WorldWideScience

Sample records for linear displacement jumps

  1. Framework for non-coherent interface models at finite displacement jumps and finite strains

    Science.gov (United States)

    Ottosen, Niels Saabye; Ristinmaa, Matti; Mosler, Jörn

    2016-05-01

    This paper deals with a novel constitutive framework suitable for non-coherent interfaces, such as cracks, undergoing large deformations in a geometrically exact setting. For this type of interface, the displacement field shows a jump across the interface. Within the engineering community, so-called cohesive zone models are frequently applied in order to describe non-coherent interfaces. However, for existing models to comply with the restrictions imposed by (a) thermodynamical consistency (e.g., the second law of thermodynamics), (b) balance equations (in particular, balance of angular momentum) and (c) material frame indifference, these models are essentially fiber models, i.e. models where the traction vector is collinear with the displacement jump. This constraints the ability to model shear and, in addition, anisotropic effects are excluded. A novel, extended constitutive framework which is consistent with the above mentioned fundamental physical principles is elaborated in this paper. In addition to the classical tractions associated with a cohesive zone model, the main idea is to consider additional tractions related to membrane-like forces and out-of-plane shear forces acting within the interface. For zero displacement jump, i.e. coherent interfaces, this framework degenerates to existing formulations presented in the literature. For hyperelasticity, the Helmholtz energy of the proposed novel framework depends on the displacement jump as well as on the tangent vectors of the interface with respect to the current configuration - or equivalently - the Helmholtz energy depends on the displacement jump and the surface deformation gradient. It turns out that by defining the Helmholtz energy in terms of the invariants of these variables, all above-mentioned fundamental physical principles are automatically fulfilled. Extensions of the novel framework necessary for material degradation (damage) and plasticity are also covered.

  2. Evaluation of stress intensity factors for bi-material interface cracks using displacement jump methods

    Science.gov (United States)

    Nehar, K. C.; Hachi, B. E.; Cazes, F.; Haboussi, M.

    2017-12-01

    The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to analyze brittle and bi-material interfacial fatigue crack growth by computing the mixed mode stress intensity factors (SIF). Three different approaches are introduced to compute the SIFs. In the first one, mixed mode SIF is deduced from the computation of the contour integral as per the classical J-integral method, whereas a displacement method is used to evaluate the SIF by using either one or two displacement jumps located along the crack path in the second and third approaches. The displacement jump method is rather classical for mono-materials, but has to our knowledge not been used up to now for a bi-material. Hence, use of displacement jump for characterizing bi-material cracks constitutes the main contribution of the present study. Several benchmark tests including parametric studies are performed to show the effectiveness of these computational methodologies for SIF considering static and fatigue problems of bi-material structures. It is found that results based on the displacement jump methods are in a very good agreement with those of exact solutions, such as for the J-integral method, but with a larger domain of applicability and a better numerical efficiency (less time consuming and less spurious boundary effect).

  3. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time.

    Science.gov (United States)

    Barker, Leland A; Harry, John R; Mercer, John A

    2018-01-01

    Barker, LA, Harry, JR, and Mercer, JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res 32(1): 248-254, 2018-The purpose of this study was to determine the relationship between ground reaction force (GRF) variables to jump height, jump time, and the reactive strength index (RSI). Twenty-six, Division-I, male, soccer players performed 3 maximum effort countermovement jumps (CMJs) on a dual-force platform system that measured 3-dimensional kinetic data. The trial producing peak jump height was used for analysis. Vertical GRF (Fz) variables were divided into unloading, eccentric, amortization, and concentric phases and correlated with jump height, RSI (RSI = jump height/jump time), and jump time (from start to takeoff). Significant correlations were observed between jump height and RSI, concentric kinetic energy, peak power, concentric work, and concentric displacement. Significant correlations were observed between RSI and jump time, peak power, unload Fz, eccentric work, eccentric rate of force development (RFD), amortization Fz, amortization time, second Fz peak, average concentric Fz, and concentric displacement. Significant correlations were observed between jump time and unload Fz, eccentric work, eccentric RFD, amortization Fz, amortization time, average concentric Fz, and concentric work. In conclusion, jump height correlated with variables derived from the concentric phase only (work, power, and displacement), whereas Fz variables from the unloading, eccentric, amortization, and concentric phases correlated highly with RSI and jump time. These observations demonstrate the importance of countermovement Fz characteristics for time-sensitive CMJ performance measures. Researchers and practitioners should include RSI and jump time with jump height to improve their assessment of jump performance.

  4. Displacement measurement system for linear array detector

    International Nuclear Information System (INIS)

    Zhang Pengchong; Chen Ziyu; Shen Ji

    2011-01-01

    It presents a set of linear displacement measurement system based on encoder. The system includes displacement encoders, optical lens and read out circuit. Displacement read out unit includes linear CCD and its drive circuit, two amplifier circuits, second order Butterworth low-pass filter and the binarization circuit. The coding way is introduced, and various parts of the experimental signal waveforms are given, and finally a linear experimental test results are given. The experimental results are satisfactory. (authors)

  5. STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS

    Directory of Open Access Journals (Sweden)

    Jorge Enrique Mayta Guillermo

    2016-12-01

    Full Text Available In this work we will analyze the stability of linear systems governed by a Markov chain, this family is known in the specialized literature as linear systems with Markov jumps or by its acronyms in English MJLS as it is denoted in [1]. Linear systems governed by a Markov chain are dynamic systems with abrupt changes. We give some denitions of stability for the MJLS system, where these types of stability are equivalent as long as the state space of the Markov chain is nite. Finally we present a theorem that characterizes the stochastic stability by means of an equation of the Lyapunov type. The result is a generalization of a theorem in classical theory.

  6. Stability and Linear Quadratic Differential Games of Discrete-Time Markovian Jump Linear Systems with State-Dependent Noise

    Directory of Open Access Journals (Sweden)

    Huiying Sun

    2014-01-01

    Full Text Available We mainly consider the stability of discrete-time Markovian jump linear systems with state-dependent noise as well as its linear quadratic (LQ differential games. A necessary and sufficient condition involved with the connection between stochastic Tn-stability of Markovian jump linear systems with state-dependent noise and Lyapunov equation is proposed. And using the theory of stochastic Tn-stability, we give the optimal strategies and the optimal cost values for infinite horizon LQ stochastic differential games. It is demonstrated that the solutions of infinite horizon LQ stochastic differential games are concerned with four coupled generalized algebraic Riccati equations (GAREs. Finally, an iterative algorithm is presented to solve the four coupled GAREs and a simulation example is given to illustrate the effectiveness of it.

  7. Axial linear patellar displacement: a new measurement of patellofemoral congruence.

    Science.gov (United States)

    Urch, Scott E; Tritle, Benjamin A; Shelbourne, K Donald; Gray, Tinker

    2009-05-01

    The tools for measuring the congruence angle with digital radiography software can be difficult to use; therefore, the authors sought to develop a new, easy, and reliable method for measuring patellofemoral congruence. The abstract goes here and covers two columns. The abstract goes The linear displacement measurement will correlate well with the congruence angle measurement. here and covers two columns. Cohort study (diagnosis); Level of evidence, 2. On Merchant view radiographs obtained digitally, the authors measured the congruence angle and a new linear displacement measurement on preoperative and postoperative radiographs of 31 patients who suffered unilateral patellar dislocations and 100 uninjured subjects. The linear displacement measurement was obtained by drawing a reference line across the medial and lateral trochlear facets. Perpendicular lines were drawn from the depth of the sulcus through the reference line and from the apex of the posterior tip of the patella through the reference line. The distance between the perpendicular lines was the linear displacement measurement. The measurements were obtained twice at different sittings. The observer was blinded as to the previous measurements to establish reliability. Measurements were compared to determine whether the linear displacement measurement correlated with congruence angle. Intraobserver reliability was above r(2) = .90 for all measurements. In patients with patellar dislocations, the mean congruence angle preoperatively was 33.5 degrees , compared with 12.1 mm for linear displacement (r(2) = .92). The mean congruence angle postoperatively was 11.2 degrees, compared with 4.0 mm for linear displacement (r(2) = .89). For normal subjects, the mean congruence angle was -3 degrees and the mean linear displacement was 0.2 mm. The linear displacement measurement was found to correlate with congruence angle measurements and may be an easy and useful tool for clinicians to evaluate patellofemoral

  8. Effect of liquid surface tension on circular and linear hydraulic jumps; theory and experiments

    Science.gov (United States)

    Bhagat, Rajesh Kumar; Jha, Narsing Kumar; Linden, Paul F.; Wilson, David Ian

    2017-11-01

    The hydraulic jump has attracted considerable attention since Rayleigh published his account in 1914. Watson (1964) proposed the first satisfactory explanation of the circular hydraulic jump by balancing the momentum and hydrostatic pressure across the jump, but this solution did not explain what actually causes the jump to form. Bohr et al. (1992) showed that the hydraulic jump happens close to the point where the local Froude number equals to one, suggesting a balance between inertial and hydrostatic contributions. Bush & Aristoff (2003) subsequently incorporated the effect of surface tension and showed that this is important when the jump radius is small. In this study, we propose a new account to explain the formation and evolution of hydraulic jumps under conditions where the jump radius is strongly influenced by the liquid surface tension. The theory is compared with experiments employing liquids of different surface tension and different viscosity, in circular and linear configurations. The model predictions and the experimental results show excellent agreement. Commonwealth Scholarship Commission, St. John's college, University of Cambridge.

  9. H2 Control for the Continuous-Time Markovian Jump Linear Uncertain Systems with Partly Known Transition Rates and Input Quantization

    Directory of Open Access Journals (Sweden)

    Xin-Gang Zhao

    2013-01-01

    Full Text Available For a class of continuous-time Markovian jump linear uncertain systems with partly known transition rates and input quantization, the H2 state-feedback control design is considered. The elements in the transition rates matrix include completely known, boundary known, and completely unknown ones. First, an H2 cost index for Markovian jump linear uncertain systems is introduced; then by introducing a new matrix inequality condition, sufficient conditions are formulated in terms of linear matrix inequalities (LMIs for the H2 control of the Markovian jump linear uncertain systems. Less conservativeness is achieved than the result obtained with the existing technique. Finally, a numerical example is given to verify the validity of the theoretical results.

  10. The Validity and Reliability of the Gymaware Linear Position Transducer for Measuring Counter-Movement Jump Performance in Female Athletes

    Science.gov (United States)

    O'Donnell, Shannon; Tavares, Francisco; McMaster, Daniel; Chambers, Samuel; Driller, Matthew

    2018-01-01

    The current study aimed to assess the validity and test-retest reliability of a linear position transducer when compared to a force plate through a counter-movement jump in female participants. Twenty-seven female recreational athletes (19 ± 2 years) performed three counter-movement jumps simultaneously using the linear position transducer and…

  11. The influence of musical cadence into aquatic jumping jacks kinematics.

    Science.gov (United States)

    Costa, Mário J; Oliveira, Cristiana; Teixeira, Genoveva; Marinho, Daniel A; Silva, António J; Barbosa, Tiago M

    2011-01-01

    The aim of this study was to analyze the relationships between the head-out aquatic exercise "Jumping jacks" kinematics and the musical cadence in healthy and fit subjects. Five young women, with at least one year of experience conducting head- out aquatic programs were videotaped in the frontal plane, with a pair of cameras providing a double projection (above and below the water surface). Subjects performed an incremental protocol of five bouts (120 b·min(-1), 135 b·min(-1), 150 b·min(-1), 165 b·min(-1) and 180 b·min(-1)) with 16 full cycles of the "Jumping jacks" exercise. Data processing and calculation of upper limbs' (i.e. hands), lower limbs' (i.e. feet) and center of mass' 2D linear velocity and displacement were computed with the software Ariel Performance Analysis System and applying the 2D-DLT algorithm. Subjects decreased the cycle period during the incremental protocol. Significant and negative relationships with the musical cadence were verified for the center of mass and upper limbs vertical displacement. On the other hand, for the lower limbs lateral velocity, a significant and positive relationship was observed. It is concluded that expert and fit subjects increase the lower limb's velocity to maintain the range of motion, while the upper limb's displacement is reduced to coupe the music cadence. Key pointsWhile performing the Jumping Jacks, expert and fit subjects increase their lower limbs segmental velocity to maintain the range of motion.The upper limbs displacement is reduced to maintain the music cadence.Expert and fit subjects present similar response for alternating or simultaneously head-out aquatic exercises when increasing the music cadence.

  12. Linear correlation between fractal dimension of surface EMG signal from Rectus Femoris and height of vertical jump

    International Nuclear Information System (INIS)

    Ancillao, Andrea; Galli, Manuela; Rigoldi, Chiara; Albertini, Giorgio

    2014-01-01

    Fractal dimension was demonstrated to be able to characterize the complexity of biological signals. The EMG time series are well known to have a complex behavior and some other studies already tried to characterize these signals by their fractal dimension. This paper is aimed at studying the correlation between the fractal dimension of surface EMG signal recorded over Rectus Femoris muscles during a vertical jump and the height reached in that jump. Healthy subjects performed vertical jumps at different heights. Surface EMG from Rectus Femoris was recorded and the height of each jump was measured by an optoelectronic motion capture system. Fractal dimension of sEMG was computed and the correlation between fractal dimension and eight of the jump was studied. Linear regression analysis showed a very high correlation coefficient between the fractal dimension and the height of the jump for all the subjects. The results of this study show that the fractal dimension is able to characterize the EMG signal and it can be related to the performance of the jump. Fractal dimension is therefore an useful tool for EMG interpretation

  13. Current Density and Plasma Displacement Near Perturbed Rational Surface

    International Nuclear Information System (INIS)

    Boozer, A.H.; Pomphrey, N.

    2010-01-01

    The current density in the vicinity of a rational surface of a force-free magnetic field subjected to an ideal perturbation is shown to be the sum of both a smooth and a delta-function distribution, which give comparable currents. The maximum perturbation to the smooth current density is comparable to a typical equilibrium current density and the width of the layer in which the current flows is shown to be proportional to the perturbation amplitude. In the standard linearized theory, the plasma displacement has an unphysical jump across the rational surface, but the full theory gives a continuous displacement.

  14. Linearization of Positional Response Curve of a Fiber-optic Displacement Sensor

    Science.gov (United States)

    Babaev, O. G.; Matyunin, S. A.; Paranin, V. D.

    2018-01-01

    Currently, the creation of optical measuring instruments and sensors for measuring linear displacement is one of the most relevant problems in the area of instrumentation. Fiber-optic contactless sensors based on the magneto-optical effect are of special interest. They are essentially contactless, non-electrical and have a closed optical channel not subject to contamination. The main problem of this type of sensors is the non-linearity of their positional response curve due to the hyperbolic nature of the magnetic field intensity variation induced by moving the magnetic source mounted on the controlled object relative to the sensing element. This paper discusses an algorithmic method of linearizing the positional response curve of fiber-optic displacement sensors in any selected range of the displacements to be measured. The method is divided into two stages: 1 - definition of the calibration function, 2 - measurement and linearization of the positional response curve (including its temperature stabilization). The algorithm under consideration significantly reduces the number of points of the calibration function, which is essential for the calibration of temperature dependence, due to the use of the points that randomly deviate from the grid points with uniform spacing. Subsequent interpolation of the deviating points and piecewise linear-plane approximation of the calibration function reduces the microcontroller storage capacity for storing the calibration function and the time required to process the measurement results. The paper also presents experimental results of testing real samples of fiber-optic displacement sensors.

  15. Pressure Jumps during Drainage in Macroporous Soils

    DEFF Research Database (Denmark)

    Soto, Diego; Paradelo Pérez, Marcos; Corral, A

    2018-01-01

    Tensiometer readings obtained at high resolution during drainage of structured soil columns revealed pressure jumps with long range correlations and burst sequences with a hierarchical structure. The statistical properties of jumps are similar to Haines jumps described in invasion percolation...... processes at pore scale, but they are much larger in amplitude and duration. Pressure jumps can result from transient redistribution of water potential in internal regions of soil and can be triggered during drainage by capillary displacements at the scale of structural pores....

  16. The effect of wind on jumping distance in ski jumping--fairness assessed.

    Science.gov (United States)

    Virmavirta, Mikko; Kivekäs, Juha

    2012-09-01

    The special wind compensation system recently adopted by Fédération Internationale de Ski (FIS; International Ski Federation) to consider the effects of changing wind conditions has caused some controversy. Here, the effect of wind on jumping distance in ski jumping was studied by means of computer simulation and compared with the wind compensation factors used by FIS during the World Cup season 2009/2010. The results showed clearly that the effect of increasing head/tail wind on jumping distance is not linear: +17.4 m/-29.1 m, respectively, for a wind speed of 3 m/s. The linear formula used in the trial period of the wind compensation system was found to be appropriate only for a limited range of jumping distances as the gradient of the landing slope slows down the rate of distance change in long jumps.

  17. On the Boundary between Nonlinear Jump Phenomenon and Linear Response of Hypoid Gear Dynamics

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2011-01-01

    Full Text Available A nonlinear time-varying (NLTV dynamic model of a hypoid gear pair system with time-dependent mesh point, line-of-action vector, mesh stiffness, mesh damping, and backlash nonlinearity is formulated to analyze the transitional phase between nonlinear jump phenomenon and linear response. It is found that the classical jump discontinuity will occur if the dynamic mesh force exceeds the mean value of tooth mesh force. On the other hand, the propensity for the gear response to jump disappears when the dynamic mesh force is lower than the mean mesh force. Furthermore, the dynamic analysis is able to distinguish the specific tooth impact types from analyzing the behaviors of the dynamic mesh force. The proposed theory is general and also applicable to high-speed spur, helical and spiral bevel gears even though those types of gears are not the primary focus of this paper.

  18. A Differential Monolithically Integrated Inductive Linear Displacement Measurement Microsystem

    Directory of Open Access Journals (Sweden)

    Matija Podhraški

    2016-03-01

    Full Text Available An inductive linear displacement measurement microsystem realized as a monolithic Application-Specific Integrated Circuit (ASIC is presented. The system comprises integrated microtransformers as sensing elements, and analog front-end electronics for signal processing and demodulation, both jointly fabricated in a conventional commercially available four-metal 350-nm CMOS process. The key novelty of the presented system is its full integration, straightforward fabrication, and ease of application, requiring no external light or magnetic field source. Such systems therefore have the possibility of substituting certain conventional position encoder types. The microtransformers are excited by an AC signal in MHz range. The displacement information is modulated into the AC signal by a metal grating scale placed over the microsystem, employing a differential measurement principle. Homodyne mixing is used for the demodulation of the scale displacement information, returned by the ASIC as a DC signal in two quadrature channels allowing the determination of linear position of the target scale. The microsystem design, simulations, and characterization are presented. Various system operating conditions such as frequency, phase, target scale material and distance have been experimentally evaluated. The best results have been achieved at 4 MHz, demonstrating a linear resolution of 20 µm with steel and copper scale, having respective sensitivities of 0.71 V/mm and 0.99 V/mm.

  19. Subthreshold displacement damage in copper--aluminum alloys during electron irradiation

    International Nuclear Information System (INIS)

    Drosd, R.; Kosel, T.; Washburn, J.

    1976-12-01

    During electron irradiation at low energies which results in a negligible damage rate in a pure material, lighter solute atoms are displaced, which may in turn indirectly displace solvent atoms by a focussed replacement collision or an interstitial diffusion jump. The extent to which lighter solute atoms contribute to the subthreshold damage rate has been examined by irradiating copper--aluminum alloys at high temperatures in a high voltage electron microscope. The damage rate, as measured by monitoring the growth rate of dislocation loops, at 300 kV was found to increase linearly with the aluminum concentration

  20. Ski jumping boots limit effective take-off in ski jumping.

    Science.gov (United States)

    Virmavirta, M; Komi, P V

    2001-12-01

    In this study, we measured the vertical and horizontal take-off forces, plantar pressures and activation patterns of four muscles (vastus lateralis, gluteus maximus, tibialis anterior, gastrocnemius) in 10 ski jumpers in simulated laboratory conditions when wearing either training shoes or ski jumping boots. We found significant differences in vertical (P boots condition resulted in a smaller displacement in the final position of the following joint angles: ankle angle (P knee angle (P boots condition, significantly more pressure was recorded under the heel (P knee and hip extensors when wearing jumping boots. We conclude that the stiffness of the structure of the jumping boots may result in a forward shift of pressure, thus limiting the effective vertical force. To avoid this pressure shift, the pattern of movement of simulated take-offs should be carefully controlled, particularly when wearing training shoes.

  1. RELIABILITY OF KINEMATICS AND KINETICS ASSOCIATED WITH HORIZONTAL SINGLE LEG DROP JUMP ASSESSMENT. A BRIEF REPORT

    Directory of Open Access Journals (Sweden)

    Markus Stålbom

    2007-06-01

    Full Text Available Determining the reliability of a unilateral horizontal drop jump for displacement provided the focus for this research. Eighteen male subjects were required to step off a 20cm box and land on a force plate with one leg and thereafter jump for maximal horizontal displacement on two different days. Dependent variables from the jump assessment included mean and peak vertical (V and horizontal (H ground reaction forces (GRF and impulses, horizontal displacement and contact time. The between-trial variability of all kinematic and kinetic measures was less than 7%. The most consistent measure over both trials was the horizontal displacement jumped (1.2 to 1.4% and the most variable were the contact time the first day (6.5% and peak HGRF the second day (4.3%. In all cases there was less variation associated with the second rather than the first day. In terms of test-retest variability the percent changes in the means and coefficient of variations (CVs were all under 10%. The smallest changes in the mean (0.43 %, least variation (< 2.26 % and second highest intraclass correlation co-efficient (ICC = 0.95 were found for horizontal displacement jumped. The highest ICC (0.96 was found for horizontal impulse. Given the reliability of the single leg drop jump, it may offer better prognostic and diagnostic information than that obtained with bilateral vertical jumps

  2. Predicting vertical jump height from bar velocity.

    Science.gov (United States)

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  3. Stability, performance and sensitivity analysis of I.I.D. jump linear systems

    Science.gov (United States)

    Chávez Fuentes, Jorge R.; González, Oscar R.; Gray, W. Steven

    2018-06-01

    This paper presents a symmetric Kronecker product analysis of independent and identically distributed jump linear systems to develop new, lower dimensional equations for the stability and performance analysis of this type of systems than what is currently available. In addition, new closed form expressions characterising multi-parameter relative sensitivity functions for performance metrics are introduced. The analysis technique is illustrated with a distributed fault-tolerant flight control example where the communication links are allowed to fail randomly.

  4. A simple method for quantifying jump loads in volleyball athletes.

    Science.gov (United States)

    Charlton, Paula C; Kenneally-Dabrowski, Claire; Sheppard, Jeremy; Spratford, Wayne

    2017-03-01

    Evaluate the validity of a commercially available wearable device, the Vert, for measuring vertical displacement and jump count in volleyball athletes. Propose a potential method of quantifying external load during training and match play within this population. Validation study. The ability of the Vert device to measure vertical displacement in male, junior elite volleyball athletes was assessed against reference standard laboratory motion analysis. The ability of the Vert device to count jumps during training and match-play was assessed via comparison with retrospective video analysis to determine precision and recall. A method of quantifying external load, known as the load index (LdIx) algorithm was proposed using the product of the jump count and average kinetic energy. Correlation between two separate Vert devices and three-dimensional trajectory data were good to excellent for all jump types performed (r=0.83-0.97), with a mean bias of between 3.57-4.28cm. When matched against jumps identified through video analysis, the Vert demonstrated excellent precision (0.995-1.000) evidenced by a low number of false positives. The number of false negatives identified with the Vert was higher resulting in lower recall values (0.814-0.930). The Vert is a commercially available tool that has potential for measuring vertical displacement and jump count in elite junior volleyball athletes without the need for time-consuming analysis and bespoke software. Subsequently, allowing the collected data to better quantify load using the proposed algorithm (LdIx). Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Filtering and control of stochastic jump hybrid systems

    CERN Document Server

    Yao, Xiuming; Zheng, Wei Xing

    2016-01-01

    This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analy...

  6. Advances in the control of markov jump linear systems with no mode observation

    CERN Document Server

    Vargas, Alessandro N; do Val, João B R

    2016-01-01

    This brief broadens readers’ understanding of stochastic control by highlighting recent advances in the design of optimal control for Markov jump linear systems (MJLS). It also presents an algorithm that attempts to solve this open stochastic control problem, and provides a real-time application for controlling the speed of direct current motors, illustrating the practical usefulness of MJLS. Particularly, it offers novel insights into the control of systems when the controller does not have access to the Markovian mode.

  7. Sex Differences in Countermovement Jump Phase Characteristics

    Directory of Open Access Journals (Sweden)

    John J. McMahon

    2017-01-01

    Full Text Available The countermovement jump (CMJ is commonly used to explore sex differences in neuromuscular function, but previous studies have only reported gross CMJ measures or have partly examined CMJ phase characteristics. The purpose of this study was to explore differences in CMJ phase characteristics between male and female athletes by comparing the force-, power-, velocity-, and displacement-time curves throughout the entire CMJ, in addition to gross measures. Fourteen men and fourteen women performed three CMJs on a force platform from which a range of kinetic and kinematic variables were calculated via forward dynamics. Jump height (JH, reactive strength index modified, relative peak concentric power, and eccentric and concentric displacement, velocity, and relative impulse were all greater for men (g = 0.58–1.79. Relative force-time curves were similar between sexes, but relative power-, velocity-, and displacement-time curves were greater for men at 90%–95% (immediately before and after peak power, 47%–54% (start of eccentric phase and 85%–100% (latter half of concentric phase, and 65%–87% (bottom of countermovement and initial concentric phase of normalized jump time, respectively. The CMJ distinguished between sexes, with men demonstrating greater JH through applying a larger concentric impulse and, thus, achieving greater velocity throughout most of the concentric phase, including take-off.

  8. Self-talk influences vertical jump performance and kinematics in male rugby union players.

    Science.gov (United States)

    Edwards, Christian; Tod, David; McGuigan, Michael

    2008-11-01

    We examined the effects of instructional and motivational self-talk on centre of mass displacement and hip kinematics during the vertical jump. Twenty-four male rugby union players (age 21.1 years, s = 3.5; body mass 81.0 kg, s = 8.9; height 1.80 m, s = 0.06) performed three vertical jump tests, with a 2 min rest between jumps. Before each jump, participants engaged in one of three counterbalanced interventions (motivational self-talk, instructional self-talk or no-intervention). Motivational self-talk led to greater centre of mass displacement (0.602 m, s = 0.076; P = 0.012) than the no-intervention control (0.583 m, s = 0.085). Centre of mass displacement did not differ between instructional self-talk and the control condition or between motivational and instructional self-talk. Motivational (100.75 degrees , s = 16.05; P = 0.001) and instructional self-talk (106.14 degrees , s = 17.04; P = 0.001) led to greater hip displacement than the no-intervention control (94.11 degrees , s = 17.14). There was also a significant difference in hip displacement between motivational and instructional self-talk (P = 0.014), although there was no difference between instructional self-talk and the control condition. Motivational (451.69 degrees /s, s = 74.34; P = 0.008) and instructional self-talk (462.01 degrees /s, s = 74.37; P = 0.001) led to greater hip rotation velocity than the no-intervention control (434.37 degrees /s, s = 75.37), although there was no difference between the two self-talk interventions. These results indicate that self-talk may influence performance and technique during the vertical jump in male rugby players.

  9. Non-cooperative stochastic differential game theory of generalized Markov jump linear systems

    CERN Document Server

    Zhang, Cheng-ke; Zhou, Hai-ying; Bin, Ning

    2017-01-01

    This book systematically studies the stochastic non-cooperative differential game theory of generalized linear Markov jump systems and its application in the field of finance and insurance. The book is an in-depth research book of the continuous time and discrete time linear quadratic stochastic differential game, in order to establish a relatively complete framework of dynamic non-cooperative differential game theory. It uses the method of dynamic programming principle and Riccati equation, and derives it into all kinds of existence conditions and calculating method of the equilibrium strategies of dynamic non-cooperative differential game. Based on the game theory method, this book studies the corresponding robust control problem, especially the existence condition and design method of the optimal robust control strategy. The book discusses the theoretical results and its applications in the risk control, option pricing, and the optimal investment problem in the field of finance and insurance, enriching the...

  10. Effect of hang cleans or squats paired with countermovement vertical jumps on vertical displacement.

    Science.gov (United States)

    Andrews, Tedi R; Mackey, Theresa; Inkrott, Thomas A; Murray, Steven R; Clark, Ida E; Pettitt, Robert W

    2011-09-01

    Complex training is characterized by pairing resistance exercise with plyometric exercise to exploit the postactivation potentiation (PAP) phenomenon, thereby promising a better training effect. Studies on PAP as measured by human power performances are equivocal. One issue may be the lack of analyses across multiple sets of paired exercises, a common practice used by athletes. We evaluated countermovement vertical jump (CMJ) performance in 19 women, collegiate athletes in 3 of the following trials: (a) CMJs-only, where 1 set of CMJs served as a conditioning exercise, (b) heavy-load, back squats paired with CMJs, and (c) hang cleans paired with CMJs. The CMJ vertical displacement (3-attempt average), as measured with digital video, served as the dependent variable of CMJ performance. Across 3 sets of paired-exercise regimens, CMJ-only depreciated 1.6 cm and CMJ paired with back squats depreciated 2.0 cm (main effect, p squats or CMJs in and of themselves. Future research on exercise modes of complex training that best help athletes preserve and train with the highest power possible, in a given training session, is warranted.

  11. Combined Simulation of a Micro Permanent Magnetic Linear Contactless Displacement Sensor

    Directory of Open Access Journals (Sweden)

    Jing Gao

    2010-09-01

    Full Text Available The permanent magnetic linear contactless displacement (PLCD sensor is a new type of displacement sensor operating on the magnetic inductive principle. It has many excellent properties and has already been used for many applications. In this article a Micro-PLCD sensor which can be used for microelectromechanical system (MEMS measurements is designed and simulated with the CST EM STUDIO® software, including building a virtual model, magnetostatic calculations, low frequency calculations, steady current calculations and thermal calculations. The influence of some important parameters such as air gap dimension, working frequency, coil current and eddy currents etc. is studied in depth.

  12. Efficient Linear and Non-Linear Finite Element Formulation using a New Local Enhancement of Displacement Fields for Triangular Elements

    DEFF Research Database (Denmark)

    Damkilde, Lars; Pedersen, Ronnie

    2012-01-01

    This paper describes a new triangular plane element which can be considered as a linear strain triangular element (LST) extended with incompatible displacement modes. The extended element will have a full cubic interpolation of strains and stresses. The extended LST-element is connected with other...... elements similar to the LST-element i.e. through three corner nodes and three mid-side nodes. The incompatible modes are associated with two displacement gradients at each mid-side node and displacements in the central node. The element passes the patch test and converges to the exact solution. The element...... often show a very slow convergence, and the numerical solutions will in general overestimate the bearing capacity and underestimate the displacements. The examples show that the extended incompatible element behaves much better than the corresponding compatible elements especially for coarse meshes....

  13. Conditioning exercises in ski jumping: biomechanical relationship of squat jumps, imitation jumps, and hill jumps.

    Science.gov (United States)

    Lorenzetti, Silvio; Ammann, Fabian; Windmüller, Sabrina; Häberle, Ramona; Müller, Sören; Gross, Micah; Plüss, Michael; Plüss, Stefan; Schödler, Berni; Hübner, Klaus

    2017-11-22

    As hill jumps are very time-consuming, ski jumping athletes often perform various imitation jumps during training. The performed jumps should be similar to hill jumps, but a direct comparison of the kinetic and kinematic parameters has not been performed yet. Therefore, this study aimed to correlate 11 common parameters during hill jumps (Oberstdorf Germany), squat jumps (wearing indoor shoes), and various imitation jumps (rolling 4°, rolling flat, static; jumping equipment or indoor shoes) on a custom-built instrumented vehicle with a catch by the coach. During the performed jumps, force and video data of the take-off of 10 athletes were measured. The imitation and squat jumps were then ranked. The main difference between the hill jumps and the imitation and squat jumps is the higher maximal force loading rate during the hill jumps. Imitation jumps performed on a rolling platform, on flat ground were the most similar to hill jumps in terms of the force-time, and leg joint kinematic properties. Thus, non-hill jumps with a technical focus should be performed from a rolling platform with a flat inrun with normal indoor shoes or jumping equipment, and high normal force loading rates should be the main focus of imitation training.

  14. Validity of a Simple Method for Measuring Force-Velocity-Power Profile in Countermovement Jump.

    Science.gov (United States)

    Jiménez-Reyes, Pedro; Samozino, Pierre; Pareja-Blanco, Fernando; Conceição, Filipe; Cuadrado-Peñafiel, Víctor; González-Badillo, Juan José; Morin, Jean-Benoît

    2017-01-01

    To analyze the reliability and validity of a simple computation method to evaluate force (F), velocity (v), and power (P) output during a countermovement jump (CMJ) suitable for use in field conditions and to verify the validity of this computation method to compute the CMJ force-velocity (F-v) profile (including unloaded and loaded jumps) in trained athletes. Sixteen high-level male sprinters and jumpers performed maximal CMJs under 6 different load conditions (0-87 kg). A force plate sampling at 1000 Hz was used to record vertical ground-reaction force and derive vertical-displacement data during CMJ trials. For each condition, mean F, v, and P of the push-off phase were determined from both force-plate data (reference method) and simple computation measures based on body mass, jump height (from flight time), and push-off distance and used to establish the linear F-v relationship for each individual. Mean absolute bias values were 0.9% (± 1.6%), 4.7% (± 6.2%), 3.7% (± 4.8%), and 5% (± 6.8%) for F, v, P, and slope of the F-v relationship (S Fv ), respectively. Both methods showed high correlations for F-v-profile-related variables (r = .985-.991). Finally, all variables computed from the simple method showed high reliability, with ICC >.980 and CV push-off distance, and jump height are known.

  15. Three-dimensional linear fracture mechanics analysis by a displacement-hybrid finite-element model

    International Nuclear Information System (INIS)

    Atluri, S.N.; Kathiresan, K.; Kobayashi, A.S.

    1975-01-01

    This paper deals with a finite-element procedures for the calculation of modes I, II and III stress intensity factors, which vary, along an arbitrarily curved three-dimensional crack front in a structural component. The finite-element model is based on a modified variational principle of potential energy with relaxed continuity requirements for displacements at the inter-element boundary. The variational principle is a three-field principle, with the arbitrary interior displacements for the element, interelement boundary displacements, and element boundary tractions as variables. The unknowns in the final algebraic system of equations, in the present displacement hybrid finite element model, are the nodal displacements and the three elastic stress intensity factors. Special elements, which contain proper square root and inverse square root crack front variations in displacements and stresses, respectively, are used in a fixed region near the crack front. Interelement displacement compatibility is satisfied by assuming an independent interelement boundary displacement field, and using a Lagrange multiplier technique to enforce such interelement compatibility. These Lagrangean multipliers, which are physically the boundary tractions, are assumed from an equilibrated stress field derived from three-dimensional Beltrami (or Maxwell-Morera) stress functions that are complete. However, considerable care should be exercised in the use of these stress functions such that the stresses produced by any of these stress function components are not linearly dependent

  16. Axial displacement of external and internal implant-abutment connection evaluated by linear mixed model analysis.

    Science.gov (United States)

    Seol, Hyon-Woo; Heo, Seong-Joo; Koak, Jai-Young; Kim, Seong-Kyun; Kim, Shin-Koo

    2015-01-01

    To analyze the axial displacement of external and internal implant-abutment connection after cyclic loading. Three groups of external abutments (Ext group), an internal tapered one-piece-type abutment (Int-1 group), and an internal tapered two-piece-type abutment (Int-2 group) were prepared. Cyclic loading was applied to implant-abutment assemblies at 150 N with a frequency of 3 Hz. The amount of axial displacement, the Periotest values (PTVs), and the removal torque values(RTVs) were measured. Both a repeated measures analysis of variance and pattern analysis based on the linear mixed model were used for statistical analysis. Scanning electron microscopy (SEM) was used to evaluate the surface of the implant-abutment connection. The mean axial displacements after 1,000,000 cycles were 0.6 μm in the Ext group, 3.7 μm in the Int-1 group, and 9.0 μm in the Int-2 group. Pattern analysis revealed a breakpoint at 171 cycles. The Ext group showed no declining pattern, and the Int-1 group showed no declining pattern after the breakpoint (171 cycles). However, the Int-2 group experienced continuous axial displacement. After cyclic loading, the PTV decreased in the Int-2 group, and the RTV decreased in all groups. SEM imaging revealed surface wear in all groups. Axial displacement and surface wear occurred in all groups. The PTVs remained stable, but the RTVs decreased after cyclic loading. Based on linear mixed model analysis, the Ext and Int-1 groups' axial displacements plateaued after little cyclic loading. The Int-2 group's rate of axial displacement slowed after 100,000 cycles.

  17. Near-field ground-motion intensity related to displacement of objects; Chokka jishin ni yoru buttai no ido to jishindo tsuyosa

    Energy Technology Data Exchange (ETDEWEB)

    Omachi, T. [Tokyo Institute of Technology, Tokyo (Japan)

    1995-01-01

    Examples of object displacement due to the earthquake in Japan were reversely analyzed. The example of stone jumping in 1984 was studied. Because of soft ground, the characteristic period can be detected by composing a spring system of stone (as a mass) against the ground. As the phenomenon is considered as seismic response, the following facts were known through vibrational test and numerical analysis simulation: the stone jumping is a non-linear response, and depends upon the period and amplitude of input. Its distance is influenced by the horizontal movement. To make the stone jump, the component of which the period is 0.3 to 1.0 sec is dominant with the necessary acceleration of 1.5g. A bell tower weighing 5t in total was displaced 1m by the earthquake in 1909. A model test was conducted by measuring the characteristic period of ground and bell tower. It was known that not the vibration in the direction of beams, but the stronger vibration than 0.1g in the diagonal direction made the pillars jump. The earthquake in 1930 made an exhibited torpedo slide and leave its frictional marks. Through the simulation conducted, it was presumed that the first and succeeding frictional marks were marked by the P-wave and S-wave, respectively, and that the seismic duration was almost 10 sec with the acceleration of 1.3 to 2g. 11 refs., 10 figs., 1 tab.

  18. Effects of Isometric Scaling on Vertical Jumping Performance

    Science.gov (United States)

    Bobbert, Maarten F.

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations. PMID:23936494

  19. Effects of isometric scaling on vertical jumping performance.

    Directory of Open Access Journals (Sweden)

    Maarten F Bobbert

    Full Text Available Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.

  20. Hydraulic jumps in a channel

    DEFF Research Database (Denmark)

    Bonn, D.; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present a study of hydraulic jumps with flow predominantly in one direction, created either by confining the flow to a narrow channel with parallel walls or by providing an inflow in the form of a narrow sheet. In the channel flow, we find a linear height profile upstream of the jump as expected......'s mixing-length theory with a mixing length that is proportional to the height of the fluid layer. Using averaged boundary-layer equations, taking into account the friction with the channel walls and the eddy viscosity, the flow both upstream and downstream of the jump can be understood. For the downstream...... subcritical flow, we assume that the critical height is attained close to the channel outlet. We use mass and momentum conservation to determine the position of the jump and obtain an estimate which is in rough agreement with our experiment. We show that the averaging method with a varying velocity profile...

  1. Jump-Down Performance Alterations after Space Flight

    Science.gov (United States)

    Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Fisher, E. A.; Peters, B. T.; Miller, C. A.; Harm, D. L.; Bloomberg, J. J.

    2011-01-01

    INTRODUCTION: Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares jump strategies used by astronauts before and after flight, changes to those strategies within a test session, and recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS: Seven astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high onto a force plate that measured the ground reaction forces and center-of-pressure displacement from the landings. Neuromuscular activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS: Postural settling time was significantly increased on the first postflight test session and many of the astronauts tested were unable to maintain balance on their first jump landing but recovered by the third jump, showing a learning progression in which performance improvements could be attributed to adjustments in takeoff or landing strategy. Jump strategy changes were evident in reduced air time (time between takeoff and landing) and also in increased asymmetry in foot latencies on takeoff. CONCLUSIONS: The test results revealed significant decrements

  2. Fall with linear drag and Wien's displacement law: approximate solution and Lambert function

    International Nuclear Information System (INIS)

    Vial, Alexandre

    2012-01-01

    We present an approximate solution for the downward time of travel in the case of a mass falling with a linear drag force. We show how a quasi-analytical solution implying the Lambert function can be found. We also show that solving the previous problem is equivalent to the search for Wien's displacement law. These results can be of interest for undergraduate students, as they show that some transcendental equations found in physics may be solved without purely numerical methods. Moreover, as will be seen in the case of Wien's displacement law, solutions based on series expansion can be very accurate even with few terms. (paper)

  3. Force sensing using 3D displacement measurements in linear elastic bodies

    Science.gov (United States)

    Feng, Xinzeng; Hui, Chung-Yuen

    2016-07-01

    In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.

  4. Markov Jump Linear Systems-Based Position Estimation for Lower Limb Exoskeletons

    Directory of Open Access Journals (Sweden)

    Samuel L. Nogueira

    2014-01-01

    Full Text Available In this paper, we deal with Markov Jump Linear Systems-based filtering applied to robotic rehabilitation. The angular positions of an impedance-controlled exoskeleton, designed to help stroke and spinal cord injured patients during walking rehabilitation, are estimated. Standard position estimate approaches adopt Kalman filters (KF to improve the performance of inertial measurement units (IMUs based on individual link configurations. Consequently, for a multi-body system, like a lower limb exoskeleton, the inertial measurements of one link (e.g., the shank are not taken into account in other link position estimation (e.g., the foot. In this paper, we propose a collective modeling of all inertial sensors attached to the exoskeleton, combining them in a Markovian estimation model in order to get the best information from each sensor. In order to demonstrate the effectiveness of our approach, simulation results regarding a set of human footsteps, with four IMUs and three encoders attached to the lower limb exoskeleton, are presented. A comparative study between the Markovian estimation system and the standard one is performed considering a wide range of parametric uncertainties.

  5. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping

    NARCIS (Netherlands)

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    In the literature, drop jumping is advocated as an effective exercise for athletes who prepare themselves for explosive activities. When executing drop jumps, different jumping techniques can be used. In this study, the influence of jumping technique on the biomechanics of jumping is investigated.

  6. DOMAIN DECOMPOSITION FOR POROELASTICITY AND ELASTICITY WITH DG JUMPS AND MORTARS

    KAUST Repository

    GIRAULT, V.; PENCHEVA, G.; WHEELER, M. F.; WILDEY, T.

    2011-01-01

    by introducing DG jumps and mortars. The unknowns are condensed on the interface, so that at each time step, the computation in each subdomain can be performed in parallel. In addition, by extrapolating the displacement, we present an algorithm where

  7. Transition-energy crossing with a γt-jump

    International Nuclear Information System (INIS)

    Wei, Jie; Peggs, S.

    1994-01-01

    Expressions for the minimum size and speed of a transition-energy (γ t -) jump needed to diminish the chromatic non-linear effect, the self-field mismatch, and the microwave instabilities in the Relativistic Heavy Ion Collider (RHIC) are obtained. A γ t -jump of 0.8 units is needed to be performed within 60 ms in order to achieve a ''clean'' transition crossing

  8. Jump Squat is More Related to Sprinting and Jumping Abilities than Olympic Push Press.

    Science.gov (United States)

    Loturco, I; Kobal, R; Maldonado, T; Piazzi, A F; Bottino, A; Kitamura, K; Abad, C C C; Pereira, L A; Nakamura, F Y

    2017-07-01

    The aim of this study was to test the relationships between jump squat (JS) and Olympic push press (OPP) power outputs and performance in sprint, squat jump (SJ), countermovement jump (CMJ) and change of direction (COD) speed tests in elite soccer players. 27 athletes performed a maximum power load test to determine their bar mean propulsive power (MPP) and bar mean propulsive velocity (MPV) in the JS and OPP exercises. Magnitude-based inference was used to compare the exercises. The MPV was almost certainly higher in the OPP than in the JS. The MPP relative to body mass (MPP REL) was possibly higher in the OPP. Only the JS MPP REL presented very large correlations with linear speed ( r> 0.7, for speed in 5, 10, 20 and 30 m) and vertical jumping abilities ( r> 0.8, for SJ and CMJ), and moderate correlation with COD speed ( r= 0.45). Although significant (except for COD), the associations between OPP outcomes and field-based measurements (speed, SJ and CMJ) were all moderate, ranging from 0.40 to 0.48. In a group composed of elite soccer players, the JS exercise is more associated with jumping and sprinting abilities than the OPP. Longitudinal studies are needed to confirm if these strong relationships imply superior training effects in favor of the JS exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Non-linear hybrid control oriented modelling of a digital displacement machine

    DEFF Research Database (Denmark)

    Pedersen, Niels Henrik; Johansen, Per; Andersen, Torben O.

    2017-01-01

    Proper feedback control of digital fluid power machines (Pressure, flow, torque or speed control) requires a control oriented model, from where the system dynamics can be analyzed, stability can be proven and design criteria can be specified. The development of control oriented models for hydraulic...... Digital Displacement Machines (DDM) is complicated due to non-smooth machine behavior, where the dynamics comprises both analog, digital and non-linear elements. For a full stroke operated DDM the power throughput is altered in discrete levels based on the ratio of activated pressure chambers....... In this paper, a control oriented hybrid model is established, which combines the continuous non-linear pressure chamber dynamics and the discrete shaft position dependent activation of the pressure chambers. The hybrid machine model is further extended to describe the dynamics of a Digital Fluid Power...

  10. SOME PROBLEMS ON JUMP CONDITIONS OF SHOCK WAVES IN 3-DIMENSIONAL SOLIDS

    Institute of Scientific and Technical Information of China (English)

    LI Yong-chi; YAO Lei; HU Xiu-zhang; CAO Jie-dong; DONG Jie

    2006-01-01

    Based on the general conservation laws in continuum mechanics, the Eulerian and Lagrangian descriptions of the jump conditions of shock waves in 3-dimensional solids were presented respectively. The implication of the jump conditions and their relations between each other, particularly the relation between the mass conservation and the displacement continuity, were discussed. Meanwhile the shock wave response curves in 3-dimensional solids, i.e. the Hugoniot curves were analysed, which provide the foundation for studying the coupling effects of shock waves in 3-dimensional solids.

  11. A new look at the robust control of discrete-time Markov jump linear systems

    Science.gov (United States)

    Todorov, M. G.; Fragoso, M. D.

    2016-03-01

    In this paper, we make a foray in the role played by a set of four operators on the study of robust H2 and mixed H2/H∞ control problems for discrete-time Markov jump linear systems. These operators appear in the study of mean square stability for this class of systems. By means of new linear matrix inequality (LMI) characterisations of controllers, which include slack variables that, to some extent, separate the robustness and performance objectives, we introduce four alternative approaches to the design of controllers which are robustly stabilising and at the same time provide a guaranteed level of H2 performance. Since each operator provides a different degree of conservatism, the results are unified in the form of an iterative LMI technique for designing robust H2 controllers, whose convergence is attained in a finite number of steps. The method yields a new way of computing mixed H2/H∞ controllers, whose conservatism decreases with iteration. Two numerical examples illustrate the applicability of the proposed results for the control of a small unmanned aerial vehicle, and for an underactuated robotic arm.

  12. Contactless and absolute linear displacement detection based upon 3D printed magnets combined with passive radio-frequency identification

    Science.gov (United States)

    Windl, Roman; Abert, Claas; Bruckner, Florian; Huber, Christian; Vogler, Christoph; Weitensfelder, Herbert; Suess, Dieter

    2017-11-01

    Within this work a passive and wireless magnetic sensor, to monitor linear displacements, is proposed. We exploit recent advances in 3D printing and fabricate a polymer bonded magnet with a spatially linear magnetic field component corresponding to the length of the magnet. Regulating the magnetic compound fraction during printing allows specific shaping of the magnetic field distribution. A giant magnetoresistance magnetic field sensor is combined with a radio-frequency identification tag in order to passively monitor the exerted magnetic field of the printed magnet. Due to the tailored magnetic field, a displacement of the magnet with respect to the sensor can be detected within the sub-mm regime. The sensor design provides good flexibility by controlling the 3D printing process according to application needs. Absolute displacement detection using low cost components and providing passive operation, long term stability, and longevity renders the proposed sensor system ideal for structural health monitoring applications.

  13. Contactless and absolute linear displacement detection based upon 3D printed magnets combined with passive radio-frequency identification

    Directory of Open Access Journals (Sweden)

    Roman Windl

    2017-11-01

    Full Text Available Within this work a passive and wireless magnetic sensor, to monitor linear displacements, is proposed. We exploit recent advances in 3D printing and fabricate a polymer bonded magnet with a spatially linear magnetic field component corresponding to the length of the magnet. Regulating the magnetic compound fraction during printing allows specific shaping of the magnetic field distribution. A giant magnetoresistance magnetic field sensor is combined with a radio-frequency identification tag in order to passively monitor the exerted magnetic field of the printed magnet. Due to the tailored magnetic field, a displacement of the magnet with respect to the sensor can be detected within the sub-mm regime. The sensor design provides good flexibility by controlling the 3D printing process according to application needs. Absolute displacement detection using low cost components and providing passive operation, long term stability, and longevity renders the proposed sensor system ideal for structural health monitoring applications.

  14. Local uncontrollability for affine control systems with jumps

    Science.gov (United States)

    Treanţă, Savin

    2017-09-01

    This paper investigates affine control systems with jumps for which the ideal If(g1, …, gm) generated by the drift vector field f in the Lie algebra L(f, g1, …, gm) can be imbedded as a kernel of a linear first-order partial differential equation. It will lead us to uncontrollable affine control systems with jumps for which the corresponding reachable sets are included in explicitly described differentiable manifolds.

  15. Accuracy of Jump-Mat Systems for Measuring Jump Height.

    Science.gov (United States)

    Pueo, Basilio; Lipinska, Patrycja; Jiménez-Olmedo, José M; Zmijewski, Piotr; Hopkins, Will G

    2017-08-01

    Vertical-jump tests are commonly used to evaluate lower-limb power of athletes and nonathletes. Several types of equipment are available for this purpose. To compare the error of measurement of 2 jump-mat systems (Chronojump-Boscosystem and Globus Ergo Tester) with that of a motion-capture system as a criterion and to determine the modifying effect of foot length on jump height. Thirty-one young adult men alternated 4 countermovement jumps with 4 squat jumps. Mean jump height and standard deviations representing technical error of measurement arising from each device and variability arising from the subjects themselves were estimated with a novel mixed model and evaluated via standardization and magnitude-based inference. The jump-mat systems produced nearly identical measures of jump height (differences in means and in technical errors of measurement ≤1 mm). Countermovement and squat-jump height were both 13.6 cm higher with motion capture (90% confidence limits ±0.3 cm), but this very large difference was reduced to small unclear differences when adjusted to a foot length of zero. Variability in countermovement and squat-jump height arising from the subjects was small (1.1 and 1.5 cm, respectively, 90% confidence limits ±0.3 cm); technical error of motion capture was similar in magnitude (1.7 and 1.6 cm, ±0.3 and ±0.4 cm), and that of the jump mats was similar or smaller (1.2 and 0.3 cm, ±0.5 and ±0.9 cm). The jump-mat systems provide trustworthy measurements for monitoring changes in jump height. Foot length can explain the substantially higher jump height observed with motion capture.

  16. Effects of timing of signal indicating jump directions on knee biomechanics in jump-landing-jump tasks.

    Science.gov (United States)

    Stephenson, Mitchell L; Hinshaw, Taylour J; Wadley, Haley A; Zhu, Qin; Wilson, Margaret A; Byra, Mark; Dai, Boyi

    2018-03-01

    A variety of the available time to react (ATR) has been utilised to study knee biomechanics during reactive jump-landing tasks. The purpose was to quantify knee kinematics and kinetics during a jump-land-jump task of three possible directions as the ATR was reduced. Thirty-four recreational athletes performed 45 trials of a jump-land-jump task, during which the direction of the second jump (lateral, medial or vertical) was indicated before they initiated the first jump, the instant they initiated the first jump, 300 ms before landing, 150 ms before landing or at the instant of landing. Knee joint angles and moments close to the instant of landing were significantly different when the ATR was equal to or more than 300 ms before landing, but became similar when the ATR was 150 ms or 0 ms before landing. As the ATR was decreased, knee moments decreased for the medial jump direction, but increased for the lateral jump direction. When the ATR is shorter than an individual's reaction time, the movement pattern cannot be pre-planned before landing. Knee biomechanics are dependent on the timing of the signal and the subsequent jump direction. Precise control of timing and screening athletes with low ATR are suggested.

  17. Data-Driven Jump Detection Thresholds for Application in Jump Regressions

    Directory of Open Access Journals (Sweden)

    Robert Davies

    2018-03-01

    Full Text Available This paper develops a method to select the threshold in threshold-based jump detection methods. The method is motivated by an analysis of threshold-based jump detection methods in the context of jump-diffusion models. We show that over the range of sampling frequencies a researcher is most likely to encounter that the usual in-fill asymptotics provide a poor guide for selecting the jump threshold. Because of this we develop a sample-based method. Our method estimates the number of jumps over a grid of thresholds and selects the optimal threshold at what we term the ‘take-off’ point in the estimated number of jumps. We show that this method consistently estimates the jumps and their indices as the sampling interval goes to zero. In several Monte Carlo studies we evaluate the performance of our method based on its ability to accurately locate jumps and its ability to distinguish between true jumps and large diffusive moves. In one of these Monte Carlo studies we evaluate the performance of our method in a jump regression context. Finally, we apply our method in two empirical studies. In one we estimate the number of jumps and report the jump threshold our method selects for three commonly used market indices. In the other empirical application we perform a series of jump regressions using our method to select the jump threshold.

  18. Mobile Jump Assessment (mJump): A Descriptive and Inferential Study.

    Science.gov (United States)

    Mateos-Angulo, Alvaro; Galán-Mercant, Alejandro; Cuesta-Vargas, Antonio

    2015-08-26

    Vertical jump tests are used in athletics and rehabilitation to measure physical performance in people of different age ranges and fitness. Jumping ability can be analyzed through different variables, and the most commonly used are fly time and jump height. They can be obtained by a variety of measuring devices, but most are limited to laboratory use only. The current generation of smartphones contains inertial sensors that are able to record kinematic variables for human motion analysis, since they are tools for easy access and portability for clinical use. The aim of this study was to describe and analyze the kinematics characteristics using the inertial sensor incorporated in the iPhone 4S, the lower limbs strength through a manual dynamometer, and the jump variables obtained with a contact mat in the squat jump and countermovement jump tests (fly time and jump height) from a cohort of healthy people. A cross sectional study was conducted on a population of healthy young adults. Twenty-seven participants performed three trials (n=81 jumps) of squat jump and countermovement jump tests. Acceleration variables were measured through a smartphone's inertial sensor. Additionally, jump variables from a contact mat and lower limbs dynamometry were collected. In the present study, the kinematic variables derived from acceleration through the inertial sensor of a smartphone iPhone 4S, dynamometry of lower limbs with a handheld dynamometer, and the height and flight time with a contact mat have been described in vertical jump tests from a cohort of young healthy subjects. The development of the execution has been described, examined and identified in a squat jump test and countermovement jump test under acceleration variables that were obtained with the smartphone. The built-in iPhone 4S inertial sensor is able to measure acceleration variables while performing vertical jump tests for the squat jump and countermovement jump in healthy young adults. The acceleration

  19. Modelling long term rockslide displacements with non-linear time-dependent relationships

    Science.gov (United States)

    De Caro, Mattia; Volpi, Giorgio; Castellanza, Riccardo; Crosta, Giovanni; Agliardi, Federico

    2015-04-01

    Rockslides undergoing rapid changes in behaviour pose major risks in alpine areas, and require careful characterization and monitoring both for civil protection and mitigation activities. In particular, these instabilities can undergo very slow movement with occasional and intermittent acceleration/deceleration stages of motion potentially leading to collapse. Therefore, the analysis of such instabilities remains a challenging issue. Rockslide displacements are strongly conditioned by hydrologic factors as suggested by correlations with groundwater fluctuations, snowmelt, with a frequently observed delay between perturbation and system reaction. The aim of this work is the simulation of the complex time-dependent behaviour of two case studies for which also a 2D transient hydrogeological simulation has been performed: Vajont rockslide (1960 to 1963) and the recent Mt. de La Saxe rockslide (2009 to 2012). Non-linear time-dependent constitutive relationships have been used to describe long-term creep deformation. Analyses have been performed using a "rheological-mechanical" approach that fits idealized models (e.g. viscoelastic, viscoplastic, elasto-viscoplastic, Burgers, nonlinear visco-plastic) to the experimental behaviour of specific materials by means of numerical constants. Bidimensional simulations were carried out using the finite difference code FLAC. Displacements time-series, available for the two landslides, show two superimposed deformation mechanisms: a creep process, leading to movements under "steady state" conditions (e.g. constant groundwater level), and a "dynamic" process, leading to an increase in displacement rate due to changes of external loads (e.g. groundwater level). For both cases sliding mass is considered as an elasto-plastic body subject to its self-weight, inertial and seepage forces varying with time according to water table fluctuation (due to snowmelt or changing in reservoir level) and derived from the previous hydrogeological

  20. Effect of Inductive Coil Shape on Sensing Performance of Linear Displacement Sensor Using Thin Inductive Coil and Pattern Guide

    Directory of Open Access Journals (Sweden)

    Hiroyuki Wakiwaka

    2011-11-01

    Full Text Available This paper discusses the effect of inductive coil shape on the sensing performance of a linear displacement sensor. The linear displacement sensor consists of a thin type inductive coil with a thin pattern guide, thus being suitable for tiny space applications. The position can be detected by measuring the inductance of the inductive coil. At each position due to the change in inductive coil area facing the pattern guide the value of inductance is different. Therefore, the objective of this research is to study various inductive coil pattern shapes and to propose the pattern that can achieve good sensing performance. Various shapes of meander, triangular type meander, square and circle shape with different turn number of inductive coils are examined in this study. The inductance is measured with the sensor sensitivity and linearity as a performance evaluation parameter of the sensor. In conclusion, each inductive coil shape has its own advantages and disadvantages. For instance, the circle shape inductive coil produces high sensitivity with a low linearity response. Meanwhile, the square shape inductive coil has a medium sensitivity with higher linearity.

  1. Dynamics and stability of directional jumps in the desert locust.

    Science.gov (United States)

    Gvirsman, Omer; Kosa, Gabor; Ayali, Amir

    2016-01-01

    Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points) are dominant in predicting the jumps' azimuth and elevation angles. We also report a strong linear correlation between the jumps' pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications.

  2. Sex differences in kinetic and neuromuscular control during jumping and landing

    Science.gov (United States)

    Márquez, G.; Alegre, L.M.; Jaén, D.; Martin-Casado, L.; Aguado, X.

    2017-01-01

    In the present study, we analysed the kinetic profile together with the lower limb EMG activation pattern during a countermovement jump and its respective landing phase in males and females. Twenty subjects (10 males and 10 females) took part in the study. One experimental session was conducted in order to record kinetic and electromyographic (EMG) parameters during a countermovement jump (CMJ) and the subsequent landing phase. During the CMJ, males recorded a higher (ppush-off phase. During landings males showed higher (p<0.01) peak ground reaction forces (Fpeak), greater (p<0.05) stiffness and a higher maximal displacement of the CoM (p<0.05) than females. EMG analysis revealed greater EMG activity in the tibialis anterior (p<0.05) and rectus femoris (p=0.05) muscles in males. Higher plantar flexor co-activation during landing has also been found in males. Our findings demonstrated different neuromuscular control in males and females during jumping and landing. PMID:28250245

  3. Choice of jumping strategy in two standard jumps, squat and countermovement jump--effect of training background or inherited preference?

