Linear and nonlinear buckling analysis of a locally stretched plate
Energy Technology Data Exchange (ETDEWEB)
Kilardj, Madina; Ikhenzzen, Ghania [University of Sciences and Technology Houari Boumediene (U.S.T.H.B), Bab Ezzouar, Algiers (Algeria); Merssager, Tanguy; Kanit, Toufik [Laboratoire de Mecanique de Lille Universite Lille 1, Cite ScientifiqueVilleneuve d' Ascq cedex (France)
2016-08-15
Uniformly stretched thin plates do not buckle unless they are in special boundary conditions. However, buckling commonly occurs around discontinuities, such as cracks, cuts, narrow slits, holes, and different openings, of such plates. This study aims to show that buckling can also occur in thin plates that contain no defect or singularity when the stretching is local. This specific stability problem is analyzed with the finite element method. A brief literature review on stretched plates is presented. Linear and nonlinear buckling stress analyses are conducted for a partially stretched rectangular plate, and various load cases are considered to investigate the influence of the partial loading expanse on the critical tensile buckling load. Results are summarized in iso-stress areas, tables and graphs. Local stretching on one end of the plate induces buckling in the thin plate even without geometrical imperfection.
LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL
SREELATHA P.R; ALICE MATHAI
2012-01-01
Submarine is a watercraft capable of independent operation under water. Use of submarines includes marine science, offshore industry underwater exploration etc. The pressure hull of submarine is constructed as combination of cylinders and domes. The shell is subjected to very high hydrostatic pressure, which creates large compressive stress resultants. Due to this the structure is susceptible to buckling. The introduction of stiffeners in both directions considerably increases the buckling st...
Non-linear buffeting response analysis of long-span suspension bridges with central buckle
Wang, Hao; Li, Aiqun; Zhao, Gengwen; Li, Jian
2010-06-01
The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measured data, a 3D fluctuating wind field considering the tower wind effect is simulated. A novel FE model for buffeting analysis is then presented, in which a specific user-defined Matrix27 element in ANSYS is employed to simulate the aeroelastic forces and its stiffness or damping matrices are parameterized by wind velocity and vibration frequency. A nonlinear time history analysis is carried out to study the influence of the rigid central buckle on the wind-induced buffeting response of a long-span suspension bridge. The results can be used as a reference for wind resistance design of long-span suspension bridges with a rigid central buckle in the future.
Indian Academy of Sciences (India)
A Lakshmi Narayana; Krishnamohana Rao; R Vijaya Kumar
2014-06-01
A numerical study is carried out using finite element method, to examine the effects of square and rectangular cutout on the buckling behavior of a sixteen ply quasi-isotropic graphite/epoxy symmetrically laminated rectangular composite plate $[0^\\circ /+45^\\circ /-45^\\circ /90^\\circ ]_{2s}$, subjected to various linearly varying in-plane compressive loads. Further, this paper addresses the effects of size of square/rectangular cutout, orientation of square/rectangular cutout, plate aspect ratio(a/b), plate length/thickness ratio(a/t), boundary conditions on the buckling bahaviour of symmetrically laminated rectangular composite plates subjected to various linearly varying in-plane compressive loading. It is observed that the various linearly varying in-plane loads and boundary conditions have a substantial influence on buckling strength of rectangular composite plate with square/rectangular cutout.
Nonlinear Analysis of Buckling
Directory of Open Access Journals (Sweden)
Psotný Martin
2014-06-01
Full Text Available The stability analysis of slender web loaded in compression was presented. To solve this problem, a specialized computer program based on FEM was created. The nonlinear finite element method equations were derived from the variational principle of minimum of potential energy. To obtain the nonlinear equilibrium paths, the Newton-Raphson iteration algorithm was used. Corresponding levels of the total potential energy were defined. The peculiarities of the effects of the initial imperfections were investigated. Special attention was focused on the influence of imperfections on the post-critical buckling mode. The stable and unstable paths of the nonlinear solution were separated. Obtained results were compared with those gained using ANSYS system.
Buckling analysis of a laminate plate
Directory of Open Access Journals (Sweden)
Mamuzić, I.
2008-04-01
Full Text Available The paper deals with a modeling of laminate plates and with their buckling analysis. To predict the inception of buckling for plates in plane resultant forces must be included. The buckling analysis is made by the help of finite element method in program COSMOS/M. For rectangular laminate plate consisting of 4 layers with symmetric and antisymmetric stacking sequence a buckling analysis is carried out. In the illustrative example there are depicted buckling modes for symmetric laminates [30/-30]s, [45/-45]s, [60/-60]s, [90/-90]s and results of the buckling analysis for the symmetric and antisymmetric laminates.
Buckling analysis of composite cylindrical shell using numerical analysis method
Energy Technology Data Exchange (ETDEWEB)
Jung, Hae Young; Bae, Won Byung [Pusan Nat' l Univ., Busan (Korea, Republic of); Cho, Jong Rae [Korea Maritime Univ., Busan (Korea, Republic of); Lee, Woo Hyung [Underwater Vehicle Research Center, Busan (Korea, Republic of)
2012-01-15
The objective of this paper is to predict the buckling pressure of a composite cylindrical shell using buckling formulas (ASME 2007, NASA SP 8007) and finite element analysis. The model in this study uses a stacking angle of [0/90]12t and USN 125 composite material. All specimens were made using a prepreg method. First, finite element analysis was conducted, and the results were verified through comparison with the hydrostatic pressure bucking experiment results. Second, the values obtained from the buckling formula and the buckling pressure values obtained from the finite element analysis were compared as the stacking angle was changed in 5 .deg. increments from 20 .deg. to 90 .deg. The linear and nonlinear results of the finite element analysis were consistent with the results of the experiment, with a safety factor of 0.85-1. Based on the above result, the ASME 2007 formula, a simplified version of the NASA SP 8007 formula, is regarded as a buckling formula that provides a reliable safety factor.
NASTRAN buckling study of a linear induction motor reaction rail
Williams, J. G.
1973-01-01
NASTRAN was used to study problems associated with the installation of a linear induction motor reaction rail test track. Specific problems studied include determination of the critical axial compressive buckling stress and establishment of the lateral stiffness of the reaction rail under combined loads. NASTRAN results were compared with experimentally obtained values and satisfactory agreement was obtained. The reaction rail was found to buckle at an axial compressive stress of 11,400 pounds per square inch. The results of this investigation were used to select procedures for installation of the reaction rail.
Buckling of Bucket Foundations
DEFF Research Database (Denmark)
Madsen, Søren; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo
2012-01-01
In this paper, the risk of structural buckling during installation of large-diameter bucket foundations is addressed using numerical methods. Imperfect geometries are introduced based on the pre-buckling mode shapes from a linear Eigenvalue buckling analysis. Various imperfect geometries...... are introduced to reveal how sensitive the buckling load is to the mentioned imperfections. Including the first 21 mode shapes as imperfect geometries reduces the buckling pressure compared to only considering mode 1....
Creep buckling analysis of shells
Energy Technology Data Exchange (ETDEWEB)
Stone, C.M.; Nickell, R.E.
1977-01-01
The current study was conducted in an effort to determine the degree of conservatism or lack of conservatism in current ASME design rules concerning time-dependent (creep) buckling. In the course of this investigation, certain observations were made concerning the numerical solution of creep buckling problems. It was demonstrated that a nonlinear finite element code could be used to solve the time-dependent buckling problem. A direct method of solution was presented which proved to be computationally efficient and provided answers which agreed very well with available analytical solutions. It was observed that the calculated buckling times could vary widely for small errors in computed displacements. The presence of high creep strain rates contributed to the prediction of early buckling times when calculated during the primary creep stage. The predicted time estimates were found to increase with time until the secondary stage was reached and the estimates approached the critical times predicted without primary creep. It can be concluded, therefore, that for most nuclear piping components, whose primary creep stage is small compared to the secondary stage, the effect of primary creep is negligible and can be omitted from the calculations. In an evaluation of the past and current ASME design rules for time-dependent, load controlled buckling, it was concluded that current use of design load safety factors is not equivalent to a safety factor of ten on service life for low creep exponents.
Buckling Analysis of Bucket Foundations for Wind Turbines in Deep Water
DEFF Research Database (Denmark)
Madsen, Søren; Andersen, Lars; Ibsen, Lars Bo
2011-01-01
Using large suction caissons for offshore wind turbines is an upcoming technology also referred to as bucket foundations. The bucket foundation does not require heavy installation equipment, but since it is constructed as a thin steel shell structure, instability, in form of buckling, becomes...... a crucial issue during installation. This paper addresses the hydrostatic buckling pressure of the bucket foundation using threedimensional, non-linear finite element analysis. The main finding of this paper is that introducing an imperfect geometry based on the first linear pre-buckling mode shape, can...... increase the buckling load significantly....
Buckling of Bucket Foundations
DEFF Research Database (Denmark)
Madsen, Søren; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo
2012-01-01
In this paper, the risk of structural buckling during installation of large-diameter bucket foundations is addressed using numerical methods. Imperfect geometries are introduced based on the pre-buckling mode shapes from a linear Eigenvalue buckling analysis. Various imperfect geometries are intr...
Buckling Analysis of Supporting Skirt of Security Injection Tank
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The purpose of the calculating is to make a structural buckling analysis according to the code rules and the design requirements in order to judge whether the security injection tank have the ability to resist the buckling failure or not
Computation Analysis of Buckling Loads of Thin-Walled Members with Open Sections
Directory of Open Access Journals (Sweden)
Lihua Huang
2016-01-01
Full Text Available The computational methods for solving buckling loads of thin-walled members with open sections are not unique when different concerns are emphasized. In this paper, the buckling loads of thin-walled members in linear-elastic, geometrically nonlinear-elastic, and nonlinear-inelastic behaviors are investigated from the views of mathematical formulation, experiment, and numerical solution. The differential equations and their solutions of linear-elastic and geometrically nonlinear-elastic buckling of thin-walled members with various constraints are derived. Taking structural angle as an example, numerical analysis of elastic and inelastic buckling is carried out via ANSYS. Elastic analyses for linearized buckling and nonlinear buckling are realized using finite elements of beam and shell and are compared with the theoretical results. The effect of modeling of constraints on numerical results is studied when shell element is applied. The factors that influence the inelastic buckling load in numerical solution, such as modeling of constraint, loading pattern, adding rib, scale factor of initial defect, and yield strength of material, are studied. The noteworthy problems and their solutions in numerically buckling analysis of thin-walled member with open section are pointed out.
Buckling analysis of nanoplates using IGA
Phung-Van, P.; Abdel-Wahab, M.; Nguyen-Xuan, H.
2017-05-01
Isogeometric analysis (IGA) based on HSDT is used to simulate buckling analysis of nanoplates. The material properties of nanoplates based on the Mori-Tanaka schemes and the rule of mixture are used. The differential nonlocal equations with size effect are utilized. The nonlocal governing equations are approximated according to IGA, that satisfies naturally the higher-order derivatives continuity requirement in weak form of nanoplates. Several numerical results are presented to demonstrate the reliability of the proposed method.
Buckling analysis of planar compression micro-springs
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jing; Sui, Li; Shi, Gengchen [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Science and Technology on Electromechanical Dynamic Control Laboratory, 5 South Street Zhongguancun, Haidian 100081, Beijing (China)
2015-04-15
Large compression deformation causes micro-springs buckling and loss of load capacity. We analyzed the impact of structural parameters and boundary conditions for planar micro-springs, and obtained the change rules for the two factors that affect buckling. A formula for critical buckling deformation of micro-springs under compressive load was derived based on elastic thin plate theory. Results from this formula were compared with finite element analysis results but these did not always correlate. Therefore, finite element analysis is necessary for micro-spring buckling analysis. We studied the variation of micro-spring critical buckling deformation caused by four structural parameters using ANSYS software under two constraint conditions. The simulation results show that when an x-direction constraint is added, the critical buckling deformation increases by 32.3-297.9%. The critical buckling deformation decreases with increase in micro-spring arc radius or section width and increases with increase in micro-spring thickness or straight beam width. We conducted experiments to confirm the simulation results, and the experimental and simulation trends were found to agree. Buckling analysis of the micro-spring establishes a theoretical foundation for optimizing micro-spring structural parameters and constraint conditions to maximize the critical buckling load.
Buckling of Euler Columns with a Continuous Elastic Restraint via Homotopy Analysis Method
Directory of Open Access Journals (Sweden)
Aytekin Eryılmaz
2013-01-01
Full Text Available Homotopy Analysis Method (HAM is applied to find the critical buckling load of the Euler columns with continuous elastic restraints. HAM has been successfully applied to many linear and nonlinear, ordinary and partial, differential equations, integral equations, and difference equations. In this study, we presented the application of HAM to the critical buckling loads for Euler columns with five different support cases continuous elastic restraints. The results are compared with the analytic solutions.
In-Plane Elastic Buckling of Arch
Institute of Scientific and Technical Information of China (English)
剧锦三; 郭彦林
2002-01-01
The in-plane elastic buckling behavior of arches is investigated using a new finite-element approach for the nonlinear analysis. The linear buckling, nonlinear primary buckling, and secondary bifurcation buckling behavior of arches are compared taking into account the large deformation and the effects of initial geometric imperfections or perturbations. The theoretical investigation emphasizes the nonlinear secondary bifurcation buckling behavior for a full span uniformly distributed load. The efficiency of compact method for tracing secondary buckling path is shown through several examples. Finally, a new structural design, which prevents the secondary bifurcation buckling by adding some crossed cables across the arch, is proposed to improve the limit load carrying capacity.
Buckling Analysis of Functionally Graded Plates with Simply Supported Edges
Directory of Open Access Journals (Sweden)
Megueni ABDELKADER
2009-12-01
Full Text Available Thermal buckling analyses of S-FGM are investigated by using first order shear deformation theory. Material properties are varied continuously in the thickness direction according to a sigmoid distribution. The thermal buckling behaviours under uniform, linear and sinusoidal temperature rise across the thickness are analyzed. In addition, the effects of temperature field, volume fraction distributions, and system geometric parameters are investigated. The results are compared with the results of the classic plate theory (CPT.
On the analysis of viscoplastic buckling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
1993-01-01
For elastic-viscoplastic structures the classical elastic-plastic bifurcation approach to inelastic buckling is not valid. Only an elastic bifurcation point exists in the el~tic-viscoplastic case, and the inelastic buckling behaviour is controlled by a strong sensitivity to small imperfections...
Global lateral buckling analysis of idealized subsea pipelines
Institute of Scientific and Technical Information of China (English)
刘润; 刘文彬; 吴新利; 闫澍旺
2014-01-01
In order to avoid the curing effects of paraffin on the transport process and reduce the transport difficulty, usually high temperature and high pressure are used in the transportation of oil and gas. The differences of temperature and pressure cause additional stress along the pipeline, due to the constraint of the foundation soil, the additional stress can not release freely, when the additional stress is large enough to motivate the submarine pipelines buckle. In this work, the energy method is introduced to deduce the analytical solution which is suitable for the global buckling modes of idealized subsea pipeline and analyze the relationship between the critical buckling temperature, buckling length and amplitude under different high-order global lateral buckling modes. To obtain a consistent formulation of the problem, the principles of virtual displacements and the variation calculus for variable matching points are applied. The finite element method based on elasto-plastic theory is used to simulate the lateral global buckling of the pipelines under high temperature and pressure. The factors influencing the lateral buckling of pipelines are further studied. Based upon some actual engineering projects, the finite element results are compared with the analytical ones, and then the influence of thermal stress, the section rigidity of pipeline, the soil properties and the trigging force to the high order lateral buckling are discussed. The method of applying the small trigging force on pipeline is reliable in global buckling numerical analysis. In practice, increasing the section rigidity of a pipeline is an effective measure to improve the ability to resist the global buckling.
Small scale effect on linear vibration of buckled size-dependent FG nanobeams
Directory of Open Access Journals (Sweden)
Sima Ziaee
2015-06-01
The present study is an attempt to present linear free vibration of buckled FG nano-beams. It is assumed that the material properties of FGMs are graded in the thickness direction. The partial differential equation of motion is derived based on Euler–Bernoulli beam theory, von-Karman geometric nonlinearity and Eringen’s nonlocal elasticity theory. The exact solution of the post-buckling configurations of FG nano-beams and polynomial-based differential quadrature method are employed to study the linear behaviour of vibrated nano-beams around their post-buckling configurations. The results show the important role of compressive axial force exerted on FG nano-beams in nonlocal behaviour of vibrating FG nano-beams.
Buckling Analysis of Debonded Sandwich Panel Under Compression
Sleight, David W.; Wang, John T.
1995-01-01
A sandwich panel with initial through-the-width debonds is analyzed to study the buckling of its faceskin when subject to an in-plane compressive load. The debonded faceskin is modeled as a beam on a Winkler elastic foundation in which the springs of the elastic foundation represent the sandwich foam. The Rayleigh-Ritz and finite-difference methods are used to predict the critical buckling load for various debond lengths and stiffnesses of the sandwich foam. The accuracy of the methods is assessed with a plane-strain finite-element analysis. Results indicate that the elastic foundation approach underpredicts buckling loads for sandwich panels with isotropic foam cores.
Buckling analysis of a ring stiffened hybrid composite cylinder
Potluri, Rakesh; Eswara Kumar, A.; Navuri, Karteek; Nagaraju, M.; Mojeswara Rao, Duduku
2016-09-01
This study aims to understand the response of the ring stiffened cylinders made up of hybrid composites subjected to buckling loads by using the concepts of Design of Experiments (DOE) and optimization by using Finite Element Method (FEM) simulation software Ansys workbench V15. Carbon epoxy and E-glass epoxy composites were used in the hybrid composite. This hybrid composite was analyzed by using different layup angles. Central composite design (CCD) was used to perform design of experiments (D.O.E) and kriging method was used to generate a response surface. The response surface optimization (RSO) was performed by using the method of the multi-objective genetic algorithm (MOGA). After optimization, the best candidate was chosen and applied to the ring stiffened cylinder and eigenvalue buckling analysis was performed to understand the buckling behavior. Best laminate candidates with high buckling strength have been identified. A generalized procedure of the laminate optimization and analysis have been shown.
Energy Technology Data Exchange (ETDEWEB)
Johnson, Ken I.; Deibler, John E.; Karri, Naveen K.; Pilli, Siva P. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Julyk, Larry J. [M and D Professional Services, Inc., Richland, Washington 99352 (United States)
2012-07-01
dome, so the penetration does reduce the concentrated limit load somewhat. However, the safety factors comparing the limit loads to the maximum allowable applied loads remain well above the required value of 3.0. The buckling analysis method accounts for the geometric imperfections, concrete creep, cracking and reinforcements, and concrete plasticity in determining the allowable buckling load limits. The method was demonstrated in this paper for the evaluation of a tank before and after a penetration is added in the dome center. Finite element buckling models were used to accurately calculate the linear critical buckling loads. The models showed that adding the penetration reduces the linear critical buckling load by only 2.5%. Bounding cases also showed that the possible range of soil support on the walls does not significantly affect the dome buckling loads. Buckling models of the full 360 deg. dome also showed that the dome is more resistant to buckling when the load is offset than when it is positioned over the center. These limit load and buckling analysis methods are being used at the Hanford site to assess the tank loads that can be safely applied during future waste retrieval activities. (authors)
Production TTR modeling and dynamic buckling analysis
Institute of Scientific and Technical Information of China (English)
Hugh Liu; John Wei; Edward Huang
2013-01-01
In a typical tension leg platform (TLP) design,the top tension factor (TTF),measuring the top tension of a top tensioned riser (TTR) relative to its submerged weight in water,is one of the most important design parameters that has to be specified properly.While a very small TTF may lead to excessive vortex induced vibration (ⅤⅣ),clashing issues and possible compression close to seafloor,an unnecessarily high TTF may translate into excessive riser cost and vessel payload,and even has impacts on the TLP sizing and design in general.In the process of a production TTR design,it is found that its outer casing can be subjected to compression in a worst-case scenario with some extreme metocean and hardware conditions.The present paper shows how finite element analysis (FEA) models using beam elements and two different software packages (Flexcom and ABAQUS) are constructed to simulate the TTR properly,and especially the pipe-in-pipe effects.An ABAQUS model with hybrid elements (beam elements globally + shell elements locally) can be used to investigate how the outer casing behaves under compression.It is shown for the specified TTR design,even with its outer casing being under some local compression in the worst-case scenario,dynamic buckling would not occur; therefore the TTR design is adequate.
Thermal buckling comparative analysis using Different FE (Finite Element) tools
Energy Technology Data Exchange (ETDEWEB)
Banasiak, Waldemar; Labouriau, Pedro [INTECSEA do Brasil, Rio de Janeiro, RJ (Brazil); Burnett, Christopher [INTECSEA UK, Surrey (United Kingdom); Falepin, Hendrik [Fugro Engineers SA/NV, Brussels (Belgium)
2009-12-19
High operational temperature and pressure in offshore pipelines may lead to unexpected lateral movements, sometimes call lateral buckling, which can have serious consequences for the integrity of the pipeline. The phenomenon of lateral buckling in offshore pipelines needs to be analysed in the design phase using FEM. The analysis should take into account many parameters, including operational temperature and pressure, fluid characteristic, seabed profile, soil parameters, coatings of the pipe, free spans etc. The buckling initiation force is sensitive to small changes of any initial geometric out-of-straightness, thus the modeling of the as-laid state of the pipeline is an important part of the design process. Recently some dedicated finite elements programs have been created making modeling of the offshore environment more convenient that has been the case with the use of general purpose finite element software. The present paper aims to compare thermal buckling analysis of sub sea pipeline performed using different finite elements tools, i.e. general purpose programs (ANSYS, ABAQUS) and dedicated software (SAGE Profile 3D) for a single pipeline resting on an the seabed. The analyses considered the pipeline resting on a flat seabed with a small levels of out-of straightness initiating the lateral buckling. The results show the quite good agreement of results of buckling in elastic range and in the conclusions next comparative analyses with sensitivity cases are recommended. (author)
ANALYSIS OF DYNAMICAL BUCKLING AND POST BUCKLING FOR BEAMS BY FINITE SEGMENT METHOD
Institute of Scientific and Technical Information of China (English)
YIN Xue-gang; DU Si-yi; HU Ji-yun; DING Jian-ping
2005-01-01
Based on the multi-rigid body discretization model, namely, finite segment model,a chain multi-rigid-body-hinge-spring system model of a beam was presented,then a nonlinear parametrically exacted vibration equation of multi-degrees of freedom system was established using the coordination transformation method, and its resonance fields were derived by the restriction parameter method, that is, the dynamical buckling analysis of the beam. Because the deformation of a beam is not restricted by the discrete model and dynamic equation, the post buckling analysis can be done in above math model. The numerical solutions of a few examples were obtained by direct integrated method, which shows that the mechanical and math model gotten is correct.
Perturbation analysis on post-buckling behavior of pile
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The nonlinear large deflection differential equation, based on the assumption that the subsoil coefficient is the 2nd root of the depth, was established by energy method. The perturbation parameter was introduced to transform the equation to a series of linear differential equations to be solved, and the deflection function according with the boundary condition was considered. Then,the nonlinear higher-order asymptotic solution of post-buckling behavior of a pile was obtained by parameter-substituting. The influencing factors such as bury-depth ratio and stiffness ratio of soil to pile, slenderness ratio on the post-buckling behavior of a pile were analyzed. The results show that the pile is more unstable when the bury-depth ratio and stiffness ratio of soil to pile increase,and although the buckling load increases with the stiffness of soil, the pile may ruin for its brittleness. Thus, in the region where buckling behavior of pile must be taken into account, the high grade concrete is supposed to be applied, and the dynamic buckling behavior of pile needs to be further studied.
Buckling analysis of partially corroded steel plates with irregular surfaces
Indian Academy of Sciences (India)
Ahmad Rahbar-Ranji
2014-04-01
Corrosion is a long-term, inevitable process, lessens the thickness and load carrying capacity of structures. Old steel structures are more vulnerable to buckling, yielding and fracture due to corrosion. In lieu of a detailed analysis, average thickness assumption is employed for general type of corrosion. However, the estimation of load carrying capacity reduction of corroded structures typically need a much higher level of accuracy, since the actual corroded plates would have irregular surfaces. The objective of this article is to determine the effect of general corrosion on reduction of elastic buckling strength of both-sided partially corroded plates with irregular surfaces. Eigenvalue analysis using finite element method is employed for Euler stress calculation of corroded plates. The effects of different influential parameters are investigated and it is found that, aspect ratio of plate, location of corroded area, standard deviation of thickness diminution and concentration of corrosion have influence on reduction of elastic buckling strength. Reduction of elastic buckling strength is very sensitive to the amount of corrosion loss. The higher the amount of corrosion loss, the more reduction of elastic buckling strength.
Buckling analysis of sandwich plate using layer wise theory
Energy Technology Data Exchange (ETDEWEB)
Ranjbaran, Arash; Khoshravan, Mohammad Reza [University of Tabriz, Tabriz (Iran, Islamic Republic of); Kharazi, Mahsa [Sahand University of Technology, Sahand (Iran, Islamic Republic of)
2014-07-15
Buckling analysis of sandwich plate was investigated using layer wise method. The formulation was based on the first-order shear deformation theory, and the Rayleigh-Ritz method was used for approximating and determining the displacement field. The results obtained from layer wise theory was compared with finite element results and showed good agreement. This study demonstrated that layer wise theory could describe buckling behavior of sandwich plates with high accuracy and represents a more realistic and acceptable description of behavior of the plates with much less computational cost.
Institute of Scientific and Technical Information of China (English)
Hong-Ling Ye; Wei-Wei Wang; Ning Chen; Yun-Kang Sui
2016-01-01
In this paper, a model of topology optimization with linear buckling constraints is established based on an independent and continuous mapping method to minimize the plate/shell structure weight. A composite exponential function (CEF) is selected as filtering functions for element weight, the element stiffness matrix and the element geomet-ric stiffness matrix, which recognize the design variables, and to implement the changing process of design variables from“discrete”to“continuous”and back to“discrete”. The buck-ling constraints are approximated as explicit formulations based on the Taylor expansion and the filtering function. The optimization model is transformed to dual programming and solved by the dual sequence quadratic programming algo-rithm. Finally, three numerical examples with power function and CEF as filter function are analyzed and discussed to demonstrate the feasibility and efficiency of the proposed method.
Li, Bo; Wang, San-Min; Zhi, Chang-Jian; Xue, Xiang-Zhen; Makis, Viliam
2017-01-01
This paper aims at investigating the buckling load of fully deployed linear array deployable structure based on scissor-like element (SLE) under its own weight. The deployable structure has been widely researched both in geometric configurations and structural dynamic characteristics. However, when the number of elements or degree of deployment exceeds the predetermined range, even if there is no external load, deployable structure will automatically collapse under its own weight. To address this issue, this paper derives a new stability model based on linear elastic analysis and energy method to compute the buckling load caused by its own weight for avoiding the structural instability, which can be applied to a linear array deployable structure with n SLEs. In the process of calculation, the first SLE is taken for mechanical analysis and the results are extended to any unit. In the sequel of this process, the scissor deployable structure is equivalent to a uniform solid column and its buckling condition under self-weight is obtained based on the principle of potential energy. Also, the effect of various parameters that affect the instability of the structure, such as the number of elements, bar length and degree of deployment is investigated, and the results of the theoretical analysis are verified through a comparison with the simulation results in ANSYS, which show that the new stability model proposed here can predict the buckling load of scissor deployable structure.
Alart, P.; Barboteu, M.; Gril, J.
2004-09-01
In this paper a numerical modelling of non linear problems involving large deformations and frictional contact conditions is proposed. The motivation of this work comes from the study of the cellular materials (such as wood or foams) undergoing strong deformations. We restrict our study to a regular cellular network of hexagonal cells with thin walls. Strong loadings can generate at first buckling phenomena, then self-contact in the cell. Renouncing homogenization procedures, not always pertinent in this case, we have developed direct simulations. After giving the mechanical and mathematical formulations of the problem, we present two advanced numerical tools to solve large non linear frictional multicontact problems. This numerical modelling is based on an arc-length continuation method which permits to snap through singular points due to buckling phenomena and on an optimal domain decomposition method adapted to frictional contact problems. Finally, mechanical investigations of the contactless buckling and the post-buckling provide some pertinent parameters controlling the deformation process.
Vibration and buckling studies of pretensioned structures
Belvin, W. K.
1982-01-01
Results of analyses and tests of a simple pretensional structure are presented. Linear finite element analysis correlated well with experimental small amplitude vibration data. The buckling and vibration behavior of a pretensional stayed column was studied in detail. The bifurcation buckling load was also predicted accurately. Postbuckling behavior of the column was unusual and results in a post buckling restoring force of only 1/64 the bifurcation buckling load. Interaction between lateral accelerations and compressive load creates isolated stay slackening at loads above 50 percent of the buckling load. Further research will be required to fully understand their impact on the use of pretensioned structures as large space structures.
Buckling analysis of curved composite sandwich panels subjected to inplane loadings
Cruz, Juan R.
1993-01-01
Composite sandwich structures are being considered for primary structure in aircraft such as subsonic and high speed civil transports. The response of sandwich structures must be understood and predictable to use such structures effectively. Buckling is one of the most important response mechanisms of sandwich structures. A simple buckling analysis is derived for sandwich structures. This analysis is limited to flat, rectangular sandwich panels loaded by uniaxial compression (N(sub x)) and having simply supported edges. In most aerospace applications, however, the structure's geometry, boundary conditions, and loading are usually very complex. Thus, a general capability for analyzing the buckling behavior of sandwich structures is needed. The present paper describes and evaluates an improved buckling analysis for cylindrically curved composite sandwich panels. This analysis includes orthotropic facesheets and first-order transverse shearing effects. Both simple support and clamped boundary conditions are also included in the analysis. The panels can be subjected to linearly varying normal loads N(sub x) and N(sub y) in addition to a constant shear load N(sub xy). The analysis is based on the modified Donnell's equations for shallow shells. The governing equations are solved by direct application of Galerkin's method. The accuracy of the present analysis is verified by comparing results with those obtained from finite element analysis for a variety of geometries, loads, and boundary conditions. The limitations of the present analysis are investigated, in particular those related to the shallow shell assumptions in the governing equations. Finally, the computational efficiency of the present analysis is considered.
