteria make large, centralized solar energy more attractive. Specifically, the value of dispersed solar systems to investors and utilities can be higher than $2000/kw. However, typical residential owners place a value of well under $1000 on the installed system.
Sampled-data models for linear and nonlinear systems
Yuz, Juan I
2014-01-01
Sampled-data Models for Linear and Nonlinear Systems provides a fresh new look at a subject with which many researchers may think themselves familiar. Rather than emphasising the differences between sampled-data and continuous-time systems, the authors proceed from the premise that, with modern sampling rates being as high as they are, it is becoming more appropriate to emphasise connections and similarities. The text is driven by three motives: · the ubiquity of computers in modern control and signal-processing equipment means that sampling of systems that really evolve continuously is unavoidable; · although superficially straightforward, sampling can easily produce erroneous results when not treated properly; and · the need for a thorough understanding of many aspects of sampling among researchers and engineers dealing with applications to which they are central. The authors tackle many misconceptions which, although appearing reasonable at first sight, are in fact either p...
Reliability assessment of distribution power systems including distributed generations
International Nuclear Information System (INIS)
Megdiche, M.
2004-12-01
Nowadays, power systems have reached a good level of reliability. Nevertheless, considering the modifications induced by the connections of small independent producers to distribution networks, there's a need to assess the reliability of these new systems. Distribution networks present several functional characteristics, highlighted by the qualitative study of the failures, as dispersed loads at several places, variable topology and some electrotechnical phenomena which must be taken into account to model the events that can occur. The adopted reliability calculations method is Monte Carlo simulations, the probabilistic method most powerful and most flexible to model complex operating of the distribution system. We devoted a first part on the case of a 20 kV feeder to which a cogeneration unit is connected. The method was applied to a software of stochastic Petri nets simulations. Then a second part related to the study of a low voltage power system supplied by dispersed generations. Here, the complexity of the events required to code the method in an environment of programming allowing the use of power system calculations (load flow, short-circuit, load shedding, management of units powers) in order to analyse the system state for each new event. (author)
DEFF Research Database (Denmark)
Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian
2014-01-01
In the paper, three frequently used operation optimisation methods are examined with respect to their impact on operation management of the combined utility technologies for electric power and DH (district heating) of eastern Denmark. The investigation focusses on individual plant operation...... differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used...... as a benchmark, as this type is frequently used, and has the lowest amount of constraints of the three. A comparison of the optimised operation of a number of units shows significant differences between the three methods. Compared to the reference, the use of binary integer variables, increases operation...
Large scale network-centric distributed systems
Sarbazi-Azad, Hamid
2014-01-01
A highly accessible reference offering a broad range of topics and insights on large scale network-centric distributed systems Evolving from the fields of high-performance computing and networking, large scale network-centric distributed systems continues to grow as one of the most important topics in computing and communication and many interdisciplinary areas. Dealing with both wired and wireless networks, this book focuses on the design and performance issues of such systems. Large Scale Network-Centric Distributed Systems provides in-depth coverage ranging from ground-level hardware issu
2-D linear motion system. Innovative technology summary report
International Nuclear Information System (INIS)
1998-11-01
The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker trademark, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m 2 of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However
Differences Between Distributed and Parallel Systems
Energy Technology Data Exchange (ETDEWEB)
Brightwell, R.; Maccabe, A.B.; Rissen, R.
1998-10-01
Distributed systems have been studied for twenty years and are now coming into wider use as fast networks and powerful workstations become more readily available. In many respects a massively parallel computer resembles a network of workstations and it is tempting to port a distributed operating system to such a machine. However, there are significant differences between these two environments and a parallel operating system is needed to get the best performance out of a massively parallel system. This report characterizes the differences between distributed systems, networks of workstations, and massively parallel systems and analyzes the impact of these differences on operating system design. In the second part of the report, we introduce Puma, an operating system specifically developed for massively parallel systems. We describe Puma portals, the basic building blocks for message passing paradigms implemented on top of Puma, and show how the differences observed in the first part of the report have influenced the design and implementation of Puma.