    DEFF Research Database (Denmark)

    Ravn, Susanne; Voigt, M; Simonsen, Erik Bruun

    1999-01-01

    . The jumps were recorded on highspeed film (500 Hz) combined with registration of ground reaction forces, and net joint moments were calculated by inverse dynamics. The purpose was to investigate the choice of strategy in two standard jumps, squat jump and countermovement jump. The volleyball jump...... was performed with a sequential strategy and the ballet jump was performed with a simultaneous strategy. In the two standard jumps, the choice of strategy was individual and not related to training background. This was additionally confirmed in a test of seven ballet dancers and seven volleyball players....

  4. Principal component structure and sport-specific differences in the running one-leg vertical jump.

    Science.gov (United States)

    Laffaye, G; Bardy, B G; Durey, A

    2007-05-01

    The aim of this study is to identify the kinetic principal components involved in one-leg running vertical jumps, as well as the potential differences between specialists from different sports. The sample was composed of 25 regional skilled athletes who play different jumping sports (volleyball players, handball players, basketball players, high jumpers and novices), who performed a running one-leg jump. A principal component analysis was performed on the data obtained from the 200 tested jumps in order to identify the principal components summarizing the six variables extracted from the force-time curve. Two principal components including six variables accounted for 78 % of the variance in jump height. Running one-leg vertical jump performance was predicted by a temporal component (that brings together impulse time, eccentric time and vertical displacement of the center of mass) and a force component (who brings together relative peak of force and power, and rate of force development). A comparison made among athletes revealed a temporal-prevailing profile for volleyball players, and a force-dominant profile for Fosbury high jumpers. Novices showed an ineffective utilization of the force component, while handball and basketball players showed heterogeneous and neutral component profiles. Participants will use a jumping strategy in which variables related to either the magnitude or timing of force production will be closely coupled; athletes from different sporting backgrounds will use a jumping strategy that reflects the inherent demands of their chosen sport.

  5. Theory of stochastic differential equations with jumps and applications mathematical and analytical techniques with applications to engineering

    CERN Document Server

    SITU, Rong

    2005-01-01

    Derivation of Ito's formulas, Girsanov's theorems and martingale representation theorem for stochastic DEs with jumpsApplications to population controlReflecting stochastic DE techniqueApplications to the stock market. (Backward stochastic DE approach)Derivation of Black-Scholes formula for market with and without jumpsNon-linear filtering problems with jumps.

  6. Kinematic and kinetic characteristics of vertical jump: comparison between soccer and basketball players

    Directory of Open Access Journals (Sweden)

    Matheus Machado Gomes

    2009-01-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2009v11n4p392   The aim of this study was to compare jump height and kinetic and kinematic com-ponents of countermovement vertical jumps between soccer and basketball players performed in two different arm swing conditions: with arm swing (WAS and without arm swing (NAS. Nine basketball players (21.2 ± 2.9 years; 101.64 ± 14.58 kg; 1.95 ± 0.06 m and nine soccer players (18.2 ± 0.7 years; 77.4 ± 7.58 kg; 1.81 ± 0.07 m performed 12 maximal countermo-vement vertical jumps, including 6 WAS jumps and 6 NAS jumps, on a force platform that recorded the ground reaction force (GRF. The vertical component of the GRF was used to estimate jump height and to calculate the kinematic (duration of eccentric phase, duration of concentric phase, and maximal downward displacement of center of mass and kinetic variables (mean power during the eccentric phase, mean power during the concentric, peak power, and peak force. The results showed no differences in jump height or in kinematic or kinetic variables between basketball and soccer players. In addition, the results showed that the participants of the two groups jumped higher in the WAS condition (0.41 m than in the NAS condition (0.36 m because of a higher peak power (WAS=276.8 W/kg0.67 and NAS=241.3 W/kg0.67 and a longer concentric phase duration (WAS=0.20 s/m0.5 and NAS=0.19 s/m0.5 during WAS jump. These results indicate that the basketball and soccer players studied here showed similar performance and the same kinematic and kinetic pattern in maximal vertical jumps and were comparably affected by the use of arm swing.

  7. Dynamics and stability of directional jumps in the desert locust

    Directory of Open Access Journals (Sweden)

    Omer Gvirsman

    2016-09-01

    Full Text Available Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points are dominant in predicting the jumps’ azimuth and elevation angles. We also report a strong linear correlation between the jumps’ pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications.

  8. An ion displacement membrame model.

    Science.gov (United States)

    Hladky, S B; Harris, J D

    1967-09-01

    The usual assumption in treating the diffusion of ions in an electric field has been that the movement of each ion is independent of the movement of the others. The resulting equation for diffusion by a succession of spontaneous jumps has been well stated by Parlin and Eyring. This paper will consider one simple case in which a different assumption is reasonable. Diffusion of monovalent positive ions is considered as a series of jumps from one fixed negative site to another. The sites are assumed to be full (electrical neutrality). Interaction occurs by the displacement of one ion by another. An ion leaves a site if and only if another ion, not necessarily of the same species, attempts to occupy the same site. Flux ratios and net fluxes are given as functions of the electrical potential, concentration ratios, and number of sites encountered in crossing the membrane. Quantitative comparisons with observations of Hodgkin and Keynes are presented.

  9. Jumping Dynamics

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2013-01-01

    paradigm the physical scale and henceforth also the massive spectrum of the theory jump at the lower boundary of the conformal window. In particular we propose that a theory can suddenly jump from a Quantum Chromodynamics type spectrum, at the lower boundary of the conformal window, to a conformal one...... without particle interpretation. The jumping scenario, therefore, does not support a near-conformal dynamics of walking type. We will also discuss the impact of jumping dynamics on the construction of models of dynamical electroweak symmetry breaking....

  10. Drop Jumping as a Training Method for Jumping Ability

    NARCIS (Netherlands)

    Bobbert, Maarten F.

    1990-01-01

    Vertical jumping ability is of importance for good performance in sports such as basketball and volleyball. Coaches are in need of exercises that consume only little time and still help to improve their players’ jumping ability, without involving a high risk of injury. Drop jumping is assumed to

  11. Electromagnetic device of linear displacement

    International Nuclear Information System (INIS)

    Savary, F.; Le Saulnier, G.

    1986-01-01

    The device moves a rod integral with a nuclear reactor control element. It has a grab for the rod operated by a mobil pole drive by a coil carried by a surrounding sealed casing, a second grab with fixed and mobile poles with facing surfaces shaped to limit the variation of magnetic force with distance between them, and a plunger driven by a coil to bear against another mobile pole moved by a coil. The invention proposes a device ensuring a displacement while the impact forces at the different level of the mechanism are reduced [fr

  12. Plyometric Long Jump Training With Progressive Loading Improves Kinetic and Kinematic Swimming Start Parameters.

    Science.gov (United States)

    Rebutini, Vanessa Z; Pereira, Gleber; Bohrer, Roberta C D; Ugrinowitsch, Carlos; Rodacki, André L F

    2016-09-01

    Rebutini, VZ, Pereira, G, Bohrer, RCD, Ugrinowitsch, C, and Rodacki, ALF. Plyometric long jump training with progressive loading improves kinetic and kinematic swimming start parameters. J Strength Cond Res 30(9): 2392-2398, 2016-This study was aimed to determine the effects of a plyometric long jump training program on torque around the lower limb joints and kinetic and kinematics parameters during the swimming jump start. Ten swimmers performed 3 identical assessment sessions, measuring hip and knee muscle extensors during maximal voluntary isometric contraction and kinetic and kinematics parameters during the swimming jump start, at 3 instants: INI (2 weeks before the training program, control period), PRE (2 weeks after INI measurements), and POST (24-48 hours after 9 weeks of training). There were no significant changes from INI to PRE measurements. However, the peak torque and rate of torque development increased significantly from PRE to POST measurements for both hip (47 and 108%) and knee (24 and 41%) joints. There were significant improvements to the horizontal force (7%), impulse (9%), and angle of resultant force (19%). In addition, there were significant improvements to the center of mass displacement (5%), horizontal takeoff velocity (16%), horizontal velocity at water entrance (22%), and peak angle velocity for the knee (15%) and hip joints (16%). Therefore, the plyometric long jump training protocol was effective to enhance torque around the lower limb joints and to control the resultant vector direction, to increase the swimming jump start performance. These findings suggest that coaches should use long jump training instead of vertical jump training to improve swimming start performance.

  13. Kinematic and kinetic characteristics of vertical jump: comparison between soccer and basketball players

    Directory of Open Access Journals (Sweden)

    Matheus Machado Gomes

    2009-09-01

    Full Text Available The aim of this study was to compare jump height and kinetic and kinematic com-ponents of countermovement vertical jumps between soccer and basketball players performed in two different arm swing conditions: with arm swing (WAS and without arm swing (NAS. Nine basketball players (21.2 ± 2.9 years; 101.64 ± 14.58 kg; 1.95 ± 0.06 m and nine soccer players (18.2 ± 0.7 years; 77.4 ± 7.58 kg; 1.81 ± 0.07 m performed 12 maximal countermo-vement vertical jumps, including 6 WAS jumps and 6 NAS jumps, on a force platform that recorded the ground reaction force (GRF. The vertical component of the GRF was used to estimate jump height and to calculate the kinematic (duration of eccentric phase, duration of concentric phase, and maximal downward displacement of center of mass and kinetic variables (mean power during the eccentric phase, mean power during the concentric, peak power, and peak force. The results showed no differences in jump height or in kinematic or kinetic variables between basketball and soccer players. In addition, the results showed that the participants of the two groups jumped higher in the WAS condition (0.41 m than in the NAS condition (0.36 m because of a higher peak power (WAS=276.8 W/kg0.67 and NAS=241.3 W/kg0.67 and a longer concentric phase duration (WAS=0.20 s/m0.5 and NAS=0.19 s/m0.5 during WAS jump. These results indicate that the basketball and soccer players studied here showed similar performance and the same kinematic and kinetic pattern in maximal vertical jumps and were comparably affected by the use of arm swing.

  14. On the second-order temperature jump coefficient of a dilute gas

    Science.gov (United States)

    Radtke, Gregg A.; Hadjiconstantinou, N. G.; Takata, S.; Aoki, K.

    2012-09-01

    We use LVDSMC simulations to calculate the second-order temperature jump coefficient for a dilute gas whose temperature is governed by the Poisson equation with a constant forcing term. Both the hard sphere gas and the BGK model of the Boltzmann equation are considered. Our results show that the temperature jump coefficient is different from the well known linear and steady case where the temperature is governed by the homogeneous heat conduction (Laplace) equation.

  15. Linear or/and circular displacement capacite transducers. Study and realization of high resolutive industrial prototypes

    International Nuclear Information System (INIS)

    Aulit, Jacques; Beaudet, J.-P.

    1975-07-01

    Proposals are made about a linear or/and circular displacement transducer measurements using a capacity variation method. Absolute measurements are allowed with great accuracy, approximately on micrometer or one thousandth of a degree, for dimensions up to some hundred millimeters, or 360 degrees. A first approach up to millimeters or degrees is given by a classical method (i.e. binary encoded beam). The division of each millimeter is obtained by linear variation of photo engraved capacity on a glass ruber and measured by an original capacity via frequency conversion method. In this system, the use of variable frequency signals allows one to reach long distance display without any trouble and then shows great interest for many applications such as space, machine tool and so on [fr

  16. Model for polygonal hydraulic jumps

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Watanabe, Shinya; Bohr, Tomas

    2012-01-01

    We propose a phenomenological model for the polygonal hydraulic jumps discovered by Ellegaard and co-workers [Nature (London) 392, 767 (1998); Nonlinearity 12, 1 (1999); Physica B 228, 1 (1996)], based on the known flow structure for the type-II hydraulic jumps with a "roller" (separation eddy...... nonhydrostatic pressure contributions from surface tension in light of recent observations by Bush and co-workers [J. Fluid Mech. 558, 33 (2006); Phys. Fluids 16, S4 (2004)]. The model can be analyzed by linearization around the circular state, resulting in a parameter relationship for nearly circular polygonal...... states. A truncated but fully nonlinear version of the model can be solved analytically. This simpler model gives rise to polygonal shapes that are very similar to those observed in experiments, even though surface tension is neglected, and the condition for the existence of a polygon with N corners...

  17. Jump locations of jump-diffusion processes with state-dependent rates

    International Nuclear Information System (INIS)

    Miles, Christopher E; Keener, James P

    2017-01-01

    We propose a general framework for studying statistics of jump-diffusion systems driven by both Brownian noise (diffusion) and a jump process with state-dependent intensity. Of particular natural interest in many physical systems are the jump locations: the system evaluated at the jump times. As an example, this could be the voltage at which a neuron fires, or the so-called ‘threshold voltage’. However, the state-dependence of the jump rate provides direct coupling between the diffusion and jump components, making it difficult to disentangle the two to study individually. In this work, we provide an iterative map formulation of the sequence of distributions of jump locations. The distributions computed by this map can be used to elucidate other interesting quantities about the process, including statistics of the interjump times. Ultimately, the limit of the map reveals that knowledge of the stationary distribution of the full process is sufficient to recover (but not necessarily equal to) the distribution of jump locations. We propose two biophysical examples to illustrate the use of this framework to provide insight about a system. We find that a sharp threshold voltage emerges robustly in a simple stochastic integrate-and-fire neuronal model. The interplay between the two sources of noise is also investigated in a stepping model of molecular motor in intracellular transport pulling a diffusive cargo. (paper)

  18. A Correction Equation for Jump Height Measured Using the Just Jump System.

    Science.gov (United States)

    McMahon, John J; Jones, Paul A; Comfort, Paul

    2016-05-01

    To determine the concurrent validity and reliability of the popular Just Jump system (JJS) for determining jump height and, if necessary, provide a correction equation for future reference. Eighteen male college athletes performed 3 bilateral countermovement jumps (CMJs) on 2 JJSs (alternative method) that were placed on top of a force platform (criterion method). Two JJSs were used to establish consistency between systems. Jump height was calculated from flight time obtained from the JJS and force platform. Intraclass correlation coefficients (ICCs) demonstrated excellent within-session reliability of the CMJ height measurement derived from both the JJS (ICC = .96, P jump height (0.46 ± 0.09 m vs 0.33 ± 0.08 m) than the force platform (P jump height = (0.8747 × alternative jump height) - 0.0666. The JJS provides a reliable but overestimated measure of jump height. It is suggested, therefore, that practitioners who use the JJS as part of future work apply the correction equation presented in this study to resultant jump-height values.

  19. DOMAIN DECOMPOSITION FOR POROELASTICITY AND ELASTICITY WITH DG JUMPS AND MORTARS

    KAUST Repository

    GIRAULT, V.

    2011-01-01

    We couple a time-dependent poroelastic model in a region with an elastic model in adjacent regions. We discretize each model independently on non-matching grids and we realize a domain decomposition on the interface between the regions by introducing DG jumps and mortars. The unknowns are condensed on the interface, so that at each time step, the computation in each subdomain can be performed in parallel. In addition, by extrapolating the displacement, we present an algorithm where the computations of the pressure and displacement are decoupled. We show that the matrix of the interface problem is positive definite and establish error estimates for this scheme. © 2011 World Scientific Publishing Company.

  20. Problems of systems dataware using optoelectronic measuring means of linear displacement

    Science.gov (United States)

    Bazykin, S. N.; Bazykina, N. A.; Samohina, K. S.

    2017-10-01

    Problems of the dataware of the systems with the use of optoelectronic means of the linear displacement are considered in the article. The classification of the known physical effects, realized by the means of information-measuring systems, is given. The organized analysis of information flows in technical systems from the standpoint of determination of inaccuracies of measurement and management was conducted. In spite of achieved successes in automation of machine-building and instruments-building equipment in the field of dataware of the technical systems, there are unresolved problems, concerning the qualitative aspect of the production process. It was shown that the given problem can be solved using optoelectronic lazer information-measuring systems. Such information-measuring systems are capable of not only executing the measuring functions, but also solving the problems of management and control during processing, thereby guaranteeing the quality of final products.

  1. Risk, Jumps, and Diversification

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Law, Tzuo Hann; Tauchen, George

    We test for price discontinuities, or jumps, in a panel of high-frequency intraday returns for forty large-cap stocks and an equiweighted index from these same stocks. Jumps are naturally classified into two types: common and idiosyncratic. Common jumps affect all stocks, albeit to varying degrees......, while idiosyncratic jumps are stock-specific. Despite the fact that each of the stocks has a of about unity with respect to the index, common jumps are virtually never detected in the individual stocks. This is truly puzzling, as an index can jump only if one or more of its components jump. To resolve...... this puzzle, we propose a new test for cojumps. Using this new test we find strong evidence for many modest-sized common jumps that simply pass through the standard jump detection statistic, while they appear highly significant in the cross section based on the new cojump identification scheme. Our results...

  2. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers

    Science.gov (United States)

    Pauli, Carole A.; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R.

    2016-01-01

    Abstract Pauli, CA, Keller, M, Ammann, F, Hübner, K, Lindorfer, J, Taylor, WR, and Lorenzetti, S. Kinematics and kinetics of squats, drop jumps and imitation jumps of ski jumpers. J Strength Cond Res 30(3): 643–652, 2016—Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance. PMID:26418370

  3. Overhead Transmission Lines Deicing under Different Incentive Displacement

    Directory of Open Access Journals (Sweden)

    Qing He

    2014-01-01

    Full Text Available Overhead transmission line icing is one of the main factors affecting safety and reliability of power grid. This paper proposed an excitation deicing method of iced wire and theoretically revealed the ice removal mechanism under displacement excitation conditions, by taking the LGJ-70/10 glaze icing wire as the 3D model and analyzing and studying its dynamic response under the effect of displacement excitation. The simulation results show that the stress of wire icing area is enlarged with the increase of excitation displacement and frequency. Through the comparison of the compression strength experimental results on a series of different iced wires in low temperature environment, the authors found out that the stress generated from the wire icing area is greater than the crushing strength of the ice within the scope of the calculation parameters, which proved the validity and the feasibility of the method, and finally the suitable excitation displacement is determined. Following studies show that, as far as possible, it is necessary to reduce the incentive displacement and also to select the appropriate constraint length in order to avoid the line jumping that may be caused by large span ice shedding.

  4. Changes in Jump-Down Performance After Space Flight: Short- and Long-Term Adaptation

    Science.gov (United States)

    Kofman, I. S.; Reschke, M. F.; Cerisano, J. M.; Fisher, E. A.; Lawrence, E. L.; Peters, B. T.; Bloomberg, J. J.

    2010-01-01

    INTRODUCTION Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares the jump strategies used by astronauts before and after flight, the changes to those strategies within a test session, and the recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS Six astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high. A force plate measured the ground reaction forces and center-of-pressure displacement from the landings. Muscle activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS AND CONCLUSION Many of the astronauts tested were unable to maintain balance on their first postflight jump landing but recovered by the third jump, showing a learning progression in which the performance improvement could be attributed to adjustments of strategy on takeoff, landing, or both. Takeoff strategy changes were evident in air time (time between takeoff and landing), which was significantly reduced after flight, and also in increased asymmetry in foot latencies on takeoff. Landing modifications were seen in changes in ground reaction force curves. The

  5. Electrooptic converter to control linear displacements of the large structures of the buildings and facilities

    Science.gov (United States)

    Vasilev, Aleksandr S.; Konyakhin, Igor A.; Timofeev, Alexander N.; Lashmanov, Oleg U.; Molev, Fedor V.

    2015-05-01

    The paper analyzes the construction matters and metrological parameters of the electrooptic converter to control linear displacements of the large structures of the buildings and facilities. The converter includes the base module, the processing module and a set of the reference marks. The base module is the main unit of the system, it includes the receiving optical system and the CMOS photodetector array that realizes the instrument coordinate system that controls the mark coordinates in the space. The methods of the frame-to-frame difference, adaptive threshold filtration, binarization and objects search by the tied areas to detect the marks against accidental contrast background is the basis of the algorithm. The entire algorithm is performed during one image reading stage and is based on the FPGA. The developed and manufactured converter experimental model was tested in laboratory conditions at the metrological bench at the distance between the base module and the mark 50±0.2 m. The static characteristic was read during the experiment of the reference mark displacement at the pitch of 5 mm in the horizontal and vertical directions for the displacement range 400 mm. The converter experimental model error not exceeding ±0.5 mm was obtained in the result of the experiment.

  6. Why is countermovement jump height greater than squat jump height?

    NARCIS (Netherlands)

    Bobbert, Maarten F.; Gerritsen, Karin G M; Litjens, Maria C A; Van Soest, Arthur J.

    1996-01-01

    In the literature, it is well established that subjects are able to jump higher in a countermovement jump (CMJ) than in a squat jump (SJ). The purpose of this study was to estimate the relative contribution of the time available for force development and the storage and reutilization of elastic

  7. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers.

    Science.gov (United States)

    Pauli, Carole A; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R; Lorenzetti, Silvio

    2016-03-01

    Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance.

  8. Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems with Jumps

    Directory of Open Access Journals (Sweden)

    Minsong Zhang

    2014-01-01

    Full Text Available This paper investigates the problems of finite-time stability and finite-time stabilization for nonlinear quadratic systems with jumps. The jump time sequences here are assumed to satisfy some given constraints. Based on Lyapunov function and a particular presentation of the quadratic terms, sufficient conditions for finite-time stability and finite-time stabilization are developed to a set containing bilinear matrix inequalities (BLIMs and linear matrix inequalities (LMIs. Numerical examples are given to illustrate the effectiveness of the proposed methodology.

  9. Studies on the retention mechanism of solutes in hydrophilic interaction chromatography using stoichiometric displacement theory I. The linear relationship of lgk' vs. lg[H2O].

    Science.gov (United States)

    Wang, Fei; Yang, Fan; Tian, Yang; Liu, Jiawei; Shen, Jiwei; Bai, Quan

    2018-01-01

    A stoichiometric displacement model for retention (SDM-R) of small solutes and proteins based on hydrophilic interaction chromatography (HILIC) was presented. A linear equation that related the logarithm of the capacity factor of the solute to the logarithm of the concentration of water in the mobile phase was derived. The stoichiometric displacement parameters, Z (the number of water molecules required to displace a solute from ligands) and lgI (containing a number of constants that relate to the affinity of solute to the ligands) could be obtained from the slope and the intercept of the linear plots of lgk' vs. lg[H 2 O]. The retention behaviors and retention mechanism of 15 kinds of small solutes and 6 kinds of proteins on 5 kinds HILIC columns with different ligands were investigated with SDM-R in typical range of water concentration in mobile phase. A good linear relationship between lgk' and lg[H 2 O] demonstrated that the most rational retention mechanism of solute in HILIC was a stoichiometric displacement process between solute and solvent molecules with water as displacing agents, which was not only valid for small solutes, but also could be used to explain the retention mechanism of biopolymers in HILIC. Comparing with the partition and adsorption models in HILIC, SDM-R was superior to them. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Psychophysiological response in parachute jumps, the effect of experience and type of jump.

    Science.gov (United States)

    Clemente-Suárez, Vicente Javier; Robles-Pérez, José Juan; Fernández-Lucas, Jesús

    2017-10-01

    We aimed to analyse the effect of experience and type of parachute jump on the psychophysiological responses of jumpers. We analysed blood oxygen saturation, heart rate, blood glucose, lactate and creatinkinase, leg strength, isometric hand strength, cortical arousal, specific fine motor skills, self-confidence and cognition, and somatic and state anxiety, before and after four different parachute jumps: a sport parachute jump, a manual tactical parachute jump, tandem pilots, and tandem passengers. Independently of the parachute jump, the psychophysiological responses of experienced paratroopers were not affected by the jumps, except for an increase in anaerobic metabolism. Novice parachute jumpers presented a higher psychophysiological stress response than the experienced jumpers, together with a large anticipatory anxiety response before the jump; however, this decreased after the jump, although the high physiological activation was maintained. This information could be used by civil and military paratroopers' instructors to improve their training programmes. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The effect of assisted jumping on vertical jump height in high-performance volleyball players.

    Science.gov (United States)

    Sheppard, Jeremy M; Dingley, Andrew A; Janssen, Ina; Spratford, Wayne; Chapman, Dale W; Newton, Robert U

    2011-01-01

    Assisted jumping may be useful in training higher concentric movement speed in jumping, thereby potentially increasing the jumping abilities of athletes. The purpose of this study was to evaluate the effects of assisted jump training on counter-movement vertical jump (CMVJ) and spike jump (SPJ) ability in a group of elite male volleyball players. Seven junior national team volleyball players (18.0±1.0 yrs, 200.4±6.7 cm, and 84.0±7.2 kg) participated in this within-subjects cross-over counter-balanced training study. Assisted training involved 3 sessions per week of CMVJ training with 10 kg of assistance, applied through use of a bungee system, whilst normal jump training involved equated volume of unassisted counter-movement vertical jumps. Training periods were 5 weeks duration, with a 3-week wash-out separating them. Prior to and at the conclusion of each training period jump testing for CMVJ and SPJ height was conducted. Assisted jump training resulted in gains of 2.7±0.7 cm (pSports Medicine Australia. All rights reserved.

  12. Jumping in Arithmetic

    NARCIS (Netherlands)

    Visser, Albert

    In this paper we study a new relation between sentences: the jump relation. The idea of the jump relation is based on an analysis of Feferman's Theorem that the inconsistency of a theory U is interpretable over U. The jump relation is based on a converse of Feferman's Theorem: if a sentence is

  13. Jumping in Arithmetic

    NARCIS (Netherlands)

    Visser, Albert

    2014-01-01

    In this paper we study a new relation between sentences: the jump relation. The idea of the jump relation is based on an analysis of Feferman's Theorem that the inconsistency of a theory U is interpretable over U. The jump relation is based on a converse of Feferman's Theorem: if a sentence is

  14. GENDER DIFFERENCES AND BIOMECHANICS IN THE 3000M STEEPLECHASE WATER JUMP

    Directory of Open Access Journals (Sweden)

    Kassi R. Andersen

    2008-06-01

    Full Text Available Since 1996, women have been competing in the 3000m steeplechase race internationally. Whenever women and men both compete in similar events with different equipment (the barriers are lower for women consideration should be given as to how techniques should be coached differently. This study investigated the differences in water-jump technique between men and women after accounting for differences in running speed and which techniques led to maintenance of race pace through the water-jump. Eighteen men and 18 women were filmed at two major track and field meets during the 2004 season. Peak Motus 8.2 was used to digitize all seven jumps from each athlete. Various characteristics of water-jump technique were measured or calculated and compared using two multiple linear regressions (one for men and one for women to determine which characteristics led to maintaining race pace speeds through the water jump obstacle. Repeated measures ANOVA was used to determine any differences between men and women in the measured characteristics of technique.Velocity through the jump divided by race pace was predicted very well by approach velocity and landing distance for men and women. Other characteristics of the movement were non-significant. Differences between genders were found in: approach velocity, take-off distance, landing distance, push-off angle, velocity through jump, and exit velocity. Men and women steeplechasers must focus on approach velocity and landing distance to complete the water-jump close to their race pace. Coaches need to consider many characteristics of technique that differ between men and women

  15. The reliability of vertical jump tests between the Vertec and My Jump phone application.

    Science.gov (United States)

    Yingling, Vanessa R; Castro, Dimitri A; Duong, Justin T; Malpartida, Fiorella J; Usher, Justin R; O, Jenny

    2018-01-01

    The vertical jump is used to estimate sports performance capabilities and physical fitness in children, elderly, non-athletic and injured individuals. Different jump techniques and measurement tools are available to assess vertical jump height and peak power; however, their use is limited by access to laboratory settings, excessive cost and/or time constraints thus making these tools oftentimes unsuitable for field assessment. A popular field test uses the Vertec and the Sargent vertical jump with countermovement; however, new low cost, easy to use tools are becoming available, including the My Jump iOS mobile application (app). The purpose of this study was to assess the reliability of the My Jump relative to values obtained by the Vertec for the Sargent stand and reach vertical jump (VJ) test. One hundred and thirty-five healthy participants aged 18-39 years (94 males, 41 females) completed three maximal Sargent VJ with countermovement that were simultaneously measured using the Vertec and the My Jump . Jump heights were quantified for each jump and peak power was calculated using the Sayers equation. Four separate ICC estimates and their 95% confidence intervals were used to assess reliability. Two analyses (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, consistency, two-way mixed-effects model, while two others (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, absolute agreement, two-way mixed-effects model. Moderate to excellent reliability relative to the degree of consistency between the Vertec and My Jump values was found for jump height (ICC = 0.813; 95% CI [0.747-0.863]) and calculated peak power (ICC = 0.926; 95% CI [0.897-0.947]). However, poor to good reliability relative to absolute agreement for VJ height (ICC = 0.665; 95% CI [0.050-0.859]) and poor to excellent reliability relative to absolute agreement for peak power

  16. Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race.

    Science.gov (United States)

    Rousanoglou, Elissavet N; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A; Boudolos, Konstantinos D

    2016-06-01

    The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key pointsThe 4.1% reduction of jump height immediately after the race is not statistically significantThe eccentric phase alterations of jump mechanics precede

  17. Statistical Analysis of the First Passage Path Ensemble of Jump Processes

    Science.gov (United States)

    von Kleist, Max; Schütte, Christof; Zhang, Wei

    2018-02-01

    The transition mechanism of jump processes between two different subsets in state space reveals important dynamical information of the processes and therefore has attracted considerable attention in the past years. In this paper, we study the first passage path ensemble of both discrete-time and continuous-time jump processes on a finite state space. The main approach is to divide each first passage path into nonreactive and reactive segments and to study them separately. The analysis can be applied to jump processes which are non-ergodic, as well as continuous-time jump processes where the waiting time distributions are non-exponential. In the particular case that the jump processes are both Markovian and ergodic, our analysis elucidates the relations between the study of the first passage paths and the study of the transition paths in transition path theory. We provide algorithms to numerically compute statistics of the first passage path ensemble. The computational complexity of these algorithms scales with the complexity of solving a linear system, for which efficient methods are available. Several examples demonstrate the wide applicability of the derived results across research areas.

  18. Usefulness of the jump-and-reach test in assessment of vertical jump performance.

    Science.gov (United States)

    Menzel, Hans-Joachim; Chagas, Mauro H; Szmuchrowski, Leszek A; Araujo, Silvia R; Campos, Carlos E; Giannetti, Marcus R

    2010-02-01

    The objective was to estimate the reliability and criterion-related validity of the Jump-and-Reach Test for the assessment of squat, countermovement, and drop jump performance of 32 male Brazilian professional volleyball players. Performance of squat, countermovement, and drop jumps with different dropping heights was assessed on the Jump-and-Reach Test and the measurement of flight time, then compared across different jump trials. The very high reliability coefficients of both assessment methods and the lower correlation coefficients between scores on the assessments indicate a very high consistency of each method but only moderate covariation, which means that they measure partly different items. As a consequence, the Jump-and-Reach Test has good ecological validity in situations when reaching height during the flight phase is critical for performance (e.g., basketball and volleyball) but only limited accuracy for the assessment of vertical impulse production with different jump techniques and conditions.

  19. Measurements of K shell absorption jump factors and jump ratios using EDXRF technique

    Science.gov (United States)

    Kacal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-04-01

    In the present work, the K-shell absorption jump factors and jump ratios for 30 elements between Ti ( Z = 22) and Er ( Z = 68) were measured by energy dispersive X-ray fluorescence (EDXRF) technique. The jump factors and jump ratios for these elements were determined by measuring the K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to- Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using an Am-241 radioactive point source and a Si (Li) detector in direct excitation and transmission experimental geometry. The results for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature.

  20. Jumping on water

    Science.gov (United States)

    Kim, Ho-Young

    2016-11-01

    Water striders can jump on water as high as they can jump on land. Quick jumps allow them to avoid sudden dangers such as predators' attacks, and therefore understanding how they make such a dramatic motion for survival can shed light on the ultimate level of semi-aquatic motility achievable through evolution. However, the mechanism of their vertical jumping from a water surface has eluded hydrodynamic explanations so far. By observing movements of water strider legs and theoretically analyzing their dynamic interactions with deforming liquid-air interface, we have recently found that different species of jumping striders always tune their leg rotation speed with a force just below that required to break the water surface to reach the maximum take-off velocity. Here, we start with discussing the fundamental theories of dynamics of floating and sinking of small objects. The theories then enable us to analyze forces acting on a water strider while it presses down the water surface to fully exploit the capillary force. We further introduce a 68-milligram at-scale robotic insect capable of jumping on water without splash, strikingly similar to the real strider, by utilizing the water surface just as a trampoline.

  1. Strength Determinants of Jump Height in the Jump Throw Movement in Women Handball Players.

    Science.gov (United States)

    McGhie, David; Østerås, Sindre; Ettema, Gertjan; Paulsen, Gøran; Sandbakk, Øyvind

    2018-06-08

    McGhie, D, Østerås, S, Ettema, G, Paulsen, G, and Sandbakk, Ø. Strength determinants of jump height in the jump throw movement in women handball players. J Strength Cond Res XX(X): 000-000, 2018-The purpose of the study was to improve the understanding of the strength demands of a handball-specific jump through examining the associations between jump height in a jump throw jump (JTJ) and measures of lower-body maximum strength and impulse in handball players. For comparison, whether the associations between jump height and strength differed between the JTJ and the customarily used countermovement jump (CMJ) was also examined. Twenty women handball players from a Norwegian top division club participated in the study. Jump height was measured in the JTJ and in unilateral and bilateral CMJ. Lower-body strength (maximum isometric force, one-repetition maximum [1RM], impulse at ∼60% and ∼35% 1RM) was measured in seated leg press. The associations between jump height and strength were assessed with correlation analyses and t-tests of dependent r's were performed to determine if correlations differed between jump tests. Only impulse at ∼35% 1RM correlated significantly with JTJ height (p jump height and strength were significantly weaker in the JTJ than in both CMJ tests for all strength measures (p = 0.001-0.044) except one. Maximum strength and impulse at ∼60% 1RM did not seem to sufficiently capture the capabilities associated with JTJ height, highlighting the importance of employing tests targeting performance-relevant neuromuscular characteristics when assessing jump-related strength in handball players. Further, CMJ height seemed to represent a wider range of strength capabilities and care should be taken when using it as a proxy for handball-specific movements.

  2. Stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Wang Linshan; Zhang Zhe; Wang Yangfan

    2008-01-01

    Some criteria for the global stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters are presented. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish some easy-to-test criteria of global exponential stability in the mean square for the stochastic neural networks. The criteria are computationally efficient, since they are in the forms of some linear matrix inequalities

  3. Potentiation: Effect of Ballistic and Heavy Exercise on Vertical Jump Performance.

    Science.gov (United States)

    Hester, Garrett M; Pope, Zachary K; Sellers, John H; Thiele, Ryan M; DeFreitas, Jason M

    2017-03-01

    Hester, GM, Pope, ZK, Sellers, JH, Thiele, RM, and DeFreitas, JM. Potentiation: Effect of ballistic and heavy exercise on vertical jump performance. J Strength Cond Res 31(3): 660-666, 2017-The purpose of this study was to compare the acute effects of heavy and ballistic conditioning protocols on vertical jump performance in resistance-trained men. Fourteen resistance-trained men (mean ± SD: age = 22 ± 2.1 years, body mass = 86.29 ± 9.95 kg, and height = 175.39 ± 9.34 cm) with an average relative full squat of 2.02 ± 0.28 times their body mass participated in this study. In randomized, counterbalanced order, subjects performed two countermovement vertical jumps before and 1, 3, 5, and 10 minutes after either performing 10 rapid jump squats or 5 heavy back squats. The back squat protocol consisted of 5 repetitions at 80% one repetition maximum (1RM), whereas the jump squat protocol consisted of 10 repetitions at 20% 1RM. Peak jump height (in centimeters) using a jump mat, along with power output (in Watts) and velocity (in meters per second) through a linear transducer, was recorded for each time interval. There was no significant condition × time interaction for any of the dependent variables (p = 0.066-0.127). In addition, there was no main effect for condition for any of the dependent variables (p = 0.457-0.899). Neither the ballistic nor heavy protocol used in this study enhanced vertical jump performance at any recovery interval. The use of these protocols in resistance-trained men to produce postactivation potentiation is not recommended.

  4. Methodological concerns for determining power output in the jump squat.

    Science.gov (United States)

    Cormie, Prue; Deane, Russell; McBride, Jeffrey M

    2007-05-01

    The purpose of this study was to investigate the validity of power measurement techniques during the jump squat (JS) utilizing various combinations of a force plate and linear position transducer (LPT) devices. Nine men with at least 6 months of prior resistance training experience participated in this acute investigation. One repetition maximums (1RM) in the squat were determined, followed by JS testing under 2 loading conditions (30% of 1RM [JS30] and 90% of 1RM [JS90]). Three different techniques were used simultaneously in data collection: (a) 1 linear position transducer (1-LPT); (b) 1 linear position transducer and a force plate (1-LPT + FP); and (c) 2 linear position transducers and a force place (2-LPT + FP). Vertical velocity-, force-, and power-time curves were calculated for each lift using these methodologies and were compared. Peak force and peak power were overestimated by 1-LPT in both JS30 and JS90 compared with 2-LPT + FP and 1-LPT + FP (p squat varies according to the measurement technique utilized. The 1-LPT methodology is not a valid means of determining power output in the jump squat. Furthermore, the 1-LPT + FP method may not accurately represent power output in free weight movements that involve a significant amount of horizontal motion.

  5. Coordination in vertical jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.; van Ingen Schenau, Gerrit Jan

    1988-01-01

    The present study was designed to investigate for vertical jumping the relationships between muscle actions, movement pattern and jumping achievement. Ten skilled jumpers performed jumps with preparatory countermovement. Ground reaction forces and cinematographic data were recorded. In addition,

  6. Estimation of Jump Tails

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Todorov, Victor

    We propose a new and flexible non-parametric framework for estimating the jump tails of Itô semimartingale processes. The approach is based on a relatively simple-to-implement set of estimating equations associated with the compensator for the jump measure, or its "intensity", that only utilizes...... the weak assumption of regular variation in the jump tails, along with in-fill asymptotic arguments for uniquely identifying the "large" jumps from the data. The estimation allows for very general dynamic dependencies in the jump tails, and does not restrict the continuous part of the process...... and the temporal variation in the stochastic volatility. On implementing the new estimation procedure with actual high-frequency data for the S&P 500 aggregate market portfolio, we find strong evidence for richer and more complex dynamic dependencies in the jump tails than hitherto entertained in the literature....

  7. MUSCLE STRENGTH AND QUALITATIVE JUMP-LANDING DIFFERENCES IN MALE AND FEMALE MILITARY CADETS: THE JUMP-ACL STUDY

    Directory of Open Access Journals (Sweden)

    Barry P. Boden

    2009-12-01

    Full Text Available Recent studies have focused on gender differences in movement patterns as risk factors for ACL injury. Understanding intrinsic and extrinsic factors which contribute to movement patterns is critical to ACL injury prevention efforts. Isometric lower- extremity muscular strength, anthropometrics, and jump-landing technique were analyzed for 2,753 cadets (1,046 female, 1,707 male from the U.S. Air Force, Military and Naval Academies. Jump- landings were evaluated using the Landing Error Scoring System (LESS, a valid qualitative movement screening tool. We hypothesized that distinct anthropometric factors (Q-angle, navicular drop, bodyweight and muscle strength would predict poor jump-landing technique in males versus females, and that female cadets would have higher scores (more errors on a qualitative movement screen (LESS than males. Mean LESS scores were significantly higher in female (5.34 ± 1.51 versus male (4.65 ± 1.69 cadets (p < 0.001. Qualitative movement scores were analyzed using factor analyses, yielding five factors, or "patterns", contributing to poor landing technique. Females were significantly more likely to have poor technique due to landing with less hip and knee flexion at initial contact (p < 0.001, more knee valgus with wider landing stance (p < 0. 001, and less flexion displacement over the entire landing (p < 0.001. Males were more likely to have poor technique due to landing toe-out (p < 0.001, with heels first, and with an asymmetric foot landing (p < 0.001. Many of the identified factor patterns have been previously proposed to contribute to ACL injury risk. However, univariate and multivariate analyses of muscular strength and anthropometric factors did not strongly predict LESS scores for either gender, suggesting that changing an athlete's alignment, BMI, or muscle strength may not directly improve his or her movement patterns

  8. CAPTURE OF TROJANS BY JUMPING JUPITER

    International Nuclear Information System (INIS)

    Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro

    2013-01-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to ∼5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) × 10 –7 for each particle in the original transplanetary disk, implying that the disk contained (3-4) × 10 7 planetesimals with absolute magnitude H disk ∼ 14-28 M Earth , is consistent with the mass deduced from recent dynamical simulations of the planetary instability.

  9. Influence of increasing knee flexion angle on knee-ankle varus stress during single-leg jump landing

    Directory of Open Access Journals (Sweden)

    Mariam A. Ameer, PhD

    2017-12-01

    Full Text Available Objectives: The primary aim of this study was to identify the relationship between the peak knee flexion angle and knee-ankle varus stress in the landing phase of the single-leg jump during running. Methods: Fifteen male handball players from the first Saudi Arabian handball team were incorporated in this study. Each player performed a single-leg jump-land after running a fixed distance of 450 cm. The data were measured using a 3D motion analysis system. The maximum knee flexion angle, knee varus angle, centre of pressure pathway in the medio-lateral direction, and ankle varus moment were measured. Results: The Pearson Product Moment Correlation showed that a greater knee flexion angle was related to a greater lateral displacement of the centre of pressure (r = 0.794, P = 0.000, a greater ankle varus moment (r = 0.707, P = 0.003, and a greater knee varus angle (r = 0.753, P = 0.001. In addition, the greater ankle varus moment was related to the greater lateral displacement of the centre of pressure (r = 0.734, P = 0.002. Conclusions: These findings may help physical therapists and conditioning professionals to understand the impact of increasing knee flexion angle on the lower limb joints. Such findings may help to develop training protocols for enhancing the lateral body reaction during the landing phase of the single-leg jump, which may protect the knee and ankle joints from excessive varus stresses. Keywords: 3D motion analysis, Ankle kinetic, Centre of pressure pathway, Handball playing, Knee kinematic, Single-leg jump

  10. Stochastic stability analysis for delayed neural networks of neutral type with Markovian jump parameters

    International Nuclear Information System (INIS)

    Lou Xuyang; Cui Baotong

    2009-01-01

    In this paper, the problem of stochastic stability for a class of delayed neural networks of neutral type with Markovian jump parameters is investigated. The jumping parameters are modelled as a continuous-time, discrete-state Markov process. A sufficient condition guaranteeing the stochastic stability of the equilibrium point is derived for the Markovian jumping delayed neural networks (MJDNNs) with neutral type. The stability criterion not only eliminates the differences between excitatory and inhibitory effects on the neural networks, but also can be conveniently checked. The sufficient condition obtained can be essentially solved in terms of linear matrix inequality. A numerical example is given to show the effectiveness of the obtained results.

  11. Neural Network Based Finite-Time Stabilization for Discrete-Time Markov Jump Nonlinear Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2013-01-01

    Full Text Available This paper deals with the finite-time stabilization problem for discrete-time Markov jump nonlinear systems with time delays and norm-bounded exogenous disturbance. The nonlinearities in different jump modes are parameterized by neural networks. Subsequently, a linear difference inclusion state space representation for a class of neural networks is established. Based on this, sufficient conditions are derived in terms of linear matrix inequalities to guarantee stochastic finite-time boundedness and stochastic finite-time stabilization of the closed-loop system. A numerical example is illustrated to verify the efficiency of the proposed technique.

  12. Deriving appropriate boundary conditions, and accelerating position-jump simulations, of diffusion using non-local jumping

    International Nuclear Information System (INIS)

    Taylor, P R; Baker, R E; Yates, C A

    2015-01-01

    In this paper we explore lattice-based position-jump models of diffusion, and the implications of introducing non-local jumping; particles can jump to a range of nearby boxes rather than only to their nearest neighbours. We begin by deriving conditions for equivalence with traditional local jumping models in the continuum limit. We then generalize a previously postulated implementation of the Robin boundary condition for a non-local process of arbitrary maximum jump length, and present a novel implementation of flux boundary conditions, again generalized for a non-local process of arbitrary maximum jump length. In both these cases we validate our results using stochastic simulation. We then proceed to consider two variations on the basic diffusion model: a hybrid local/non-local scheme suitable for models involving sharp concentration gradients, and the implementation of biased jumping. In all cases we show that non-local jumping can deliver substantial time savings for stochastic simulations. (paper)

  13. Influence of Knee-to-Feet Jump Training on Vertical Jump and Hang Clean Performance.

    Science.gov (United States)

    Stark, Laura; Pickett, Karla; Bird, Michael; King, Adam C

    2016-11-01

    Stark, L, Pickett, K, Bird, M, and King, AC. Influence of knee-to-feet jump training on vertical jump and hang clean performance. J Strength Cond Res 30(11): 3084-3089, 2016-From a motor learning perspective, the practice/training environment can result in positive, negative, or neutral transfer to the testing conditions. The purpose of this study was to examine the training effect of a novel movement (knee-to-feet [K2F] jumps) and whether a 6-week training program induced a positive transfer effect to other power-related movements (vertical jump and hang clean [HC]). Twenty-six intercollegiate athletes from power-emphasized sports were paired and counter-balanced into a control (i.e., maintained their respective sport-specific lifting regimen) or an experimental group (i.e., completed a 6-week progressive training program of K2F jumps in addition to respective lifting regimen). A pre- and posttest design was used to investigate the effect of training on K2F jump height and transfer effect to vertical jump height (VJH) and 2-repetition maximum (RM) HC performance. A significant increase in K2F jump height was found for the experimental group. Vertical jump height significantly increased from pre- to posttest but no group or interaction (group × time) effect was found, and there were nonsignificant differences for HC. Posttest data showed significant correlations between all pairs of the selected exercises with the highest correlation between K2F jump height and VJ H (R = 0.40) followed by VJH and 2RM HC (R = 0.38) and 2RM HC and K2F jump height (R = 0.23). The results suggest that K2F jump training induced the desired learning effect but was specific to the movement in that no effect of transfer occurred to the other power-related movements. This finding is value for strength and condition professionals who design training programs to enhance athletic performance.

  14. Countermovement-Jump-Phase Characteristics of Senior and Academy Rugby League Players.

    Science.gov (United States)

    McMahon, John J; Murphy, Shannon; Rej, Sophie J E; Comfort, Paul

    2017-07-01

    Gross measures of countermovement-jump (CMJ) performance are commonly used to track maturational changes in neuromuscular function in rugby league (RL). The purpose of this study was to conduct both a gross and a more detailed temporal-phase analysis of the CMJ performances of senior and academy RL players, to provide greater insight into how neuromuscular function differs between these groups. Twenty senior and 14 academy (under-19) male RL players performed 3 maximal-effort CMJs on a force platform, with forward dynamics subsequently employed to allow gross performance measures and entire kinetic- and kinematic-time curves to be compared between groups. Jump height (JH), reactive strength index modified, concentric displacement, and relative concentric impulse (C-IMP) were the only gross measures that were greater for senior players (d = 0.58-0.91) than for academy players. The relative force- and displacement-time curves were similar between groups, but the relative power- and velocity-time curves were greater (d = 0.59-0.97) for the senior players at 94-96% and 89-100% of the total movement time, respectively. The CMJ distinguished between senior and academy RL players, with seniors demonstrating greater JH through applying a larger C-IMP and thus achieving greater velocity throughout the majority of the concentric phase and at takeoff. Therefore, academy RL players should train to improve triple (ie, ankle, knee, and hip) extension velocity during the CMJ to bring their JH scores in line with those attained by senior players.

  15. Direct measurement of the image displacement instability in a linear induction accelerator

    Science.gov (United States)

    Burris-Mog, T. J.; Ekdahl, C. A.; Moir, D. C.

    2017-06-01

    The image displacement instability (IDI) has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU) instability. Although the BBU instability was not found to influence the IDI, it appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. This becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.

  16. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012-2014.

    Science.gov (United States)

    Ruse, Karen; Davison, Aidan; Bridle, Kerry

    2015-10-22

    Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these Animals 2015, 5 1073 data in light of public controversy, political debate, and industry regulation related to jump horse safety.

  17. DFT study of the polarization behaviors of various distorted barium titanate crystals: The role of atomic displacements

    Science.gov (United States)

    Mirseraji, Mojtaba; Shahraki, Mehran Gholipour

    2018-06-01

    A Local Density Approximation (LDA) was employed to investigate the influence of applied strains on valence charge distributions, atomic displacements, Tisbnd O (3) bond distances and the total polarizations in barium titanate (BaTiO3). Four types of various strains were imposed on perfect tetragonal BaTiO3 along the a, c, ab and abc axial directions. Electromechanical properties of BaTiO3 were evaluated in LDA framework and a good agreement with previous results was achieved. The results show that, in the cases of a, ab strains, the values of polarization are almost constant in negative strains and increased by gradual increasing of the positive strains after a sudden enhancement at about +0.1% strain. In the case of c-strain, axial oxygen and Ti atoms underwent the highest displacements and the polarization linearly increased by applied strain. The case of abc-strain, represent the both types of features. In negative abc-strain show a similar polarization behavior like c-strain case and in positive region, polarization behavior is the same as a- and ab-strain cases. In the abc-strains of -0.3% and +0.1%, an abrupt jump in total polarization curve and a small change, are observed due to abnormal atomic displacements. In the most cases a direct relation between polarization and Tisbnd O (3) bond distance was also beheld. Finally, the effects of valence charge distributions on the atomic displacements and total polarizations are studied. It is found that there is a direct relation between polarization and Valence Charge Asymmetry of 3d -orbitals.

  18. Determinants of the abilities to jump higher and shorten the contact time in a running 1-legged vertical jump in basketball.

    Science.gov (United States)

    Miura, Ken; Yamamoto, Masayoshi; Tamaki, Hiroyuki; Zushi, Koji

    2010-01-01

    This study was conducted to obtain useful information for developing training techniques for the running 1-legged vertical jump in basketball (lay-up shot jump). The ability to perform the lay-up shot jump and various basic jumps was measured by testing 19 male basketball players. The basic jumps consisted of the 1-legged repeated rebound jump, the 2-legged repeated rebound jump, and the countermovement jump. Jumping height, contact time, and jumping index (jumping height/contact time) were measured and calculated using a contact mat/computer system that recorded the contact and air times. The jumping index indicates power. No significant correlation existed between the jumping height and contact time of the lay-up shot jump, the 2 components of the lay-up shot jump index. As a result, jumping height and contact time were found to be mutually independent abilities. The relationships in contact time between the lay-up shot jump to the 1-legged repeated rebound jump and the 2-legged repeated rebound jump were correlated on the same significance levels (p jumping height existed between the 1-legged repeated rebound jump and the lay-up shot jump (p jumping height between the lay-up shot jump and both the 2-legged repeated rebound jump and countermovement jump. The lay-up shot index correlated more strongly to the 1-legged repeated rebound jump index (p jump index (p jump is effective in improving both contact time and jumping height in the lay-up shot jump.

  19. The Effects of Aquatic Plyometric Training on Repeated Jumps, Drop Jumps and Muscle Damage.

    Science.gov (United States)

    Jurado-Lavanant, A; Alvero-Cruz, J R; Pareja-Blanco, F; Melero-Romero, C; Rodríguez-Rosell, D; Fernandez-Garcia, J C

    2015-09-22

    The purpose of this study was to compare the effects of land- vs. aquatic based plyometric training programs on the drop jump, repeated jump performance and muscle damage. Sixty-five male students were randomly assigned to one of 3 groups: aquatic plyometric training group (APT), plyometric training group (PT) and control group (CG). Both experimental groups trained twice a week for 10 weeks performing the same number of sets and total jumps. The following variables were measured prior to, halfway through and after the training programs: creatine kinase (CK) concentration, maximal height during a drop jump from the height of 30 (DJ30) and 50 cm (DJ50), and mean height during a repeated vertical jump test (RJ). The training program resulted in a significant increase (Pplyometric training, PT produced greater gains on reactive jumps performance than APT. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Validity of Hip-worn Inertial Measurement Unit Compared to Jump Mat for Jump Height Measurement in Adolescents.

    Science.gov (United States)

    Rantalainen, T; Hesketh, K D; Rodda, C; Duckham, R L

    2018-06-16

    Jump tests assess lower body power production capacity, and can be used to evaluate athletic ability and development during growth. Wearable inertial measurement units (IMU) seem to offer a feasible alternative to laboratory-based equipment for jump height assessments. Concurrent validity of these devices for jump height assessments has only been established in adults. Therefore, the purpose of this study was to evaluate the concurrent validity of IMU-based jump height estimate compared to contact mat-based jump height estimate in adolescents. Ninety-five adolescents (10-13 years-of-age; girls N=41, height = 154 (SD 9) cm, weight = 44 (11) kg; boys N=54, height=156 (10) cm, weight = 46 (13) kg) completed three counter-movement jumps for maximal jump height on a contact mat. Inertial recordings (accelerations, rotations) were concurrently recorded with a hip-worn IMU (sampling at 256 Hz). Jump height was evaluated based on flight time. The mean IMU-derived jump height was 27.1 (SD 3.8) cm, and the corresponding mean jump-mat-derived value was 21.5 (3.4) cm. While a significant 26% mean difference was observed between the methods (5.5 [95% limits of agreement 2.2 to 8.9] cm, p = 0.006), the correspondence between methods was excellent (ICC = 0.89). The difference between methods was weakly positively associated with jump height (r = 0.28, P = 0.007). Take-off velocity derived jump height was also explored but produced only fair congruence. In conclusion, IMU-derived jump height exhibited excellent congruence to contact mat-based jump height and therefore presents a feasible alternative for jump height assessments in adolescents. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Control and filtering for semi-Markovian jump systems

    CERN Document Server

    Li, Fanbiao; Wu, Ligang

    2017-01-01

    This book presents up-to-date research developments and novel methodologies on semi-Markovian jump systems (S-MJS). It presents solutions to a series of problems with new approaches for the control and filtering of S-MJS, including stability analysis, sliding mode control, dynamic output feedback control, robust filter design, and fault detection. A set of newly developed techniques such as piecewise analysis method, positively invariant set approach, event-triggered method, and cone complementary linearization approaches are presented. Control and Filtering for Semi-Markovian Jump Systems is a comprehensive reference for researcher and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduates and graduates in these areas. The readers will benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.

  2. Test-retest reliability of jump execution variables using mechanography: a comparison of jump protocols.

    Science.gov (United States)

    Fitzgerald, John S; Johnson, LuAnn; Tomkinson, Grant; Stein, Jesse; Roemmich, James N

    2018-05-01

    Mechanography during the vertical jump may enhance screening and determining mechanistic causes underlying physical performance changes. Utility of jump mechanography for evaluation is limited by scant test-retest reliability data on force-time variables. This study examined the test-retest reliability of eight jump execution variables assessed from mechanography. Thirty-two women (mean±SD: age 20.8 ± 1.3 yr) and 16 men (age 22.1 ± 1.9 yr) attended a familiarization session and two testing sessions, all one week apart. Participants performed two variations of the squat jump with squat depth self-selected and controlled using a goniometer to 80º knee flexion. Test-retest reliability was quantified as the systematic error (using effect size between jumps), random error (using coefficients of variation), and test-retest correlations (using intra-class correlation coefficients). Overall, jump execution variables demonstrated acceptable reliability, evidenced by small systematic errors (mean±95%CI: 0.2 ± 0.07), moderate random errors (mean±95%CI: 17.8 ± 3.7%), and very strong test-retest correlations (range: 0.73-0.97). Differences in random errors between controlled and self-selected protocols were negligible (mean±95%CI: 1.3 ± 2.3%). Jump execution variables demonstrated acceptable reliability, with no meaningful differences between the controlled and self-selected jump protocols. To simplify testing, a self-selected jump protocol can be used to assess force-time variables with negligible impact on measurement error.

  3. Robust Guaranteed Cost Observer Design for Singular Markovian Jump Time-Delay Systems with Generally Incomplete Transition Probability

    Directory of Open Access Journals (Sweden)

    Yanbo Li

    2014-01-01

    Full Text Available This paper is devoted to the investigation of the design of robust guaranteed cost observer for a class of linear singular Markovian jump time-delay systems with generally incomplete transition probability. In this singular model, each transition rate can be completely unknown or only its estimate value is known. Based on stability theory of stochastic differential equations and linear matrix inequality (LMI technique, we design an observer to ensure that, for all uncertainties, the resulting augmented system is regular, impulse free, and robust stochastically stable with the proposed guaranteed cost performance. Finally, a convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters for linear singular Markovian jump time-delay systems with generally incomplete transition probability.

  4. Robust L2-L∞ Filtering of Time-Delay Jump Systems with Respect to the Finite-Time Interval

    Directory of Open Access Journals (Sweden)

    Shuping He

    2011-01-01

    Full Text Available This paper studied the problem of stochastic finite-time boundedness and disturbance attenuation for a class of linear time-delayed systems with Markov jumping parameters. Sufficient conditions are provided to solve this problem. The L2-L∞ filters are, respectively, designed for time-delayed Markov jump linear systems with/without uncertain parameters such that the resulting filtering error dynamic system is stochastically finite-time bounded and has the finite-time interval disturbance attenuation γ for all admissible uncertainties, time delays, and unknown disturbances. By using stochastic Lyapunov-Krasovskii functional approach, it is shown that the filter designing problem is in terms of the solutions of a set of coupled linear matrix inequalities. Simulation examples are included to demonstrate the potential of the proposed results.

  5. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012–2014

    Science.gov (United States)

    Ruse, Karen; Davison, Aidan; Bridle, Kerry

    2015-01-01

    Simple Summary This paper documents the dynamics of Australian thoroughbred jump racing in the 2012, 2013, and 2014 seasons with the aim of informing debate about risks to horses and the future of this activity. We conclude that the safety of Australian jump racing has improved in recent years but that steeplechases are considerably riskier for horses than hurdle races. Abstract Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these data in light of public controversy, political debate, and industry regulation related to jump horse safety. PMID:26506396

  6. Lower-Body Muscle Structure and Jump Performance of Stronger and Weaker Surfing Athletes.

    Science.gov (United States)

    Secomb, Josh L; Nimphius, Sophia; Farley, Oliver R; Lundgren, Lina; Tran, Tai T; Sheppard, Jeremy M

    2016-07-01

    To identify whether there are any significant differences in the lower-body muscle structure and countermovement-jump (CMJ) and squat-jump (SJ) performance between stronger and weaker surfing athletes. Twenty elite male surfers had their lower-body muscle structure assessed with ultrasonography and completed a series of lower-body strength and jump tests including isometric midthigh pull (IMTP), CMJ, and SJ. Athletes were separated into stronger (n = 10) and weaker (n = 10) groups based on IMTP performance. Large significant differences were identified between the groups for vastus lateralis (VL) thickness (P = .02, ES = 1.22) and lateral gastrocnemius (LG) pennation angle (P = .01, ES = 1.20), and a large nonsignificant difference was identified in LG thickness (P = .08, ES = 0.89). Furthermore, significant differences were present between the groups for peak force, relative peak force, and jump height in the CMJ and SJ (P Stronger surfing athletes in this study had greater VL and LG thickness and LG pennation angle. These muscle structures may explain their better performance in the CMJ and SJ. A unique finding in this study was that the stronger group appeared to better use their strength and muscle structure for braking as they had significantly higher eccentric peak velocity and vertical displacement during the CMJ. This enhanced eccentric phase may have resulted in a greater production and subsequent utilization of stored elastic strain energy that led to the significantly better CMJ performance in the stronger group.