Akbarov, Surkay
2013-01-01
This book investigates stability loss and buckling delamination problems of the viscoelastic composite materials and structural members made from these materials within the framework of the Three-Dimensional Linearized Theory of Stability (TDLTS). The investigation of stability loss problems is based on the study of an evolution of the initial infinitesimal imperfection in the structure of the material or of the structural members with time (for viscoelastic composites) or with external compressing forces (for elastic composites). This study is made within the scope of the Three-Dimensional Geometrically Non-Linear Theory of the Deformable Solid Body Mechanics. The solution to the corresponding boundary-value problems is presented in the series form in a small parameter which characterizes the degree of the initial imperfection. The boundary form perturbation technique is employed and nonlinear problems for the domains bounded by noncanonical surfaces are reduced to the same nonlinear problem for the correspo...
The secondary buckling transition: wrinkling of buckled spherical shells.
Knoche, Sebastian; Kierfeld, Jan
2014-07-01
We theoretically explain the complete sequence of shapes of deflated spherical shells. Decreasing the volume, the shell remains spherical initially, then undergoes the classical buckling instability, where an axisymmetric dimple appears, and, finally, loses its axisymmetry by wrinkles developing in the vicinity of the dimple edge in a secondary buckling transition. We describe the first axisymmetric buckling transition by numerical integration of the complete set of shape equations and an approximate analytic model due to Pogorelov. In the buckled shape, both approaches exhibit a locally compressive hoop stress in a region where experiments and simulations show the development of polygonal wrinkles, along the dimple edge. In a simplified model based on the stability equations of shallow shells, a critical value for the compressive hoop stress is derived, for which the compressed circumferential fibres will buckle out of their circular shape in order to release the compression. By applying this wrinkling criterion to the solutions of the axisymmetric models, we can calculate the critical volume for the secondary buckling transition. Using the Pogorelov approach, we also obtain an analytical expression for the critical volume at the secondary buckling transition: The critical volume difference scales linearly with the bending stiffness, whereas the critical volume reduction at the classical axisymmetric buckling transition scales with the square root of the bending stiffness. These results are confirmed by another stability analysis in the framework of Donnel, Mushtari and Vlasov (DMV) shell theory, and by numerical simulations available in the literature.
Oblique and Herringbone Buckling Analysis of Steel Strip by Spline FEM
Institute of Scientific and Technical Information of China (English)
QIN Jian; ZHANG Qing-dong; HUANG Ke-fu
2011-01-01
The tilted waves in steel strip during rolling and leveling of sheet metal can be classified into two different types of buckling, oblique and herringbone buckling, respectively. Numerical considerations of oblique and herringbone buckling phenomena are dealt with by the spline finite element method （FEM）. It is pointed out that the shear stress due to residual strains caused by the rolling process or applied non-uniform loading is the main reason of oblique and herringbone buckle. According to the analysis of stress distribution in plane, the appropriate initial strain patterns are adopted and the corresponding buckling modes are calculated by the spline FEM. The developed numerical model provides an estimation of buckling critical load and wave configuration.
An enriched 1D finite element for the buckling analysis of sandwich beam-columns
Sad Saoud, Kahina; Le Grognec, Philippe
2016-06-01
Sandwich constructions have been widely used during the last few decades in various practical applications, especially thanks to the attractive compromise between a lightweight and high mechanical properties. Nevertheless, despite the advances achieved to date, buckling still remains a major failure mode for sandwich materials which often fatally leads to collapse. Recently, one of the authors derived closed-form analytical solutions for the buckling analysis of sandwich beam-columns under compression or pure bending. These solutions are based on a specific hybrid formulation where the faces are represented by Euler-Bernoulli beams and the core layer is described as a 2D continuous medium. When considering more complex loadings or non-trivial boundary conditions, closed-form solutions are no more available and one must resort to numerical models. Instead of using a 2D computationally expensive model, the present paper aims at developing an original enriched beam finite element. It is based on the previous analytical formulation, insofar as the skin layers are modeled by Timoshenko beams whereas the displacement fields in the core layer are described by means of hyperbolic functions, in accordance with the modal displacement fields obtained analytically. By using this 1D finite element, linearized buckling analyses are performed for various loading cases, whose results are confronted to either analytical or numerical reference solutions, for validation purposes.
Directory of Open Access Journals (Sweden)
Guo Ruijiang
1995-01-01
Full Text Available A finite element based sensitivity analysis procedure is developed for buckling and postbuckling of composite plates. This procedure is based on the direct differentiation approach combined with the reference volume concept. Linear elastic material model and nonlinear geometric relations are used. The sensitivity analysis technique results in a set of linear algebraic equations which are easy to solve. The procedure developed provides the sensitivity derivatives directly from the current load and responses by solving the set of linear equations. Numerical results are presented and are compared with those obtained using finite difference technique. The results show good agreement except at points near critical buckling load where discontinuities occur. The procedure is very efficient computationally.
Mechanical Buckling Analysis of Composite Panels with/without Cutouts
Institute of Scientific and Technical Information of China (English)
Oana Zenaida PASCAN; ZHANG Wei-hong; Jean Philippe PONTHOT
2012-01-01
A simplified analytical solution suitable for simple stacking sequences was developed using the Euler buck- ling theory, the structure＇s equations of equilibrium and laminate panel mathematical formulation. Comparing these results with numerical results reveals the accuracy of the method and even more, allows us to validate the nu- merical analysis. Therefore, two important results are obtained： a simplified analytical solution for the buckling problem and validation of the numerical results. Another important and novel finding is related to the influence of the angle ply orientation and of the cutouts, on the buckling load. Under symmetrical boundary conditions and loading case, rectangular panels with elliptical cutouts, give better results for 90~ oriented plies than for 0 oriented ones. With a compression load applied in the X direction, and with material properties 10 times better in X direction than in Y direction, the best results are obtained when the load is aligned with the Y direction associated to the ma- terial reference frame. Moreover, panels with cutouts seem to behave better than panels without cutouts under cer- tainply orientation angles.
Buckling failures in insect exoskeletons.
Parle, Eoin; Herbaj, Simona; Sheils, Fiona; Larmon, Hannah; Taylor, David
2016-02-01
Thin walled tubes are often used for load-bearing structures, in nature and in engineering, because they offer good resistance to bending and torsion at relatively low weight. However, when loaded in bending they are prone to failure by buckling. It is difficult to predict the loading conditions which cause buckling, especially for tubes whose cross sections are not simple shapes. Insights into buckling prevention might be gained by studying this phenomenon in the exoskeletons of insects and other arthropods. We investigated the leg segments (tibiae) of five different insects: the locust (Schistocerca gergaria), American cockroach (Periplaneta americana), death's head cockroach (Blaberus discoidalis), stick insect (Parapachymorpha zomproi) and bumblebee (Bombus terrestris audax). These were tested to failure in cantilever bending and modelled using finite element analysis (FEA). The tibiae of the locust and the cockroaches were found to be approximately circular in shape. Their buckling loads were well predicted by linear elastic FEA, and also by one of the analytical solutions available in the literature for elastic buckling. The legs of the stick insect are also circular in cross section but have several prominent longitudinal ridges. We hypothesised that these ridges might protect the legs against buckling but we found that this was not the case: the loads necessary for elastic buckling were not reached in practice because yield occurred in the material, causing plastic buckling. The legs of bees have a non-circular cross section due to a pollen-carrying feature (the corbicula). We found that this did not significantly affect their resistance to buckling. Our results imply that buckling is the dominant failure mode in the tibia of insects; it likely to be a significant consideration for other arthropods and any organisms with stiff exoskeletons. The interactions displayed here between material properties and cross sectional geometry may provide insights for the
Institute of Scientific and Technical Information of China (English)
张耀庭; 颜燕祥; 张正哲; 李艳芳; 张敏
2014-01-01
With the development of the large-span bridge engineering, the affirmance of the wire rope cable forces of the connection between the bridge superstructure and piers ( Abutment) has become a key technical problem in bridge design and construction process. The design of cable force is directly related to safety issues and the normal use in the construction and operational stage. Combined with the construction of a Bridge,the article presents the principle of linear programming to optimize cable force. The optimal method of cable force uses the cable dosage minimum as an objective function and the pre-tension force as optimal variables, and then uses the stress in key sections and the deflection in end of cantilever as constraint conditions. With the help of ANSYS software and MATLAB tools,the optimization of construction ( temporary) buckle cable tension of stage of the structure of linear work is achieved. Compared with the existing cable force methods, the method proposed in this paper to determine cable force can reduce the number of tune cable construction process and improve the accuracy of the design of cable force. For similar projects, it provides a new way of thinking to determine the steel cables of the relative optimum tensile force.%随着斜拉桥等大跨度桥梁工程的发展，桥梁上部结构与桥墩(台)之间连接的钢索索力的确定已成为桥梁设计与施工过程中的关键技术问题，索力取值合理与否直接关系到结构施工及运营阶段的安全与正常使用问题。本文结合某特大桥的施工，将线性规划原理引入到该桥的施工索力优化当中，以扣索用量最少为目标函数，以拉索索力大小为控制变量，以关键截面应力和悬臂端点挠度为约束条件；借助ANSYS软件和MATLAB工具，实现了结构线性工作阶段的施工(临时)扣索索力的优选分析。与已有的索力确定方法相比，本文提出的确定索力方法可减少施工过程
Buckling Analysis of Unidirectional PolymerMatrix Composite Plates
Directory of Open Access Journals (Sweden)
Jawad Kadhim Uleiwi
2006-01-01
Full Text Available This study deals with the estimation of critical load of unidirectional polymer matrix composite plates by using experimental and finite element techniques at different fiber angles and fiber volume fraction of the composite plate.Buckling analysis illustrated that the critical load decreases in nonlinear relationship with the increase of the fiber angle and that it increases with the increase of the fiber volume fraction.The results show that the maximum value of the critical load is (629.54 N/m at (? = 0? and (Vf = 40 % for the finite element method, while the minimum value of the critical load is (49 N/m at (? = 90? and (Vf = 10 % for the experimental results. The results also indicated that the maximum difference between the finite element analysis and experimental work is about (11 % at ( ? = 0? and (Vf = 40 %
Elastic buckling analysis of corroded stiffened plates with irregular surfaces
Indian Academy of Sciences (India)
Ahmad Rahbar-Ranji
2015-02-01
Numerical simulation is used to study the influence of corrosion damage in stiffened plates focusing on elastic buckling strength. Three-dimensional specta are used to simulate geometries of corroded surfaces and finite element method is employed for computing Euler stress of stiffened plates. The influence of corrosion patterns, amount of corrosion loss and roughness of surface are investigated. Ratio of Euler stress of corroded stiffened plate over Euler stress of un-corroded stiffened plate is used to characterize the effects of corrosion on reduction of buckling strength. Results show that reduction of buckling strength is very sensitive to the amount of corrosion loss and roughness of surface, but less sensitive to the location of corroded region. The potential for decrease in buckling strength as a consequence of corrosion is found to depend on the dominant buckling mode. Residual buckling strength is reduced by as much as 12% for the interaction of plate-web-torsional buckling mode, and by 2% for column buckling.
Buckling Analysis of a Honeycomb-Core Composite Cylinder with Initial Geometric Imperfections
Cha, Gene; Schultz, Marc R.
2013-01-01
Thin-walled cylindrical shell structures often have buckling as the critical failure mode, and the buckling of such structures can be very sensitive to small geometric imperfections. The buckling analyses of an 8-ft-diameter, 10-ft-long honeycomb-core composite cylinder loaded in pure axial compression is discussed in this document. Two loading configurations are considered configuration 1 uses simple end conditions, and configuration 2 includes additional structure that may more closely approximate experimental loading conditions. Linear eigenvalue buckling analyses and nonlinear analyses with and without initial geometric imperfections were performed on both configurations. The initial imperfections were introduced in the shell by applying a radial load at the midlength of the cylinder to form a single inward dimple. The critical bifurcation buckling loads are predicted to be 924,190 lb and 924,020 lb for configurations 1 and 2, respectively. Nonlinear critical buckling loads of 918,750 lb and 954,900 lb were predicted for geometrically perfect configurations 1 and 2, respectively. Lower-bound critical buckling loads for configurations 1 and 2 with radial perturbations were found to be 33% and 36% lower, respectively, than the unperturbed critical loads. The inclusion of the load introduction cylinders in configuration 2 increased the maximum bending-boundary-layer rotation up to 11%.
Buckling analysis of an orthotropic thin shell of revolution using differential quadrature
Energy Technology Data Exchange (ETDEWEB)
Redekop, D. [Department of Mechanical Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5 (Canada)]. E-mail: dredekop@tesla.cc.uottawa.ca
2005-08-01
A method is developed to predict the buckling characteristics of an orthotropic shell of revolution of arbitrary meridian subjected to a normal pressure. The solution is given within the context of the linearized Sanders-Budiansky shell buckling theory and makes use of the differential quadrature method. Numerical results for buckling pressures and mode shapes are given for complete toroidal shells. Both completely free shells and shells with circumferential line restraints are covered. The loadings considered consist either of uniform pressure or circumferential bands of constant pressure. It is demonstrated that the differential quadrature method is numerically stable and converges. For isotropic toroidal shells, good agreement is observed with previously published analytical and finite element results. New results for buckling pressures and mode numbers are given for orthotropic shells and for band loaded shells.
Buckling and Delamination Growth Analysis of Composite Laminates Containing Embedded Delaminations
Hosseini-Toudeshky, H.; Hosseini, S.; Mohammadi, B.
2010-04-01
The objective of this work is to study the post buckling behavior of composite laminates, containing embedded delamination, under uniaxial compression loading. For this purpose, delamination initiation and propagation is modeled using the softening behavior of interface elements. The full layer-wise plate theory is also employed for approximating the displacement field of laminates and the interface elements are considered as a numerical layer between any two adjacent layers which delamination is expected to propagate. A finite element program was developed and the geometric non-linearity in the von karman sense is incorporated to the strain/displacement relations, to obtain the buckling behavior. It will be shown that, the buckling load, delamination growth process and buckling mode of the composite plates depends on the size of delamination and stacking sequence of the laminates.
Electromechanical Dynamics Analysis of Buckling Microstructure For Micromirror
Energy Technology Data Exchange (ETDEWEB)
Jia, Jianyuan; Chen, Guimin; Fan, Guobin [Xidian Univ., Jiangxi (China)
2002-11-15
The electromechanical dynamics characteristic and emulation of buckling microstructure for digital micromirror device are studied. The microstructure of digital micromirror device based on buckling theory is designed and its electromechanical dynamics model is established. The hidden functions in the dynamics model are found out by numerical methods such as Runge-Kutta method and Finite Element method. A numerical emulation to the whole motion differential equation has been presented, and a continuous angular displacement curve of micro-reflectmirror is obtained. At last, it is concluded that the buckling microstructure has an advantage of light beam stability.
Post-buckling analysis of composite beams: A simple intuitive formulation
Indian Academy of Sciences (India)
Jagadish Babu Gunda; G Venkateswara Rao
2013-06-01
Post-buckling analysis of composite beams with axially immovable ends is investigated using an Intuitive formulation. Intuitive formulation uses two parameters namely critical buckling load and axial stretching force developed in the post-buckled domain of composite beam. Geometric nonlinearity of von-Karman type is taken into consideration which accounts for membrane stretching action of the beam. Axial stretching force developed in post-buckled domain of composite beam is evaluated by using an axial governing equation and is expressed either in terms of lateral displacement function as an integrated value, or as a function of both axial and lateral displacement functions at any discrete location of the beam. The available expressions of critical buckling load and derived expressions of axial stretching force developed in the beam are used for obtaining an approximate closed-form expressions for the post-buckling loads of various beam boundary conditions. Numerical accuracy of the proposed analytical closed-form expressions obtained from the intuitive formulation are compared to the available ﬁnite element solutions for symmetric and asymmetric lay-up schemes of laminated composite beam. Effect of central amplitude ratio and lay-up orientation on post-buckling load variation is brieﬂy discussed for various beam boundary conditions considered in this study.
Structure buckling and non-probabilistic reliability analysis of supercavitating vehicles
Institute of Scientific and Technical Information of China (English)
AN Wei-guang; ZHOU Ling; AN Hai
2009-01-01
To perform structure buckling and reliability analysis on supercavitating vehicles with high velocity in the submarine, supercavitating vehicles were simplified as variable cross section beam firstly. Then structural buckling analysis of supercavitating vehicles with or without engine thrust was conducted, and the structural buckling safety margin equation of supercavitating vehicles was established. The indefinite information was de-scribed by interval set and the structure reliability analysis was performed by using non-probabilistic reliability method. Considering interval variables as random variables which satisfy uniform distribution, the Monte-Carlo method was used to calculate the non-probabilistic failure degree. Numerical examples of supercavitating vehi-cles were presented. Under different ratios of base diameter to cavitator diameter, the change tendency of non-probabilistic failure degree of structural buckling of supereavitating vehicles with or without engine thrust was studied along with the variety of speed.
Molecular dynamics analysis on buckling of defective carbon nanotubes.
Kulathunga, D D T K; Ang, K K; Reddy, J N
2010-09-01
Owing to their remarkable mechanical properties, carbon nanotubes have been employed in many diverse areas of applications. However, similar to any of the many man-made materials used today, carbon nanotubes (CNTs) are also susceptible to various kinds of defects. Understanding the effect of defects on the mechanical properties and behavior of CNTs is essential in the design of nanotube-based devices and composites. It has been found in various past studies that these defects can considerably affect the tensile strength and fracture of CNTs. Comprehensive studies on the effect of defects on the buckling and vibration of nanotubes is however lacking in the literature. In this paper, the effects of various configurations of atomic vacancy defects, on axial buckling of single-walled carbon nanotubes (SWCNTs), in different thermal environments, is investigated using molecular dynamics simulations (MDS), based on a COMPASS force field. Our findings revealed that even a single missing atom can cause a significant reduction in the critical buckling strain and load of SWCNTs. In general, increasing the number of missing atoms, asymmetry of vacancy configurations and asymmetric distribution of vacancy clusters seemed to lead to higher deterioration in buckling properties. Further, SWCNTs with a single vacancy cluster, compared to SWCNTs with two or more vacancy clusters having the same number of missing atoms, appeared to cause higher deterioration of buckling properties. However, exceptions from the above mentioned trends could be expected due to chemical instabilities of defects. Temperature appeared to have less effect on defective CNTs compared to pristine CNTs.
Molecular dynamics analysis on buckling of defective carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Kulathunga, D D T K; Ang, K K [Department of Civil Engineering, National University of Singapore (Singapore); Reddy, J N, E-mail: cveangkk@nus.edu.s [Department of Mechanical Engineering, Texas A and M University, College Station, TX 77843-3123 (United States)
2010-09-01
Owing to their remarkable mechanical properties, carbon nanotubes have been employed in many diverse areas of applications. However, similar to any of the many man-made materials used today, carbon nanotubes (CNTs) are also susceptible to various kinds of defects. Understanding the effect of defects on the mechanical properties and behavior of CNTs is essential in the design of nanotube-based devices and composites. It has been found in various past studies that these defects can considerably affect the tensile strength and fracture of CNTs. Comprehensive studies on the effect of defects on the buckling and vibration of nanotubes is however lacking in the literature. In this paper, the effects of various configurations of atomic vacancy defects, on axial buckling of single-walled carbon nanotubes (SWCNTs), in different thermal environments, is investigated using molecular dynamics simulations (MDS), based on a COMPASS force field. Our findings revealed that even a single missing atom can cause a significant reduction in the critical buckling strain and load of SWCNTs. In general, increasing the number of missing atoms, asymmetry of vacancy configurations and asymmetric distribution of vacancy clusters seemed to lead to higher deterioration in buckling properties. Further, SWCNTs with a single vacancy cluster, compared to SWCNTs with two or more vacancy clusters having the same number of missing atoms, appeared to cause higher deterioration of buckling properties. However, exceptions from the above mentioned trends could be expected due to chemical instabilities of defects. Temperature appeared to have less effect on defective CNTs compared to pristine CNTs.
Ko, William L.; Jackson, Raymond H.
1993-01-01
Combined inplane compressive and shear buckling analysis was conducted on flat rectangular sandwich panels using the Raleigh-Ritz minimum energy method with a consideration of transverse shear effect of the sandwich core. The sandwich panels were fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that slightly slender (along unidirectional compressive loading axis) rectangular sandwich panels have the most desirable stiffness-to-weight ratios for aerospace structural applications; the degradation of buckling strength of sandwich panels with rising temperature is faster in shear than in compression; and the fiber orientation of the face sheets for optimum combined-load buckling strength of sandwich panels is a strong function of both loading condition and panel aspect ratio. Under the same specific weight and panel aspect ratio, a sandwich panel with metal matrix composite face sheets has much higher buckling strength than one having monolithic face sheets.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented. Based on the expression of magnetic force from the variational principle of ferromagnetic plates, the buckling and bending theory of thin plates, the Mises yield criterion and the increment theory for plastic deformation, we establish a numerical code to quantitatively simulate the behaviors of the nonlinearly multi-fields coupling problems by the finite element method. Along with the phenomena of buckling/snapping and bending, or the characteristic curve of deflection versus magnitude of applied magnetic fields being numerically displayed, the critical loads of buckling/snapping,and the influences of plastic deformation and the width of plate on these critical loads, the plastic regions expanding with the magnitude of applied magnetic field, as well as the evolvement of deflection configuration of the plate are numerically obtained in a case study.
Torres, Fernando G; Troncoso, Omar P; Diaz, John; Arce, Diego
2014-11-01
Porcupine quills are natural structures formed by a thin walled conical shell and an inner foam core. Axial compression tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR) were all used to compare the characteristics and mechanical properties of porcupine quills with and without core. The failure mechanisms that occur during buckling were analyzed by scanning electron microscopy (SEM), and it was found that delamination buckling is mostly responsible for the decrease in the measured buckling stress of the quills with regard to predicted theoretical values. Our analysis also confirmed that the foam core works as an energy dissipater improving the mechanical response of an empty cylindrical shell, retarding the onset of buckling as well as producing a step wise decrease in force after buckling, instead of an instantaneous decrease in force typical for specimens without core. Cell collapse and cell densification in the inner foam core were identified as the key mechanisms that allow for energy absorption during buckling.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditional first type, and a newly invented numerical analysis method, i.e. the element-free Galerkin method (EFGM), was introduced to consider the non-concordant deformation and nonlinearity of the pile-soil interface. Then, based on the nonlinear elastic-ideal plastic pile-soil interface model, a nonlinear iterative algorithm was given to analyze the pile-soil interaction, and a program for buckling analysis of piles by the EFGM(PBAP-EFGM) and arc length method was worked out as well. The application results in an engineering example show that, the shape of pile top load-settlement curve obtained by the program agrees well with the measured one, of which the difference may be caused mainly by those uncertain factors such as possible initial defects of pile shaft and the eccentric loading during the test process.However, the calculated critical load is very close with the measured ultimate load of the test pile, and the corresponding relative error is only 5.6%, far better than the calculated values by linear and nonlinear incremental buckling analysis (with a greater relative error of 37.0% and 15.4% respectively), which also verifies the rationality and feasibility of the present method.
Buckling and dynamic analysis of drill strings for core sampling
Energy Technology Data Exchange (ETDEWEB)
Ziada, H.H., Westinghouse Hanford
1996-05-15
This supporting document presents buckling and dynamic stability analyses of the drill strings used for core sampling. The results of the drill string analyses provide limiting operating axial loads and rotational speeds to prevent drill string failure, instability and drill bit overheating during core sampling. The recommended loads and speeds provide controls necessary for Tank Waste Remediation System (TWRS) programmatic field operations.
Energy Technology Data Exchange (ETDEWEB)
Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Kolahchi, R.; Vossough, H. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)
2012-11-15
This study presents an analytical approach for buckling analysis and smart control of a single layer graphene sheet (SLGS) using a coupled polyvinylidene fluoride (PVDF) nanoplate. The SLGS and PVDF nanoplate are considered to be coupled by an enclosing elastic medium which is simulated by the Pasternak foundation. The PVDF nanoplate is subjected to an applied voltage in the thickness direction which operates in control of critical load of the SLGS. In order to satisfy the Maxwell equation, electric potential distribution is assumed as a combination of a half-cosine and linear variation. The exact analysis is performed for the case when all four ends are simply supported and free electrical boundary condition. Adopting the nonlocal Mindlin plate theory, the governing equations are derived based on the energy method and Hamilton's principle. A detailed parametric study is conducted to elucidate the influences of the small scale coefficient, stiffness of the internal elastic medium, graphene length, mode number and external electric voltage on the buckling smart control of the SLGS. The results depict that the imposed external voltage is an effective controlling parameter for buckling of the SLGS. This study might be useful for the design and smart control of nano-devices.
Numerical Analysis Of Buckling Of Von Mises Planar Truss
Directory of Open Access Journals (Sweden)
Kalina Martin
2015-12-01
Full Text Available A computational algorithm of a discrete model of von Mises planar steel truss is presented. The structure deformation is evaluated by seeking the minimal potential energy. The critical force invented by mathematical solution was compared with solution by computer algorithm. Symmetric and asymmetric effects of initial shape of geometric imperfection of axis of struts are used in model. The shapes of buckling of von Mises planar truss of selected vertical displacement of top joint are shown.
Sadamoto, S.; Ozdemir, M.; Tanaka, S.; Taniguchi, K.; Yu, T. T.; Bui, T. Q.
2017-02-01
The paper is concerned with eigen buckling analysis of curvilinear shells with and without cutouts by an effective meshfree method. In particular, shallow shell, cylinder and perforated cylinder buckling problems are considered. A Galerkin meshfree reproducing kernel (RK) approach is then developed. The present meshfree curvilinear shell model is based on Reissner-Mindlin plate formulation, which allows the transverse shear deformation of the curved shells. There are five degrees of freedom per node (i.e., three displacements and two rotations). In this setting, the meshfree interpolation functions are derived from the RK. A singular kernel is introduced to impose the essential boundary conditions because of the RK shape functions, which do not automatically possess the Kronecker delta property. The stiffness matrix is derived using the stabilized conforming nodal integration technique. A convected coordinate system is introduced into the formulation to deal with the curvilinear surface. More importantly, the RKs taken here are used not only for the interpolation of the curved geometry, but also for the approximation of field variables. Several numerical examples with shallow shells and full cylinder models are considered, and the critical buckling loads and their buckling mode shapes are calculated by the meshfree eigenvalue analysis and examined. To show the accuracy and performance of the developed meshfree method, the computed critical buckling loads and mode shapes are compared with reference solutions based on boundary domain element, finite element and analytical methods.
Thermal buckling analysis of truss-core sandwich plates
Institute of Scientific and Technical Information of China (English)
陈继伟; 刘咏泉; 刘伟; 苏先樾
2013-01-01
Truss-core sandwich plates have received much attention in virtue of the high values of strength-to-weight and stiffness-to-weight as well as the great ability of impulse-resistance recently. It is necessary to study the stability of sandwich panels under the influence of the thermal load. However, the sandwich plates are such complex three-dimensional (3D) systems that direct analytical solutions do not exist, and the finite element method (FEM) cannot represent the relationship between structural parameters and mechanical properties well. In this paper, an equivalent homogeneous continuous plate is idealized by obtaining the effective bending and transverse shear stiffness based on the characteristics of periodically distributed unit cells. The first order shear deformation theory for plates is used to derive the stability equation. The buckling temperature of a simply supported sandwich plate is given and verified by the FEM. The effect of related parameters on mechanical properties is investigated. The geometric parameters of the unit cell are optimized to attain the maximum buckling temperature. It is shown that the optimized sandwich plate can improve the resistance to thermal buckling significantly.
Directory of Open Access Journals (Sweden)
Roshan Lal
2013-01-01
Full Text Available The present work analyses the buckling and vibration behaviour of non-homogeneous rectangular plates of uniform thickness on the basis of classical plate theory when the two opposite edges are simply supported and are subjected to linearly varying in-plane force. For non-homogeneity of the plate material it is assumed that young's modulus and density of the plate material vary exponentially along axial direction. The governing partial differential equation of motion of such plates has been reduced to an ordinary differential equation using the sine function for mode shapes between the simply supported edges. This resulting equation has been solved numerically employing differential quadrature method for three different combinations of clamped, simply supported and free boundary conditions at the other two edges. The effect of various parameters has been studied on the natural frequencies for the first three modes of vibration. Critical buckling loads have been computed. Three dimensional mode shapes have been presented. Comparison has been made with the known results.
Buckling analysis of thick isotropic plates by using exponential shear deformation theory
Directory of Open Access Journals (Sweden)
Sayyad A. S.
2012-12-01
Full Text Available In this paper, an exponential shear deformation theory is presented for the buckling analysis of thick isotropic plates subjected to uniaxial and biaxial in-plane forces. The theory accounts for a parabolic distribution of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Governing equations and associated boundary conditions of the theory are obtained using the principle of virtual work. The simply supported thick isotropic square plates are considered for the detailed numerical studies. A closed form solutions for buckling analysis of square plates are obtained. Comparison studies are performed to verify the validity of the present results. The effects of aspect ratio on the critical buckling load of isotropic plates is investigated and discussed.