Asymptotic work distributions in driven bistable systems
International Nuclear Information System (INIS)
Nickelsen, D; Engel, A
2012-01-01
The asymptotic tails of the probability distributions of thermodynamic quantities convey important information about the physics of nanoscopic systems driven out of equilibrium. We apply a recently proposed method to analytically determine the asymptotics of work distributions in Langevin systems to an one-dimensional model of single-molecule force spectroscopy. The results are in excellent agreement with numerical simulations, even in the centre of the distributions. We compare our findings with a recent proposal for an universal form of the asymptotics of work distributions in single-molecule experiments.
Centralised and distributed electricity systems
International Nuclear Information System (INIS)
Bouffard, Francois; Kirschen, Daniel S.
2008-01-01
Because of their high level of integration, centralised energy supply systems are vulnerable to disturbances in the supply chain. In the case of electricity especially, this supply paradigm is losing some of its appeal. Apart from vulnerability, a number of further aggravating factors are reducing its attractiveness. They include the depletion of fossil fuels and their climate change impact, the insecurities affecting energy transportation infrastructure, and the desire of investors to minimise risks through the deployment of smaller-scale, modular generation and transmission systems. Small-scale decentralised systems, where energy production and consumption are usually tightly coupled, are emerging as a viable alternative. They are less dependent upon centralised energy supply, and can sometimes use more than one energy source. They are less sensitive to the uncertain availability of remote primary energy and transportation networks. In addition, the close connection between energy generation and use makes decentralised systems cleaner because they are most often based on renewable energies or on high-efficiency fossil fuel-based technologies such as combined heat and power (CHP). Fully decentralised energy supply is not currently possible or even truly desirable. The secure and clean energy systems of the future will be those flexible enough to allow for a spectrum of hybrid modes of operation and investment, combining the best attributes of both paradigms. A large part of this flexibility will come from the networks that make it possible to combine these two types of infrastructures and obtain the benefits of both approaches
Light distribution system comprising spectral conversion means
DEFF Research Database (Denmark)
2012-01-01
, longer wavelength,a spectral conversion characteristics of the spectral conversion fibre being essentially determined by the spectral absorption and emission properties of the photoluminescent agent, the amount of photo- luminescent agent,and the distribution of the photoluminescent agent in the spectral......System (200, 300) for the distribution of white light, having a supply side (201, 301, 401) and a delivery side (202, 302, 402), the system being configured for guiding light with a multitude of visible wavelengths in a propagation direction P from the supply side to the distribution side...... of providing a light distribution system and a method of correcting the spectral transmission characteristics of a light distribution system are disclosed....
Evaluation of two typical distributed energy systems
Han, Miaomiao; Tan, Xiu
2018-03-01
According to the two-natural gas distributed energy system driven by gas engine driven and gas turbine, in this paper, the first and second laws of thermodynamics are used to measure the distributed energy system from the two parties of “quantity” and “quality”. The calculation results show that the internal combustion engine driven distributed energy station has a higher energy efficiency, but the energy efficiency is low; the gas turbine driven distributed energy station energy efficiency is high, but the primary energy utilization rate is relatively low. When configuring the system, we should determine the applicable natural gas distributed energy system technology plan and unit configuration plan according to the actual load factors of the project and the actual factors such as the location, background and environmental requirements of the project. “quality” measure, the utilization of waste heat energy efficiency index is proposed.
PFS: a distributed and customizable file system
Bosch, H.G.P.; Mullender, Sape J.
1996-01-01
In this paper we present our ongoing work on the Pegasus File System (PFS), a distributed and customizable file system that can be used for off-line file system experiments and on-line file system storage. PFS is best described as an object-oriented component library from which either a true file
Low-Rank Linear Dynamical Systems for Motor Imagery EEG.