  7. Do Bilateral Vertical Jumps With Reactive Jump Landings Achieve Osteogenic Thresholds With and Without Instruction in Premenopausal Women?

    Science.gov (United States)

    Clissold, Tracey L; Winwood, Paul W; Cronin, John B; De Souza, Mary Jane

    2018-04-01

    Jumps have been investigated as a stimulus for bone development; however, effects of instruction, jump type, and jump-landing techniques need investigation. This study sought to identify whether ground reaction forces (GRFs) for bilateral vertical jumps (countermovement jumps and drop jumps) with reactive jump-landings (ie, jumping immediately after initial jump-landing), with instruction and with instruction withdrawn, achieve magnitudes and rates of strain previously shown to improve bone mass among premenopausal women. Twenty-one women (Mean ± SD: 43.3 ± 5.9 y; 69.4 ± 9.6 kg; 167 ± 5.5 cm; 27.5 ± 8.7% body fat) performed a testing session 'with instruction' followed by a testing session performed 1 week later with 'instruction withdrawn.' The magnitudes (4.59 to 5.49 body weight [BW]) and rates of strain (263 to 359 BW·s -1 ) for the jump-landings, performed on an AMTI force plate, exceeded previously determined thresholds (>3 BWs and >43 BW·s -1 ). Interestingly, significantly larger peak resultant forces, (↑10%; P = .002) and peak rates of force development (↑20%; P jump-landing (postreactive jump). Small increases (ES = 0.22-0.42) in all landing forces were observed in the second jump-landing with 'instruction withdrawn.' These jumps represent a unique training stimulus for premenopausal women and achieve osteogenic thresholds thought prerequisite for bone growth.

  8. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012–2014

    Directory of Open Access Journals (Sweden)

    Karen Ruse

    2015-10-01

    Full Text Available Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%. There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075% and steeplechases, 14 fatalities per 1000 starts (1.4%. Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these Animals 2015, 5 1073 data in light of public controversy, political debate, and industry regulation related to jump horse safety.

  9. Variation in free jumping technique within and among horses with little experience in show jumping

    NARCIS (Netherlands)

    Santamaria, S.; Bobbert, M.F.; Back, W.; Barneveld, A.; van Weeren, P.R.

    2004-01-01

    Objective - To quantify variation in the jumping technique within and among young horses with little jumping experience, establish relationships between kinetic and kinematic variables, and identify a limited set of variables characteristic for detecting differences in jumping performance among

  10. Validity of a Jump Mat for assessing Countermovement Jump Performance in Elite Rugby Players.

    Science.gov (United States)

    Dobbin, Nick; Hunwicks, Richard; Highton, Jamie; Twist, Craig

    2017-02-01

    This study determined the validity of the Just Jump System ® (JJS) for measuring flight time, jump height and peak power output (PPO) in elite rugby league players. 37 elite rugby league players performed 6 countermovement jumps (CMJ; 3 with and 3 without arms) on a jump mat and force platform. A sub-sample (n=28) was used to cross-validate the equations for flight time, jump height and PPO. The JJS systematically overestimated flight time and jump height compared to the force platform (Pjump height ( with R 2 =0.945; without R 2 =0.987). Our equations revealed no systematic difference between corrected and force platform scores and an improved the agreement for flight time (Ratio limits of agreement: with 1.00 vs. 1.36; without 1.00 vs. 1.16) and jump height ( with 1.01 vs. 1.34; without 1.01 vs. 1.15), meaning that our equations can be used to correct JJS scores for elite rugby players. While our equation improved the estimation of PPO ( with 1.02; without 1.01) compared to existing equations (Harman: 1.20; Sayers: 1.04), this only accounted for 64 and 69% of PPO. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Stability and performance analysis of a jump linear control system subject to digital upsets

    Science.gov (United States)

    Wang, Rui; Sun, Hui; Ma, Zhen-Yang

    2015-04-01

    This paper focuses on the methodology analysis for the stability and the corresponding tracking performance of a closed-loop digital jump linear control system with a stochastic switching signal. The method is applied to a flight control system. A distributed recoverable platform is implemented on the flight control system and subject to independent digital upsets. The upset processes are used to stimulate electromagnetic environments. Specifically, the paper presents the scenarios that the upset process is directly injected into the distributed flight control system, which is modeled by independent Markov upset processes and independent and identically distributed (IID) processes. A theoretical performance analysis and simulation modelling are both presented in detail for a more complete independent digital upset injection. The specific examples are proposed to verify the methodology of tracking performance analysis. The general analyses for different configurations are also proposed. Comparisons among different configurations are conducted to demonstrate the availability and the characteristics of the design. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61403395), the Natural Science Foundation of Tianjin, China (Grant No. 13JCYBJC39000), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China, the Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance in Civil Aviation of China (Grant No. 104003020106), and the Fund for Scholars of Civil Aviation University of China (Grant No. 2012QD21x).

  12. Controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with delay and Poisson jumps

    Directory of Open Access Journals (Sweden)

    Diem Dang Huan

    2015-12-01

    Full Text Available The current paper is concerned with the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps in Hilbert spaces. Using the theory of a strongly continuous cosine family of bounded linear operators, stochastic analysis theory and with the help of the Banach fixed point theorem, we derive a new set of sufficient conditions for the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps. Finally, an application to the stochastic nonlinear wave equation with infinite delay and Poisson jumps is given.

  13. SARS – virus jumps species

    Indian Academy of Sciences (India)

    SARS – virus jumps species. Coronavirus reshuffles genes; Rotteir et al, Rotterdam showed the virus to jump from cats to mouse cells after single gene mutation ? Human disease due to virus jumping from wild or domestic animals; Present favourite animal - the cat; - edible or domestic.

  14. Increase in Jumping Height Associated with Maximal Effort Vertical Depth Jumps.

    Science.gov (United States)

    Bedi, John F.; And Others

    1987-01-01

    In order to assess if there existed a statistically significant increase in jumping performance when dropping from different heights, 32 males, aged 19 to 26, performed a series of maximal effort vertical jumps after dropping from eight heights onto a force plate. Results are analyzed. (Author/MT)

  15. What are quantum jumps?

    International Nuclear Information System (INIS)

    Cook, R.J.

    1988-01-01

    This paper answers the title question by giving an operational definition of quantum jumps based on measurement theory. This definition forms the basis of a theory of quantum jumps which leads to a number of testable predictions. Experiments are proposed to test the theory. The suggested experiments also test the quantum Zeno paradox, i.e., they test the proposition that frequent observation of a quantum system inhibits quantum jumps in that system. (orig.)

  16. Direct measurement of the image displacement instability in a linear induction accelerator

    Directory of Open Access Journals (Sweden)

    T. J. Burris-Mog

    2017-06-01

    Full Text Available The image displacement instability (IDI has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU instability. Although the BBU instability was not found to influence the IDI, it appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. This becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.

  17. Jump probabilities in the non-Markovian quantum jump method

    International Nuclear Information System (INIS)

    Haerkoenen, Kari

    2010-01-01

    The dynamics of a non-Markovian open quantum system described by a general time-local master equation is studied. The propagation of the density operator is constructed in terms of two processes: (i) deterministic evolution and (ii) evolution of a probability density functional in the projective Hilbert space. The analysis provides a derivation for the jump probabilities used in the recently developed non-Markovian quantum jump (NMQJ) method (Piilo et al 2008 Phys. Rev. Lett. 100 180402).

  18. Realized Jump Risk and Equity Return in China

    Directory of Open Access Journals (Sweden)

    Guojin Chen

    2014-01-01

    Full Text Available We utilize the realized jump components to explore a new jump (including nonsystematic jump and systematic jump risk factor model. After estimating daily realized jumps from high-frequency transaction data of the Chinese A-share stocks, we calculate monthly jump size, monthly jump standard deviation, and monthly jump arrival rate and then use those monthly jump factors to explain the return of the following month. Our empirical results show that the jump tail risk can explain the equity return. For the large capital-size stocks, large cap stock portfolios, and index, one-month lagged jump risk factor significantly explains the asset return variation. Our results remain the same even when we add the size and value factors in the robustness tests.

  19. Theory of boiling-up jump

    International Nuclear Information System (INIS)

    Labuntsov, D.A.; Avdeev, A.A.

    1981-01-01

    Concept of boiling-up jump representing a zone of intense volume boiling-up separating overtaking flow of overheated metastable liquid from an area of equilibrium flow located below along the flow is introduced. It is shown that boiling-up jump is a shock wave of rarefaction. It is concluded that entropy increment occurs on the jump. Characteristics of adiabatic shock wave curve of boiling- up in ''pressure-specific volume'' coordinates have been found and its form has been investigated. Stability of boiling-up jump has been analyzed as well. On the basis of approach developed analysis is carried out on the shock adiobatic curve of condensation. Concept of boiling-up jump may be applied to the analysis of boiling-up processes when flowing liquid through packings during emergency pressure drop etc [ru

  20. One leg lateral jumps - a new test for team players evaluation.

    Science.gov (United States)

    Taboga, P; Sepulcri, L; Lazzer, S; De Conti, D; Di Prampero, P E

    2013-10-01

    We assessed the subject's capacity to accelerate himself laterally in monopodalic support, a crucial ability in several team sports, on 22 athletes, during series of 10 subsequent jumps, between two force platforms at predetermined distance. Vertical and horizontal accelerations of the Centre of Mass (CM), contact and flight times were measured by means of force platforms and the Optojump-System®. Individual mean horizontal and vertical powers and their sum (total power) ranged between 7 and 14.5 W/kg. "Push angle", i.e., the angle with the horizontal along which the vectorial sum of all forces is aligned, was calculated from the ratio between vertical and horizontal accelerations: it varied between 38.7 and 49.4 deg and was taken to express the subject technical ability. The horizontal acceleration of CM, indirectly estimated as a function of subject's mass, contact and flight times, was essentially equal to that obtained from force platforms data. Since the vertical displacement can be easily obtained from flight and contact times, this allowed us to assess the Push angle from Optojump data only. The power developed during a standard vertical jump was rather highly correlated with that developed during the lateral jumps for right (R=0.80, N.=12) and left limb (R=0.72, N.=12), but not with the push angle for right (R=0.31, N.=12) and left limb (R=-0.43, N.=12). Hence standard tests cannot be utilised to assess technical ability. Lateral jumps test allows the coach to evaluate separately maximal muscular power and technical ability of the athlete, thus appropriately directing the training program: the optimum, for a team-sport player being high power and low push-angle, that is: being "powerful" and "efficient".

  1. Displacement sensing system and method

    Science.gov (United States)

    VunKannon, Jr., Robert S

    2006-08-08

    A displacement sensing system and method addresses demanding requirements for high precision sensing of displacement of a shaft, for use typically in a linear electro-dynamic machine, having low failure rates over multi-year unattended operation in hostile environments. Applications include outer space travel by spacecraft having high-temperature, sealed environments without opportunity for servicing over many years of operation. The displacement sensing system uses a three coil sensor configuration, including a reference and sense coils, to provide a pair of ratio-metric signals, which are inputted into a synchronous comparison circuit, which is synchronously processed for a resultant displacement determination. The pair of ratio-metric signals are similarly affected by environmental conditions so that the comparison circuit is able to subtract or nullify environmental conditions that would otherwise cause changes in accuracy to occur.

  2. Measurement of K-shell absorption jump factors and jump ratios in some lanthanide elements using EDXRF technique

    International Nuclear Information System (INIS)

    Polat, Recep; İçelli, Orhan; Yalçın, Zeynel; Pesen, Erhan; Orak, Salim

    2013-01-01

    Highlights: ► Mass attenuation coefficients, jump factor and jump ratio for lanthanide elements are obtained. ► The method used in this experiment is combined both transmission and scattering geometry. ► Secondary gamma rays energy is 59.5 keV. ► Experimental values of jump factor and jump ratio for K shell are new. ► The experimental values are in good agreement with those calculated theoretically. - Abstract: 59.5 keV gamma rays scattered by an aluminum foil have been used as a radiation source to measure the absorption jump factor and jump ratios for absorbers Ce, Pr, Nd, Sm, Eu and Tb. The theoretical and experimental values are compared with the corresponding ones in the literature

  3. BPS Jumping Loci are Automorphic

    Science.gov (United States)

    Kachru, Shamit; Tripathy, Arnav

    2018-06-01

    We show that BPS jumping loci-loci in the moduli space of string compactifications where the number of BPS states jumps in an upper semi-continuous manner—naturally appear as Fourier coefficients of (vector space-valued) automorphic forms. For the case of T 2 compactification, the jumping loci are governed by a modular form studied by Hirzebruch and Zagier, while the jumping loci in K3 compactification appear in a story developed by Oda and Kudla-Millson in arithmetic geometry. We also comment on some curious related automorphy in the physics of black hole attractors and flux vacua.

  4. Optimal Ski Jump

    Science.gov (United States)

    Rebilas, Krzysztof

    2013-01-01

    Consider a skier who goes down a takeoff ramp, attains a speed "V", and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is [alpha]. What is the optimal angle [alpha] that makes the jump the longest possible for the fixed magnitude of the…

  5. Calculated thermally induced displacements and stresses for heater experiments at Stripa, Sweden. Linear thermoelastic models using constant material properties

    International Nuclear Information System (INIS)

    Chan, T.; Cook, N.G.W.

    1979-12-01

    Thermally induced displacements and stresses have been calculated by finite element analysis to guide the design, operation, and data interpretation of the in situ heating experiments in a granite formation at Stripa, Sweden. There are two full-scale tests with electrical heater canisters comparable in size and power to those envisaged for reprocessed high level waste canisters and a time-scaled test. To provide a simple theoretical basis for data analysis, linear thermoelasticity was assumed. Constant (temperature-independent) thermal and mechanical rock properties were used in the calculations. These properties were determined by conventional laboratory testing on small intact core specimens recovered from the Stripa test site. Two-dimensional axisymmetric models were used for the full-scale experiments, and three-dimensional models for the time-scaled experiment. Highest compressive axial and tangential stresses are expected at the wall of the heater borehole. For the 3.6 kW full-scale heated experiment, maximum compressive tangential stress was predicted to be below the unconfined compressive strength of Stripa granite, while for the 5 kW experiment, the maximum was approximately equal to the compressive strength before the concentric ring of eight 1 kW peripheral heaters was activated, but would exceed that soon afterwards. Three zones of tensile thermomechanical stresses will occur in each full-scale experiment. Maximum vertical displacements range from a fraction of a millimeter over most of the instrumented area of the time-scaled experiment to a few millimeters in the higher-power full-scale experiment. Radial displacements are typically half or less than vertical displacements. The predicted thermomechanical displacements and stresses have been stored in an on-site computer to facilitate instant graphic comparison with field data as the latter are collected

  6. Prediction of vertical jump height from anthropometric factors in male and female martial arts athletes.

    Science.gov (United States)

    Abidin, Nahdiya Zainal; Adam, Mohd Bakri

    2013-01-01

    Vertical jump is an index representing leg/kick power. The explosive movement of the kick is the key to scoring in martial arts competitions. It is important to determine factors that influence the vertical jump to help athletes improve their leg power. The objective of the present study is to identify anthropometric factors that influence vertical jump height for male and female martial arts athletes. Twenty-nine male and 25 female athletes participated in this study. Participants were Malaysian undergraduate students whose ages ranged from 18 to 24 years old. Their heights were measured using a stadiometer. The subjects were weighted using digital scale. Body mass index was calculated by kg/m(2). Waist-hip ratio was measured from the ratio of waist to hip circumferences. Body fat % was obtained from the sum of four skinfold thickness using Harpenden callipers. The highest vertical jump from a stationary standing position was recorded. The maximum grip was recorded using a dynamometer. For standing back strength, the maximum pull upwards using a handle bar was recorded. Multiple linear regression was used to obtain the relationship between vertical jump height and explanatory variables with gender effect. Body fat % has a significant negative relationship with vertical jump height (P martial arts athletes can be predicted by body fat %. The vertical jump for male is higher than for their female counterparts. Reducing body fat by proper dietary planning will help to improve leg power.

  7. Test study on relation between thaw-collapse displacement of medium sand and negative friction of single pile

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, G.; Yang, W. [China University of Mining and Technology, Xuzhou (China). College of Architecture and Civil Engineering

    1999-11-01

    Based on simulation tests, the change of thaw-collapse displacement of saturated medium sand and the relation between negative friction of single pile and thaw-collapse displacement are investigated . In the separating ice and thawing stages, the relation between separating ice surface displacement of sample and time is similarly linear, but the displacement is too small in the redistribution stage of grains. Corresponding to these two stages, the displacement of sample grain framework surface can be divided into similarly linear and non-linear factions. The contribution of the non-linear section comes from grain redistribution after thawing. The negative friction of single pile shows good linear relation following the thawing process. But the producing and increasing mechanisms of negative friction are not the same in the two stages. During the stage of grain redistribution, the displacement of sample grain framework surface occupies only 9.7% of the total displacement, while the negative friction has increased by 18% or so. 6 refs., 7 figs.

  8. Birth of a hydraulic jump

    Science.gov (United States)

    Duchesne, Alexis; Bohr, Tomas; Andersen, Anders

    2017-11-01

    The hydraulic jump, i.e., the sharp transition between a supercritical and a subcritical free-surface flow, has been extensively studied in the past centuries. However, ever since Leonardo da Vinci asked it for the first time, an important question has been left unanswered: How does a hydraulic jump form? We present an experimental and theoretical study of the formation of stationary hydraulic jumps in centimeter wide channels. Two starting situations are considered: The channel is, respectively, empty or filled with liquid, the liquid level being fixed by the wetting properties and the boundary conditions. We then change the flow-rate abruptly from zero to a constant value. In an empty channel, we observe the formation of a stationary hydraulic jump in a two-stage process: First, the channel fills by the advancing liquid front, which undergoes a transition from supercritical to subcritical at some position in the channel. Later the influence of the downstream boundary conditions makes the jump move slowly upstream to its final position. In the pre-filled channel, the hydraulic jump forms at the injector edge and then moves downstream to its final position.

  9. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height

    Directory of Open Access Journals (Sweden)

    Mandic Radivoj

    2016-09-01

    Full Text Available The aim of the present study was to explore the control strategy of maximum countermovement jumps regarding the preferred countermovement depth preceding the concentric jump phase. Elite basketball players and physically active non-athletes were tested on the jumps performed with and without an arm swing, while the countermovement depth was varied within the interval of almost 30 cm around its preferred value. The results consistently revealed 5.1-11.2 cm smaller countermovement depth than the optimum one, but the same difference was more prominent in non-athletes. In addition, although the same differences revealed a marked effect on the recorded force and power output, they reduced jump height for only 0.1-1.2 cm. Therefore, the studied control strategy may not be based solely on the countermovement depth that maximizes jump height. In addition, the comparison of the two groups does not support the concept of a dual-task strategy based on the trade-off between maximizing jump height and minimizing the jumping quickness that should be more prominent in the athletes that routinely need to jump quickly. Further research could explore whether the observed phenomenon is based on other optimization principles, such as the minimization of effort and energy expenditure. Nevertheless, future routine testing procedures should take into account that the control strategy of maximum countermovement jumps is not fully based on maximizing the jump height, while the countermovement depth markedly confound the relationship between the jump height and the assessed force and power output of leg muscles.

  10. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height.

    Science.gov (United States)

    Mandic, Radivoj; Knezevic, Olivera M; Mirkov, Dragan M; Jaric, Slobodan

    2016-09-01

    The aim of the present study was to explore the control strategy of maximum countermovement jumps regarding the preferred countermovement depth preceding the concentric jump phase. Elite basketball players and physically active non-athletes were tested on the jumps performed with and without an arm swing, while the countermovement depth was varied within the interval of almost 30 cm around its preferred value. The results consistently revealed 5.1-11.2 cm smaller countermovement depth than the optimum one, but the same difference was more prominent in non-athletes. In addition, although the same differences revealed a marked effect on the recorded force and power output, they reduced jump height for only 0.1-1.2 cm. Therefore, the studied control strategy may not be based solely on the countermovement depth that maximizes jump height. In addition, the comparison of the two groups does not support the concept of a dual-task strategy based on the trade-off between maximizing jump height and minimizing the jumping quickness that should be more prominent in the athletes that routinely need to jump quickly. Further research could explore whether the observed phenomenon is based on other optimization principles, such as the minimization of effort and energy expenditure. Nevertheless, future routine testing procedures should take into account that the control strategy of maximum countermovement jumps is not fully based on maximizing the jump height, while the countermovement depth markedly confound the relationship between the jump height and the assessed force and power output of leg muscles.

  11. Jump conditions in transonic equilibria

    International Nuclear Information System (INIS)

    Guazzotto, L.; Betti, R.; Jardin, S. C.

    2013-01-01

    In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that “standard” (low-β, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-β, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches are described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large β, while they agree with the results obtained with the old implementation of FLOW in lower-β equilibria.

  12. Measurement of L3 subshell absorption jump ratios and jump factors for high Z elements using EDXRF technique

    International Nuclear Information System (INIS)

    Kaçal, M.R.

    2014-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring L 3 -subshell absorption jump ratios, r L 3 and jump factors, J L 3 for high Z elements. Jump factors and jump ratios for these elements have been determined by measuring L 3 subshell fluorescence parameters such as L 3 subshell X-ray production cross section σ L 3 , L 3 subshell fluorescence yield, ω L 3 , total L 3 subshell and higher subshells photoionization cross section σ L T . Measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation experimental geometry. Measured values for jump factors and jump ratios have been compared with theoretically calculated and other experimental values. - Highlights: • This paper regards L 3 subshell absorption jump ratios and jump factors using the EDXRF method. • These parameters were measured using a new method. • This method is more useful than other methods which require much effort. • Results are in good agreement with theoretical and experimental values

  13. Association of anthropometric qualities with vertical jump performance in elite male volleyball players.

    Science.gov (United States)

    Aouadi, R; Jlid, M C; Khalifa, R; Hermassi, S; Chelly, M S; Van Den Tillaar, R; Gabbett, T

    2012-02-01

    The objective of this study was to examine the association between physical and anthropometric profiles and vertical jump performance in elite volleyball players. Thirty-three elite male volleyball players (21±1 y, 76.9±5.2 kg, 186.5±5 cm) were studied. Several anthropometric measurements (body mass, stature, body mass index, lower limb length and sitting height) together with jumping height anaerobic power of counter movement jump with arm swing (CMJarm) were obtained from all subjects. Forward stepwise multiple linear regression analysis was performed to determine if any of the anthropometric parameters were predictive of CMJarm. Anaerobic power was significantly higher (P≤0.05) in the tallest players relative to their shorter counterparts. A significant relationship was observed between CMJarm and lower limb length (r2=0.69; P0.05) predictors of CMJarm performance. This study demonstrates that lower limb length is correlated with CMJarm in elite male volleyball players. The players with longer lower limbs have the better vertical jump performances and their anaerobic power is higher. These results could be of importance for trained athletes in sports relying on jumping performance, such as basketball, handball or volleyball. Thus, the measurement of anthropometric characteristics, such as stature and lower limb length may assist coaches in the early phases of talent identification in volleyball.

  14. Spine kinematics exhibited during the stop-jump by physically active individuals with adolescent idiopathic scoliosis and spinal fusion.

    Science.gov (United States)

    Kakar, Rumit Singh; Li, Yumeng; Brown, Cathleen N; Kim, Seock-Ho; Oswald, Timothy S; Simpson, Kathy J

    2018-01-01

    Individuals with adolescent idiopathic scoliosis post spinal fusion often return to exercise and sport. However, the movements that individuals with spinal fusion for adolescent idiopathic scoliosis (SF-AIS) use to compensate for the loss of spinal flexibility during high-effort tasks are not known. The objective of this study was to compare the spinal kinematics of the trunk segments displayed during the stop-jump, a maximal effort task, between SF-AIS and healthy control groups. The study used a case-controlled design. Ten SF-AIS (physically active, posterior-approach spinal fusion: 11.2±1.9 fused segments, postop time: 2±.6 years) and nine control individuals, pair matched for gender, age (17.4±1.3 years and 20.6±1.5 years, respectively), mass (63.50±12.2 kg and 66. 40±10.9 kg), height (1.69±.09 m and 1.72±.08 m), and level of physical activity, participated in the study. Individuals with spinal fusion for adolescent idiopathic scoliosis and controls (CON) performed five acceptable trials of the stop-jump task. Spatial locations of 21 retroreflective trunk and pelvis markers were recorded via high-speed motion capture methodology. Mean differences and analysis of covariance (jump height=covariate, pjump height and RelAng were detected in the three phases of stop-jump. Individuals with spinal fusion for adolescent idiopathic scoliosis displayed 3.2° greater transverse plane RelAng of LT compared with CON (p=.059) in the stance phase. Group differences for RelAng ranged from 0° to 15.3°. For SegAng in the stance phase, LT demonstrated greater SegAng in the sagittal and frontal planes (mean difference: 3.2°-6.2°), whereas SegAng for MT was 5.1° greater in the sagittal plane and had a tendency of 2° greater displacement in the frontal plane (p=.070). In the vertical flight phase, greater LT displacement in the frontal plane was observed for SF-AIS than CON. In the flight phase, LT had a tendency for greater SegAng for SF-AIS than for CON

  15. Experimental study of the hydraulic jump in a hydraulic jump in a ...

    African Journals Online (AJOL)

    The hydraulic jump in a sloped rectangular channel is theoretically and experimentally examined. The study aims to determine the effect of the channel's slope on the sequent depth ratio of the jump. A theoretical relation is proposed for the inflow Froude number as function of the sequent depth ratio and the channel slope.

  16. Mechanics of jumping on water

    Science.gov (United States)

    Kim, Ho-Young; Amauger, Juliette; Jeong, Han-Bi; Lee, Duck-Gyu; Yang, Eunjin; Jablonski, Piotr G.

    2017-10-01

    Some species of semiaquatic arthropods including water striders and springtails can jump from the water surface to avoid sudden dangers like predator attacks. It was reported recently that the jump of medium-sized water striders is a result of surface-tension-dominated interaction of thin cylindrical legs and water, with the leg movement speed nearly optimized to achieve the maximum takeoff velocity. Here we describe the mathematical theories to analyze this exquisite feat of nature by combining the review of existing models for floating and jumping and the introduction of the hitherto neglected capillary forces at the cylinder tips. The theoretically predicted dependence of body height on time is shown to match the observations of the jumps of the water striders and springtails regardless of the length of locomotory appendages. The theoretical framework can be used to understand the design principle of small jumping animals living on water and to develop biomimetic locomotion technology in semiaquatic environments.

  17. Method of moments approach to pricing double barrier contracts in polynomial jump-diffusion models

    NARCIS (Netherlands)

    Eriksson, B.; Pistorius, M.

    2011-01-01

    Abstract: We present a method of moments approach to pricing double barrier contracts when the underlying is modelled by a polynomial jump-diffusion. By general principles the price is linked to certain infinite dimensional linear programming problems. Subsequently approximating these by finite

  18. Global exponential stability of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays.

    Science.gov (United States)

    Huang, Haiying; Du, Qiaosheng; Kang, Xibing

    2013-11-01

    In this paper, a class of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays is investigated. The jumping parameters are modeled as a continuous-time finite-state Markov chain. At first, the existence of equilibrium point for the addressed neural networks is studied. By utilizing the Lyapunov stability theory, stochastic analysis theory and linear matrix inequality (LMI) technique, new delay-dependent stability criteria are presented in terms of linear matrix inequalities to guarantee the neural networks to be globally exponentially stable in the mean square. Numerical simulations are carried out to illustrate the main results. © 2013 ISA. Published by ISA. All rights reserved.

  19. Force generation and temperature-jump and length-jump tension transients in muscle fibers.

    Science.gov (United States)

    Davis, J S; Rodgers, M E

    1995-01-01

    Muscle tension rises with increasing temperature. The kinetics that govern the tension rise of maximally Ca(2+)-activated, skinned rabbit psoas fibers over a temperature range of 0-30 degrees C was characterized in laser temperature-jump experiments. The kinetic response is simple and can be readily interpreted in terms of a basic three-step mechanism of contraction, which includes a temperature-sensitive rapid preequilibrium(a) linked to a temperature-insensitive rate-limiting step and followed by a temperature-sensitive tension-generating step. These data and mechanism are compared and contrasted with the more complex length-jump Huxley-Simmons phases in which all states that generate tension or bear tension are perturbed. The rate of the Huxley-Simmons phase 4 is temperature sensitive at low temperatures but plateaus at high temperatures, indicating a change in rate-limiting step from a temperature-sensitive (phase 4a) to a temperature-insensitive reaction (phase 4b); the latter appears to correlate with the slow, temperature-insensitive temperature-jump relaxation. Phase 3 is absent in the temperature-jump, which excludes it from tension generation. We confirm that de novo tension generation occurs as an order-disorder transition during phase 2slow and the equivalent, temperature-sensitive temperature-jump relaxation. PMID:7612845

  20. Calculation of relative tube/tube support plate displacements in steam generators under accident condition loads using non-linear dynamic analysis methodologies

    International Nuclear Information System (INIS)

    Smith, R.E.; Waisman, R.; Hu, M.H.; Frick, T.M.

    1995-01-01

    A non-linear analysis has been performed to determine relative motions between tubes and tube support plates (TSP) during a steam line break (SLB) event for steam generators. The SLB event results in blowdown of steam and water out of the steam generator. The fluid blowdown generates pressure drops across the TSPS, resulting in out-of-plane motion. The SLB induced pressure loads are calculated with a computer program that uses a drift-flux modeling of the two-phase flow. In order to determine the relative tube/TSP motions, a nonlinear dynamic time-history analysis is performed using a structural model that considers all of the significant component members relative to the tube support system. The dynamic response of the structure to the pressure loads is calculated using a special purpose computer program. This program links the various substructures at common degrees of freedom into a combined mass and stiffness matrix. The program accounts for structural non-linearities, including potential tube and TSP interaction at any given tube position. The program also accounts for structural damping as part of the dynamic response. Incorporating all of the above effects, the equations of motion are solved to give TSP displacements at the reduced set of DOF. Using the displacement results from the dynamic analysis, plate stresses are then calculated using the detailed component models. Displacements form the dynamic analysis are imposed as boundary conditions at the DOF locations, and the finite element program then solves for the overall distorted geometry. Calculations are also performed to assure that assumptions regarding elastic response of the various structural members and support points are valid

  1. Simulation and experimental studies of a double-fiber angular displacement sensor

    Science.gov (United States)

    Zhu, Ruixue; Jing, Ruiping; Cheng, Yongjin

    2017-03-01

    A novel optical fiber angular displacement sensor is reported in this study. It gets the rotating angle of an object by means of the intensity modulation of a reflected light. The sensor probe, which is composed of an emitting fiber and a receiving fiber that are aligned along the vertical direction closely, is fixed directly on the rotating object. The measurements for axial displacement and angular displacement were operated separately. In particular, measurements for angular displacement were performed when the reflector is placed at different distances from the sensor probe separately. There is an excellent linearity between the angular displacement and the sensor output power. The results indicate that the larger the distance between the sensor probe and the reflector, the higher sensitivity the angular displacement sensor has. A theoretical model of the sensor is also developed and the simulate computation demonstrates that the theoretical results are in accordance with the experimental ones. The linear sensing range is ±7.2°, and the maximum sensitivity is 13.71%/deg. Furthermore, the hysteresis and the reproducibility of the measurement of the sensor are investigated. The designed sensor provides a kind of simple and effective method for measuring the angular displacement of a shaft system in practice due to its small size, light weight, good linearity and reproducibility.

  2. Analysis and design of singular Markovian jump systems

    CERN Document Server

    Wang, Guoliang; Yan, Xinggang

    2014-01-01

    This monograph is an up-to-date presentation of the analysis and design of singular Markovian jump systems (SMJSs) in which the transition rate matrix of the underlying systems is generally uncertain, partially unknown and designed. The problems addressed include stability, stabilization, H∞ control and filtering, observer design, and adaptive control. applications of Markov process are investigated by using Lyapunov theory, linear matrix inequalities (LMIs), S-procedure and the stochastic Barbalat's Lemma, among other techniques.Features of the book include:·???????? study of the stability pr

  3. The reliability of linear position transducer, force plate and combined measurement of explosive power-time variables during a loaded jump squat in elite athletes.

    Science.gov (United States)

    Hansen, Keir T; Cronin, John B; Newton, Michael J

    2011-03-01

    The purpose of this study was to determine the between day reliability of power-time measures calculated with data collected using the linear position transducer or the force plate independently, or a combination of the two technologies. Twenty-five male rugby union players performed three jump squats on two occasions one week apart. Ground reaction forces were measured via a force plate and position data were collected using a linear position transducer. From these data, a number of power-time variables were calculated for each method. The force plate, linear position transducer and a combined method were all found to be a reliable means of measuring peak power (ICC = 0.87-0.95, CV = 3.4%-8.0%). The absolute consistency of power-time measures varied between methods (CV = 8.0%-53.4%). Relative consistency of power-time measures was generally comparable between methods and measures, and for many variables was at an acceptable level (ICC = 0.77-0.94). Although a number of time-dependent power variables can be reliably calculated from data acquired from the three methods investigated, the reliability of a number of these measures is below that which is acceptable for use in research and for practical applications.

  4. Biomechanics research in ski jumping, 1991-2006.

    Science.gov (United States)

    Schwameder, Hermann

    2008-01-01

    In this paper, I review biomechanics research in ski jumping with a specific focus on publications presented between 1991 and 2006 on performance enhancement, limiting factors of the take-off, specific training and conditioning, aerodynamics, and safety. The first section presents a brief description of ski jumping phases (in-run, take-off, early flight, stable flight, and landing) regarding the biomechanical and functional fundamentals. The most important and frequently used biomechanical methods in ski jumping (kinematics, ground reaction force analyses, muscle activation patterns, aerodynamics) are summarized in the second section. The third section focuses on ski jumping articles and research findings published after the establishment of the V-technique in 1991, as the introduction of this technique has had a major influence on performance enhancement, ski jumping regulations, and the construction of hill profiles. The final section proposes topics for future research in the biomechanics of ski jumping, including: take-off and early flight and the relative roles of vertical velocity and forward somersaulting angular momentum; optimal jumping patterns utilizing the capabilities of individual athletes; development of kinematic and kinetic feedback systems for hill jumps; comparisons of simulated and hill jumps; effect of equipment modifications on performance and safety enhancement.

  5. Performance analysis of jump-gliding locomotion for miniature robotics.

    Science.gov (United States)

    Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M

    2015-03-26

    Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.

  6. Asymmetric generalization in adaptation to target displacement errors in humans and in a neural network model.

    Science.gov (United States)

    Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher; Gail, Alexander

    2015-04-01

    Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement ("jump") consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. Copyright © 2015 the American Physiological Society.

  7. Jump spillover between oil prices and exchange rates

    Science.gov (United States)

    Li, Xiao-Ping; Zhou, Chun-Yang; Wu, Chong-Feng

    2017-11-01

    In this paper, we investigate the jump spillover effects between oil prices and exchange rates. To identify the latent historical jumps for exchange rates and oil prices, we use a Bayesian MCMC approach to estimate the stochastic volatility model with correlated jumps in both returns and volatilities for each. We examine the simultaneous jump intensities and the conditional jump spillover probabilities between oil prices and exchange rates, finding strong evidence of jump spillover effects. Further analysis shows that the jump spillovers are mainly due to exogenous events such as financial crises and geopolitical events. Thus, the findings have important implications for financial risk management.

  8. Peak knee biomechanics and limb symmetry following unilateral anterior cruciate ligament reconstruction: Associations of walking gait and jump-landing outcomes.

    Science.gov (United States)

    Pfeiffer, Steven J; Blackburn, J Troy; Luc-Harkey, Brittney; Harkey, Matthew S; Stanley, Laura E; Frank, Barnett; Padua, Darin; Marshall, Stephen W; Spang, Jeffrey T; Pietrosimone, Brian

    2018-03-01

    Aberrant walking-gait and jump-landing biomechanics may influence the development of post-traumatic osteoarthritis and increase the risk of a second anterior cruciate ligament injury, respectively. It remains unknown if individuals who demonstrate altered walking-gait biomechanics demonstrate similar altered biomechanics during jump-landing. Our aim was to determine associations in peak knee biomechanics and limb-symmetry indices between walking-gait and jump-landing tasks in individuals with a unilateral anterior cruciate ligament reconstruction. Thirty-five individuals (74% women, 22.1 [3.4] years old, 25 [3.89] kg/m 2 ) with an anterior cruciate ligament reconstruction performed 5-trials of self-selected walking-gait and jump-landing. Peak kinetics and kinematics were extracted from the first 50% of stance phase during walking-gait and first 100 ms following ground contact for jump-landing. Pearson product-moment (r) and Spearman's Rho (ρ) analyses were used to evaluate relationships between outcome measures. Significance was set a priori (P ≤ 0.05). All associations between walking-gait and jump-landing for the involved limb, along with the majority of associations for limb-symmetry indices and the uninvolved limb, were negligible and non-statistically significant. There were weak significant associations for instantaneous loading rate (ρ = 0.39, P = 0.02) and peak knee abduction angle (ρ = 0.36, p = 0.03) uninvolved limb, as well as peak abduction displacement limb-symmetry indices (ρ= - 0.39, p = 0.02) between walking-gait and jump-landing. No systematic associations were found between walking-gait and jump-landing biomechanics for either limb or limb-symmetry indices in people with unilateral anterior cruciate ligament reconstruction. Individuals with an anterior cruciate ligament reconstruction who demonstrate high-involved limb loading or asymmetries during jump-landing may not demonstrate similar biomechanics during

  9. Characteristics of Air Entrainment in Hydraulic Jump

    Science.gov (United States)

    Albarkani, M. S. S.; Tan, L. W.; Al-Gheethi, A.

    2018-04-01

    The characteristics of hydraulic jump, especially the air entrainment within jump is still not properly understood. Therefore, the current work aimed to determine the size and number of air entrainment formed in hydraulic jump at three different Froude numbers and to obtain the relationship between Froude number with the size and number of air entrainment in hydraulic jump. Experiments of hydraulic jump were conducted in a 10 m long and 0.3 m wide Armfield S6MKII glass-sided tilting flume. Hydraulic jumps were produced by flow under sluice gate with varying Froude number. The air entrainment of the hydraulic jump was captured with a Canon Power Shot SX40 HS digital camera in video format at 24 frames per second. Three discharges have been considered, i.e. 0.010 m3/s, 0.011 m3/s, and 0.013 m3/s. For hydraulic jump formed in each discharge, 32 frames were selected for the purpose of analysing the size and number of air entrainment in hydraulic jump. The results revealed that that there is a tendency to have greater range in sizes of air bubbles as Fr1 increases. Experiments with Fr1 = 7.547. 7.707, and 7.924 shown that the number of air bubbles increases exponentially with Fr1 at a relationship of N = 1.3814 e 0.9795Fr1.

  10. The validity and reliability of the my jump 2 app for measuring the reactive strength index and drop jump performance.

    Science.gov (United States)

    Haynes, Tom; Bishop, Chris; Antrobus, Mark; Brazier, Jon

    2018-03-27

    This is the first study to independently assess the concurrent validity and reliability of the My Jump 2 app for measuring drop jump performance. It is also the first to evaluate the app's ability to measure the reactive strength index (RSI). Fourteen male sport science students (age: 29.5 ± 9.9 years) performed three drop jumps from 20 cm and 40 cm (totalling 84 jumps), assessed via a force platform and the My Jump 2 app. Reported metrics included reactive strength index, jump height, ground contact time, and mean power. Measurements from both devices were compared using the intraclass correlation coefficient (ICC), Pearson product moment correlation coefficient (r), Cronbach's alpha (α), coefficient of variation (CV) and BlandAltman plots. Near perfect agreement was seen between devices at 20 cm for RSI (ICC = 0.95) and contact time (ICC = 0.99) and at 40 cm for RSI (ICC = 0.98), jump height (ICC = 0.96) and contact time (ICC = 0.92); with very strong agreement seen at 20 cm for jump height (ICC = 0.80). In comparison with the force plate the app showed good validity for RSI (20 cm: r = 0.94; 40 cm; r = 0.97), jump height (20 cm: r = 0.80; 40 cm; r = 0.96) and contact time (20 cm = 0.96; 40 cm; r = 0.98). The results of the present study show that the My Jump 2 app is a valid and reliable tool for assessing drop jump performance.

  11. Accuracy enhancement of point triangulation probes for linear displacement measurement

    Science.gov (United States)

    Kim, Kyung-Chan; Kim, Jong-Ahn; Oh, SeBaek; Kim, Soo Hyun; Kwak, Yoon Keun

    2000-03-01

    Point triangulation probes (PTBs) fall into a general category of noncontact height or displacement measurement devices. PTBs are widely used for their simple structure, high resolution, and long operating range. However, there are several factors that must be taken into account in order to obtain high accuracy and reliability; measurement errors from inclinations of an object surface, probe signal fluctuations generated by speckle effects, power variation of a light source, electronic noises, and so on. In this paper, we propose a novel signal processing algorithm, named as EASDF (expanded average square difference function), for a newly designed PTB which is composed of an incoherent source (LED), a line scan array detector, a specially selected diffuse reflecting surface, and several optical components. The EASDF, which is a modified correlation function, is able to calculate displacement between the probe and the object surface effectively even if there are inclinations, power fluctuations, and noises.

  12. Change in Counter movement Jump Strategy by Varying Jump Height Based on Simplified Framework for Center of Mass Mechanics

    International Nuclear Information System (INIS)

    Kim, Seyoung

    2017-01-01

    In this study, we investigated how a jumping strategy changes with an increase in the vertical jump height for a resultant ground reaction force (GRF) vector. We expected that the resultant force vector between two sequential motion phases (i.e., countermovement and push-off) of the counter movement jump would significantly change with the vertical jump height to take advantage of the resulting supportive force (i.e., an initial push-off force larger than the body weight) through the counter movement phase. Nine healthy young subjects were instructed to jump straight up to five different height levels ranging from 191 cm to 221 cm, and the kinematic and kinetic data were obtained in regular trials. The results showed that a lower center of mass position and larger resultant force vector were clearly observed in a higher jump, implying that the counter movement strategy changed with the vertical jump height to prepare for sufficient joint deviation and obtain a force advantage for larger push-off work.

  13. Change in Counter movement Jump Strategy by Varying Jump Height Based on Simplified Framework for Center of Mass Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seyoung [Korea Institute of Machinery and Materials(KIMM), Daejeon (Korea, Republic of)

    2017-04-15

    In this study, we investigated how a jumping strategy changes with an increase in the vertical jump height for a resultant ground reaction force (GRF) vector. We expected that the resultant force vector between two sequential motion phases (i.e., countermovement and push-off) of the counter movement jump would significantly change with the vertical jump height to take advantage of the resulting supportive force (i.e., an initial push-off force larger than the body weight) through the counter movement phase. Nine healthy young subjects were instructed to jump straight up to five different height levels ranging from 191 cm to 221 cm, and the kinematic and kinetic data were obtained in regular trials. The results showed that a lower center of mass position and larger resultant force vector were clearly observed in a higher jump, implying that the counter movement strategy changed with the vertical jump height to prepare for sufficient joint deviation and obtain a force advantage for larger push-off work.

  14. Dynamic jump intensities and risk premiums

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Ornthanalai, Chayawat; Jacobs, Kris

    2012-01-01

    We build a new class of discrete-time models that are relatively easy to estimate using returns and/or options. The distribution of returns is driven by two factors: dynamic volatility and dynamic jump intensity. Each factor has its own risk premium. The models significantly outperform standard...... models without jumps when estimated on S&P500 returns. We find very strong support for time-varying jump intensities. Compared to the risk premium on dynamic volatility, the risk premium on the dynamic jump intensity has a much larger impact on option prices. We confirm these findings using joint...

  15. Emittance growth rates for displaced beams

    International Nuclear Information System (INIS)

    Anderson, O.A.

    1993-05-01

    Emittance growth rates have been previously analyzed for nonuniform beams in linear channels and for initially uniform mismatched beams in nonlinear channels. These studies were for centered beams. Additional emittance growth can arise in cases where the beam is initially displaced. The purpose of this study is to obtain growth rates for displaced beams. This work differs from studies involving random displacement of electrodes. Our analysis assumes instead that the focusing system is perfectly aligned but that the beam is initially displaced with respect to the equilibrium axis. If the focusing force is slightly nonlinear, we find a gradual transfer of the potential energy of beam displacement into kinetic energy associated with emittance growth. We present explicit results for the emittance growth distance as a function of the nonlinearity of the channel. These results will have practical importance for designers of accelerators and transport systems when setting realistic tolerances for initial beam alignment. These tolerances will depend on the nonlinearity and the length of the system

  16. Determinant Factors of the Squat Jump in Sprinting and Jumping Athletes

    Directory of Open Access Journals (Sweden)

    González-Badillo Juan José

    2017-08-01

    Full Text Available The aim of this study was to assess the relationship between strength variables and maximum velocity (Vmax in the squat jump (SJ in sprinting and jumping athletes. Thirty-two sprinting and jumping athletes of national level (25.4 ± 4.5 years; 79.4 ± 6.9 kg and 180.4 ± 6.0 cm participated in the study. Vmax in the SJ showed significant relationships with peak force 1 (PF1 (r = 0.82, p ≤ 0.001, peak force 2 (PF2 (r = 0.68, p ≤ 0.001, PF2 by controlling for PF1 (r = 0.30, non-significant, the maximum rate of force development at peak force 1 (RFDmax1 (r = 0.62, p ≤ 0.001, mean RFD 1 (RFDmean1 (r = 0.48, p ≤ 0.01, mean RFD 2 (RFDmean2 (r = 0.70, p ≤ 0.001, force at RFDmax1 (r = 0.36, p ≤ 0.05, force at RFDmax2 (r = 0.83, p ≤ 0.001 and force at RFDmax2 by controlling for PF1 (r = 0.40, p ≤ 0.05. However, Vmax in the SJ was associated negatively with the ratio PF2/PF1 (r = -0.54, p ≤ 0.01, time at peak force 2 (Tp2 (r = -0.64, p ≤ 0.001 and maximum rate of force development at peak force 2 (RFDmax2 (r = -0.71, p ≤ 0.001. These findings indicate that the peak force achieved at the beginning of the movement (PF1 is the main predictor of performance in jumping, although the RFDmax values and the ratio PF2/PF1 are also variables to be taken into account when analyzing the determinant factors of vertical jumping.

  17. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping

    NARCIS (Netherlands)

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    In the literature, athletes preparing for explosive activities are recommended to include drop jumping in their training programs. For the execution of drop jumps, different techniques and different dropping heights can be used. This study was designed to investigate for the performance of bounce

  18. A Jump Diffusion Model for Volatility and Duration

    DEFF Research Database (Denmark)

    Wei, Wei; Pelletier, Denis

    by the market microstructure theory. Traditional measures of volatility do not utilize durations. I adopt a jump diffusion process to model the persistence of intraday volatility and conditional duration, and their interdependence. The jump component is disentangled from the continuous part of the price......, volatility and conditional duration process. I develop a MCMC algorithm for the inference of irregularly spaced multivariate process with jumps. The algorithm provides smoothed estimates of the latent variables such as spot volatility, jump times and jump sizes. I apply this model to IBM data and I find...... meaningful relationship between volatility and conditional duration. Also, jumps play an important role in the total variation, but the jump variation is smaller than traditional measures that use returns sampled at lower frequency....

  19. Linear stability analysis and nonlinear simulation of the channeling effect on viscous fingering instability in miscible displacement

    Science.gov (United States)

    Shahnazari, M. R.; Maleka Ashtiani, I.; Saberi, A.

    2018-03-01

    In this paper, the effect of channeling on viscous fingering instability of miscible displacement in porous media is studied. In fact, channeling is introduced as a solution to stabilize the viscous fingering instability. In this solution, narrow channels were placed next to the walls, and by considering an exponential function to model the channeling effect, a heterogeneous media is assumed. In linear stability analysis, the governing equations are transferred to Fourier space, and by introducing a novel numerical method, the transferred equations are analyzed. The growth rate based on the wave number diagram has been drawn up in three sections of the medium. It is found that the flow becomes more stable at the center and unstable along the walls when the permeability ratio is increased. Also when the permeability ratio is approximately equal to one, the channeling has no significant effect. In nonlinear simulations, by using stream function and vortices, new equations have been rewritten and it is shown that channeling has a profound effect on the growth of the fingers and mechanisms. In addition to the superposition of velocity vectors and concentration contours, the development of instability is investigated using the mixing length and sweep efficiency diagram. The results show that although channeling reduces instability, it increases the displacement process time.

  20. Undular Hydraulic Jump

    Directory of Open Access Journals (Sweden)

    Oscar Castro-Orgaz

    2015-04-01

    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  1. Probabilistic modelling of the high-pressure arc cathode spot displacement dynamic

    International Nuclear Information System (INIS)

    Coulombe, Sylvain

    2003-01-01

    A probabilistic modelling approach for the study of the cathode spot displacement dynamic in high-pressure arc systems is developed in an attempt to interpret the observed voltage fluctuations. The general framework of the model allows to define simple, probabilistic displacement rules, the so-called cathode spot dynamic rules, for various possible surface states (un-arced metal, arced, contaminated) and to study the resulting dynamic of the cathode spot displacements over one or several arc passages. The displacements of the type-A cathode spot (macro-spot) in a magnetically rotating arc using concentric electrodes made up of either clean or contaminated metal surfaces is considered. Experimental observations for this system revealed a 1/f -tilde1 signature in the frequency power spectrum (FPS) of the arc voltage for anchoring arc conditions on the cathode (e.g. clean metal surface), while it shows a 'white noise' signature for conditions favouring a smooth movement (e.g. oxide-contaminated cathode surface). Through an appropriate choice of the local probabilistic displacement rules, the model is able to correctly represent the dynamic behaviours of the type-A cathode spot, including the FPS for the arc elongation (i.e. voltage) and the arc erosion trace formation. The model illustrates that the cathode spot displacements between re-strikes can be seen as a diffusion process with a diffusion constant which depends on the surface structure. A physical interpretation for the jumping probability associated with the re-strike event is given in terms of the electron emission processes across dielectric contaminants present on the cathode surface

  2. Comparison of the Hang High-Pull and Loaded Jump Squat for the Development of Vertical Jump and Isometric Force-Time Characteristics.

    Science.gov (United States)

    Oranchuk, Dustin J; Robinson, Tracey L; Switaj, Zachary J; Drinkwater, Eric J

    2017-04-15

    Weightlifting movements have high skill demands and require expert coaching. Loaded jumps have a comparably lower skill demand, but may be similarly effective for improving explosive performance. The purpose of this study was to compare vertical jump performance, isometric force, and rate of force development (RFD) following a ten-week intervention employing the hang high-pull (hang-pull) or trap-bar jump squat (jump-squat). Eighteen NCAA Division II swimmers (8 males, 10 females) with at least one year of resistance training experience volunteered to participate. Testing included the squat jump (SJ), countermovement jump (CMJ) and the isometric mid-thigh pull (IMTP). Vertical ground reaction forces were analyzed to obtain jump height and relative peak power. Relative peak force, peak RFD and relative force at five time bands were obtained from the IMTP. Subjects were randomly assigned to either a hang-pull (n = 9) or jump-squat (n = 9) training group and completed a ten-week, volume-equated, periodized training program. While there was a significant main effect of training for both groups, no statistically significant between-group differences were found (p ≥ 0.17) for any of the dependent variables. However, medium effect sizes in favor of the jump-squat training group were seen in SJ height (d = 0.56) and SJ peak power (d = 0.69). Loaded jumps seem equally effective as weightlifting derivatives for improving lower-body power in experienced athletes. Since loaded jumps require less skill and less coaching expertise than weightlifting, loaded jumps should be considered where coaching complex movements is difficult.

  3. Tests for nonrandomness in quantum jumps

    International Nuclear Information System (INIS)

    Berkeland, D.J.; Raymondson, D.A.; Tassin, V.M.

    2004-01-01

    In a fundamental test of quantum mechanics, we have observed 228 000 quantum jumps of a single trapped and laser cooled 88 Sr + ion. This represents a statistical increase of two orders of magnitude over previous similar analyses of quantum jumps. Compared to other searches for nonrandomness in quantum-mechanical processes, using quantum jumps simplifies the interpretation of data by eliminated multiparticle effects and providing near-unit detection efficiency of transitions. We measure the fractional reduction in the entropy of information to be -4 when the value of any interval between quantum jumps is known. We also find that the number of runs of successively increasing or decreasing interval times agrees with the theoretically expected values. Furthermore, we analyze 238 000 quantum jumps from two simultaneously confined ions and find that the number of apparently coincidental transitions is as expected. Finally, we observe 8400 spontaneous decays of two simultaneously trapped ions and find that the number of apparently coincidental decays from the metastable state agrees with the expected value. We find no evidence for short- or long-term correlations in the intervals of the quantum jumps or in the decay of the quantum states, in agreement with quantum theory

  4. Biomechanical Analysis of the Jump Shot in Basketball

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2014-10-01

    Full Text Available Basketball players usually score points during the game using the jump shot. For this reason, the jump shot is considered to be the most important element of technique in basketball and requires a high level of performance. The aim of this study was to compare the biomechanical characteristics of the lower limbs during a jump shot without the ball and a countermovement jump without an arm swing. The differences between variables provide information about the potential that an athlete can utilise during a game when performing a jump shot. The study was conducted among 20 second-league basketball players by means of a Kistler force plate and the BTS SMART system for motion analysis. The variables measured included the take-off time, mean power, peak power, relative mean power, jump height, maximum landing force and calculated impact ratio. Surprisingly, more advantageous variables were found for the jump shot. This finding suggests a very high performance level in the jump shot in the studied group and a maximum utilisation of their motor abilities. Both types of jumps were characterised by high mean and peak power values and average heights. The high forces at landing, which result in considerable impact ratios, may have prompted the studied group to land softly. Use of the countermovement jump without an arm swing is recommended to assess and predict the progression of player’s jumping ability

  5. Effects of ethnicity on the relationship between vertical jump and maximal power on a cycle ergometer

    Directory of Open Access Journals (Sweden)

    Rouis Majdi

    2016-06-01

    Full Text Available The aim of this study was to verify the impact of ethnicity on the maximal power-vertical jump relationship. Thirty-one healthy males, sixteen Caucasian (age: 26.3 ± 3.5 years; body height: 179.1 ± 5.5 cm; body mass: 78.1 ± 9.8 kg and fifteen Afro-Caribbean (age: 24.4 ±2.6 years; body height: 178.9 ± 5.5 cm; body mass: 77.1 ± 10.3 kg completed three sessions during which vertical jump height and maximal power of lower limbs were measured. The results showed that the values of vertical jump height and maximal power were higher for Afro-Caribbean participants (62.92 ± 6.7 cm and 14.70 ± 1.75 W∙kg-1 than for Caucasian ones (52.92 ± 4.4 cm and 12.75 ± 1.36 W∙kg-1. Moreover, very high reliability indices were obtained on vertical jump (e.g. 0.95 < ICC < 0.98 and maximal power performance (e.g. 0.75 < ICC < 0.97. However, multiple linear regression analysis showed that, for a given value of maximal power, the Afro-Caribbean participants jumped 8 cm higher than the Caucasians. Together, these results confirmed that ethnicity impacted the maximal power-vertical jump relationship over three sessions. In the current context of cultural diversity, the use of vertical jump performance as a predictor of muscular power should be considered with caution when dealing with populations of different ethnic origins.

  6. load-displacement and stability characteristics of tidn-walled beams

    African Journals Online (AJOL)

    construction. Such structural ... The finite displacement formulation is used for load- displacement .... The other stress term, which is the incremental linear stress term a/ is .... formulation, only two out of the four general governing ..... 119, Paper. No. 2700 ... Deformations Spatial Buckling of Thin-Walled Beams and Frames ...

  7. [Effects of Reactive Jump Training in Handball Players Regarding Jump Height and Power Development in the Triceps Surae Muscle].

    Science.gov (United States)

    Rensing, N; Westermann, A; Möller, D; von Piekartz, H

    2015-12-01

    Studies have shown changes in the technical and physical demands in modern handball. The game has increased considerably in speed, power and dynamics. Jump training has, therefore, become ever more important in the training of the athletes. These developments contribute to the fact that handball is now one of the most injury-prone types of sport, with the lower extremities being most frequently affected. Reactive jump training is not only used in training by now, but also increasingly in injury prevention. The aim of this study was to investigate the effectiveness of reactive jump training with handball players. 21 regional league handball players were randomly divided into an intervention group (n = 12) and a control group (n = 9). The intervention group completed a six-week reactive jump training programme while the control group went through a non-specific training programme. Jump height (squat and counter movement jump), isokinetic and isometric maximum power as well as muscle activity served as measuring parameters. A comparison of the intervention and control groups revealed that the reactive jump training led to significant improvements in jump height. The isometric and isokinetic maximum power measurements and the electromyographic activities of the triceps surae muscle demonstrated an improvement in the values within the intervention group. However, this improvement was not significant compared with the control group. Likewise both jumps correlated with the muscle activity of the soleus muscle as shown by electromyography. A moderate correlation was noticed between the isokinetic maximum power measurement and the electromyographic activity of the soleus and gastrocnemius medialis muscles. Furthermore, the correlations of the isometric and isokinetic maximum power meas-urements resulted in a strong correlation coefficient. This study revealed a significant increase in jump height after reactive jump training. There was no significant difference in

  8. Construct Validation of the FMS: Relationship between a Jump-Landing Task and FMS Items.

    Science.gov (United States)

    Kraus, Kornelius; Schütz, Elisabeth; Doyscher, Ralf

    2017-08-29

    Sports injuries and athletic performance are complex areas, which are characterized by manifold interdependencies. The landing error scoring system (LESS) is a valid screening tool to examine bilateral jump-landing mechanics. Whereas, the Functional Movement Screen (FMS) items are thought to operationalize flexibility and motor behaviour during low intense bodyweight patterns. The aim of the study was to explore possible interdependency of the diagnostic information of these screening tools. 53 athletes (age 23.3±2.1 yrs.) were tested in a sport scientific lab. In detail, 31 professional soccer players (3 Division) and 22 collegiate athletes were studied. Linear, partial correlational and cluster analysis were performed to examine possible trends. Generally, the sportsmen achieved a LESS score of 6.6±2 and a jumping height of 37±7.8cm. Partial correlational analysis indicates that trunk control (r=0.4; p<0.01) is moderately related to landing mechanics, which in turn was negatively related on LESS height (r=-0.67, p<0.01). In addition, clustering showed by trend, that a higher active straight leg raise (ASLR) score is related to better landing mechanics (ASLR score 1: LESS 6.9±1.8; n=15 vs. ASLR score 3: LESS 5.6±2.1; n=10). On the task-specific level, jump-landing mechanics were directly related to jumping performance in this cohort with poor mechanics. On unspecific analysis level, kinetic chain length (ASLR) and trunk control has been identified as potential moderator variables for landing mechanics, indicating that these parameter can limit landing mechanics and ought to be optimized within the individual´s context. A potential cognitive strategy shift from internal (FMS) to external focus (LESS) as well as different muscle recruitment patterns are potential explanations for the non-significant linear relationship between the FMS and LESS data.

  9. Relationships and Predictive Capabilities of Jump Assessments to Soccer-Specific Field Test Performance in Division I Collegiate Players.