Semi-Analytical Finite Strip Transfer Matrix Method for Buckling Analysis of Rectangular Thin Plates
Directory of Open Access Journals (Sweden)
Li-Ke Yao
2015-01-01
Full Text Available Plates and shells are main components of modern engineering structures, whose buckling analysis has been focused by researchers. In this investigation, rectangular thin plates with loaded edges simply supported can be discretized by semi-analytical finite strip technology. Then the control equations of the strip elements of the buckling plate will be rewritten as the transfer equations by transfer matrix method. A new approach, namely semi-analytical Finite Strip Transfer Matrix Method, is developed for the buckling analysis of plates. This method requires no global stiffness matrix of the system, reduces the system matrix order, and improves the computational efficiency. Comparing with some theoretical results and FEM’s results of two illustrations (the plates and the ribbed plates under six boundary conditions, the method is proved to be reliable and effective.
Elasto-plastic buckling analysis of laminated plates including interfacial damage
Energy Technology Data Exchange (ETDEWEB)
Tian, Yanping; Fu, Yiming [Hunan University, State Key Laboratory of Advanced Technology of Design and Manufacturing for Vehicle Body, College of Mechanics and Aerospace, Changsha (China)
2010-06-15
Elasto-plastic buckling of orthotropic laminated plates, which include interfacial damage, is analyzed in detail. Firstly, a novel mixed hardening yield criterion, as an improvement of Hill's counterpart, is proposed for the orthotropic materials on the basis of the plastic theory. And differing from Hill's theory, the present yield criterion is related to the spherical tensor of stress. Then, the incremental elasto-plastic constitutive relations of the mixed hardening orthotropic materials are presented. Secondly, the incremental static equilibrium equations for laminated plates including interfacial damage are established based on Von-Karman type theory and the principle of minimum potential energy. Finally, the elasto-plastic buckling of laminated plates are solved by adopting the Galerkin method and iteration scheme. The numerical results show that buckling of the plate occurs easier due to the existence of interfacial damage, and the critical load trends to constant when the interfacial damage approaches a certain degree. Also, the effect of anisotropy on buckling is obvious and the analysis of elasto-plastic buckling is necessary. (orig.)
Ko, William L.
1996-01-01
Mechanical and thermal buckling behavior of monolithic and metal-matrix composite hat-stiffened panels were investigated. The panels have three types of face-sheet geometry: Flat face sheet, microdented face sheet, and microbulged face sheet. The metal-matrix composite panels have three types of face-sheet layups, each of which is combined with various types of hat composite layups. Finite-element method was used in the eigenvalue extractions for both mechanical and thermal buckling. The thermal buckling analysis required both eigenvalue and material property iterations. Graphical methods of the dual iterations are shown. The mechanical and thermal buckling strengths of the hat-stiffened panels with different face-sheet geometry are compared. It was found that by just microdenting or microbulging of the face sheet, the axial, shear, and thermal buckling strengths of both types of hat-stiffened panels could be enhanced considerably. This effect is more conspicuous for the monolithic panels. For the metal-matrix composite panels, the effect of fiber orientations on the panel buckling strengths was investigated in great detail, and various composite layup combinations offering, high panel buckling strengths are presented. The axial buckling strength of the metal-matrix panel was sensitive to the change of hat fiber orientation. However, the lateral, shear, and thermal buckling strengths were insensitive to the change of hat fiber orientation.
Analysis of polysilicon micro beams buckling with temperature-dependent properties
Shamshirsaz, M; Asgari, M B; Tayefeh, M
2008-01-01
The suspended electrothermal polysilicon micro beams generate displacements and forces by thermal buckling effects. In the previous electro-thermal and thermo-elastic models of suspended polysilicon micro beams, the thermo-mechanical properties of polysilicon have been considered constant over a wide rang of temperature (20- 900 degrees C). In reality, the thermo-mechanical properties of polysilicon depend on temperature and change significantly at high temperatures. This paper describes the development and validation of theoretical and Finite Element Model (FEM) including the temperature dependencies of polysilicon properties such as thermal expansion coefficient and Young's modulus. In the theoretical models, two parts of elastic deflection model and thermal elastic model of micro beams buckling have been established and simulated. Also, temperature dependent buckling of polysilicon micro beam under high temperature has been modeled by Finite Element Analysis (FEA). Analytical results and numerical results ...
Buckling analysis of a cylindrical shell, under neutron radiation environment
Energy Technology Data Exchange (ETDEWEB)
Arani, A. Ghorbanpour [Department of Mechanical Engineering, School of Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Ahmadi, M. [School of Research and Development of Nuclear Reactors and Accelerators, Nuclear Science and Technology (Iran, Islamic Republic of); Ahmadi, A. [Department of Management, University of Tehran, Tehran (Iran, Islamic Republic of); Rastgoo, A. [Department of Mechanical Engineering, School of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Sepyani, H.A., E-mail: hosepiani@yahoo.com [Department of Mechanical Engineering, School of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)
2012-01-15
Highlights: Black-Right-Pointing-Pointer The work investigates the buckling of a shell in the neutron radiation environment. Black-Right-Pointing-Pointer Radiation induced porosity in elastic materials affects the material's properties. Black-Right-Pointing-Pointer The data based technique was used to determine the volume fraction porosity. Black-Right-Pointing-Pointer The theoretical formulations are presented based on the classical shell theory (CST). Black-Right-Pointing-Pointer It was concluded that both T and neutron induced swelling have significant effects. - Abstract: This research investigates the buckling of a cylindrical shell in the neutron radiation environment, subjected to combined static and periodic axial forces. Radiation induced porosity in elastic materials affects the thermal, electrical and mechanical properties of the materials. In this study, the data based technique was used to determine the volume fraction porosity, P, of shell material. A least-squares fit of the Young's module data yielded the estimated Young's modulus. The shell assumed made of iron irradiated in the range of 2-15e-7 dPa/s at 345-650 Degree-Sign C and theoretical formulations are presented based on the classical shell theory (CST). The research deals with the problem theoretically; keeping in mind that one means of generating relevant design data is to investigate prototype structures. A parametric study is followed and the stability of shell is discussed. It is concluded that both temperature and neutron induced swelling have significant effects on the buckling load.
Limit Load and Buckling Analysis for Assessing Hanford Single-Shell Tank Dome Structural Integrity
Energy Technology Data Exchange (ETDEWEB)
Johnson, Kenneth I.; Deibler, John E.; Julyk, Larry J.; Karri, Naveen K.; Pilli, Siva Prasad
2012-12-07
The U.S. Department of Energy, Office of River Protection has commissioned a structural analysis of record (AOR) for the Hanford single shell tanks (SSTs) to assess their structural integrity. The analysis used finite element techniques to predict the tank response to the historical thermal and operating loads. The analysis also addressed the potential tank response to a postulated design basis earthquake. The combined response to static and seismic loads was then evaluated against the design requirements of American Concrete Institute (ACI) standard, ACI-349-06, for nuclear safety-related concrete structures. Further analysis was conducted to estimate the plastic limit load and the elastic-plastic buckling capacity of the tanks. The limit load and buckling analyses estimate the margin between the applied loads and the limiting load capacities of the tank structure. The potential for additional dome loads from waste retrieval equipment and the addition of large dome penetrations to accommodate retrieval equipment has generated additional interest in the limit load and buckling analyses. This paper summarizes the structural analysis methods that were used to evaluate the limit load and buckling of the single shell tanks.
Institute of Scientific and Technical Information of China (English)
WANG Hao; LI AiQun; GUO Tong; MA Shuang
2009-01-01
Runyang Suspension Bridge (RSB) with the main span of 1490 m is the longest bridge in China and the third longest one in the world. In this bridge the rigid central buckle is employed for the first time in the mid-span of the suspension bridge in China. For such a super-long-span bridge, the traditional finite element (FE) modeling technique and stress analysis methods obviously cannot satisfy the needs of conducting accurate stress analysis on the central buckle. In this paper, the submodel method is introduced and for the first time used in analyzing the stresses of the central buckle. After an accurate FE submodel of the central buckle was specially established according to the analysis results from the whole FE model, the connection technique between the two-scale FE models was realized and the accurate stresses of the central buckle under various vehicle load cases were then conducted based on the submodel method. The calculation results were testified to be accurate and reliable by the field measurements, which show the efficiency and reliability of the submodel method on analyzing the mechanical condition of the central buckle of long-span suspension bridges. Finally, the working behavior and mechanical characteristics of the central buckle of the RSB under vehicle loads were analyzed based on the calculation and measurement results. The results obtained in this paper can provide theoretic references for analyzing and designing the rigid central buckle in long-span suspension bridges in future.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Runyang Suspension Bridge (RSB) with the main span of 1490 m is the longest bridge in China and the third longest one in the world. In this bridge the rigid central buckle is employed for the first time in the mid-span of the suspension bridge in China. For such a super-long-span bridge, the traditional finite element (FE) modeling technique and stress analysis methods obviously cannot satisfy the needs of conducting accurate stress analysis on the central buckle. In this paper, the submodel method is in- troduced and for the first time used in analyzing the stresses of the central buckle. After an accurate FE submodel of the central buckle was specially established according to the analysis results from the whole FE model, the connection technique between the two-scale FE models was realized and the ac- curate stresses of the central buckle under various vehicle load cases were then conducted based on the submodel method. The calculation results were testified to be accurate and reliable by the field measurements, which show the efficiency and reliability of the submodel method on analyzing the mechanical condition of the central buckle of long-span suspension bridges. Finally, the working be- havior and mechanical characteristics of the central buckle of the RSB under vehicle loads were ana- lyzed based on the calculation and measurement results. The results obtained in this paper can provide theoretic references for analyzing and designing the rigid central buckle in long-span suspension bridges in future.
SCBUCKLE user's manual: Buckling analysis program for simple supported and clamped panels
Cruz, Juan R.
1993-01-01
The program SCBUCKLE calculates the buckling loads and mode shapes of cylindrically curved, rectangular panels. The panel is assumed to have no imperfections. SCBUCKLE is capable of analyzing specially orthotropic symmetric panels (i.e., A(sub 16) = A(sub 26) = 0.0, D(sub 16) = D(sub 26) = 0.0, B(sub ij) = 0.0). The analysis includes first-order transverse shear theory and is capable of modeling sandwich panels. The analysis supports two types of boundary conditions: either simply supported or clamped on all four edges. The panel can be subjected to linearly varying normal loads N(sub x) and N(sub y) in addition to a constant shear load N(sub xy). The applied loads can be divided into two parts: a preload component; and a variable (eigenvalue-dependent) component. The analysis is based on the modified Donnell's equations for shallow shells. The governing equations are solved by Galerkin's method.
Unsupervised Linear Discriminant Analysis
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
An algorithm for unsupervised linear discriminant analysis was presented. Optimal unsupervised discriminant vectors are obtained through maximizing covariance of all samples and minimizing covariance of local k-nearest neighbor samples. The experimental results show our algorithm is effective.
Mehralian, Fahimeh; Tadi Beni, Yaghoub; Karimi Zeverdejani, Mehran
2017-09-01
The present paper is concerned with the applicability of nonlocal strain gradient theory for axial buckling analysis of nanotubes. The first order shear deformation theory with the von Kármán geometrical nonlinearity is utilized to establish theoretical formulations. The governing equations and boundary conditions are derived using the minimum potential energy principle. As main purpose of this study, the small length scale parameters are calibrated for the axial buckling problem of carbon nanotubes (CNTs) using molecular dynamics (MDs) simulations. Further the influences of different geometrical and material parameters, such as length and thickness ratio as well as small length scale parameters on the buckling response of nanotubes are studied. It is indicated that the effect of small length scale parameters on the critical buckling load becomes more prominent by increasing thickness and decreasing length ratio. Moreover, the calibrated small length scale parameters presented herein would be useful for the purpose of applying the nonlocal strain gradient theory for the analysis of nanotubes. The calibrated nonlocal strain gradient theory presented herein should be useful for researchers who are using the nonlocal strain gradient shell theories for analysis of micro/nanotubes.
Bending and buckling behavior analysis of foamed metal circular plate.
Fan, Jian Ling; Ma, Lian Sheng; Zhang, Lu; De Su, Hou
2016-07-04
This paper establishes a density gradient model along the thickness direction of a circular plate made of foamed material. Based on the first shear deformation plate theory, the result is deduced that the foamed metal circular plate with graded density along thickness direction yields axisymmetric bending problem under the action of uniformly distributed load, and the analytical solution is obtained by solving the governing equation directly. The analyses on two constraint conditions of edge radial clamping and simply supported show that the density gradient index and external load may affect the axisymmetric bending behavior of the plate. Then, based on the classical plate theory, the paper analyzes the behavior of axisymmetric buckling under radial pressure applied on the circular plate. Shooting method is used to obtain the critical load, and the effects of gradient nature of material properties and boundary conditions on the critical load of the plate are analyzed.
Zhen, Wu; Wanji, Chen
2007-05-01
Buckling response of angle-ply laminated composite and sandwich plates are analyzed using the global-local higher order theory with combination of geometric stiffness matrix in this paper. This global-local theory completely fulfills the free surface conditions and the displacement and stress continuity conditions at interfaces. Moreover, the number of unknowns in this theory is independent of the number of layers in the laminate. Based on this global-local theory, a three-noded triangular element satisfying C1 continuity conditions has also been proposed. The bending part of this element is constructed from the concept of DKT element. In order to improve the accuracy of the analysis, a method of modified geometric stiffness matrix has been introduced. Numerical results show that the present theory not only computes accurately the buckling response of general laminated composite plates but also predicts the critical buckling loads of soft-core sandwiches. However, the global higher-order theories as well as first order theories might encounter some difficulties and overestimate the critical buckling loads for soft-core sandwich plates.
Rigorous buckling analysis of size-dependent functionally graded cylindrical nanoshells
Sun, Jiabin; Lim, C. W.; Zhou, Zhenhuan; Xu, Xinsheng; Sun, Wei
2016-06-01
This paper presents new analytical solutions for buckling of carbon nanotubes (CNTs) and functionally graded (FG) cylindrical nanoshells subjected to compressive and thermal loads. The model applies Eringen's nonlocal differential constitutive relation to describe the size-dependence of nanoshells. Based on Reddy's higher-order shear deformation theory, governing equations are established and solved by separating the variables. The analysis first re-examines the classical buckling of single-walled CNTs. Accurate solutions are established, and it is found that the buckling stress decreases drastically when the nonlocal parameter reaches a certain value. For CNTs with constant wall-thickness, the buckling stress eventually decreases with enhanced size effect. By comparing with CNTs molecular dynamic simulations, the obtained nonlocal parameters are much smaller than those proposed previously. Subsequently, FG cylindrical nanoshells are analyzed, and it is concluded that similar behavior that has been observed for CNTs is also valid for FG cylindrical nanoshells. The paper further discusses in detail the effects of different geometric parameters, material distribution, and temperature field.
Ansari, R.; Norouzzadeh, A.
2016-10-01
The size-dependent static buckling responses of circular, elliptical and skew nanoplates made of functionally graded materials (FGMs) are investigated in this article based on an isogeometric model. The Eringen nonlocal continuum theory is implemented to capture nonlocal effects. According to the Gurtin-Murdoch surface elasticity theory, surface energy influences are also taken into account by the consideration of two thin surface layers at the top and bottom of nanoplate. The material properties vary in the thickness direction and are evaluated using the Mori-Tanaka homogenization scheme. The governing equations of buckled nanoplate are achieved by the minimum total potential energy principle. To perform the isogeometric analysis as a solution methodology, a novel matrix-vector form of formulation is presented. Numerical examples are given to study the effects of surface stress as well as other important parameters on the critical buckling loads of functionally graded nanoplates. It is found that the buckling configuration of nanoplates at small scales is significantly affected by the surface free energy.
Shama, Mohamed
2013-01-01
Buckling of Ship Structures presents a comprehensive analysis of the buckling problem of ship structural members. A full analysis of the various types of loadings and stresses imposed on ship plating and primary and secondary structural members is given. The main causes and consequences of the buckling mode of failure of ship structure and the methods commonly used to control buckling failure are clarified. This book contains the main equations required to determine the critical buckling stresses for both ship plating and the primary and secondary stiffening structural members. The critical buckling stresses are given for ship plating subjected to the induced various types of loadings and having the most common boundary conditions encountered in ship structures. The text bridges the gap existing in most books covering the subject of buckling of ship structures in the classical analytical format, by putting the emphasis on the practical methods required to ensure safety against buckling of ship structur...
Rigid-Plastic Post-Buckling Analysis of Columns and Quadratic Plates
DEFF Research Database (Denmark)
Jönsson, Jeppe
2008-01-01
The objective of this paper is to show the application of a novel approach to the rigid plastic hinge and yield line theory in post-buckling analysis of slender plates and columns. The upper bound theorem of plasticity theory and the associated flow law of plasticity are used to find...... of the post-buckling behaviour. The rigid plastic theory of plates, referred to as yield line theory, involves large rigid parts of the plate mutually rotating about yielding hinge lines, however in order to accommodate in plane plastic deformations area “collapse” yield lines have been introduced. The hinge...... yield lines accommodate differential rotations of rigid parts and the area “collapse” yield lines accommodate local area changes of the rigid parts thereby preserving compatibility of the rigid parts of a plate. The approach will be illustrated for rigid plastic column analysis and for a quadratic plate...
Stress and Buckling Analysis of Cold-formed Zed-purlins Partially Restrained by Steel Sheeting
Institute of Scientific and Technical Information of China (English)
Zhi-ming Ye; R. Kettle; L.Y. Li; B.Schafer
2003-01-01
This paper presents an analysis model for cold-formed purlin-sheeting systems subjected to wind uplitt loading in which the restraint of the sheeting to the purlin is taken into account by using two springs representing the translational and rotational restraints provided by the sheeting.The set of equations is solved by means of trigonometric series and finite strip methods in which the pre-buckling stress is calculated based on the same model used for the buckling analysis rather than taken as the "pure bending" stress. The influence of spring stiffness and fixing position of the purlin and sheeting on the stresses resulted in the cross-section of the purlin is discussed in details.
A Simplified Analysis of the Post-buckling Behavior of a Compressed Reinforcing Bar
Directory of Open Access Journals (Sweden)
P. Kabele
2004-01-01
Full Text Available Recently, a computational methodology based on a sequential multiscale approach, which facilitates numerical simulation of an R/C building demolition has been developed. In this type of analysis, it is necessary to capture the behavior of compressed reinforcement bars until complete rupture, which occurs due to extensive bending in the post-buckling regime. To this end, a simplified analytical model of the post-buckling behavior of a compressed bar is proposed. The simplification consists namely in considering rigid-plastic material behavior, neglecting axial contraction of the central line, and approximating the shape of the deformed central line in the plastic hinges by a circular arch. Consequently, the axial loading force, bar end displacement, and extreme strain can be expressed in relatively simple closed forms. The results obtained with the proposed model show very close agreement with those obtained by a detailed and realistic finite element analysis, which justifies the use of the simplifying assumptions.
High-Fidelity Buckling Analysis of Composite Cylinders Using the STAGS Finite Element Code
Hilburger, Mark W.
2014-01-01
Results from previous shell buckling studies are presented that illustrate some of the unique and powerful capabilities in the STAGS finite element analysis code that have made it an indispensable tool in structures research at NASA over the past few decades. In particular, prototypical results from the development and validation of high-fidelity buckling simulations are presented for several unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells along with a discussion on the specific methods and user-defined subroutines in STAGS that are used to carry out the high-fidelity simulations. These simulations accurately account for the effects of geometric shell-wall imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and elastic boundary conditions. The analysis procedure uses a combination of nonlinear quasi-static and transient dynamic solution algorithms to predict the prebuckling and unstable collapse response characteristics of the cylinders. Finally, the use of high-fidelity models in the development of analysis-based shell-buckling knockdown (design) factors is demonstrated.
EXACT SOLUTION FOR TEMPERATURE-DEPENDENT BUCKLING ANALYSIS OF FG-CNT-REINFORCED MINDLIN PLATES
Directory of Open Access Journals (Sweden)
Seyed Mohammad Mousavi
2016-03-01
Full Text Available This research deals with the buckling analysis of nanocomposite polymeric temperature-dependent plates reinforced by single-walled carbon nanotubes (SWCNTs. For the carbon-nanotube reinforced composite (CNTRC plate, uniform distribution (UD and three types of functionally graded (FG distribution patterns of SWCNT reinforcements are assumed. The material properties of FG-CNTRC plate are graded in the thickness direction and estimated based on the rule of mixture. The CNTRC is located in a elastic medium which is simulated with temperature-dependent Pasternak medium. Based on orthotropic Mindlin plate theory, the governing equations are derived using Hamilton’s principle and solved by Navier method. The influences of the volume fractions of carbon nanotubes, elastic medium, temperature and distribution type of CNTs are considered on the buckling of the plate. Results indicate that CNT distribution close to top and bottom are more efficient than those distributed nearby the mid-plane for increasing the stiffness of plates.
Buckling analysis of stiff thin films suspended on a substrate with tripod surface relief structure
Yu, Qingmin; Chen, Furong; Li, Ming; Cheng, Huanyu
2017-09-01
A wavy configuration is a simple yet powerful structural design strategy, which has been widely used in flexible and stretchable electronics. A buckled structure created from a prestretch-contact-release process represents an early effort. Substrates with engineered surface relief structures (e.g., rectangular islands or tripod structure) have enabled stretchability to the devices without sacrificing their electric performance (e.g., high areal coverage for LEDs/photovoltaics/batteries/supercapacitors). In particular, the substrate with a tripod surface relief structure allows wrinkled devices to be suspended on a soft tripod substrate. This minimizes the contact area between devices and the deformed substrate, which contributes to a significantly reduced interfacial stress/strain. To uncover the underlying mechanism of such a design, we exploit the energy method to analytically investigate the buckling and postbuckling behaviors of stiff films suspended on a stretchable polymeric substrate with a tripod surface relief structure. Validated by finite element analysis, the predications from such an analytical study elucidate the deformed profile and maximum strain in the buckled and postbuckled stiff thin device films, providing a useful toolkit for future experimental designs.
Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory
Directory of Open Access Journals (Sweden)
B. Sidda Reddy
2013-01-01
Full Text Available The prime aim of the present study is to present analytical formulations and solutions for the buckling analysis of simply supported functionally graded plates (FGPs using higher order shear deformation theory (HSDT without enforcing zero transverse shear stresses on the top and bottom surfaces of the plate. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. Material properties of the plate are assumed to vary in the thickness direction according to a power law distribution in terms of the volume fractions of the constituents. The equations of motion and boundary conditions are derived using the principle of virtual work. Solutions are obtained for FGPs in closed-form using Navier’s technique. Comparison studies are performed to verify the validity of the present results from which it can be concluded that the proposed theory is accurate and efficient in predicting the buckling behavior of functionally graded plates. The effect of side-to-thickness ratio, aspect ratio, modulus ratio, the volume fraction exponent, and the loading conditions on the critical buckling load of FGPs is also investigated and discussed.
Farrokh, Babak; Segal, Kenneth N.; Akkerman, Michael; Glenn, Ronald L.; Rodini, Benjamin T.; Fan, Wei-Ming; Kellas, Sortiris; Pineda, Evan J.
2014-01-01
In this work, an all-bonded out-of-autoclave (OoA) curved longitudinal composite joint concept, intended for use in the next generation of composite heavy lift launch vehicles, was evaluated and verified through finite element (FE) analysis, fabrication, testing, and post-test inspection. The joint was used to connect two curved, segmented, honeycomb sandwich panels representative of a Space Launch System (SLS) fairing design. The overall size of the resultant panel was 1.37 m by 0.74 m (54 in by 29 in), of which the joint comprised a 10.2 cm (4 in) wide longitudinal strip at the center. NASTRAN and ABAQUS were used to perform linear and non-linear analyses of the buckling and strength performance of the jointed panel. Geometric non-uniformities (i.e., surface contour imperfections) were measured and incorporated into the FE model and analysis. In addition, a sensitivity study of the specimens end condition showed that bonding face-sheet doublers to the panel's end, coupled with some stress relief features at corner-edges, can significantly reduce the stress concentrations near the load application points. Ultimately, the jointed panel was subjected to a compressive load. Load application was interrupted at the onset of buckling (at 356 kN 80 kips). A post-test non-destructive evaluation (NDE) showed that, as designed, buckling occurred without introducing any damage into the panel or the joint. The jointed panel was further capable of tolerating an impact damage to the same buckling load with no evidence of damage propagation. The OoA cured all-composite joint shows promise as a low mass factory joint for segmented barrels.
Shenas, Amin Ghorbani; Malekzadeh, Parviz; Ziaee, Sima
2017-04-01
As a first endeavor, the thermal buckling behavior of pre-twisted functionally graded (FG) beams with temperature-dependent material properties is investigated. The governing stability equations are derived based on the third-order shear deformation theory (TSDT) in conjunction with the adjacent equilibrium state criterion under the von Kármán's nonlinear kinematic assumptions using the Chebyshev-Ritz method. The Chebyshev polynomials multiplied with some suitable boundary functions are used as the basis functions, which allow one to analyze the beams with different boundary conditions. The extracted system of nonlinear algebraic eigenvalue equations is solved iteratively to obtain the critical temperature rise. The convergence behavior together with accuracy of the solution method and the correctness of formulation are demonstrated through different examples. Then, the influences of the linear and nonlinear variation of the angle of twist along the beam axis, the value of twist angle, length-to-thickness ratio, thickness-to-width ratio, material gradient index and temperature dependence of material properties on the critical temperature rise of the pre-twisted FG beams under different boundary conditions are investigated. It is shown that the pre-twist angle increases the thermal buckling resistance of the pre-twisted FG beams, but the temperature dependence of material properties reduces it.
Generalized Linear Covariance Analysis
Carpenter, James R.; Markley, F. Landis
2014-01-01
This talk presents a comprehensive approach to filter modeling for generalized covariance analysis of both batch least-squares and sequential estimators. We review and extend in two directions the results of prior work that allowed for partitioning of the state space into solve-for'' and consider'' parameters, accounted for differences between the formal values and the true values of the measurement noise, process noise, and textita priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator's epoch time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the variance sandpile'' and the sensitivity mosaic,'' and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.
PARAMETRIC ANALYSIS OF THE BUCKLING RESISTANCE OF THE SILO STEEL WALL
Skejić, Davor; Cavor, Marija
2015-01-01
The latest final draft amendment EN 1993-4-1:2007/FprA1 brings many changes that will likely soon become valid. In this article, we assess the issue of designing steel silo walls from perspective of the proposed changes related to assessing their buckling resistance. We performed a parametric analysis, comparing the current standard, HRN EN 1993-4-1, to the proposed amendment, EN 1993-4-1:2007/FprA1, accounting for the silo fabrication quality parameter as well as variations in steel quality,...
Ko, William L.
1994-01-01
The combined load (mechanical or thermal load) buckling equations were established for orthotropic rectangular sandwich panels under four different edge conditions by using the Rayleigh-Ritz method of minimizing the total potential energy of a structural system. Two-dimensional buckling interaction curves and three-dimensional buckling interaction surfaces were constructed for high-temperature honeycomb-core sandwich panels supported under four different edge conditions. The interaction surfaces provide overall comparison of the panel buckling strengths and the domains of symmetrical and antisymmetrical buckling associated with the different edge conditions. In addition, thermal buckling curves of these sandwich panels are presented. The thermal buckling conditions for the cases with and without thermal moments were found to be identical for the small deformation theory.
Equilibrium equations for nonlinear buckling analysis of drill-strings in 3D curved well-bores
Institute of Scientific and Technical Information of China (English)
TAN MeiLan; GAN LiFei
2009-01-01
With the development of drilling technology, the oil/gas well has evolved from its early vertical straight form to the inclined, horizontal, plane curved, or even 3D curved well-bore. Understanding of the buck-ling behavior of a drill-string in a well-bore is crucial for the success of a drilling operation. Therefore, equilibrium equations for analyzing the buckling behavior of a drill-string in a 3D curved well-bore are required. Based on Love's equilibrium equations for a curved and twisted rod in space, s set of equi-librium equations for the nonlinear buckling analysis of a drill-string in a 3D curved well-bore are de-rived by introducing a radial constraint of the well-bore. The proposed formulae can account for the well curvature and tortuosity. Thus, it can be used to analyze the buckling behaviors of a drill-string constrained in a well-bore and subjected to axial compression, torsion at its upper end, and gravity simultaneously. It is worth noting that the existing equations in the literature for a drill-string in a straight and plane curved well-bore with a constant curvature are a special case of the proposed model. Thus, the present model can provide s theoretical basis for the nonlinear buckling analysis of a drill-string constrained in a 3D curved well-bore.
Analysis of Potential for Titanium Liner Buckling after Proof in a Large Kevlar/Epoxy COPV
Phoenix, S. Leigh; Kezirian, Michael T.
2009-01-01
We analyze the potential for liner buckling in a 40-in Kevlar49/epoxy overwrapped spherical pressure vessel (COPV) due to long, local depressions or valleys in the titanium liner, which appeared after proof testing (autofrettage). We begin by presenting the geometric characteristics of approximately 20 mil (0.02 in.) deep depressions measured by laser profilometry in several vessels. While such depths were more typical, depths of more than 40 mils (0.02 in.) were seen near the equator in one particular vessel. Such depressions are largely the result of overlap of the edges of overwrap bands (with rectangular cross-section prepreg tows) from the first or second wrap patterns particularly where they start and end. We then discuss the physical mechanisms of formation of the depressions during the autofrettage process in terms of uneven void compaction in the overwrap around the tow overlap lines and the resulting 10-fold increase in through-thickness stiffness of the overwrap. We consider the effects of liner plastic yielding mechanisms in the liner on residual bending moments and interface pressures with the overwrap both at the peak proof pressure (approx.6500 psi) and when reducing the pressure to 0 psi. During depressurization the Bauschinger phenomenon becomes very important whereby extensive yielding in tension reduces the magnitude of the yield threshold in compression by 30 to 40%, compared to the virgin annealed state of the liner titanium. In the absence of a depression, the liner is elastically stable in compression even at liner overwrap interface pressures nominally 6 times the approx. 1000 psi interface pressure that exists at 0 psi. Using a model based on a plate-on-an-elastic-foundation, we develop an extensive analysis of the possible destabilizing effects of a frozen-in valley. The analysis treats the modifying effects of the residual bending moments and interface pressures remaining after the proof hold as well as the Bauschinger effect on the
Institute of Scientific and Technical Information of China (English)
Yitong Zhang; Cuiyu Li; Jiafu Xu
2005-01-01
With the aid of the micro-mechanical model of knitted fabric proposed in Part 1 we analyze the buckling of a knitted fabric sheet when it is subjected to a tension along the wale direction. The large deformation of the fabric sheet in the critical configuration is considered and, to avoid possible deviation due to the approximation of the theory of thin plate, the three-dimensional theory of instability is used.The fabric sheet is considered as a three-dimensional body and all boundary conditions are satisfied. It is shown that the buckling of the fabric sheet is possible, two buckling modes and the corresponding buckling conditions are obtained, but only the flexural mode is physically possible as observed in experiments.