Zhang, Wenchang; Sun, Fuchun; Tan, Chuanqi; Liu, Shaobo
2016-01-01
The common spatial pattern (CSP) and other spatiospectral feature extraction methods have become the most effective and successful approaches to solve the problem of motor imagery electroencephalography (MI-EEG) pattern recognition from multichannel neural activity in recent years. However, these methods need a lot of preprocessing and postprocessing such as filtering, demean, and spatiospectral feature fusion, which influence the classification accuracy easily. In this paper, we utilize linear dynamical systems (LDSs) for EEG signals feature extraction and classification. LDSs model has lots of advantages such as simultaneous spatial and temporal feature matrix generation, free of preprocessing or postprocessing, and low cost. Furthermore, a low-rank matrix decomposition approach is introduced to get rid of noise and resting state component in order to improve the robustness of the system. Then, we propose a low-rank LDSs algorithm to decompose feature subspace of LDSs on finite Grassmannian and obtain a better performance. Extensive experiments are carried out on public dataset from "BCI Competition III Dataset IVa" and "BCI Competition IV Database 2a." The results show that our proposed three methods yield higher accuracies compared with prevailing approaches such as CSP and CSSP.
A virtual linear accelerator for verification of treatment planning systems
International Nuclear Information System (INIS)
Wieslander, Elinore
2000-01-01
A virtual linear accelerator is implemented into a commercial pencil-beam-based treatment planning system (TPS) with the purpose of investigating the possibility of verifying the system using a Monte Carlo method. The characterization set for the TPS includes depth doses, profiles and output factors, which is generated by Monte Carlo simulations. The advantage of this method over conventional measurements is that variations in accelerator output are eliminated and more complicated geometries can be used to study the performance of a TPS. The difference between Monte Carlo simulated and TPS calculated profiles and depth doses in the characterization geometry is less than ±2% except for the build-up region. This is of the same order as previously reported results based on measurements. In an inhomogeneous, mediastinum-like case, the deviations between TPS and simulations are small in the unit-density regions. In low-density regions, the TPS overestimates the dose, and the overestimation increases with increasing energy from 3.5% for 6 MV to 9.5% for 18 MV. This result points out the widely known fact that the pencil beam concept does not handle changes in lateral electron transport, nor changes in scatter due to lateral inhomogeneities. It is concluded that verification of a pencil-beam-based TPS with a Monte Carlo based virtual accelerator is possible, which facilitates the verification procedure. (author)
Sequential Service Restoration for Unbalanced Distribution Systems and Microgrids
International Nuclear Information System (INIS)
Chen, Bo; Chen, Chen; Wang, Jianhui; Butler-Purry, Karen L.
2017-01-01
The resilience and reliability of modern power systems are threatened by increasingly severe weather events and cyber-physical security events. An effective restoration methodology is desired to optimally integrate emerging smart grid technologies and pave the way for developing self-healing smart grids. In this paper, a sequential service restoration (SSR) framework is proposed to generate restoration solutions for distribution systems and microgrids in the event of large-scale power outages. The restoration solution contains a sequence of control actions that properly coordinate switches, distributed generators, and switchable loads to form multiple isolated microgrids. The SSR can be applied for three-phase unbalanced distribution systems and microgrids and can adapt to various operation conditions. Mathematical models are introduced for three-phase unbalanced power flow, voltage regulators, transformers, and loads. Furthermore, the SSR problem is formulated as a mixed-integer linear programming model, and its effectiveness is evaluated via the modified IEEE 123 node test feeder.
Archtecture of distributed real-time systems
Wing Leung, Cheuk
2013-01-01
CRAFTERS (Constraint and Application Driven Framework for Tailoring Embedded Real-time System) project aims to address the problem of uncertainty and heterogeneity in a distributed system by providing seamless, portable connectivity and middleware. This thesis contributes to the project by investigating the techniques that can be used in a distributed real-time embedded system. The conclusion is that, there is a list of specifications to be meet in order to provide a transparent and real-time...