    Science.gov (United States)

    Lockie, Robert G; Stage, Alyssa A; Stokes, John J; Orjalo, Ashley J; Davis, DeShaun L; Giuliano, Dominic V; Moreno, Matthew R; Risso, Fabrice G; Lazar, Adrina; Birmingham-Babauta, Samantha A; Tomita, Tricia M

    2016-12-03

    Leg power is an important characteristic for soccer, and jump tests can measure this capacity. Limited research has analyzed relationships between jumping and soccer-specific field test performance in collegiate male players. Nineteen Division I players completed tests of: leg power (vertical jump (VJ), standing broad jump (SBJ), left- and right-leg triple hop (TH)); linear (30 m sprint; 0⁻5 m, 5⁻10 m, 0⁻10, 0⁻30 m intervals) and change-of-direction (505) speed; soccer-specific fitness (Yo-Yo Intermittent Recovery Test Level 2); and 7 × 30-m sprints to measure repeated-sprint ability (RSA; total time (TT), performance decrement (PD)). Pearson's correlations ( r ) determined jump and field test relationships; stepwise regression ascertained jump predictors of the tests ( p jumps correlated with the 0⁻5, 0⁻10, and 0⁻30 m sprint intervals ( r = -0.65⁻-0.90). VJ, SBJ, and left- and right-leg TH correlated with RSA TT ( r = -0.51⁻-0.59). Right-leg TH predicted the 0⁻5 and 0⁻10 m intervals (R² = 0.55⁻0.81); the VJ predicted the 0⁻30 m interval and RSA TT (R² = 0.41⁻0.84). Between-leg TH asymmetry correlated with and predicted left-leg 505 and RSA PD ( r = -0.68⁻0.62; R² = 0.39⁻0.46). Improvements in jumping ability could contribute to faster speed and RSA performance in collegiate soccer players.

  10. Relationships and Predictive Capabilities of Jump Assessments to Soccer-Specific Field Test Performance in Division I Collegiate Players

    Directory of Open Access Journals (Sweden)

    Robert G. Lockie

    2016-12-01

    Full Text Available Leg power is an important characteristic for soccer, and jump tests can measure this capacity. Limited research has analyzed relationships between jumping and soccer-specific field test performance in collegiate male players. Nineteen Division I players completed tests of: leg power (vertical jump (VJ, standing broad jump (SBJ, left- and right-leg triple hop (TH; linear (30 m sprint; 0–5 m, 5–10 m, 0–10, 0–30 m intervals and change-of-direction (505 speed; soccer-specific fitness (Yo-Yo Intermittent Recovery Test Level 2; and 7 × 30-m sprints to measure repeated-sprint ability (RSA; total time (TT, performance decrement (PD. Pearson’s correlations (r determined jump and field test relationships; stepwise regression ascertained jump predictors of the tests (p < 0.05. All jumps correlated with the 0–5, 0–10, and 0–30 m sprint intervals (r = −0.65–−0.90. VJ, SBJ, and left- and right-leg TH correlated with RSA TT (r = −0.51–−0.59. Right-leg TH predicted the 0–5 and 0–10 m intervals (R2 = 0.55–0.81; the VJ predicted the 0–30 m interval and RSA TT (R2 = 0.41–0.84. Between-leg TH asymmetry correlated with and predicted left-leg 505 and RSA PD (r = −0.68–0.62; R2 = 0.39–0.46. Improvements in jumping ability could contribute to faster speed and RSA performance in collegiate soccer players.

  11. Lower Extremity Kinematics During a Drop Jump in Individuals With Patellar Tendinopathy

    Science.gov (United States)

    Rosen, Adam B.; Ko, Jupil; Simpson, Kathy J.; Kim, Seock-Ho; Brown, Cathleen N.

    2015-01-01

    Background: Patellar tendinopathy (PT) is a common degenerative condition in physically active populations. Knowledge regarding the biomechanics of landing in populations with symptomatic PT is limited, but altered mechanics may play a role in the development or perpetuation of PT. Purpose: To identify whether study participants with PT exhibited different landing kinematics compared with healthy controls. Study Design: Controlled laboratory study. Methods: Sixty recreationally active participants took part in this study; 30 had current signs and symptoms of PT, including self-reported pain within the patellar tendon during loading activities for at least 3 months and ≤80 on the Victorian Institute of Sport Assessment Scale–Patella (VISA-P). Thirty healthy participants with no history of PT or other knee joint pathology were matched by sex, age, height, and weight. Participants completed 5 trials of a 40-cm, 2-legged drop jump followed immediately by a 50% maximum vertical jump. Dependent variables of interest included hip, knee, and ankle joint angles at initial ground contact, peak angles, and maximum angular displacements during the landing phase in 3 planes. Independent-samples t tests (P ≤ .05) were utilized to compare the joint angles and angular displacements between PT and control participants. Results: Individuals with PT displayed significantly decreased peak hip (PT, 59.2° ± 14.6°; control, 67.2° ± 13.9°; P = .03) and knee flexion angles (PT, 74.8° ± 13.2°; control, 82.5° ± 9.0°; P = .01) compared with control subjects. The PT group displayed decreased maximum angular displacement in the sagittal plane at the hip (PT, 49.3° ± 10.8°; control, 55.2° ± 11.4°; P = .04) and knee (PT, 71.6° ± 8.4°; control, 79.7° ± 8.3°; P plane, at both the knee and the hip. The altered movement patterns in those with PT may be perpetuating symptoms associated with PT and could be due to the contributions of the rectus femoris during dynamic

  12. Option Valuation with Observable Volatility and Jump Dynamics

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity...... dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing...

  13. Option Valuation with Observable Volatility and Jump Dynamics

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    2015-01-01

    Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity...... dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing...

  14. DESIGN OF A FAST CHROMATICITY JUMP IN RHIC

    International Nuclear Information System (INIS)

    MONTAG, C.; KEWISCH, J.; BRUNO, D.; GANETIS, G.; LOUIE, W.

    2003-01-01

    During transition crossing in the .Relativistic Heavy Ion Collider (RHIC), chromaticities have to change sign. This sign change is partially accomplished by the γ t quadrupole jump; however, the resulting chromaticity jump is only Δξ x = 2.1 in the horizontal and Δξ y = 2.4 in the vertical plane. To increase the jump height, a dedicated chromaticity jump scheme has been designed, consisting of fast power supplies connected to six sextupoles per ring, which is capable of providing a chromaticity jump of Δξ = 6

  15. An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations

    Science.gov (United States)

    Farr, W. M.; Mandel, I.; Stevens, D.

    2015-01-01

    Selection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. Thus, a naive jump between parameter spaces is unlikely to be accepted in the Markov chain Monte Carlo (MCMC) algorithm and convergence is correspondingly slow. Here, we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose intermodel jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in modest dimensionality. We show that our technique leads to improved convergence over naive jumps in an RJMCMC, and compare it to other proposals in the literature to improve the convergence of RJMCMCs. We also demonstrate the use of the same interpolation technique as a way to construct efficient ‘global’ proposal distributions for single-model MCMCs without prior knowledge of the structure of the posterior distribution, and discuss improvements that permit the method to be used in higher dimensional spaces efficiently. PMID:26543580

  16. Volatility jumps and their economic determinants

    DEFF Research Database (Denmark)

    Caporin, Massimiliano; Rossi, Eduardo; Santucci de Magistris, Paolo

    that there is a positive probability of jumps in volatility. A common factor in the volatility jumps is shown to be related to a set of financial covariates (such as variance risk premium, S&P500 volume, credit-default swap, and federal fund rates). The credit-default swap on US banks and variance risk premium have...... predictive power on expected jump moves, thus confirming the common interpretation that sudden and large increases in equity volatility can be anticipated by credit deterioration of the US bank sector as well as changes in the market expectations of future risks. Finally, the model is extended to incorporate...... the credit-default swap and the variance risk premium in the dynamics of the jump size and intensity....

  17. How quick is a quantum jump?

    International Nuclear Information System (INIS)

    Schulman, L.S.

    1997-01-01

    Although the only time scale one ordinarily associates with a quantum transition is its lifetime, observations of ''quantum jumps'' in recent years show that the actual transition time is much shorter. I define a ''jump time'' as the time scale such that perturbations occurring at intervals of this duration affect the decay. In terms of the ''Zeno time'' (related to the second moment of the Hamiltonian) the jump time is τ J is identical to τ 2 Z /τ L . Corroboration is given. I also show that observing the ''jumping'' will not seriously affect the system lifetime, but will affect the linewidth. This is consistent with Bohr's ideas on measurement as well as with a heuristic time-energy uncertainty principle. (author)

  18. Knee Muscular Control During Jump Landing in Multidirections.

    Science.gov (United States)

    Sinsurin, Komsak; Vachalathiti, Roongtiwa; Jalayondeja, Wattana; Limroongreungrat, Weerawat

    2016-06-01

    Jump landing is a complex movement in sports. While competing and practicing, athletes frequently perform multi-planar jump landing. Anticipatory muscle activity could influence the amount of knee flexion and prepare the knee for dynamic weight bearing such as landing tasks. The aim of the present study was to examine knee muscle function and knee flexion excursion as athletes naturally performed multi-direction jump landing. Eighteen male athletes performed the jump-landing test in four directions: forward (0°), 30° diagonal, 60° diagonal, and lateral (90°). Muscles tested were vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF), semitendinosus (ST), and biceps femoris (BF). A Vicon(TM) 612 workstation collected the kinematic data. An electromyography was synchronized with the Vicon(TM) Motion system to quantify dynamic muscle function. Repeated measure ANOVA was used to analyze the data. Jump-landing direction significantly influenced (P jump landing. A higher risk of knee injury might occur during lateral jump landing than forward and diagonal directions. Athletes should have more practice in jump landing in lateral direction to avoid injury. Landing technique with high knee flexion in multi-directions should be taught to jumpers for knee injury prevention.

  19. Selective Linear or Quadratic Optomechanical Coupling via Measurement

    Directory of Open Access Journals (Sweden)

    Michael R. Vanner

    2011-11-01

    Full Text Available The ability to engineer both linear and nonlinear coupling with a mechanical resonator is an important goal for the preparation and investigation of macroscopic mechanical quantum behavior. In this work, a measurement based scheme is presented where linear or square mechanical-displacement coupling can be achieved using the optomechanical interaction that is linearly proportional to the mechanical position. The resulting square-displacement measurement strength is compared to that attainable in the dispersive case that has a direct interaction with the mechanical-displacement squared. An experimental protocol and parameter set are discussed for the generation and observation of non-Gaussian states of motion of the mechanical element.

  20. A review on the basketball jump shot.

    Science.gov (United States)

    Okazaki, Victor H A; Rodacki, André L F; Satern, Miriam N

    2015-06-01

    The ability to shoot an effective jump shot in the sport of basketball is critical to a player's success. In an attempt to better understand the aspects related to expert performance, researchers have investigated successful free throws and jump shots of various basketball players and identified movement variables that contribute to their success. The purpose of this study was to complete a systematic review of the scientific literature on the basketball free throw and jump shot for the purpose of revealing the critical components of shooting that coaches, teachers, and players should focus on when teaching, learning, practising, and performing a jump shot. The results of this review are presented in three sections: (a) variables that affect ball trajectory, (b) phases of the jump shot, and (c) additional variables that influence shooting.

  1. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters.

    Science.gov (United States)

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Prescription-induced jump distributions in multiplicative Poisson processes.

    Science.gov (United States)

    Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos

    2011-06-01

    Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data.

  3. Prescription-induced jump distributions in multiplicative Poisson processes

    Science.gov (United States)

    Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos

    2011-06-01

    Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data.

  4. A locust-inspired miniature jumping robot.

    Science.gov (United States)

    Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor

    2015-11-25

    Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m.

  5. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters

    International Nuclear Information System (INIS)

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. - Highlights: • This work regard the K shell absorption jump ratios and jump factors of Ti, Cr, Fe, Co, Ni and Cu. • This paper presents the first measurement of these parameters using the experimental K shell fluorescence parameters. • A good agreement was found between experimental and theoretical values. • The EDXRF technique was suitable, precise and reliable for the measurement of these atomic parameters

  6. Does trampoline or hard surface jumping influence lower extremity alignment?

    Science.gov (United States)

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-12-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations.

  7. Acute Improvement of Vertical Jump Performance After Isometric Squats Depends on Knee Angle and Vertical Jumping Ability.

    Science.gov (United States)

    Tsoukos, Athanasios; Bogdanis, Gregory C; Terzis, Gerasimos; Veligekas, Panagiotis

    2016-08-01

    Tsoukos, A, Bogdanis, GC, Terzis, G, and Veligekas, P. Acute improvement of vertical jump performance after isometric squats depends on knee angle and vertical jumping ability. J Strength Cond Res 30(8): 2250-2257, 2016-This study examined the acute effects of maximum isometric squats at 2 different knee angles (90 or 140°) on countermovement jump (CMJ) performance in power athletes. Fourteen national-level male track and field power athletes completed 3 main trials (2 experimental and 1 control) in a randomized and counterbalanced order 1 week apart. Countermovement jump performance was evaluated using a force-plate before and 15 seconds, 3, 6, 9, and 12 minutes after 3 sets of 3 seconds maximum isometric contractions with 1-minute rest in between, from a squat position with knee angle set at 90 or 140°. Countermovement jump performance was improved compared with baseline only in the 140° condition by 3.8 ± 1.2% on the 12th minute of recovery (p = 0.027), whereas there was no change in CMJ height in the 90° condition. In the control condition, there was a decrease in CMJ performance over time, reaching -3.6 ± 1.2% (p = 0.049) after 12 minutes of recovery. To determine the possible effects of baseline jump performance on subsequent CMJ performance, subjects were divided into 2 groups ("high jumpers" and "low jumpers"). The baseline CMJ values of "high jumpers" and "low jumpers" differed significantly (CMJ: 45.1 ± 2.2 vs. 37.1 ± 3.9 cm, respectively, p = 0.001). Countermovement jump was increased only in the "high jumpers" group by 5.4 ± 1.4% (p = 0.001) and 7.4 ± 1.2% (p = 0.001) at the knee angles of 90 and 140°, respectively. This improvement was larger at the 140° angle (p = 0.049). Knee angle during isometric squats and vertical jumping ability are important determinants of the acute CMJ performance increase observed after a conditioning activity.

  8. Position and out-of-straightness measurement of a precision linear air-bearing stage by using a two-degree-of-freedom linear encoder

    International Nuclear Information System (INIS)

    Kimura, Akihide; Gao, Wei; Lijiang, Zeng

    2010-01-01

    This paper presents measurement of the X-directional position and the Z-directional out-of-straightness of a precision linear air-bearing stage with a two-degree-of-freedom (two-DOF) linear encoder, which is an optical displacement sensor for simultaneous measurement of the two-DOF displacements. The two-DOF linear encoder is composed of a reflective-type one-axis scale grating and an optical sensor head. A reference grating is placed perpendicular to the scale grating in the optical sensor head. Two-DOF displacements can be obtained from interference signals generated by the ±1 order diffracted beams from two gratings. A prototype two-DOF linear encoder employing the scale grating with the grating period of approximately 1.67 µm measured the X-directional position and the Z-directional out-of-straightness of the linear air-bearing stage

  9. State estimation for neural neutral-type networks with mixed time-varying delays and Markovian jumping parameters

    International Nuclear Information System (INIS)

    Lakshmanan, S.; Park, Ju H.; Jung, H. Y.; Balasubramaniam, P.

    2012-01-01

    This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed time-varying delays and Markovian jumping parameters. The addressed neural networks have a finite number of modes, and the modes may jump from one to another according to a Markov process. By construction of a suitable Lyapunov—Krasovskii functional, a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square. The criterion is formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of some standard numerical packages

  10. Predicting lower body power from vertical jump prediction equations for loaded jump squats at different intensities in men and women.

    Science.gov (United States)

    Wright, Glenn A; Pustina, Andrew A; Mikat, Richard P; Kernozek, Thomas W

    2012-03-01

    The purpose of this study was to determine the efficacy of estimating peak lower body power from a maximal jump squat using 3 different vertical jump prediction equations. Sixty physically active college students (30 men, 30 women) performed jump squats with a weighted bar's applied load of 20, 40, and 60% of body mass across the shoulders. Each jump squat was simultaneously monitored using a force plate and a contact mat. Peak power (PP) was calculated using vertical ground reaction force from the force plate data. Commonly used equations requiring body mass and vertical jump height to estimate PP were applied such that the system mass (mass of body + applied load) was substituted for body mass. Jump height was determined from flight time as measured with a contact mat during a maximal jump squat. Estimations of PP (PP(est)) for each load and for each prediction equation were compared with criterion PP values from a force plate (PP(FP)). The PP(est) values had high test-retest reliability and were strongly correlated to PP(FP) in both men and women at all relative loads. However, only the Harman equation accurately predicted PP(FP) at all relative loads. It can therefore be concluded that the Harman equation may be used to estimate PP of a loaded jump squat knowing the system mass and peak jump height when more precise (and expensive) measurement equipment is unavailable. Further, high reliability and correlation with criterion values suggest that serial assessment of power production across training periods could be used for relative assessment of change by either of the prediction equations used in this study.

  11. Hydrodynamics of vertical jumping in Archer fish

    Science.gov (United States)

    Techet, Alexandra H.; Mendelson, Leah

    2017-11-01

    Vertical jumping for aerial prey from an aquatic environment requires both propulsive power and precise aim to succeed. Rapid acceleration to a ballistic velocity sufficient for reaching the prey height occurs before the fish leaves the water completely and experiences a thousandfold drop in force-producing ability. In addition to speed, accuracy and stability are crucial for successful feeding by jumping. This talk examines the physics of jumping using the archer fish as a model. Better known for their spitting abilities, archer fish will jump multiple body lengths out of the water for prey capture, from a stationary position just below the free surface. Modulation of oscillatory body kinematics and use of multiple fins for force production are identified as methods through which the fish can meet requirements for both acceleration and stabilization in limited space. Quantitative 3D PIV wake measurements reveal how variations in tail kinematics relate to thrust production throughout the course of a jumping maneuver and over a range of jump heights. By performing measurements in 3D, the timing, interactions, and relative contributions to thrust and lateral forces from each fin can be evaluated, elucidating the complex hydrodynamics that enable archer fish water exit.

  12. An experimental study for the phase shift between piston and displacer in the Stirling cryocooler

    International Nuclear Information System (INIS)

    Park, S. J.; Hong, Y. J.; Kim, H. B.; Son, H. K.; Yu, B. K.

    2002-01-01

    The small cryocooler is being widely applied to the areas of infrared detector, superconductor filter, satellite communication, and cryopump. The cryocooler working on the Stirling cycle are characterized by small size, lightweight, low power consumption and high reliability. For these reasons, FPFD (Free Piston Free Displacer) Stirling cryocooler is widely used not only tactical infrared imaging camera but also medical diagnostic apparatus. In this study, Stirling cryocooler actuated by the dual linear motor is designed and manufactured. And, displacement of the piston is measured by LVDTs (Linear Variable Differential Transformers), displacement of the displacer is measured by laser optic method, and phase shift between piston and displacer is discussed. Finally, when the phase shift between displacements of the piston and displacer is 45 .deg., operating frequency is optimum and is decided by resonant frequency of the expander, mass and cross section area of the displacer and constant by friction and flow resistance

  13. An experimental study for the phase shift between piston and displacer in the Stirling cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. J.; Hong, Y. J.; Kim, H. B. [Korea Institute of Machinery and Materials, Taejon (Korea, Republic of); Son, H. K.; Yu, B. K. [Wooyoung Co., Ltd., Seoul (Korea, Republic of)

    2002-07-01

    The small cryocooler is being widely applied to the areas of infrared detector, superconductor filter, satellite communication, and cryopump. The cryocooler working on the Stirling cycle are characterized by small size, lightweight, low power consumption and high reliability. For these reasons, FPFD (Free Piston Free Displacer) Stirling cryocooler is widely used not only tactical infrared imaging camera but also medical diagnostic apparatus. In this study, Stirling cryocooler actuated by the dual linear motor is designed and manufactured. And, displacement of the piston is measured by LVDTs (Linear Variable Differential Transformers), displacement of the displacer is measured by laser optic method, and phase shift between piston and displacer is discussed. Finally, when the phase shift between displacements of the piston and displacer is 45 .deg., operating frequency is optimum and is decided by resonant frequency of the expander, mass and cross section area of the displacer and constant by friction and flow resistance.

  14. A data-driven wavelet-based approach for generating jumping loads

    Science.gov (United States)

    Chen, Jun; Li, Guo; Racic, Vitomir

    2018-06-01

    This paper suggests an approach to generate human jumping loads using wavelet transform and a database of individual jumping force records. A total of 970 individual jumping force records of various frequencies were first collected by three experiments from 147 test subjects. For each record, every jumping pulse was extracted and decomposed into seven levels by wavelet transform. All the decomposition coefficients were stored in an information database. Probability distributions of jumping cycle period, contact ratio and energy of the jumping pulse were statistically analyzed. Inspired by the theory of DNA recombination, an approach was developed by interchanging the wavelet coefficients between different jumping pulses. To generate a jumping force time history with N pulses, wavelet coefficients were first selected randomly from the database at each level. They were then used to reconstruct N pulses by the inverse wavelet transform. Jumping cycle periods and contract ratios were then generated randomly based on their probabilistic functions. These parameters were assigned to each of the N pulses which were in turn scaled by the amplitude factors βi to account for energy relationship between successive pulses. The final jumping force time history was obtained by linking all the N cycles end to end. This simulation approach can preserve the non-stationary features of the jumping load force in time-frequency domain. Application indicates that this approach can be used to generate jumping force time history due to single people jumping and also can be extended further to stochastic jumping loads due to groups and crowds.

  15. Jump Shrug Height and Landing Forces Across Various Loads.

    Science.gov (United States)

    Suchomel, Timothy J; Taber, Christopher B; Wright, Glenn A

    2016-01-01

    The purpose of this study was to examine the effect that load has on the mechanics of the jump shrug. Fifteen track and field and club/intramural athletes (age 21.7 ± 1.3 y, height 180.9 ± 6.6 cm, body mass 84.7 ± 13.2 kg, 1-repetition-maximum (1RM) hang power clean 109.1 ± 17.2 kg) performed repetitions of the jump shrug at 30%, 45%, 65%, and 80% of their 1RM hang power clean. Jump height, peak landing force, and potential energy of the system at jump-shrug apex were compared between loads using a series of 1-way repeated-measures ANOVAs. Statistical differences in jump height (P .05). The greatest magnitudes of jump height, peak landing force, and potential energy of the system at the apex of the jump shrug occurred at 30% 1RM hang power clean and decreased as the external load increased from 45% to 80% 1RM hang power clean. Relationships between peak landing force and potential energy of the system at jump-shrug apex indicate that the landing forces produced during the jump shrug may be due to the landing strategy used by the athletes, especially at lighter loads. Practitioners may prescribe heavier loads during the jump-shrug exercise without viewing landing force as a potential limitation.

  16. Intra-Personal and Inter-Personal Kinetic Synergies During Jumping

    Directory of Open Access Journals (Sweden)

    Slomka Kajetan

    2015-12-01

    Full Text Available We explored synergies between two legs and two subjects during preparation for a long jump into a target. Synergies were expected during one-person jumping. No such synergies were expected between two persons jumping in parallel without additional contact, while synergies were expected to emerge with haptic contact and become stronger with strong mechanical contact. Subjects performed jumps either alone (each foot standing on a separate force platform or in dyads (parallel to each other, each person standing on a separate force platform without any contact, with haptic contact, and with strong coupling. Strong negative correlations between pairs of force variables (strong synergies were seen in the vertical force in one-person jumps and weaker synergies in two-person jumps with the strong contact. For other force variables, only weak synergies were present in one-person jumps and no negative correlations between pairs of force variable for two-person jumps. Pairs of moment variables from the two force platforms at steady state showed positive correlations, which were strong in one-person jumps and weaker, but still significant, in two-person jumps with the haptic and strong contact. Anticipatory synergy adjustments prior to action initiation were observed in oneperson trials only. We interpret the different results for the force and moment variables at steady state as reflections of postural sway.

  17. The AGS γt-jump system

    International Nuclear Information System (INIS)

    Syphers, M.J.; Ahrens, L.; van Asselt, W.; Brennan, J.M.

    1994-01-01

    In an attempt to generate a lossless crossing of an accelerator's transition energy, one procedure is to alter the transition energy of the accelerator quickly as the beam passes through this energy region by changing the optics of the lattice -- a so-called ''transition jump,'' or '' γt -jump'' scheme. Such a system was first implemented at CERN and later adopted at other accelerator laboratories. A scheme for the AGS was developed in 1986. A description of the AGS γt -jump system, and recent results from its commissioning are presented in this report

  18. Linear and nonlinear magnetic error measurements using action and phase jump analysis

    Directory of Open Access Journals (Sweden)

    Javier F. Cardona

    2009-01-01

    Full Text Available “Action and phase jump” analysis is presented—a beam based method that uses amplitude and phase knowledge of a particle trajectory to locate and measure magnetic errors in an accelerator lattice. The expected performance of the method is first tested using single-particle simulations in the optical lattice of the Relativistic Heavy Ion Collider (RHIC. Such simulations predict that under ideal conditions typical quadrupole errors can be estimated within an uncertainty of 0.04%. Other simulations suggest that sextupole errors can be estimated within a 3% uncertainty. Then the action and phase jump analysis is applied to real RHIC orbits with known quadrupole errors, and to real Super Proton Synchrotron (SPS orbits with known sextupole errors. It is possible to estimate the strength of a skew quadrupole error from measured RHIC orbits within a 1.2% uncertainty, and to estimate the strength of a strong sextupole component from the measured SPS orbits within a 7% uncertainty.

  19. Nonstandard jump functions for radically symmetric shock waves

    International Nuclear Information System (INIS)

    Baty, Roy S.; Tucker, Don H.; Stanescu, Dan

    2008-01-01

    Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function.

  20. Optimal State Estimation for Discrete-Time Markov Jump Systems with Missing Observations

    Directory of Open Access Journals (Sweden)

    Qing Sun

    2014-01-01

    Full Text Available This paper is concerned with the optimal linear estimation for a class of direct-time Markov jump systems with missing observations. An observer-based approach of fault detection and isolation (FDI is investigated as a detection mechanic of fault case. For systems with known information, a conditional prediction of observations is applied and fault observations are replaced and isolated; then, an FDI linear minimum mean square error estimation (LMMSE can be developed by comprehensive utilizing of the correct information offered by systems. A recursive equation of filtering based on the geometric arguments can be obtained. Meanwhile, a stability of the state estimator will be guaranteed under appropriate assumption.

  1. Exponential stability of delayed recurrent neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Wang Zidong; Liu Yurong; Yu Li; Liu Xiaohui

    2006-01-01

    In this Letter, the global exponential stability analysis problem is considered for a class of recurrent neural networks (RNNs) with time delays and Markovian jumping parameters. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. The purpose of the problem addressed is to derive some easy-to-test conditions such that the dynamics of the neural network is stochastically exponentially stable in the mean square, independent of the time delay. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish the desired sufficient conditions, and therefore the global exponential stability in the mean square for the delayed RNNs can be easily checked by utilizing the numerically efficient Matlab LMI toolbox, and no tuning of parameters is required. A numerical example is exploited to show the usefulness of the derived LMI-based stability conditions

  2. K-shell jump ratios and jump factors for molybdenum and silver by using 2D-geometrical configuration and a weak gamma source

    International Nuclear Information System (INIS)

    Francis Maria Anand, L.; Gudennavar, S.B.; Bubbly, S.G.; Joseph, Daisy

    2013-01-01

    The article presents a simple method of measuring K-shell absorption jump ratios and jump factors for elements in the field of X-ray spectroscopy. The K-shell jump ratios and jump factors for Molybdenum and Silver are measured by adopting 2ŏ-geometrical configuration and a weak gamma source. The characteristic K X-ray photons are excited in the targets using 32.8 keV barium X-ray photons from a weak 137 Cs radioactive source that is produced due to the internal conversion of cesium nucleus (IC). The fluorescent K X-ray photons are detected using low energy Si(Li) detector coupled to a 8k multichannel analyser. The K X-ray intensity ratios from X-ray fluorescent spectrum are measured experimentally, the total atomic attenuation cross section and the total atomic scattering cross sections are calculated using WinXcom software. The K-shell jump factor and jump ratio are computed using the measured K X-ray intensity ratios and the calculated K a , X-ray production cross section. The computed values of K-shell jump factor and jump ratio for molybdenum and silver are compared with the theoretical values and others' experimental data and are presented. The amount of uncertainty in the experimental measurement of K X-ray intensity ratios is less than 5%. Thus the 2ŏ-geometrical configuration method with weak gamma source can be an alternative simple method to measure the jump factors and the jump ratios of pure elements in the field of X-ray spectroscopy. (author)

  3. Neuromuscular function during drop jumps in young and elderly males.

    Science.gov (United States)

    Piirainen, Jarmo M; Linnamo, Vesa; Sippola, Niina; Avela, Janne

    2012-12-01

    The Hoffman reflex (H-reflex), indicating alpha-motoneuron pool activity, has been shown to be task - and in resting conditions - age dependent. How aging affects H-reflex activity during explosive movements is not clear at present. The purpose of this study was to examine the effects of aging on H-reflexes during drop jumps, and its possible role in drop jump performance. Ten young (26.8 ± 2.7 years) and twenty elderly (64.2 ± 2.7 years) subjects participated in the study. Maximal drop jump performance and soleus H-reflex response (H/M jump) 20 ms after ground contact were measured in a sledge ergometer. Maximal H-reflex, maximal M-wave, Hmax/Mmax-ratio and H-reflex excitability curves were measured during standing rest. Although in young the H-reflex response (Hmax/Mmax) was 6.5% higher during relaxed standing and 19.7% higher during drop jumps (H jump/M jump) than in the elderly group, these differences were not statistically significant. In drop jumps, the elderly subjects had lower jumping height (30.4%, p push-off force (18.0%, p push-off time (31.0% p push-off force (r = 0.833, p push-off time (r = -0.857, p < 0.01) in young but not in the elderly. Correlations between H-reflex response and jumping parameters in young may indicate different jumping and activation strategies in drop jumps. However, it does not fully explain age related differences in jumping performance, since age related differences in H-reflex activity were non-significant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Microscopic models of quantum-jump superoperators

    International Nuclear Information System (INIS)

    Dodonov, A.V.; Mizrahi, S.S.; Dodonov, V.V.

    2005-01-01

    We discuss the quantum-jump operation in an open system and show that jump superoperators related to a system under measurement can be derived from the interaction of that system with a quantum measurement apparatus. We give two examples for the interaction of a monochromatic electromagnetic field in a cavity (the system) with two-level atoms and with a harmonic oscillator (representing two different kinds of detectors). We show that the derived quantum-jump superoperators have a 'nonlinear' form Jρ=γ diag[F(n)aρa † F(n)], where the concrete form of the function F(n) depends on assumptions made about the interaction between the system and detector. Under certain conditions the asymptotical power-law dependence F(n)=(n+1) -β is obtained. A continuous transition to the standard Srinivas-Davies form of the quantum-jump superoperator (corresponding to β=0) is shown

  5. Option Panels in Pure-Jump Settings

    DEFF Research Database (Denmark)

    Andersen, Torben Gustav; Fusari, Nicola; Todorov, Viktor

    We develop parametric inference procedures for large panels of noisy option data in the setting where the underlying process is of pure-jump type, i.e., evolve only through a sequence of jumps. The panel consists of options written on the underlying asset with a (different) set of strikes...... specification for the risk-neutral asset return dynamics, the option prices are nonlinear functions of a time-invariant parameter vector and a time-varying latent state vector (or factors). Furthermore, no-arbitrage restrictions impose a direct link between some of the quantities that may be identified from...... the return and option data. These include the so-called jump activity index as well as the time-varying jump intensity. We propose penalized least squares estimation in which we minimize L_2 distance between observed and model-implied options and further penalize for the deviation of model-implied quantities...

  6. War, forced displacement and growth in Laotian adults.

    Science.gov (United States)

    Clarkin, Patrick F

    2012-01-01

    Evidence from several populations suggests that war negatively impacts civilian nutrition, physical growth and overall health. This effect is often enduring or permanent, particularly if experienced early in life. To assess whether the number of lifetime displacement experiences and being displaced in infancy were associated with adult height, sitting height, leg length and the sitting height ratio. Retrospective questionnaires on displacement and resettlement experiences and anthropometric data were collected from a sample of Laotian adult refugees (ethnic Hmong and Lao; n = 365). All were born in Laos or Thailand and had resettled in French Guiana or the US. Many had been displaced several times by military conflict in Laos. In bivariate analyses, being displaced in infancy and the number of lifetime displacement experiences one had were negatively associated with final adult height and leg length in both sexes. The association was stronger in females, particularly Hmong females. There was no significant association between total displacement experiences and the sitting height ratio. In multiple regression analyses, linear growth in males was negatively associated with being displaced in infancy; in females, the number of lifetime displacement experiences was a significant predictor. Forced displacement from war appears to have a lasting effect on final adult height, sitting height and leg length, although not necessarily on the sitting height ratio in this sample.

  7. High-level context effects on spatial displacement: the effects of body orientation and language on memory.

    Science.gov (United States)

    Vinson, David W; Abney, Drew H; Dale, Rick; Matlock, Teenie

    2014-01-01

    Three decades of research suggests that cognitive simulation of motion is involved in the comprehension of object location, bodily configuration, and linguistic meaning. For example, the remembered location of an object associated with actual or implied motion is typically displaced in the direction of motion. In this paper, two experiments explore context effects in spatial displacement. They provide a novel approach to estimating the remembered location of an implied motion image by employing a cursor-positioning task. Both experiments examine how the remembered spatial location of a person is influenced by subtle differences in implied motion, specifically, by shifting the orientation of the person's body to face upward or downward, and by pairing the image with motion language that differed on intentionality, fell versus jumped. The results of Experiment 1, a survey-based experiment, suggest that language and body orientation influenced vertical spatial displacement. Results of Experiment 2, a task that used Adobe Flash and Amazon Mechanical Turk, showed consistent effects of body orientation on vertical spatial displacement but no effect of language. Our findings are in line with previous work on spatial displacement that uses a cursor-positioning task with implied motion stimuli. We discuss how different ways of simulating motion can influence spatial memory.

  8. High-level context effects on spatial displacement: The effects of body orientation and language on memory

    Directory of Open Access Journals (Sweden)

    David W Vinson

    2014-07-01

    Full Text Available Three decades of research suggests that cognitive simulation of motion is involved in the comprehension of object location, bodily configuration, and linguistic meaning. For example, the remembered location of an object associated with actual or implied motion is typically displaced in the direction of motion. In this paper, two experiments explore context effects in spatial displacement. They provide a novel approach to estimating the remembered location of an implied motion image by employing a cursor-positioning task. Both experiments examine how the remembered spatial location of a person is influenced by subtle differences in implied motion, specifically, by shifting the orientation of the person’s body to face upward or downward, and by pairing the image with motion language that differed on intentionality, fell versus jumped. The results of Experiment 1, a survey-based experiment, suggest that language and body orientation influenced vertical spatial displacement. Results of Experiment 2, a task that used Adobe Flash and Amazon Mechanical Turk, showed consistent effects of body orientation on vertical spatial displacement but no effect of language. Our findings replicate are in line with previous work on spatial displacement task that used a cursor-positioning task with implied motion stimuli. We discuss how different ways of simulating motion can influence spatial memory.

  9. Scaling the viscous circular hydraulic jump

    Science.gov (United States)

    Argentina, Mederic; Cerda, Enrique; Duchesne, Alexis; Limat, Laurent

    2017-11-01

    The formation mechanism of hydraulic jumps has been proposed by Belanger in 1828 and rationalised by Lord Rayleigh in 1914. As the Froude number becomes higher than one, the flow super criticality induces an instability which yields the emergence of a steep structure at the fluid surface. Strongly deformed liquid-air interface can be observed as a jet of viscous fluid impinges a flat boundary at high enough velocity. In this experimental setup, the location of the jump depends on the viscosity of the liquid, as shown by T. Bohr et al. in 1997. In 2014, A. Duchesne et al. have established the constancy of the Froude number at jump. Hence, it remains a contradiction, in which the radial hydraulic jump location might be explained through inviscid theory, but is also viscosity dependent. We present a model based on the 2011 Rojas et al. PRL, which solves this paradox. The agreement with experimental measurements is excellent not only for the prediction of the position of the hydraulic jump, but also for the determination of the fluid thickness profile. We predict theoretically the critical value of the Froude number, which matches perfectly to that measured by Duchesne et al. We acknowledge the support of the CNRS and the Universit Cte d'Azur, through the IDEX funding.

  10. Jump phenomena. [large amplitude responses of nonlinear systems

    Science.gov (United States)

    Reiss, E. L.

    1980-01-01

    The paper considers jump phenomena composed of large amplitude responses of nonlinear systems caused by small amplitude disturbances. Physical problems where large jumps in the solution amplitude are important features of the response are described, including snap buckling of elastic shells, chemical reactions leading to combustion and explosion, and long-term climatic changes of the earth's atmosphere. A new method of rational functions was then developed which consists of representing the solutions of the jump problems as rational functions of the small disturbance parameter; this method can solve jump problems explicitly.

  11. Jump Testing and the Speed of Market Adjustment

    DEFF Research Database (Denmark)

    Rasmussen, Torben B.

    Asymptotic properties of jump tests rely on the property that any jump occurs within a single time interval no matter what the observation frequency is. Market microstructure effects in relation to news-induced revaluation of the underlying variable is likely to make this an unrealistic assumption...... for high-frequency transaction data. To capture these microstructure effects, this paper suggests a model in which market prices adjust gradually to jumps in the underlying effcient price. A case study illustrates the empirical relevance of the model, and the performance of different jump tests...

  12. Jumping together

    DEFF Research Database (Denmark)

    Lund, Ole; Ravn, Susanne; Christensen, Mette Krogh

    2014-01-01

    , in order to reach a deeper understanding of how practice facilitates learning. Results: We encircle the athletes’ interrelated learning processes by introducing the training environment of the national team and situations in which the athletes guide each other verbally or by jumping together. Discussion...

  13. Effect of drop jump technique on the reactive strength index.

    Science.gov (United States)

    Struzik, Artur; Juras, Grzegorz; Pietraszewski, Bogdan; Rokita, Andrzej

    2016-09-01

    The basic drill of plyometric training aimed at improving lower limb power and jump height is a drop jump. This exercise can be performed using different techniques, which substantially affects jump variables. Therefore, the aim of this study was to compare the values of the reactive strength index (RSI) for countermovement drop jumps (CDJs) and bounce drop jumps (BDJs). The study was carried out in a group of 8 male youth basketball players. The tests were conducted using the AMTI BP600900 force plate to measure ground reaction forces and the Noraxon MyoMotion system to record kinematic data. Each player performed two CDJs and two BDJs from the height of 15, 30, 45 and 60 cm. The RSI was calculated as a ratio of jump height and contact time. Moreover, the RSI was determined for the amortization and take-off phases separately. Significant differences (p jumps from 30, 45 and 60 cm. Differences in RSI values for jumps from 15 cm were not significant. Furthermore, CDJ height values were significantly higher (p jump technique that is commonly performed by basketball players.

  14. Vertical jumping tests in volleyball: reliability, validity, and playing-position specifics.

    Science.gov (United States)

    Sattler, Tine; Sekulic, Damir; Hadzic, Vedran; Uljevic, Ognjen; Dervisevic, Edvin

    2012-06-01

    Vertical jumping is known to be important in volleyball, and jumping performance tests are frequently studied for their reliability and validity. However, most studies concerning jumping in volleyball have dealt with standard rather than sport-specific jumping procedures and tests. The aims of this study, therefore, were (a) to determine the reliability and factorial validity of 2 volleyball-specific jumping tests, the block jump (BJ) test and the attack jump (AJ) test, relative to 2 frequently used and systematically validated jumping tests, the countermovement jump test and the squat jump test and (b) to establish volleyball position-specific differences in the jumping tests and simple anthropometric indices (body height [BH], body weight, and body mass index [BMI]). The BJ was performed from a defensive volleyball position, with the hands positioned in front of the chest. During an AJ, the players used a 2- to 3-step approach and performed a drop jump with an arm swing followed by a quick vertical jump. A total of 95 high-level volleyball players (all men) participated in this study. The reliability of the jumping tests ranged from 0.97 to 0.99 for Cronbach's alpha coefficients, from 0.93 to 0.97 for interitem correlation coefficients and from 2.1 to 2.8 for coefficients of variation. The highest reliability was found for the specific jumping tests. The factor analysis extracted one significant component, and all of the tests were highly intercorrelated. The analysis of variance with post hoc analysis showed significant differences between 5 playing positions in some of the jumping tests. In general, receivers had a greater jumping capacity, followed by libero players. The differences in jumping capacities should be emphasized vis-a-vis differences in the anthropometric measures of players, where middle hitters had higher BH and body weight, followed by opposite hitters and receivers, with no differences in the BMI between positions.

  15. Event-Triggered Asynchronous Guaranteed Cost Control for Markov Jump Discrete-Time Neural Networks With Distributed Delay and Channel Fading.

    Science.gov (United States)

    Yan, Huaicheng; Zhang, Hao; Yang, Fuwen; Zhan, Xisheng; Peng, Chen

    2017-08-18

    This paper is concerned with the guaranteed cost control problem for a class of Markov jump discrete-time neural networks (NNs) with event-triggered mechanism, asynchronous jumping, and fading channels. The Markov jump NNs are introduced to be close to reality, where the modes of the NNs and guaranteed cost controller are determined by two mutually independent Markov chains. The asynchronous phenomenon is considered, which increases the difficulty of designing required mode-dependent controller. The event-triggered mechanism is designed by comparing the relative measurement error with the last triggered state at the process of data transmission, which is used to eliminate dispensable transmission and reduce the networked energy consumption. In addition, the signal fading is considered for the effect of signal reflection and shadow in wireless networks, which is modeled by the novel Rice fading models. Some novel sufficient conditions are obtained to guarantee that the closed-loop system reaches a specified cost value under the designed jumping state feedback control law in terms of linear matrix inequalities. Finally, some simulation results are provided to illustrate the effectiveness of the proposed method.

  16. Miscible fluid displacement: an answer to increasing oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, N R; Rivera, R J

    1976-01-01

    This study presents the state of the art on miscible and miscible-type processes. It is well known that when these processes are applied under ideal laboratory conditions, the oil recovery obtained from linear cores approaches 100% of the total oil contained in the porous structure which is contacted by the displacing fluids. In the past few years, a worldwide shortage of crude oil supplies produced an increased interest in new oil recovery methods. Because of this situation, the oil industry turned its eyes back toward the miscible processes. This study discusses the following miscible fluid displacement processes: (1) high-pressure dry gas displacement; (2) enriched gas displacement; (3) GLP slug flooding; and (4) carbon dioxide displacement. In addition to the processes aforementioned, this work presents the main features of the micellar solution flooding process. (17 refs.)

  17. Impact of wave phase jumps on stochastic heating

    International Nuclear Information System (INIS)

    Zasenko, V.I.; Zagorodny, A.G.; Cherniak, O.M.

    2016-01-01

    Interaction of charged particles with fields of random waves brings about known effects of stochastic acceleration and heating. Jumps of wave phases can increase the intensity of these processes substantially. Numerical simulation of particle heating and acceleration by waves with regular phases, waves with jumping phase and stochastic electric field impulses is performed. Comparison of the results shows that to some extent an impact of phase jumps is similar to the action of separate field impulses. Jumps of phase not only increase the intensity of resonant particle heating but involves in this process non-resonant particles from a wide range of initial velocities

  18. Gaas Displacement Damage Dosimeter Based on Diode Dark Currents

    Directory of Open Access Journals (Sweden)

    Warner Jeffrey H.

    2017-01-01

    Full Text Available GaAs diode dark currents are correlated over a very large proton energy range as a function of displacement damage dose (DDD. The linearity of the dark current increase with DDD over a wide range of applied voltage bias deems this device an excellent candidate for a displacement damage dosimeter. Additional proton testing performed in situ enabled error estimate determination to within 10% for simulated space use.

  19. Option Valuation with Observable Volatility and Jump Dynamics

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunou, Bruno; Jeon, Yoontae

    Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity...... dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing...... for straightforward filtering and estimation of the model. Our model belongs to the affine class enabling us to derive the conditional characteristic function so that option values can be computed rapidly without simulation. When estimated on S&P500 index options and returns the new model performs well compared...

  20. Mesopause Jumps: Observations and Explanation

    Science.gov (United States)

    Luebken, F. J.; Becker, E.; Höffner, J.; Viehl, T. P.; Latteck, R.

    2017-12-01

    Recent high resolution temperature measurements by resonance lidar at Davis (69°S) occasionally showed a sudden mesopause altitude increase by 5km and an associated mesopause temperature decrease by 10K. We present further observations which are closely related to this `mesopause jump', namely the increase of mean height of polar mesospheric summer echoes (PMSE) observed by a VHF radar, very strong westward winds in the upper mesosphere measured by an MF radar, and relatively large eastward winds in the stratosphere taken from reanalysis. We compare to similar observations in the Northern Hemisphere, namely at ALOMAR (69°N) where such mesopause jumps have never been observed. We present a detailed explanation of mesopause jumps. They occur only when stratospheric winds are moderately eastward and mesospheric winds are very large (westward). Under these conditions, gravity waves with comparatively large eastward phase speeds can pass the stratosphere and propagate to the lower thermosphere because their vertical wavelengths in the mesosphere are rather large which implies reduced dynamical stability. When finally breaking in the lower thermosphere, these waves drive an enhanced residual circulation that causes a cold and high-altitude mesopause. The conditions for a mesopause jump occur only in the Southern Hemisphere (SH) and are associated with the late breakdown of the polar vortex.Mesopause jumps are primarily, but not only, observed prior and close to solstice. We also show that during the onset of PMSE in the SH, stratospheric zonal winds are still eastward (up to 30m/s), and that the onset is not closely related to the transition of the stratospheric circulation.

  1. Bridge Diagnosis by Using Nonlinear Independent Component Analysis and Displacement Analysis

    Science.gov (United States)

    Zheng, Juanqing; Yeh, Yichun; Ogai, Harutoshi

    A daily diagnosis system for bridge monitoring and maintenance is developed based on wireless sensors, signal processing, structure analysis, and displacement analysis. The vibration acceleration data of a bridge are firstly collected through the wireless sensor network by exerting. Nonlinear independent component analysis (ICA) and spectral analysis are used to extract the vibration frequencies of the bridge. After that, through a band pass filter and Simpson's rule the vibration displacement is calculated and the vibration model is obtained to diagnose the bridge. Since linear ICA algorithms work efficiently only in linear mixing environments, a nonlinear ICA model, which is more complicated, is more practical for bridge diagnosis systems. In this paper, we firstly use the post nonlinear method to change the signal data, after that perform linear separation by FastICA, and calculate the vibration displacement of the bridge. The processed data can be used to understand phenomena like corrosion and crack, and evaluate the health condition of the bridge. We apply this system to Nakajima Bridge in Yahata, Kitakyushu, Japan.

  2. Quantum jumps on Anderson attractors

    Science.gov (United States)

    Yusipov, I. I.; Laptyeva, T. V.; Ivanchenko, M. V.

    2018-01-01

    In a closed single-particle quantum system, spatial disorder induces Anderson localization of eigenstates and halts wave propagation. The phenomenon is vulnerable to interaction with environment and decoherence that is believed to restore normal diffusion. We demonstrate that for a class of experimentally feasible non-Hermitian dissipators, which admit signatures of localization in asymptotic states, quantum particle opts between diffusive and ballistic regimes, depending on the phase parameter of dissipators, with sticking about localization centers. In a diffusive regime, statistics of quantum jumps is non-Poissonian and has a power-law interval, a footprint of intermittent locking in Anderson modes. Ballistic propagation reflects dispersion of an ordered lattice and introduces the second timescale for jumps, resulting in non-nonmonotonous probability distribution. Hermitian dephasing dissipation makes localization features vanish, and Poissonian jump statistics along with normal diffusion are recovered.

  3. Human Long Jump — A Deductive Approach

    Directory of Open Access Journals (Sweden)

    Miloš Jovanović

    2012-10-01

    Full Text Available This paper presents a useful application of a generalized approach to the modelling of human and humanoid motion using the deductive approach. It starts with formulating a completely general problem and deriving different real situations as special cases. The concept and the software realization are verified by comparing the results with the ones obtained using “classical” software for one well-known particular problem – biped walking. New applicability and potentials of the proposed method are demonstrated by simulation of a selected example – the long jump. The simulated motion included jumping and landing on the feet (after a jump. Additional analysis is done in the paper regarding the joint torque and joint angle during the jumping. Separate stages of the simulation are defined and explained.

  4. Validation of jump squats as a practical measure of post-activation potentiation.

    Science.gov (United States)

    Nibali, Maria L; Chapman, Dale W; Robergs, Robert A; Drinkwater, Eric J

    2013-03-01

    To determine if post-activation potentiation (PAP) can augment sports performance, it is pertinent that researchers be confident that any enhancement in performance is attributable to the PAP phenomenon. However, obtaining mechanistic measures of PAP in the daily training environment of highly trained athletes is impractical. We sought to validate jump squats as a practical measure with ecological validity to sports performance against a mechanistic measure of PAP. We assessed the evoked muscle twitch properties of the knee extensors and jump squat kinetics of 8 physically trained males in response to a 5-repetition-maximum back squat conditioning stimulus (CS). Evoked muscle twitch, followed by 3 jump squats, was assessed before and at 4, 8, and 12 min post CS. Time intervals were assessed on separate occasions using a Latin square design. Linear regression was used to determine the relationship between post-pre changes in kinetic variables and muscle twitch peak force (Ft) and twitch rate of force development (RFDt). Large correlations were observed for both concentric relative and absolute mean power and Ft (r = 0.50 ± 0.30) and RFDt (r = 0.56 ± 0.27 and r = 0.58 ± 0.26). Concentric rate of force development (RFD) showed moderate correlations with Ft (r = 0.45 ± 0.33) and RFDt (r = 0.49 ± 0.32). Small-to-moderate correlations were observed for a number of kinetic variables (r = -0.42-0.43 ± 0.32-0.38). Jump squat concentric mean power and RFD are valid ecological measures of muscle potentiation, capable of detecting changes in athletic performance in response to the PAP phenomenon.

  5. Displacer Diameter Effect in Displacer Pulse Tube Refrigerator

    Science.gov (United States)

    Zhu, Shaowei

    2017-12-01

    Gas driving displacer pulse tube refrigerators are one of the work recovery type of pulse tube refrigerators whose theoretical efficiency is the same as Stirling refrigerators'. Its cooling power is from the displacement of the displacer. Displace diameter, rod diameter and pressure drop of the regenerator influence the displacement, which are investigated by numerical simulation. It is shown that the displacement ratio of the displacer over the piston is almost not affected by the displacer diameter at the same rod diameter ratio, or displacer with different diameters almost has the same performance.

  6. Strength and Jump Biomechanics of Elite and Recreational Female Youth Soccer Players

    Science.gov (United States)

    Chrisman, Sara P.; O'Kane, John W.; Polissar, Nayak L.; Tencer, Allan F.; Mack, Christopher D.; Levy, Marni R.; Schiff, Melissa A.

    2012-01-01

    Context Most researchers investigating soccer injuries have studied elite athletes because they have greater athletic-exposure hours than other athletes, but most youth participate at the recreational level. If risk factors for injury vary by soccer level, then recommendations generated using research with elite youth soccer players might not generalize to recreational players. Objective To examine injury risk factors of strength and jump biomechanics by soccer level in female youth athletes and to determine whether research recommendations based on elite youth athletes could be generalized to recreational players. Design Cross-sectional study. Setting Seattle Youth Soccer Association. Patients or Other Participants Female soccer players (N = 92) aged 11 to 14 years were recruited from 4 randomly selected elite (n = 50; age = 12.5 years, 95% confidence interval [95% CI]) = 12.3, 12.8 years; height = 157.8 cm, 95% CI = 155.2, 160.3 cm; mass = 49.9 kg, 95% CI = 47.3, 52.6 kg) and 4 randomly selected recreational (n = 42; age = 13.2 years, 95% CI = 13.0, 13.5 years; height = 161.1 cm, 95% CI = 159.2, 163.1 cm; mass = 50.6 kg, 95% CI = 48.3, 53.0 kg) soccer teams. Main Outcome Measure(s) Players completed a questionnaire about demographics, history of previous injury, and soccer experience. Physical therapists used dynamometry to measure hip strength (abduction, adduction, extension, flexion) and knee strength (flexion, extension) and Sportsmetrics to measure vertical jump height and jump biomechanics. We compared all measurements by soccer level using linear regression to adjust for age and mass. Results Elite players were similar to recreational players in all measures of hip and knee strength, vertical jump height, and normalized knee separation (a valgus estimate generated using Sportsmetrics). Conclusions Female elite youth players and recreational players had similar lower extremity strength and jump biomechanics. This suggests that recommendations generated from

  7. Robust stability analysis for Markovian jumping interval neural networks with discrete and distributed time-varying delays

    International Nuclear Information System (INIS)

    Balasubramaniam, P.; Lakshmanan, S.; Manivannan, A.

    2012-01-01

    Highlights: ► Robust stability analysis for Markovian jumping interval neural networks is considered. ► Both linear fractional and interval uncertainties are considered. ► A new LKF is constructed with triple integral terms. ► MATLAB LMI control toolbox is used to validate theoretical results. ► Numerical examples are given to illustrate the effectiveness of the proposed method. - Abstract: This paper investigates robust stability analysis for Markovian jumping interval neural networks with discrete and distributed time-varying delays. The parameter uncertainties are assumed to be bounded in given compact sets. The delay is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the new Lyapunov–Krasovskii functional (LKF), some inequality techniques and stochastic stability theory, new delay-dependent stability criteria have been obtained in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the less conservative and effectiveness of our theoretical results.

  8. Contribución segmentaria de los saltos con contramovimiento en vertical y en horizontal. [Segmental contribution on countermovement vertical and horizontal jumps].

    Directory of Open Access Journals (Sweden)

    Marcos Gutiérrez-Dávila

    2014-10-01

    Full Text Available El propósito ha sido realizar un análisis dinámico y cinemático sobre los saltos verticales (SV y horizontales (SH y cuantificar la aportación de los segmentos corporales al desplazamiento del centro de masa (CM durante la fase de propulsión. Han participado 28 deportistas practicantes de modalidades deportivas donde el salto vertical constituye una habilidad básica. Se ha utilizado una plataforma de fuerza, operando a 500 Hz, sincronizada temporalmente a una cámara de vídeo a 210 Hz que registraba el plano sagital de los saltos. Los saltos han sido considerados como un movimiento simétrico que se desarrolla en un plano, compuesto por un modelo mecánico coordinado simplificado de ocho segmentos. En la condición SV, los participantes debían de realizar un salto vertical máximo partiendo de una posición erguida sobre la plataforma de fuerza. En la condición SH, los participantes debían realizar un salto máximo en horizontal desde la misma posición. El tiempo de batida ha sido superior en SH con respecto a SV, (0.898 vs 1.056 s, constatándose una estrategia de rotación-extensión para SH. Los resultados ponen de manifiesto que la fuerza neta ejercida durante el impulso de frenado es mayor para SV debido a la mayor velocidad radial al inicio del impulso de frenado (-1.166 vs -0.992 m/s. Existe una mayor participación de las articulaciones del tobillo y la cadera plasmada en la mayor contribución del tronco en SH durante toda la batida, además de constatarse una mayor contribución de las extremidades superiores al desplazamiento vertical del CM en SV. Abstract The main aim of this research was a dynamics and kinematics analysis of vertical (SV and horizontal (SH jumps and quantify the body segments’ contribution to center of mass, CM, displacement during the propulsion phase. 28 athletes from different sport modalities where the vertical jump is a basic skill have participated. We used a force platform, operating at 500 Hz

  9. Propulsion efficiency and imposed flow fields of a copepod jump

    DEFF Research Database (Denmark)

    Jiang, H.; Kiørboe, Thomas

    2011-01-01

    Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed...... the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simulations by modeling the copepod as a self-propelled body. The computational fluid dynamics simulation was validated by particle image velocimetry data. The flow field generated by a repositioning jump...... the flow structure. The flow field associated with an escape jump sequence also includes two dominant vortex structures: one leading wake vortex generated as a result of the first jump and one around the body, but between these two vortex structures is an elongated, long-lasting flow trail with flow...

  10. The hydraulic jump and ripples in liquid helium

    International Nuclear Information System (INIS)

    Rolley, E.; Guthmann, C.; Pettersen, M.S.

    2007-01-01

    We have studied the characteristics of the circular hydraulic jump using liquid helium. Surprisingly, the radius of the jump does not change at the superfluid transition. We think that the flow is still dissipative below the lambda point because the velocity exceeds the critical one. The jump radius R j is compared with various models. In our parameter range, we find that the jump can be treated as a shock, and that capillary effects are important. Below the superfluid transition, we observed a standing capillary wave between the impact of the jet and the jump. Assuming that the superfluid flow can be described with an effective viscosity, we calculate the wave vector and thus obtain the value of the liquid thickness, which is in reasonable agreement with predictions. However, the spatial variation of the wave amplitude depends much more strongly on temperature than we calculate

  11. Numerical simulations of katabatic jumps in coats land, Antartica

    Science.gov (United States)

    Yu, Ye; Cai, Xiaoming; King, John C.; Renfrew, Ian A.

    A non-hydrostatic numerical model, the Regional Atmospheric Modeling System (RAMS), has been used to investigate the development of katabatic jumps in Coats Land, Antarctica. In the control run with a 5 m s-1downslope directed initial wind, a katabatic jump develops near the foot of the idealized slope. The jump is manifested as a rapid deceleration of the downslope flow and a change from supercritical to subcritical flow, in a hydraulic sense, i.e., the Froude number (Fr) of the flow changes from Fr > 1 to Fr> 1. Results from sensitivity experiments show that an increase in the upstream flow rate strengthens the jump, while an increase in the downstream inversion-layer depth results in a retreat of the jump. Hydraulic theory and Bernoulli''s theorem have been used to explain the surface pressure change across the jump. It is found that hydraulic theory always underestimates the surface pressure change, while Bernoulli''s theorem provides a satisfactory estimation. An analysis of the downs balance for the katabatic jump indicates that the important forces are those related to the pressure gradient, advection and, to a lesser extent, the turbulent momentum divergence. The development of katabatic jumps can be divided into two phases. In phase I, the t gradient force is nearly balanced by advection, while in phase II, the pressure gradient force is counterbalanced by turbulent momentum divergence. The upslope pressure gradient force associated with a pool of cold air over the ice shelf facilitates the formation of the katabatic jump.

  12. Development of a Minimally Actuated Jumping-Rolling Robot

    Directory of Open Access Journals (Sweden)

    Thanhtam Ho

    2015-04-01

    Full Text Available This paper presents development of a hybrid mobile robot in order to take advantage of both rolling and jumping locomotion on the ground. According to the unique design of the mechanism, the robot is able to execute both jumping and rolling skilfully by using only one DC motor. Changing the centre of gravity enables rolling of the robot and storage of energy is utilized for jumping. Mechanism design and control logic are validated by computer simulation. Simulation results show that the robot can jump nearly 1.3 times its diameter and roll at the speed of 3.3 times its diameter per second.

  13. THE EFFECT OF COMPRESSIBILITY FOR DISPLACEMENT NOISE FROM THE HELICOPTER ROTOR

    Directory of Open Access Journals (Sweden)

    B. S. Kritskiy

    2015-01-01

    Full Text Available The problem of noise generation of rotor due to the thickness of blades - displacement noise is considered. The method of calculating the displacement noise, which is based on linear acoustic theory for the changes in the effective thickness of the blade over time due to the compressibility of the flow are described.