Perturbation Method of Analysis Applied to Substitution Measurements of Buckling
Energy Technology Data Exchange (ETDEWEB)
Persson, Rolf
1966-11-15
Calculations with two-group perturbation theory on substitution experiments with homogenized regions show that a condensation of the results into a one-group formula is possible, provided that a transition region is introduced in a proper way. In heterogeneous cores the transition region comes in as a consequence of a new cell concept. By making use of progressive substitutions the properties of the transition region can be regarded as fitting parameters in the evaluation procedure. The thickness of the region is approximately equal to the sum of 1/(1/{tau} + 1/L{sup 2}){sup 1/2} for the test and reference regions. Consequently a region where L{sup 2} >> {tau}, e.g. D{sub 2}O, contributes with {radical}{tau} to the thickness. In cores where {tau} >> L{sup 2} , e.g. H{sub 2}O assemblies, the thickness of the transition region is determined by L. Experiments on rod lattices in D{sub 2}O and on test regions of D{sub 2}O alone (where B{sup 2} = - 1/L{sup 2} ) are analysed. The lattice measurements, where the pitches differed by a factor of {radical}2, gave excellent results, whereas the determination of the diffusion length in D{sub 2}O by this method was not quite successful. Even regions containing only one test element can be used in a meaningful way in the analysis.
Combined compressive and shear buckling analysis of hypersonic aircraft sandwich panels
Ko, William L.; Jackson, Raymond H.
1992-01-01
The combined-load (compression and shear) buckling equations were established for orthotropic sandwich panels by using the Rayleigh-Ritz method to minimize the panel total potential energy. The resulting combined-load buckling equations were used to generate buckling interaction curves for super-plastically-formed/diffusion-bonded titanium truss-core sandwich panels and titanium honeycomb-core sandwich panels having the same specific weight. The relative combined-load buckling strengths of these two types of sandwich panels are compared with consideration of their sandwich orientations. For square and nearly square panels of both types, the combined load always induces symmetric buckling. As the panel aspect ratios increase, antisymmetric buckling will show up when the loading is shear-dominated combined loading. The square panel (either type) has the highest combined buckling strength, but the combined load buckling strength drops sharply as the panel aspect ratio increases. For square panels, the truss-core sandwich panel has higher compression-dominated load buckling strength. However, for shear dominated loading, the square honeycomb-core sandwich panel has higher shear-dominated combined load buckling strength.
Combined compressive and shear buckling analysis of hypersonic aircraft structural sandwich panels
Ko, William L.; Jackson, Raymond H.
1991-01-01
The combined-load (compression and shear) buckling equations were established for orthotropic sandwich panels by using the Rayleigh-Ritz method to minimize the panel total potential energy. The resulting combined-load buckling equations were used to generate buckling interaction curves for super-plastically-formed/diffusion-bonded titanium truss-core sandwich panels and titanium honeycomb-core sandwich panels having the same specific weight. The relative combined-load buckling strengths of these two types of sandwich panels are compared with consideration of their sandwich orientations. For square and nearly square panels of both types, the combined load always induces symmetric buckling. As the panel aspect ratios increase, antisymmetric buckling will show up when the loading is shear-dominated combined loading. The square panel (either type) has the highest combined buckling strength, but the combined load buckling strength drops sharply as the panel aspect ratio increases. For square panels, the truss-core sandwich panel has higher compression-dominated combined load buckling strength. However, for shear dominated loading, the square honeycomb-core sandwich panel has higher shear-dominated combined load buckling strength.
Energy Technology Data Exchange (ETDEWEB)
Watashi, K. [PNC, Ibaraki (Japan). OEC; Iwata, K. [PNC, Ibaraki (Japan). OEC
1995-01-01
Two remarkable thermally induced deformation mechanisms of pipes which may have serious effects on structural integrity, thermal buckling and progressive ovalization, were observed on the horizontal piping of the sodium test facility, called TTS, with which cyclic thermal transient tests of structures had been conducted. The thermal buckling, which was caused by thermal stratification, occurred at a circumferentially welded region of the pipe where a noticeable geometrical imperfection existed. The buckling was analyzed comprehensively for this pipe, using both the finite element method and a simplified method based on Gellin`s analysis results. The predictions were reasonable and gave confidence in accounting for the sodium leakage encountered at the TTS. It was also demonstrated by the finite element analyses that the progressive ovalization of the pipe cross-section from a circular to a downward triangular shape can be caused by cyclic thermal stratification under the existence of cover gas in the pipe. ((orig.)).
Flexural-torsional buckling analysis of angle-bar stiffened plates
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Rahbar Ranji [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)
2015-09-15
The interaction of flexural-torsional buckling modes is critical for stiffened plates with asymmetric stiffeners. However, this interaction is ignored in all design rules because it is complex to characterize. In the literature, the presence of an attached plate is ignored, and stiffened plate is treated as an ordinary asymmetric beam. In the flexural buckling mode, stiffener and the attached plate buckle together; in the torsional buckling mode, the attached plate cannot freely rotate with stiffener. Basic equations of the flexural-torsional buckling modes are deduced based on hybrid beam concept and a new strain distribution assumption for sideway bending of stiffeners. Elastic buckling stresses of different angle-bar stiffened plates are calculated and compared with those generated by the Finite element method (FEM) and those available in the literature. The present method has better agreements with FEM.
Mechanical and thermal buckling analysis of sandwich panels under different edge conditions
Ko, William L.
1993-01-01
By using the Rayleigh-Ritz method of minimizing the total potential energy of a structural system, combined load (mechanical or thermal load) buckling equations are established for orthotropic rectangular sandwich panels supported under four different edge conditions. Two-dimensional buckling interaction curves and three dimensional buckling interaction surfaces are constructed for high-temperature honeycomb-core sandwich panels supported under four different edge conditions. The interaction surfaces provide easy comparison of the panel buckling strengths and the domains of symmetrical and antisymmetrical buckling associated with the different edge conditions. Thermal buckling curves of the sandwich panels also are presented. The thermal buckling conditions for the cases with and without thermal moments were found to be identical for the small deformation theory. In sandwich panels, the effect of transverse shear is quite large, and by neglecting the transverse shear effect, the buckling loads could be overpredicted considerably. Clamping of the edges could greatly increase buckling strength more in compression than in shear.
Weak Formulation Study For Thermoelastic Buckling Analysis Of Thick Laminated Cylindrical Shells
Directory of Open Access Journals (Sweden)
Kewei Ding
2015-08-01
Full Text Available Weak formulations of mixed state equations of closed laminated cylindrical shells are presented in the Hamilton System. The Hamilton canonical equation of closed cylindrical shell is established. By means of applying the transfer matrix method and taking the advantage of Hamiltonian matrix in the calculation, a unified approach and three-dimensional thermoelastic solutions are obtained for the buckling analysis of closed thick laminated cylindrical shells. All equations of elasticity can be satisfied and all elastic constants can be taken into account. Numerical results are given to compare with those of FEM calculated using SAP5. The principle and method suggested here have clear physical concepts. The equations and boundary conditions proposed in this paper are weakened. The solutions and results given here may serve as a benchmark for other numerical procedures.
Dynamic buckling analysis of delaminated composite plates using semi-analytical finite strip method
Ovesy, H. R.; Totounferoush, A.; Ghannadpour, S. A. M.
2015-05-01
The delamination phenomena can become of paramount importance when the design of the composite plates is concerned. In the current study, the effect of through-the-width delamination on dynamic buckling behavior of a composite plate is studied by implementing semi-analytical finite strip method. In this method, the energy and work integrations are computed analytically due to the implementation of trigonometric functions. Moreover, the method can lead to converged results with comparatively small number of degrees of freedom. These features have made the method quite efficient. To account for delamination effects, displacement field is enriched by adding appropriate terms. Also, the penetration of the delamination surfaces is prevented by incorporating an appropriate contact scheme into the time response analysis. Some selected results are validated against those available in the literature.
Equilibrium equations for nonlinear buckling analysis of drill-strings in 3D curved well-bores
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
With the development of drilling technology, the oil/gas well has evolved from its early vertical straight form to the inclined, horizontal, plane curved, or even 3D curved well-bore. Understanding of the buck- ling behavior of a drill-string in a well-bore is crucial for the success of a drilling operation. Therefore, equilibrium equations for analyzing the buckling behavior of a drill-string in a 3D curved well-bore are required. Based on Love’s equilibrium equations for a curved and twisted rod in space, a set of equi- librium equations for the nonlinear buckling analysis of a drill-string in a 3D curved well-bore are de- rived by introducing a radial constraint of the well-bore. The proposed formulae can account for the well curvature and tortuosity. Thus, it can be used to analyze the buckling behaviors of a drill-string constrained in a well-bore and subjected to axial compression, torsion at its upper end, and gravity simultaneously. It is worth noting that the existing equations in the literature for a drill-string in a straight and plane curved well-bore with a constant curvature are a special case of the proposed model. Thus, the present model can provide a theoretical basis for the nonlinear buckling analysis of a drill-string constrained in a 3D curved well-bore.
BUCKLING ANALYSIS OF WOVEN FABRIC UNDER UNIAXIAL TENSION IN ARBITRARY DIRECTION
Institute of Scientific and Technical Information of China (English)
张义同; 徐家福
2002-01-01
The buckling of a fabric sheet subjected to a uniaxial tension in a direction mak-ing arbitrary angle, θ (0°＜θ＜ 90°) say, with respect to that of warp is investigated.The equation to determine the buckling direction angle, β say, was obtained and, as illus-tration, the solution curves of the equation for θ = 45° and θ = 30° were plotted. It is shownthat when the fabric sheet is subjected to tension in non-warp/non-weft direction the out-of-plane buckling of fabric is possible, two buckling modes (flexural and extensional modes)and the both corresponding buckling conditions are obtained. The results given by ZHANGand FU ( 2001 ) are the special cases of this paper.
Buckle Driven Delamination in Thin Hard Film Compliant Substrate Systems
Directory of Open Access Journals (Sweden)
Bahr D.F.
2010-06-01
significantly from behavior predicted by rigid elastic solutions. To address this issue we developed a finite element analysis technique that employed a cohesive zone model to simulate interfacial crack growth. Specifying the traction-separation relationship, cohesive strength, and work of separation along with film thickness, film stress, and film and substrate properties, buckle width and height were determined as a function of interfacial toughness. The simulations indicate that an analysis based on rigid substrate solutions significantly underestimate toughness for prescribed buckle widths: a result consistent with an analysis by Yu and Hutchinson [5] that pieced together a solution based on non-linear plate theory with a solution for the linear film on substrate problem. More importantly, the results defined a lower limiting bound to seemingly disparate buckle deflection data (Figure 2. The variance from linear elastic behavior, especially for the small buckles, indicates more than substrate compliance is controlling behavior. Comparison of the experimental results with cohesive zone simulations suggests that the two buckle behaviors are associated with different levels of substrate yielding. In this presentation we will use the results to show how substrate compliance and deformation affect delamination and buckling of films on compliant substrates and provide a means to predict device performance.
Buckle Driven Delamination in Thin Hard Film Compliant Substrate Systems
Moody, N. R.; Reedy, E. D.; Corona, E.; Adams, D. P.; Kennedy, M. S.; Cordill, M. J.; Bahr, D. F.
2010-06-01
behavior predicted by rigid elastic solutions. To address this issue we developed a finite element analysis technique that employed a cohesive zone model to simulate interfacial crack growth. Specifying the traction-separation relationship, cohesive strength, and work of separation along with film thickness, film stress, and film and substrate properties, buckle width and height were determined as a function of interfacial toughness. The simulations indicate that an analysis based on rigid substrate solutions significantly underestimate toughness for prescribed buckle widths: a result consistent with an analysis by Yu and Hutchinson [5] that pieced together a solution based on non-linear plate theory with a solution for the linear film on substrate problem. More importantly, the results defined a lower limiting bound to seemingly disparate buckle deflection data (Figure 2). The variance from linear elastic behavior, especially for the small buckles, indicates more than substrate compliance is controlling behavior. Comparison of the experimental results with cohesive zone simulations suggests that the two buckle behaviors are associated with different levels of substrate yielding. In this presentation we will use the results to show how substrate compliance and deformation affect delamination and buckling of films on compliant substrates and provide a means to predict device performance.
Optimization Formulations for the Maximum Nonlinear Buckling Load of Composite Structures
DEFF Research Database (Denmark)
Lindgaard, Esben; Lund, Erik
2011-01-01
, benchmarked on a number of numerical examples of laminated composite structures for the maximization of the buckling load considering fiber angle design variables. The optimization formulations are based on either linear or geometrically nonlinear analysis and formulated as mathematical programming problems...... solved using gradient based techniques. The developed local criterion is formulated such it captures nonlinear effects upon loading and proves useful for both analysis purposes and as a criterion for use in nonlinear buckling optimization. © 2010 Springer-Verlag....
Seber, George A F
2012-01-01
Concise, mathematically clear, and comprehensive treatment of the subject.* Expanded coverage of diagnostics and methods of model fitting.* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.* More than 200 problems throughout the book plus outline solutions for the exercises.* This revision has been extensively class-tested.
Artery buckling analysis using a two-layered wall model with collagen dispersion.
Mottahedi, Mohammad; Han, Hai-Chao
2016-07-01
Artery buckling has been proposed as a possible cause for artery tortuosity associated with various vascular diseases. Since microstructure of arterial wall changes with aging and diseases, it is essential to establish the relationship between microscopic wall structure and artery buckling behavior. The objective of this study was to developed arterial buckling equations to incorporate the two-layered wall structure with dispersed collagen fiber distribution. Seven porcine carotid arteries were tested for buckling to determine their critical buckling pressures at different axial stretch ratios. The mechanical properties of these intact arteries and their intima-media layer were determined via pressurized inflation test. Collagen alignment was measured from histological sections and modeled by a modified von-Mises distribution. Buckling equations were developed accordingly using microstructure-motivated strain energy function. Our results demonstrated that collagen fibers disperse around two mean orientations symmetrically to the circumferential direction (39.02°±3.04°) in the adventitia layer; while aligning closely in the circumferential direction (2.06°±3.88°) in the media layer. The microstructure based two-layered model with collagen fiber dispersion described the buckling behavior of arteries well with the model predicted critical pressures match well with the experimental measurement. Parametric studies showed that with increasing fiber dispersion parameter, the predicted critical buckling pressure increases. These results validate the microstructure-based model equations for artery buckling and set a base for further studies to predict the stability of arteries due to microstructural changes associated with vascular diseases and aging.
Buckling analysis of stringer-stiffened laminated cylindrical shells with nonuniform eccentricity
Energy Technology Data Exchange (ETDEWEB)
Sadeghifar, M. [Islamic Azad University, Department of Mechanical Engineering, Nowshahr Branch, Nowshahr (Iran, Islamic Republic of); Bagheri, M. [Sattari Air University, Faculty of Aerospace Engineering, Tehran (Iran, Islamic Republic of); Jafari, A.A. [K.N. Toosi University of Technology, Faculty of Mechanical Engineering, Tehran (Iran, Islamic Republic of)
2011-07-15
In this study, the influence of nonuniformity of eccentricity of stringers on the general axial buckling load of stiffened laminated cylindrical shells with simply supported end conditions is investigated. The critical loads are calculated using Love's First-order Shear Deformation Theory and solved using the Rayleigh-Ritz procedure. The effects of the shell length-to-radius ratio, shell thickness-to-radius ratio, number of stringers, and stringers depth-to-width ratio on the buckling load of nonuniformly eccentric shells, are examined. The research demonstrates that an appropriate nonuniform distribution of eccentricity of stringers leads the buckling load to increase significantly. (orig.)
Hilburger, Mark W.; Nemeth, Michael P.; Riddick, Jaret C.; Thornburgh, Robert P.
2004-01-01
A parametric study of the effects of test-fixture-induced initial prestress and elastic edge restraints on the prebuckling and buckling responses of a compression-loaded, quasi-isotropic curved panel is presented. The numerical results were obtained by using a geometrically nonlinear finite element analysis code with high-fidelity models. The results presented show that a wide range of prebuckling and buckling behavior can be obtained by varying parameters that represent circumferential loaded-edge restraint and rotational unloaded-edge restraint provided by a test fixture and that represent the mismatch in specimen and test-fixture radii of curvature. For a certain range of parameters, the panels exhibit substantial nonlinear prebuckling deformations that yield buckling loads nearly twice the corresponding buckling load predicted by a traditional linear bifurcation buckling analysis for shallow curved panels. In contrast, the results show another range of parameters exist for which the nonlinear prebuckling deformations either do not exist or are relatively benign, and the panels exhibit buckling loads that are nearly equal to the corresponding linear bifurcation buckling load. Overall, the results should also be of particular interest to scientists, engineers, and designers involved in simulating flight-hardware boundary conditions in structural verification and certification tests, involved in validating structural analysis tools, and interested in tailoring buckling performance.
DQ thermal buckling analysis of embedded curved carbon nanotubes based on nonlocal elasticity theory
National Research Council Canada - National Science Library
Setoodeh, AliReza; Derahaki, Morteza; Bavi, Navid
2015-01-01
Abstract To investigate the thermal buckling of curved carbon nanotubes (CCNTs) embedded in an elastic medium, nonlocal elasticity theory is employed in combination with the theory of thin curved beams...
Numerical analysis and experiment to identify origin of buckling in rapid cycling synchrotron core
Energy Technology Data Exchange (ETDEWEB)
Morita, Y., E-mail: yuichi.morita@kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki (Japan); Kageyama, T. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki (Japan); Akoshima, M. [The National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki (Japan); Torizuka, S.; Tsukamoto, M. [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki (Japan); Yamashita, S. [International Center for Elementary Particle Physics (ICEPP), University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo (Japan); Yoshikawa, N. [Institute of Industrial Science (IIS), University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo (Japan)
2013-11-11
The accelerating cavities used in the rapid cycling synchrotron (RCS) of the Japan Proton Accelerator Research Complex (J-PARC) are loaded with magnetic alloy (MA) cores. Over lengthly periods of RCS operation, significant reductions in the impedance of the cavities resulting from the buckling of the cores were observed. A series of thermal structural simulations and compressive strength tests showed that the buckling can be attributed to the low-viscosity epoxy resin impregnation of the MA core that causes the stiffening of the originally flexible MA–ribbon–wound core. Our results showed that thermal stress can be effectively reduced upon using a core that is not epoxy-impregnated. -- Highlights: • Study to identify the origin of buckling in the MA cores is presented. • Thermal stress simulations and compressive strength tests were carried out. • Results show that thermal stress is the origin of core buckling. • Thermal stress can be reduced by using cores without epoxy impregnation.
Predictive analysis of buckling distortion of thin-plate welded structures
Institute of Scientific and Technical Information of China (English)
杨新岐; 霍立兴; 张玉凤; 阎俊霞
2002-01-01
The welding buckling distortions of thin-plated structures were investigated based on finite element methods. An engineering treatment method for predicating the buckling distortion was proposed. The equivalent applied thermal-load was used to simulate the welding residual stress, thus the calculation of complex welding distortion can be transformed into 3D elastic structural applied-load analyses, which can reduce the quantities of calculating work effectively. The validation of the method was verified by comparison of the numerical calculation with experimental results. The prediction of buckling distortion for side-walled structures of passenger train was performed and the calculation was in agreement with measuring results in general. It is shown that the main factors for producing the buckling are the intermittent fillet and plug weld during welding the stiffened beams and columns to the panel.
External Pressure Forming and Buckling Analysis of Tubular Parts with Ribs
Institute of Scientific and Technical Information of China (English)
Gang LIU; Xuelian YIN; Shijian YUAN
2006-01-01
Buckling and forming processes of tubes with varying slenderness ratio(ratio of length to diameter)under external hydraulic pressure were analyzed with three-dimensional finite element method(FEM)for studying tube external pressure forming(EPF). Buckling pressures for different tube blanks without mandrel were predicted, and an EPF of a carbon steel tube onto a mandrel with six ribs was simulated. Both thickness distribution and buckling pressure from the simulations were found to be in agreement with those from experiments. Buckling pressures are shown to be a function of the slenderness ratio. The tubular part with six ribs produced by EPF has a uniform thickness distribution, whose maximum thinning rate is only 5.9%.
So, Hongyun
2013-10-31
© 2013, Springer-Verlag Berlin Heidelberg. This paper reports on a novel thermal actuator with sub-micron metallic structures and a buckling arm to operate with low voltages and to generate very large deflections, respectively. A lumped electrothermal model and analysis were also developed to validate the mechanical design and easily predict the temperature distribution along arms of the sub-micron actuator. The actuator was fabricated via the combination of electron beam lithography to form actuator arms with a minimum feature size of 200 nm and lift-off process to deposit a high aspect ratio nickel structure. Reproducible displacements of up to 1.9 μm at the tip were observed up to 250 mV under confocal microscope. The experimentally measured deflection values and theoretically calculated temperature distribution by the developed model were compared with finite element analysis results and they were in good agreement. This study shows a promising approach to develop more sophisticated nano actuators required larger deflections for manipulation of sub-micron scale objects with low-power consumption.
Energy Technology Data Exchange (ETDEWEB)
Singh, B.N., E-mail: bnsingh@aero.iitkgp.ernet.i [Department of Aerospace Engineering, IIT Kharagpur 721 302, West Bengal (India); Lal, Achchhe [Department of Mechanical Engineering, SVNIT, Surat 395007 (India)
2010-10-15
This study deals with the stochastic post-buckling and nonlinear free vibration analysis of a laminated composite plate resting on a two parameters Pasternak foundation with Winkler cubic nonlinearity having uncertain system properties. The system properties are modeled as basic random variables. A C{sup 0} nonlinear finite element formulation of the random problem based on higher-order shear deformation theory in the von Karman sense is presented. A direct iterative method in conjunction with a stochastic nonlinear finite element method proposed earlier by the authors is extended to analyze the effect of uncertainty in system properties on the post-buckling and nonlinear free vibration of the composite plates having Winler type of geometric nonlinearity. Mean as well as standard deviation of the responses have been obtained for various combinations of geometric parameters, foundation parameters, stacking sequences and boundary conditions and compared with those available in the literature and Monte Carlo simulation.
Pre-Test Analysis Predictions for the Shell Buckling Knockdown Factor Checkout Tests - TA01 and TA02
Thornburgh, Robert P.; Hilburger, Mark W.
2011-01-01
This report summarizes the pre-test analysis predictions for the SBKF-P2-CYL-TA01 and SBKF-P2-CYL-TA02 shell buckling tests conducted at the Marshall Space Flight Center (MSFC) in support of the Shell Buckling Knockdown Factor (SBKF) Project, NASA Engineering and Safety Center (NESC) Assessment. The test article (TA) is an 8-foot-diameter aluminum-lithium (Al-Li) orthogrid cylindrical shell with similar design features as that of the proposed Ares-I and Ares-V barrel structures. In support of the testing effort, detailed structural analyses were conducted and the results were used to monitor the behavior of the TA during the testing. A summary of predicted results for each of the five load sequences is presented herein.
Development of Finite Element Model for the Static Buckling Behavior of the Spacer Grid
Energy Technology Data Exchange (ETDEWEB)
Yoo, Young Ik; Park, Nam Gyu; Kim, Kyoung Ju; Suh, Jung Min [Kepco Nuclear Fuel, Daejeon (Korea, Republic of)
2013-10-15
In this study, finite element model was proposed to evaluate the buckling characteristics and structural behavior of partial spacer grids. A two-dimensional model was developed to simplify a real spacer gird model and save analysis time. And it was validated for comparison with experimental tests. A non-linear analysis method was introduced to perform realistic simulation. Later, the buckling analysis of the full size grid will be performed based on the analysis results of partial spacer grids. A study was conducted to develop the simplified model of a spacer grid and provide a prediction of buckling behavior. The FE analysis results are quite similar to the experimental tests. · The deformed geometry of FE model after compression is consistent and very similar to that of real situation, and the non-linear analysis method used in this model can simulate buckling and post-buckling behavior well. · The buckling strength obtained by FEM shows a very good agreement with the physical tests.
NONLINEAR BUCKLING CHARACTERISTIC OF GRADED MULTIWEB STRUCTURE OF HETEROGENEOUS MATERIALS
Institute of Scientific and Technical Information of China (English)
LI Yong; ZHANG Zhi-min
2005-01-01
The graded multiweb structure of heterogeneous anisotropic materials, which makes full use of the continuous, gradual and changing physical mechanical performance of material properties, has a widespread application in aeroplane aerofoil structure and automobile lightweight structure. On the basis of laminate buckling theory,the equivalent rigidity method is adopted to establish the corresponding constitutive relation and the non-linear buckling governing equation for the graded multiweb structure. In finding the solution, the critical load of buckling under different complicated boundary conditions together with combined loads were obtained and testification of the experimental analysis shows that the calculation results can satisfy the requirements of engineering design in a satisfactory way. Results obtained from the research say that: graded materials can reduce the concentrated stress on the interface in an effective way and weaken the effect of initial defect in materials and thereby improve the strength and toughness of materials.
Engineering electronic states of periodic and quasiperiodic chains by buckling
Mukherjee, Amrita; Nandy, Atanu; Chakrabarti, Arunava
2017-07-01
The spectrum of spinless, non-interacting electrons on a linear chain that is buckled in a non-uniform, quasiperiodic manner is investigated within a tight binding formalism. We have addressed two specific cases, viz., a perfectly periodic chain wrinkled in a quasiperiodic Fibonacci pattern, and a quasiperiodic Fibonacci chain, where the buckling also takes place in a Fibonacci pattern. The buckling brings distant neighbors in the parent chain to close proximity, which is simulated by a tunnel hopping amplitude. It is seen that, in the perfectly ordered case, increasing the strength of the tunnel hopping (that is, bending the segments more) absolutely continuous density of states is retained towards the edges of the band, while the central portion becomes fragmented and host subbands of narrowing widths containing extended, current carrying states, and multiple isolated bound states formed as a result of the bending. A switching ;on; and ;off; of the electronic transmission can thus be engineered by buckling. On the other hand, in the second example of a quasiperiodic Fibonacci chain, imparting a quasiperiodic buckling is found to generate continuous subband(s) destroying the usual multifractality of the energy spectrum. We present exact results based on a real space renormalization group analysis, that is corroborated by explicit calculation of the two terminal electronic transport.
Buckling Analysis of Bucket Foundations for Wind Turbines in Deep Water
DEFF Research Database (Denmark)
Madsen, Søren; Andersen, Lars; Ibsen, Lars Bo
2011-01-01
Using large suction caissons for offshore wind turbines is an upcoming technology also referred to as bucket foundations. The bucket foundation does not require heavy installation equipment, but since it is constructed as a thin steel shell structure, instability, in form of buckling, becomes...
Thermal Buckling and Free Vibration Analysis of Heated Functionally Graded Material Beams
Directory of Open Access Journals (Sweden)
Khalane Sanjay Anandrao
2013-05-01
Full Text Available The effect of temperature dependency of material properties on thermal buckling and free vibration of functionally graded material (FGM beams is studied. The FGM beam is assumed to be at a uniform through thickness temperature, above the ambient temperature. Finite element system of equations based on the first order shear deformation theory is developed. FGM beam with axially immovable ends having the classical boundary conditions is analysed. An exhaustive set of numerical results, in terms of buckling temperatures and frequencies, is presented, considering the temperature independent and temperature dependent material properties. The buckling temperature and fundamental frequency obtained using the temperature independent material properties is higher than that obtained by using the temperature dependent material properties, for all the material distributions, geometrical parameters in terms of length to thickness ratios and the boundary conditions considered. It is also observed that the frequencies of the FGM beam will reduce with the increase in temperature. This observation is applicable for the higher modes of vibration also. The necessity of considering the temperature dependency of material properties in determining thermal buckling and vibration characteristics of FGM beams is clearly demonstrated.Defence Science Journal, 2013, 63(3, pp.315-322, DOI:http://dx.doi.org/10.14429/dsj.63.2370
Post-Buckling Analysis of Curved Honeycomb Sandwich Panels Containing Interfacial Disbonds
Pineda, Evan J.; Bednarcyk, Brett A.; Krivanek, Thomas K.
2016-01-01
A numerical study on the effect of facesheet-core disbonds on the post-buckling response of curved honeycomb sandwich panels is presented herein. This work was conducted as part of the development of a damage tolerance plan for the next-generation Space Launch System heavy lift launch vehicle payload fairing. As such, the study utilized full-scale fairing barrel segments as the structure of interest. The panels were composed of carbon fiber reinforced polymer facesheets and aluminum honeycomb core. The panels were analyzed numerically using the finite element method incorporating geometric nonlinearity. In a predetermined circular region, facesheet and core nodes were detached to simulate a disbond, between the outer mold line facesheet and honeycomb core, induced via low-speed impact. Surface-to-surface contact in the disbonded region was invoked to prevent interpenetration of the facesheet and core elements and obtain realistic stresses in the core. The diameter of this disbonded region was varied and the effect of the size of the disbond on the post-buckling response was observed. Significant changes in the slope of the edge load-deflection response were used to determine the onset of global buckling and corresponding buckling load. Finally, several studies were conducted to determine the sensitivity of the numerical predictions to refinement in the finite element mesh.