Popov–Belevitch–Hautus type tests for the controllability of linear complementarity systems
Camlibel, M. Kanat
2007-01-01
It is well-known that checking certain controllability properties of very simple piecewise linear systems are undecidable problems. This paper deals with the controllability problem of a class of piecewise linear systems, known as linear complementarity systems. By exploiting the underlying
Support system for ATLAS distributed computing operations
Kishimoto, Tomoe; The ATLAS collaboration
2018-01-01
The ATLAS distributed computing system has allowed the experiment to successfully meet the challenges of LHC Run 2. In order for distributed computing to operate smoothly and efficiently, several support teams are organized in the ATLAS experiment. The ADCoS (ATLAS Distributed Computing Operation Shifts) is a dedicated group of shifters who follow and report failing jobs, failing data transfers between sites, degradation of ATLAS central computing services, and more. The DAST (Distributed Analysis Support Team) provides user support to resolve issues related to running distributed analysis on the grid. The CRC (Computing Run Coordinator) maintains a global view of the day-to-day operations. In this presentation, the status and operational experience of the support system for ATLAS distributed computing in LHC Run 2 will be reported. This report also includes operations experience from the grid site point of view, and an analysis of the errors that create the biggest waste of wallclock time. The report of oper...
A DISTRIBUTED SMART HOME ARTIFICIAL INTELLIGENCE SYSTEM
DEFF Research Database (Denmark)
Lynggaard, Per
2013-01-01
A majority of the research performed today explore artificial intelligence in smart homes by using a centralized approach where a smart home server performs the necessary calculations. This approach has some disadvantages that can be overcome by shifting focus to a distributed approach where...... the artificial intelligence system is implemented as distributed as agents running parts of the artificial intelligence system. This paper presents a distributed smart home architecture that distributes artificial intelligence in smart homes and discusses the pros and cons of such a concept. The presented...... distributed model is a layered model. Each layer offers a different complexity level of the embedded distributed artificial intelligence. At the lowest layer smart objects exists, they are small cheap embedded microcontroller based smart devices that are powered by batteries. The next layer contains a more...
Parallel and Distributed System Simulation
Dongarra, Jack
1998-01-01
This exploratory study initiated our research into the software infrastructure necessary to support the modeling and simulation techniques that are most appropriate for the Information Power Grid. Such computational power grids will use high-performance networking to connect hardware, software, instruments, databases, and people into a seamless web that supports a new generation of computation-rich problem solving environments for scientists and engineers. In this context we looked at evaluating the NetSolve software environment for network computing that leverages the potential of such systems while addressing their complexities. NetSolve's main purpose is to enable the creation of complex applications that harness the immense power of the grid, yet are simple to use and easy to deploy. NetSolve uses a modular, client-agent-server architecture to create a system that is very easy to use. Moreover, it is designed to be highly composable in that it readily permits new resources to be added by anyone willing to do so. In these respects NetSolve is to the Grid what the World Wide Web is to the Internet. But like the Web, the design that makes these wonderful features possible can also impose significant limitations on the performance and robustness of a NetSolve system. This project explored the design innovations that push the performance and robustness of the NetSolve paradigm as far as possible without sacrificing the Web-like ease of use and composability that make it so powerful.