  14. Vertical Jump Height is more Strongly Associated with Velocity and Work Performed Prior to Take-off

    Science.gov (United States)

    Bentley, J. R.; Loehr, J. A.; DeWitt, J. K.; Lee, S. M. C.; English, K. L.; Nash, R. E.; Leach, M. A.; Hagan, R. D.

    2008-01-01

    Vertical jump (VJ) height is commonly used as a measure of athletic capability in strength and power sports. Although VJ has been shown to be a predictor of athletic performance, it is not clear which kinetic ground reaction force (GRF) variables, such as peak force (PF), peak power (PP), peak velocity (PV), total work (TW) or impulse (Imp) are the best correlates. To determine which kinetic variables (PF, PP, PV, TW, and Imp) best correlate with VJ height. Twenty subjects (14 males, 6 females) performed three maximal countermovement VJs on a force platform (Advanced Mechanical Technology, Inc., Watertown, MA, USA). VJ jump height was calculated as the difference between standing reach and the highest reach point measured using a Vertec. PF, PP, PV, TW, and Imp were calculated using the vertical GRF data sampled at 1000 Hz from the lowest point in the countermovement through the concentric portion until take-off. GRF data were normalized to body mass measured using a standard scale (Detecto, Webb City, MO, USA). Correlation coefficients were computed between each GRF variable and VJ height using a Pearson correlation. VJ height (43.4 plus or minus 9.1 cm) was significantly correlated (p less than 0.001) with PF (998 plus or minus 321 N; r=0.51), PP (1997 plus or minus 772 W; r=0.69), PV (2.66 plus or minus 0.40 m (raised dot) s(sup -1); r=0.85), TW (259 plus or minus 93.0 kJ; r=0.82), and Imp (204 plus or minus 51.1 N(raised dot)s; r=0.67). Although all variables were correlated to VJ height, PV and TW were more strongly correlated to VJ height than PF, PP, and Imp. Therefore, since TW is equal to force times displacement, the relative displacement of the center of mass along with the forces applied during the upward movement of the jump are critical determinants of VJ height. PV and TW are key determinants of VJ height, and therefore successful training programs to increase VJ height should focus on rapid movement (PV) and TW by increasing power over time rather

  15. Jumping to (fatal) conclusions? An analysis of video film on a social networking web site of recreational jumping from height into water.

    Science.gov (United States)

    Moran, Kevin

    2014-01-01

    In high-income countries, death as a consequence of recreational jumping into water from height has not been well investigated partly because it traditionally has been a covert activity within youth culture. An observational study of video recordings posted on the YouTube web site was used to gather data on the nature of jumping activity in New Zealand and Australia. An analytical framework was developed to identify site- participant- social characteristics (10 variables) and online feedback (4 variables). Of the 389 videos recorded in New Zealand (n = 210) and Australia (n = 179), 929 jumpers were observed, and rivers were the most frequently reported site of jumping activity (New Zealand 47%; Australia 35%). One fifth (20%) of the jumps in New Zealand and one third (33%) in Australia were from heights estimated to be more than 12 m. The YouTube website portraying jumps from height were visited almost half a million times (495,686 hits). Ways of reducing recreational jumping risk via targeted education interventions may be best directed at young male adults. Use of social network sites to foster safe behaviours may be an effective way to educate young people of the inherent risks of jumping from height into water.

  16. A simple strategy for jumping straight up.

    Science.gov (United States)

    Hemami, Hooshang; Wyman, Bostwick F

    2012-05-01

    Jumping from a stationary standing position into the air is a transition from a constrained motion in contact with the ground to an unconstrained system not in contact with the ground. A simple case of the jump, as it applies to humans, robots and humanoids, is studied in this paper. The dynamics of the constrained rigid body are expanded to define a larger system that accommodates the jump. The formulation is applied to a four-link, three-dimensional system in order to articulate the ballistic motion involved. The activity of the muscular system and the role of the major sagittal muscle groups are demonstrated. The control strategy, involving state feedback and central feed forward signals, is formulated and computer simulations are presented to assess the feasibility of the formulations, the strategy and the jump. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Sub-Poissonian statistics of quantum jumps in single molecule or atomic ion

    International Nuclear Information System (INIS)

    Osad'ko, I.S.; Gus'kov, D.N.

    2007-01-01

    A theory for statistics of quantum jumps in single molecule or ion driven by continues wave laser field is developed. These quantum jumps can relate to nonradiative singlet-triplet transitions in a molecule or to on → off jumps in a single ion with shelving processes. Distribution function w N (T) of quantum jumps in time interval T is found. Computer simulation of quantum jumps is realized. Statistical treatment of simulated jumps reveals sub-Poissonian statistics of quantum jumps. The theoretical distribution function w N (T) fits well the distribution of jumps found from simulated data. Experimental data on quantum jumps found in experiments with single Hg + ion are described by the function w N (T) well

  18. Jumping robots: a biomimetic solution to locomotion across rough terrain.

    Science.gov (United States)

    Armour, Rhodri; Paskins, Keith; Bowyer, Adrian; Vincent, Julian; Megill, William; Bomphrey, Richard

    2007-09-01

    This paper introduces jumping robots as a means to traverse rough terrain; such terrain can pose problems for traditional wheeled, tracked and legged designs. The diversity of jumping mechanisms found in nature is explored to support the theory that jumping is a desirable ability for a robot locomotion system to incorporate, and then the size-related constraints are determined from first principles. A series of existing jumping robots are presented and their performance summarized. The authors present two new biologically inspired jumping robots, Jollbot and Glumper, both of which incorporate additional locomotion techniques of rolling and gliding respectively. Jollbot consists of metal hoop springs forming a 300 mm diameter sphere, and when jumping it raises its centre of gravity by 0.22 m and clears a height of 0.18 m. Glumper is of octahedral shape, with four 'legs' that each comprise two 500 mm lengths of CFRP tube articulating around torsion spring 'knees'. It is able to raise its centre of gravity by 1.60 m and clears a height of 1.17 m. The jumping performance of the jumping robot designs presented is discussed and compared against some specialized jumping animals. Specific power output is thought to be the performance-limiting factor for a jumping robot, which requires the maximization of the amount of energy that can be stored together with a minimization of mass. It is demonstrated that this can be achieved through optimization and careful materials selection.

  19. Mixed H-Infinity and Passive Filtering for Discrete Fuzzy Neural Networks With Stochastic Jumps and Time Delays.

    Science.gov (United States)

    Shi, Peng; Zhang, Yingqi; Chadli, Mohammed; Agarwal, Ramesh K

    2016-04-01

    In this brief, the problems of the mixed H-infinity and passivity performance analysis and design are investigated for discrete time-delay neural networks with Markovian jump parameters represented by Takagi-Sugeno fuzzy model. The main purpose of this brief is to design a filter to guarantee that the augmented Markovian jump fuzzy neural networks are stable in mean-square sense and satisfy a prescribed passivity performance index by employing the Lyapunov method and the stochastic analysis technique. Applying the matrix decomposition techniques, sufficient conditions are provided for the solvability of the problems, which can be formulated in terms of linear matrix inequalities. A numerical example is also presented to illustrate the effectiveness of the proposed techniques.

  20. Optimal Ski Jump

    Science.gov (United States)

    Rebilas, Krzysztof

    2013-02-01

    Consider a skier who goes down a takeoff ramp, attains a speed V, and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is α. What is the optimal angle α that makes the jump the longest possible for the fixed magnitude of the velocity V? Of course, in practice, this is a very sophisticated problem; the skier's range depends on a variety of complex factors in addition to V and α. However, if we ignore these and assume the jumper is in free fall between the takeoff ramp and the landing point below, the problem becomes an exercise in kinematics that is suitable for introductory-level students. The solution is presented here.

  1. Anthropic prediction for a large multi-jump landscape

    International Nuclear Information System (INIS)

    Schwartz-Perlov, Delia

    2008-01-01

    The assumption of a flat prior distribution plays a critical role in the anthropic prediction of the cosmological constant. In a previous paper we analytically calculated the distribution for the cosmological constant, including the prior and anthropic selection effects, in a large toy 'single-jump' landscape model. We showed that it is possible for the fractal prior distribution that we found to behave as an effectively flat distribution in a wide class of landscapes, but only if the single-jump size is large enough. We extend this work here by investigating a large (N∼10 500 ) toy 'multi-jump' landscape model. The jump sizes range over three orders of magnitude and an overall free parameter c determines the absolute size of the jumps. We will show that for 'large' c the distribution of probabilities of vacua in the anthropic range is effectively flat, and thus the successful anthropic prediction is validated. However, we argue that for small c, the distribution may not be smooth

  2. Scaling and jumping: Gravity loses grip on small jumpers

    NARCIS (Netherlands)

    Scholz, M.N.; Bobbert, M.F.; van Soest, A.J.

    2006-01-01

    There are several ways to quantify jumping performance, a common definition being the height gained by the body's centre of mass (CM) in the airborne phase. Under this definition, jump height is determined by take-off velocity. According to the existing literature on jumping and scaling, take-off

  3. Jumping hoops on water

    Science.gov (United States)

    Yang, Eunjin; Kim, Ho-Young

    2015-11-01

    Small aquatic arthropods, such as water striders and fishing spiders, are able to jump off water to a height several times their body length. Inspired by the unique biological motility on water, we study a simple model using a flexible hoop to provide fundamental understanding and a mimicking principle of small jumpers on water. Behavior of a hoop on water, which is coated with superhydrophobic particles and initially bent into an ellipse from an equilibrium circular shape, is visualized with a high speed camera upon launching it into air by releasing its initial elastic strain energy. We observe that jumping of our hoops is dominated by the dynamic pressure of water rather than surface tension, and thus it corresponds to the dynamic condition experienced by fishing spiders. We calculate the reaction forces provided by water adopting the unsteady Bernoulli equation as well as the momentum loss into liquid inertia and viscous friction. Our analysis allows us to predict the jumping efficiency of the hoop on water in comparison to that on ground, and to discuss the evolutionary pressure rendering fishing spiders select such dynamic behavior.

  4. Variability of Plyometric and Ballistic Exercise Technique Maintains Jump Performance.

    Science.gov (United States)

    Chandler, Phillip T; Greig, Matthew; Comfort, Paul; McMahon, John J

    2018-06-01

    Chandler, PT, Greig, M, Comfort, P, and McMahon, JJ. Variability of plyometric and ballistic exercise technique maintains jump performance. J Strength Cond Res 32(6): 1571-1582, 2018-The aim of this study was to investigate changes in vertical jump technique over the course of a training session. Twelve plyometric and ballistic exercise-trained male athletes (age = 23.4 ± 4.6 years, body mass = 78.7 ± 18.8 kg, height = 177.1 ± 9.0 cm) performed 3 sets of 10 repetitions of drop jump (DJ), rebound jump (RJ) and squat jump (SJ). Each exercise was analyzed from touchdown to peak joint flexion and peak joint flexion to take-off. Squat jump was analyzed from peak joint flexion to take-off only. Jump height, flexion and extension time and range of motion, and instantaneous angles of the ankle, knee, and hip joints were measured. Separate 1-way repeated analyses of variance compared vertical jump technique across exercise sets and repetitions. Exercise set analysis found that SJ had lower results than DJ and RJ for the angle at peak joint flexion for the hip, knee, and ankle joints and take-off angle of the hip joint. Exercise repetition analysis found that the ankle joint had variable differences for the angle at take-off, flexion, and extension time for RJ. The knee joint had variable differences for flexion time for DJ and angle at take-off and touchdown for RJ. There was no difference in jump height. Variation in measured parameters across repetitions highlights variable technique across plyometric and ballistic exercises. This did not affect jump performance, but likely maintained jump performance by overcoming constraints (e.g., level of rate coding).

  5. Influence of magnetic history on flux jump fields

    International Nuclear Information System (INIS)

    Sosnowski, J.

    1986-01-01

    A formalism describing the fields at which flux jumps occur in hard superconductors has been confirmed by the description of an experimentally observed shift of flux jump fields in the second hysteresis loop of a Nb 3 Al superconducting sample. By fitting the theoretical model to experimental data, values of the proportionality parameter between the stability limit and the flux jump field, the first stability limit, and the first penetration field have been estimated

  6. Timeless Approach to Quantum Jumps

    Directory of Open Access Journals (Sweden)

    Ignazio Licata

    2015-10-01

    Full Text Available According to the usual quantum description, the time evolution of the quantum state is continuous and deterministic except when a discontinuous and indeterministic collapse of state vector occurs. The collapse has been a central topic since the origin of the theory, although there are remarkable theoretical proposals to understand its nature, such as the Ghirardi–Rimini–Weber. Another possibility could be the assimilation of collapse with the now experimentally well established phenomenon of quantum jump, postulated by Bohr already in 1913. The challenge of nonlocality offers an opportunity to reconsider the quantum jump as a fundamental element of the logic of the physical world, rather than a subsidiary accident. We propose here a simple preliminary model that considers quantum jumps as processes of entry to and exit from the usual temporal domain to a timeless vacuum, without contradicting the quantum relativistic formalism, and we present some potential connections with particle physics. Quanta 2015; 4: 10–26.

  7. A COMPARISON OF PAIRS FIGURE SKATERS IN REPEATED JUMPS

    Directory of Open Access Journals (Sweden)

    William A. Sands

    2012-03-01

    Full Text Available Trends in pairs figure skating have shown that increasingly difficult jumps have become an essential aspect of high-level performance, especially in the latter part of a competitive program. We compared a repeated jump power index in a 60 s repeated jump test to determine the relationship of repeated jump test to competitive rank and to measure 2D hip, knee, and ankle angles and angular velocities at 0, 20, 40, and 60 s. Eighteen National Team Pairs Figure Skaters performed a 60 s repeated jump test on a large switch-mat with timing of flight and ground durations and digital video recording. Each 60-s period was divided into 6, 10-s intervals, with power indexes (W/kg calculated for each 10-s interval. Power index by 10-s interval repeated measures ANOVAs (RMANOVA showed that males exceeded females at all intervals, and the highest power index interval was during 10 to 20 s for both sexes. RMANOVAs of angles and angular velocities showed main effects for time only. Power index and jumping techniques among figure skaters showed rapid and steady declines over the test duration. Power index can predict approximately 50% of competitive rank variance, and sex differences in jumping technique were rare

  8. Dissipative - free jumps for the magnetoacoustic branch of cold plasma motions

    International Nuclear Information System (INIS)

    Bakholdin, I.B.

    2000-01-01

    Dissipative-free jumps were studied in hydrodynamic model of cold plasma moving with the rate close to magnetoacoustic one. The jumps for the generalized Korteweg-de Vries equation with similar nonlinear and dispersion properties were studied. Among them there were jumps with emission and solution type jumps. Furthermore, the numerical investigation into the initial break decomposition in cold plasma confirmed the validity of assumption that in the given type of jumps as in case of the generalized Korteweg-de Vries equation. Paper describes the analytical method enabling to forecast the structure nature of such jumps in the general case [ru

  9. Jump Tails, Extreme Dependencies, and the Distribution of Stock Returns

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Todorov, Viktor

    We provide a new framework for estimating the systematic and idiosyncratic jump tail risks in financial asset prices. The theory underlying our estimates are based on in-fill asymptotic arguments for directly identifying the systematic and idiosyncratic jumps, together with conventional long...... market portfolio, we find that the distributions of the systematic and idiosyncratic jumps are both generally heavy-tailed and not necessarily symmetric. Our estimates also point to the existence of strong dependencies between the market-wide jumps and the corresponding systematic jump tails for all...... of the stocks in the sample. We also show how the jump tail dependencies deduced from the high-frequency data together with the day-to-day temporal variation in the volatility are able to explain the “extreme” dependencies vis-a-vis the market portfolio....

  10. Non-linear temperature-dependent curvature of a phase change composite bimorph beam

    Science.gov (United States)

    Blonder, Greg

    2017-06-01

    Bimorph films curl in response to temperature. The degree of curvature typically varies in proportion to the difference in thermal expansion of the individual layers, and linearly with temperature. In many applications, such as controlling a thermostat, this gentle linear behavior is acceptable. In other cases, such as opening or closing a valve or latching a deployable column into place, an abrupt motion at a fixed temperature is preferred. To achieve this non-linear motion, we describe the fabrication and performance of a new bilayer structure we call a ‘phase change composite bimorph (PCBM)’. In a PCBM, one layer in the bimorph is a composite containing small inclusions of phase change materials. When the inclusions melt, their large (generally positive and  >1%) expansion coefficient induces a strong, reversible step function jump in bimorph curvature. The measured jump amplitude and thermal response is consistent with theory, and can be harnessed by a new class of actuators and sensors.

  11. Numerical study of laminar, standing hydraulic jumps in a planar geometry.

    Science.gov (United States)

    Dasgupta, Ratul; Tomar, Gaurav; Govindarajan, Rama

    2015-05-01

    We solve the two-dimensional, planar Navier-Stokes equations to simulate a laminar, standing hydraulic jump using a Volume-of-Fluid method. The geometry downstream of the jump has been designed to be similar to experimental conditions by including a pit at the edge of the platform over which liquid film flows. We obtain jumps with and without separation. Increasing the inlet Froude number pushes the jump downstream and makes the slope of the jump weaker, consistent with experimental observations of circular jumps, and decreasing the Reynolds number brings the jump upstream while making it steeper. We study the effect of the length of the domain and that of a downstream obstacle on the structure and location of the jump. The transient flow which leads to a final steady jump is described for the first time to our knowledge. In the moderate Reynolds number regime, we obtain steady undular jumps with a separated bubble underneath the first few undulations. Interestingly, surface tension leads to shortening of wavelength of these undulations. We show that the undulations can be explained using the inviscid theory of Benjamin and Lighthill (Proc. R. Soc. London, Ser. A, 1954). We hope this new finding will motivate experimental verification.

  12. Measurement of K-shell jump ratios and jump factors for some elements in 76≤Z≤92 using EDXRF spectrometer

    International Nuclear Information System (INIS)

    Kaya, N.; Apaydin, G.; Tirasoglu, E.

    2011-01-01

    This article presents experimental values of the K-shell jump factor and jump ratio (ratio of the K-shell photoionization cross section to the photoionization cross section of the rest of the atom at the K edge) for some elements in 76≤Z≤92 using an energy dispersive X-ray fluorescence (EDXRF) spectrometer and compares those values with the theoretical ones giving reasonable agreement. The experimental values have been determined using the fluorescence parameters: K α production cross sections, K β /K α X-rays intensity ratios, total atomic attenuation cross sections, etc. To the best of our knowledge, K-shell jump ratios and jump factors have been measured without having any data on K edge for the first time in these elements. The results have been plotted versus atomic number.

  13. Temperature jump boundary conditions in radiation diffusion

    International Nuclear Information System (INIS)

    Alonso, C.T.

    1976-12-01

    The radiation diffusion approximation greatly simplifies radiation transport problems. Yet the application of this method has often been unnecessarily restricted to optically thick regions, or has been extended through the use of such ad hoc devices as flux limiters. The purpose of this paper is to review and draw attention to the use of the more physically appropriate temperature jump boundary conditions for extending the range of validity of the diffusion approximation. Pioneering work has shown that temperature jump boundary conditions remove the singularity in flux that occurs in ordinary diffusion at small optical thicknesses. In this review paper Deissler's equations for frequency-dependent jump boundary conditions are presented and specific geometric examples are calculated analytically for steady state radiation transfer. When jump boundary conditions are applied to radiation diffusion, they yield exact solutions which are naturally flux- limited and geometry-corrected. We believe that the presence of temperature jumps on source boundaries is probably responsible in some cases for the past need for imposing ad hoc flux-limiting constraints on pure diffusion solutions. The solution for transfer between plane slabs, which is exact to all orders of optical thickness, also provides a useful tool for studying the accuracy of computer codes

  14. Reliability of performance velocity for jump squats under feedback and nonfeedback conditions.

    Science.gov (United States)

    Randell, Aaron D; Cronin, John B; Keogh, Justin Wl; Gill, Nicholas D; Pedersen, Murray C

    2011-12-01

    Randell, AD, Cronin, JB, Keogh, JWL, Gill, ND, and Pedersen, MC. Reliability of performance velocity for jump squats under feedback and nonfeedback conditions. J Strength Cond Res 25(12): 3514-3518, 2011-Advancements in the monitoring of kinematic and kinetic variables during resistance training have resulted in the ability to continuously monitor performance and provide feedback during training. If equipment and software can provide reliable instantaneous feedback related to the variable of interest during training, it is thought that this may result in goal-oriented movement tasks that increase the likelihood of transference to on-field performance or at the very least improve the mechanical variable of interest. The purpose of this study was to determine the reliability of performance velocity for jump squats under feedback and nonfeedback conditions over 3 consecutive training sessions. Twenty subjects were randomly allocated to a feedback or nonfeedback group, and each group performed a total of 3 "jump squat" training sessions with the velocity of each repetition measured using a linear position transducer. There was less change in mean velocities between sessions 1-2 and sessions 2-3 (0.07 and 0.02 vs. 0.13 and -0.04 m·s), less random variation (TE = 0.06 and 0.06 vs. 0.10 and 0.07 m·s) and greater consistency (intraclass correlation coefficient = 0.83 and 0.87 vs. 0.53 and 0.74) between sessions for the feedback condition as compared to the nonfeedback condition. It was concluded that there is approximately a 50-50 probability that the provision of feedback was beneficial to the performance in the squat jump over multiple sessions. It is suggested that this has the potential for increasing transference to on-field performance or at the very least improving the mechanical variable of interest.

  15. Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    Directory of Open Access Journals (Sweden)

    Jeremy D Wong

    Full Text Available A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of

  16. Optimizing the Distribution of Leg Muscles for Vertical Jumping

    Science.gov (United States)

    Wong, Jeremy D.; Bobbert, Maarten F.; van Soest, Arthur J.; Gribble, Paul L.; Kistemaker, Dinant A.

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas—which determine the maximum force deliverable by the muscles—constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal

  17. Biomechanics of stair walking and jumping.

    Science.gov (United States)

    Loy, D J; Voloshin, A S

    1991-01-01

    Physical activities such as stair walking and jumping result in increased dynamic loading on the human musculoskeletal system. Use of light weight, externally attached accelerometers allows for in-vivo monitoring of the shock waves invading the human musculoskeletal system during those activities. Shock waves were measured in four subjects performing stair walking up and down, jumping in place and jumping off a fixed elevation. The results obtained show that walking down a staircase induced shock waves with amplitude of 130% of that observed in walking up stairs and 250% of the shock waves experienced in level gait. The jumping test revealed levels of the shock waves nearly eight times higher than that in level walking. It was also shown that the shock waves invading the human musculoskeletal system may be generated not only by the heel strike, but also by the metatarsal strike. To moderate the risk of degenerative joint disorders four types of viscoelastic insoles were utilized to reduce the impact generated shock waves. The insoles investigated were able to reduce the amplitude of the shock wave by between 9% and 41% depending on the insole type and particular physical activity. The insoles were more effective in the reduction of the heel strike impacts than in the reduction of the metatarsal strike impacts. In all instances, the shock attenuation capacities of the insoles tested were greater in the jumping trials than in the stair walking studies. The insoles were ranked in three groups on the basis of their shock absorbing capacity.

  18. Effect of drop jump technique on the reactive strength index

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2016-09-01

    Full Text Available The basic drill of plyometric training aimed at improving lower limb power and jump height is a drop jump. This exercise can be performed using different techniques, which substantially affects jump variables. Therefore, the aim of this study was to compare the values of the reactive strength index (RSI for countermovement drop jumps (CDJs and bounce drop jumps (BDJs. The study was carried out in a group of 8 male youth basketball players. The tests were conducted using the AMTI BP600900 force plate to measure ground reaction forces and the Noraxon MyoMotion system to record kinematic data. Each player performed two CDJs and two BDJs from the height of 15, 30, 45 and 60 cm. The RSI was calculated as a ratio of jump height and contact time. Moreover, the RSI was determined for the amortization and take-off phases separately. Significant differences (p < 0.05 between RSI values for CDJs and BDJs were recorded for jumps from 30, 45 and 60 cm. Differences in RSI values for jumps from 15 cm were not significant. Furthermore, CDJ height values were significantly higher (p < 0.05 than the values recorded for BDJs. Times of contact, amortization and take-off during BDJs were significantly shorter (p < 0.05 than the respective values obtained for CDJs. Therefore, the use of the RSI to monitor plyometric training should be based on the drop jump technique that is commonly performed by basketball players.

  19. Immediate Effects of Different Trunk Exercise Programs on Jump Performance.

    Science.gov (United States)

    Imai, A; Kaneoka, K; Okubo, Y; Shiraki, H

    2016-03-01

    The aim of this study was to investigate the immediate effects of trunk stabilization exercise (SE) and conventional trunk exercise (CE) programs on jump performance. 13 adolescent male soccer players performed 2 kinds of jump testing before and immediate after 3 experimental conditions: SE, CE, and non-exercise (NE). The SE program consisted of the elbow-toe, hand-knee, and back bridge, and the CE program consisted of the sit-up, sit-up with trunk rotation and back extension. Testing of a countermovement jump (CMJ) and rebound jump (RJ) were performed to assess jump performance. Jump height of the CMJ and RJ-index, contact time, and jump height of the RJ were analyzed. The RJ index was improved significantly only after SE (p=0.017). However, contact time and jump height did not improve significantly in the SE condition. Moreover, no significant interaction or main effects of time or group were observed in the CMJ. Consequently, this study showed the different immediate effect on the RJ between the SE and CE, and suggested the possibility that the SE used in this study is useful as a warm-up program to improve the explosive movements. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Dissipation-Free Jumps for the Magnetosonic Branch of Cold Plasma Motion

    International Nuclear Information System (INIS)

    Bakholdin, I.B.

    2000-01-01

    Dissipation-free jumps are studied in a hydrodynamic model of a cold plasma moving at about magnetosonic speed. The jumps described by the generalized Korteweg-de Vries equation, which possesses similar nonlinear and dispersion properties, are considered. In particular, jumps with emission and solitonlike jumps are considered. The assumption that our model possesses jumps of the same type as those for the generalized Korteweg-de Vries equation is justified by numerically investigating the problem of the decay of an initial discontinuity in a cold plasma. An analytic method is described that makes it possible to predict the structure of such jumps in the general case

  1. The effects of load on system and lower-body joint kinetics during jump squats.

    Science.gov (United States)

    Moir, Gavin L; Gollie, Jared M; Davis, Shala E; Guers, John J; Witmer, Chad A

    2012-11-01

    To investigate the effects of different loads on system and lower-body kinetics during jump squats, 12 resistance-trained men performed jumps under different loading conditions: 0%, 12%, 27%, 42%, 56%, 71%, and 85% of 1-repetition maximum (1-RM). System power output was calculated as the product of the vertical component of the ground reaction force and the vertical velocity of the bar during its ascent. Joint power output was calculated during bar ascent for the hip, knee, and ankle joints, and was also summed across the joints. System power output and joint power at knee and ankle joints were maximized at 0% 1-RM (p < 0.001) and followed the linear trends (p < 0.001) caused by power output decreasing as the load increased. Power output at the hip was maximized at 42% 1-RM (p = 0.016) and followed a quadratic trend (p = 0.030). Summed joint power could be predicted from system power (p < 0.05), while system power could predict power at the knee and ankle joints under some of the loading conditions. Power at the hip could not be predicted from system power. System power during loaded jumps reflects the power at the knee and ankle, while power at the hip does not correspond to system power.

  2. Biomechanical analysis of drop and countermovement jumps

    NARCIS (Netherlands)

    Bobbert, M. F.; Mackay, M.T.; Schinkelshoek, D.; Huijing, P. A.; van Ingen Schenau, G. J.

    For 13 subjects the performance of drop jumps from a height of 40 cm (DJ) and of countermovement jumps (CMJ) was analysed and compared. From force plate and cine data biomechanical variables including forces, moments, power output and amount of work done were calculated for hip, knee and ankle

  3. Jump Detection in the Danish Stock Market

    DEFF Research Database (Denmark)

    Høg, Esben

    2002-01-01

    It is well known in financial economics that stock market return data are often modelled by a diffusion process with some regular drift function. Occasionally, however, sudden changes or jumps occur in the return data. Wavelet scaling methods are used to detect jumps and cusps in stock market...

  4. You Say Jump, I Say How High?

    DEFF Research Database (Denmark)

    Fasterhold, Martin; Pichlmair, Martin; Holmgård, Christoffer

    This paper explores the design of jumping in 2D platform games. Through creating a method for measuring existing games, applying this method to a selection of different platformer games, and analysing the results, the paper arrives at a comprehensive data model for jumping. The model supports the...

  5. Reciprocating linear motor

    Science.gov (United States)

    Goldowsky, Michael P. (Inventor)

    1987-01-01

    A reciprocating linear motor is formed with a pair of ring-shaped permanent magnets having opposite radial polarizations, held axially apart by a nonmagnetic yoke, which serves as an axially displaceable armature assembly. A pair of annularly wound coils having axial lengths which differ from the axial lengths of the permanent magnets are serially coupled together in mutual opposition and positioned with an outer cylindrical core in axial symmetry about the armature assembly. One embodiment includes a second pair of annularly wound coils serially coupled together in mutual opposition and an inner cylindrical core positioned in axial symmetry inside the armature radially opposite to the first pair of coils. Application of a potential difference across a serial connection of the two pairs of coils creates a current flow perpendicular to the magnetic field created by the armature magnets, thereby causing limited linear displacement of the magnets relative to the coils.

  6. Perceiver as polar planimeter: Direct perception of jumping, reaching, and jump-reaching affordances for the self and others.

    Science.gov (United States)

    Thomas, Brandon J; Hawkins, Matthew M; Nalepka, Patrick

    2017-03-30

    Runeson (Scandanavian Journal of Psychology 18:172-179, 1977) suggested that the polar planimeter might serve as an informative model system of perceptual mechanism. The key aspect of the polar planimeter is that it registers a higher order property of the environment without computational mediation on the basis of lower order properties, detecting task-specific information only. This aspect was posited as a hypothesis for the perception of jumping and reaching affordances for the self and another person. The findings supported this hypothesis. The perception of reaching while jumping significantly differed from an additive combination of jump-without-reaching and reach-without-jumping perception. The results are consistent with Gibson's (The senses considered as perceptual systems, Houghton Mifflin, Boston, MA; Gibson, The senses considered as perceptual systems, Houghton Mifflin, Boston, MA, 1966; The ecological approach to visual perception, Houghton Mifflin, Boston, MA; Gibson, The ecological approach to visual perception, Houghton Mifflin, Boston, MA, 1979) theory of information-that aspects of the environment are specified by patterns in energetic media.

  7. Lower Extremity Kinematics Differed Between a Controlled Drop-Jump and Volleyball-Takeoffs.

    Science.gov (United States)

    Beardt, Bradley S; McCollum, Myranda R; Hinshaw, Taylour J; Layer, Jacob S; Wilson, Margaret A; Zhu, Qin; Dai, Boyi

    2018-04-03

    Previous studies utilizing jump-landing biomechanics to predict anterior cruciate ligament injuries have shown inconsistent findings. The purpose of this study was to quantify the differences and correlations in jump-landing kinematics between a drop-jump, a controlled volleyball-takeoff, and a simulated-game volleyball-takeoff. Seventeen female volleyball players performed these three tasks on a volleyball court while three-dimensional kinematic data were collected by three calibrated camcorders. Participants demonstrated significantly increased jump height, shorter stance time, increased time differences in initial contact between two feet, increased knee and hip flexion at initial contact and decreased peak knee and hip flexion for both left and right legs, and decreased knee-ankle distance ratio at the lowest height of mid-hip for the two volleyball-takeoffs compared with the drop-jump (p jump and two volleyball-takeoffs. Controlled drop-jump kinematics may not represent jump-landing kinematics exhibited during volleyball competition. Jump-landing mechanics during sports-specific tasks may better represent those exhibited during sports competition and their associated risk of ACL injury compared with the drop-jump.

  8. Verbal Instructions Acutely Affect Drop Vertical Jump Biomechanics--Implications for Athletic Performance and Injury Risk Assessments.

    Science.gov (United States)

    Khuu, Steven; Musalem, Lindsay L; Beach, Tyson A C

    2015-10-01

    Biomechanical quantities acquired during the drop vertical jump (DVJ) are used in the assessment of athletic performance and injury risk. The objective was to examine the impact of different verbal instructions on spatiotemporal, kinematic, and kinetic variables commonly included in such assessments. Ten men and 10 women from local varsity and club volleyball, basketball, figure skating, and track and field teams volunteered to participate. The athletes performed DVJs after given instructions to minimize ground contact time (CT), maximize jump height (HT), and synchronously extend the lower extremity joints (EX). Between the CT, HT, and EX conditions, body segment and joint angles were compared together with characteristics of vertical ground reaction force (GRF), whole-body power output, stiffness, and center-of-mass displacement time histories. Verbal instructions were found to influence nearly all of the spatiotemporal, body segment and joint kinematic, and kinetic variables that were statistically analyzed. Particularly noteworthy was the finding that athletic performance indices (e.g., jump height, power output, vertical stiffness, and reactive strength index) and lower extremity injury risk markers (e.g., peak vertical GRF and frontal plane knee angle) were significantly different (p ≤ 0.05) between the CT, HT, and EX conditions. The findings of this study suggest that verbal instructions should be controlled and/or clearly documented when using the DVJ to assess athletic performance potential and injury risk. Moreover, practitioners who devise performance enhancement and injury prevention strategies based on DVJ assessments are advised to consider that "coaching" or "cueing" during the task execution could impact conclusions drawn.

  9. The Perpetual American Put Option for Jump-Diffusions

    OpenAIRE

    Aase, Knut K.

    2010-01-01

    -This is the author's version of the article"The Perpetual American Put Option for Jump-Diffusions" Energy Systems pp 493-507. We solve a specific optimal stopping problem with an infinite time horizon, when the state variable follows a jump-diffusion. The novelty of the paper is related to the inclusion of a jump component in this stochastic process. Under certain conditions, our solution can be interpreted as the price of an American perpetual put option. We characterize the continuation...

  10. Temperature Jump Pyrolysis Studies of RP 2 Fuel

    Science.gov (United States)

    2017-01-09

    Briefing Charts 3. DATES COVERED (From - To) 15 December 2016 – 11 January 2017 4. TITLE AND SUBTITLE Temperature Jump Pyrolysis Studies of RP-2 Fuel...Rev. 8- 98) Prescribed by ANSI Std. 239.18 1 TEMPERATURE JUMP PYROLYSIS STUDIES OF RP-2 FUEL Owen Pryor1, Steven D. Chambreau2, Ghanshyam L...17026 7 Temperature Jump Pyrolysis at AFRL Edwards Rapid heating of a metal filament at a rate of 600 – 800 K/s, and the set temperature is held for

  11. Diarylethene microcrystals make directional jumps upon ultraviolet irradiation

    International Nuclear Information System (INIS)

    Colombier, I.; Spagnoli, S.; Corval, A.; Baldeck, P. L.; Giraud, M.; Leaustic, A.; Yu, P.; Irie, M.

    2007-01-01

    Microcrystals of a diarylethene {1,2-bis[5 ' -methyl-2 ' -(2 '' -pyridyl)thiazolyl]perfluorocyclo-pentene } undergo jumps upon photoirradiation. These photochromic crystals present molecular structural changes upon irradiation with ultraviolet light because of reversible photocyclization reactions. When the energy absorbed by crystals reaches about 10 μJ, the uniaxial stress induced in the crystal lattice relaxes through directional jumps. If one prevents crystals from jumping, then parallel, equidistant cracks appear on crystal surfaces. These photomechanical effects could result from a Grinfeld surface instability

  12. Displacement-noise-free gravitational-wave detection with a single Fabry-Perot cavity: A toy model

    International Nuclear Information System (INIS)

    Tarabrin, Sergey P.; Vyatchanin, Sergey P.

    2008-01-01

    We propose a detuned Fabry-Perot cavity, pumped through both the mirrors, as a toy model of the gravitational-wave (GW) detector partially free from displacement noise of the test masses. It is demonstrated that the noise of cavity mirrors can be eliminated, but the one of lasers and detectors cannot. The isolation of the GW signal from displacement noise of the mirrors is achieved in a proper linear combination of the cavity output signals. The construction of such a linear combination is possible due to the difference between the reflected and transmitted output signals of detuned cavity. We demonstrate that in low-frequency region the obtained displacement-noise-free response signal is much stronger than the f gw 3 -limited sensitivity of displacement-noise-free interferometers recently proposed by S. Kawamura and Y. Chen. However, the loss of the resonant gain in the noise cancelation procedure results is the sensitivity limitation of our toy model by displacement noise of lasers and detectors

  13. Jump as Far as You Can [Problem Solvers: Problem

    Science.gov (United States)

    Bofferding, Laura; Yigit, Melike

    2013-01-01

    The standing long jump was an Olympic event until 1912. In 1904, Ray Ewry set the world record for the longest standing long jump, which was about 11.5 feet, or 138 inches. Although the standing long jump is no longer an Olympic event, the Norwegians still include it in their National Competition, and Arne Tvervaag set a new world record at about…

  14. Thomson's Jumping Ring over a Long Coil

    Science.gov (United States)

    Jeffery, Rondo N.; Amiri, Farhang

    2018-01-01

    The classic jumping ring apparatus consists of a coil with an iron core that extends out of the coil. A copper or aluminum ring placed over the iron core jumps upward when AC power is applied to the coil. In this paper we will examine a modified design of the jumping ring apparatus, called the "long-coil design." It allows the ring to…

  15. Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network

    International Nuclear Information System (INIS)

    Liu, Haihu; Zhang, Yonghao; Valocchi, Albert J.

    2015-01-01

    Injection of anthropogenic carbon dioxide (CO 2 ) into geological formations is a promising approach to reduce greenhouse gas emissions into the atmosphere. Predicting the amount of CO 2 that can be captured and its long-term storage stability in subsurface requires a fundamental understanding of multiphase displacement phenomena at the pore scale. In this paper, the lattice Boltzmann method is employed to simulate the immiscible displacement of a wetting fluid by a non-wetting one in two microfluidic flow cells, one with a homogeneous pore network and the other with a randomly heterogeneous pore network. We have identified three different displacement patterns, namely, stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number (Ca), viscosity ratio (M), and the media heterogeneity. The non-wetting fluid saturation (S nw ) is found to increase nearly linearly with logCa for each constant M. Increasing M (viscosity ratio of non-wetting fluid to wetting fluid) or decreasing the media heterogeneity can enhance the stability of the displacement process, resulting in an increase in S nw . In either pore networks, the specific interfacial length is linearly proportional to S nw during drainage with equal proportionality constant for all cases excluding those revealing considerable viscous fingering. Our numerical results confirm the previous experimental finding that the steady state specific interfacial length exhibits a linear dependence on S nw for either favorable (M ≥ 1) or unfavorable (M < 1) displacement, and the slope is slightly higher for the unfavorable displacement

  16. Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haihu, E-mail: haihu.liu@mail.xjtu.edu.cn [School of Energy and Power Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049 (China); James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Zhang, Yonghao [James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Valocchi, Albert J. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-05-15

    Injection of anthropogenic carbon dioxide (CO{sub 2}) into geological formations is a promising approach to reduce greenhouse gas emissions into the atmosphere. Predicting the amount of CO{sub 2} that can be captured and its long-term storage stability in subsurface requires a fundamental understanding of multiphase displacement phenomena at the pore scale. In this paper, the lattice Boltzmann method is employed to simulate the immiscible displacement of a wetting fluid by a non-wetting one in two microfluidic flow cells, one with a homogeneous pore network and the other with a randomly heterogeneous pore network. We have identified three different displacement patterns, namely, stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number (Ca), viscosity ratio (M), and the media heterogeneity. The non-wetting fluid saturation (S{sub nw}) is found to increase nearly linearly with logCa for each constant M. Increasing M (viscosity ratio of non-wetting fluid to wetting fluid) or decreasing the media heterogeneity can enhance the stability of the displacement process, resulting in an increase in S{sub nw}. In either pore networks, the specific interfacial length is linearly proportional to S{sub nw} during drainage with equal proportionality constant for all cases excluding those revealing considerable viscous fingering. Our numerical results confirm the previous experimental finding that the steady state specific interfacial length exhibits a linear dependence on S{sub nw} for either favorable (M ≥ 1) or unfavorable (M < 1) displacement, and the slope is slightly higher for the unfavorable displacement.

  17. Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height.

    Science.gov (United States)

    Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian

    2017-11-01

    Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Cross-sectional study; Level of evidence, 3. A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association ( r = 0.56, P jump height and isokinetic extension strength on the noninvolved side as well as an association ( r = 0.52, P jump height (beta = 0.49, P jump height having the strongest impact (beta = 0.49, P jump height. The study population encompassed various backgrounds, skill levels, and activity profiles, which might have affected the outcome. Even after controlling for age and sex, isokinetic strength was still moderately associated with jump height. Therefore, the jump technique and type of sport should be considered in future research.

  18. Jump Variation Estimation with Noisy High Frequency Financial Data via Wavelets

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2016-08-01

    Full Text Available This paper develops a method to improve the estimation of jump variation using high frequency data with the existence of market microstructure noises. Accurate estimation of jump variation is in high demand, as it is an important component of volatility in finance for portfolio allocation, derivative pricing and risk management. The method has a two-step procedure with detection and estimation. In Step 1, we detect the jump locations by performing wavelet transformation on the observed noisy price processes. Since wavelet coefficients are significantly larger at the jump locations than the others, we calibrate the wavelet coefficients through a threshold and declare jump points if the absolute wavelet coefficients exceed the threshold. In Step 2 we estimate the jump variation by averaging noisy price processes at each side of a declared jump point and then taking the difference between the two averages of the jump point. Specifically, for each jump location detected in Step 1, we get two averages from the observed noisy price processes, one before the detected jump location and one after it, and then take their difference to estimate the jump variation. Theoretically, we show that the two-step procedure based on average realized volatility processes can achieve a convergence rate close to O P ( n − 4 / 9 , which is better than the convergence rate O P ( n − 1 / 4 for the procedure based on the original noisy process, where n is the sample size. Numerically, the method based on average realized volatility processes indeed performs better than that based on the price processes. Empirically, we study the distribution of jump variation using Dow Jones Industrial Average stocks and compare the results using the original price process and the average realized volatility processes.

  19. GPU acceleration of preconditioned solvers for ill-conditioned linear systems

    NARCIS (Netherlands)

    Gupta, R.

    2015-01-01

    In this work we study the implementations of deflation and preconditioning techniques for solving ill-conditioned linear systems using iterative methods. Solving such systems can be a time-consuming process because of the jumps in the coefficients due to large difference in material properties. We

  20. Effect of early training on the jumping technique of horses

    NARCIS (Netherlands)

    Santamaría, Susana; Bobbert, Maarten F.; Back, Willem; Barneveld, Ab; van Weeren, P. Rene

    Objective - To investigate the effects of early training for jumping by comparing the jumping technique of horses that had received early training with that of horses raised conventionally. Animals - 40 Dutch Warmblood horses. Procedure - The horses were analyzed kinematically during free jumping at

  1. Separation and pattern formation in hydraulic jumps

    DEFF Research Database (Denmark)

    Bohr, Tomas; Ellegaard, C.; Hansen, A. Espe

    1998-01-01

    We present theory and experiments on the circular hydraulic jump in the stationary regime. The theory can handle the situation in which the fluid flows over an edge far away from the jump. In the experiments the external height is controlled, and a series of transitions in the flow structure appe...

  2. Non-linear Loudspeaker Unit Modelling

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Agerkvist, Finn T.

    2008-01-01

    Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of thr...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....

  3. Supersonic Jump

    Science.gov (United States)

    Muller, Andreas

    2013-01-01

    On October 14,2012, Felix Baumgartner, an Austrian sky-diver, set some new world records for his discipline. Jumping from a height of about 39 km, he reached a top speed of 1342 km/h, becoming the first human being to break the sound barrier in free fall. In order to understand some essential physics aspects of this remarkable feat, we wonder why…

  4. Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.

    Science.gov (United States)

    Li, Ning; Wu, Lei; Yu, Cunlong; Dai, Haoyu; Wang, Ting; Dong, Zhichao; Jiang, Lei

    2018-02-01

    The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface. The electrostatic acting time for the jumping of a microliter supercooled drop only takes several milliseconds, even shorter than the time for icing. In addition, one can control the ballistic jumping direction precisely by the relative position above the electrostatic field. The approach offers a facile method that can be used to manipulate the ballistic drop jumping via an electrostatic field, opening the possibility of energy efficient drop detaching techniques in various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Jumping-droplet electronics hot-spot cooling

    Science.gov (United States)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle; Neely, Jason; Pilawa-Podgurski, Robert C. N.; Miljkovic, Nenad

    2017-03-01

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm × 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25 °C air temperature, 20%-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm) and applied heat flux (demonstrated to 13 W/cm2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm2. This work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  6. Jumping-droplet electronics hot-spot cooling

    International Nuclear Information System (INIS)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle

    2017-01-01

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm x 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25°C air temperature, 20-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm), and heat flux (demonstrated to 13 W/cm"2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈ 200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm"2. Finally, this work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  7. Improvement of Long-Jump Performance During Competition Using a Plyometric Exercise.

    Science.gov (United States)

    Bogdanis, Gregory C; Tsoukos, Athanasios; Veligekas, Panagiotis

    2017-02-01

    To examine the acute effects of a conditioning plyometric exercise on long-jump performance during a simulated long-jump competition. Eight national-level track and field decathletes performed 6 long-jump attempts with a full approach run separated by 10-min recoveries. In the experimental condition subjects performed 3 rebound vertical jumps with maximal effort 3 min before the last 5 attempts, while the 1st attempt served as baseline. In the control condition the participants performed 6 long jumps without executing the conditioning exercise. Compared with baseline, long-jump performance progressively increased only in the experimental condition, from 3.0%, or 17.5 cm, in the 3rd attempt (P = .046, d = 0.56), to 4.8%, or 28.2 cm, in the 6th attempt (P = .0001, d = 0.84). The improvement in long-jump performance was due to a gradual increase in vertical takeoff velocity from the 3rd (by 8.7%, P = .0001, d = 1.82) to the 6th jump (by 17.7%, P = .0001, d = 4.38). Horizontal-approach velocity, takeoff duration, and horizontal velocity at takeoff were similar at all long-jump attempts in both conditions (P = .80, P = .36, and P = .15, respectively). Long-jump performance progressively improved during a simulated competition when a plyometric conditioning exercise was executed 3 min before each attempt. This improvement was due to a progressive increase in vertical velocity of takeoff, while there was no effect on the horizontal velocity.

  8. Research on one Bio-inspired Jumping Locomotion Robot for Search and Rescue

    Directory of Open Access Journals (Sweden)

    Dunwen Wei

    2014-10-01

    Full Text Available Jumping locomotion is much more effective than other locomotion means in order to tackle the unstructured and complex environment in research and rescue. Here, a bio-inspired jumping robot with a closed-chain mechanism is proposed to achieve the power amplification during taking-off. Through actuating one variable transmission mechanism to change the transmission ratio, the jumping robot reveals biological characteristics in the phase of posture adjustment when adjusting the height and distance of one jump. The kinematics and dynamics of the simplified jumping mechanism model in one jumping cycle sequence are analysed. A compliant contact model considering nonlinear damping is investigated for jumping performance under different terrain characteristics. The numerical simulation algorithm with regard to solving the dynamical equation is described and simulation results are discussed. Finally, one primary prototype and experiment are described. The experimental results show the distance of jumping in the horizontal direction increases with the increasing gear ratio, while the height of jumping decreases in reverse. The jumping robot can enhance the capability to adapt to unknown cluttered environments, such as those encountered in research and rescue, using this strategy.

  9. A two-layer model for buoyant inertial displacement flows in inclined pipes

    Science.gov (United States)

    Etrati, Ali; Frigaard, Ian A.

    2018-02-01

    We investigate the inertial flows found in buoyant miscible displacements using a two-layer model. From displacement flow experiments in inclined pipes, it has been observed that for significant ranges of Fr and Re cos β/Fr, a two-layer, stratified flow develops with the heavier fluid moving at the bottom of the pipe. Due to significant inertial effects, thin-film/lubrication models developed for laminar, viscous flows are not effective for predicting these flows. Here we develop a displacement model that addresses this shortcoming. The complete model for the displacement flow consists of mass and momentum equations for each fluid, resulting in a set of four non-linear equations. By integrating over each layer and eliminating the pressure gradient, we reduce the system to two equations for the area and mean velocity of the heavy fluid layer. The wall and interfacial stresses appear as source terms in the reduced system. The final system of equations is solved numerically using a robust, shock-capturing scheme. The equations are stabilized to remove non-physical instabilities. A linear stability analysis is able to predict the onset of instabilities at the interface and together with numerical solution, is used to study displacement effectiveness over different parametric regimes. Backflow and instability onset predictions are made for different viscosity ratios.

  10. STRAIGHTENING THE DENSITY-DISPLACEMENT RELATION WITH A LOGARITHMIC TRANSFORM

    International Nuclear Information System (INIS)

    Falck, Bridget L.; Neyrinck, Mark C.; Aragon-Calvo, Miguel A.; Lavaux, Guilhem; Szalay, Alexander S.

    2012-01-01

    We investigate the use of a logarithmic density variable in estimating the Lagrangian displacement field motivated by the success of a logarithmic transformation in restoring information to the matter power spectrum. The logarithmic relation is an extension of the linear relation, motivated by the continuity equation, in which the density field is assumed to be proportional to the divergence of the displacement field; we compare the linear and logarithmic relations by measuring both of these fields directly in a cosmological N-body simulation. The relative success of the logarithmic and linear relations depends on the scale at which the density field is smoothed. Thus we explore several ways of measuring the density field, including Cloud-In-Cell smoothing, adaptive smoothing, and the (scale-independent) Delaunay tessellation, and we use both a Fourier-space and a geometrical tessellation approach to measuring the divergence. We find that the relation between the divergence of the displacement field and the density is significantly tighter and straighter with a logarithmic density variable, especially at low redshifts and for very small (∼2 h –1 Mpc) smoothing scales. We find that the grid-based methods are more reliable than the tessellation-based method of calculating both the density and the divergence fields, though in both cases the logarithmic relation works better in the appropriate regime, which corresponds to nonlinear scales for the grid-based methods and low densities for the tessellation-based method.

  11. Jumps in binomial AR(1) processes

    OpenAIRE

    Weiß , Christian H.

    2009-01-01

    Abstract We consider the binomial AR(1) model for serially dependent processes of binomial counts. After a review of its definition and known properties, we investigate marginal and serial properties of jumps in such processes. Based on these results, we propose the jumps control chart for monitoring a binomial AR(1) process. We show how to evaluate the performance of this control chart and give design recommendations. correspondance: Tel.: +49 931 31 84968; ...

  12. Recent Advancements in Lightning Jump Algorithm Work

    Science.gov (United States)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2010-01-01

    In the past year, the primary objectives were to show the usefulness of total lightning as compared to traditional cloud-to-ground (CG) networks, test the lightning jump algorithm configurations in other regions of the country, increase the number of thunderstorms within our thunderstorm database, and to pinpoint environments that could prove difficult for any lightning jump configuration. A total of 561 thunderstorms have been examined in the past year (409 non-severe, 152 severe) from four regions of the country (North Alabama, Washington D.C., High Plains of CO/KS, and Oklahoma). Results continue to indicate that the 2 lightning jump algorithm configuration holds the most promise in terms of prospective operational lightning jump algorithms, with a probability of detection (POD) at 81%, a false alarm rate (FAR) of 45%, a critical success index (CSI) of 49% and a Heidke Skill Score (HSS) of 0.66. The second best performing algorithm configuration was the Threshold 4 algorithm, which had a POD of 72%, FAR of 51%, a CSI of 41% and an HSS of 0.58. Because a more complex algorithm configuration shows the most promise in terms of prospective operational lightning jump algorithms, accurate thunderstorm cell tracking work must be undertaken to track lightning trends on an individual thunderstorm basis over time. While these numbers for the 2 configuration are impressive, the algorithm does have its weaknesses. Specifically, low-topped and tropical cyclone thunderstorm environments are present issues for the 2 lightning jump algorithm, because of the suppressed vertical depth impact on overall flash counts (i.e., a relative dearth in lightning). For example, in a sample of 120 thunderstorms from northern Alabama that contained 72 missed events by the 2 algorithm 36% of the misses were associated with these two environments (17 storms).

  13. Improved delay-dependent globally asymptotic stability of delayed uncertain recurrent neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Yan, Ji; Bao-Tong, Cui

    2010-01-01

    In this paper, we have improved delay-dependent stability criteria for recurrent neural networks with a delay varying over a range and Markovian jumping parameters. The criteria improve over some previous ones in that they have fewer matrix variables yet less conservatism. In addition, a numerical example is provided to illustrate the applicability of the result using the linear matrix inequality toolbox in MATLAB. (general)

  14. Vertical jump fatigue does not affect intersegmental coordination and segmental contribution

    Directory of Open Access Journals (Sweden)

    Gleber Pereira

    2014-09-01

    Full Text Available The aim of this study was to describe the intersegmental coordination and segmental contribution during intermittent vertical jumps performed until fatigue. Seven male visited the laboratory on two occasions: 1 the maximum vertical jump height was determined followed by vertical jumps habituation; 2 participants performed intermittent countermovement jumps until fatigue. Kinematic and kinetic variables were recorded. The overall reduction in vertical jump height was 5,5%, while the movement duration increased 10% during the test. The thigh segment angle at movement reversal significantly increased as the exercise progressed. Non-significant effect of fatigue on movement synergy was found for the intersegmental coordination pattern. More than 90% of the intersegmental coordination was explained by one coordination pattern. Thigh rotation contributed the most to the intersegmental coordination pattern, with the trunk second and the shank the least. Therefore, one intersegmental coordination pattern is followed throughout the vertical jumps until fatigue and thigh rotation contributes the most to jump height.

  15. Application of a tri-axial accelerometer to estimate jump frequency in volleyball.

    Science.gov (United States)

    Jarning, Jon M; Mok, Kam-Ming; Hansen, Bjørge H; Bahr, Roald

    2015-03-01

    Patellar tendinopathy is prevalent among athletes, and most likely associated with a high jumping load. If methods for estimating jump frequency were available, this could potentially assist in understanding and preventing this condition. The objective of this study was to explore the possibility of using peak vertical acceleration (PVA) or peak resultant acceleration (PRA) measured by an accelerometer to estimate jump frequency. Twelve male elite volleyball players (22.5 ± 1.6 yrs) performed a training protocol consisting of seven typical motion patterns, including jumping and non-jumping movements. Accelerometer data from the trial were obtained using a tri-axial accelerometer. In addition, we collected video data from the trial. Jump-float serving and spike jumping could not be distinguished from non-jumping movements using differences in PVA or PRA. Furthermore, there were substantial inter-participant differences in both the PVA and the PRA within and across movement types (p volleyball. A method for acquiring real-time estimates of jump frequency remains to be verified. However, there are several alternative approaches, and further investigations are needed.

  16. Nano-displacement measurement based on virtual pinhole confocal method

    International Nuclear Information System (INIS)

    Li, Long; Kuang, Cuifang; Xue, Yi; Liu, Xu

    2013-01-01

    A virtual pinhole confocal system based on charge-coupled device (CCD) detection and image processing techniques is built to measure axial displacement with 10 nm resolution, preeminent flexibility and excellent robustness when facing spot drifting. Axial displacement of the sample surface is determined by capturing the confocal laser spot using a CCD detector and quantifying the energy collected by programmable virtual pinholes. Experiments indicate an applicable measuring range of 1000 nm (Gaussian fitting r = 0.9902) with a highly linear range of 500 nm (linear fitting r = 0.9993). A concentric subtraction algorithm is introduced to further enhance resolution. Factors affecting measuring precision, sensitivity and signal-to-noise ratio are discussed using theoretical deductions and diffraction simulations. The virtual pinhole technique has promising applications in surface profiling and confocal imaging applications which require easily-customizable pinhole configurations. (paper)

  17. Knee movement patterns of injured and uninjured adolescent basketball players when landing from a jump: a case-control study.

    Science.gov (United States)

    Louw, Quinette; Grimmer, Karen; Vaughan, Christopher

    2006-03-07

    A common knee injury mechanism sustained during basketball is landing badly from a jump. Landing is a complex task and requires good coordination, dynamic muscle control and flexibility. For adolescents whose coordination and motor control has not fully matured, landing badly from a jump can present a significant risk for injury. There is currently limited biomechanical information regarding the lower limb kinetics of adolescents when jumping, specifically regarding jump kinematics comparing injured with uninjured adolescents. This study reports on an investigation of biomechanical differences in landing patterns of uninjured and injured adolescent basketball players. A matched case-control study design was employed. Twenty-two basketball players aged 14-16 years participated in the study: eleven previously knee-injured and eleven uninjured players matched with cases for age, gender, weight, height and years of play, and playing for the same club. Six high-speed, three-dimensional Vicon 370 cameras (120 Hz), Vicon biomechanical software and SAS Version 8 software were employed to analyse landing patterns when subjects performed a "jump shot". Linear correlations determined functional relationships between the biomechanical performance of lower limb joints, and paired t-tests determined differences between the normalised peak biomechanical parameters. The average peak vertical ground reaction forces between the cases and controls were similar. The average peak ground reaction forces between the cases and controls were moderately correlated (r = -0.47). The control (uninjured) players had significantly greater hip and knee flexion angles and significantly greater eccentric activity on landing than the uninjured cases (p jump, at different ages and physical developmental stages, would assist clinicians and coaches to identify players with inappropriate knee performance comparable to their age or developmental stage.

  18. On the improvement of heterodyne displacement interferometry : Enhancing measurement linearity and system modularity

    NARCIS (Netherlands)

    Meskers, A.J.H.

    2014-01-01

    Lithographic exposure equipment for integrated circuit manufacturing requires ever more accurate position measurement systems, which is currently led by the advent of Extreme UltraViolet (EUV)-lithography machines. This PhD-research describes an interferometric displacement measurement system that

  19. Who jumps the highest? Anthropometric and physiological correlations of vertical jump in youth elite female volleyball players.

    Science.gov (United States)

    Nikolaidis, Pantelis T; Gkoudas, Konstantinos; Afonso, José; Clemente-Suarez, Vicente J; Knechtle, Beat; Kasabalis, Stavros; Kasabalis, Athanasios; Douda, Helen; Tokmakidis, Savvas; Torres-Luque, Gema

    2017-06-01

    The aim of the present study was to examine the relationship of vertical jump (Abalakov jump [AJ]) with anthropometric and physiological parameters in youth elite female volleyball players. Seventy-two selected volleyball players from the region of Athens (age 13.3±0.7 years, body mass 62.0±7.2 kg, height 171.5±5.7 cm, body fat 21.2±4.5%), classified into quartiles according to AJ performance (group A, 21.4-26.5 cm; group B, 26.8-29.9 cm; group C, 30.5-33.7 cm; group D, 33.8-45.9 cm), performed a series of physical fitness tests. AJ was correlated with anthropometric (age at peak height velocity [APHV]: r=0.38, Pvolleyball players that jumped the highest were those who matured later than others.