On Compliance and Buckling Objective Functions in Topology Optimization of Snap-Through Problems
DEFF Research Database (Denmark)
Lindgaard, Esben; Dahl, Jonas
2013-01-01
optimized design. A well-known issue in buckling topology optimization is artificial buckling modes in low density regions. The typical remedy applied for linear buckling does not have a natural extension to nonlinear problems, and we propose an alternative approach. Some possible negative implications...... of the analysis method and optimization formulation. We apply a nonlinear path tracing algorithm capable of detecting different types of stability points and an optimization formulation that handles possible mode switching. This is an extension into the topology optimization realm of a method developed, and used......This paper deals with topology optimization of static geometrically nonlinear structures experiencing snap-through behaviour. Different compliance and buckling criterion functions are studied and applied for topology optimization of a point loaded curved beam problem with the aim of maximizing...
Thermal post-buckling of slender composite and FGM columns through a simple and novel FE formulation
Indian Academy of Sciences (India)
G VENKATESWARA RAO; K SANJAY ANANDRAO; R K GUPTA
2016-08-01
A simple and novel finite element (FE) formulation is proposed to study the thermal post-buckling of composite and FGM columns with axially immovable ends and operating in severe thermal environment. A linear eigenvalue analysis gives the critical buckling temperature but practically the buckled columns canwithstand additional thermal load beyond critical temperature, which can be obtained using von-Karman geometric nonlinearity, applicable for moderately large deflections. In the present study, the solution of the nonlinear post-buckling problem is obtained by treating it as a linear eigenvalue problem using the concept of effective stiffness. Here, the total degrees of freedom (dof) of the discretized column are reduced and the postbuckling load is obtained without the need for iterative analysis. Comparison of the numerical results obtainedfrom this FE formulation is in very good agreement with those obtained from the earlier FE formulations.
Linear Algebraic Method for Non-Linear Map Analysis
Energy Technology Data Exchange (ETDEWEB)
Yu,L.; Nash, B.
2009-05-04
We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.
Energy Technology Data Exchange (ETDEWEB)
Ansari, R., E-mail: r_ansari@guilan.ac.i [Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht (Iran, Islamic Republic of); Sahmani, S.; Rouhi, H. [Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht (Iran, Islamic Republic of)
2011-02-28
Eringen's nonlocality is incorporated into the shell theory to include the small-scale effects on the axial buckling of single-walled carbon nanotubes (SWCNTs) with arbitrary boundary conditions. To this end, the Rayleigh-Ritz solution technique is implemented in conjunction with the set of beam functions as modal displacement functions. Then, molecular dynamics simulations are employed to obtain the critical buckling loads of armchair and zigzag SWCNTs, the results of which are matched with those of nonlocal shell model to extract the appropriate values of nonlocal parameter. It is found that in contrast to the chirality, boundary conditions have a considerable influence on the proper values of nonlocal parameter.
A nonlinear model arising in the buckling analysis and its new analytic approximate solution
Energy Technology Data Exchange (ETDEWEB)
Khan, Yasir [Zhejiang Univ., Hangzhou, ZJ (China). Dept. of Mathematics; Al-Hayani, Waleed [Univ. Carlos III de Madrid, Leganes (Spain). Dept. de Matematicas; Mosul Univ. (Iraq). Dept. of Mathematics
2013-05-15
An analytical nonlinear buckling model where the rod is assumed to be an inextensible column and prismatic is studied. The dimensionless parameters reduce the constitutive equation to a nonlinear ordinary differential equation which is solved using the Adomian decomposition method (ADM) through Green's function technique. The nonlinear terms can be easily handled by the use of Adomian polynomials. The ADM technique allows us to obtain an approximate solution in a series form. Results are presented graphically to study the efficiency and accuracy of the method. To the author's knowledge, the current paper represents a new approach to the solution of the buckling of the rod problem. The fact that ADM solves nonlinear problems without using perturbations and small parameters can be judged as a lucid benefit of this technique over the other methods. (orig.)
Nemeth, Michael P.
2014-01-01
Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.
Based on ANSYS buckling-restrained brace frame structure analysis%基于ANSYS约束屈曲支撑框架结构分析
Institute of Scientific and Technical Information of China (English)
费建伟
2011-01-01
传统的耗能支撑框架结构具有较好的经济性,但是,在中震和强震时,支撑会发生受压屈曲.利用ANSYS模拟约束屈曲支撑框架在地震作用下的结构响应,采用理想弹塑性模型模拟屈曲约束支撑的滞回性能,分别在中震烈度和大震烈度下,对一般框架结构和约束屈曲支撑框架结构进行非线性时程分析,得到结构响应.分析结果表明,约束屈曲支撑结构减震效果良好.%The traditional energy support frame structure with good efficiency, but in moderate earthquakes and strong earthquake support will occur pressure buckling. Using ANSYS simulation buckling-restrained brace framework response of the structure in earthquake. Using the ideal elastic-plastic model describe buckling-restrained brace hysteretic performance, in moderate earthquakes and strong earthquake, general framework and buckling-restrained brace framework for nonlinear time-history analysis, solving structural response. Analysis results show that buckling-restrained brace structure damping effect is good.
Model Test Based Soil Spring Model and Application in Pipeline Thermal Buckling Analysis
Institute of Scientific and Technical Information of China (English)
GAO Xi-feng; LIU Run; YAN Shu-wang
2011-01-01
The buckling of submarine pipelines may occur due to the action of axial soil frictional force caused by relative movement of soil and pipeline,which is induced by the thermal and internal pressure.The likelihood of occurrence of this buckling phenomenon is largely determined by soil resistance.A series of large-scale model tests were carried out to facilitate the establishment of substantial data base for a variety of burial pipeline relationships.Based on the test data,nonlinear soil spring can be adopted to simulate the soil behavior during the pipeline movement.For uplift resistance,an ideal elasticity plasticity model is recommended in the case of H/D (depth-to-diameter ratio)＞5 and an elasticity softened model is recommended in the case of H/D≤5.The soil resistance along the pipeline axial direction can be simulated by an ideal elasticity plasticity model.The numerical analyzing results show that the capacity of pipeline against thermal buckling decreases with its initial imperfection enlargement and increases with the burial depth enhancement.
Distortional Buckling Analysis of Steel-Concrete Composite Girders in Negative Moment Area
Directory of Open Access Journals (Sweden)
Zhou Wangbao
2014-01-01
Full Text Available Distortional buckling is one of the most important buckling modes of the steel-concrete composite girder under negative moment. In this study, the equivalent lateral and torsional restraints of the bottom flange of a steel-concrete composite girder under negative moments due to variable axial forces are thoroughly investigated. The results show that there is a coupling effect between the applied forces and the lateral and torsional restraint of the bottom flange. Based on the calculation formula of lateral and torsional restraints, the critical buckling stress of I-steel-concrete composite girders and steel-concrete composite box girders under variable axial force is obtained. The critical bending moment of the steel-concrete composite girders can be further calculated. Compared to the traditional calculation methods of elastic foundation beam, the paper introduces an improved method, which considers coupling effect of the external loads and the foundation spring constraints of the bottom flange. Fifteen examples of the steel-concrete composite girders in different conditions are calculated. The calculation results show a good match between the hand calculation and the ANSYS finite element method, which validated that the analytic calculation method proposed in this paper is practical.
球面舱壁的弹性稳定性分析%Elastic buckling analysis of spherical bulkheads
Institute of Scientific and Technical Information of China (English)
黄旎; 夏飞; 胡刚义; 钱群; 肖伟
2012-01-01
Based on the theory of calculating the critical load by means of statics method, one-order ordinary differential equations for the elastic buckling of revolutionary shells is derived. By means of the extended homogeneous capacity and high precision integration method, the elastic buckling solution of spherical bulkheads is obtained by using Riccati transfer matrix method. And the influence of the parameter (the radius of the spherical shell, the thickness of the sphere shell, the radius of the toroid shell, the thickness of the toroid shell, and the gradient of the cone shell)is examined. The calculated result show that the radius and the thickness of the sphere shell play a vital role in buckling analysis.%基于静力法求解结构临界荷载的基本原理,导出旋转壳在均匀外压下弹性稳定性问题的一阶控制微分方程组.借助齐次扩容技术和精细积分法,采用Riccati传递矩阵法对均匀外压下球面舱壁的弹性稳定性问题进行数值求解.同时分析了各个参数(球壳半径、球壳厚度、环壳半径、环壳厚度和锥壳半锥角)对球面舱壁临界压力的影响.计算结果表明,各个参数中仅球壳半径和球壳厚度对结构的临界压力和失稳波数起决定性作用.
Elastic buckling strength of corroded steel plates
Indian Academy of Sciences (India)
Ahmad Rahbar-Ranji
2013-02-01
Corrosion makes structures more vulnerable to buckling and yielding failures. It is common practice to assume a uniform thickness reduction for general corrosion. To estimate the remaining strength of corroded structures, typically a much higher level of accuracy is required, since the actual corroded structures have irregular surfaces. Elastic buckling of simply supported rectangular corroded plates are studied with one- and both-sided irregular surfaces. Eigenvalue analysis by using ﬁnite element method (FEM) is employed for computing Euler stress. The inﬂuence of various geometric and corrosion characteristics are investigated and it is found that the aspect ratio of the plate, the average thickness diminution, the standard deviation of thickness diminution and the amount of corrosion loss have inﬂuence on the reduction of buckling strength of the corroded plates. Buckling strength of one- and both-sided corroded plates are the same. In plates with low value of aspect ratio, reduction of buckling strength is negligible. Reduction of buckling strength is more prominent in plates with higher aspect ratio. Reduction of buckling strength is very sensitive to the amount of corrosion loss; the higher the amount of corrosion loss, the more reduction of buckling strength. Reduction of buckling strength is less sensitive to the standard deviation of thickness diminution.
Ansys nonlinear buckling analysis for prediction of femoral neck fracture%股骨颈骨折预测的Ansys非线性屈曲分析
Institute of Scientific and Technical Information of China (English)
张国栋; 林海滨; 陈宣煌; 郑锋; 陈国立; 陶圣祥
2012-01-01
目的 实施10例股骨颈骨折的Ansys非线性屈曲分析,模拟与生物力学实验一致的股骨颈骨折实验全程.方法 采用10个股骨上段标本进行有限元建模,以十字坐标轴及绘图辅助软件TweakWindow实施精确的载荷施加及条件约束,进行特征值屈曲分析及非线性屈曲分析.结果 实现可控制的股骨颈骨折预测的Ansys非线性屈曲分析的载荷施加及条件约束；全部分析在达到结构崩溃时自动终止,发生股骨颈骨折的极限载荷为( 12 324.07±4439.733)N,最大位移为(7.6067 ±2.2716) mm,截取载荷-位移曲线；通过应力等值线图可判断股骨颈骨折位置.结论 非线性屈曲分析是一种适用于骨折预测的有限元算法；通过十字坐标轴及绘图辅助软件可以实现精确可控制的载荷施加及条件约束,实现与生物力学实验一致的条件设置.%Objective To simulate the whole femoral neck fractures experimental processes which were consistent with the biomechanical experiments by executing 10 cases of ansys nonlinear buckling analysis of femoral neck fracture.Methods 10 femoral superior segment specimens were used for finite element modeling.A cross axis as well as tweakwindow,which was a drawing auxiliary software,were used to execute the define loads and displacement procedures accurately,then the linear and nonlinear buckling analysis were executed successively.Results A controllable define loads and displacement in ansys nonlinear buckling analysis of prediction for femoral neck fracture; All analysises stop automatically when structural collapse happened.The ultimate load results of femoral neck fracture were (12 324.07 ±4439.73) N,the maximum displacement results were (7.6067 ± 2.2716) mm.The load-displacement curves were harvested; The positions of femoral neck fracture could be judged easily by stress contour plots.Conclusion The nonlinear buckling analysis was a suitable finite element calculation method for
Jamalpoor, A.; Ahmadi-Savadkoohi, A.; Hosseini-Hashemi, Sh
2016-10-01
This paper deals with the theoretical analysis of free vibration and biaxial buckling of magneto-electro-elastic (MEE) microplate resting on Kelvin-Voigt visco-Pasternak foundation and subjected to initial external electric and magnetic potentials, using modified strain gradient theory (MSGT). Kirchhoff plate model and Hamilton’s principle are employed to extract the governing equations of motion. Governing equations were analytically solved to obtain clear closed-form expression for complex natural frequencies and buckling loads using Navier’s approach. Numerical results are presented to reveal variations of natural frequency and buckling load ratio of MEE microplate against different amounts of the length scale parameter, initial external electric and magnetic potentials, aspect ratio, damping and transverse and shear stiffness parameters of the visco-Pasternak foundation, length to thickness ratio, microplate thickness and higher modes. Numerical results of this study illustrate that by increasing thickness-to-material length scale parameter ratio, both natural frequency and buckling load ratio predicted by MSGT and modified couple stress theory are reduced because the non-dimensional length scale parameter tends to decrease the stiffness of structures and make them more flexible. In addition, results show that initial external electric and initial external magnetic potentials have no considerable influence on the buckling load ratio and frequency of MEE microplate as the microplate thickness increases.
Hilburger, Mark W.; Waters, W. Allen, Jr.; Haynie, Waddy T.; Thornburgh, Robert P
2017-01-01
Results from the testing of cylinder test article SBKF-P2-CYL-TA02 (referred to herein as TA02) are presented. TA02 is an 8-foot-diameter (96-inches), 78.0-inch-long, aluminum-lithium (Al-Li), orthogrid-stiffened cylindrical shell similar to those used in current state-of-the-art launch-vehicle structures and was designed to exhibit global buckling when subjected to combined compression and bending loads. The testing was conducted at the Marshall Space Flight Center (MSFC), February 3-6, 2009, in support of the Shell Buckling Knockdown Factor Project (SBKF). The test was used to verify the performance of a newly constructed buckling test facility at MSFC and to verify the test article design and analysis approach used by the SBKF researchers.
基于弹簧理论的螺旋弯曲管柱强度分析%A Spring Theory-based Strength Analysis of the Helical Buckling String
Institute of Scientific and Technical Information of China (English)
窦益华; 于洋; 夏辉; 曹银萍
2012-01-01
为了了解螺旋弯曲状态下管柱的应力分布规律，根据管柱螺旋弯曲的特点，利用弹簧理论，结合螺旋弯曲管柱力学分析成果，导出了螺旋弯曲状态下管柱内、外侧的第四相当应力计算公式，弥补了传统管柱力学分析的不足，提高了受压弯曲管柱强度校核的针对性与准确性。分析结果表明，在轴向压力作用下，弯曲管柱内侧的最大相当应力恒大于外侧，并且随着轴向压力的增大，管柱内侧最大相当应力线性增大。因此，对于受压弯曲管柱，应以管柱内壁为应力危险．占校核苴碾序．%To understand the stress distribution law of pipestring in the state of helical buckling, the method to calculate the fourth phase equivalent stress of the inner and outer walls of pipestring in helical buckling was derived considering the features of helical buckling string, adopting the spring theory and referring to the dynamic analysis achievements of the string. This study makes up for the weakness of traditional dynamic analysis of pipestring and improves the pertinence and accuracy of checking the strength of pressurized buckling string. The analysis shows that under the effect of axial pressure, the maximum equivalent stress of the inner wall of the string is always grea- ter than that of the outer wall. Moreover, the maximum equivalent stress of the inner wall within the string increases linearly with the increase of axial pressure. Therefore, as for pressurized buckling string, the inner wall of the string should be taken as the dangerous point of stress to check the strength.
Energy Technology Data Exchange (ETDEWEB)
Solano, Rafael Familiar; Vaz, Murilo Augusto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Oceanica]. E-mail: solano@peno.coppe.ufrj.br; murilo@peno.coppe.ufrj.br
2003-07-01
This paper presents formulation and analytical solution for the post-buckling behaviour of slender rods subjected to uniform temperature variations and constrained by double-hinged non-movable boundary conditions. The material is assumed linear elastic and its thermal strain-temperature relationship is non-linear. The governing equations are derived from geometrical compatibility, equilibrium of forces and moments, constitutive equations and strain-displacement relation, yielding a set of six first-order non-linear ordinary differential equations with boundary conditions specified at both ends, which constitutes a complex boundary value problem. A closed-form analytical solution found via complete elliptic integral is derived from the governing equations defining the shape of the post-buckled rod (elastic). The results are presented in non-dimensional graphs for a range of temperature gradients and different values of slenderness ratios. The consideration of slender rods allows extending the formulation for pipelines. The phenomenon of thermal buckling in pipelines, through analytic and numeric models, including geometric non-linearity is then studied. (author)
Directory of Open Access Journals (Sweden)
Maryam Alsadat Rad
2016-12-01
Full Text Available This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young’s modulus, Poisson’s ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m−1, 123.4700 GPa, 0.3000 and 0.0693 V·m·N−1, respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young’s modulus of the cells are determined to be 10.8867 ± 0.0094 N·m−1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young’s modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.
Numerical Buckling Analysis of Large Suction Caissons for Wind Turbines on Deep Water
DEFF Research Database (Denmark)
Madsen, Søren; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo
2013-01-01
Using large suction caissons for offshore wind turbines is an upcoming cost-effective technology also referred to as bucket foundations. During operation, the monopod bucket foundation is loaded by a large overturning moment from the wind turbine and the wave loads. However, during installation...... the suction caisson is loaded by external pressure (internal suction) due to evacuation of water inside the bucket and vertical forces due to gravity. The risk of structural buckling during installation of large-diameter suction caissons is addressed using numerical methods. Initial imperfect geometries...
Designing pinhole vacancies in graphene towards functionalization: Effects on critical buckling load
Georgantzinos, S. K.; Markolefas, S.; Giannopoulos, G. I.; Katsareas, D. E.; Anifantis, N. K.
2017-03-01
The effect of size and placement of pinhole-type atom vacancies on Euler's critical load on free-standing, monolayer graphene, is investigated. The graphene is modeled by a structural spring-based finite element approach, in which every interatomic interaction is approached as a linear spring. The geometry of graphene and the pinhole size lead to the assembly of the stiffness matrix of the nanostructure. Definition of the boundary conditions of the problem leads to the solution of the eigenvalue problem and consequently to the critical buckling load. Comparison to results found in the literature illustrates the validity and accuracy of the proposed method. Parametric analysis regarding the placement and size of the pinhole-type vacancy, as well as the graphene geometry, depicts the effects on critical buckling load. Non-linear regression analysis leads to empirical-analytical equations for predicting the buckling behavior of graphene, with engineered pinhole-type atom vacancies.
Buckling behavior of pipes in oil and gas wells
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Based on the non-linear differential equations of buckled pipes, the buckling behavior of pipes in different wellbores has been analyzed. The relation between the deflection of buckled pipe and the loads on it has been given, and the critical loads for sinusodal and helical buckling within different wellbores subjected to axial and torsional loads have been determined. Therefore, the profile of load increase during the post-buckling process and the bending moments in the buckled pipe can be determined. In addition, the effects of down-hole packer as fixed end on the helical buckling behavior of pipes have been investigated. These results can be applied to the related engineering design and construction.
Energy Technology Data Exchange (ETDEWEB)
Familiar Solano, Rafael; Reis Antunes, Bruno; Santos Hansen, Alexandre [PETROBRAS, Rio de Janeiro, (Brazil)
2010-07-01
Offshore pipelines can be subject to lateral buckling; some strategies are applied to prevent buckle initiation by monitoring the buckling behaviour. Some pipelines have been modified by PETROBRAS with triggers and sleepers; and distributed buoyancies have been added along the pipeline route. This paper investigated the thermo-mechanical design of the pipeline to avoid buckling and its consequences. Both planned buckles at dual sleepers and at distributed buoyancy modules and unplanned buckles were studied. Comparisons between the results obtained in design with finite element analysis and observed during operation with sidescan images were made. Seven planned buckles and two unplanned buckles were mapped and analyzed. It was found that the maximum stress, strain and fatigue damage at the buckle locations were fairly low. The mapping tests showed that the lengths and amplitudes of the buckles were compatible with lateral buckles in the design of pipelines.
Vibration and Buckling Analysis of Moderately Thick Plates using Natural Element Method
Directory of Open Access Journals (Sweden)
Mohammad Etemadi
2015-07-01
Full Text Available Using natural element method (NEM, the buckling and the free vibration behaviors of moderate thick plates is studied here. The basis of NEM is natural neighbors and Voronoi cells concepts. The shape functions of nodes located in the domain is equal to the proportion of common natural neighbors area divided by area that related by each Voronoi cells. First step in analyzing the moderate thick plates is identification boundaries. This is done by nodes scattering on problem domain. Mindlin/Reissner theory is used to express the equations of moderate thick plate. First and second order shape functions obtained from natural element method are used to discretize differential equations. Using numerical integration on whole discrete equations of domain, stiffness, geometry and mass matrices of plate are obtained. Buckling loads and vibration modes are expressed by substituting these matrices in plate equations of motions. Arbitrary shapes of plate are selected for solution. Comparing the results of the current approach with those obtained by other numerical analytical methods, it is shown that natural element method can solve problems with complex areas accurately.
Elastic rods with incompatible strain: Macroscopic versus microscopic buckling
Lestringant, Claire; Audoly, Basile
2017-06-01
We consider the buckling of a long prismatic elastic solid under the combined effect of a pre-stress that is inhomogeneous in the cross-section, and of a prescribed displacement of its endpoints. A linear bifurcation analysis is carried out using different structural models (namely a double beam, a rectangular thin plate, and a hyper-elastic prismatic solid in 3-d): it yields the buckling mode and the wavenumber qc that are first encountered when the end-to-end displacement is progressively decreased with fixed pre-stress. For all three structural models, we find a transition from a long-wavelength (qc = 0) to a short-wavelength first buckling mode (qc ≠ 0) when the inhomogeneous pre-stress is increased past a critical value. A method for calculating the critical inhomogeneous pre-stress is proposed based on a small-wavenumber expansion of the buckling mode. Overall, our findings explain the formation of multiple perversions in elastomer strips, as well as the large variations in the number of perversions as a function of pre-stress and cross-sectional geometry, as reported by Liu et al. (2014).
BUCKLING ANALYSIS UNDER COMBINED LOADING OF THIN-WALLED PLATE ASSEMBLIES USING BUBBLE FUNCTIONS
Institute of Scientific and Technical Information of China (English)
Gao Xuanneng; Zou Yinsheng; Zhou Xuhong
2000-01-01
Bubble functions are finite element modes that are zero on the boundary of the element but nonzero at the other point. The present paper adds bubble functions to the ordinary Complex Finite Strip Method(CFSM) to calculate the elastic local buckling stress of plates and plate assemblies. The results indi cate that the use of bubble functions greatly improves the convergence of the Finite Strip Method(FSM) in terms of strip subdivision, and leads to much smaller storage required for the structure stiffness and stability matrices. Numerical examples are given, including plates and plate structures subjected to a combination of longitudinal and transverse compression, bending and shear. This study illustrates the power of bubble func tions in solving stability problems of plates and plate structures.
STAVREV, A.
2013-03-01
The uncertainty of geometric imperfections in a series of nominally equal I-beams leads to a variability of corresponding buckling loads. Its analysis requires a stochastic imperfection model, which can be derived either by the simple variation of the critical eigenmode with a scalar random variable, or with the help of the more advanced theory of random fields. The present paper first provides a concise review of the two different modeling approaches, covering theoretical background, assumptions and calibration, and illustrates their integration into commercial finite element software to conduct stochastic buckling analyses with the Monte-Carlo method. The stochastic buckling behavior of an example beam is then simulated with both stochastic models, calibrated from corresponding imperfection measurements. The simulation results show that for different load cases, the response statistics of the buckling load obtained with the eigenmode-based and the random field-based models agree very well. A comparison of our simulation results with corresponding Eurocode 3 limit loads indicates that the design standard is very conservative for compression dominated load cases. © 2013 World Scientific Publishing Company.
Dynamic and buckling analysis of a thin elastic-plastic square plate in a uniform temperature field
Institute of Scientific and Technical Information of China (English)
Shifu Xiao; Bin Chen
2005-01-01
The nonlinear models of the elastic and elasticlinear strain-hardening square plates with four immovably simply-supported edges are established by employing Hamilton's Variational Principle in a uniform temperature field. The unilateral equilibrium equations satisfied by the plastically buckled equilibria are also established. Dynamics and stability of the elastic and plastic plates are investigated analytically and the buckled equilibria are investigated by employing Galerkin-Ritz's method. The vibration frequencies, the first critical temperature differences of instability or buckling, the elastically buckled equilibria and the extremes depending on the final loading temperature difference of the plastically buckled equillibria of the plate are obtained. The results indicate that the critical buckling value of the plastic plate is lower than its critical instability value and the critical value of its buckled equilibria turning back to the trivial equilibrium are higher than the value. However, three critical values of the elastic plate are equal. The unidirectional snap-through may occur both at the stress-strain boundary of elasticity and plasticity and at the initial stage of unloading of the plastic plate.
Weil, Arlo; Gutiérrez-Alonso, Gabriel; Johnston, Stephen; Pastor Galán, Daniel
2013-04-01
The Paleozoic Variscan orogeny was a large-scale collisional event involving amalgamation of multiple continents and micro-continents. Existing data, suggests oroclinal buckling of an originally near-linear convergent margin during the last stages of Variscan deformation in the late Paleozoic. Closure of the Rheic Ocean resulted in E-W shortening (present-day coordinates) in the Carboniferous, producing a near linear N-S trending, east-verging belt. Subsequent N-S shortening near the Carb-Permian boundary resulted in oroclinal buckling. This late-stage orogenic event remains an enigmatic part of final Pangea amalgamation. The present-day arc curvature of the Variscan has inspired many tectonic models, with little agreement between them. While there is general consensus that two separate phases of deformation occurred, various models consider that curvature was caused by: dextral transpression around a Gondwana indentor; strike-slip wrench tectonics; or a change in tectonic transport direction due to changing stress fields. More recent models explain the curvature as an orocline, with potentially two opposite-facing bends, caused by secondary rotations. Deciphering the kinematic history of curved orogens is difficult, and requires establishment of two deformation phases: an initial compressive phase that forms a relatively linear belt, and a second phase that causes vertical-axis rotation of the orogenic limbs. Historically the most robust technique to accurately quantify vertical axis-rotation in curved orogens is paleomagnetic analysis, but recently other types of data, including fracture, geochemical, petrologic, paleo-current and calcite twin data, have been used to corroborate secondary buckling. A review of existing and new Variscan data from Iberia is presented that argues for secondary buckling of an originally linear orogenic system. Together, these data constrain oroclinal buckling of the Cantabrian Orocline to have occurred in about 10 Ma during the
Nitinol stent design - understanding axial buckling.
McGrath, D J; O'Brien, B; Bruzzi, M; McHugh, P E
2014-12-01
Nitinol׳s superelastic properties permit self-expanding stents to be crimped without plastic deformation, but its nonlinear properties can contribute towards stent buckling. This study investigates the axial buckling of a prototype tracheobronchial nitinol stent design during crimping, with the objective of eliminating buckling from the design. To capture the stent buckling mechanism a computational model of a radial force test is simulated, where small geometric defects are introduced to remove symmetry and allow buckling to occur. With the buckling mechanism ascertained, a sensitivity study is carried out to examine the effect that the transitional plateau region of the nitinol loading curve has on stent stability. Results of this analysis are then used to redesign the stent and remove buckling. It is found that the transitional plateau region can have a significant effect on the stability of a stent during crimping, and by reducing the amount of transitional material within the stent hinges during loading the stability of a nitinol stent can be increased.
On the buckling of an elastic rotating beam
DEFF Research Database (Denmark)
Furta, Stanislaw D.; Kliem, Wolfhard; Pommer, Christian
1997-01-01
A nonlinear model is developed, which describes the buckling phenomena of an elastic beam clamped to the interior of a rotating wheel. We use a power series method to obtain an approximate expression of the buckling equation and compare this with previous results in the literature. The linearized...
Stochastic behavior of nanoscale dielectric wall buckling
Friedman, Lawrence H.; Levin, Igor; Cook, Robert F.
2016-01-01
The random buckling patterns of nanoscale dielectric walls are analyzed using a nonlinear multi-scale stochastic method that combines experimental measurements with simulations. The dielectric walls, approximately 200 nm tall and 20 nm wide, consist of compliant, low dielectric constant (low-k) fins capped with stiff, compressively stressed TiN lines that provide the driving force for buckling. The deflections of the buckled lines exhibit sinusoidal pseudoperiodicity with amplitude fluctuation and phase decorrelation arising from stochastic variations in wall geometry, properties, and stress state at length scales shorter than the characteristic deflection wavelength of about 1000 nm. The buckling patterns are analyzed and modeled at two length scales: a longer scale (up to 5000 nm) that treats randomness as a longer-scale measurable quantity, and a shorter-scale (down to 20 nm) that treats buckling as a deterministic phenomenon. Statistical simulation is used to join the two length scales. Through this approach, the buckling model is validated and material properties and stress states are inferred. In particular, the stress state of TiN lines in three different systems is determined, along with the elastic moduli of low-k fins and the amplitudes of the small-scale random fluctuations in wall properties—all in the as-processed state. The important case of stochastic effects giving rise to buckling in a deterministically sub-critical buckling state is demonstrated. The nonlinear multiscale stochastic analysis provides guidance for design of low-k structures with acceptable buckling behavior and serves as a template for how randomness that is common to nanoscale phenomena might be measured and analyzed in other contexts. PMID:27330220
Forced Vibrations of Silos Leading to Buckling
FLORES, FERNANDO G.; GODOY, LUIS A.