Míguez, David G; McGraw, Patrick; Muñuzuri, Alberto P; Menzinger, Michael
2009-08-01
We studied the response of a linearly growing domain of the oscillatory chemical chlorine dioxide-iodide-malonic acid (CDIMA) medium to periodic forcing at its growth boundary. The medium is Hopf-, as well as Turing-unstable and the system is convectively unstable. The results confirm numerical predictions that two distinct modes of pattern can be excited by controlling the driving frequency at the boundary, a flow-distributed-oscillation (FDO) mode of traveling waves at low values of the forcing frequency f , and a mode of stationary Turing patterns at high values of f . The wavelengths and phase velocities of the experimental patterns were compared quantitatively with results from dynamical simulations and with predictions from linear dispersion relations. The results for the FDO waves agreed well with these predictions, and obeyed the kinematic relations expected for phase waves with frequencies selected by the boundary driving frequency. Turing patterns were also generated within the predicted range of forcing frequencies, but these developed into two-dimensional structures which are not fully accounted for by the one-dimensional numerical and analytical models. The Turing patterns excited by boundary forcing persist when the forcing is removed, demonstrating the bistability of the unforced, constant size medium. Dynamical simulations at perturbation frequencies other than those of the experiments showed that in certain ranges of forcing frequency, FDO waves become unstable, breaking up into harmonic waves of different frequency and wavelength and phase velocity.
Integrating photovoltaics into utility distribution systems
International Nuclear Information System (INIS)
Zaininger, H.W.; Barnes, P.R.
1995-01-01
Electric utility distribution system impacts associated with the integration of distributed photovoltaic (PV) energy sources vary from site to site and utility to utility. The objective of this paper is to examine several utility- and site-specific conditions which may affect economic viability of distributed PV applications to utility systems. Assessment methodology compatible with technical and economic assessment techniques employed by utility engineers and planners is employed to determine PV benefits for seven different utility systems. The seven case studies are performed using utility system characteristics and assumptions obtained from appropriate utility personnel. The resulting site-specific distributed PV benefits increase nonsite-specific generation system benefits available to central station PV plants as much as 46%, for one utility located in the Southwest
Equilibrium distribution function in collisionless systems
International Nuclear Information System (INIS)
Pergamenshchik, V.M.
1988-01-01
Collisionless systems of a large number of N particles interacting by Coulomb forces are widely spread in cosmic and laboratory plasma. A statistical theory of equilibrium state of collisionless Coulomb systems which evolution obeys Vlasov equation is proposed. The developed formalism permits a sequential consideration of such distributed in one-particle six-dimensional phase space of a system and to obtain a simple result: equilibrium distribution function has the form of Fermi-Dirac distribution and doesn't depend on initial state factors
Advanced smartgrids for distribution system operators
Boillot, Marc
2014-01-01
The dynamic of the Energy Transition is engaged in many region of the World. This is a real challenge for electric systems and a paradigm shift for existing distribution networks. With the help of "advanced" smart technologies, the Distribution System Operators will have a central role to integrate massively renewable generation, electric vehicle and demand response programs. Many projects are on-going to develop and assess advanced smart grids solutions, with already some lessons learnt. In the end, the Smart Grid is a mean for Distribution System Operators to ensure the quality and the secu
On computation of Groebner bases for linear difference systems
Energy Technology Data Exchange (ETDEWEB)
Gerdt, Vladimir P. [Laboratory of Information Technologies, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)]. E-mail: gerdt@jinr.ru
2006-04-01
In this paper, we present an algorithm for computing Groebner bases of linear ideals in a difference polynomial ring over a ground difference field. The input difference polynomials generating the ideal are also assumed to be linear. The algorithm is an adaptation to difference ideals of our polynomial algorithm based on Janet-like reductions.
On computation of Groebner bases for linear difference systems
International Nuclear Information System (INIS)
Gerdt, Vladimir P.
2006-01-01
In this paper, we present an algorithm for computing Groebner bases of linear ideals in a difference polynomial ring over a ground difference field. The input difference polynomials generating the ideal are also assumed to be linear. The algorithm is an adaptation to difference ideals of our polynomial algorithm based on Janet-like reductions
International Nuclear Information System (INIS)
Veshchev, E. A.; Ozaki, T.; Goncharov, P. R.; Sudo, S.