  20. Propulsion efficiency and imposed flow fields of a copepod jump.

    Science.gov (United States)

    Jiang, Houshuo; Kiørboe, Thomas

    2011-02-01

    Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simulations by modeling the copepod as a self-propelled body. The computational fluid dynamics simulation was validated by particle image velocimetry data. The flow field generated by a repositioning jump quickly evolves into two counter-rotating viscous vortex rings that are near mirror image of one another, one in the wake and one around the body of the copepod; this near symmetrical flow may provide hydrodynamic camouflage because it contains no information about the position of the copepod prey within the flow structure. The flow field associated with an escape jump sequence also includes two dominant vortex structures: one leading wake vortex generated as a result of the first jump and one around the body, but between these two vortex structures is an elongated, long-lasting flow trail with flow velocity vectors pointing towards the copepod; such a flow field may inform the predator of the whereabouts of the escaping copepod prey. High Froude propulsion efficiency (0.94-0.98) was obtained for individual power stroke durations of all simulated jumps. This is unusual for small aquatic organisms but is caused by the rapidity and impulsiveness of the jump that allows only a low-cost viscous wake vortex to travel backwards.

  1. Scaling of interfacial jump conditions

    International Nuclear Information System (INIS)

    Quezada G, S.; Vazquez R, A.; Espinosa P, G.

    2015-09-01

    To model the behavior of a nuclear reactor accurately is needed to have balance models that take into account the different phenomena occurring in the reactor. These balances have to be coupled together through boundary conditions. The boundary conditions have been studied and different treatments have been given to the interface. In this paper is a brief description of some of the interfacial jump conditions that have been proposed in recent years. Also, the scaling of an interfacial jump condition is proposed, for coupling the different materials that are in contact within a nuclear reactor. (Author)

  2. Design and jump phenomenon analysis of an eccentric ring energy harvester

    International Nuclear Information System (INIS)

    Wang, Yu-Jen; Chen, Chung-De

    2013-01-01

    This paper presents the development of a wheel-mounted eccentric ring energy harvester that is driven by centripetal and gravitational forces during wheel rotation. The natural frequency of the eccentric ring matches the wheel rotation frequency at any car speed because its character length is designed equal to the wheel radius. Consequently, the eccentric ring oscillates with a relatively large swing angle at the wheel speed to generate high levels of power. The nonlinear dynamic behavior of the eccentric ring is investigated to ensure that the proposed design produces steady swing angles, especially at high wheel speeds. Herein, the jump phenomenon of the dynamic motion of the eccentric ring is analyzed by using the Duffing equation and the linearization process. The discriminant value obtained from the analysis confirms that no jump phenomenon occurs at all wheel speeds if the eccentric ring is properly designed. In the experiment, the eccentric ring is integrated with magnets and a coil set to generate 318–442 μW at constant wheel speeds between 300 and 500 rpm. This shows that the proposed device is a potential power source for low-power wheel-mounted electronics, such as pressure sensors, accelerometers, and thermometers. (paper)

  3. Design and jump phenomenon analysis of an eccentric ring energy harvester

    Science.gov (United States)

    Wang, Yu-Jen; Chen, Chung-De

    2013-10-01

    This paper presents the development of a wheel-mounted eccentric ring energy harvester that is driven by centripetal and gravitational forces during wheel rotation. The natural frequency of the eccentric ring matches the wheel rotation frequency at any car speed because its character length is designed equal to the wheel radius. Consequently, the eccentric ring oscillates with a relatively large swing angle at the wheel speed to generate high levels of power. The nonlinear dynamic behavior of the eccentric ring is investigated to ensure that the proposed design produces steady swing angles, especially at high wheel speeds. Herein, the jump phenomenon of the dynamic motion of the eccentric ring is analyzed by using the Duffing equation and the linearization process. The discriminant value obtained from the analysis confirms that no jump phenomenon occurs at all wheel speeds if the eccentric ring is properly designed. In the experiment, the eccentric ring is integrated with magnets and a coil set to generate 318-442 μW at constant wheel speeds between 300 and 500 rpm. This shows that the proposed device is a potential power source for low-power wheel-mounted electronics, such as pressure sensors, accelerometers, and thermometers.

  4. Vorticity determination in a hydraulic jump by application of method ...

    African Journals Online (AJOL)

    The method of characteristics for solving systems of partial differential equations coupled with jump conditions is used in analysing flow downstream of a hydraulic jump instead of the normal analytical approach adopted in Hornung [1]. It is shown that the method of characteristics together with the jump conditions can ...

  5. H2-control and the separation principle for discrete-time jump systems with the Markov chain in a general state space

    Science.gov (United States)

    Figueiredo, Danilo Zucolli; Costa, Oswaldo Luiz do Valle

    2017-10-01

    This paper deals with the H2 optimal control problem of discrete-time Markov jump linear systems (MJLS) considering the case in which the Markov chain takes values in a general Borel space ?. It is assumed that the controller has access only to an output variable and to the jump parameter. The goal, in this case, is to design a dynamic Markov jump controller such that the H2-norm of the closed-loop system is minimised. It is shown that the H2-norm can be written as the sum of two H2-norms, such that one of them does not depend on the control, and the other one is obtained from the optimal filter for an infinite-horizon filtering problem. This result can be seen as a separation principle for MJLS with Markov chain in a Borel space ? considering the infinite time horizon case.

  6. JUMP KINETIC DETERMINANTS OF SPRINT ACCELERATION PERFORMANCE FROM STARTING BLOCKS IN MALE SPRINTERS

    Directory of Open Access Journals (Sweden)

    Peter S. Maulder

    2006-06-01

    Full Text Available The purpose of this research was to identify the jump kinetic determinants of sprint acceleration performance from a block start. Ten male (mean ± SD: age 20 ± 3 years; height 1.82 ± 0.06 m; weight 76.7 ± 7.9 kg; 100 m personal best: 10.87 + 0.36 s {10.37 - 11.42} track sprinters at a national and regional competitive level performed 10 m sprints from a block start. Anthropometric dimensions along with squat jump (SJ, countermovement jump (CMJ, continuous straight legged jump (SLJ, single leg hop for distance, and single leg triple hop for distance measures of power were also tested. Stepwise multiple regression analysis identified CMJ average power (W/kg as a predictor of 10 m sprint performance from a block start (r = 0.79, r2 = 0.63, p<0.01, SEE = 0.04 (s, %SEE = 2.0. Pearson correlation analysis revealed CMJ force and power (r = -0.70 to -0.79; p = 0.011 - 0.035 and SJ power (r = -0.72 to -0.73; p = 0.026 - 0.028 generating capabilities to be strongly related to sprint performance. Further linear regression analysis predicted an increase in CMJ average and peak take-off power of 1 W/kg (3% & 1.5% respectively to both result in a decrease of 0.01 s (0.5% in 10 m sprint performance. Further, an increase in SJ average and peak take-off power of 1 W/kg (3.5% & 1.5% respectively was predicted to result in a 0.01 s (0.5% reduction in 10 m sprint time. The results of this study seem to suggest that the ability to generate power both elastically during a CMJ and concentrically during a SJ to be good indicators of predicting sprint performance over 10 m from a block start

  7. Reliability of buildings in service limit state for maximum horizontal displacements

    Directory of Open Access Journals (Sweden)

    A. G. B. Corelhano

    Full Text Available Brazilian design code ABNT NBR6118:2003 - Design of Concrete Structures - Procedures - [1] proposes the use of simplified models for the consideration of non-linear material behavior in the evaluation of horizontal displacements in buildings. These models penalize stiffness of columns and beams, representing the effects of concrete cracking and avoiding costly physical non-linear analyses. The objectives of the present paper are to investigate the accuracy and uncertainty of these simplified models, as well as to evaluate the reliabilities of structures designed following ABNT NBR6118:2003[1&] in the service limit state for horizontal displacements. Model error statistics are obtained from 42 representative plane frames. The reliabilities of three typical (4, 8 and 12 floor buildings are evaluated, using the simplified models and a rigorous, physical and geometrical non-linear analysis. Results show that the 70/70 (column/beam stiffness reduction model is more accurate and less conservative than the 80/40 model. Results also show that ABNT NBR6118:2003 [1] design criteria for horizontal displacement limit states (masonry damage according to ACI 435.3R-68(1984 [10] are conservative, and result in reliability indexes which are larger than those recommended in EUROCODE [2] for irreversible service limit states.

  8. Kinetic asymmetries between forward and drop jump landing tasks

    Directory of Open Access Journals (Sweden)

    Morgana Alves de Britto

    2015-12-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2015v17n6p661   Landing asymmetry is a risk factor for knee anterior cruciate ligament injury. The aim of this study was to identify kinetic asymmetries in healthy recreational athletes performing different jump-landing techniques. Twelve recreational athletes engaged in regular training underwent kinetic evaluation using two 3D force plates and were analyzed for: (a three-dimensional peak forces, (b time to peak vertical force, and (c initial phase asymmetries. All data were collected during performance of unilateral and bilateral trials of forward and drop jump tasks. Forward jump-landing tasks elicited greater kinetic asymmetry than drop-landing tasks. Regardless of jump-landing technique, the preferred leg experienced higher forces than the non-preferred leg. The initial landing phase showed more kinetic asymmetries than the later phase when peak vertical forces occur. It was concluded that when screening athletes for kinetic asymmetries that may predispose them to injury, forward jump-landing tasks and the early landing phase might show more kinetic asymmetries than drop jump-landing tasks and the late landing phase, respectively.

  9. Serious ski jumping injuries in Norway.

    Science.gov (United States)

    Wester, K

    1985-01-01

    Injuries caused by ski jumping have been poorly investigated. Among approximately 2,200 licensed jumpers in Norway, there occurred at least 12 injuries with a permanent medical disability of greater than or equal to 10%. The risk of being seriously injured is approximately 5% in a 5 year period (1977 to 1981); it is higher in the age group 15 to 17 years. Seven injuries were very serious [four central nervous system (CNS) lesions, two leg amputations, and one blindness of one eye], and five were less serious (sequelae to fractures of the lower extremities). The first jump of the day is particularly dangerous, and so is the beginning and end of the season. It seems dangerous to use more than one standard heel block. Poor preparation of the jump may have contributed to the accidents. Based on the findings, several prophylactic measures are suggested.

  10. A linear concatenation strategy to construct 5'-enriched amplified cDNA libraries using multiple displacement amplification.

    Science.gov (United States)

    Gadkar, Vijay J; Filion, Martin

    2013-06-01

    In various experimental systems, limiting available amounts of RNA may prevent a researcher from performing large-scale analyses of gene transcripts. One way to circumvent this is to 'pre-amplify' the starting RNA/cDNA, so that sufficient amounts are available for any downstream analysis. In the present study, we report the development of a novel protocol for constructing amplified cDNA libraries using the Phi29 DNA polymerase based multiple displacement amplification (MDA) system. Using as little as 200 ng of total RNA, we developed a linear concatenation strategy to make the single-stranded cDNA template amenable for MDA. The concatenation, made possible by the template switching property of the reverse transcriptase enzyme, resulted in the amplified cDNA library with intact 5' ends. MDA generated micrograms of template, allowing large-scale polymerase chain reaction analyses or other large-scale downstream applications. As the amplified cDNA library contains intact 5' ends, it is also compatible with 5' RACE analyses of specific gene transcripts. Empirical validation of this protocol is demonstrated on a highly characterized (tomato) and an uncharacterized (corn gromwell) experimental system.

  11. Quantum jumps are more quantum than quantum diffusion

    International Nuclear Information System (INIS)

    Daryanoosh, Shakib; M Wiseman, Howard

    2014-01-01

    It was recently argued (Wiseman and Gambetta 2012 Phys. Rev. Lett. 108 220402) that the stochastic dynamics (jumps or diffusion) of an open quantum system are not inherent to the system, but rather depend on the existence and nature of a distant detector. The proposed experimental tests involved homodyne detection, giving rise to quantum diffusion, and required efficiencies η of well over 50%. Here we prove that this requirement (η>0.5) is universal for diffusive-type detection, even if the system is coupled to multiple baths. However, this no-go theorem does not apply to quantum jumps, and we propose a test involving a qubit with jump-type detectors, with a threshold efficiency of only 37%. That is, quantum jumps are ‘more quantum’, and open the way to practical experimental tests. Our scheme involves a novel sort of adaptive monitoring scheme on a system coupled to two baths. (paper)

  12. Exponential Synchronization for Stochastic Neural Networks with Mixed Time Delays and Markovian Jump Parameters via Sampled Data

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2014-01-01

    Full Text Available The exponential synchronization issue for stochastic neural networks (SNNs with mixed time delays and Markovian jump parameters using sampled-data controller is investigated. Based on a novel Lyapunov-Krasovskii functional, stochastic analysis theory, and linear matrix inequality (LMI approach, we derived some novel sufficient conditions that guarantee that the master systems exponentially synchronize with the slave systems. The design method of the desired sampled-data controller is also proposed. To reflect the most dynamical behaviors of the system, both Markovian jump parameters and stochastic disturbance are considered, where stochastic disturbances are given in the form of a Brownian motion. The results obtained in this paper are a little conservative comparing the previous results in the literature. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.

  13. Neogene displacements in the Solomon Islands Arc

    Science.gov (United States)

    Ridgway, J.

    1987-02-01

    The geology and present configuration of the Solomon Island arc can be explained in terms of the Neogene displacement of a single linear chain of islands. The central part of an original arc consisting of Bougainville, Choiseul, Santa Ysabel, Guadalcanal and San Cristobal was displaced to the northeast as a consequence of the attempted subduction of the Woodlark spreading system. Malaita arose on the northeastern side of the arc as a result of interaction between the arc and the Pacific Ocean floor and the volcanic islands of the New Georgia group formed to the southwest in response to the subduction of a spreading ridge, thus giving rise to the present double chain structure of the arc.

  14. RELATIONSHIP BETWEEN ISOKINETIC KNEE STRENGTH AND JUMP CHARACTERISTICS FOLLOWING ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION.

    Science.gov (United States)

    Laudner, Kevin; Evans, Daniel; Wong, Regan; Allen, Aaron; Kirsch, Tom; Long, Brian; Meister, Keith

    2015-06-01

    Clinicians are often challenged when making return-to-play decisions following anterior cruciate ligament reconstruction (ACL-R). Isokinetic strength and jump performance testing are common tools used to make this decision. Unfortunately, vertical jump performance standards have not been clearly established and many clinicians do not have access to isokinetic testing equipment. To establish normative jump and strength characteristics in ACL-R patients cleared by an orthopedic physician to return-to-play and to determine if relationships exist between knee isokinetic strength measurements and jump characteristics described using an electronic jump map system. Descriptive laboratory study. Thirty-three ACL-R patients who had been cleared to return to athletic competition participated in this study. Twenty-six of these ACL-R participants were also matched to 26 asymptomatic athletes based on sex, limb, height, and mass to determine isokinetic strength and jump characteristic differences between groups. Jump tests consisted of single leg vertical, double leg vertical, and a 4-jump single leg vertical jump assessed using an electronic jump mat system. Independent t-tests were used to determine differences between groups and multiple regression analyses were used to identify any relationships between jump performance and knee strength (pjump capabilities and some bilateral knee strength deficiencies compared to the matched control group. The ACL-R group also showed several moderate-to-strong positive relationships for both knee extension and flexion strength with several jump performance characteristics, such as single and double leg vertical jump height. The current results indicate that ACL-R patients present with several knee strength and vertical jump differences compared to a matched control group at the time of return-to-play. Also, ACL-R patient's performance on an electronic jump mat system is strongly related to isokinetic knee strength measures. 2b.

  15. the Modeling of Hydraulic Jump Generated Partially on Sloping Apron

    Directory of Open Access Journals (Sweden)

    Shaker Abdulatif Jalil

    2017-12-01

    Full Text Available Modeling aims to characterize system behavior and achieve simulation close as possible of the reality. The rapid energy exchange in supercritical flow to generate quiet or subcritical flow in hydraulic jump phenomenon is important in design of hydraulic structures. Experimental and numerical modeling is done on type B hydraulic jump which starts first on sloping bed and its end on horizontal bed.  Four different apron slopes are used, for each one of these slopes the jump is generated on different locations by controlling the tail water depth.  Modelling validation is based on 120 experimental runs which they show that there is reliability. The air volume fraction which creates in through hydraulic jump varied between 0.18 and 0.28. While the energy exchanges process take place within 6.6, 6.1, 5.8, 5.5 of the average relative jump height for apron slopes of 0.18, 0.14, 0.10, 0.07 respectively. Within the limitations of this study, mathematical prediction model for relative hydraulic jump height is suggested.The model having an acceptable coefficient of determination.

  16. Take-off analysis of the Olympic ski jumping competition (HS-106m).

    Science.gov (United States)

    Virmavirta, Mikko; Isolehto, Juha; Komi, Paavo; Schwameder, Hermann; Pigozzi, Fabio; Massazza, Giuseppe

    2009-05-29

    The take-off phase (approximately 6m) of the jumps of all athletes participating in the individual HS-106m hill ski jumping competition at the Torino Olympics was filmed with two high-speed cameras. The high altitude of the Pragelato ski jumping venue (1600m) and slight tail wind in the final jumping round were expected to affect the results of this competition. The most significant correlation with the length of the jump was found in the in-run velocity (r=0.628, pski jumping, and suggests that good jumpers simply had smaller friction between their skis and the in-run tracks and/or the aerodynamic quality of their in-run position was better. Angular velocity of the hip joint of the best jumpers was also correlated with jumping distance (r=0.651, pjumped approximately the same distance. This certainly improves the interests in ski jumping among athletes and spectators. The comparison between the take-off techniques of the best jumpers showed that even though the more marked upper body movement creates higher air resistance, it does not necessarily result in shorter jumping distance if the exposure time to high air resistance is not too long. A comparison between the first and second round jumps of the same jumpers showed that the final results in this competition were at least partly affected by the wind conditions.

  17. Validity Study of a Jump Mat Compared to the Reference Standard Force Plate.

    Science.gov (United States)

    Rogan, Slavko; Radlinger, Lorenz; Imhasly, Caroline; Kneubuehler, Andrea; Hilfiker, Roger

    2015-12-01

    In the field of vertical jump diagnostics, force plates (FP) are the reference standard. Recently, despite a lack of evidence, jump mats have been used increasingly. Important factors in favor of jumping mats are their low cost and portability. This validity study compared the Haynl-Elektronik jump mat (HE jump mat) with the reference standard force plate. Ten healthy volunteers participated and each participant completed three series of five drop jumps (DJ). The parameters ground contact time (GCT) and vertical jump height (VJH) from the HE jump mat and the FP were used to evaluate the concurrent validity. The following statistical calculations were performed: Pearson's correlation (r), Bland-Altman plots (standard and for adjusted trend), and regression equations. The Bland-Altman plots suggest that the HE jump mat measures shorter contact times and higher jump heights than the FP. The trend-adjusted Bland-Altman plot shows higher mean differences and wider wing-spreads of confidence limits during longer GCT. During the VJH the mean differences and the wing-spreads of the confidence limits throughout the range present as relatively constant. The following regression equations were created, as close as possible to the true value: GCT = 5.920385 + 1.072293 × [value HE jump mat] and VJH = -1.73777 + 1.011156 × [value HE jump mat]. The HE jump mat can be recommended in relation to the validity of constraints. In this study, only a part of the quality criteria were examined. For the final recommendation it is advised to examine the HE jump mat on the other quality criteria (test-retest reliability, sensitivity change).

  18. Dynamic Jump Intensities and Risk Premiums in Crude Oil Futures and Options Markets

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Li, Bingxin

    2016-01-01

    Options on crude oil futures are the most actively traded commodity options. We develop a class of computationally efficient discrete-time jump models that allow for closed-form option valuation, and we use crude oil futures and options data to investigate the economic importance of jumps...... and dynamic jump intensities in these markets. Allowing for jumps is crucial for modeling crude oil futures and futures options, and we find evidence in favor of time-varying jump intensities. During crisis periods, jumps occur more frequently. The properties of the jump processes implied by the option data...... differ from those implied by the futures data, which may be due to improved parameter identification....

  19. Study of brittle crack jump rate using acoustic emission method

    International Nuclear Information System (INIS)

    Yasnij, P.V.; Pokrovskij, V.V.; Strizhalo, V.A.; Dobrovol'skij, Yu.V.

    1987-01-01

    A new peocedure is elaborated to detect brittle jumps of small length (0.1...5mm) occuring both inside the specimen and along the crack front under static and cyclic loading using the phenomena of acoustic emission (AE). Recording of the crack start and stop moments with an AE sensor as well as evaluation of the brittle crack jump length by the after-failure specimen fracture make it possible to find the mean crack propagation rate. Experimental dependences are obtained for the crack propagation rate with a brittle crack jump in steel 15Kh2MFA (σ B =1157 MPa, σ 0.2 =100 MPa) at 293 K and under cyclic loading as a function of the jump length and also as a function of the critical stress intensity factor K jc i corresponding to the crack jump

  20. A quasi-static treatment of multiple phase jumps

    International Nuclear Information System (INIS)

    Englman, R; Vertesi, T

    2005-01-01

    A quasi-static, WKB-type treatment accounts well for the surprising phase jumps that are odd multiples of π (1 + 2n)π, found as a molecular system journeys adiabatically in a configuration coordinate plane that contains several points of degeneracies. We show that the number n in the phase jump is an integer close to |n'| that appears in the expression for the complex wavefunction amplitude valid (approximately) for times close to when the phase jump occurs: -δT + 2πθ+πn'sinδT -i[1-πn'cosδT](δT is a shifted and rescaled trajectory-time parameter and θ is a numerical fraction (<1) which depends on the adiabaticity of the motion.) The central quantity n' is local, i.e., depends on the values of the parameters in the Hamiltonian only at the beginning of the trajectory and at the instant of the phase jump

  1. Influence of Plyometrics on Jump Capabilities in Technical and Aesthetical Sports

    Directory of Open Access Journals (Sweden)

    Mlsnová Gabriela

    2017-05-01

    Full Text Available The aim of the study was to examine the effect of plyometric exercises on explosive strength of lower extremities in girls performing of technical and aesthetical sports. Experiment was carried out on three groups; artistic gymnasts (VG, n = 15; age = 12.4 ± 0.7 years, fitness girls (VF, n = 15; age = 13.8 ± 1.9 years and dancers (VD, n = 15; age = 13.8 ± 2 years. To check, the control group of general population was involved in the study (VK, n = 15; age = 13.9 ± 1.5 years. Following tests on jump ergometer Fitro Jumper were carried out at the beginning and at the end of experimental period: countermovement jump without and with arms swing and 10- second series of repeated vertical jumps. Plyometric program consisted of two plyometric units a week during thirty weeks. The results show that higher improvement in all evaluated tests achieved the group of fitness. In the countermovement jump without arm swing was observed improvement height of the jump 3.4 ± 1.4 cm (p ˂ 0.00001, in the countermovement jump with arm swing 5.7 ± 1.5 cm (p ˂ 0.00001, in difference of height of the jump between countermovement jump with and without arms swing 2.3 ± 1 cm (p ˂ 0.00001, in ten second series of repeated vertical jumps without arms swing in the height of jump 4.2 ± 1.6 cm (p ˂ 0.00001 and in power in active take off phase 8.8 ± 2.2 W.kg-1 (p ˂ 0.00001. Based on finding the study and in coherence with data from literature, we can conclude the effect of plyometric exercises was effective in combination with specific-strength training. Jumping ability is limiting factor of sport performance in technical and aesthetical sports and implementation of plyometric exercises to the training is highly recommend. The high level of jump capabilities can improve the quality and technique of performance complex acrobatic elements and dance leaps thereby increasing overall evaluation of performance in selected sports.

  2. Coupled jump rotational dynamics in aqueous nitrate solutions.

    Science.gov (United States)

    Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman

    2016-12-21

    A nitrate ion (NO 3 - ) with its trigonal planar geometry and charges distributed among nitrogen and oxygen atoms can couple to the extensive hydrogen bond network of water to give rise to unique dynamical characteristics. We carry out detailed atomistic simulations and theoretical analyses to investigate these aspects and report certain interesting findings. We find that the nitrate ions in aqueous potassium nitrate solution exhibit large amplitude rotational jump motions that are coupled to the hydrogen bond rearrangement dynamics of the surrounding water molecules. The jump motion of nitrate ions bears certain similarities to the Laage-Hynes mechanism of rotational jump motions of tagged water molecules in neat liquid water. We perform a detailed atomic-level investigation of hydrogen bond rearrangement dynamics of water in aqueous KNO 3 solution to unearth two distinct mechanisms of hydrogen bond exchange that are instrumental to promote these jump motions of nitrate ions. As observed in an earlier study by Xie et al., in the first mechanism, after breaking a hydrogen bond with nitrate ion, water forms a new hydrogen bond with a water molecule, whereas the second mechanism involves just a switching of hydrogen bond between the two oxygen atoms of the same nitrate ion (W. J. Xie et al., J. Chem. Phys. 143, 224504 (2015)). The magnitude as well as nature of the reorientational jump of nitrate ion for the two mechanisms is different. In the first mechanism, nitrate ion predominantly undergoes out-of-plane rotation, while in the second mechanism, in-plane reorientation of NO 3 - is favourable. These have been deduced by computing the torque on the nitrate ion during the hydrogen bond switching event. We have defined and computed the time correlation function for coupled reorientational jump of nitrate and water and obtained the associated relaxation time which is also different for the two mechanisms. These results provide insight into the relation between the

  3. Energy expended during horizontal jumping: investigating the effects of surface compliance

    Directory of Open Access Journals (Sweden)

    Samuel R. L. Coward

    2014-08-01

    Full Text Available We present the first data on the metabolic costs of horizontal jumping in humans, using this tractable model to explore variations in energy expenditure with substrate properties, and consider these findings in light of kinematic data. Twenty-four participants jumped consistently at the rate of 1 jump per 5 s between opposing springboards separated by either a short (1.2 m or long (1.8 m gap. Springboards were either ‘firm’ or ‘compliant’. Respiratory gas exchange was measured using a back-mounted portable respiratory gas analyser to represent rate of energy expenditure, which was converted to energy expenditure per metre jumped. Video data were recorded to interpret kinematic information. Horizontal jumping was found to be between around 10 and 20 times the energy cost of cursorial locomotion per unit distance moved. There is considerable evidence from the data that jumping 1.8 m from a compliant springboard (134.9 mL O2 m−1 is less costly energetically than jumping that distance from a firm springboard (141.6 mL O2 m−1, albeit the effect size is quite small within the range of compliances tested in this study. However, there was no evidence of an effect of springboard type for jumps of 1.2 m. The kinematic analyses indicate possible explanations for these findings. Firstly, the calf muscle is likely used more, and the thigh muscles less, to take-off from a firm springboard during 1.8 m jumps, which may result in the power required to take-off being produced less efficiently. Secondly, the angle of take-off from the compliant surface during 1.8 m jumps is closer to the optimal for energetic efficiency (45°, possible due to the impulse provided by the surface as it returns stored energy during the final stages of the take-off. The theoretical effect on energy costs due to a different take-off angle for jumps of only 1.2 m is close to negligible.

  4. Evaluation of the Most Reliable Procedure of Determining Jump Height During the Loaded Countermovement Jump Exercise: Take-Off Velocity vs. Flight Time.

    Science.gov (United States)

    Pérez-Castilla, Alejandro; García-Ramos, Amador

    2018-07-01

    Pérez-Castilla, A and García-Ramos, A. Evaluation of the most reliable procedure of determining jump height during the loaded countermovement jump exercise: Take-off velocity vs. flight time. J Strength Cond Res 32(7): 2025-2030, 2018-This study aimed to compare the reliability of jump height between the 2 standard procedures of analyzing force-time data (take-off velocity [TOV] and flight time [FT]) during the loaded countermovement (CMJ) exercise performed with a free-weight barbell and in a Smith machine. The jump height of 17 men (age: 22.2 ± 2.2 years, body mass: 75.2 ± 7.1 kg, and height: 177.0 ± 6.0 cm) was tested in 4 sessions (twice for each CMJ type) against external loads of 17, 30, 45, 60, and 75 kg. Jump height reliability was comparable between the TOV (coefficient of variation [CV]: 6.42 ± 2.41%) and FT (CV: 6.53 ± 2.17%) during the free-weight CMJ, but it was higher for the FT when the CMJ was performed in a Smith machine (CV: 11.34 ± 3.73% for TOV and 5.95 ± 1.12% for FT). Bland-Altman plots revealed trivial differences (≤0.27 cm) and no heteroscedasticity of the errors (R ≤ 0.09) for the jump height obtained by the TOV and FT procedures, whereas the random error between both procedures was higher for the CMJ performed in the Smith machine (2.02 cm) compared with the free-weight barbell (1.26 cm). Based on these results, we recommend the FT procedure to determine jump height during the loaded CMJ performed in a Smith machine, whereas the TOV and FT procedures provide similar reliability during the free-weight CMJ.

  5. Validation of an inertial measurement unit for the measurement of jump count and height.

    Science.gov (United States)

    MacDonald, Kerry; Bahr, Roald; Baltich, Jennifer; Whittaker, Jackie L; Meeuwisse, Willem H

    2017-05-01

    To validate the use of an inertial measurement unit (IMU) for the collection of total jump count and assess the validity of an IMU for the measurement of jump height against 3-D motion analysis. Cross sectional validation study. 3D motion-capture laboratory and field based settings. Thirteen elite adolescent volleyball players. Participants performed structured drills, played a 4 set volleyball match and performed twelve counter movement jumps. Jump counts from structured drills and match play were validated against visual count from recorded video. Jump height during the counter movement jumps was validated against concurrent 3-D motion-capture data. The IMU device captured more total jumps (1032) than visual inspection (977) during match play. During structured practice, device jump count sensitivity was strong (96.8%) while specificity was perfect (100%). The IMU underestimated jump height compared to 3D motion-capture with mean differences for maximal and submaximal jumps of 2.5 cm (95%CI: 1.3 to 3.8) and 4.1 cm (3.1-5.1), respectively. The IMU offers a valid measuring tool for jump count. Although the IMU underestimates maximal and submaximal jump height, our findings demonstrate its practical utility for field-based measurement of jump load. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Jump Training in Youth Soccer Players: Effects of Haltere Type Handheld Loading.

    Science.gov (United States)

    Rosas, F; Ramirez-Campillo, R; Diaz, D; Abad-Colil, F; Martinez-Salazar, C; Caniuqueo, A; Cañas-Jamet, R; Loturco, I; Nakamura, F Y; McKenzie, C; Gonzalez-Rivera, J; Sanchez-Sanchez, J; Izquierdo, M

    2016-12-01

    The aim of this study was to compare the effects of a jump training program, with or without haltere type handheld loading, on maximal intensity exercise performance. Youth soccer players (12.1±2.2 y) were assigned to either a jump training group (JG, n=21), a jump training group plus haltere type handheld loading (LJG, n=21), or a control group following only soccer training (CG, n=21). Athletes were evaluated for maximal-intensity performance measures before and after 6 weeks of training, during an in-season training period. The CG achieved a significant change in maximal kicking velocity only (ES=0.11-0.20). Both jump training groups improved in right leg (ES=0.28-0.45) and left leg horizontal countermovement jump with arms (ES=0.32-0.47), horizontal countermovement jump with arms (ES=0.28-0.37), vertical countermovement jump with arms (ES=0.26), 20-cm drop jump reactive strength index (ES=0.20-0.37), and maximal kicking velocity (ES=0.27-0.34). Nevertheless, compared to the CG, only the LJG exhibited greater improvements in all performance tests. Therefore, haltere type handheld loading further enhances performance adaptations during jump training in youth soccer players. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Egg Bungee Jump!

    Science.gov (United States)

    Fitzgerald, Mike; Brand, Lance

    2004-01-01

    In this article, the authors present an egg bungee jumping activity. This activity introduces students to ways that engineers might apply calculations of failure to meet a challenge. Students are required to use common, everyday materials such as rubber bands, string, plastic bags, and eggs. They will apply technological problem solving, material…

  8. Genetic analyses of linear profiling data on 3-year-old Swedish Warmblood horses.

    Science.gov (United States)

    Viklund, Å; Eriksson, S

    2018-02-01

    A linear profiling protocol was introduced in 2013 at tests for 3-year-old Swedish Warmblood horses. In this protocol, traits are subjectively described on a nine-point linear scale from one biological extreme to the other. This complements the traditional scoring where horses are evaluated in relation to the breeding objective. This study aimed to investigate the suitability of the linear information for genetic evaluation. Data on 22 conformation traits, 17 movement traits, 14 jumping traits and one temperament trait from 3,410 horses tested between 2013 and 2016 were analysed using an animal model. For conformation traits, the heritabilities ranged from 0.10 for description of hock joint from behind to 0.52 for shape of the neck. For movement traits, the highest heritability (0.54) was estimated for elasticity in trot and the lowest (0.08) for energy in walk. The heritabilities for jumping traits ranged from 0.05 for the ability to focus on the assignment to 0.57 for scope. Genetic correlations between linear traits and corresponding traditionally scored traits were strong (-0.37 to in many cases <-0.9). The results show that the linear information is suitable for genetic evaluation and can be a useful tool for breeders. © 2018 Blackwell Verlag GmbH.

  9. The world price of jump and volatility risk

    NARCIS (Netherlands)

    Driessen, J.; Maenhout, P.

    2006-01-01

    Jump and volatility risk are important for understanding equity returns, option pricing and asset allocation. This paper is the first to study international integration of markets for jump and volatility risk, using data on index options for each of the three main global markets: US S&P 500 index

  10. Vertical and Horizontal Jump Capacity in International Cerebral Palsy Football Players.

    Science.gov (United States)

    Reina, Raúl; Iturricastillo, Aitor; Sabido, Rafael; Campayo-Piernas, Maria; Yanci, Javier

    2018-05-01

    To evaluate the reliability and validity of vertical and horizontal jump tests in football players with cerebral palsy (FPCP) and to analyze the jump performance differences between current International Federation for Cerebral Palsy Football functional classes (ie, FT5-FT8). A total of 132 international parafootballers (25.8 [6.7] y; 70.0 [9.1] kg; 175.7 [7.3] cm; 22.8 [2.8] kg·m -2 ; and 10.7 [7.5] y training experience) participated in the study. The participants were classified according to the International Federation for Cerebral Palsy Football classification rules, and a group of 39 players without cerebral palsy was included in the study as a control group. Football players' vertical and horizontal jump performance was assessed. All the tests showed good to excellent relative intrasession reliability scores, both in FPCP and in the control group (intraclass correlation = .78-.97, SEM jump, standing broad jump, 4 bounds for distance, and triple hop for distance dominant leg and nondominant leg. The control group performed higher/farther jumps with regard to all the FPCP classes, obtaining significant differences and moderate to large effect sizes (ESs) (.85 jump tests than players in the lower classes (ES = moderate to large, P jump tests performed in this study could be applied to the classification procedures and protocols for FPCP.

  11. The fluid dynamics of swimming by jumping in copepods

    DEFF Research Database (Denmark)

    Jiang, Houshuo; Kiørboe, Thomas

    2011-01-01

    Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic...... limited and temporally ephemeral owing to jump-impulsiveness and viscous decay. In contrast, continuous steady swimming generates two well-extended long-lasting momentum jets both in front of and behind the swimmer, as suggested by the well-known steady stresslet model. Based on the observed jump-swimming...... kinematics of a small copepod Oithona davisae, we further showed that jump-swimming produces a hydrodynamic disturbance with much smaller spatial extension and shorter temporal duration than that produced by a same-size copepod cruising steadily at the same average translating velocity. Hence, small copepods...

  12. The exit-time problem for a Markov jump process

    Science.gov (United States)

    Burch, N.; D'Elia, M.; Lehoucq, R. B.

    2014-12-01

    The purpose of this paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. This calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.

  13. Role of the hamstrings in human vertical jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.

    1996-01-01

    In some human subjects performing maximum-height squat jumps, the EMG-pattern of semitendinosus is bi-phasic and that of biceps femoris is mono-phasic. The purpose of this study was to investigate the roles of biceps femoris and semitendinosus in squat jumping, and to explain why they are different.

  14. Universal Earthquake-Occurrence Jumps, Correlations with Time, and Anomalous Diffusion

    International Nuclear Information System (INIS)

    Corral, Alvaro

    2006-01-01

    Spatiotemporal properties of seismicity are investigated for a worldwide (WW) catalog and for southern California in the stationary case (SC), showing a nearly universal scaling behavior. Distributions of distances between consecutive earthquakes (jumps) are magnitude independent and show two power-law regimes, separated by jump values about 200 (WW) and 15 km (SC). Distributions of waiting times conditioned to the value of jumps show that both variables are correlated, in general, but turn out to be independent when only short or long jumps are considered. Finally, diffusion profiles are found to be independent on the magnitude, contrary to what the waiting-time distributions suggest

  15. Assessment of leg muscles mechanical capacities: Which jump, loading, and variable type provide the most reliable outcomes?

    Science.gov (United States)

    García-Ramos, Amador; Feriche, Belén; Pérez-Castilla, Alejandro; Padial, Paulino; Jaric, Slobodan

    2017-07-01

    This study aimed to explore the strength of the force-velocity (F-V) relationship of lower limb muscles and the reliability of its parameters (maximum force [F 0 ], slope [a], maximum velocity [V 0 ], and maximum power [P 0 ]). Twenty-three men were tested in two different jump types (squat and countermovement jump: SJ and CMJ), performed under two different loading conditions (free weight and Smith machine: Free and Smith) with 0, 17, 30, 45, 60, and 75 kg loads. The maximum and averaged values of F and V were obtained for the F-V relationship modelling. All F-V relationships were strong and linear independently whether observed from the averaged across the participants (r ≥ 0.98) or individual data (r = 0.94-0.98), while their parameters were generally highly reliable (F 0 [CV: 4.85%, ICC: 0.87], V 0 [CV: 6.10%, ICC: 0.82], a [CV: 10.5%, ICC: 0.81], and P 0 [CV: 3.5%, ICC: 0.93]). Both the strength of the F-V relationships and the reliability of their parameters were significantly higher for (1) the CMJ over the SJ, (2) the Free over the Smith loading type, and (3) the maximum over the averaged F and V variables. In conclusion, although the F-V relationships obtained from all the jumps tested were linear and generally highly reliable, the less appropriate choice for testing the F-V relationship could be through the averaged F and V data obtained from the SJ performed either in a Free weight or in a Smith machine. Insubstantial differences exist among the other combinations tested.

  16. Jump into Action

    Science.gov (United States)

    Ball, Stephen; Cohen, Ann; Meyer, Margaret

    2012-01-01

    Jump Into Action (JIA) is a school-based team-taught program to help fifth-grade students make healthy food choices and be more active. The JIA team (physical education teacher, classroom teacher, school nurse, and parent) work together to provide a supportive environment as students set goals to improve food choices and increase activity.…

  17. Design and Preliminary Results of a Feedback Circuit for Plasma Displacement Control in IR-T1 Tokamak

    International Nuclear Information System (INIS)

    TalebiTaher, A.; Ghoranneviss, M.; Tarkeshian, R.; Salem, M. K.; Khorshid, P.

    2008-01-01

    Since displacement is very important for plasma position control, in IR-T1 tokamak a combination of two cosine coils and two saddle sine coils is used for horizontal displacement measurement. According to the multiple moment theory, the output of these coils linearly depends to radial displacement of plasma column. A new circuit for adding these signals to feedback system designed and unwanted effects of other fields in final output compensated. After compensation and calibration of the system, the output of horizontal displacement circuits applied to feedback control system. By considers the required auxiliary vertical field, a proportional amplifier and driver circuit are constructed to drive power transistors these power transistors switch the feedback bank capacitors. In the experiment, a good linear proportionality between displacement and output observed by applying an appropriate feedback field, the linger confinement time in IR-T1 tokamak obtained, applying this system to discharge increased the plasma duration and realizes repetitive discharges

  18. Filtering of a Markov Jump Process with Counting Observations

    International Nuclear Information System (INIS)

    Ceci, C.; Gerardi, A.

    2000-01-01

    This paper concerns the filtering of an R d -valued Markov pure jump process when only the total number of jumps are observed. Strong and weak uniqueness for the solutions of the filtering equations are discussed

  19. An algorithm to remove fringe jumps and its application to microwave reflectometry

    International Nuclear Information System (INIS)

    Ejiri, A.; Kawahata, K.; Shinohara, K.

    1997-01-01

    In some plasma discharges, the phase measured by microwave reflectometry has many fringe (2π radians) jumps. A new algorithm to detect and remove fringe jumps has been developed, and applied to the data in the JIPP TII-U tokamak. Using this algorithm, quantitative properties of fringe jumps, and their effects on the analysis of phase fluctuations are investigated. It was found that the occurrence of fringe jumps obeys a Poisson process, and the time scale of jumps is distributed over a wide range. Fringe jumps affect mainly the low-frequency components of phase fluctuations. Comparison of the phase corrected by the algorithm and the phase calculated from the time smoothed signals indicates that time smoothing (or frequency filtering) is an effective way to obtain information concerning the macroscopic density profile. Fringe jump and phase runaway can be phenomenologically explained by the distribution of the complex amplitude of the reflected wave. (author)

  20. Jump point detection for real estate investment success

    Science.gov (United States)

    Hui, Eddie C. M.; Yu, Carisa K. W.; Ip, Wai-Cheung

    2010-03-01

    In the literature, studies on real estate market were mainly concentrating on the relation between property price and some key factors. The trend of the real estate market is a major concern. It is believed that changes in trend are signified by some jump points in the property price series. Identifying such jump points reveals important findings that enable policy-makers to look forward. However, not all jump points are observable from the plot of the series. This paper looks into the trend and introduces a new approach to the framework for real estate investment success. The main purpose of this paper is to detect jump points in the time series of some housing price indices and stock price index in Hong Kong by applying the wavelet analysis. The detected jump points reflect to some significant political issues and economic collapse. Moreover, the relations among properties of different classes and between stocks and properties are examined. It can be shown from the empirical result that a lead-lag effect happened between the prices of large-size property and those of small/medium-size property. However, there is no apparent relation or consistent lead in terms of change point measure between property price and stock price. This may be due to the fact that globalization effect has more impact on the stock price than the property price.

  1. Portfolio Selection with Jumps under Regime Switching

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2010-01-01

    Full Text Available We investigate a continuous-time version of the mean-variance portfolio selection model with jumps under regime switching. The portfolio selection is proposed and analyzed for a market consisting of one bank account and multiple stocks. The random regime switching is assumed to be independent of the underlying Brownian motion and jump processes. A Markov chain modulated diffusion formulation is employed to model the problem.

  2. Salticid predation as one potential driving force of ant mimicry in jumping spiders

    Science.gov (United States)

    Huang, Jin-Nan; Cheng, Ren-Chung; Li, Daiqin; Tso, I-Min

    2011-01-01

    Many spiders possess myrmecomorphy, and species of the jumping spider genus Myrmarachne exhibit nearly perfect ant mimicry. Most salticids are diurnal predators with unusually high visual acuity that prey on various arthropods, including conspecifics. In this study, we tested whether predation pressure from large jumping spiders is one possible driving force of perfect ant mimicry in jumping spiders. The results showed that small non-ant-mimicking jumping spiders were readily treated as prey by large ones (no matter whether heterospecific or conspecific) and suffered high attack and mortality rates. The size difference between small and large jumping spiders significantly affected the outcomes of predatory interactions between them: the smaller the juvenile jumping spiders, the higher the predation risk from large ones. The attack and mortality rates of ant-mimicking jumping spiders were significantly lower than those of non-ant-mimicking jumping spiders, indicating that a resemblance to ants could provide protection against salticid predation. However, results of multivariate behavioural analyses showed that the responses of large jumping spiders to ants and ant-mimicking salticids differed significantly. Results of this study indicate that predation pressure from large jumping spiders might be one selection force driving the evolution of nearly perfect myrmecomorphy in spiders and other arthropods. PMID:20961898

  3. Validity of a jump training apparatus using Wii Balance Board.

    Science.gov (United States)

    Yamamoto, Keizo; Matsuzawa, Mamoru

    2013-05-01

    The dynamic quantification of jump ability is useful for sports performance evaluation. We developed a force measurement system using the Wii Balance Board (WBB). This study was conducted to validate the system in comparison with a laboratory-grade force plate (FP). For a static validation, weights of 10-180kg were put progressively on the WBB put on the FP. The vertical component of the ground reaction force (vGRF) was measured using both devices and compared. For the dynamic validation, 10 subjects without lower limb pathology participated in the study and performed vertical jumping twice on the WBB on the FP. The range of analysis was set from the landing after the first jump to taking off of the second jump. The peak values during the landing phase and jumping phase were obtained and the force-time integral (force impulse) was measured. The relations of the values measured using each device were compared using Pearson's correlation coefficient test and Bland-Altman plots (BAP). Significant correlation (P<.01, r=.99) was found between the values of both devices in the static and the dynamic test. Examination of the BAP revealed a proportion error in the landing phase and showed no relation in the jumping phase between the difference and the mean in the dynamic test. The WBB detects the vGRF in the jumping phase with high precision. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Forces exerted by jumping children: A pilot study

    NARCIS (Netherlands)

    Moes, C.C.M.; Bakker, H.E.

    1998-01-01

    This article reports on a pilot study of the loads exerted vertically by children when jumping. The subjects of the study were 17 children, aged from two to twelve years. Measurements were made using video recordings and a force-plate. The influence of the stiffness of the base and of jumping with

  5. Immediate effects of different types of stretching exercises on badminton jump smash.

    Science.gov (United States)

    Jang, Hwi S; Kim, Daeho; Park, Jihong

    2018-01-01

    Since different types of stretching exercises may alter athletic performance, we compared the effects of three types of stretching exercises on badminton jump smash. Sixteen male collegiate badminton players performed one of three different stretching exercises in a counterbalanced order on different days. Static stretching had seven typical stretches, while dynamic stretching involved nine dynamic movements, and resistance dynamic stretching was performed with weighted vests and dumbbells. Before and after each stretching exercise, subjects performed 20 trials of jump smashes. Dependent measurements were the jump heights during jump smashes, velocities of jump-smashed shuttlecocks, and drop point of jump-smashed shuttlecocks. To test the effects of each stretching exercise, we performed mixed model ANOVAs and calculated between-time effect sizes (ES). Each stretching exercise improved the jump heights during jump smashes (type main effect: F(2,75)=1.19, P=0.31; static stretching: 22.1%, Pjump-smashed shuttlecocks (type main effect: F(2,75)=2.18, P=0.12; static stretching: 5.7%, P=0.61, ES=0.39; dynamic stretching: 3.4%, P=0.94, ES=0.28; resistance dynamic stretching: 6%, P=0.50, ES=0.66). However, there were no differences among the stretching exercises for any measurement. The drop point of jump-smashed shuttlecocks did not change (interaction: F(2,75)=0.88, P=0.42). All stretching exercises improved badminton jump smash performance, but we could not determine the best protocol. Since badminton requires high-speed movement and explosive force, we suggest performing dynamic stretching or resistance dynamic stretching.

  6. The effect of temperature on the average volume of Barkhausen jump on Q235 carbon steel

    Science.gov (United States)

    Guo, Lei; Shu, Di; Yin, Liang; Chen, Juan; Qi, Xin

    2016-06-01

    On the basis of the average volume of Barkhausen jump (AVBJ) vbar generated by irreversible displacement of magnetic domain wall under the effect of the incentive magnetic field on ferromagnetic materials, the functional relationship between saturation magnetization Ms and temperature T is employed in this paper to deduce the explicit mathematical expression among AVBJ vbar, stress σ, incentive magnetic field H and temperature T. Then the change law between AVBJ vbar and temperature T is researched according to the mathematical expression. Moreover, the tensile and compressive stress experiments are carried out on Q235 carbon steel specimens at different temperature to verify our theories. This paper offers a series of theoretical bases to solve the temperature compensation problem of Barkhausen testing method.

  7. Nordic ski jumping fatalities in the United States: a 50-year summary.

    Science.gov (United States)

    Wright, J R

    1988-06-01

    Nordic ski-jumping fatalities are rare events. Six jumping fatalities have occurred in the United States during the past 50 years. The fatality rate for nordic ski jumping, estimated to be roughly 12 fatalities/100,000 participants annually, appears to be within the range of fatality rates for other "risky" outdoor sports. Cervical fractures appear to be the most frequent fatal ski-jumping injury.

  8. Improved Maximum Strength, Vertical Jump and Sprint Performance after 8 Weeks of Jump Squat Training with Individualized Loads

    Science.gov (United States)

    Marián, Vanderka; Katarína, Longová; Dávid, Olasz; Matúš, Krčmár; Simon, Walker

    2016-01-01

    The purpose of the study was to determine the effects of 8 weeks of jump squat training on isometric half squat maximal force production (Fmax) and rate of force development over 100ms (RFD100), countermovement jump (CMJ) and squat jump (SJ) height, and 50 m sprint time in moderately trained men. Sixty eight subjects (~21 years, ~180 cm, ~75 kg) were divided into experimental (EXP; n = 36) and control (CON, n = 32) groups. Tests were completed pre-, mid- and post-training. EXP performed jump squat training 3 times per week using loads that allowed all repetitions to be performed with ≥90% of maximum average power output (13 sessions with 4 sets of 8 repetitions and 13 sessions with 8 sets of 4 repetitions). Subjects were given real-time feedback for every repetition during the training sessions. Significant improvements in Fmax from pre- to mid- (Δ ~14%, psquats with loads that allow repetitions to be performed ≥90% of maximum average power output can simultaneously improve several different athletic performance tasks in the short-term. Key points Jump squat exercise is one of many exercises to develop explosive strength that has been the focus of several researches, while the load used during the training seem to be an important factor that affects training outcomes. Experimental group improved performance in all assessed parameters, such as Fmax, RFD100, CMJ, SJ and 50 m sprint time. However, improvements in CMJ and SJ were recorded after the entire power training period and thereafter plateau occurred. The portable FitroDyne could serve as a valuable device to individualize the load that maximizes mean power output and visual feedback can be provided to athletes during the training. PMID:27803628

  9. Modeling and forecasting electricity price jumps in the Nord Pool power market

    DEFF Research Database (Denmark)

    Knapik, Oskar

    extreme prices and forecasting of the price jumps is crucial for risk management and market design. In this paper, we consider the problem of the impact of fundamental price drivers on forecasting of price jumps in NordPool intraday market. We develop categorical time series models which take into account......For risk management traders in the electricity market are mainly interested in the risk of negative (drops) or of positive (spikes) price jumps, i.e. the sellers face the risk of negative price jumps while the buyers face the risk of positive price jumps. Understanding the mechanism that drive...

  10. Self-jumping Mechanism of Melting Frost on Superhydrophobic Surfaces.

    Science.gov (United States)

    Liu, Xiaolin; Chen, Huawei; Zhao, Zehui; Wang, Yamei; Liu, Hong; Zhang, Deyuan

    2017-11-07

    Frost accretion on surfaces may cause severe problems and the high-efficiency defrosting methods are still urgently needed in many application fields like heat transfer, optical and electric power system, etc. In this study, a nano-needle superhydrophobic surface is prepared and the frosting/defrosting experiments are conducted on it. Three steps are found in the defrosting process: melting frost shrinking and splitting, instantaneous self-triggered deforming followed by deformation-induced movements (namely, in-situ shaking, rotating, rolling, and self-jumping). The self-jumping performance of the melting frost is extremely fascinating and worth studying due to its capability of evidently shortening the defrosting process and reducing (even avoiding) residual droplets after defrosting. The study on the melting frost self-jumping phenomena demonstrates that the kinetic energy transformed from instantaneous superficial area change in self-triggered deforming step is the intrinsic reason for various melting frost self-propelled movements, and when the transformed energy reaches a certain amount, the self-jumping phenomena occur. And some facilitating conditions for melting frost self-jumping phenomena are also discussed. This work will provide an efficient way for defrosting or an inspiration for further research on defrosting.

  11. Approaching stationarity: competition between long jumps and long waiting times

    International Nuclear Information System (INIS)

    Dybiec, Bartłomiej

    2010-01-01

    Within the continuous-time random walk (CTRW) scenarios, properties of the overall motion are determined by the waiting time and the jump length distributions. In the decoupled case, with power-law distributed waiting times and jump lengths, the CTRW scenario is asymptotically described by the double (space and time) fractional Fokker–Planck equation. Properties of a system described by such an equation are determined by the subdiffusion parameter and the jump length exponent. Nevertheless, the stationary state is determined solely by the jump length distribution and the potential. The waiting time distribution determines only the rate of convergence to the stationary state. Here, we inspect the competition between long waiting times and long jumps and how this competition is reflected in the way in which a stationary state is reached. In particular, we show that the distance between a time-dependent and a stationary solution changes in time as a double power law

  12. Modeling and verifying non-linearities in heterodyne displacement interferometry

    NARCIS (Netherlands)

    Cosijns, S.J.A.G.; Haitjema, H.; Schellekens, P.H.J.

    2002-01-01

    The non-linearities in a heterodyne laser interferometer system occurring from the phase measurement system of the interferometer andfrom non-ideal polarization effects of the optics are modeled into one analytical expression which includes the initial polarization state ofthe laser source, the

  13. Displacement and stress fields around rock fractures opened by irregular overpressure variations

    Directory of Open Access Journals (Sweden)

    Shigekazu eKusumoto

    2014-05-01

    Full Text Available Many rock fractures are entirely driven open by fluids such as ground water, geothermal water, gas, oil, and magma. These are a subset of extension fractures (mode I cracks; e.g., dikes, mineral veins and joints referred to as hydrofractures. Field measurements show that many hydrofractures have great variations in aperture. However, most analytical solutions for fracture displacement and stress fields assume the loading to be either constant or with a linear variation. While these solutions have been widely used, it is clear that a fracture hosted by heterogeneous and anisotropic rock is normally subject to loading that is neither constant nor with a linear variation. Here we present new general solutions for the displacement and stress fields around hydrofractures, modelled as two-dimensional elastic cracks, opened by irregular overpressure variations given by the Fourier cosine series. Each solution has two terms. The first term gives the displacement and stress fields due to the average overpressure acting inside the crack; it is given by the initial term of the Fourier coefficients expressing the overpressure variation. The second term gives the displacement and stress fields caused by the overpressure variation; it is given by general terms of the Fourier coefficients and solved through numerical integration. Our numerical examples show that the crack aperture variation closely reflects the overpressure variation. Also, that the general displacement and stress fields close to the crack follow the overpressure variation but tend to be more uniform far from the crack. The present solutions can be used to estimate the displacement and stress fields around any fluid-driven crack, that is, any hydrofracture, as well as its aperture, provided the variation in overpressure can be described by Fourier series. The solutions add to our understanding of local stresses, displacements, and fluid transport associated with hydrofractures in the crust.

  14. Teaching Jump Rope to Children with Visual Impairments

    Science.gov (United States)

    Lieberman, Lauren J.; Schedlin, Haley; Pierce, Tristan

    2009-01-01

    This article presents strategies for jumping rope for children with visual impairments. Giving choices related to the types of rope and the use of mats is important. In addition, using appropriate instructional strategies and modifications will make jumping rope a skill that the children will enjoy and will lead to their involvement in other…

  15. The Vertical Drop Jump Is a Poor Screening Test for ACL Injuries in Female Elite Soccer and Handball Players: A Prospective Cohort Study of 710 Athletes.

    Science.gov (United States)

    Krosshaug, Tron; Steffen, Kathrin; Kristianslund, Eirik; Nilstad, Agnethe; Mok, Kam-Ming; Myklebust, Grethe; Andersen, Thor Einar; Holme, Ingar; Engebretsen, Lars; Bahr, Roald

    2016-04-01

    The evidence linking knee kinematics and kinetics during a vertical drop jump (VDJ) to anterior cruciate ligament (ACL) injury risk is restricted to a single small sample. Still, the VDJ test continues to be advocated for clinical screening purposes. To test whether 5 selected kinematic and kinetic variables were associated with future ACL injuries in a large cohort of Norwegian female elite soccer and handball players. Furthermore, we wanted to assess whether the VDJ test can be recommended as a screening test to identify players with increased risk. Cohort study; Level of evidence, 2. Elite female soccer and handball players participated in preseason screening tests from 2007 through 2014. The tests included marker-based 3-dimensional motion analysis of a drop-jump landing. We followed a predefined statistical protocol in which we included the following candidate risk factors in 5 separate logistic regression analyses, with new ACL injury as the outcome: (1) knee valgus angle at initial contact, (2) peak knee abduction moment, (3) peak knee flexion angle, (4) peak vertical ground-reaction force, and (5) medial knee displacement. A total of 782 players were tested (age, 21 ± 4 years; height, 170 ± 7 cm; body mass, 67 ± 8 kg), of which 710 were included in the analyses. We registered 42 new noncontact ACL injuries, including 12 in previously ACL-injured players. Previous ACL injury (relative risk, 3.8; 95% CI, 2.1-7.1) and medial knee displacement (odds ratio, 1.40; 95% CI, 1.12-1.74 per 1-SD change) were associated with increased risk for injury. However, among the 643 players without previous injury, we found no association with medial knee displacement. A receiver operating characteristic curve analysis of medial knee displacement showed an area under the curve of 0.6, indicating a poor-to-failed combined sensitivity and specificity of the test, even when including previously injured players. Of the 5 risk factors considered, medial knee displacement was the

  16. Estimation of failure probabilities of linear dynamic systems by ...

    Indian Academy of Sciences (India)

    An iterative method for estimating the failure probability for certain time-variant reliability problems has been developed. In the paper, the focus is on the displacement response of a linear oscillator driven by white noise. Failure is then assumed to occur when the displacement response exceeds a critical threshold.

  17. Gender bias in jumping kinetics in National Collegiate Athletic Association Division I basketball players.

    Science.gov (United States)

    Walsh, Mark S; Waters, Jeff A; Böhm, Harald; Potteiger, Jeff A

    2007-08-01

    The purposes of this study are to examine gender differences in the contribution of the arm swing to jump height in men and women basketball players and to examine the role of upper-body strength in the contribution of arm swing to jump height. National Collegiate Athletic Association Division I basketball players (men n = 13, women n = 12) performed 4 jumping movements: squat jumps with hands on hips (SNA) and with arm swings (SA) and countermovement jumps with hands on hips and with arm swings (CMA). Differences were found between the jump heights of men and women. Use of the arms increased the jump height of men more than women. Compared with the SNA, the SA allowed an increase of 7 cm (23%) for men and 4 cm (17%) for women. The CMA allowed for an increase of 10 cm (30%) for men and 6 cm (24%) for women. General upper-body strength measures did not correlate strongly with the effect of arms on jumping, but peak power did. As in previous studies, peak power had a high correlation with jumping performance. These results show that the arm swing contributes significantly to jump performance in both men and women basketball players and that strength training for jumping should focus on power production and lifting exercises that are jump specific.

  18. Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method)

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method). See poster at http://www.kemi.dtu.dk/~ajo/rolf/jumps.pdf......Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method). See poster at http://www.kemi.dtu.dk/~ajo/rolf/jumps.pdf...

  19. Hydraulic jumps in ''viscous'' accretion disks

    International Nuclear Information System (INIS)

    Michel, F.C.

    1984-01-01

    We propose that the dissipative process necessary for rapid accretion disk evolution is driven by hydraulic jump waves on the surface of the disk. These waves are excited by the asymmetric nature of the central rotator (e.g., neutron star magnetosphere) and spiral out into the disk to form a pattern corotating with the central object. Disk matter in turn is slowed slightly at each encounter with the jump and spirals inward. In this process, the disk is heated by true turbulence produced in the jumps. Additional effects, such as a systematic misalignment of the magnetic moment of the neutron star until it is nearly orthogonal, and systematic distortion of the magnetosphere in such a way as to form an even more asymmetric central ''paddle wheel'' may enhance the interaction with inflowing matter. The application to X-ray sources corresponds to the ''slow'' solutions of Ghosh and Lamb, and therefore to rms magnetic fields of about 4 x 10 10 gauss. Analogous phenomena have been proposed to act in the formation of galactic spiral structure

  20. Relationship between relative net vertical impulse and jump height in jump squats performed to various squat depths and with various loads.