1999-07-01
The large-amplitude force vibrations of steel thin-walled silos when empty are investigated. The basic geometry configuration modelled is a cylinder clamped at the bottom with a top conical roof. Wind pressure distributions are assumed as non-axisymmetric in the circumferential direction and with a rectangular impulse or step distribution in time. Instability is identified from finite-element computations of the time response of the shell using a criterion due to Budianski and Roth. Results are computed for silos made with plain as well as with corrugated sheets, and the influences of geometric imperfections and the stiffening due to the roof are included in the analysis. The problems are also modelled with static pressures using both continuation techniques and bifurcation analysis from a linear fundamental path. Additional results have been obtained to estimate the dynamic buckling load for step loading using energy procedures. All results are computed using finite-element codes developed by the authors.
Analysis of exact linearization and aproximate feedback linearization techniques
Schnitman, Leizer; Cardoso, Gildeberto de Souza
2011-01-01
p. 1-17 This paper presents a study of linear control systems based on exact feedback linearization and approximate feedback linearization. As exact feedback linearization is applied, a linear controller can perform the control objectives. The approximate feedback linearization is required when a nonlinear system presents a noninvolutive property. It uses a Taylor series expansion in order to compute a nonlinear transformation of coordinates to satisfy the involutivity conditions.
Analysis of Exact Linearization and Aproximate Feedback Linearization Techniques
Cardoso, Gildeberto S.; Leizer Schnitman
2011-01-01
This paper presents a study of linear control systems based on exact feedback linearization and approximate feedback linearization. As exact feedback linearization is applied, a linear controller can perform the control objectives. The approximate feedback linearization is required when a nonlinear system presents a noninvolutive property. It uses a Taylor series expansion in order to compute a nonlinear transformation of coordinates to satisfy the involutivity conditions.
Compositional analysis for linear systems
Kerber, Florian; Schaft, Arjan van der
2010-01-01
Compositional analysis techniques such as assume-guarantee reasoning are frequently used in computer science to validate the design of complex process models. Since many engineering systems are built modularly from interconnections of components, the resulting mathematical models can be arbitrarily
Linear and complex analysis problem
Nikolski, Nikolai
1994-01-01
The 2-volume book is an updated, reorganized and considerably enlarged version of the previous edition of the Research Problem Book in Analysis (LNM 1043), a collection familiar to many analysts, that has sparked off much research. This new edition, created in a joint effort by a large team of analysts, is, like its predecessor, a collection of unsolved problems of modern analysis designed as informally written mini-articles, each containing not only a statement of a problem but also historical and methodological comments, motivation, conjectures and discussion of possible connections, of plausible approaches as well as a list of references. There are now 342 of these mini- articles, almost twice as many as in the previous edition, despite the fact that a good deal of them have been solved!
Linear and complex analysis problem
Nikolski, Nikolai
1994-01-01
The 2-volume-book is an updated, reorganized and considerably enlarged version of the previous edition of the Research Problem Book in Analysis (LNM 1043), a collection familiar to many analysts, that has sparked off much research. This new edition, created in a joint effort by a large team of analysts, is, like its predecessor, a collection of unsolved problems of modern analysis designed as informally written mini-articles, each containing not only a statement of a problem but also historical and metho- dological comments, motivation, conjectures and discussion of possible connections, of plausible approaches as well as a list of references. There are now 342 of these mini- articles, almost twice as many as in the previous edition, despite the fact that a good deal of them have been solved!
Energy Technology Data Exchange (ETDEWEB)
Ghomshei, Mansour Mohieddin; Abbasi, Vahid [Islamic Azad University, Alborz (Iran, Islamic Republic of)
2013-04-15
In this paper, a finite element formulation is developed for analyzing the axisymmetric thermal buckling of FGM annular plates of variable thickness subjected to thermal loads generally distributed nonuniformly along the plate radial coordinate. The FGM assumed to be isotropic with material properties graded in the thickness direction according to a simple power-law in terms of the plate thickness coordinate, and has symmetry with respect to the plate midplane. At first, the pre-buckling plane elasticity problem is developed and solved using the finite element method, to determine the distribution of the pre-buckling in-plane forces in terms of the temperature rise distribution. Subsequently, based on Kierchhoff plate theory and using the principle of minimum total potential energy, the weak form of the differential equation governing the plate thermal stability is derived, then by employing the finite element method, the stability equations are solved numerically to evaluate the thermal buckling load factor. Convergence and validation of the presented finite element model are investigated by comparing the numerical results with those available in the literature. Parametric studies are carried out to cover the effects of parameters including thickness-to-radius ratio, taper parameter and boundary conditions on the thermal buckling load factor of the plates.
Buckling Behavior of Substrate Supported Graphene Sheets
Directory of Open Access Journals (Sweden)
Kuijian Yang
2016-01-01
Full Text Available The buckling of graphene sheets on substrates can significantly degrade their performance in materials and devices. Therefore, a systematic investigation on the buckling behavior of monolayer graphene sheet/substrate systems is carried out in this paper by both molecular mechanics simulations and theoretical analysis. From 70 simulation cases of simple-supported graphene sheets with different sizes under uniaxial compression, two different buckling modes are investigated and revealed to be dominated by the graphene size. Especially, for graphene sheets with length larger than 3 nm and width larger than 1.1 nm, the buckling mode depends only on the length/width ratio. Besides, it is revealed that the existence of graphene substrate can increase the critical buckling stress and strain to 4.39 N/m and 1.58%, respectively, which are about 10 times those for free-standing graphene sheets. Moreover, for graphene sheets with common size (longer than 20 nm, both theoretical and simulation results show that the critical buckling stress and strain are dominated only by the adhesive interactions with substrate and independent of the graphene size. Results in this work provide valuable insight and guidelines for the design and application of graphene-derived materials and nano-electromechanical systems.
The analysis and design of linear circuits
Thomas, Roland E; Toussaint, Gregory J
2009-01-01
The Analysis and Design of Linear Circuits, 6e gives the reader the opportunity to not only analyze, but also design and evaluate linear circuits as early as possible. The text's abundance of problems, applications, pedagogical tools, and realistic examples helps engineers develop the skills needed to solve problems, design practical alternatives, and choose the best design from several competing solutions. Engineers searching for an accessible introduction to resistance circuits will benefit from this book that emphasizes the early development of engineering judgment.
The Linear Time Frequency Analysis Toolbox
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel; Torrésani, Bruno; Balazs, Peter
2011-01-01
The Linear Time Frequency Analysis Toolbox is a Matlab/Octave toolbox for computational time-frequency analysis. It is intended both as an educational and computational tool. The toolbox provides the basic Gabor, Wilson and MDCT transform along with routines for constructing windows (lter...
Buckling of a beam extruded into highly viscous fluid
Gosselin, F. P.; Neetzow, P.; Paak, M.
2014-11-01
Inspired by microscopic Paramecia which use trichocyst extrusion to propel themselves away from thermal aggression, we propose a macroscopic experiment to study the stability of a slender beam extruded in a highly viscous fluid. Piano wires were extruded axially at constant speed in a tank filled with corn syrup. The force necessary to extrude the wire was measured to increase linearly at first until the compressive viscous force causes the wire to buckle. A numerical model, coupling a lengthening elastica formulation with resistive-force theory, predicts a similar behavior. The model is used to study the dynamics at large time when the beam is highly deformed. It is found that at large time, a large deformation regime exists in which the force necessary to extrude the beam at constant speed becomes constant and length independent. With a proper dimensional analysis, the beam can be shown to buckle at a critical length based on the extrusion speed, the bending rigidity, and the dynamic viscosity of the fluid. Hypothesizing that the trichocysts of Paramecia must be sized to maximize their thrust per unit volume as well as avoid buckling instabilities, we predict that their bending rigidity must be about 3 ×10-9N μ m2 . The verification of this prediction is left for future work.
硼-铝强化板的非线性屈曲有限元分析%Nonlinear buckling finite element analysis of stiffened B-Al plates
Institute of Scientific and Technical Information of China (English)
Ezgi GUNAY; Cevdet AYGUN; Yunus Onur YILDIZ
2014-01-01
通过有限元方法（FEA）分析强化复合板的非线性屈曲行为。该模型中硼-铝复合材料由硼基体和嵌入其中的不同形态的Al纤维组成。对片层结构的B-Al矩形板施加横向压缩应力，发现强化纤维对具有不同几何形状板材的屈曲行为有明显影响。建模中采用单向、具有矩形截面的强化纤维。结果表明：加载过程中存在一重要的载荷范围，临界屈曲模式在稳态和非稳态之间反复转变。确定由不同的纤维形态和板材高宽比组成的分叉失稳区域。通过 ANSYS 有限元计算，研究简支边界条件下强化板材的失稳模式，分别得到压应力(σx)与平面收缩(u)以及压应力(σx)与面外挠度(δ)的关系曲线。通过非线性分析，在C1、 C2、 C3和 C4四种形态的纤维中，嵌入C2纤维的板材获得最安全的临界屈服应力。结果表明，FEA非线性屈曲分析可以得到精确的结果。%Nonlinear buckling behavior of stiffened composite B-Al plates was analyzed by means of finite element analysis (FEA) method. In the method, the composite material was taken as B matrix into which Al fibers were embedded in different configurations. The laminated B-Al material in the form of rectangular plates was subjected to lateral compressive loading. It is observed that stiffeners have significant effect on the buckling behavior of plates under compressive loading and for various geometrical configurations. The stiffeners used in the modeling are one-sided and have rectangular cross-sections. It is found that there are physically important loading intervals and the critical buckling modes make transitions back and forth between stable and unstable states. Bifurcation buckling regions resulting from various configurations of fiber orientations and different plate aspect ratios are determined. The whole analysis is performed by using ANSYS finite element computations. Only the buckling patterns of stiffened
Finite element analysis of sandwich overall buckling and wrinkling%夹层梁总体屈曲及皱曲的有限元计算
Institute of Scientific and Technical Information of China (English)
梁嫄; 余音; 汪海
2011-01-01
皱曲是夹层结构的一种短波屈曲模式，通常发生于夹心较厚或夹心刚度较低的情况。由于模型规模的限制，在常规有限元建模时通常将夹层板模拟为二维板单元，这种方法忽略了面板和夹心在厚度方向上的相互作用，无法计算出皱曲模式。针对上述问题，本文首先介绍了一个计算夹层结构总体屈曲和皱曲的统一理论，并将此理论的计算结果作为理论解。为了同时计算总体屈曲和皱曲，本文利用MSC．Patran／Nastran有限元软件，建立夹层梁和夹层板的二维截面细节模型，分析了两种不同结构夹层梁的控制屈曲模式，并与理论解进行比较。最后讨论了当夹层板面板为复合材料时，铺层角度对屈曲载荷的影响，并与常规建模方式进行了对比。通过对结果的分析，给出了对夹层结构屈曲及皱曲分析的几点参考。%Wrinkling, a kind of short-wave buckling mode of sandwich Structures, usually occurs when the core is thick or soft. Limited by model scale sandwich panel is usually modeled using shell element during finite element buckling analysis. This approach ignores the interactions of the face sheet and the core in the thickness direction and can not calculate the wrinkling mode. This paper developed a two-dimensional cross-section finite element model of the sandwich panels to analysis overall buckling and wrinkling together. Firstly, a unified theory was presented for overall buckling and wrinkling of sandwich structures. In order to calculate the overall buckling and wrinkling simultaneously, a two-dimensional cross-section details model was developed in MSC. Patran/Nastran software to analyze the control modes of two sandwich beams. The analytical results of sandwich structures were compared with the theoretical solutions. Then the ply angle effect of composite face sheet on buckling is discussed. The result obtained from the method of this paper was
Energy Technology Data Exchange (ETDEWEB)
Singhatanadgid, Pairod; Jommalai, Panupan [Chulalongkorn University, Bangkok (Thailand)
2016-05-15
The extended Kantorovich method using multi-term displacement functions is applied to the buckling problem of laminated plates with various boundary conditions. The out-of-plane displacement of the buckled plate is written as a series of products of functions of parameter x and functions of parameter y. With known functions in parameter x or parameter y, a set of governing equations and a set of boundary conditions are obtained after applying the variational principle to the total potential energy of the system. The higher order differential equations are then transformed into a set of first-order differential equations and solved for the buckling load and mode. Since the governing equations are first-order differential equations, solutions can be obtained analytically with the out-of-plane displacement written in the form of an exponential function. The solutions from the proposed technique are verified with solutions from the literature and FEM solutions. The bucking loads correspond very well to other available solutions in most of the comparisons. The buckling modes also compare very well with the finite element solutions. The proposed solution technique transforms higher-order differential equations to first-order differential equations, and they are analytically solved for out-of-plane displacement in the form of an exponential function. Therefore, the proposed solution technique yields a solution which can be considered as an analytical solution.
Khajueenejad, F.; Ghanbari, J.
2015-10-01
The internal length parameter of the modified couple stress theory for single walled carbon nanotubes (CNTs) is determined in this paper. Buckling of CNTs have been studied using Timoshenko beam model and modified couple stress theory. The governing equations for three different end conditions, simple-simple, clamped-clamped and clamped-free, are solved using variational methods and an exact solution is provided for the buckling load. The effects of the internal length parameter on the buckling load of various CNT length and diameters are studied. It is observed that the internal length parameter has larger influence on the higher modes of buckling and for shorter nanotubes. A method presented to obtain the internal length parameter of higher order theories. By correlating the obtained results with the more accurate molecular dynamics simulations, the internal length parameter has been calculated for zigzag and armchair nanotubes. It is observed that the internal length parameter has slight dependency on the size of the CNTs and an average value is provided.
Buckling and Multiple Equilibrium States of Viscoelastic Rectangular Plates
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
On the basis of Karman's theory of thin plates with large deflection, the Boltzmann law on linear viscoelastic materials and the mathematical model of dynamic analysis on viscoelastic thin plates, a set of nonlinear integro-partial-differential equations is first presented by means of a structural function introduced in this paper. Then,by using the Galerkin technique in spatial field and a backward difference scheme in temporal field, the set of nonlinear integro-partial-differential equations reduces to a system of nonlinear algebraic equations. After solving the algebraic equations, the buckling behavior and multiple equilibrium states can be obtained.
Linear Stability Analysis of Dynamical Quadratic Gravity
Ayzenberg, Dimitry; Yunes, Nicolas
2013-01-01
We perform a linear stability analysis of dynamical, quadratic gravity in the high-frequency, geometric optics approximation. This analysis is based on a study of gravitational and scalar modes propagating on spherically-symmetric and axially-symmetric, vacuum solutions of the theory. We find dispersion relations that do no lead to exponential growth of the propagating modes, suggesting the theory is linearly stable on these backgrounds. The modes are found to propagate at subluminal and superluminal speeds, depending on the propagating modes' direction relative to the background geometry, just as in dynamical Chern-Simons gravity.
Weil, A. Brandon; Gutiérrez-Alonso, G.; Johnston, S. T.; Pastor-Galán, D.
2013-01-01
The Paleozoic Variscan orogeny was a large-scale collisional event involving amalgamation of multiple continents and micro-continents. Existing data, suggests oroclinal buckling of an originally near-linear convergent margin during the last stages of Variscan deformation in the late Paleozoic. Closure of the Rheic Ocean resulted in E-W shortening (present-day coordinates) in the Carboniferous, producing a near linear N-S trending, east-verging belt. Subsequent N-S shortening near the Carb-Permian boundary resulted in oroclinal buckling. This late-stage orogenic event remains an enigmatic part of final Pangea amalgamation. The present-day arc curvature of the Variscan has inspired many tectonic models, with little agreement between them. While there is general consensus that two separate phases of deformation occurred, various models consider that curvature was caused by: dextral transpression around a Gondwana indentor; strike-slip wrench tectonics; or a change in tectonic transport direction due to changing stress fields. More recent models explain the curvature as an orocline, with potentially two opposite-facing bends, caused by secondary rotations. Deciphering the kinematic history of curved orogens is difficult, and requires establishment of two deformation phases: an initial compressive phase that forms a relatively linear belt, and a second phase that causes vertical-axis rotation of the orogenic limbs. Historically the most robust technique to accurately quantify vertical axis-rotation in curved orogens is paleomagnetic analysis, but recently other types of data, including fracture, geochemical, petrologic, paleo-current and calcite twin data, have been used to corroborate secondary buckling. A review of existing and new Variscan data from Iberia is presented that argues for secondary buckling of an originally linear orogenic system. Together, these data constrain oroclinal buckling of the Cantabrian Orocline to have occurred in about 10 Ma during the
Energy Technology Data Exchange (ETDEWEB)
Narayana, A. Lakshmi [Hindustan Aeronautics Limited, Bangalore (India); Rao, Krishnamohana [JNTUH, Hyderabad (India); Kumar, R. Vijaya [Hindustan Aeronautics Limited, Bangalor (India)
2013-05-15
A numerical study was conducted using the finite element method to determine the effects of square and rectangular cutouts on the buckling behavior of a 16-ply quasi-isotropic graphite/epoxy symmetrically laminated rectangular composite plate. The square/ rectangular cutouts were subjected to uniaxial compression loading. This study addresses the effects of the size of the square/rectangular cutout, orientation of the square/rectangular cutout, plate aspect ratio (a/b), and plate length/thickness ratio (a/t) on the buckling behavior of the symmetrically laminated rectangular composite plate under uniaxial compression loading. Buckling loads were computed for seven different quasi-isotropic laminate configurations [0 .deg. /+45 .deg. /-45 .deg. /90 .deg. ]{sub 2s}, [15 .deg. /+60 .deg. /-30 .deg. /-75 .deg. ]{sub 2s}, [30 .deg. /+75 .deg. /-15 .deg. /-60 .deg. ]{sub 2s}, [45 .deg. /+90 .deg. /0 .deg. /-45 .deg. ]{sub 2s}, [60 .deg. /-75 .deg. /+15 .deg. /-30 .deg. ]{sub 2s}, [75 .deg. /-60 .deg. /+30 .deg. /-15 .deg. ]{sub 2s}, [90 .deg. /-45 .deg. /+45 .deg. / .deg. 0 .deg. ]{sub 2s}. Results showed that the magnitudes of the buckling loads decrease with increasing cutout positioned angle as well as c/b and d/b ratios for plates with a rectangular cutout. The symmetrically laminated quasi-isotropic [0 .deg. /+45 .deg. /-45 .deg. /90 .deg. ]{sub 2s} composite plate is stronger than all other symmetrically analyzed laminated quasi-isotropic composite plates. The magnitudes of the buckling loads of a rectangular composite plate with square/rectangular cutout decrease with increasing plate aspect ratio (a/b) and plate length/thickness (a/t) ratio.
Flutter and thermal buckling control for composite laminated panels in supersonic flow
Li, Feng-Ming; Song, Zhi-Guang
2013-10-01
Aerothermoelastic analysis for composite laminated panels in supersonic flow is carried out. The flutter and thermal buckling control for the panels are also investigated. In the modeling for the equation of motion, the influences of in-plane thermal load on the transverse bending deflection are taken into account, and the unsteady aerodynamic pressure in supersonic flow is evaluated by the linear piston theory. The governing equation of the structural system is developed applying the Hamilton's principle. In order to study the influences of aerodynamic pressure on the vibration mode shape of the panel, both the assumed mode method (AMM) and the finite element method (FEM) are used to derive the equation of motion. The proportional feedback control method and the linear quadratic regulator (LQR) are used to design the controller. The aeroelastic stability of the structural system is analyzed using the frequency-domain method. The effects of ply angle of the laminated panel on the critical flutter aerodynamic pressure and the critical buckling temperature change are researched. The flutter and thermal buckling control effects using the proportional feedback control and the LQR are compared. An effective method which can suppress the flutter and thermal buckling simultaneously is proposed.
Theory of buckling and post-buckling behavior of elastic structures
Budiansky, B.
1974-01-01
The present paper provides a unified, general presentation of the basic theory of the buckling and post-buckling behavior of elastic structures in a form suitable for application to a wide variety of special problems. The notation of functional analysis is used for this purpose. Before the general analysis, simple conceptual models are used to elucidate the basic concepts of bifurcation buckling, snap buckling, imperfection sensitivity, load-shortening relations, and stability. The energy approach, the virtual-work approach, and mode interaction are discussed. The derivations and results are applicable to continua and finite-dimensional systems. The virtual-work and energy approaches are given separate treatments, but their equivalence is made explicit. The basic concepts of stability occupy a secondary position in the present approach.
Probabilistic analysis of linear elastic cracked structures
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This paper presents a probabilistic methodology for linear fracture mechanics analysis of cracked structures. The main focus is on probabilistic aspect related to the nature of crack in material. The methodology involves finite element analysis; statistical models for uncertainty in material properties, crack size, fracture toughness and loads; and standard reliability methods for evaluating probabilistic characteristics of linear elastic fracture parameter. The uncertainty in the crack size can have a significant effect on the probability of failure, particularly when the crack size has a large coefficient of variation. Numerical example is presented to show that probabilistic methodology based on Monte Carlo simulation provides accurate estimates of failure probability for use in linear elastic fracture mechanics.
Signals and transforms in linear systems analysis
Wasylkiwskyj, Wasyl
2013-01-01
Signals and Transforms in Linear Systems Analysis covers the subject of signals and transforms, particularly in the context of linear systems theory. Chapter 2 provides the theoretical background for the remainder of the text. Chapter 3 treats Fourier series and integrals. Particular attention is paid to convergence properties at step discontinuities. This includes the Gibbs phenomenon and its amelioration via the Fejer summation techniques. Special topics include modulation and analytic signal representation, Fourier transforms and analytic function theory, time-frequency analysis and frequency dispersion. Fundamentals of linear system theory for LTI analogue systems, with a brief account of time-varying systems, are covered in Chapter 4 . Discrete systems are covered in Chapters 6 and 7. The Laplace transform treatment in Chapter 5 relies heavily on analytic function theory as does Chapter 8 on Z -transforms. The necessary background on complex variables is provided in Appendix A. This book is intended to...
Cylindrical shell buckling through strain hardening
Energy Technology Data Exchange (ETDEWEB)
Bandyopadhyay, K.; Xu, J.; Shteyngart, S. [Brookhaven National Lab., Upton, NY (United States); Gupta, D. [USDOE, Germantown, MD (United States)
1995-04-01
Recently, the authors published results of plastic buckling analysis of cylindrical shells. Ideal elastic-plastic material behavior was used for the analysis. Subsequently, the buckling analysis program was continued with the realistic stress-strain relationship of a stainless steel alloy which does not exhibit a clear yield point. The plastic buckling analysis was carried out through the initial stages of strain hardening for various internal pressure values. The computer program BOSOR5 was used for this purpose. Results were compared with those obtained from the idealized elastic-plastic relationship using the offset stress level at 0.2% strain as the yield stress. For moderate hoop stress values, the realistic stress-grain case shows a slight reduction of the buckling strength. But, a substantial gain in the buckling strength is observed as the hoop stress approaches the yield strength. Most importantly, the shell retains a residual strength to carry a small amount of axial compressive load even when the hoop stress has exceeded the offset yield strength.
LISA: a linear structured system analysis program
Martinez-Martinez, Sinuhé; Mader, Theodor; Boukhobza, Taha; Hamelin, Frédéric
2007-01-01
International audience; In this paper the program LISA is presented. LISA is a flexible and portable program which has been developed to analyse structural properties of large scale linear and bilinear structured systems. More precisely, the program LISA contains programmed algorithms which allow us to apply recent results in the analysis of structured systems to some particular cases.
Thermal analysis of a linear infrared lamp
Energy Technology Data Exchange (ETDEWEB)
Nakos, J.T.
1982-01-01
A theoretical and experimental analysis of an infrared lamp is presented based on radiant heat transfer theory. The analysis is performed on a specific type of linear lamp which has a coiled tungsten filament surrounded by a fused quartz envelope. The purpose of the study was to model the lamp thermally, not electrically, to arrive at a better understanding of the operation of the lamp.
Linear and Nonlinear Systems Analysis of the Visual System: Why does it seem so linear?
Shapley, Robert
2009-01-01
Linear and nonlinear systems analysis are tools that can be used to study communication systems like the visual system. The first step of systems analysis often is to test whether or not the system is linear. Retinal pathways are surprisingly linear, and some neurons in the visual cortex also emulate linear sensory transducers. We conclude that the retinal linearity depends on specialized ribbon synapses while cortical linearity is the result of balanced excitatory and inhibitory synaptic interactions. PMID:18940193
Numerical analysis method for linear induction machines.
Elliott, D. G.
1972-01-01
A numerical analysis method has been developed for linear induction machines such as liquid metal MHD pumps and generators and linear motors. Arbitrary phase currents or voltages can be specified and the moving conductor can have arbitrary velocity and conductivity variations from point to point. The moving conductor is divided into a mesh and coefficients are calculated for the voltage induced at each mesh point by unit current at every other mesh point. Combining the coefficients with the mesh resistances yields a set of simultaneous equations which are solved for the unknown currents.
Librescu, L.; Khdeir, A. A.; Frederick, D.
1989-01-01
This paper deals with the substantiation of a shear deformable theory of cross-ply laminated composite shallow shells. While the developed theory preserves all the advantages of the first order transverse shear deformation theory it succeeds in eliminating some of its basic shortcomings. The theory is further employed in the analysis of the eigenvibration and static buckling problems of doubly curved shallow panels. In this context, the state space concept is used in conjunction with the Levy method, allowing one to analyze these problems in a unified manner, for a variety of boundary conditions. Numerical results are presented and some pertinent conclusions are formulated.
Institute of Scientific and Technical Information of China (English)
ZHANG Yitong; LI Cuiyu; XU Jiafu
2004-01-01
The typical micro-knitting structure of knitted fabric, which makes it very different from woven fabric, is described. The tensile tests of knitted fabric are reported. The deformations of the micro-knitting structures are carefully studied. The study indicates that when a knitted fabric sheet is subjected to a tension along w-direction an extra compressive stress field inside loop in c-direction is induced. The extra stress field is also determined through analysis. Finally, a micro-mechanical model of knitted fabric is proposed. This work paves the way for the simulations of buckling modes of a knitted fabric sheet as are observed in experiments.
The buckling response of symmetrically laminated composite plates having a trapezoidal planform area
Radloff, H. D., II; Hyer, M. W.; Nemeth, M. P.
1994-08-01
The focus of this work is the buckling response of symmetrically laminated composite plates having a planform area in the shape of an isosceles trapezoid. The loading is assumed to be inplane and applied perpendicular to the parallel ends of the plate. The tapered edges of the plate are assumed to have simply supported boundary conditions, while the parallel ends are assumed to have either simply supported or clamped boundary conditions. A semi-analytic closed-form solution based on energy principles and the Trefftz stability criterion is derived and solutions are obtained using the Rayleigh-Ritz method. Intrinsic in this solution is a simplified prebuckling analysis which approximates the inplane force resultant distributions by the forms Nx=P/W(x) and Ny=Nxy=0, where P is the applied load and W(x) is the plate width which, for the trapezoidal planform, varies linearly with the lengthwise coordinate x. The out-of-plane displacement is approximated by a double trigonometric series. This analysis is posed in terms of four nondimensional parameters representing orthotropic and anisotropic material properties, and two nondimensional parameters representing geometric properties. For comparison purposes, a number of specific plate geometry, ply orientation, and stacking sequence combinations are investigated using the general purpose finite element code ABAQUS. Comparison of buckling coefficients calculated using the semi-analytical model and the finite element model show agreement within 5 percent, in general, and within 15 percent for the worst cases. In order to verify both the finite element and semi-analytical analyses, buckling loads are measured for graphite/epoxy plates having a wide range of plate geometries and stacking sequences. Test fixtures, instrumentation system, and experimental technique are described. Experimental results for the buckling load, the buckled mode shape, and the prebuckling plate stiffness are presented and show good agreement with the
Functional linear regression via canonical analysis
He, Guozhong; Wang, Jane-Ling; Yang, Wenjing; 10.3150/09-BEJ228
2011-01-01
We study regression models for the situation where both dependent and independent variables are square-integrable stochastic processes. Questions concerning the definition and existence of the corresponding functional linear regression models and some basic properties are explored for this situation. We derive a representation of the regression parameter function in terms of the canonical components of the processes involved. This representation establishes a connection between functional regression and functional canonical analysis and suggests alternative approaches for the implementation of functional linear regression analysis. A specific procedure for the estimation of the regression parameter function using canonical expansions is proposed and compared with an established functional principal component regression approach. As an example of an application, we present an analysis of mortality data for cohorts of medflies, obtained in experimental studies of aging and longevity.
Gruttmann, F.; Pham, V. D.
2008-02-01
The delamination process of thin films on rigid substrates is investigated. Such systems are typically subject to high residual compression and modest adhesion causing them to buckling driven blisters. In certain cases buckles with the shape of telephone cords are observed. A finite element model for quasi-static delamination growth is developed. Applying a Reissner-Mindlin shell kinematic for the film allows C 0- continuous shape functions. The traction vector at the film-substrate interface is obtained from the derivative of a cohesive free energy. Incorporation of loading and unloading conditions is considered for the irreversible process. The equilibrium state is computed iteratively in dependence of the compressive residual stresses. The computed telephone cord delaminations are stable asymmetric configurations whereas the symmetric configurations are unstable.
Directory of Open Access Journals (Sweden)
Chonghui Shao
2016-01-01
Full Text Available The flutter and thermal buckling behavior of laminated composite panels embedded with shape memory alloy (SMA wires are studied in this research. The classical plate theory and nonlinear von-Karman strain-displacement relation are employed to investigate the aeroelastic behavior of the smart laminated panel. The thermodynamic behaviors of SMA wires are simulated based on one-dimensional Brinson SMA model. The aerodynamic pressure on the panel is described by the nonlinear piston theory. Nonlinear governing partial differential equations of motion are derived for the panel via the Hamilton principle. The effects of ply angle of the composite panel, SMA layer location and orientation, SMA wires temperature, volume fraction and prestrain on the buckling, flutter boundary, and amplitude of limit cycle oscillation of the panel are analyzed in detail.