2006-01-01
A new multichannel diagnostic for fast ion distribution studies has been developed and successfully tested on the Large Helical Device (LHD) in different plasma heating conditions. The diagnostic is based on a linear array AXUV detector consisting of 20 segments, charge sensitive preamplifiers, and a set of pulse height analysis channels. The main advantage of this system is the possibility to make time, energy, and angle-resolved measurements of charge exchange neutral particles in a single plasma discharge. This feature makes the new diagnostic a very helpful and powerful tool intended to contribute to the understanding of fast ion behavior in a complex helical plasma geometry like the one of LHD
International Nuclear Information System (INIS)
Cheng Qifeng; Ni Jianping; Meng Cui; Cheng Cheng; Liu Yinong; Li Jin
2009-01-01
The close of high voltage switch in pulsed power system of linear induction accelerator often radiates strong transient electric field, which may influence ambient sensitive electric equipment, signals and performance of other instruments, etc. By performing gridded measurement around the Marx generator, the general distribution law and basic characters of electric field radiation are summarized. The current signal of the discharge circuit is also measured, which demonstrates that the current and the radiated electric field both have a resonance frequency about 150 kHz, and contain much higher frequency components. (authors)
Linear triangular optimization technique and pricing scheme in residential energy management systems
Anees, Amir; Hussain, Iqtadar; AlKhaldi, Ali Hussain; Aslam, Muhammad
2018-06-01
This paper presents a new linear optimization algorithm for power scheduling of electric appliances. The proposed system is applied in a smart home community, in which community controller acts as a virtual distribution company for the end consumers. We also present a pricing scheme between community controller and its residential users based on real-time pricing and likely block rates. The results of the proposed optimization algorithm demonstrate that by applying the anticipated technique, not only end users can minimise the consumption cost, but it can also reduce the power peak to an average ratio which will be beneficial for the utilities as well.
Science network resources: Distributed systems
Cline, Neal
1991-01-01
The Master Directory, which is overview information about whole data sets, is outlined. The data system environment is depicted. The question is explored of what is a prototype international directory including purpose and features. Advantages of on-line directories are listed. Interconnected directory assumptions are given. A description of given of DIF (Directory Interchange Format), which is an exchange file for directory information, along with information content of DIF and directories. The directory population status is given in a percentage viewgraph. The present and future directory interconnections status at GSFC is also listed.
Non-linear singular problems in p-adic analysis: associative algebras of p-adic distributions
International Nuclear Information System (INIS)
Albeverio, S; Khrennikov, A Yu; Shelkovich, V M
2005-01-01
We propose an algebraic theory which can be used for solving both linear and non-linear singular problems of p-adic analysis related to p-adic distributions (generalized functions). We construct the p-adic Colombeau-Egorov algebra of generalized functions, in which Vladimirov's pseudo-differential operator plays the role of differentiation. This algebra is closed under Fourier transformation and associative convolution. Pointvalues of generalized functions are defined, and it turns out that any generalized function is uniquely determined by its pointvalues. We also construct an associative algebra of asymptotic distributions, which is generated by the linear span of the set of associated homogeneous p-adic distributions. This algebra is embedded in the Colombeau-Egorov algebra as a subalgebra. In addition, a new technique for constructing weak asymptotics is developed
Directory of Open Access Journals (Sweden)
Huiying Sun
2014-01-01
Full Text Available We mainly consider the stability of discrete-time Markovian jump linear systems with state-dependent noise as well as its linear quadratic (LQ differential games. A necessary and sufficient condition involved with the connection between stochastic Tn-stability of Markovian jump linear systems with state-dependent noise and Lyapunov equation is proposed. And using the theory of stochastic Tn-stability, we give the optimal strategies and the optimal cost values for infinite horizon LQ stochastic differential games. It is demonstrated that the solutions of infinite horizon LQ stochastic differential games are concerned with four coupled generalized algebraic Riccati equations (GAREs. Finally, an iterative algorithm is presented to solve the four coupled GAREs and a simulation example is given to illustrate the effectiveness of it.