    Science.gov (United States)

    McBride, Jeffrey M; Kirby, Tyler J; Haines, Tracie L; Skinner, Jared

    2010-12-01

    The purpose of the current investigation was to determine the relationship between relative net vertical impulse (net vertical impulse (VI)) and jump height in the jump squat (JS) going to different squat depths and utilizing various loads. Ten males with two years of jumping experience participated in this investigation (Age: 21.8 ± 1.9 y; Height: 176.9 ± 5.2 cm; Body Mass: 79.0 ± 7.1 kg, 1RM: 131.8 ± 29.5 kg, 1RM/BM: 1.66 ± 0.27). Subjects performed a series of static jumps (SJS) and countermovement jumps (CMJJS) with various loads (Body Mass, 20% of 1RM, 40% of 1RM) in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth. During the concentric phase of each JS, peak force (PF), peak power (PP), jump height (JH) and relative VI were recorded and analyzed. Increasing squat depth corresponded to a decrease in PF and an increase in JH, relative VI for both SJS and CMJJS during all loads. Across all squat depths and loading conditions relative VI was statistically significantly correlated to JH in the SJS (r = .8956, P squat depths and loading conditions PF was statistically nonsignificantly correlated to JH in the SJS (r = -0.1010, P = .2095, power = 0.2401) and CMJJS (r = -0.0594, P = .4527, power = 0.1131). Across all squat depths and loading conditions peak power (PP) was significantly correlated with JH during both the SJS (r = .6605, P squat depths. Results indicate that relative VI and PP can be used to predict JS performance, regardless of squat depth and loading condition. However, relative VI may be the best predictor of JS performance with PF being the worst predictor of JS performance.

  1. The effect of increasing strength and approach velocity on triple jump performance.

    Science.gov (United States)

    Allen, Sam J; Yeadon, M R Fred; King, Mark A

    2016-12-08

    The triple jump is an athletic event comprising three phases in which the optimal phase ratio (the proportion of each phase to the total distance jumped) is unknown. This study used a planar whole body torque-driven computer simulation model of the ground contact parts of all three phases of the triple jump to investigate the effect of strength and approach velocity on optimal performance. The strength and approach velocity of the simulation model were each increased by up to 30% in 10% increments from baseline data collected from a national standard triple jumper. Increasing strength always resulted in an increased overall jump distance. Increasing approach velocity also typically resulted in an increased overall jump distance but there was a point past which increasing approach velocity without increasing strength did not lead to an increase in overall jump distance. Increasing both strength and approach velocity by 10%, 20%, and 30% led to roughly equivalent increases in overall jump distances. Distances ranged from 14.05m with baseline strength and approach velocity, up to 18.49m with 30% increases in both. Optimal phase ratios were either hop-dominated or balanced, and typically became more balanced when the strength of the model was increased by a greater percentage than its approach velocity. The range of triple jump distances that resulted from the optimisation process suggests that strength and approach velocity are of great importance for triple jump performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Neuromuscular adaptations to 4 weeks of intensive drop jump training in well-trained athletes

    DEFF Research Database (Denmark)

    Alkjær, Tine; Meyland, Jacob; Raffalt, Peter C

    2013-01-01

    This study examined the effects of 4 weeks of intensive drop jump training in well-trained athletes on jumping performance and underlying changes in biomechanics and neuromuscular adaptations. Nine well-trained athletes at high national competition level within sprinting and jumping disciplines...... participated in the study. The training was supervised and augmented feedback on performance was used to ensure maximal training intensity. The drop jumps were performed with minimal contact time and maximal jumping height. Assessment of performance during training showed effects of motor learning. Before...... and after the training intervention maximal isometric muscle strength, the biomechanics, muscle activity pattern of the lower extremities and the soleus H-reflex and V-wave during drop jumping were measured. Maximal jump height and performance index (PI) defined as jumping height divided by contact time...

  3. Displaced Sense: Displacement, Religion and Sense-making

    OpenAIRE

    Naidu, Maheshvari

    2016-01-01

    Whether formally categorized as refugees or not, displaced migrants experience varying degrees of vulnerability in relation to where they find themselves displaced. The internally displaced furthermore squat invisibly and outside the boundaries of the legal framework and incentive structures accorded to those classified as 'refugee'. They are thus arguably, by and large, left to source sustaining solutions for themselves. This article works through the theoretical prism of sense-making theory...

  4. THE EFFECTS OF SINGLE VERSUS REPEATED PLYOMETRICS ON LANDING BIOMECHANICS AND JUMPING PERFORMANCE IN MEN

    Directory of Open Access Journals (Sweden)

    H. Makaruk

    2014-07-01

    Full Text Available The aim of this study was to examine the chronic effects of single and repeated jumps training on vertical landing force (VGRF and jump height in untrained men. The VGRF and jump height were compared after a six-week plyometric training programme containing single and repeated jumps, together with two additional parameters: landing time (LT and range of the knee flexion during landing (KF. Thirty-six untrained physical education students with a plyometric training background were randomly assigned to a single jump group (SJG, n =12, repeated jumps group (RJG, n =12, and control group (CON, n =12. The SJG performed only single jumps, the RJG executed repeated (consecutive jumps, whereas the CON did not perform any exercises at all. A countermovement jump (CMJ, repeated countermovement jumps (RCMJ, and a drop jump (DJ were tested before and after the training. Only the RJG showed a significantly reduced VGRF (p<0.05 in all tests. Both plyometric groups significantly improved (p<0.05 their jump height in all tests. The LT was significantly greater in the RJG, compared to the SJG, in all tests. The KF was also significantly (p<0.05 greater in the RJG than in the SJG for CMJ and RCMJ. The results suggest that repeated jumps are beneficial for simultaneous landing force reduction and jumping performance enhancement.

  5. A Jump-Diffusion Model with Stochastic Volatility and Durations

    DEFF Research Database (Denmark)

    Wei, Wei; Pelletier, Denis

    jumps in two ways: as exogenous sampling intervals, and through the interaction with volatility. We adopt a bivariate Ornstein-Ulenbeck process to model intraday volatility and conditional duration. We develop a MCMC algorithm for the inference on irregularly spaced multivariate processes with jumps...

  6. Robust stability of uncertain Markovian jumping Cohen-Grossberg neural networks with mixed time-varying delays

    International Nuclear Information System (INIS)

    Sheng Li; Yang Huizhong

    2009-01-01

    This paper considers the robust stability of a class of uncertain Markovian jumping Cohen-Grossberg neural networks (UMJCGNNs) with mixed time-varying delays. The parameter uncertainties are norm-bounded and the mixed time-varying delays comprise discrete and distributed time delays. Based on the Lyapunov stability theory and linear matrix inequality (LMI) technique, some robust stability conditions guaranteeing the global robust convergence of the equilibrium point are derived. An example is given to show the effectiveness of the proposed results.

  7. Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion

    OpenAIRE

    Dan Li; Jing’an Cui; Guohua Song

    2014-01-01

    This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a) to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b) we show that the delay stochastic differential equation with jumps associate...

  8. METRIC TESTS CHARACTERISTIC FOR ESTIMATING JUMPING FOR VOLLEYBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Toplica Stojanović

    2008-08-01

    Full Text Available With goal to establish metric tests characteristics for estimating jumping for volleyball players, it was organized a pilot research on pattern of 23 volleyball players from cadet team and 23 students from high-school. For needs of this research four tests are valid for estimation, jump in block with left and right leg and jump in spike with left and right leg. Each test has been taken three times, so that we could with test-re test method determine their reliability, and with factor analysis their validity. Data were processed by multivariate analysis (item analysis, factor analysis from statistical package „Statistica 6.0 for windows“. On the results of research and discussion we can say that the tests had high coefficient of reliability, as well as factor validity, and these tests can be used to estimate jumping for volleyball players.

  9. The effect of multi-component adsorption on selectivity in ion exchange displacement systems.

    Science.gov (United States)

    Tugcu, N; Cramer, S M

    2005-01-21

    This paper examines chemically selective displacement chromatography using affinity ranking plots, batch displacer screening experiments, column displacements, multi-component adsorption isotherms and spectroscopy. The affinity ranking plot indicated that the displacers, sucrose octasulfate (SOS) and tatrazine, should possess sufficient affinity to displace the proteins amyloglucosidase and apoferritin over a wide range of operating conditions. In addition, the plots indicated that the separation of these proteins by displacement chromatography would be extremely difficult. Further, the two proteins were shown to have very similar retention times under shallow linear gradient conditions. When batch displacement experiments were carried out, both tartrazine and SOS exhibited significant selectivity differences with respect to their ability to displace these two proteins, in contrast to the affinity ranking plot results. Column displacement experiments carried out with sucrose octasulfate agreed with the predictions of the affinity ranking plots, with both proteins being displaced but poorly resolved under several column displacement conditions. On the other hand, column displacement with tartrazine as the displacer resulted in the selective displacement and partial purification of apoferritin. Single- and multi-component isotherms of the proteins with or without the presence of displacers were determined and were used to help explain the selectivity reversals observed in the column and batch displacement experiments. In addition, fluorescence and CD spectra suggested that the displacers did not induce any structural changes to either of the proteins. The results in this paper indicate that multi-component adsorption behavior can be exploited for creating chemically selective displacement separations.

  10. Aerial Rotation Effects on Vertical Jump Performance Among Highly Skilled Collegiate Soccer Players.

    Science.gov (United States)

    Barker, Leland A; Harry, John R; Dufek, Janet S; Mercer, John A

    2017-04-01

    Barker, LA, Harry, JR, Dufek, JS, and Mercer, JA. Aerial rotation effects on vertical jump performance among highly skilled collegiate soccer players. J Strength Cond Res 31(4): 932-938, 2017-In soccer matches, jumps involving rotations occur when attempting to head the ball for a shot or pass from set pieces, such as corner kicks, goal kicks, and lob passes. However, the 3-dimensional ground reaction forces used to perform rotational jumping tasks are currently unknown. Therefore, the purpose of this study was to compare bilateral, 3-dimensional, and ground reaction forces of a standard countermovement jump (CMJ0) with those of a countermovement jump with a 180° rotation (CMJ180) among Division-1 soccer players. Twenty-four participants from the soccer team of the University of Nevada performed 3 trials of CMJ0 and CMJ180. Dependent variables included jump height, downward and upward phase times, vertical (Fz) peak force and net impulse relative to mass, and medial-lateral and anterior-posterior force couple values. Statistical significance was set a priori at α = 0.05. CMJ180 reduced jump height, increased the anterior-posterior force couple in the downward and upward phases, and increased upward peak Fz (p ≤ 0.05). All other variables were not significantly different between groups (p > 0.05). However, we did recognize that downward peak Fz trended lower in the CMJ0 condition (p = 0.059), and upward net impulse trended higher in the CMJ0 condition (p = 0.071). It was concluded that jump height was reduced during the rotational jumping task, and rotation occurred primarily via AP ground reaction forces through the entire countermovement jump. Coaches and athletes may consider additional rotational jumping in their training programs to mediate performance decrements during rotational jump tasks.

  11. Ankle taping does not impair performance in jump or balance tests.

    Science.gov (United States)

    Abián-Vicén, Javier; Alegre, Luis M; Fernández-Rodríguez, J Manuel; Lara, Amador J; Meana, Marta; Aguado, Xavier

    2008-01-01

    This study aimed to investigate the influence of prophylactic ankle taping on two balance tests (static and dynamic balance) and one jump test, in the push off and the landing phase. Fifteen active young subjects (age: 21.0 ± 4.4 years) without previous ankle injuries volunteered for the study. Each participant performed three tests in two different situations: with taping and without taping. The tests were a counter movement jump, static balance, and a dynamic posturography test. The tests and conditions were randomly performed. The path of the center of pressures was measured in the balance tests, and the vertical ground reaction forces were recorded during the push-off and landing phases of the counter movement jump. Ankle taping had no influence on balance performance or in the push off phase of the jump. However, the second peak vertical force value during the landing phase of the jump was 12% greater with ankle taping (0.66 BW, 95% CI -0.64 to 1.96). The use of prophylactic ankle taping had no influence on the balance or jump performance of healthy young subjects. In contrast, the taped ankle increased the second peak vertical force value, which could be related to a greater risk of injury produced by the accumulation of repeated impacts in sports where jumps are frequently performed. Key pointsAnkle taping has no influence on balance performance.Ankle taping does not impair performance during the push-off phase of the jump.Ankle taping could increase the risk of injury during landings by increasing peak forces.

  12. Measurement of the K X-ray absorption jump factors and jump ratios of Gd, Dy, Ho and Er by attenuation of a Compton peak

    International Nuclear Information System (INIS)

    Budak, G.; Polat, R.

    2004-01-01

    The X-ray absorption jump factor and jump ratio of Gd, Dy, Ho and Er were measured with a Si(Li) detector by attenuation, with Gd, Dy, Ho and Er foil, a Compton peak produced by the scattering of the 59.5 keV Am-241 Gamma rays. Al was chosen as secondary exciter. The experimental absorption jump factors and jump ratios are compared with the theoretical estimates of WinXcom (Radiat. Phys. Chem. 60 (2001) 23), McMaster (Compilation of X-ray cross sections UCRL-50174, 1969; Sec. II. Rev. I), Broll (X-ray Spectrom 15 (1986) 271), Hubbel and Seltzer (NISTIR (1995) 5632) and Budak (Radiat. Meas. accepted for publication). The present results constitute the first measurement for this combination of energy and elements, and good agreement is obtained between experiment and theory

  13. Constrained Optimal Stochastic Control of Non-Linear Wave Energy Point Absorbers

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Chen, Jian-Bing; Kramer, Morten

    2014-01-01

    to extract energy. Constrains are enforced on the control force to prevent large structural stresses in the floater at specific hot spots with the risk of inducing fatigue damage, or because the demanded control force cannot be supplied by the actuator system due to saturation. Further, constraints...... are enforced on the motion of the floater to prevent it from hitting the bottom of the sea or to make unacceptable jumps out of the water. The applied control law, which is of the feedback type with feedback from the displacement, velocity, and acceleration of the floater, contains two unprovided gain...

  14. Keeping Your Eye on the Rail: Gaze Behaviour of Horse Riders Approaching a Jump

    Science.gov (United States)

    Hall, Carol; Varley, Ian; Kay, Rachel; Crundall, David

    2014-01-01

    The gaze behaviour of riders during their approach to a jump was investigated using a mobile eye tracking device (ASL Mobile Eye). The timing, frequency and duration of fixations on the jump and the percentage of time when their point of gaze (POG) was located elsewhere were assessed. Fixations were identified when the POG remained on the jump for 100 ms or longer. The jumping skill of experienced but non-elite riders (n = 10) was assessed by means of a questionnaire. Their gaze behaviour was recorded as they completed a course of three identical jumps five times. The speed and timing of the approach was calculated. Gaze behaviour throughout the overall approach and during the last five strides before take-off was assessed following frame-by-frame analyses. Differences in relation to both round and jump number were found. Significantly longer was spent fixated on the jump during round 2, both during the overall approach and during the last five strides (pJump 1 was fixated on significantly earlier and more frequently than jump 2 or 3 (pjump 3 than with jump 1 (p = 0.01) but there was no difference in errors made between rounds. Although no significant correlations between gaze behaviour and skill scores were found, the riders who scored higher for jumping skill tended to fixate on the jump earlier (p = 0.07), when the horse was further from the jump (p = 0.09) and their first fixation on the jump was of a longer duration (p = 0.06). Trials with elite riders are now needed to further identify sport-specific visual skills and their relationship with performance. Visual training should be included in preparation for equestrian sports participation, the positive impact of which has been clearly demonstrated in other sports. PMID:24846055

  15. A multiplicity jump trigger using silicon planes

    International Nuclear Information System (INIS)

    Alexopoulos, T.; Erwin, A.R.

    1993-01-01

    Since silicon tracking planes are already present in a B decay experiment, it is an attractive idea to use these as part of a multiplicity jump detector. Two average B decays would produce a multiplicity jump of around 10 in the final state. Such a trigger has been tried for a fixed target Charm experiment with disappointing success. The failure was attributed to the difficulty in adequately controlling the gains of a large number of microstrip amplifies

  16. Effect of a neuromuscular training program on the kinetics and kinematics of jumping tasks.

    Science.gov (United States)

    Chappell, Jonathan D; Limpisvasti, Orr

    2008-06-01

    Altered motor control strategies are a proposed cause of the female athlete's increased risk for noncontact anterior cruciate ligament injury. Injury prevention programs have shown promising results in decreasing the incidence of anterior cruciate ligament injury. To evaluate the effect of the Kerlan-Jobe Orthopaedic Clinic Modified Neuromuscular Training Program on the biomechanics of select jumping tasks in the female collegiate athlete. Controlled laboratory study. Thirty female National Collegiate Athletic Association Division I soccer and basketball players performed vertical jump, hopping tests, and 2 jumping tasks (drop jump and stop jump). All subjects completed a 6-week neuromuscular training program with core strengthening and plyometric training. Three-dimensional motion analysis and force plate data were used to compare the kinetics and kinematics of jumping tasks before and after training. Dynamic knee valgus moment during the stance phase of stop jump tasks decreased after completion of the neuromuscular training program (P = .04), but differences were not observed for the drop jump. Initial knee flexion (P = .003) and maximum knee flexion (P = .006) angles increased during the stance phase of drop jumps after training, but differences were not observed for the stop jump. The athletes showed improved performance in vertical jump (P training program improved select athletic performance measures and changed movement patterns during jumping tasks in the subject population. The use of this neuromuscular training program could potentially modify the collegiate athlete's motion strategies, improve performance, and lower the athlete's risk for injury.

  17. State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays

    International Nuclear Information System (INIS)

    Liu Yurong; Wang Zidong; Liu Xiaohui

    2008-01-01

    In this Letter, we investigate the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters as well as mode-dependent mixed time-delays. The parameters of the discrete-time neural networks are subject to the switching from one mode to another at different times according to a Markov chain, and the mixed time-delays consist of both discrete and distributed delays that are dependent on the Markovian jumping mode. New techniques are developed to deal with the mixed time-delays in the discrete-time setting, and a novel Lyapunov-Krasovskii functional is put forward to reflect the mode-dependent time-delays. Sufficient conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the existence of the state estimators. We show that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of the solution to an LMI. A numerical example is exploited to show the usefulness of the derived LMI-based conditions

  18. PERBANDINGAN JUMP SHOOT DENGAN AWALAN DAN TANPA AWALAN TERHADAP PENINGKATAN KETEPATAN SHOOTING DALAM PERMAINAN BOLABASKET

    OpenAIRE

    I Gusti Ngurah Agung Cahya Prananta; N. Adiputra; I P G Adiatmika

    2015-01-01

    The effectiveness of  jump-shoot technique step jump shoot and still jump shoot in a game is still questionable,  because many different assumptions arise. One opinion stated that step jump shoot was more effective and the other stated that and still jump shoot was more efective. Therefore it is necessary to do research on the analysis of the results of step jump shoot and and still jump shoot to improve the accuracy of shooting in a basketball. The experimental research had been conducted on...

  19. Asymptotic inference for jump diffusions with state-dependent intensity

    NARCIS (Netherlands)

    Becheri, Gaia; Drost, Feico; Werker, Bas

    2016-01-01

    We establish the local asymptotic normality property for a class of ergodic parametric jump-diffusion processes with state-dependent intensity and known volatility function sampled at high frequency. We prove that the inference problem about the drift and jump parameters is adaptive with respect to

  20. Variability of Jump Kinetics Related to Training Load in Elite Female Basketball

    OpenAIRE

    Jan Legg; David B. Pyne; Stuart Semple; Nick Ball

    2017-01-01

    The purpose of this study was to quantify changes in jump performance and variability in elite female basketballers. Junior and senior female representative basketball players (n = 10) aged 18 ± 2 years participated in this study. Countermovement jump (CMJ) data was collected with a Gymaware™ optical encoder at pre-, mid-, and post-season time points across 10 weeks. Jump performance was maintained across the course of the full season (from pre to post). Concentric peak velocity, jump height,...

  1. Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion

    Directory of Open Access Journals (Sweden)

    Dan Li

    2014-01-01

    Full Text Available This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b we show that the delay stochastic differential equation with jumps associated with our model has a unique global positive solution and give sufficient conditions that ensure stochastically ultimate boundedness, moment average boundedness in time, and asymptotic polynomial growth of our model; (c the sufficient conditions for the extinction of the system are obtained, which generalized the former results and showed that the sufficiently large random jump magnitudes and intensity (average rate of jump events arrival may lead to extinction of the population.

  2. ACUTE EFFECTS OF A RESISTED DYNAMIC WARM-UP PROTOCOL ON JUMPING PERFORMANCE

    Science.gov (United States)

    Cilli, M; Yildiz, S; Saglam, T; Camur, MH

    2014-01-01

    This study aimed to investigate the kinematic and kinetic changes when resistance is applied in horizontal and vertical directions, produced by using different percentages of body weight, caused by jumping movements during a dynamic warm-up. The group of subjects consisted of 35 voluntary male athletes (19 basketball and 16 volleyball players; age: 23.4 ± 1.4 years, training experience: 9.6 ± 2.7 years; height: 177.2 ± 5.7 cm, body weight: 69.9 ± 6.9 kg) studying Physical Education, who had a jump training background and who were training for 2 hours, on 4 days in a week. A dynamic warm-up protocol containing seven specific resistance movements with specific resistance corresponding to different percentages of body weight (2%, 4%, 6%, 8%, 10%) was applied randomly on non consecutive days. Effects of different warm-up protocols were assessed by pre-/post- exercise changes in jump height in the countermovement jump (CMJ) and the squat jump (SJ) measured using a force platform and changes in hip and knee joint angles at the end of the eccentric phase measured using a video camera. A significant increase in jump height was observed in the dynamic resistance warm-up conducted with different percentages of body weight (p 0.05). In jump movements before and after the warm-up, while no significant difference between the vertical ground reaction forces applied by athletes was observed (p > 0.05), in some cases of resistance, a significant reduction was observed in hip and knee joint angles (p jumping movements, as well as an increase in jump height values. As a result, dynamic warm-up exercises could be applicable in cases of resistance corresponding to 6-10% of body weight applied in horizontal and vertical directions in order to increase the jump performance acutely. PMID:25435670

  3. ANKLE TAPING DOES NOT IMPAIR PERFORMANCE IN JUMP OR BALANCE TESTS

    Directory of Open Access Journals (Sweden)

    Javier Abián-Vicén

    2008-09-01

    Full Text Available This study aimed to investigate the influence of prophylactic ankle taping on two balance tests (static and dynamic balance and one jump test, in the push off and the landing phase. Fifteen active young subjects (age: 21.0 ± 4.4 years without previous ankle injuries volunteered for the study. Each participant performed three tests in two different situations: with taping and without taping. The tests were a counter movement jump, static balance, and a dynamic posturography test. The tests and conditions were randomly performed. The path of the center of pressures was measured in the balance tests, and the vertical ground reaction forces were recorded during the push-off and landing phases of the counter movement jump. Ankle taping had no influence on balance performance or in the push off phase of the jump. However, the second peak vertical force value during the landing phase of the jump was 12% greater with ankle taping (0.66 BW, 95% CI -0.64 to 1.96. The use of prophylactic ankle taping had no influence on the balance or jump performance of healthy young subjects. In contrast, the taped ankle increased the second peak vertical force value, which could be related to a greater risk of injury produced by the accumulation of repeated impacts in sports where jumps are frequently performed

  4. Linear variable differential transformer sensor using glass-covered amorphous wires as active core

    International Nuclear Information System (INIS)

    Chiriac, H.; Hristoforou, E.; Neagu, Maria; Pieptanariu, M.

    2000-01-01

    Results concerning linear variable differential transformer (LVDT) displacement sensor using as movable core glass-covered amorphous wires are presented. The LVDT response is linear for a displacement of the movable core up to about 14 mm, with an accuracy of 1 μm. LVDT using glass-covered amorphous wire as an active core presents a high sensitivity and good mechanical and corrosion resistance

  5. CONNECTION OF FUNCTIONAL ABILITIES WITH JUMPING AND THROWING ATHLETIC DISCIPLINES

    Directory of Open Access Journals (Sweden)

    Igor Stanojević

    2014-06-01

    Full Text Available The aim of this study was to determine the connection between functional abilities with results of jumping and throwing athletic disciplines with athletes. The sample was taken from a population of elementary school students from Prokuplje region, 13 and 14 old, included in regular physical education classes. The sample consisted of 200 male athletes involved in the training process in sports clubs at least three times a week in addition to physical education classes. For assessment of functional abilities six functional tests were used: resting heart rate, Cooper test, heart rate in the first minute after Cooper test, heart rate in the second minute after Cooper test, systolic arterial blood pressure, diastolic arterial blood pressure. For assessment of jumping and throwing athletic disciplines four tests were used: long jump, high jump, shot put and javelin. Data analysis was performed with canonical correlation and regression analysis. The results showed a statistically significant correlation between functional abilities with all of tests in jumping and throwing athletic disciplines.

  6. Long multiplication by instruction sequences with backward jump instructions

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2013-01-01

    For each function on bit strings, its restriction to bit strings of any given length can be computed by a finite instruction sequence that contains only instructions to set and get the content of Boolean registers, forward jump instructions, and a termination instruction. Backward jump instructions

  7. Kinematic structure at the early flight position in ski jumping.

    Science.gov (United States)

    Vodičar, Janez; Coh, Milan; Jošt, Bojan

    2012-12-01

    The purpose of our research was to establish the variability of correlation between the length of the jumps and selected multi-item kinematic variables (n=9) in the early flight phase technique of ski jumping. This study was conducted on a sample of elite Slovenian ski jumpers (N=29) who participated in the experiment on a jumping hill in Hinterzarten, Germany (HS95m) on the 20(th) of August, 2008. The highest and most significant correlations (p=0.01) with the length of the ski jump were found in the multi-item variable height of flying, which was also expressed with the highest level of stability of the explained total variance (TV) on the first factor (TV=69.13%). The most important characteristic of the aerodynamic aspect of early flight was the variable angle between the body chord and the horizontal axis with significantly high correlations (pjump. Only two more variables, the angle between the upper body and the horizontal plane (TV=53.69%), and the angle between left ski and left leg (TV=50.13%), had an explained common variance on the first factor greater than 50% of total variance. The results indicated that some kinematic parameters of ski jumping early flight technique were more important for success considering the length of the jump.

  8. Discharge regimes and density jumps in a helicon plasma source

    International Nuclear Information System (INIS)

    Shinohara, S.; Yonekura, K.

    1999-01-01

    A high density plasma source using a helicon wave is becoming very attractive in plasma processing and confinement devices. In the previous work, the characteristics of this wave and plasma performance with diameters of 5 and 45 cm have been studied, and the helicon wave was only observed after the density jump. Recently, density jumps from the low to high electron densities with a level of 10 13 cm -3 were investigated by changing the antenna wavenumber spectrum, and the obtained results were compared with the inductively coupled plasma (ICP). However, the mechanisms of density jumps and plasma production are still open questions to be answered. Here, the authors try to investigate the discharge regimes and density jumps in a helicon plasma source, by changing the antenna wavenumber spectrum. For he case of the parallel current directions in the antenna, where the low wavenumber spectrum part is large, the density jump was observed with the low RF input power of P in < 300 W regardless of the magnetic field. On the other hand, for the case of the opposite directions, where the low wavenumber spectrum part is small, the threshold power to obtain the jump became high with the increase in the magnetic field. This can be understood from the dispersion relation of the helicon wave. The wave structures and the dispersion relations in the discharge modes will be also shown

  9. Quantum-capacity-approaching codes for the detected-jump channel

    International Nuclear Information System (INIS)

    Grassl, Markus; Wei Zhaohui; Ji Zhengfeng; Zeng Bei

    2010-01-01

    The quantum-channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasures and bit flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity-approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel.

  10. Jump diffusion models and the evolution of financial prices

    International Nuclear Information System (INIS)

    Figueiredo, Annibal; Castro, Marcio T. de; Silva, Sergio da; Gleria, Iram

    2011-01-01

    We analyze a stochastic model to describe the evolution of financial prices. We consider the stochastic term as a sum of the Wiener noise and a jump process. We point to the effects of the jumps on the return time evolution, a central concern of the econophysics literature. The presence of jumps suggests that the process can be described by an infinitely divisible characteristic function belonging to the De Finetti class. We then extend the De Finetti functions to a generalized nonlinear model and show the model to be capable of explaining return behavior. -- Highlights: → We analyze a stochastic model to describe the evolution of financial prices. → The stochastic term is considered as a sum of the Wiener noise and a jump process. → The process can be described by an infinitely divisible characteristic function belonging to the De Finetti class. → We extend the De Finetti functions to a generalized nonlinear model.

  11. Escape jumping by three age-classes of water striders from smooth, wavy and bubbling water surfaces.

    Science.gov (United States)

    Ortega-Jimenez, Victor Manuel; von Rabenau, Lisa; Dudley, Robert

    2017-08-01

    Surface roughness is a ubiquitous phenomenon in both oceanic and terrestrial waters. For insects that live at the air-water interface, such as water striders, non-linear and multi-scale perturbations produce dynamic surface deformations which may impair locomotion. We studied escape jumps of adults, juveniles and first-instar larvae of the water strider Aquarius remigis on smooth, wave-dominated and bubble-dominated water surfaces. Effects of substrate on takeoff jumps were substantial, with significant reductions in takeoff angles, peak translational speeds, attained heights and power expenditure on more perturbed water surfaces. Age effects were similarly pronounced, with the first-instar larvae experiencing the greatest degradation in performance; age-by-treatment effects were also significant for many kinematic variables. Although commonplace in nature, perturbed water surfaces thus have significant and age-dependent effects on water strider locomotion, and on behavior more generally of surface-dwelling insects. © 2017. Published by The Company of Biologists Ltd.

  12. Investigating the Relationship between Sprint and Jump Performances with Velocity and Power Parameters during Propulsive Phase of the Loaded-Squat Jump Exercise

    Science.gov (United States)

    Can, Ibrahim

    2018-01-01

    The purpose of this study was to investigate the relationship between sprint and jump performance with velocity parameters in the loaded-squat jump exercise (SQ[subscript Loaded]). In accordance with this purpose, a total of 13 athletes competing in martial sports have participated in this study voluntarily. In this study, sprint tests, vertical…

  13. The effects of dance music jump rope exercise on pulmonary function and body mass index after music jump rope exercise in overweight adults in 20's.

    Science.gov (United States)

    Seo, KyoChul

    2017-08-01

    [Purpose] The purpose of this study was to examine the effect of a dance music jump rope exercise on changes Pulmonary Function and body mass index in female overweight subjects in their 20's. [Subjects and Methods] The subjects were randomly assigned to the dance music jump rope exercise group and the stationary cycle exercise group. All subjects have conducted the exercises three times a week for four weeks. Pulmonary function was evaluated using a spirometer, and body mass index was evaluated using an InBody 3.0. [Results] The findings of this study showed significant improvements in the voluntary capacity and body mass index of the experimental groups. Vital capacity was higher in the music jump rope exercise group than the stationary cycle exercise group, and body mass index was lower in the music jump rope exercise group than the stationary cycle exercise group. [Conclusion] This study showed that the dance music jump rope exercise can be used to improve vital capacity and body mass index.

  14. CLIMATIC JUMP IN THE POLAR REGION (I)

    OpenAIRE

    ヤマモト, リョウザブロウ; イワシマ, タツヤ; ホシアイ, マコト; Ryozaburo, YAMAMOTO; Tatsuya, IWASHIMA; Makoto, HOSHIAI

    1987-01-01

    From the analysis of the climatic elements over Japan, we can detect the "climatic jumps" around the years 1920 and 1950,which is a new concept in the climatic diagnosis proposed by the present authors (R. YAMAMOTO et al. : J. Meteorol. Soc. Jpn., 63,1157,1985,64,273,1986). Taking account of several results which show the simultaneous occurrence of the climatic jumps of the surface air temperature, precipitation, etc., in the other regions by the other investigators, we may infer the "climati...

  15. Acute effects of heavy-load squats on consecutive squat jump performance.

    Science.gov (United States)

    Weber, Kurt R; Brown, Lee E; Coburn, Jared W; Zinder, Steven M

    2008-05-01

    Postactivation potentiation (PAP) and complex training have generated interest within the strength and conditioning community in recent years, but much of the research to date has produced confounding results. The purpose of this study was to observe the acute effects of a heavy-load back squat [85% 1 repetition maximum (1RM)] condition on consecutive squat jump performance. Twelve in-season Division I male track-and-field athletes participated in two randomized testing conditions: a five-repetition back squat at 85% 1RM (BS) and a five-repetition squat jump (SJ). The BS condition consisted of seven consecutive squat jumps (BS-PRE), followed by five repetitions of the BS at 85% 1RM, followed by another set of seven consecutive squat jumps (BS-POST). The SJ condition was exactly the same as the BS condition except that five consecutive SJs replaced the five BSs, with 3 minutes' rest between each set. BS-PRE, BS-POST, SJ-PRE, and SJ-POST were analyzed and compared for mean and peak jump height, as well as mean and peak ground reaction force (GRF). The BS condition's mean and peak jump height and peak GRF increased 5.8% +/- 4.8%, 4.7% +/- 4.8%, and 4.6% +/- 7.4%, respectively, whereas the SJ condition's mean and peak jump height and peak GRF decreased 2.7% +/- 5.0%, 4.0% +/- 4.9%, and 1.3% +/- 7.5%, respectively. The results indicate that performing a heavy-load back squat before a set of consecutive SJs may enhance acute performance in average and peak jump height, as well as peak GRF.

  16. Kinetic Compensations due to Chronic Ankle Instability during Landing and Jumping.

    Science.gov (United States)

    Kim, Hyunsoo; Son, S Jun; Seeley, Matthew K; Hopkins, J Ty

    2018-02-01

    Skeletal muscles absorb and transfer kinetic energy during landing and jumping, which are common requirements of various forms of physical activity. Chronic ankle instability (CAI) is associated with impaired neuromuscular control and dynamic stability of the lower extremity. Little is known regarding an intralimb, lower-extremity joint coordination of kinetics during landing and jumping for CAI patients. We investigated the effect of CAI on lower-extremity joint stiffness and kinetic and energetic patterns across the ground contact phase of landing and jumping. One hundred CAI patients and 100 matched able-bodied controls performed five trials of a landing and jumping task (a maximal vertical forward jump, landing on a force plate with the test leg only, and immediate lateral jump toward the contralateral side). Functional analyses of variance and independent t-tests were used to evaluate between-group differences for lower-extremity net internal joint moment, power, and stiffness throughout the entire ground contact phase of landing and jumping. Relative to the control group, the CAI group revealed (i) reduced plantarflexion and knee extension and increased hip extension moments; (ii) reduced ankle and knee eccentric and concentric power, and increased hip eccentric and concentric power, and (iii) reduced ankle and knee joint stiffness and increased hip joint stiffness during the task. CAI patients seemed to use a hip-dominant strategy by increasing the hip extension moment, stiffness, and eccentric and concentric power during landing and jumping. This apparent compensation may be due to decreased capabilities to produce sufficient joint moment, stiffness, and power at the ankle and knee. These differences might have injury risk and performance implications.

  17. Jump frequency may contribute to risk of jumper's knee: a study of interindividual and sex differences in a total of 11,943 jumps video recorded during training and matches in young elite volleyball players.

    Science.gov (United States)

    Bahr, Martin A; Bahr, Roald

    2014-09-01

    Male sex, total training volume (number of hours per week) and match exposure (number of sets played per week) are risk factors for jumper's knee among young elite volleyball players. However, it is not known whether jump frequency differs among players on the same squad. To examine interindividual and sex differences in jump frequency during training and matches in young elite volleyball players. Observational study. Norwegian elite volleyball boarding school training programme. Student-athletes (26 boys and 18 girls, 16-18 years). Individual jump counts were recorded based on visual analysis of video recordings obtained from 1 week of volleyball training (9 training sessions for boys and 10 for girls, 14.1 h and 17.8 h of training, respectively) and 10 matches (5.9 h for boys (16 sets) and 7.7 h for girls (21 sets). A total of 11,943 jumps were recorded, 4138 during matches and 7805 during training. As training attendance and jump frequency varied substantially between players, the total exposure in training ranged from 50 to 666 jumps/week among boys and from 11 to 251 jumps/week among girls. On average, this corresponded to 35.7 jumps/h for boys and 13.7 jumps/h for girls (Student t test, p=0.002). Total jump exposure during matches ranged between 1 and 339 jumps among boys and between 0 and 379 jumps among girls, corresponding to an average jump frequency of 62.2 jumps/h for boys and 41.9 jumps/h for girls (Student t test, pvolleyball players. Total jump volume may represent a more important risk factor for jumper's knee than total training volume, warranting further research attention. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. THE EFFECTS OF SIXWEEKS PROGRAM OF PLYOMETRIC TRENING ON VOLLEYBALL JUMPING

    Directory of Open Access Journals (Sweden)

    Vladan Milić

    2008-08-01

    Full Text Available With goal to examine effects of plyometric training program on development of jumping strength for volleyball players, it was organized an experimental research on pattern of 23 volleyball players from cadet team and 23 students from high-school. Guided by general principles for plyometric training, individual plans for training were made. For estimating the effects of sports training on development of jumping, eight variables were used. For needs of this research four tests are valid for estimation, jump in block with left and right leg and jump in spike with left and right leg. Experiment has been realized in the second part on conditional preparations, and lasted for six weeks with two or three trainings per week. Control group had physical education lessons at their schools twice a week. Data were processed by in variant, multivariate analysis and analysis of covariance. On the results of research and discussion we can say that the model of training we used for development of jumping as a basic factor in experimental group brought statistically bigger difference in improving jumping that it brought in control group.

  19. Pricing FX Options in the Heston/CIR Jump-Diffusion Model with Log-Normal and Log-Uniform Jump Amplitudes

    Directory of Open Access Journals (Sweden)

    Rehez Ahlip

    2015-01-01

    model for the exchange rate with log-normal jump amplitudes and the volatility model with log-uniformly distributed jump amplitudes. We assume that the domestic and foreign stochastic interest rates are governed by the CIR dynamics. The instantaneous volatility is correlated with the dynamics of the exchange rate return, whereas the domestic and foreign short-term rates are assumed to be independent of the dynamics of the exchange rate and its volatility. The main result furnishes a semianalytical formula for the price of the foreign exchange European call option.

  20. Evaluation of throughwall crack pipes under displacement controlled loading

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.

    1987-02-01

    Tearing modulus solutions are developed for flawed throughwall pipes subjected to displacement controlled loading. Two cases of loading were considered: (1) a displacement controlled bending loading, and (2) a displacement controlled axial tension loading. A revised version of the EPRI J-integral estimation scheme is used in the development of the solutions. These solutions can be used for the entire range of elastic-plastic loading, from linear elastic, contained yielding, to large scale yielding of the crack section. Experimental data from pipes in bending were used to assess the accuracy of the compliant loading solutions. The evaluations were performed using elastic plastic J-integral (J) and tearing modulus (T) analysis methods. These solutions are shown to have good accuracy when used to predict the experimental results. The methodology and procedure can also be applied to part-throughwall cracks. These solutions have application to the leak before break fracture mechanics analyses.

  1. Evaluation of throughwall crack pipes under displacement controlled loading

    International Nuclear Information System (INIS)

    Zahoor, A.

    1987-01-01

    Tearing modulus solutions are developed for flawed throughwall pipes subjected to displacement controlled loading. Two cases of loading were considered: (1) a displacement controlled bending loading, and (2) a displacement controlled axial tension loading. A revised version of the EPRI J-integral estimation scheme is used in the development of the solutions. These solutions can be used for the entire range of elastic-plastic loading, from linear elastic, contained yielding, to large scale yielding of the crack section. Experimental data from pipes in bending were used to assess the accuracy of the compliant loading solutions. The evaluations were performed using elastic plastic J-integral (J) and tearing modulus (T) analysis methods. These solutions are shown to have good accuracy when used to predict the experimental results. The methodology and procedure can also be applied to part-throughwall cracks. These solutions have application to the leak before break fracture mechanics analyses. (orig.)

  2. Validation of the VERT wearable jump monitor device in elite youth volleyball players

    Science.gov (United States)

    Borges, Thiago O.; Moreira, Alexandre; Bacchi, Renato; Finotti1, Ronaldo L.; Ramos, Mayara; Lopes, Charles R.

    2017-01-01

    This technical report aims to determine the validity and the accuracy of the VERT Wearable Jump Monitor. The participants of this study were all experienced volleyball players from the U18 category from the Brazilian National team. To assess jump performance, the VERT scores were compared to the VERTEC (jump and reach device). Each athlete performed 3 attack and 3 block jumps in a random, counterbalanced order, and the average score was registered. In the attack jumps, the VERTEC and VERT mean ± SD scores were 70.9±8.2 and 76.3±7.5 cm, respectively, and the typical error of the estimate (TEE) as a coefficient of variation (CV) was 7.8% (90% CL 7.0 to 8.9%). VERTEC and VERT devices presented a very large Pearson’s correlation for attack jumps (r=0.75; 90% CL 0.68 to 0.81). In addition, the mean±SD block jumps were 53.7±6.1 and 58.5±5.7 cm for the VERTEC and VERT, respectively and the TEE as a CV was 7.9% (90% CL 7.1 to 8.9%). Pearson’s correlation coefficient was very large for block jumps (r=0.75; 90% CL 0.67 to 0.81). The VERT device was found to be a very practical tool to quantify jump performance in volleyball players. PMID:29158616

  3. Knee Muscular Control During Jump Landing in Multidirections

    OpenAIRE

    Sinsurin, Komsak; Vachalathiti, Roongtiwa; Jalayondeja, Wattana; Limroongreungrat, Weerawat

    2016-01-01

    Background Jump landing is a complex movement in sports. While competing and practicing, athletes frequently perform multi-planar jump landing. Anticipatory muscle activity could influence the amount of knee flexion and prepare the knee for dynamic weight bearing such as landing tasks. Objectives The aim of the present study was to examine knee muscle function and knee flexion excursion as athletes naturally performed multi-direct...

  4. Improved Maximum Strength, Vertical Jump and Sprint Performance after 8 Weeks of Jump Squat Training with Individualized Loads

    Directory of Open Access Journals (Sweden)

    Vanderka Marián, Longová Katarína, Olasz Dávid, Krčmár Matúš, Walker Simon

    2016-09-01

    Full Text Available The purpose of the study was to determine the effects of 8 weeks of jump squat training on isometric half squat maximal force production (Fmax and rate of force development over 100ms (RFD100, countermovement jump (CMJ and squat jump (SJ height, and 50 m sprint time in moderately trained men. Sixty eight subjects (~21 years, ~180 cm, ~75 kg were divided into experimental (EXP; n = 36 and control (CON, n = 32 groups. Tests were completed pre-, mid- and post-training. EXP performed jump squat training 3 times per week using loads that allowed all repetitions to be performed with ≥90% of maximum average power output (13 sessions with 4 sets of 8 repetitions and 13 sessions with 8 sets of 4 repetitions. Subjects were given real-time feedback for every repetition during the training sessions. Significant improvements in Fmax from pre- to mid- (Δ ~14%, p<0.001, and from mid- to post-training (Δ ~4%, p < 0.001 in EXP were observed. In CON significantly enhanced Fmax from pre- to mid-training (Δ ~3.5%, p < 0.05 was recorded, but no other significant changes were observed in any other test. In RFD100 significant improvements from pre- to mid-training (Δ ~27%, p < 0.001, as well as from mid- to post-training (Δ ~17%, p < 0.01 were observed. CMJ and SJ height were significantly enhanced from pre- to mid-training (Δ ~10%, ~15%, respectively, p < 0.001 but no further changes occurred from mid- to post-training. Significant improvements in 50 m sprint time from pre- to mid-training (Δ -1%, p < 0.05, and from mid- to post-training (Δ -1.9%, p < 0.001 in EXP were observed. Furthermore, percent changes in EXP were greater than changes in CON during training. It appears that using jump squats with loads that allow repetitions to be performed ≥90% of maximum average power output can simultaneously improve several different athletic performance tasks in the short-term.

  5. A valid and reliable method to measure jump-specific training and competition load in elite volleyball players.

    Science.gov (United States)

    Skazalski, C; Whiteley, R; Hansen, C; Bahr, R

    2018-05-01

    Use of a commercially available wearable device to monitor jump load with elite volleyball players has become common practice. The purpose of this study was to evaluate the validity and reliability of this device, the Vert, to count jumps and measure jump height with professional volleyball players. Jump count accuracy was determined by comparing jumps recorded by the device to jumps observed through systematic video analysis of three practice sessions and two league matches performed by a men's professional volleyball team. Jumps performed by 14 players were each coded for time and jump type and individually matched to device recorded jumps. Jump height validity of the device was examined against reference standards as participants performed countermovement jumps on a force plate and volleyball-specific jumps with a Vertec. The Vert device accurately counted 99.3% of the 3637 jumps performed during practice and match play. The device showed excellent jump height interdevice reliability for two devices placed in the same pouch during volleyball jumps (r = .99, 95% CI 0.98-0.99). The device had a minimum detectable change (MDC) of 9.7 cm and overestimated jump height by an average of 5.5 cm (95% CI 4.5-6.5) across all volleyball jumps. The Vert device demonstrates excellent accuracy counting volleyball-specific jumps during training and competition. While the device is not recommended to measure maximal jumping ability when precision is needed, it provides an acceptable measure of on-court jump height that can be used to monitor athlete jump load. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Influence of sports flooring and shoes on impact forces and performance during jump tasks.

    Directory of Open Access Journals (Sweden)

    Laurent Malisoux

    Full Text Available We aim to determine the influence of sports floorings and sports shoes on impact mechanics and performance during standardised jump tasks. Twenty-one male volunteers performed ankle jumps (four consecutive maximal bounds with very dynamic ankle movements and multi-jumps (two consecutive maximal counter-movement jumps on force plates using minimalist and cushioned shoes under 5 sports flooring (SF conditions. The shock absorption properties of the SF, defined as the proportion of peak impact force absorbed by the tested flooring when compared with a concrete hard surface, were: SF0 = 0% (no flooring, SF1 = 19%, SF2 = 26%, SF3 = 37% and SF4 = 45%. Shoe and flooring effects were compared using 2x5 repeated-measures ANOVA with post-hoc Bonferroni-corrected comparisons. A significant interaction between SF and shoe conditions was found for VILR only (p = 0.003. In minimalist shoes, SF influenced Vertical Instantaneous Loading Rate (VILR during ankle jumps (p = 0.006 and multi-jumps (p<0.001, in accordance with shock absorption properties. However, in cushioned shoes, SF influenced VILR during ankle jumps only (p<0.001. Contact Time was the only additional variable affected by SF, but only during multi-jumps in minimalist shoes (p = 0.037. Cushioned shoes induced lower VILR (p<0.001 and lower Contact Time (p≤0.002 during ankle jumps and multi-jumps compared to minimalist shoes. During ankle jumps, cushioned shoes induced greater Peak Vertical Ground Reaction Force (PVGRF, p = 0.002, greater Vertical Average Loading Rate (p<0.001, and lower eccentric (p = 0.008 and concentric (p = 0.004 work. During multi-jumps, PVGRF was lower (p<0.001 and jump height was higher (p<0.001 in cushioned compared to minimalist shoes. In conclusion, cushioning influenced impact forces during standardised jump tasks, whether it was provided by the shoes or the sports flooring. VILR is the variable that was the most affected.

  7. Detected-jump-error-correcting quantum codes, quantum error designs, and quantum computation

    International Nuclear Information System (INIS)

    Alber, G.; Mussinger, M.; Beth, Th.; Charnes, Ch.; Delgado, A.; Grassl, M.

    2003-01-01

    The recently introduced detected-jump-correcting quantum codes are capable of stabilizing qubit systems against spontaneous decay processes arising from couplings to statistically independent reservoirs. These embedded quantum codes exploit classical information about which qubit has emitted spontaneously and correspond to an active error-correcting code embedded in a passive error-correcting code. The construction of a family of one-detected-jump-error-correcting quantum codes is shown and the optimal redundancy, encoding, and recovery as well as general properties of detected-jump-error-correcting quantum codes are discussed. By the use of design theory, multiple-jump-error-correcting quantum codes can be constructed. The performance of one-jump-error-correcting quantum codes under nonideal conditions is studied numerically by simulating a quantum memory and Grover's algorithm

  8. Developing an Enhanced Lightning Jump Algorithm for Operational Use

    Science.gov (United States)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Overall Goals: 1. Build on the lightning jump framework set through previous studies. 2. Understand what typically occurs in nonsevere convection with respect to increases in lightning. 3. Ultimately develop a lightning jump algorithm for use on the Geostationary Lightning Mapper (GLM). 4 Lightning jump algorithm configurations were developed (2(sigma), 3(sigma), Threshold 10 and Threshold 8). 5 algorithms were tested on a population of 47 nonsevere and 38 severe thunderstorms. Results indicate that the 2(sigma) algorithm performed best over the entire thunderstorm sample set with a POD of 87%, a far of 35%, a CSI of 59% and a HSS of 75%.

  9. Optimisation of phase ratio in the triple jump using computer simulation.

    Science.gov (United States)

    Allen, Sam J; King, Mark A; Yeadon, M R Fred

    2016-04-01

    The triple jump is an athletic event comprising three phases in which the optimal proportion of each phase to the total distance jumped, termed the phase ratio, is unknown. This study used a whole-body torque-driven computer simulation model of all three phases of the triple jump to investigate optimal technique. The technique of the simulation model was optimised by varying torque generator activation parameters using a Genetic Algorithm in order to maximise total jump distance, resulting in a hop-dominated technique (35.7%:30.8%:33.6%) and a distance of 14.05m. Optimisations were then run with penalties forcing the model to adopt hop and jump phases of 33%, 34%, 35%, 36%, and 37% of the optimised distance, resulting in total distances of: 13.79m, 13.87m, 13.95m, 14.05m, and 14.02m; and 14.01m, 14.02m, 13.97m, 13.84m, and 13.67m respectively. These results indicate that in this subject-specific case there is a plateau in optimum technique encompassing balanced and hop-dominated techniques, but that a jump-dominated technique is associated with a decrease in performance. Hop-dominated techniques are associated with higher forces than jump-dominated techniques; therefore optimal phase ratio may be related to a combination of strength and approach velocity. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Knee movement patterns of injured and uninjured adolescent basketball players when landing from a jump: A case-control study

    Directory of Open Access Journals (Sweden)

    Grimmer Karen

    2006-03-01

    Full Text Available Abstract Background A common knee injury mechanism sustained during basketball is landing badly from a jump. Landing is a complex task and requires good coordination, dynamic muscle control and flexibility. For adolescents whose coordination and motor control has not fully matured, landing badly from a jump can present a significant risk for injury. There is currently limited biomechanical information regarding the lower limb kinetics of adolescents when jumping, specifically regarding jump kinematics comparing injured with uninjured adolescents. This study reports on an investigation of biomechanical differences in landing patterns of uninjured and injured adolescent basketball players. Methods A matched case-control study design was employed. Twenty-two basketball players aged 14–16 years participated in the study: eleven previously knee-injured and eleven uninjured players matched with cases for age, gender, weight, height and years of play, and playing for the same club. Six high-speed, three-dimensional Vicon 370 cameras (120 Hz, Vicon biomechanical software and SAS Version 8 software were employed to analyse landing patterns when subjects performed a "jump shot". Linear correlations determined functional relationships between the biomechanical performance of lower limb joints, and paired t-tests determined differences between the normalised peak biomechanical parameters. Results The average peak vertical ground reaction forces between the cases and controls were similar. The average peak ground reaction forces between the cases and controls were moderately correlated (r = -0.47. The control (uninjured players had significantly greater hip and knee flexion angles and significantly greater eccentric activity on landing than the uninjured cases (p Conclusion The findings of the study indicate that players with a history of knee injuries had biomechanically compromised landing techniques when compared with uninjured players matched for

  11. Impact of the focus of attention on vertical jump performance of junior basketball players

    Directory of Open Access Journals (Sweden)

    Manojlović Vladimir

    2013-01-01

    Full Text Available The aim of the research was to determine the impact of the focus of attention on vertical jump performance expressed through a jump height. Thirteen basketball players (body mass = 73,4 kg, height = 186,58 cm, age = 15.12 ± 0.61 y volunteered as participants. All the subject represented a club which participated in the Croatian cadets 1. league in season 2008/09, and were tested during the season. The subjects performed two experiments. In both experiments, they performed 15 repetitions of countermovement jump, whereas in one of the experiments, during the performance of the jumps they were listening to an audio record of spectators. For both type of jumps, the subjects were instructed to stay in the air as long as possible during a single jump (external focus of attention. To determine the differences between jumps, a paired-sample t-test was used with a level of statistical significance set to p ≤ 0.05. Comparison for jump height between both type of jumps revealed no statistically significant difference, although the presented difference should not be denied considering a real match conditions.

  12. Bayesian inference for Markov jump processes with informative observations.

    Science.gov (United States)

    Golightly, Andrew; Wilkinson, Darren J

    2015-04-01

    In this paper we consider the problem of parameter inference for Markov jump process (MJP) representations of stochastic kinetic models. Since transition probabilities are intractable for most processes of interest yet forward simulation is straightforward, Bayesian inference typically proceeds through computationally intensive methods such as (particle) MCMC. Such methods ostensibly require the ability to simulate trajectories from the conditioned jump process. When observations are highly informative, use of the forward simulator is likely to be inefficient and may even preclude an exact (simulation based) analysis. We therefore propose three methods for improving the efficiency of simulating conditioned jump processes. A conditioned hazard is derived based on an approximation to the jump process, and used to generate end-point conditioned trajectories for use inside an importance sampling algorithm. We also adapt a recently proposed sequential Monte Carlo scheme to our problem. Essentially, trajectories are reweighted at a set of intermediate time points, with more weight assigned to trajectories that are consistent with the next observation. We consider two implementations of this approach, based on two continuous approximations of the MJP. We compare these constructs for a simple tractable jump process before using them to perform inference for a Lotka-Volterra system. The best performing construct is used to infer the parameters governing a simple model of motility regulation in Bacillus subtilis.

  13. Specific Adaptations in Performance and Muscle Architecture After Weighted Jump-Squat vs. Body Mass Squat Jump Training in Recreational Soccer Players.

    Science.gov (United States)

    Coratella, Giuseppe; Beato, Marco; Milanese, Chiara; Longo, Stefano; Limonta, Eloisa; Rampichini, Susanna; Cè, Emiliano; Bisconti, Angela V; Schena, Federico; Esposito, Fabio

    2018-04-01

    Coratella, G, Beato, M, Milanese, C, Longo, S, Limonta, E, Rampichini, S, Cè, E, Bisconti, AV, Schena, F, and Esposito, F. Specific adaptations in performance and muscle architecture after weighted jump-squat vs. body mass squat jump training in recreational soccer players. J Strength Cond Res 32(4): 921-929, 2018-The aim of the present study was to compare the effects of weighted jump-squat training (WJST) vs. body mass squat jump training (BMSJT) on quadriceps' muscle architecture, lower-limb lean-mass (LM) and muscle strength, performance in change of direction (COD), and sprint and jump in recreational soccer players. Forty-eight healthy soccer players participated in an offseason randomized controlled trial. Before and after an 8-week training intervention, vastus lateralis pennation angle, fascicle length, muscle thickness, LM, squat 1RM, quadriceps and hamstrings isokinetic peak torque, agility T-test, 10-and 30-m sprints, and squat-jump (SJ) were measured. Although similar increases were observed in muscle thickness, fascicle length increased more in WJST (Effect size [ES] = 1.18, 0.82-1.54) than in BMSJT (ES = 0.54, 0.40-0.68), and pennation angle increased only in BMSJT (ES = 1.03, 0.78-1.29). Greater increases in LM were observed in WJST (ES = 0.44, 0.29-0.59) than in BMSJT (ES = 0.21, 0.07-0.37). The agility T-test (ES = 2.95, 2.72-3.18), 10-m (ES = 0.52, 0.22-0.82), and 30-m sprints (ES = 0.52, 0.23-0.81) improved only in WJST, whereas SJ improved in BMSJT (ES = 0.89, 0.43-1.35) more than in WJST (ES = 0.30, 0.03-0.58). Similar increases in squat 1RM and peak torque occurred in both groups. The greater inertia accumulated within the landing phase in WJST vs. BMSJT has increased the eccentric workload, leading to specific eccentric-like adaptations in muscle architecture. The selective improvements in COD in WJST may be related to the increased braking ability generated by the enhanced eccentric workload.

  14. The effects of temperature and body mass on jump performance of the locust Locusta migratoria.

    Directory of Open Access Journals (Sweden)

    Edward P Snelling

    Full Text Available Locusts jump by rapidly releasing energy from cuticular springs built into the hind femur that deform when the femur muscle contracts. This study is the first to examine the effect of temperature on jump energy at each life stage of any orthopteran. Ballistics and high-speed cinematography were used to quantify the energy, distance, and take-off angle of the jump at 15, 25, and 35°C in the locust Locusta migratoria. Allometric analysis across the five juvenile stages at 35°C reveals that jump distance (D; m scales with body mass (M; g according to the power equation D = 0.35M (0.17±0.08 (95% CI, jump take-off angle (A; degrees scales as A = 52.5M (0.00±0.06, and jump energy (E; mJ per jump scales as E = 1.91M (1.14±0.09. Temperature has no significant effect on the exponent of these relationships, and only a modest effect on the elevation, with an overall Q10 of 1.08 for jump distance and 1.09 for jump energy. On average, adults jump 87% farther and with 74% more energy than predicted based on juvenile scaling data. The positive allometric scaling of jump distance and jump energy across the juvenile life stages is likely facilitated by the concomitant relative increase in the total length (L f+t; mm of the femur and tibia of the hind leg, L f+t = 34.9M (0.37±0.02. The weak temperature-dependence of jump performance can be traced to the maximum tension of the hind femur muscle and the energy storage capacity of the femur's cuticular springs. The disproportionately greater jump energy and jump distance of adults is associated with relatively longer (12% legs and a relatively larger (11% femur muscle cross-sectional area, which could allow more strain loading into the femur's cuticular springs. Augmented jump performance in volant adult locusts achieves the take-off velocity required to initiate flight.

  15. Jump in current at the gap voltage in a superconducting junction

    International Nuclear Information System (INIS)

    Coombes, J.M.; Carbotte, J.P.