Directory of Open Access Journals (Sweden)
S. S. Daimi
2014-08-01
Full Text Available Functionally graded materials (FGMs are microscopically inhomogeneous spatial composite materials, typically composed of a ceramic-metal or ceramic-polymer pair of materials. Therefore, it is important to investigate the behaviors of engineering structures such as beams and plates made from FGMs when they are subjected to thermal loads for appropriate design. Therefore, using an improved third order shear deformation theory (TSDT based on more rigorous kinetics of displacements to predict the behaviors of functionally graded plates is expected to be more suitable than using other theories. In this paper, the improved TSDT is used to investigate thermal buckling of functionally graded plates. Temperature dependent material property solutions are adopted to investigate thermal buckling results of functionally graded plates. To obtain the solutions, the Ritz method using polynomial and trigonometric functions for defining admissible displacements and rotations is applied to solve the governing equations.
DYNAMIC BUCKLING OF DOUBLE-WALLED CARBON NANOTUBES UNDER STEP AXIAL LOAD
Institute of Scientific and Technical Information of China (English)
Chengqi Sun; Kaixln Liu
2009-01-01
An approximate method is presented in this paper for studying the dynamic buckling of double-walled carbon nanotubes (DWNTs) under step axial load. The analysis is based on the continuum mechanics model, which takes into account the van der Waals interaction between the outer and inner nanotubes. A buckling condition is derived, from which the critical buckling load and associated buckling mode can be determined. As examples, numerical results are worked out for DWNTs under fixed boundary conditions. It is shown that, due to the effect of van der Waals forces, the critical buckling load of a DWNT is enhanced when inserting an inner tube into a single-walled one. The paper indicates that the critical buckling load of DWNTs for dynamic buckling is higher than that for static buckling. The effect of the radii is also examined. In addition, some of the results are compared with the previous ones.
Andrews, Blake M.; Song, Junho; Fahnestock, Larry A.
2009-09-01
Buckling-restrained braces (BRBs) have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression but instead yields in both tension and compression. Although design guidelines for BRB applications have been developed, systematic procedures for assessing performance and quantifying reliability are still needed. This paper presents an analytical framework for assessing buckling-restrained braced frame (BRBF) reliability when subjected to seismic loads. This framework efficiently quantifies the risk of BRB failure due to low-cycle fatigue fracture of the BRB core. The procedure includes a series of components that: (1) quantify BRB demand in terms of BRB core deformation histories generated through stochastic dynamic analyses; (2) quantify the limit-state of a BRB in terms of its remaining cumulative plastic ductility capacity based on an experimental database; and (3) evaluate the probability of BRB failure, given the quantified demand and capacity, through structural reliability analyses. Parametric studies were conducted to investigate the effects of the seismic load, and characteristics of the BRB and BRBF on the probability of brace failure. In addition, fragility curves (i.e., conditional probabilities of brace failure given ground shaking intensity parameters) were created by the proposed framework. While the framework presented in this paper is applied to the assessment of BRBFs, the modular nature of the framework components allows for application to other structural components and systems.
Institute of Scientific and Technical Information of China (English)
Blake M. Andrews; Junho Song; Larry A. Fahnestock
2009-01-01
Buckling-restrained braces (BRBs) have recently become popular in the United :States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression but instead yields in both tension and compression. Although design guidelines for BRB applications have been developed, systematic procedures for assessing performance and quantifying reliability are still needed. This paper presents an analytical framework for assessing buckling-restrained braced frame (BRBF) reliability when subjected to seismic loads. This framework efficiently quantifies the risk of BRB failure due to low-cycle fatigue fracture of the BRB core. The procedure includes a series of components that: (1) quantify BRB demand in terms of BRB core deformation histories generated through stochastic dynamic analyses; (2) quantify the limit-state of a BRB in terms of its remaining cumulative plastic ductility capacity based on an experimental database; and (3) evaluate the probability of BRB failure, given the quantified demand and capacity, through structural reliability analyses. Parametric studies were conducted to investigate the effects of the seismic load, and characteristics of the BRB and BRBF on the probability of brace failure. In addition, fragility curves (i.e., conditional probabilities of brace failure given ground shaking intensity parameters) were created by the proposed framework. While the framework presented in this paper is applied to the assessment of BRBFs, the modular nature of the framework components allows for application to other structural components and systems.
Linear Covariance Analysis for a Lunar Lander
Jang, Jiann-Woei; Bhatt, Sagar; Fritz, Matthew; Woffinden, David; May, Darryl; Braden, Ellen; Hannan, Michael
2017-01-01
A next-generation lunar lander Guidance, Navigation, and Control (GNC) system, which includes a state-of-the-art optical sensor suite, is proposed in a concept design cycle. The design goal is to allow the lander to softly land within the prescribed landing precision. The achievement of this precision landing requirement depends on proper selection of the sensor suite. In this paper, a robust sensor selection procedure is demonstrated using a Linear Covariance (LinCov) analysis tool developed by Draper.
Linear functional analysis for scientists and engineers
Limaye, Balmohan V
2016-01-01
This book provides a concise and meticulous introduction to functional analysis. Since the topic draws heavily on the interplay between the algebraic structure of a linear space and the distance structure of a metric space, functional analysis is increasingly gaining the attention of not only mathematicians but also scientists and engineers. The purpose of the text is to present the basic aspects of functional analysis to this varied audience, keeping in mind the considerations of applicability. A novelty of this book is the inclusion of a result by Zabreiko, which states that every countably subadditive seminorm on a Banach space is continuous. Several major theorems in functional analysis are easy consequences of this result. The entire book can be used as a textbook for an introductory course in functional analysis without having to make any specific selection from the topics presented here. Basic notions in the setting of a metric space are defined in terms of sequences. These include total boundedness, c...
Directory of Open Access Journals (Sweden)
Paulo B. Gonçalves
2008-01-01
Full Text Available Structural systems liable to asymmetric bifurcation usually become unstable at static load levels lower than the linear buckling load of the perfect structure. This is mainly due to the imperfections present in real structures. The imperfection sensitivity of structures under static loading is well studied in literature, but little is know on the sensitivity of these structures under dynamic loads. The aim of the present work is to study the behavior of an archetypal model of a harmonically forced structure, which exhibits, under increasing static load, asymmetric bifurcation. First, the integrity of the system under static load is investigated in terms of the evolution of the safe basin of attraction. Then, the stability boundaries of the harmonically excited structure are obtained, considering different loading processes. The bifurcations connected with these boundaries are identified and their influence on the evolution of safe basins is investigated. Then, a parametric analysis is conducted to investigate the influence of uncertainties in system parameters and random perturbations of the forcing on the dynamic buckling load. Finally, a safe lower bound for the buckling load, obtained by the application of the Melnikov criterion, is proposed which compare well with the scatter of buckling loads obtained numerically.
Thermally Induced Asymmetric Buckling of Circular Monolayer Graphene
Directory of Open Access Journals (Sweden)
Haw-Long Lee
2013-01-01
Full Text Available The asymmetric buckling behaviors of circular monolayer graphene with clamped boundary condition subjected to temperature change are analytically studied based on the nonlocal elasticity theory, including the small length effect. The axisymmetrical and asymmetric critical buckling temperatures and mode shape of different order modes are obtained. According to the analysis, the asymmetric critical buckling temperature of monolayer graphene is larger than the axisymmetric one. The axisymmetrical and asymmetric critical buckling temperatures decrease with increasing nonlocal parameter. In addition, nodal diametrical lines and nodal circles can be found from the modal shapes. In order to avoid destruction of the sensors due to buckling of the structure, they can be placed at the nodal diametrical lines or nodal circles.
Buckling of Carbon Nanotubes: A State of the Art Review
Directory of Open Access Journals (Sweden)
Hiroyuki Shima
2011-12-01
Full Text Available The nonlinear mechanical response of carbon nanotubes, referred to as their “buckling” behavior, is a major topic in the nanotube research community. Buckling means a deformation process in which a large strain beyond a threshold causes an abrupt change in the strain energy vs. deformation profile. Thus far, much effort has been devoted to analysis of the buckling of nanotubes under various loading conditions: compression, bending, torsion, and their certain combinations. Such extensive studies have been motivated by (i the structural resilience of nanotubes against buckling, and (ii the substantial influence of buckling on their physical properties. In this contribution, I review the dramatic progress in nanotube buckling research during the past few years.
Scleral Buckling with Chandelier Illumination.
Seider, Michael I; Nomides, Riikka E K; Hahn, Paul; Mruthyunjaya, Prithvi; Mahmoud, Tamer H
2016-01-01
Scleral buckling is a highly successful technique for the repair of rhegmatogenous retinal detachment that requires intra-operative examination of the retina and treatment of retinal breaks via indirect ophthalmoscopy. Data suggest that scleral buckling likely results in improved outcomes for many patients but is declining in popularity, perhaps because of significant advances in vitrectomy instrumentation and visualization systems. Emerging data suggest that chandelier-assisted scleral buckling is safe and has many potential advantages over traditional buckling techniques. By combining traditional scleral buckling with contemporary vitreoretinal visualization techniques, chandelier-assistance may increase the popularity of scleral buckling to treat primary rhegmatogenous retinal detachment for surgeons of the next generation, maintaining buckling as an option for appropriate patients in the future.
Scleral buckling with chandelier illumination
Directory of Open Access Journals (Sweden)
Michael I Seider
2016-01-01
Full Text Available Scleral buckling is a highly successful technique for the repair of rhegmatogenous retinal detachment that requires intra-operative examination of the retina and treatment of retinal breaks via indirect ophthalmoscopy. Data suggest that scleral buckling likely results in improved outcomes for many patients but is declining in popularity, perhaps because of significant advances in vitrectomy instrumentation and visualization systems. Emerging data suggest that chandelier-assisted scleral buckling is safe and has many potential advantages over traditional buckling techniques. By combining traditional scleral buckling with contemporary vitreoretinal visualization techniques, chandelier-assistance may increase the popularity of scleral buckling to treat primary rhegmatogenous retinal detachment for surgeons of the next generation, maintaining buckling as an option for appropriate patients in the future.
Locally Corroded Stiffener Effect on Shear Buckling Behaviors of Web Panel in the Plate Girder
Directory of Open Access Journals (Sweden)
Jungwon Huh
2015-01-01
Full Text Available The shear buckling failure and strength of a web panel stiffened by stiffeners with corrosion damage were examined according to the degree of corrosion of the stiffeners, using the finite element analysis method. For this purpose, a plate girder with a four-panel web girder stiffened by vertical and longitudinal stiffeners was selected, and its deformable behaviors and the principal stress distribution of the web panel at the shear buckling strength of the web were compared after their post-shear buckling behaviors, as well as their out-of-plane displacement, to evaluate the effect of the stiffener in the web panel on the shear buckling failure. Their critical shear buckling load and shear buckling strength were also examined. The FE analyses showed that their typical shear buckling failures were affected by the structural relationship between the web panel and each stiffener in the plate girder, to resist shear buckling of the web panel. Their critical shear buckling loads decreased from 82% to 59%, and their shear buckling strength decreased from 88% to 76%, due to the effect of corrosion of the stiffeners on their shear buckling behavior. Thus, especially in cases with over 40% corrosion damage of the vertical stiffener, they can have lower shear buckling strength than their design level.
Elastic Buckling Behaviour of General Multi-Layered Graphene Sheets
Directory of Open Access Journals (Sweden)
Rong Ming Lin
2015-04-01
Full Text Available Elastic buckling behaviour of multi-layered graphene sheets is rigorously investigated. Van der Waals forces are modelled, to a first order approximation, as linear physical springs which connect the nodes between the layers. Critical buckling loads and their associated modes are established and analyzed under different boundary conditions, aspect ratios and compressive loading ratios in the case of graphene sheets compressed in two perpendicular directions. Various practically possible loading configurations are examined and their effect on buckling characteristics is assessed. To model more accurately the buckling behaviour of multi-layered graphene sheets, a physically more representative and realistic mixed boundary support concept is proposed and applied. For the fundamental buckling mode under mixed boundary support, the layers with different boundary supports deform similarly but non-identically, leading to resultant van der Waals bonding forces between the layers which in turn affect critical buckling load. Results are compared with existing known solutions to illustrate the excellent numerical accuracy of the proposed modelling approach. The buckling characteristics of graphene sheets presented in this paper form a comprehensive and wholesome study which can be used as potential structural design guideline when graphene sheets are employed for nano-scale sensing and actuation applications such as nano-electro-mechanical systems.
Wiggins, Andrew D.
Bow seals are critical components on advanced marine vehicles that rely on aerostatic support to reduce drag. They consist of a series of open-ended fabric cylinders ("fingers") that contact the free surface and, when inflated, form a compliant pressure barrier. Bow seals are unique in that, unlike a majority of structures in civil and mechanical engineering, bow seals operate in a buckled state. The response characteristics of these structures are of practical interest due to unacceptable wear rates on seal components and difficulties in predicting seal performance. Despite this, the hydroelastic response of the seal system, particularly basic information on seal vibration modes and the mechanisms responsible for seal wear, remains largely unknown. Similarly, estimates of the hydrodynamic loads on the seal system are inaccurate and based on heuristic scaling of data from small-scale experiments, where similitude is challenging to maintain. Thus, a large-scale test system is necessary to obtain accurate estimates of bow seal response. The work is comprised of three parts. Part one presents detailed observations of bow seal response acquired using a large-scale test platform developed as part of the present study. These high-resolution observations, the first of their kind, show bow seal response to be characterized by complex post-buckling behavior. Part two proposes an analytical framework for interpreting the wide range of behavior observed at large scale. Using this framework, key parameters driving seal conformation and stability are identified. It is found that, due to their buckled state, bow seals are highly susceptible to a mode switching instability, which may be a potential mechanism responsible for the damaging vibrations. In part three, a benchtop experiment is used to demonstrate that the scalings identified in this study hold across a wide range of bending rigidities. This work has implications for improving drag and wear characteristics in future bow
Energy Technology Data Exchange (ETDEWEB)
Barrett, J.; Phillips, R. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada). C-Core; Kenny, S. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada). Faculty of Engineering and Applied Science
2009-07-01
This paper reported on a study that examined the buckling behaviour of a pipeline section subject to combined loading. The objective was to provide a better understanding of buckling mechanisms and failure under non-linear and large deformation. The Finite Element Method was used to evaluate the bending moment and strain capacity of pipeline under typical design condition and parameters. Buckled wavelength profiles and distributions of ovality of girth welded pipelines were of particular interest. Isotropic standard X70 steel was used for all analysis. The study showed that the main factors affecting buckled wave length and amplitude were pipeline diameter, diameter to thickness ratio and applied internal pressure. Applied compressive axial load and imperfection amplitude tended to shift the buckling point, and not the wave form of deformation. Similar observations were made about ovality measured at the peak moment. Ovality remained constant over the range of diameters studied. In this study, the pipeline was set to 3.5 diameters to simulate experimental conditions, but the buckled wave lengths showed a great degree of interference between the central buckle and buckles developed at the ends of a pressurized pipe. It was concluded that further study is needed involving larger pipeline in order to design a pipeline that minimizes material costs without jeopardizing the integrity of the pipeline system. 9 refs., 3 tabs., 12 figs.
Lower Bound Approximation for Elastic Buckling Loads
Vrouwenvelder, A.; Witteveen, J.
1975-01-01
An approximate method for the elastic buckling analysis of two-dimensional frames is introduced. The method can conveniently be explained with reference to a physical interpretation: In the frame every member is replaced by two new members: - a flexural member without extensional rigidity to transmi
Edmondson, S; Frieda, K; Comrie, JE; Onck, PR; Huck, WTS
2006-01-01
Buckle-driven delamination and subsequent collapse of strained thin polymer films upon triggered release from the substrate is exploited to fabricate striking, well-defined ridging patterns (see figure). An analysis of these patterns is presented, including the effects of film thickness and the exte
Common pitfalls in statistical analysis: Linear regression analysis.
Aggarwal, Rakesh; Ranganathan, Priya
2017-01-01
In a previous article in this series, we explained correlation analysis which describes the strength of relationship between two continuous variables. In this article, we deal with linear regression analysis which predicts the value of one continuous variable from another. We also discuss the assumptions and pitfalls associated with this analysis.
Common pitfalls in statistical analysis: Linear regression analysis
Directory of Open Access Journals (Sweden)
Rakesh Aggarwal
2017-01-01
Full Text Available In a previous article in this series, we explained correlation analysis which describes the strength of relationship between two continuous variables. In this article, we deal with linear regression analysis which predicts the value of one continuous variable from another. We also discuss the assumptions and pitfalls associated with this analysis.
Global buckling assessment of high pressure and high temperature (HP/HT) offshore pipeline
Energy Technology Data Exchange (ETDEWEB)
Yang, Seung-Ho; Jung, Jong-Jin; Lee, Woo-Seob [Maritime Research Institute, Hyundai Heavy Industries, Ulsan, (Korea, Republic of); Kim, Yun-Hak; Kim, Jong-Bae [Offshore Installation Engineering Department, Hyundai Heavy Industries, Ulsan, (Korea, Republic of)
2010-07-01
High pressure and high temperature (HP/HT) offshore pipelines are frequently subjected to lateral buckling due to excessive compressive axial force. Several control processes have been designed such as sleepers to reduce lateral buckling. This paper investigated the effect of the introduction of sleepers as buckle triggers on the behavior of HP/HT pipelines. A 3D finite element analysis using ABAQUS software was performed to simulate concrete sleepers and a profile of the seabed. The analysis criteria were the buckling amplitude, Von Mises stress, equivalent plastic strain and the effective axial force on the pipeline. A case study for HP/HT pipeline was been carried out based on installation surveys. Comparisons between the results from a model without buckle trigger and those from a model with buckle trigger were carried out. It was found that the change to the support structure, adding a buckle trigger, affected the behaviour of the pipeline considerably.
Experimental and Numerical Study of Buckling of Vacuum Chambers for Fast-Cycling Synchrotrons
DEFF Research Database (Denmark)
Bräuner, Lars Erik
The optimal functioning of the long span thin walled elliptical cross section shells used as vacuum chambers for fast-cycling synchrotrons is provided by their buckling capacity. Also it is often necessary to design inter-stiffener panels of elliptical shells used as vacuum chambers to resist any...... tendency towards pressure induced buckling due to some combination of excessive out-gassing, fragility, radiation damage, magnetic field distortion,. The analysis for design is complicated because elliptical shell chambers display a complex form of nonlinear snap buckling behavior under the external...... pressure. Buckling analysis for shells is further complicated by the observation that geometric imperfections have an important influence on the buckling mode as well as on the buckling load-carrying capacity. Buckling loads are, in general, considerably lower than the lowest critical loads predicted from...
Svalbonas, V.
1973-01-01
The User's manual for the shell theory automated for rotational structures (STARS) 2B and 2V (buckling, vibrations) is presented. Several features of the program are: (1) arbitrary branching of the shell meridians, (2) arbitrary boundary conditions, (3) minimum input requirements to describe a complex, practical shell of revolution structure, and (4) accurate analysis capability using a minimum number of degrees of freedom.
Institute of Scientific and Technical Information of China (English)
姚永红; 武振宇
2012-01-01
The distortional buckling which becomes a significant failure mode probably appears prior to the plates local buckling when high-strength steel with thinner cross-sections are widely used in building. The failure mechanism of distortional buckling is different from the local buckling, and the computing process of those elasticbuckling stress are quite distinct. The present procedures for the calculation of critical elastic distortional buckling stress are very complicated and cumbersome, and the estimation of the buckling stress in design is depended on the numerical analysis method which the finite strip method and finite element method are usually used. A comparison of the results of elastic distortional buckling stress and half wavelength got by finite strip method and finite element method were conducted, it was found that the values were very close to each other. Two methods can be used for predicting the elastic distortional buckling of cold-formed thin-walled steel columns.%随着高强冷弯薄壁型钢在建筑业中的大规模应用,使得构件畸变屈曲的出现可能先于板件的局部屈曲,成为构件失效控制模式.畸变屈曲的破坏机理不同于局部屈曲,其弹性屈曲应力计算过程也大相径庭.现有畸变屈曲临界应力的计算公式异常复杂,在设计中可以借助数值分析的方法进行计算.有限条方法和有限元方法是常用的两种数值分析方法,采用有限条方法和有限元方法计算了冷弯薄壁型钢柱构件弹性畸变屈曲应力和屈曲半波长度,对比研究发现二者结果非常接近,均可用于分析柱试件的弹性畸变屈曲.
LPNORM: A linear programming normative analysis code
de Caritat, Patrice; Bloch, John; Hutcheon, Ian
1994-04-01
The computer code LPNORM implements the mathematical method of linear programming to calculate the mineralogical makeup of mineral mixtures, such as rock, sediment, or soil samples, from their bulk geochemical composition and from the mineralogical (or geochemical) composition of the contained minerals. This method simultaneously solves the set of linear equations governing the distribution of oxides into these minerals, subject to an objective function and a set of basic constraints. LPNORM allows the user to specify what minerals will be considered for normative analysis, what their composition is (in terms of mineral formula or geochemical composition), and whether to maximize mineral abundances, minimize slack variables (oxides that can not be accounted for), or do both at once in the objective function. Independent knowledge about the abundance of one or several of the minerals in the sample can be entered as additional equality or inequality constraints. Trial-and-error approach enables the user to "optimize" the composition of one or a few of the contained minerals. Results of comparative tests, highlighting the efficiency, as well as the shortcomings, of LPNORM are presented.
Effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells
Institute of Scientific and Technical Information of China (English)
Chu-lin YU; Zhi-ping CHEN; Ji WANG; Shun-juan YAN; Li-cai YANG
2012-01-01
The effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells is investigated through experimental and numerical buckling analysis using six welded steel cylindrical shell specimens.The relationship between the amplitude of weld reinforcement and the axial plastic buckling critical load is explored.The effect of the material yield strength and the number of circumferential welds on the axial plastic buckling is studied.Results show that circumferential weld reinforcement represents a severe imperfect form of axially compressed welded steel cylindrical shells and the axial plastic buckling critical load decreases with the increment of the mean amplitude of circumferential weld reinforcement.The material yield strength and the number of circumferential welds are found to have no significant effect on buckling waveforms; however,the axial plastic buckling critical load can be decreased to some extent with the increase of the number of circumferential welds.
Scleral Buckling with Chandelier Illumination
Michael I Seider; Riikka E.K Nomides; Paul Hahn; Prithvi Mruthyunjaya; Mahmoud, Tamer H
2016-01-01
Scleral buckling is a highly successful technique for the repair of rhegmatogenous retinal detachment that requires intra-operative examination of the retina and treatment of retinal breaks via indirect ophthalmoscopy. Data suggest that scleral buckling likely results in improved outcomes for many patients but is declining in popularity, perhaps because of significant advances in vitrectomy instrumentation and visualization systems. Emerging data suggest that chandelier-assisted scleral buckl...
Watermark Resistance Analysis Based On Linear Transformation
Directory of Open Access Journals (Sweden)
N.Karthika Devi
2012-06-01
Full Text Available Generally, digital watermark can be embedded in any copyright image whose size is not larger than it. The watermarking schemes can be classified into two categories: spatial domain approach or transform domain approach. Previous works have shown that the transform domain scheme is typically more robust to noise, common image processing, and compression when compared with the spatial transform scheme. Improvements in performance of watermarking schemes can be obtained by exploiting the characteristics of the human visual system (HVS in the watermarking process. We propose a linear transformation based watermarking algorithm. The watermarking bits are embedded into cover image to produce watermarked image. The efficiency of watermark is checked using pre-defined attacks. Attack resistance analysis is done using BER (Bit Error Rate calculation. Finally, the Quality of the watermarked image can be obtained.
MHD Shallow Water Waves: Linear Analysis
Heng, Kevin
2009-01-01
We present a linear analysis of inviscid, incompressible, magnetohydrodynamic (MHD) shallow water systems. In spherical geometry, a generic property of such systems is the existence of five wave modes. Three of them (two magneto-Poincare modes and one magneto-Rossby mode) are previously known. The other two wave modes are strongly influenced by the magnetic field and rotation, and have substantially lower angular frequencies; as such, we term them "magnetostrophic modes". We obtain analytical functions for the velocity, height and magnetic field perturbations in the limit that the magnitude of the MHD analogue of Lamb's parameter is large. On a sphere, the magnetostrophic modes reside near the poles, while the other modes are equatorially confined. Magnetostrophic modes may be an ingredient in explaining the frequency drifts observed in Type I X-ray bursts from neutron stars.
Linear stability analysis of heated parallel channels
Nourbakhsh, H. P.; Isbin, H. S.
An analyis is presented of thermal hydraulic stability of flow in parallel channels covering the range from inlet subcooling to exit superheat. The model is based on a one-dimensional drift velocity formulation of the two phase flow conservation equations. The system of equations is linearized by assuming small disturbances about the steady state. The dynamic response of the system to an inlet flow perturbation is derived yielding the characteristic equation which predicts the onset of instabilities. A specific application is carried out for homogeneous and regional uniformly heated systems. The particular case of equal characteristic frequencies of two-phase and single phase vapor region is studied in detail. The D-partition method and the Mikhailov stability criterion are used for determining the marginal stability boundary. Stability predictions from the present analysis are compared with the experimental data from the solar test facility.
Post-buckling behaviour of carbon-nanotube-reinforced nanocomposite plate
Indian Academy of Sciences (India)
ASHISH SRIVASTAVA; DINESH KUMAR
2017-01-01
The aim of the present paper is to investigate the buckling and post-buckling behaviour ofnanocomposite plate having randomly oriented carbon nanotubes (CNTs) reinforced in magnesium (Mg) under uni-axial compression. The effect of non-bonded interaction at the interface between CNT and matrix is considered through a cohesive zone model, used to predict the elastic property of the interphase, while evaluating the elastic properties of the nanocomposite using a representative volume element. A special purpose program based on finite-element formulation is developed to study the buckling and post-buckling behaviour of nanocomposite plate. The formulation is based on first-order shear deformation theory in conjunction with geometrical non-linearity as per von Karman’s assumptions. A parametric study is conducted to investigate theeffects of interphase between CNT and matrix, short-CNT and long-CNT reinforcements and boundary conditions on buckling and post-buckling response of nanocomposite plate. It is found that imperfect bonding between CNT and Mg results in the loss of buckling and post-buckling strength, as compared with perfect bonding, of CNT–Mg nanocomposite plate. It is also concluded that buckling and post-buckling strength ishigher for long-CNT-reinforced nanocomposite plate than that of short-CNT einforcement, irrespective of bonding between CNT and matrix material.
Pineda, Evan J.; Myers, David E.; Kosareo, Daniel N.; Kellas, Sotiris
2014-01-01
Four honeycomb sandwich panels, representing 1/16th arc segments of a 10 m diameter barrel section of the heavy lift launch vehicle, were manufactured under the NASA Composites for Exploration program and the NASA Constellation Ares V program. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.000 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: inautoclave IM7/977-3 and out-of-autoclave T40-800B/5320-1. Smaller 3- by 5-ft panels were cut from the 1/16th barrel sections. These panels were tested under compressive loading at the NASA Langley Research Center. Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of the 3- by 5-ft panels. This manuscript summarizes the experimental and analytical modeling efforts pertaining to the panel composed of 8-ply, T40-800B/5320-1 facesheets (referred to as Panel C). To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear, two-dimensional (2-D) and three-dimensional (3-D), models yield good qualitative and quantitative predictions. Additionally, it was predicted correctly that the panel would fail in buckling prior to failing in strength.
Pineda, Evan Jorge; Myers, David E.; Kosareo, Daniel N.; Zalewski, Bart F.; Kellas, Sotiris; Dixon, Genevieve D.; Krivanek, Thomas M.; Gyekenyesi, Thomas G.
2014-01-01
Four honeycomb sandwich panels, representing 1/16th arc segments of a 10-m diameter barrel section of the Heavy Lift Launch Vehicle, were manufactured and tested under the NASA Composites for Exploration and the NASA Constellation Ares V programs. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.0 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: in-autoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3 ft. by 5 ft. panels were cut from the 1/16th barrel sections and tested under compressive loading. Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of each 3 ft. by 5 ft. panel. To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yielded good qualitative and quantitative predictions. Additionally, it was correctly predicted that the panel would fail in buckling prior to failing in strength. Furthermore, several imperfection studies were performed to investigate the influence of geometric imperfections, fiber angle misalignments, and three-dimensional effects on the compressive response of the panel.
Buckling of dislocation in graphene
Yao, Yin; Wang, Shaofeng; Bai, Jianhui; Wang, Rui
2016-10-01
The buckling of dislocation in graphene is discussed through the lattice theory of dislocation and elastic theory. The approximate solution of the buckling is obtained based on the inner stress distribution caused by different structure of dislocations and is proved to be suitable by the simulation. The position of the highest buckling is predicted to be at the vertex of the pentagon far away from the heptagon. The buckling is strongly influenced by the internal stress and the distance between the extrusive area and stretching area, as well as the critical stress σc. The SW defect is proved to be unbuckled due to its strong interaction between extrusion and stretching.
Buckling driven debonding in sandwich columns
DEFF Research Database (Denmark)
Østergaard, Rasmus Christian
2008-01-01
A compression loaded sandwich column that contains a debond is analyzed using a geometrically non-linear finite element model. The model includes a cohesive zone along one face sheet/core interface whereby the debond can extend by interface crack growth. Two geometrical imperfections are introduced......; a global imperfection of the sandwich column axis and a local imperfection of the debonded face sheet axis. The model predicts the sandwich column to be very sensitive to the initial debond length and the local face sheet imperfection. The study shows that the sensitivity to the face sheet imperfection...... results from two mechanisms: (a) interaction of local debond buckling and global buckling and (b) the development of a damaged zone at the debond crack tip. Based on the pronounced imperfection sensitivity, the author predicts that an experimental measurement of the strength of sandwich structures may...