    1986-01-01

    For many materials not previously considered, we have calculated the jump, at the gap voltage, in the quasiparticle current of a tunnel junction. An empirical relationship between the jump and the effective electron-phonon coupling λ-μ/sup */ previously established is confirmed. Further, a new and equally as accurate correlation is found with the strong coupling index T/sub c//ω/sub ln/, where T/sub c/ is the critical temperature and ω/sub ln/ a specific characteristic phonon energy. A simple formula for the jump which includes a strong-coupling correction is derived and found to fit the observed correlation well. Finally, we study the effect on the jump of unusual values of Coulomb pseudopotential μ/sup */. Also a δ-function electron-phonon spectral density α 2 F(ω) is used to help in the understanding of the range of values that is possible for the jump when α 2 F(ω) is not restricted to realistic shapes

  16. Study of density jump in helicon-wave induced H2 plasma

    International Nuclear Information System (INIS)

    Jiang Fan; Cheng Xinlu; Xiong Zhenwei; Wu Weidong; Wang Yuying; Gao Yingxue; Dai Yang

    2012-01-01

    Hydrogen plasmas electron density and electron energy distribution function EEDF were studied with Langmuir probe. Two jumps were observed in the variation of the electron density with the radio frequency power. The relative intensity ratio of hydrogen plasmas spectrum line H α , H β and H γ validated this phenomenon. Two density jumps illuminated the transition of discharge mode,which labeled as capacitive, inductive and helicon-wave mode. In this work, the density jumps are explained from two sides, one is the interaction between electrons and hydrogen molecules, the other is Nagoya type III (N-type) antenna-plasma coupling. With the increase of radiofrequency power, the interaction between electron and hydrogen molecule has been enhanced which causes the electron density jumps. The antenna couples well to plasmas when transverse field E y is maximum, and the wave vector of k z locates at π/l a or 3π/l a , corresponding to the first and second density jump. (authors)

  17. Biomechanical aspects of new techniques in alpine skiing and ski-jumping.

    Science.gov (United States)

    Müller, Erich; Schwameder, Hermann

    2003-09-01

    There have been considerable changes in equipment design and movement patterns in the past few years both in alpine skiing and ski-jumping. These developments have been matched by methods of analysing movements in field conditions. They have yielded new insights into the skills of these specific winter sports. Analytical techniques have included electromyography, kinetic and kinematic methods and computer simulations. Our aim here is to review biomechanical research in alpine skiing and ski-jumping. We present in detail the techniques currently used in alpine skiing (carving technique) and ski-jumping (V-technique), primarily using data from the authors' own research. Finally, we present a summary of the most important results in biomechanical research both in alpine skiing and ski-jumping. This includes an analysis of specific conditions in alpine skiing (type of turn, terrain, snow, speed, etc.) and the effects of equipment, materials and individual-specific abilities on performance, safety and joint loading in ski-jumping.

  18. Factors that influence ground reaction force profiles during counter movement jumping.

    Science.gov (United States)

    Eagles, Alexander N; Sayers, Mark G; Lovell, Dale I

    2017-05-01

    The purpose of this study was to examine how hip, knee and ankle kinetics and kinematics influence effective impulse production during countermovement jumps. Eighteen semi-professional soccer players (22.8±2.2 years) volunteered to participate in the study. Participants completed three maximal countermovement jumps on two force platforms (1000 Hz) that were linked to a nine camera infrared motion capture system (500 Hz). Kinetic and kinematic data revealed jumpers who fail to achieve uniform ground reaction force curves that result in optimal impulse production during their jump always display hip adduction and or hip internal rotation during the concentric phase of the countermovement jump. The variation of hip adduction and or internal rotation likely represents failed joint transition during the concentric phase of the countermovement jump and appears to account for a non-uniform force trace seen in these jumpers. The findings suggest rehabilitation and conditioning exercises for injury prevention and performance may benefit from targeting frontal and transverse plane movement.

  19. Inference for the jump part of quadratic variation of Itô semimartingales

    DEFF Research Database (Denmark)

    Veraart, Almut

    Recent research has focused on modelling asset prices by Itô semimartingales. In such a modelling framework, the quadratic variation consists of a continuous and a jump component. This paper is about inference on the jump part of the quadratic variation, which can be estimated by the difference...... of realised variance and realised multipower variation. The main contribution of this paper is twofold. First, it provides a bivariate asymptotic limit theory for realised variance and realised multipower variation in the presence of jumps. Second, this paper presents new, consistent estimators for the jump...

  20. Inference for the jump part of quadratic variation of Itô semimartingales

    DEFF Research Database (Denmark)

    Veraart, Almut

    2010-01-01

    Recent research has focused on modeling asset prices by Itô semimartingales. In such a modeling framework, the quadratic variation consists of a continuous and a jump component. This paper is about inference on the jump part of the quadratic variation, which can be estimated by the difference...... of realized variance and realized multipower variation. The main contribution of this paper is twofold. First, it provides a bivariate asymptotic limit theory for realized variance and realized multipower variation in the presence of jumps. Second, this paper presents new, consistent estimators for the jump...

  1. Impact of Androstenone on Leash Pulling and Jumping Up in Dogs

    Directory of Open Access Journals (Sweden)

    Glenna Pirner

    2016-05-01

    Full Text Available Dogs are relinquished to shelters due to behavioral problems, such as leash pulling and jumping up. Interomones are chemical cues produced by one species that elicit a response in a different species. We reported earlier that androstenone, a swine sex pheromone, acts as an interomone to reduce barking in dogs. Here we report two models using 10 dogs/study: a dog jumping and a dog walking model. For the leash-pulling model, each time the dog pulled on the leash the walker either did nothing (NOT, or sprayed the dog with water (H2O, androstenone + water (ANH, androstenone 0.1 µg/mL (AND1, or androstenone 1.0 µg/mL (AND2. The number of pulls during each walk was counted. For the jumping up model, each time the dog jumped the researcher did nothing (NOT, or sprayed the dog with H2O, ANH, AND1, or AND2. The number of jumps and the time between jumps were recorded. In Study 1, ANH, AND1, and AND2 each reduced leash pulling more than NOT and H2O (p< 0.01. In Study 2, all treatments were effective in reducing jumping up behavior. Androstenone reduced jumping up, but not beyond that elicited by a spray of water alone. We conclude that androstenone in multiple delivery vehicles reduced leash pulling. The burst of air intended as a disruptive stimulus in the correction sprays may be too harsh for more sensitive dogs, and as such use of these sprays is cautioned in these animals. For other dogs, this interomone can be used to stop some behavior immediately or as a part of a training program to reduce undesirable behavior.

  2. Compact optical system for measuring linear and angular displacement of solid structures

    DEFF Research Database (Denmark)

    Jakobsen, M.L.; Larsen, H.E.; Hanson, Steen Grüner

    2004-01-01

    and rotation of the target. The presented free space propagation design can provide a sensor with no direct sensitivity on the working distance. The electrical signals from the sensor are processed with a digital algorithm, based on zero-crossings detection to provide real-time displacement measurements....... The spatial filter of the sensor is characterized here, and the precision of the sensor, integrated with a processor, which applies zero-crossing detection to the signal, is considered. © 2004 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted...

  3. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    Science.gov (United States)

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  4. The kinematics of swimming and relocation jumps in copepod nauplii

    DEFF Research Database (Denmark)

    Borg, Marc Andersen; Bruno, Eleonora; Kiørboe, Thomas

    2012-01-01

    Copepod nauplii move in a world dominated by viscosity. Their swimming-by-jumping propulsion mode, with alternating power and recovery strokes of three pairs of cephalic appendages, is fundamentally different from the way other microplankters move. Protozoans move using cilia or flagella, and cop......Copepod nauplii move in a world dominated by viscosity. Their swimming-by-jumping propulsion mode, with alternating power and recovery strokes of three pairs of cephalic appendages, is fundamentally different from the way other microplankters move. Protozoans move using cilia or flagella...... of pelagic copepods: Temora longicornis, Oithona davisae and Acartia tonsa. The kinematics of jumping is similar between the three species. Jumps result in a very erratic translation with no phase of passive coasting and the nauplii move backwards during recovery strokes. This is due to poorly synchronized...... recovery strokes and a low beat frequency relative to the coasting time scale. For the same reason, the propulsion efficiency of the nauplii is low. Given the universality of the nauplius body plan, it is surprising that they seem to be inefficient when jumping, which is different from the very efficient...

  5. Variability of Jump Kinetics Related to Training Load in Elite Female Basketball.

    Science.gov (United States)

    Legg, Jan; Pyne, David B; Semple, Stuart; Ball, Nick

    2017-11-04

    The purpose of this study was to quantify changes in jump performance and variability in elite female basketballers. Junior and senior female representative basketball players ( n = 10) aged 18 ± 2 years participated in this study. Countermovement jump (CMJ) data was collected with a Gymaware™ optical encoder at pre-, mid-, and post-season time points across 10 weeks. Jump performance was maintained across the course of the full season (from pre to post). Concentric peak velocity, jump height, and dip showed the most stability from pre- to post-season, with the %CV ranging from 5.6⁻8.9%. In the period of the highest training load (mid-season), the variability of within-subject performance was reduced by approximately 2⁻4% in all measures except for jump height. Altered jump mechanics through a small (0.26 effect size) increase in dip were evident at mid-season, suggesting that CMJ analysis is useful for coaches to use as an in-season monitoring tool. The highest coefficient of variation (8⁻22%CV) in inter-set scores in all measures except eccentric peak velocity also occurred mid-season. It appears that in-season load not only impairs jump performance, but also movement variability in basketball players.

  6. Variability of Jump Kinetics Related to Training Load in Elite Female Basketball

    Directory of Open Access Journals (Sweden)

    Jan Legg

    2017-11-01

    Full Text Available The purpose of this study was to quantify changes in jump performance and variability in elite female basketballers. Junior and senior female representative basketball players (n = 10 aged 18 ± 2 years participated in this study. Countermovement jump (CMJ data was collected with a Gymaware™ optical encoder at pre-, mid-, and post-season time points across 10 weeks. Jump performance was maintained across the course of the full season (from pre to post. Concentric peak velocity, jump height, and dip showed the most stability from pre- to post-season, with the %CV ranging from 5.6–8.9%. In the period of the highest training load (mid-season, the variability of within-subject performance was reduced by approximately 2–4% in all measures except for jump height. Altered jump mechanics through a small (0.26 effect size increase in dip were evident at mid-season, suggesting that CMJ analysis is useful for coaches to use as an in-season monitoring tool. The highest coefficient of variation (8–22%CV in inter-set scores in all measures except eccentric peak velocity also occurred mid-season. It appears that in-season load not only impairs jump performance, but also movement variability in basketball players.

  7. Effects of kettlebell training on postural coordination and jump performance

    DEFF Research Database (Denmark)

    Jay, Kenneth; Jakobsen, Markus Due; Sundstrup, Emil

    2013-01-01

    ABSTRACT: The aim of this study was to investigate the effectiveness of a worksite intervention using kettlebell training to improve postural reactions to perturbation and jump performance.This single-blind randomized controlled trial involved 40 adults (n=40) from occupations with a high....... The outcome measures were postural reactions to sudden perturbation and maximal countermovement jump height.Compared to the control group, the training group significant decreased stopping time following perturbation (-109ms, 95% CI [-196:-21]). Jump height increased significantly in the training group (1.5cm...

  8. Rate Theory for Correlated Processes: Double Jumps in Adatom Diffusion

    DEFF Research Database (Denmark)

    Jacobsen, J.; Jacobsen, Karsten Wedel; Sethna, J.

    1997-01-01

    We study the rate of activated motion over multiple barriers, in particular the correlated double jump of an adatom diffusing on a missing-row reconstructed platinum (110) surface. We develop a transition path theory, showing that the activation energy is given by the minimum-energy trajectory...... which succeeds in the double jump. We explicitly calculate this trajectory within an effective-medium molecular dynamics simulation. A cusp in the acceptance region leads to a root T prefactor for the activated rate of double jumps. Theory and numerical results agree....

  9. Jumps in the curve of creep of the stainless steel

    International Nuclear Information System (INIS)

    Silveira, T.L.; Monteiro, S.N.

    The discontinuous flow observed in creep for several stainless steels at certain streels conditions in the interval of temperatures from 550 to 800 0 C has been investigated. This phenomenon appears as repetitive jumps with strain and stress increments that could be evaluated and related to the tests variables. The stress increment increases, consistently, with the stress level at the jump. This Δo versus sigma relation is due to strain aging effects and is a consequence of the variation of the stain rate during the deformation band propagation which causes the jump [pt

  10. Optimization of geometry of annular seat valves suitable for Digital Displacement fluid power pumps/motors

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    Digital Displacement Fluid Power is an upcoming technology setting new standards for the achievable efficiency of fluid power pumps and motors. The core element of the Digital Displacement technology is high performance electronically controlled seat valves, which must exhibit very low flow...... work an annular seat valve suitable for use in Digital Displacement units is considered, and the ring geometry is optimized using finite element analysis including non-linear material behaviour, contact elements and fluid pressure penetrating load, closely reflecting the actual load of the seat valve...

  11. Displacement sensor for measurement of fuel rod elongation in the LOFT reactors

    International Nuclear Information System (INIS)

    Billeter, T.R.

    1979-09-01

    Qualification tests conducted for a period of 700 hours of each of three displacement measuring (LVDT) sensors confirmed applicability of the design for use in the Loss-of-Fluid-Test (LOFT) reactor. Operationally, the sensor satisfies all specified requirements for LOFT. Even for imposed temperature transients at rates up to 100 0 F/s, the indicated displacement remained within the allowed maximum error band of +- 10% of reading. The 0.6-inch O.D. by 5.5-inch long sensor exhibited a linearly related signal output variation for displacement variations of up to 1-inch range. Long term operation at temperatures of 100 0 F to 800 0 F caused no perceptible permanent change of operating characteristics

  12. MENINGKATKAN HASIL BELAJAR LOMPAT JAUH GAYA JONGKOK MELALUI PERMAINAN JUMP BOX

    Directory of Open Access Journals (Sweden)

    Ali Khafidin S

    2015-08-01

    Full Text Available The aim in this study was to determine the learning outcome long jump squat style through play approach jump box on fourth grade students N Yamansari 01 2013/2014 academic year. This research is a classroom action research. This study consisted of two cycles. Each cycle consists of planning, action, observation and reflection. This research was conducted in the District 01 Elementary School Yamansari Lebaksiu Tegal with research subjects IV class with 40 students consisting of 21 male students and 19 female students. The research instrument used is the observation sheet student activity, teacher observation sheet activities and practice tests. Technique data analysis was done descriptively and through hitingan predetermined formula. The results showed that the learning outcomes long jump squat style by using a jump box game this looks positive impact on students' mastery learning outcomes that exceed a predetermined KKM is 75 has risen in the first cycle of learning completeness reached 72.50% with a mean value -rata 78, while in the second cycle learning completeness reached 92.50% with an average value of 81.67. It can be concluded that learning style long jump squat jump box game approach has a positive influence, which can improve learning outcomes, interest and motivation to learn.

  13. Multi-link laser interferometry architecture for interspacecraft displacement metrology

    Science.gov (United States)

    Francis, Samuel P.; Lam, Timothy T.-Y.; McClelland, David E.; Shaddock, Daniel A.

    2018-03-01

    Targeting a future Gravity Recovery and Climate Experiment (GRACE) mission, we present a new laser interferometry architecture that can be used to recover the displacement between two spacecraft from multiple interspacecraft measurements. We show it is possible to recover the displacement between the spacecraft centers of mass in post-processing by forming linear combinations of multiple, spatially offset, interspacecraft measurements. By canceling measurement error due to angular misalignment of the spacecraft, we remove the need for precise placement or alignment of the interferometer, potentially simplifying spacecraft integration. To realize this multi-link architecture, we propose an all-fiber interferometer, removing the need for any ultrastable optical components such as the GRACE Follow-On mission's triple mirror assembly. Using digitally enhanced heterodyne interferometry, the number of links is readily scalable, adding redundancy to our measurement. We present the concept, an example multi-link implementation and the signal processing required to recover the center of mass displacement from multiple link measurements. Finally, in a simulation, we analyze the limiting noise sources in a 9 link interferometer and ultimately show we can recover the 80 {nm}/√{ {Hz}} displacement sensitivity required by the GRACE Follow-On laser ranging interferometer.

  14. The Impact of Jumps and Leverage in Forecasting Co-Volatility

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2015-01-01

    markdownabstract__Abstract__ The paper investigates the impact of jumps in forecasting co-volatility, accommodating leverage effects. We modify the jump-robust two time scale covariance estimator of Boudt and Zhang (2013) such that the estimated matrix is positive definite. Using this

  15. Estimation and prediction under local volatility jump-diffusion model

    Science.gov (United States)

    Kim, Namhyoung; Lee, Younhee

    2018-02-01

    Volatility is an important factor in operating a company and managing risk. In the portfolio optimization and risk hedging using the option, the value of the option is evaluated using the volatility model. Various attempts have been made to predict option value. Recent studies have shown that stochastic volatility models and jump-diffusion models reflect stock price movements accurately. However, these models have practical limitations. Combining them with the local volatility model, which is widely used among practitioners, may lead to better performance. In this study, we propose a more effective and efficient method of estimating option prices by combining the local volatility model with the jump-diffusion model and apply it using both artificial and actual market data to evaluate its performance. The calibration process for estimating the jump parameters and local volatility surfaces is divided into three stages. We apply the local volatility model, stochastic volatility model, and local volatility jump-diffusion model estimated by the proposed method to KOSPI 200 index option pricing. The proposed method displays good estimation and prediction performance.

  16. AGS tune jump power supply design and test

    International Nuclear Information System (INIS)

    Mi, J.; Glenn, J.W.; Huang, H.; Marneris, I.; Rosas, P.; Sandberg, J.; Tan, Y.; Zhang, W.

    2011-01-01

    A horizontal tune jump system has been installed to overcome the horizontal intrinsic spin resonances, which requires jumping the horizontal tune 0.04 units 82 times, 41 up and 41 down. Two quadruple magnets have been installed in AGS ring to perform this. The pulsed magnet current ranges from about 140A near injection to about 1400A later. The current pulse rise and fall time are around 100uS and flat tops time is around 4mS. These quadruples have separated supplies. This tune jump pulse power supply employees all semiconductor parts as well as the main switches. During dummy load and magnet testing, the test results showed that the power supply could meet the specification. This article will describe some details of power supply simulation, design and testing. Some test waveforms and pictures are presented in this paper.

  17. The Impact of Jumps and Leverage in Forecasting Co-Volatility

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2015-01-01

    markdownabstract__Abstract__ The paper investigates the impact of jumps in forecasting co-volatility, accommodating leverage effects. We modify the jump-robust two time scale covariance estimator of Boudt and Zhang (2013)such that the estimated matrix is positive definite. Using this approach we

  18. On Pathos Adjacency Cut Vertex Jump Graph of a Tree

    OpenAIRE

    Nagesh.H.M; R.Chandrasekhar

    2014-01-01

    In this paper the concept of pathos adjacency cut vertex jump graph PJC(T) of a tree T is introduced. We also present a characterization of graphs whose pathos adjacency cut vertex jump graphs are planar, outerplanar, minimally non-outerplanar, Eulerian and Hamiltonian.

  19. Prolactin, thyrotropin, and growth hormone release during stress associated with parachute jumping.

    Science.gov (United States)

    Noel, G L; Dimond, R C; Earll, J M; Frantz, A G

    1976-05-01

    Prolactin, growth hormone, and thyrotropin (TSH) release during the stress of parachute jumping has been evaluated in 14 male subjects. Subjects were studied at several times before and immediately after their first military parachute jump. All three hormones had risen significantly 1 to 14 min after the jump, compared to mean levels measured immediately beforehand. Earlier studies of physical exercise by ourselves and others would suggest that emotional stress played a role in producing changes of this magnitude. We conclude that prolactin, TSH, and growth hormone are released in physiologically significant amounts in association with the stress of parachute jumping.

  20. Discrete Element Method simulations of standing jumps in granular flows down inclines

    Directory of Open Access Journals (Sweden)

    Méjean Ségolène

    2017-01-01

    Full Text Available This paper describes a numerical set-up which uses Discrete Element Method to produce standing jumps in flows of dry granular materials down a slope in two dimensions. The grain-scale force interactions are modeled by a visco-elastic normal force and an elastic tangential force with a Coulomb threshold. We will show how it is possible to reproduce all the shapes of the jumps observed in a previous laboratory study: diffuse versus steep jumps and compressible versus incompressible jumps. Moreover, we will discuss the additional measurements that can be done thanks to discrete element modelling.

  1. Ski jump takeoff performance predictions for a mixed-flow, remote-lift STOVL aircraft

    Science.gov (United States)

    Birckelbaw, Lourdes G.

    1992-01-01

    A ski jump model was developed to predict ski jump takeoff performance for a short takeoff and vertical landing (STOVL) aircraft. The objective was to verify the model with results from a piloted simulation of a mixed flow, remote lift STOVL aircraft. The prediction model is discussed. The predicted results are compared with the piloted simulation results. The ski jump model can be utilized for basic research of other thrust vectoring STOVL aircraft performing a ski jump takeoff.

  2. Correlation between toe flexor strength and ankle dorsiflexion ROM during the countermovement jump.

    Science.gov (United States)

    Yun, Sung Joon; Kim, Moon-Hwan; Weon, Jong-Hyuck; Kim, Young; Jung, Sung-Hoon; Kwon, Oh-Yun

    2016-08-01

    [Purpose] This study assessed the relationships between peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Subjects and Methods] Eighteen healthy volunteers participated in the study. Each participant completed tests for peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Results] The results showed (1) a moderate correlation between ankle dorsiflexion range of motion and countermovement jump height and (2) a high correlation between peak first toe flexor muscle strength and countermovement jump height. Peak first toe flexor muscle strength and ankle dorsiflexion range of motion are the main contributors to countermovement jump performance. [Conclusion] These findings indicate that the measurement of peak first toe flexor muscle strength and ankle dorsiflexion range of motion may be useful in clinical practice for improving jump performance in athletes training for sports such as volleyball and basketball.

  3. RELATIONS OF THE MORPHOLOGICAL CHARACTERISTICS AND MOTOR ABILITIES WITH JUMP FOWRARD AND TRIPLE JUMP OF STUDENTS AT THE FACULTY OF SCIENCE AND SPORT

    Directory of Open Access Journals (Sweden)

    Rashiti Naser

    2011-09-01

    Full Text Available In order to examine the impact of anthropometrical characteristics and motor skills during the tests’ implementation of the jump forward and triple jump from place, the experimental research was carried out on a sample of 100 second year students from the Faculty of Physical Education and Sport in Prishtine. For the purposes of this study were measured eight anthropometrical characteristics and ten tests for assessing motor skills, which made the predictor system of variables. To assess the explosive force of the type of jumpiness, applied were tests long jump forward and triple jump from place. Data was processed with the basic descriptive statistical parameters and regression analysis. Based on the results of this research and the discussion ,can be concluded that the applied system of predictor motor tests, have significant influence on the manifestation of the explosive force of students at the Faculty of Physical Education and Sport in Prishtine, i.e., it is possible to predict (forecast the results of tests for explosive power based on the predictor system of respondents

  4. Ballistic stretching increases flexibility and acute vertical jump height when combined with basketball activity.

    Science.gov (United States)

    Woolstenhulme, Mandy T; Griffiths, Christine M; Woolstenhulme, Emily M; Parcell, Allen C

    2006-11-01

    Stretching is often included as part of a warm-up procedure for basketball activity. However, the efficacy of stretching with respect to sport performance has come into question. We determined the effects of 4 different warm-up protocols followed by 20 minutes of basketball activity on flexibility and vertical jump height. Subjects participated in 6 weeks (2 times per week) of warm-up and basketball activity. The warm-up groups participated in ballistic stretching, static stretching, sprinting, or basketball shooting (control group). We asked 3 questions. First, what effect does 6 weeks of warm-up exercise and basketball play have on both flexibility and vertical jump height? We measured sit and reach and vertical jump height before (week -1) and after (week 7) the 6 weeks. Flexibility increased for the ballistic, static, and sprint groups compared to the control group (p vertical jump height did not change for any of the groups. Our second question was what is the acute effect of each warm-up on vertical jump height? We measured vertical jump immediately after the warm-up on 4 separate occasions during the 6 weeks (at weeks 0, 2, 4, and 6). Vertical jump height was not different for any group. Finally, our third question was what is the acute effect of each warm-up on vertical jump height following 20 minutes of basketball play? We measured vertical jump height immediately following 20 minutes of basketball play at weeks 0, 2, 4, and 6. Only the ballistic stretching group demonstrated an acute increase in vertical jump 20 minutes after basketball play (p basketball play, as it is beneficial to vertical jump performance.

  5. Hydraulic jump and Bernoulli equation in nonlinear shallow water model

    Science.gov (United States)

    Sun, Wen-Yih

    2018-06-01

    A shallow water model was applied to study the hydraulic jump and Bernoulli equation across the jump. On a flat terrain, when a supercritical flow plunges into a subcritical flow, discontinuity develops on velocity and Bernoulli function across the jump. The shock generated by the obstacle may propagate downstream and upstream. The latter reflected from the inflow boundary, moves downstream and leaves the domain. Before the reflected wave reaching the obstacle, the short-term integration (i.e., quasi-steady) simulations agree with Houghton and Kasahara's results, which may have unphysical complex solutions. The quasi-steady flow is quickly disturbed by the reflected wave, finally, flow reaches steady and becomes critical without complex solutions. The results also indicate that Bernoulli function is discontinuous but the potential of mass flux remains constant across the jump. The latter can be used to predict velocity/height in a steady flow.

  6. Swarm algorithms with chaotic jumps for optimization of multimodal functions

    Science.gov (United States)

    Krohling, Renato A.; Mendel, Eduardo; Campos, Mauro

    2011-11-01

    In this article, the use of some well-known versions of particle swarm optimization (PSO) namely the canonical PSO, the bare bones PSO (BBPSO) and the fully informed particle swarm (FIPS) is investigated on multimodal optimization problems. A hybrid approach which consists of swarm algorithms combined with a jump strategy in order to escape from local optima is developed and tested. The jump strategy is based on the chaotic logistic map. The hybrid algorithm was tested for all three versions of PSO and simulation results show that the addition of the jump strategy improves the performance of swarm algorithms for most of the investigated optimization problems. Comparison with the off-the-shelf PSO with local topology (l best model) has also been performed and indicates the superior performance of the standard PSO with chaotic jump over the standard both using local topology (l best model).

  7. Increased medial foot loading during drop jump in subjects with patellofemoral pain

    DEFF Research Database (Denmark)

    Rathleff, Michael S; Richter, Camilla; Brushøj, Christoffer

    2014-01-01

    PURPOSE: To compare medial-to-lateral plantar forces during drop jump and single leg squat in individuals with and without patellofemoral pain. METHODS: This cross-sectional study compared 23 young adults with patellofemoral pain to 20 age- and sex-matched controls without knee pain. The plantar...... pressure distribution was collected during drop jump and single leg squat using pressure-sensitive Pedar insoles, inserted into a standard flat shoe. The primary outcome was the medial-to-lateral force, quantified as the peak force under the medial forefoot as the percentage of force under the total...... forefoot during drop jump. Secondary outcomes included peak medial-to-lateral force during single leg squat and mean forces during drop jump and single leg squat. RESULTS: The primary outcome showed that individuals with patellofemoral pain had a 22 % higher medial-to-lateral peak force during drop jump...

  8. Crack displacement sensing and measurement in concrete using circular grating moire fringes and pattern matching

    Science.gov (United States)

    Chan, H. M.; Yen, K. S.; Ratnam, M. M.

    2008-09-01

    The moire method has been extensively studied in the past and applied in various engineering applications. Several techniques are available for generating the moire fringes in these applications, which include moire interferometry, projection moire, shadow moire, moire deflectometry etc. Most of these methods use the superposition of linear gratings to generate the moire patterns. The use of non-linear gratings, such as circular, radial and elongated gratings has received less attention from the research community. The potential of non-linear gratings in engineering measurement has been realized in a limited number of applications, such as rotation measurement, measurement of linear displacement, measurement of expansion coefficients of materials and measurement of strain distribution. In this work, circular gratings of different pitch were applied to the sensing and measurement of crack displacement in concrete structures. Gratings of pitch 0.50 mm and 0.55 mm were generated using computer software and attached to two overlapping acrylic plates that were bonded to either side of the crack. The resulting moire patterns were captured using a standard digital camera and compared with a set of reference patterns generated using a precision positioning stage. Using several image pre-processing stages, such as filtering and morphological operations, and pattern matching the magnitude displacements along two orthogonal axes can be detected with a resolution of 0.05 mm.

  9. Compendium of Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA

    Science.gov (United States)

    Cochran, Donna J.; Boutte, Alvin J.; Chen, Dakai; Pellish, Jonathan A.; Ladbury, Raymond L.; Casey, Megan C.; Campola, Michael J.; Wilcox, Edward P.; Obryan, Martha V.; LaBel, Kenneth A.; hide

    2012-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear, and hybrid devices.

  10. Physical and Dynamical Linkages Between Lightning Jumps and Storm Conceptual Models

    Science.gov (United States)

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.

    2014-01-01

    The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric

  11. pH-jump induced α-helix folding of poly-L-glutamic acid

    International Nuclear Information System (INIS)

    Donten, Mateusz L.; Hamm, Peter

    2013-01-01

    Highlights: ► pH-jump as truly biomimetic tool to initiate non-equilibrium dynamics of biomolecules. ► Design criteria to widen the applicability of pH-jumps are developed. ► Folding of poly-L-Glu in dependence of starting pH, pH jump size and helix length. ► Length dependence provides strong evidence for a nucleation–propagation scenario. - Abstract: pH jumps are a truly biomimetic technique to initiate non-equilibrium dynamics of biomolecules. In this work, the pH jump induced α-helix folding of poly-L-glutamic acid is investigated upon proton release from o-nitrobenzaldehyde. The aim of this work is twofold: On the one hand, design criteria of pH jump experiments are discussed, on the other hand, the folding mechanism of poly-L-glutamic acid is clarified by probing the IR response of the amide I band. Its folding kinetics is studied in dependence of the starting pD, the size of the pD jump and the length of the helix. While no dependence on the first two parameters could be detected, the folding time varies from 0.6 μs to 1.8 μs for helix lengths of 20 residue to 440 residue, respectively. It converges to a long-length limit at about 50 residue, a result which is attributed to a nucleation–propagation mechanism

  12. Adaptive spacetime method using Riemann jump conditions for coupled atomistic-continuum dynamics

    International Nuclear Information System (INIS)

    Kraczek, B.; Miller, S.T.; Haber, R.B.; Johnson, D.D.

    2010-01-01

    We combine the Spacetime Discontinuous Galerkin (SDG) method for elastodynamics with the mathematically consistent Atomistic Discontinuous Galerkin (ADG) method in a new scheme that concurrently couples continuum and atomistic models of dynamic response in solids. The formulation couples non-overlapping continuum and atomistic models across sharp interfaces by weakly enforcing jump conditions, for both momentum balance and kinematic compatibility, using Riemann values to preserve the characteristic structure of the underlying hyperbolic system. Momentum balances to within machine-precision accuracy over every element, on each atom, and over the coupled system, with small, controllable energy dissipation in the continuum region that ensures numerical stability. When implemented on suitable unstructured spacetime grids, the continuum SDG model offers linear computational complexity in the number of elements and powerful adaptive analysis capabilities that readily bridge between atomic and continuum scales in both space and time. A special trace operator for the atomic velocities and an associated atomistic traction field enter the jump conditions at the coupling interface. The trace operator depends on parameters that specify, at the scale of the atomic spacing, the position of the coupling interface relative to the atoms. In a key finding, we demonstrate that optimizing these parameters suppresses spurious reflections at the coupling interface without the use of non-physical damping or special boundary conditions. We formulate the implicit SDG-ADG coupling scheme in up to three spatial dimensions, and describe an efficient iterative solution scheme that outperforms common explicit schemes, such as the Velocity Verlet integrator. Numerical examples, in 1dxtime and employing both linear and nonlinear potentials, demonstrate the performance of the SDG-ADG method and show how adaptive spacetime meshing reconciles disparate time steps and resolves atomic-scale signals in

  13. Displacement Parameter Inversion for a Novel Electromagnetic Underground Displacement Sensor

    Directory of Open Access Journals (Sweden)

    Nanying Shentu

    2014-05-01

    Full Text Available Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA. Based on that work, this paper presents an underground displacement inversion approach named “EELA forward modeling-approximate inversion method”. Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0–100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications.

  14. Loaded and unloaded jump performance of top-level volleyball players from different age categories

    Science.gov (United States)

    Kitamura, Katia; Pereira, Lucas Adriano; Kobal, Ronaldo; Cal Abad, Cesar Cavinato; Finotti, Ronaldo; Nakamura, Fábio Yuzo

    2017-01-01

    The aim of this study was to investigate the differences in loaded and unloaded jump performances between different age categories of top-level volleyball players from the same club. Forty-three volleyball players were divided into four age groups: under-17, under-19, under-21 and professional. Vertical jumping height for squat jump (SJ), countermovement jump (CMJ) and CMJ with arm swing (CMJa) and mean propulsive velocity (MPV) in the loaded jump squat exercise with 40% of the athlete’s body mass were compared among the different age categories, considering body mass as a covariate. SJ and CMJ jump height values were higher for professional and under-21 players than under-17 players (pvolleyball players. Therefore, to increase the vertical jumping ability of these team sport athletes throughout their long-term development, coaches and strength and conditioning professionals are encouraged to implement consistent neuromuscular training strategies, in accordance with the specific needs and physiological characteristics of each age group. PMID:29158621

  15. Mechanism design and optimization of a bionic kangaroo jumping robot

    Science.gov (United States)

    Zhang, Y. H.; Zheng, L.; Ge, W. J.; Zou, Z. H.

    2018-03-01

    Hopping robots have broad application prospects in the fields of military reconnaissance, field search or life rescue. However, current hopping robots still face the problems of weak jumping ability and load bearing. Inspired by the jumping of kangaroo, we design a Kangaroo hopping robot “Zbot”, which has two degrees of freedom and three joints. The geared five-bar mechanism is used to decouple the knee and ankle joints of the robot. In order to get a bionic performance, the coupling mechanism parameters are optimized. The simulation and experiments show that the robot has an excellent jumping ability and load capacity.

  16. Mechanical parameters and flight phase characteristics in aquatic plyometric jumping.

    Science.gov (United States)

    Louder, Talin J; Searle, Cade J; Bressel, Eadric

    2016-09-01

    Plyometric jumping is a commonly prescribed method of training focused on the development of reactive strength and high-velocity concentric power. Literature suggests that aquatic plyometric training may be a low-impact, effective supplement to land-based training. The purpose of the present study was to quantify acute, biomechanical characteristics of the take-off and flight phase for plyometric movements performed in the water. Kinetic force platform data from 12 young, male adults were collected for counter-movement jumps performed on land and in water at two different immersion depths. The specificity of jumps between environmental conditions was assessed using kinetic measures, temporal characteristics, and an assessment of the statistical relationship between take-off velocity and time in the air. Greater peak mechanical power was observed for jumps performed in the water, and was influenced by immersion depth. Additionally, the data suggest that, in the water, the statistical relationship between take-off velocity and time in air is quadratic. Results highlight the potential application of aquatic plyometric training as a cross-training tool for improving mechanical power and suggest that water immersion depth and fluid drag play key roles in the specificity of the take-off phase for jumping movements performed in the water.

  17. Afrika Statistika ISSN 2316-090X Jump Resonance in Wind-Felled ...

    African Journals Online (AJOL)

    jump function. Duffing's model, describing function and Chebyshev polynomials were used .... this study to develop polynomial growth equation for plantains and plantain jump resonance ..... New technologies to increase root health and crop.

  18. Effect of cluster sets on plyometric jump power.

    Science.gov (United States)

    Moreno, Steven D; Brown, Lee E; Coburn, Jared W; Judelson, Daniel A

    2014-09-01

    Cluster sets may lead to enhanced power (PW) production by allowing for partial recovery. The purpose of this study was to determine the effects of cluster sets vs. traditional sets on plyometric jump PW, ground reaction force, take-off velocity (TOV), and jump height (JH). Twenty-six recreationally trained college men completed 3 testing sessions, which involved performing repeated body-weight (BW) plyometric squat jumps across 3 different set configurations: traditional (2 sets of 10 with 90-second rest between sets), cluster 1 (4 sets of 5 with 30-second rest between sets), and cluster 2 (10 sets of 2 with 10-second rest between sets). Ground reaction force results demonstrated no interaction or main effect for condition, but there was a significant (p ≤ 0.05) main effect for repetition, where repetition 1 was significantly less than repetitions 3-5, 7-10, 12-15, and 17-20. For TOV, PW, and JH, there were significant interactions. Take-off velocity resulted in the following: Traditional, repetition 1 was significantly greater than repetitions 7-10 and 17-20, but was significantly less than repetition 13; cluster 1, repetition 1 was significantly less than repetitions 2-5; and cluster 2, there were no significant differences. Power resulted in the following: Traditional, repetition 1 was significantly greater than repetitions 4-10 and 14-20; cluster 1, repetition 1 was significantly greater than repetitions 7-10 and 12-20; and cluster 2, repetition 1 was significantly greater than repetitions 3, 6-18, and 20. Jump height resulted in the following: Traditional, repetition 1 was significantly greater than repetitions 18-20, but was significantly less than repetitions 3 and 13. For cluster 1 and cluster 2, there were no significant differences. These results demonstrate that cluster sets, specifically 10 sets of 2, allow for a greater maintenance of PW, TOV, and JH compared with a traditional 2 sets of 10 when performing repeated BW plyometric squat jumps. A lack

  19. Reversal time of jump-noise magnetization dynamics in nanomagnets via Monte Carlo simulations

    Science.gov (United States)

    Parthasarathy, Arun; Rakheja, Shaloo

    2018-06-01

    The jump-noise is a nonhomogeneous Poisson process which models thermal effects in magnetization dynamics, with special applications in low temperature escape rate phenomena. In this work, we develop improved numerical methods for Monte Carlo simulation of the jump-noise dynamics and validate the method by comparing the stationary distribution obtained empirically against the Boltzmann distribution. In accordance with the Néel-Brown theory, the jump-noise dynamics display an exponential relaxation toward equilibrium with a characteristic reversal time, which we extract for nanomagnets with uniaxial and cubic anisotropy. We relate the jump-noise dynamics to the equivalent Landau-Lifshitz dynamics up to second order correction for a general energy landscape and obtain the analogous Néel-Brown theory's solution of the reversal time. We find that the reversal time of jump-noise dynamics is characterized by Néel-Brown theory's solution at the energy saddle point for small noise. For large noise, the magnetization reversal due to jump-noise dynamics phenomenologically represents macroscopic tunneling of magnetization.

  20. The "Suicide Guard Rail": a minimal structural intervention in hospitals reduces suicide jumps.

    Science.gov (United States)

    Mohl, Andreas; Stulz, Niklaus; Martin, Andrea; Eigenmann, Franz; Hepp, Urs; Hüsler, Jürg; Beer, Jürg H

    2012-08-04

    Jumping from heights is a readily available and lethal method of suicide. This study examined the effectiveness of a minimal structural intervention in preventing suicide jumps at a Swiss general teaching hospital. Following a series of suicide jumps out of the hospital's windows, a metal guard rail was installed at each window of the high-rise building. In the 114 months prior to the installation of the metal guard rail, 10 suicides by jumping out of the hospital's windows occurred among 119,269 inpatients. This figure was significantly reduced to 2 fatal incidents among 104,435 inpatients treated during the 78 months immediately following the installation of the rails at the hospital's windows (χ2 = 4.34, df = 1, p = .037). Even a minimal structural intervention might prevent suicide jumps in a general hospital. Further work is needed to examine the effectiveness of minimal structural interventions in preventing suicide jumps.

  1. System identication of a linearized hysteretic system using covariance driven stochastic subspace identication

    DEFF Research Database (Denmark)

    Bajric, Anela

    A single mass Bouc-Wen oscillator with linear static restoring force contribution is approximated by an equivalent linear system. The aim of the linearized model is to emulate the correct force-displacement response of the Bouc-Wenmodel with characteristic hysteretic behaviour. The linearized mod...

  2. Hydraulic jumps in a partially filled rotating cylinder

    International Nuclear Information System (INIS)

    Lundgren, T.S.; Berman, A.S.

    1979-06-01

    A nonlinear analysis is made of the fluid dynamics of a thin film of liquid completely spun up along the cylindrical wall of a rotating cylinder. The analysis allows for the possibility of hydraulic jumps in the liquid film. Conditions are simulated under which jumps can occur. Under the assumption that synchronous runouts are small relative to the film thickness, a sample calculation of jump position and extent for various operating frequencies is presented. Comparison with experimental observations indicate good qualitative agreement between the analysis and the experiment. Under the additional restriction of constant film thickness and a simple lumped-parameter dynamic model for the rotor and its supports, an analysis is also provided which predicts the amplitude and frequency of the asynchronous runout as a function of operating frequency. A numerical example of the results of such a calculation is provided. 6 figures

  3. Dynamical Jumps in a Shape Memory Alloy Oscillator

    Directory of Open Access Journals (Sweden)

    H. S. Oliveira

    2014-01-01

    Full Text Available The dynamical response of systems with shape memory alloy (SMA elements presents a rich behavior due to their intrinsic nonlinear characteristic. SMA’s nonlinear response is associated with both adaptive dissipation related to hysteretic behavior and huge changes in properties caused by phase transformations. These characteristics are attracting much technological interest in several scientific and engineering fields, varying from medical to aerospace applications. An important characteristic associated with dynamical response of SMA system is the jump phenomenon. Dynamical jumps result in abrupt changes in system behavior and its analysis is essential for a proper design of SMA systems. This paper discusses the nonlinear dynamics of a one degree of freedom SMA oscillator presenting pseudoelastic behavior and dynamical jumps. Numerical simulations show different aspects of this kind of behavior, illustrating its importance for a proper understanding of nonlinear dynamics of SMA systems.

  4. Neuromuscular Responses of Elite Skaters During Different Roller Figure Skating Jumps

    Directory of Open Access Journals (Sweden)

    Pantoja Patrícia Dias

    2014-07-01

    Full Text Available This study aimed to describe the neuromuscular activity of elite athletes who performed various roller figure skating jumps, to determine whether the muscle activation is greater during jumps with more rotations and in which phase the muscles are more active. This study also aimed to analyze if there is any difference in the muscle activity pattern between female and male skaters. Four elite skaters were evaluated, and each participated in two experimental sessions. During the first session, anthropometric data were collected, and the consent forms were signed. For the second session, neuromuscular data were collected during jumps, which were performed with skates at a rink. The following four roller figure skating jumps were evaluated: single Axel, double Axel, double Mapes and triple Mapes. The neuromuscular activity of the following seven muscles was obtained with an electromyograph which was fixed to the waist of each skater with a strap: biceps femoris, lateral gastrocnemius, tibialis anterior, rectus femoris, vastus lateralis, vastus medialis and gluteus maximus. The signal was transmitted wirelessly to a laptop. During the roller figure skating jumps, the lateral gastrocnemius, rectus femoris, vastus lateralis, biceps femoris and gluteus maximus, showed more activation during the jumps with more rotations, and the activation mainly occurred during the propulsion and flight phases. Female skaters demonstrated higher muscle activities in tibialis anterior, vastus lateralis, vastus medialis and gluteus maximus during the landing phase of the triple Mapes, when compared to their male counterparts. The results obtained in this study should be considered when planning training programs with specific exercises that closely resemble the roller figure skating jumps. This may be important for the success of elite skaters in competitions.

  5. Neuromuscular Responses of Elite Skaters During Different Roller Figure Skating Jumps

    Science.gov (United States)

    Pantoja, Patrícia Dias; Mello, André; Liedtke, Giane Veiga; Kanitz, Ana Carolina; Cadore, Eduardo Lusa; Pinto, Stephanie Santana; Alberton, Cristine Lima; Kruel, Luiz Fernando Martins

    2014-01-01

    This study aimed to describe the neuromuscular activity of elite athletes who performed various roller figure skating jumps, to determine whether the muscle activation is greater during jumps with more rotations and in which phase the muscles are more active. This study also aimed to analyze if there is any difference in the muscle activity pattern between female and male skaters. Four elite skaters were evaluated, and each participated in two experimental sessions. During the first session, anthropometric data were collected, and the consent forms were signed. For the second session, neuromuscular data were collected during jumps, which were performed with skates at a rink. The following four roller figure skating jumps were evaluated: single Axel, double Axel, double Mapes and triple Mapes. The neuromuscular activity of the following seven muscles was obtained with an electromyograph which was fixed to the waist of each skater with a strap: biceps femoris, lateral gastrocnemius, tibialis anterior, rectus femoris, vastus lateralis, vastus medialis and gluteus maximus. The signal was transmitted wirelessly to a laptop. During the roller figure skating jumps, the lateral gastrocnemius, rectus femoris, vastus lateralis, biceps femoris and gluteus maximus, showed more activation during the jumps with more rotations, and the activation mainly occurred during the propulsion and flight phases. Female skaters demonstrated higher muscle activities in tibialis anterior, vastus lateralis, vastus medialis and gluteus maximus during the landing phase of the triple Mapes, when compared to their male counterparts. The results obtained in this study should be considered when planning training programs with specific exercises that closely resemble the roller figure skating jumps. This may be important for the success of elite skaters in competitions. PMID:25114728

  6. Adaptive jump barrier height in Monte Carlo configuration kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Martin; Pfeiler, Wolfgang; Pueschl, Wolfgang [Dynamics of Condensed Systems, Faculty of Physics, University of Vienna, Strudlhofgasse 4, A-1090 Wien (Austria); Vogtenhuber, Doris [Computational Materials Science, Faculty of Physics, University of Vienna, Sensengasse 8, A-1090 Wien (Austria)

    2008-07-01

    In usual MC simulations of configuration kinetics atom jump probabilities are calculated from energies of the initial and/or final bound states of the moving atom, leaving aside the exact energy of the intermediate saddle point state. This energy may however be critically influenced by the local atomic environment. We propose a strategy to explicitly take account of this influence. The basis is ab initio calculation of representative jump paths in the framework of the nudged elastic band method. From these results, an influence function is derived which modifies the energy of the saddle point and therefore the effective jump barrier height as calculated from the initial and final states according to a cluster expansion scheme. The overall effect is demonstrated on the NiAl system.

  7. Exertion of forces by children performing a free-style jump

    NARCIS (Netherlands)

    Moes, C.C.M.; Visser, R.J.

    1998-01-01

    This research project focuses on the force characteristics and force/time relationships of loads exerted by jumping children. The current study is an experimental research into children jumping on both hard and soft substrates. The hard substrate is obtained by using a force plate. For the soft

  8. Wave structure in the radial film flow with a circular hydraulic jump

    Science.gov (United States)

    Rao, A.; Arakeri, J. H.

    A circular hydraulic jump is commonly seen when a circular liquid jet impinges on a horizontal plate. Measurements of the film thickness, jump radius and the wave structure for various jet Reynolds numbers are reported. Film thickness measurements are made using an electrical contact method for regions both upstream and downstream of the jump over circular plates without a barrier at the edge. The jump radius and the separation bubble length are measured for various flow rates, plate edge conditions, and radii. Flow visualization using high-speed photography is used to study wave structure and transition. Waves on the jet amplify in the film region upstream of the jump. At high flow rates, the waves amplify enough to cause three-dimensional breakdown and what seems like transition to turbulence. This surface wave induced transition is different from the traditional route and can be exploited to enhance heat and mass transfer rates.

  9. Acute kinematic and kinetic adaptations to wearable resistance during vertical jumping.

    Science.gov (United States)

    Macadam, Paul; Simperingham, Kim D; Cronin, John B; Couture, Grace; Evison, Chloe

    2017-06-01

    One variation of vertical jump (VJ) training is resisted or weighted jump training, where wearable resistance (WR) enables jumping to be overloaded in a movement specific manner. A two-way analysis of variance with Bonferroni post hoc contrasts was used to determine the acute changes in VJ performance with differing load magnitudes and load placements. Kinematic and kinetic data were quantified using a force plate and contact mat. Twenty sport active subjects (age: 27.8 ± 3.8 years; body mass (BM): 70.2 ± 12.2 kg; height: 1.74 ± 0.78 m) volunteered to participate in the study. Subjects performed the counter movement jump (CMJ), drop jump (DJ) and pogo jump (PJ) wearing no resistance, 3% or 6% BM affixed to the upper or lower body. The main finding in terms of the landing phase was that the effect of WR was non-significant (P > .05) on peak ground reaction force. With regard to the propulsive phase the main findings were that for both the CMJ and DJ, WR resulted in a significant (P sports where VJ's are important components as it may provide a novel movement specific training stimulus. Highlights WR of 3 or 6 % BM provided a means to overload the subjects in this study resulting in decreased propulsive power and velocity that lead to a reduced jump height and landing force. Specific strength exercises that closely mimic sporting performance are more likely to optimise transference, therefore WR with light loads of 3-6% body mass (BM)appear a suitable tool for movement specific overload training and maximising transference to sporting performance. Practitioners can safely load their athletes with upper or lower body WR of 3-6% BM without fear of overloading the athletesover and above the landing forces they are typically accustomed too. As a training stimulus it would seem the WR loading provides adequate overload and athletes should focus on velocity of movement to improve power output and jump height i.e. take-off velocity.

  10. Validation of the iPhone app using the force platform to estimate vertical jump height.

    Science.gov (United States)

    Carlos-Vivas, Jorge; Martin-Martinez, Juan P; Hernandez-Mocholi, Miguel A; Perez-Gomez, Jorge

    2018-03-01

    Vertical jump performance has been evaluated with several devices: force platforms, contact mats, Vertec, accelerometers, infrared cameras and high-velocity cameras; however, the force platform is considered the gold standard for measuring vertical jump height. The purpose of this study was to validate an iPhone app called My Jump, that measures vertical jump height by comparing it with other methods that use the force platform to estimate vertical jump height, namely, vertical velocity at take-off and time in the air. A total of 40 sport sciences students (age 21.4±1.9 years) completed five countermovement jumps (CMJs) over a force platform. Thus, 200 CMJ heights were evaluated from the vertical velocity at take-off and the time in the air using the force platform, and from the time in the air with the My Jump mobile application. The height obtained was compared using the intraclass correlation coefficient (ICC). Correlation between APP and force platform using the time in the air was perfect (ICC=1.000, PJump, is an appropriate method to evaluate the vertical jump performance; however, vertical jump height is slightly overestimated compared with that of the force platform.

  11. Core seismic behaviour: linear and non-linear models

    International Nuclear Information System (INIS)

    Bernard, M.; Van Dorsselaere, M.; Gauvain, M.; Jenapierre-Gantenbein, M.

    1981-08-01

    The usual methodology for the core seismic behaviour analysis leads to a double complementary approach: to define a core model to be included in the reactor-block seismic response analysis, simple enough but representative of basic movements (diagrid or slab), to define a finer core model, with basic data issued from the first model. This paper presents the history of the different models of both kinds. The inert mass model (IMM) yielded a first rough diagrid movement. The direct linear model (DLM), without shocks and with sodium as an added mass, let to two different ones: DLM 1 with independent movements of the fuel and radial blanket subassemblies, and DLM 2 with a core combined movement. The non-linear (NLM) ''CORALIE'' uses the same basic modelization (Finite Element Beams) but accounts for shocks. It studies the response of a diameter on flats and takes into account the fluid coupling and the wrapper tube flexibility at the pad level. Damping consists of one modal part of 2% and one part due to shocks. Finally, ''CORALIE'' yields the time-history of the displacements and efforts on the supports, but damping (probably greater than 2%) and fluid-structures interaction are still to be precised. The validation experiments were performed on a RAPSODIE core mock-up on scale 1, in similitude of 1/3 as to SPX 1. The equivalent linear model (ELM) was developed for the SPX 1 reactor-block response analysis and a specified seismic level (SB or SM). It is composed of several oscillators fixed to the diagrid and yields the same maximum displacements and efforts than the NLM. The SPX 1 core seismic analysis with a diagrid input spectrum which corresponds to a 0,1 g group acceleration, has been carried out with these models: some aspects of these calculations are presented here

  12. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    Science.gov (United States)

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  13. Concurrent validity and reliability of torso-worn inertial measurement unit for jump power and height estimation.

    Science.gov (United States)

    Rantalainen, Timo; Gastin, Paul B; Spangler, Rhys; Wundersitz, Daniel

    2018-09-01

    The purpose of the present study was to evaluate the concurrent validity and test-retest repeatability of torso-worn IMU-derived power and jump height in a counter-movement jump test. Twenty-seven healthy recreationally active males (age, 21.9 [SD 2.0] y, height, 1.76 [0.7] m, mass, 73.7 [10.3] kg) wore an IMU and completed three counter-movement jumps a week apart. A force platform and a 3D motion analysis system were used to concurrently measure the jumps and subsequently derive power and jump height (based on take-off velocity and flight time). The IMU significantly overestimated power (mean difference = 7.3 W/kg; P jump heights exhibited poorer concurrent validity (ICC = 0.72 to 0.78) and repeatability (ICC = 0.68) than flight-time-derived jump heights, which exhibited excellent validity (ICC = 0.93 to 0.96) and reliability (ICC = 0.91). Since jump height and power are closely related, and flight-time-derived jump height exhibits excellent concurrent validity and reliability, flight-time-derived jump height could provide a more desirable measure compared to power when assessing athletic performance in a counter-movement jump with IMUs.

  14. Displacement monitoring of switch track and its slab on a bridge of high speed railway by FBG

    Science.gov (United States)

    Li, Weilai; Li, He; Cheng, Jian; Huang, Xiaomei; Pan, Jianjun; Zhou, Ciming; Yang, Minghong

    2011-05-01

    In a 350km/h high speed railway line, there is a seamless switch with ballastless slabs built on a bridge. 54 Fiber Bragg Grating detecting cells are employed to monitor the displacement of track and slab. The cell is of extending function of measurement range, up to 50mm displacement, and is of good linearity. Protecting methods for cells and fiber are adopted to keep them surviving from the harsh conditions. The results show that in 75 days, the displacement of the track and sleeper slab was 8-9mm, and the displacement is of high correlation with daily environmental temperature change.

  15. Environmentally transmitted parasites: Host-jumping in a heterogeneous environment.

    Science.gov (United States)

    Caraco, Thomas; Cizauskas, Carrie A; Wang, Ing-Nang

    2016-05-21

    Groups of chronically infected reservoir-hosts contaminate resource patches by shedding a parasite׳s free-living stage. Novel-host groups visit the same patches, where they are exposed to infection. We treat arrival at patches, levels of parasite deposition, and infection of the novel host as stochastic processes, and derive the expected time elapsing until a host-jump (initial infection of a novel host) occurs. At stationarity, mean parasite densities are independent of reservoir-host group size. But within-patch parasite-density variances increase with reservoir group size. The probability of infecting a novel host declines with parasite-density variance; consequently larger reservoir groups extend the mean waiting time for host-jumping. Larger novel-host groups increase the probability of a host-jump during any single patch visit, but also reduce the total number of visits per unit time. Interaction of these effects implies that the waiting time for the first infection increases with the novel-host group size. If the reservoir-host uses resource patches in any non-uniform manner, reduced spatial overlap between host species increases the waiting time for host-jumping. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Triple-root jump in spacecraft potential due to electron beam emission or impact

    International Nuclear Information System (INIS)

    Lai, S.T.

    1992-01-01

    Triple-root jump in spacecraft potential is well understood in the double Maxwellian model of the natural space environment. In this paper, however, the author points out that triple-root jumps in spacecraft potential may also occur during photoemission or electron beam emission from a spacecraft. Impact of an incoming electron beam on a spacecraft may also cause triple-root jumps provided that the beam, ambient plasma, and surface parameters satisfy certain inequality conditions. The parametric conditions under which such beam induced triple-root jumps may occur are presented

  17. The trampoline aftereffect: the motor and sensory modulations associated with jumping on an elastic surface.

    Science.gov (United States)

    Márquez, Gonzalo; Aguado, Xavier; Alegre, Luis M; Lago, Angel; Acero, Rafael M; Fernández-del-Olmo, Miguel

    2010-08-01

    After repeated jumps over an elastic surface (e.g. a trampoline), subjects usually report a strange sensation when they jump again overground (e.g. they feel unable to jump because their body feels heavy). However, the motor and sensory effects of exposure to an elastic surface are unknown. In the present study, we examined the motor and perceptual effects of repeated jumps over two different surfaces (stiff and elastic), measuring how this affected maximal countermovement vertical jump (CMJ). Fourteen subjects participated in two counterbalanced sessions, 1 week apart. Each experimental session consisted of a series of maximal CMJs over a force plate before and after 1 min of light jumping on an elastic or stiff surface. We measured actual motor performance (height jump and leg stiffness during CMJ) and how that related to perceptual experience (jump height estimation and subjective sensation). After repeated jumps on an elastic surface, the first CMJ showed a significant increase in leg stiffness (P < or = 0.01), decrease in jump height (P < or = 0.01) increase in perceptual misestimation (P < or = 0.05) and abnormal subjective sensation (P < or = 0.001). These changes were not observed after repeated jumps on a rigid surface. In a complementary experiment, continuous surface transitions show that the effects persist across cycles, and the effects over the leg stiffness and subjective experience are minimized (P < or = 0.05). We propose that these aftereffects could be the consequence of an erroneous internal model resulting from the high vertical forces produced by the elastic surface.

  18. Device for investigation of magnetic flux jumps in ribbon superconductors

    International Nuclear Information System (INIS)

    Andrianov, A.V.; Bashkirov, Yu.A.; Kremlev, M.G.

    1986-01-01

    A device for simulation of magnetic flux jumps in superconductors of conducting magnet sandwich-type windings super-applyed of a ribbon conductor is described. A superconducting magnet with a measuring cassetter are the main elements of the device. An external magnetic field is generated by a two-sectional superconducting magnet permitting to simulate the shape of the magnetic field characteristic for sandwich-type windings. Maximum radial component of the magnetic field is 2 T. Jumps of the magnetic flux are recorded by induction transducers and the magnetic field-by Hall trasducer. The effect of coating of standard metal on magnetic flux jumps in Nb 3 Sn base superconducting ribbon is considered

  19. Effect of different knee starting angles on intersegmental coordination and performance in vertical jumps.

    Science.gov (United States)

    Gheller, Rodrigo G; Dal Pupo, Juliano; Ache-Dias, Jonathan; Detanico, Daniele; Padulo, Johnny; dos Santos, Saray G

    2015-08-01

    This study aimed to analyze the effect of different knee starting angles on jump performance, kinetic parameters, and intersegmental coupling coordination during a squat jump (SJ) and a countermovement jump (CMJ). Twenty male volleyball and basketball players volunteered to participate in this study. The CMJ was performed with knee flexion at the end of the countermovement phase smaller than 90° (CMJ(90)), and in a preferred position (CMJ(PREF)), while the SJ was performed from a knee angle of 70° (SJ(70)), 90° (SJ(90)), 110° (SJ(110)), and in a preferred position (SJ(PREF)). The best jump performance was observed in jumps that started from a higher squat depth (CMJ(90). Analysis of continuous relative phase showed that thigh-trunk coupling was more in-phase in the jumps (CMJ and SJ) performed with a higher squat depth, while the leg-thigh coupling was more in-phase in the CMJ(>90) and SJ(PREF). Jumping from a position with knees more flexed seems to be the best strategy to achieve the best performance. Intersegmental coordination and jump performance (CMJ and SJ) were affected by different knee starting angles. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Wave structure in the radial film flow with a circular hydraulic jump

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A.; Arakeri, J.H. [Indian Inst. of Science, Bangalore (India). Dept. of Mechanical Engineering

    2001-11-01

    A circular hydraulic jump is commonly seen when a circular liquid jet impinges on a horizontal plate. Measurements of the film thickness, jump radius and the wave structure for various jet Reynolds numbers are reported. Film thickness measurements are made using an electrical contact method for regions both upstream and downstream of the jump over circular plates without a barrier at the edge. The jump radius and the separation bubble length are measured for various flow rates, plate edge conditions, and radii. Flow visualization using high-speed photography is used to study wave structure and transition. Waves on the jet amplify in the film region upstream of the jump. At high flow rates, the waves amplify enough to cause three-dimensional breakdown and what seems like transition to turbulence. This surface wave induced transition is different from the traditional route and can be exploited to enhance heat and mass transfer rates. (orig.)