Crack buckling in soft gels under compression
Institute of Scientific and Technical Information of China (English)
Rong Long; Chung-Yuen Hui
2012-01-01
Recent interest in designing soft gels with high fracture toughness has called for simple and robust methods to test fracture behavior.The conventional method of applying tension to a gel sample suffers from a difficulty of sample gripping.In this paper,we study a possible fracture mechanism of soft gels under uni-axial compression.We show that the surfaces of a pre-existing crack,oriented parallel to the loading axis,can buckle at a critical compressive stress.This buckling instability can open the crack surfaces and create highly concentrated stress fields near the crack tip,which can lead to crack growth.We show that the onset of crack buckling can be deduced by a dimensional argument combined with an analysis to determine the critical compression needed to induce surface instabilities of an elastic half space.The critical compression for buckling was verified for a neoHookean material model using finite element simulations.
Sinou, Jean-Jacques; Thouverez, Fabrice; Jezequel, Louis
2006-01-01
International audience; Herein, a novel non-linear procedure for producing non-linear behaviour and stable limit cycle amplitudes of non-linear systems subjected to super-critical Hopf bifurcation point is presented. This approach, called Complex Non-Linear Modal Analysis (CNLMA), makes use of the non-linear unstable mode which governs the non-linear dynamic of structural systems in unstable areas. In this study, the computational methodology of CNLMA is presented for the systematic estimatio...
Using the Hypergeometric Model to analyze the buckling of drillstrings in curved boreholes
Energy Technology Data Exchange (ETDEWEB)
Sampaio, J.H.B. Jr. [PETROBRAS, Rio de Janeiro (Brazil); Eustes, A.W. III [Colorado School of Mines, Golden, CO (United States). Petroleum Engineering Dept.
1998-12-31
Current methodologies for analytically determining the onset of buckling of drillstrings within curved boreholes are limited. In this paper, the Hypergeometric Model is shown to be an effective model to determine drillstring buckling within curved boreholes. With the Hypergeometric Model, the analysis of drillstring buckling results in curves expressing the local buckling force versus the angle of inclination. The local buckling force alone, however, does not contain all the information required for a practical analysis. From the local buckling force curve, the positional buckling force is derived. The positional buckling force considers the distributed weight of the drillstring and the friction between the drillstring and the borehole wall. From this curve, the point of minimum resistance to buckling of the drillstring is determined. Using the local and positional buckling force curves, experimental results and simulations are presented. When multiple configurations exist (for example tapered drillstrings, tapered boreholes, multi-curved boreholes, or any combination of these), the analysis procedure uses superposition of two or more single configuration curves and a graphical algorithm. The Hypergeometric Model permits the optimization of the position of the crossing points (cross-over positioning, casing-shoe positioning, and change of curvature) to achieve extended reach with less risk and cost. The procedure for this model and examples are presented in this paper.
Buckling of polymerized monomolecular films
Bourdieu, L.; Daillant, J.; Chatenay, D.; Braslau, A.; Colson, D.
1994-03-01
The buckling of a two-dimensional polymer network at the air-water interface has been evidenced by grazing incidence x-ray scattering. A comprehensive description of the inhomogeneous octadecyltrichlorosilane polymerized film was obtained by atomic force microscopy and x-ray scattering measurements. The buckling occurs with a characteristic wavelength ~=10 μm.
Buckling instability of squeezed droplets
Elfring, Gwynn J
2015-01-01
Motivated by recent experiments, we consider theoretically the compression of droplets pinned at the bottom on a surface of finite area. We show that if the droplet is sufficiently compressed at the top by a surface, it will always develop a shape instability at a critical compression. When the top surface is flat, the shape instability occurs precisely when the apparent contact angle of the droplet at the pinned surface is pi, regardless of the contact angle of the upper surface, reminiscent of past work on liquid bridges and sessile droplets as first observed by Plateau. After the critical compression, the droplet transitions from a symmetric to an asymmetric shape. The force required to deform the droplet peaks at the critical point then progressively decreases indicative of catastrophic buckling. We characterize the transition in droplet shape using illustrative examples in two dimensions followed by perturbative analysis as well as numerical simulation in three dimensions. When the upper surface is not f...
POST-BUCKLING ANALYSIS OF DELAMINATED BEAM-PLATES%脱层梁-板的后屈曲分析
Institute of Scientific and Technical Information of China (English)
傅衣铭; 张运良
2001-01-01
Problem of post-buckling of beam-plates with a single arbitrarydelamination is studied under axial load. Taking a prop er asymptotic sequence and perturbation technique, the control equations, the co ntinuity, equilibrium and compatibility conditions of the first order and second order are derived. In the calculating examples, the response-curves of post-b cukling for the beam-plates are presented and compared with available data.%研究了含任意位置脱层的梁-板的后屈曲问题．采用小参数摄动法，导出了系统的一阶和二阶控制方程，边界条件，连续条件，平衡条件及相容条件．在算例中给出了梁-板的后屈曲响应曲线，且与有关文献进行了比较．
Linear algebra and matrix analysis for statistics
Banerjee, Sudipto
2014-01-01
Matrices, Vectors, and Their OperationsBasic definitions and notations Matrix addition and scalar-matrix multiplication Matrix multiplication Partitioned matricesThe ""trace"" of a square matrix Some special matricesSystems of Linear EquationsIntroduction Gaussian elimination Gauss-Jordan elimination Elementary matrices Homogeneous linear systems The inverse of a matrixMore on Linear EquationsThe LU decompositionCrout's Algorithm LU decomposition with row interchanges The LDU and Cholesky factorizations Inverse of partitioned matrices The LDU decomposition for partitioned matricesThe Sherman-W
Scale effects on thermal buckling properties of carbon nanotube
Energy Technology Data Exchange (ETDEWEB)
Wang Yize, E-mail: wangyize@gmail.co [P.O. Box 137, School of Astronautics, Harbin Institute of Technology, Harbin 150001 (China); Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Li Fengming, E-mail: fmli@hit.edu.c [P.O. Box 137, School of Astronautics, Harbin Institute of Technology, Harbin 150001 (China); Kishimoto, Kikuo [Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)
2010-11-01
In this Letter, the thermal buckling properties of carbon nanotube with small scale effects are studied. Based on the nonlocal continuum theory and the Timoshenko beam model, the governing equation is derived and the nondimensional critical buckling temperature is presented. The influences of the scale coefficients, the ratio of the length to the diameter, the transverse shear deformation and rotary inertia are discussed. It can be observed that the small scale effects are significant and should be considered for thermal analysis of carbon nanotube. The nondimensional critical buckling temperature becomes higher with the ratio of length to diameter increasing. Furthermore, for smaller ratios of the length to the diameter and higher mode numbers, the transverse shear deformation and rotary inertia have remarkable influences on the thermal buckling behaviors.
Static and dynamic buckling of thin-walled plate structures
Kubiak, Tomasz
2013-01-01
This monograph deals with buckling and postbuckling behavior of thin plates and thin-walled structures with flat wall subjected to static and dynamic load. The investigations are carried out in elastic range. The basic assumption here is the thin plate theory. This method is used to determination the buckling load and postbuckling analysis of thin-walled structures subjected to static and dynamic load. The book introduces two methods for static and dynamic buckling investigation which allow for a wider understanding of the phenomenon. Two different methods also can allow uncoupling of the phenomena occurring at the same time and attempt to estimate their impact on the final result. A general mathematical model, adopted in proposed analytical-numerical method, enables the consideration of all types of stability loss i.e.local, global and interactive forms of buckling. The applied numerical-numerical method includes adjacent of walls, shear-lag phenomenon and a deplanation of cross-sections.
Institute of Scientific and Technical Information of China (English)
王吉; 王肖钧; 王峰; 赵凯
2004-01-01
With finite-element software ANSYS 7.0 and simple thermal-mechanical coupling constitutive relations,the buckling failure of preloaded cylindrical shell irradiated by high power laser beam was studied by numerical simulations. The buckling mode and buckling critical loading were analysed for different preloading conditions. The influence of laser intensity, beam irradiation time, preloading conditions and geometric parameters of cylindrical shell on the buckling mode were discussed. The numerical results show that: ① the buckling deformation of the cylindrical shell was concentrated in the area of laser spot and the radial buckling was the main buckling mode, ② a linear relationship between the buckling eigenvalue and the maximum temperature at the center of laser spot was approached, ③ the buckling failure of cylindrical shell was attributed to the coupling effect of the material softening and the radial deformation in the laser spot, and hence to raise the stiffness of the material would enhance the ability for anti-irradiation of structure substantially.
Buckling of hybrid nanocomposites with embedded graphene and carbon nanotubes
Chandra, Y.; Saavedra Flores, E. I.; Scarpa, F.; Adhikari, S.
2016-09-01
With the aid of atomistic multiscale modelling and analytical approaches, buckling strength has been determined for carbon nanofibres/epoxy composite systems. Various nanofibres configurations considered are single walled carbon nano tube (SWCNT) and single layer graphene sheet (SLGS) and SLGS/SWCNT hybrid systems. Computationally, both eigen-value and non-linear large deformation-based methods have been employed to calculate the buckling strength. The non-linear computational model generated here takes into account of complex features such as debonding between polymer and filler (delamination under compression), nonlinearity in the polymer, strain-based damage criteria for the matrix, contact between fillers and interlocking of distorted filler surfaces with polymer. The effect of bridging nanofibres with an interlinking compound on the buckling strength of nano-composites has also been presented here. Computed enhancement in buckling strength of the polymer system due to nano reinforcement is found to be in the range of experimental and molecular dynamics based results available in open literature. The findings of this work indicate that carbon based nanofillers enhance the buckling strength of host polymers through various local failure mechanisms.
BEAM 1.7: development for modelling fuel element and bundle buckling strength
Energy Technology Data Exchange (ETDEWEB)
Cheng, G.; Xu, S.; Xu, Z.; Paul, U.K. [Atomic Energy of Canada, Mississauga, Ontario (Canada)
2010-07-01
This paper describes BEAM, an AECL developed computer program, used to assess mechanical integrity of CANDU fuel bundles. The BEAM code has been developed to satisfy the need for buckling strength analysis of fuel bundles. Buckling refers to the phenomenon where a compressive axial load is large enough that a small lateral load can cause large lateral deflections. The buckling strength refers to the critical compressive axial load at which lateral instability is reached. The buckling strength analysis has practical significance for the design of fuel bundles, where the buckling strength of a fuel element/bundle is assessed so that the conditions leading to bundle jamming in the pressure tube are excluded. This paper presents the development and qualification of the BEAM code, with emphasis on the theoretical background and code implementation of the newly developed fuel element/bundle buckling strength model. (author)
Buckling Response of Pipe-in-Pipe Systems Subjected to Bending
Institute of Scientific and Technical Information of China (English)
王哲; 陈志华; 刘红波; 何永禹; 马克俭
2015-01-01
The buckling response of pipe-in-pipe(PIP)systems subjected to bending is investigated in this paper. A set of parameterized models are established to explore the bending characteristics of the PIP systems through eigen-value buckling analysis and nonlinear post-buckling analysis. The results show that the length of PIP systems and the height of centralizers are the most significant factors that influence the buckling moment, ultimate bending mo-ment and buckling mode; the other geometric characteristics, such as initial geometric imperfection and friction between centralizers and outer pipes, evidently influence the post-buckling path and ductility of PIPs; the equivalent bending stiffness is dependent on the length and centralizers. Moreover, the range of equivalent bending stiffness is also discussed.
Myers, David E.; Pineda, Evan J.; Zalewski, Bart F.; Kosareo, Daniel N.; Kellas, Sotiris
2013-01-01
Four honeycomb sandwich panels, representing 1/16th arc segments of a 10-m diameter barrel section of the heavy lift launch vehicle, were manufactured under the NASA Composites for Exploration program and the NASA Space Launch Systems program. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.000 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: inautoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3.00- by 5.00-ft panels were cut from the 1/16th barrel sections. These panels were tested under compressive loading at the NASA Langley Research Center. Furthermore, linear eigenvalue and geometrically nonlinear finite element analysis was performed to predict the compressive response of the 3.00- by 5.00-ft panels. This manuscript summarizes the experimental and analytical modeling efforts pertaining to the panel composed of 8-ply, IM7/977-3 facesheets (referred to Panel A). To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yield good qualitative and quantitative predictions. Additionally, it was predicted correctly that the panel would fail in buckling prior to failing in strength. Furthermore, several imperfection studies were performed to investigate the influence of geometric imperfections, fiber misalignments, and three-dimensional (3 D) effects on the compressive response of the panel.
Institute of Scientific and Technical Information of China (English)
杨金花; 张鹏君
2015-01-01
By employing linear strain and utilizing piezoelectric theory including thermal effects,the constitutive relations of the piezoelectric beam reinforced with BNNTs are es-tablished.The buckling governing equations of the structure are derived through variational principle.In numerical examples,the effects of voltage,temperature,boundary condition and volume fraction on the buckling load of piezoelectric beam reinforced with BNNTs are discussed in detail.The following conclusions may be drawn from the present work:apply-ing negative and positive voltage to BNNT leads to increase and decrease of the buckling load.The buckling load of piezoelectric beam reinforced with BNNTs increases with the de-crease of temperature,and also increases when the volume fraction of BNNT in matrix in-creases.%运用线性应变几何关系及考虑温度效应的压电理论，建立了 BNNTs 增强压电梁的本构关系，通过变分推导出了结构的屈曲控制方程。算例中详细讨论了电压、温度、边界条件及体积比对 BNNTs 增强压电梁屈曲载荷的影响。研究结果表明，在 BNNTs 两端施加负或正电压可使压电梁的屈曲载荷增加或减小；BNNTs 增强压电梁的屈曲载荷随着温度的降低以及硼氮纳米管所占体积比的增加而增大。
Pineda, Evan J.; Meyers, David E.; Kosareo, Daniel N.; Zalewski, Bart F.; Dixon, Genevieve D.
2013-01-01
Four honeycomb sandwich panel types, representing 1/16th arc segments of a 10-m diameter barrel section of the Heavy Lift Launch Vehicle (HLLV), were manufactured and tested under the NASA Composites for Exploration program and the NASA Constellation Ares V program. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.000 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: in-autoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3- by 5-ft panels were cut from the 1/16th barrel sections. These panels were tested under compressive loading at the NASA Langley Research Center (LaRC). Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of each 3- by 5-ft panel. This manuscript summarizes the experimental and analytical modeling efforts pertaining to the panels composed of 6-ply, IM7/977-3 facesheets (referred to as Panels B-1 and B-2). To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yield good qualitative and quantitative predictions. Additionally, it was correctly predicted that the panel would fail in buckling prior to failing in strength. Furthermore, several imperfection studies were performed to investigate the influence of geometric imperfections, fiber angle misalignments, and three-dimensional (3-D) effects on the compressive response of the panel.
Flexural-torsional buckling behavior of aluminum alloy beams
Institute of Scientific and Technical Information of China (English)
Xiaonong GUO; Zhe XIONG; Zuyan SHEN
2015-01-01
This paper presents an investigation on the flexural-torsional buckling behavior of aluminum alloy beams （AAB）. First, based on the tests of 14 aluminum alloy beams under concentrated loads, the failure pattern, load- deformation curves, bearing capacity and flexural-torsional buckling factor are studied. It is found that all the beam specimens collapsed in the flexuml-torsional buckling with excessive deformation pattern. Moreover, the span, loading location and slenderness ratio influence the flexural-torsional buckling capacity of beams significantly. Secondly, besides the experiments, a finite element method （FEM） analysis on the flexural-torsional buckling behavior of AAB is also conducted. The main parameters in the FEM analysis are initial imperfection, material property, cross-section and loading scheme. According to the analytical results, it is indicated that the FEM is reasonable to capture mechanical behavior of AAB. Finally, on the basis of the experimental and analytical results, theoretical formulae to estimate the flexural- torsional buckling capacity of AAB are proposed, which could improve the application of present codes for AAB.
Buckling Characteristics of Cylindrical Pipes
Institute of Scientific and Technical Information of China (English)
Toshiaki Sakurai
2015-01-01
This paper describes the buckling pattern of the body frame by energy absorbed efficiency of crashworthiness related toresearch of the buckling characteristics of aluminum cylindrical pipes with various diameters formed mechanical tools. Experimentswere performed by the quasi-static test without lubrication between specimen and equipment. According to the change in the radiusversus thickness of the specimen, the buckling phenomena are transformed from folding to bellows and the rate of energy absorptionis understood. In crashworthiness, frames are characterized by the folding among three patterns from the absorbed energy efficiencypoint of view and weight reduction. With the development of new types of transport such as electric vehicles, innovated bodystructure should be designed.
Williams, F. W.; Anderson, M. S.; Kennedy, D.; Butler, R.; Aston, G.
1990-01-01
A computer program which is designed for efficient, accurate buckling and vibration analysis and optimum design of composite panels is described. The capabilities of the program are given along with detailed user instructions. It is written in FORTRAN 77 and is operational on VAX, IBM, and CDC computers and should be readily adapted to others. Several illustrations of the various aspects of the input are given along the example problems illustrating the use and application of the program.
Advanced analysis technique for the evaluation of linear alternators and linear motors
Holliday, Jeffrey C.
1995-01-01
A method for the mathematical analysis of linear alternator and linear motor devices and designs is described, and an example of its use is included. The technique seeks to surpass other methods of analysis by including more rigorous treatment of phenomena normally omitted or coarsely approximated such as eddy braking, non-linear material properties, and power losses generated within structures surrounding the device. The technique is broadly applicable to linear alternators and linear motors involving iron yoke structures and moving permanent magnets. The technique involves the application of Amperian current equivalents to the modeling of the moving permanent magnet components within a finite element formulation. The resulting steady state and transient mode field solutions can simultaneously account for the moving and static field sources within and around the device.
Prediction of Buckling of Plain Knitted Fabric Sheets Subjected to Simple Shear in Wale Direction
Institute of Scientific and Technical Information of China (English)
ZHANG Yitong; AO Tao; XU Jiafu
2007-01-01
Knitted fabric is very different from woven fabric due to its more complicated knitting structures. The buckling of knitted fabric sheets subjected to simple shear in the wale direction is investigated analytically in consideration of the large deformation of fabric sheet in critical configuration. The theory on instability of finite deformation is applied to the analysis. All the stress boundary conditions of knitted fabric sheet are satisfied. An equation to determine the buckling direction angle is de-rived. It is shown that there are two possible buckling modes, flexural mode and barreling mode. The buckling condition equations for the flexural mode and barreling mode are also obtained respectively. Numerical illustrations reveal that only the flexural mode can actually occur and the barreling mode cannot, which agrees with the experimental observations. For a permitted buckling mode on margin boundaries, the critical value of shear amount and the buckling direction angle can be deter-mined.
On the buckling behavior of piezoelectric nanobeams: An exact solution
Energy Technology Data Exchange (ETDEWEB)
Jandaghian, Ali Akbar; Rahmaini, Omid [University of Zanjan, Zanjan (Iran, Islamic Republic of)
2015-08-15
In this paper, thermoelectric-mechanical buckling behavior of the piezoelectric nanobeams is investigated based on the nonlocal theory and Euler-Bernoulli beam theory. The electric potential is assumed linear through the thickness of the nanobeam and the governing equations are derived by Hamilton's principle. The governing equations are solved analytically for different boundary conditions. The effects of the nonlocal parameter, temperature change, and external electric voltage on the critical buckling load of the piezoelectric nanobeams are discussed in detail. This study should be useful for the design of piezoelectric nanodevices.
Linear stability analysis of supersonic axisymmetric jets
Directory of Open Access Journals (Sweden)
Zhenhua Wan
2014-01-01
Full Text Available Stabilities of supersonic jets are examined with different velocities, momentum thicknesses, and core temperatures. Amplification rates of instability waves at inlet are evaluated by linear stability theory (LST. It is found that increased velocity and core temperature would increase amplification rates substantially and such influence varies for different azimuthal wavenumbers. The most unstable modes in thin momentum thickness cases usually have higher frequencies and azimuthal wavenumbers. Mode switching is observed for low azimuthal wavenumbers, but it appears merely in high velocity cases. In addition, the results provided by linear parabolized stability equations show that the mean-flow divergence affects the spatial evolution of instability waves greatly. The most amplified instability waves globally are sometimes found to be different from that given by LST.
Data perturbation analysis of a linear model
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The linear model features were carefully studied in the cases of data perturbation and mean shift perturbation.Some important features were also proved mathematically. The results show that the mean shift perturbation is equivalentto the data perturbation, that is, adding a parameter to an observation equation means that this set of data is deleted fromthe data set. The estimate of this parameter is its predicted residual in fact
Ko, William L.; Jackson, Raymond H.
1991-01-01
Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.
DEFF Research Database (Denmark)
Neves, Miguel M.; Sigmund, Ole; Bendsøe, Martin P.
2002-01-01
The problem of determining highly localized buckling modes in perfectly periodic cellular microstructures of infinite extent is addressed. A double scale asymptotic technique is applied to the linearized stability problem for a periodic structure built from linearly elastic microstructures...... to design materials with optimal elastic properties that are less prone to localized instability in the form of local buckling modes at the scale of the micro structure. Copyright (C) 2002 John Wiley Sons, Ltd....
Institute of Scientific and Technical Information of China (English)
梅卫进; 杨昌锦
2015-01-01
Devices of layered combination structure consisting of piezoelectric substrate and metal electrode are widely used in electric engineering. But, delaminate buckling of such layered structures may occur easily in the interface under the applied loading. In order to study critical delamination buckling load and the influence of the electromechanical coupling effect on the critical buckling load, and to provide a guidance for the design of such layered devices, the ABAQUS code was used to study the circular delamination buckling problem. Results of the finite element analysis are compared with those by the elastic stability theory of the simply supported and clamped circular delamination thin discs, and the correctness of the finite element analysis is verified.%由压电材料层与金属电极组合的层状结构功能器件应用很广，但在工程应用时因受荷载作用此类层合结构很容易在层间界面出现脱层屈曲现象。为了研究脱层屈曲时的临界荷载、力电耦合效应对屈曲临界载荷的影响，为此类层状器件的设计提供参考，本文用ABAQUS对压电层表面金属层圆形脱层的屈曲问题进行有限元研究，并将有限元解与利用弹性稳定理论将圆形脱层简化成薄圆板在考虑简支和固支边界时的结果进行对比分析，用以说明有限元结果的正确性。
Finite deformation mechanics in buckled thin films on compliant supports.
Jiang, Hanqing; Khang, Dahl-Young; Song, Jizhou; Sun, Yugang; Huang, Yonggang; Rogers, John A
2007-10-02
We present detailed experimental and theoretical studies of the mechanics of thin buckled films on compliant substrates. In particular, accurate measurements of the wavelengths and amplitudes in structures that consist of thin, single-crystal ribbons of silicon covalently bonded to elastomeric substrates of poly(dimethylsiloxane) reveal responses that include wavelengths that change in an approximately linear fashion with strain in the substrate, for all values of strain above the critical strain for buckling. Theoretical reexamination of this system yields analytical models that can explain these and other experimental observations at a quantitative level. We show that the resulting mechanics has many features in common with that of a simple accordion bellows. These results have relevance to the many emerging applications of controlled buckling structures in stretchable electronics, microelectromechanical systems, thin-film metrology, optical devices, and others.
Basic methods of linear functional analysis
Pryce, John D
2011-01-01
Introduction to the themes of mathematical analysis, geared toward advanced undergraduate and graduate students. Topics include operators, function spaces, Hilbert spaces, and elementary Fourier analysis. Numerous exercises and worked examples.1973 edition.
Foundations of nonstandard non-linear analysis
Almeida, Ricardo Miguel Moreira de
2008-01-01
Esta tese insere-se na área da análise não-standard não linear. São dois os objectivos principais deste trabalho. Um deles envolve diferenciabilidade de funções e o outro geometria diferencial. O nosso trabalho é dividido em três partes. Na primeira apresentamos uma caracterização não-standard de conjuntos compactos conexos em espaços métricos. Na segunda parte exibimos alguns resultados envolvendo o teorema do valor médio para espaços normados. De seguida é apresentado u...
Remaining local buckling resistance of corroded pipelines
Energy Technology Data Exchange (ETDEWEB)
Chen, Qishi [C-FER Technologies, Edmonton, AB (Canada); Khoo, Heng Aik [Carleton University, Ottawa, Ontario (Canada); Cheng, Roger [University of Alberta, Edmonton, AB (Canada); Zhou, Joe [TransCanada Pipelines Limited, Calgary, AB (Canada)
2010-07-01
The Pipeline Research Council International has undertaken a multi-year research program to investigate the local buckling (or wrinkling) of onshore pipelines affected by corrosion. Local buckling resistance depends on wall thickness and seems to be considerably reduced by metal-loss defects. Experimental data were lacking, which led to the use of overly conservative assumptions. C-FER and the University of Alberta conducted research in three phases in order to develop local buckling criteria for pipelines with corrosion defects. In Phase 1, the influence of various corrosion defect features was assessed with finite element analysis, and the ranking of key parameters was determined. On this basis, Phase 2 consisted in developing a test matrix and carrying out 10 full-scale tests to collect data. In Phase 3, finite element models were used to analyze over 150 parametric cases and develop criteria for assessing maximum moment and compressive strain limit. These criteria were applied to in-service pipelines with general corrosion features.
Institute of Scientific and Technical Information of China (English)
石泉彬; 周桂香
2011-01-01
在实验室采用直流电源进行电化学加速锈蚀钢筋，从而获得不同直径、长径比和锈蚀率的锈蚀钢筋试件，然后在万能电子试验机上进行压屈试验，获得锈蚀钢筋压屈承栽力曲线。经过统计分析，得到四种形态的锈蚀钢筋压屈承载力计算模型。应用大型有限元分析软件ANSYS对锈蚀钢筋压屈承载力模型进行进一步验证。%Corroded reinforcements, with various diameters, length-to-diameter ratios and corrosion rates, are obtained from the lab by using DC electrical sources to accelerate corrosion. The buckling capacity curves of corroded reinforcements are gained from electronic universal testing machine in the buckling test.The buckling capacity computational model of corroded reinforcement can be generalized in four types that are verified by the application of finite element analysis software ANASYS.
Analysis of linear partial differential operators
Hörmander , Lars
2005-01-01
This volume is an expanded version of Chapters III, IV, V and VII of my 1963 book "Linear partial differential operators". In addition there is an entirely new chapter on convolution equations, one on scattering theory, and one on methods from the theory of analytic functions of several complex variables. The latter is somewhat limited in scope though since it seems superfluous to duplicate the monographs by Ehrenpreis and by Palamodov on this subject. The reader is assumed to be familiar with distribution theory as presented in Volume I. Most topics discussed here have in fact been encountered in Volume I in special cases, which should provide the necessary motivation and background for a more systematic and precise exposition. The main technical tool in this volume is the Fourier- Laplace transformation. More powerful methods for the study of operators with variable coefficients will be developed in Volume III. However, constant coefficient theory has given the guidance for all that work. Although the field...
Institute of Scientific and Technical Information of China (English)
吴秀水; 辛克贵; 姜美兰
2001-01-01
根据位移变分原理，本文提出薄壁杆件稳定分析的有限杆元法。分析中考虑了杆壁中面剪应变的影响，能很好地描述剪力滞后现象。本方法采用线性函数作为横截面翘曲位移的插值函数，适用于任意横截面形状和任意边界条件的薄壁杆件。本文讨论了横向荷载作用下具有不同边界条件的工字型薄壁梁的屈曲荷载。数值算例结果表明了本方法灵活、有效、且有很好的精度。%Based on the principle of minimum potential energy, a generalmethod, called finite member element method, is developed for buckling analysis of thin-walled members with shear lag in the present paper. A linear function is used to express the warping displacements along the cross section of the thin-walled member. The present method is applicable to thin-walled members of any cross section with any boundary conditions. In order to evaluate this method, the critical loads of I-beams subjected to various loading conditions and different boundary conditions are studied. Numerical examples show that the present method is efficient and versatile. It offers more reliable and accurate results as compared to the classical theory of thin-walled members.
Directory of Open Access Journals (Sweden)
Kołakowski Zbigniew
2016-06-01
Full Text Available A review of papers that investigate the static and dynamic coupled buckling and post-buckling behaviour of thin-walled structures is carried out. The problem of static coupled buckling is sufficiently well-recognized. The analysis of dynamic interactive buckling is limited in practice to columns, single plates and shells. The applications of finite element method (FEM or/and analytical-numerical method (ANM to solve interaction buckling problems are on-going. In Poland, the team of scientists from the Department of Strength of Materials, Lodz University of Technology and co-workers developed the analytical-numerical method. This method allows to determine static buckling stresses, natural frequencies, coefficients of the equation describing the post-buckling equilibrium path and dynamic response of the plate structure subjected to compression load and/or bending moment. Using the dynamic buckling criteria, it is possible to determine the dynamic critical load. They presented a lot of interesting results for problems of the static and dynamic coupled buckling of thin-walled plate structures with complex shapes of cross-sections, including an interaction of component plates. The most important advantage of presented analytical-numerical method is that it enables to describe all buckling modes and the post-buckling behaviours of thin-walled columns made of different materials. Thin isotropic, orthotropic or laminate structures were considered.
Directory of Open Access Journals (Sweden)
Mohammad Ghalambaz
2015-07-01
Full Text Available A new modified Adomian Decomposition Method (ADM is utilized to obtain an analytical solution for buckling of the nanocantilever actuators immersed in liquid electrolytes. The nanoactuators in electrolytes are subject to different nonlinear forces including ionic concentration, van der Waals, external voltage and electrochemical forces. The Duan–Rach modified Adomian decomposition method is utilized to obtain a full explicate solution for the buckling of nanoactuators free of any undetermined coefficients. The results are compared with the results of Wazwas ADM as well as the results of a finite element method available in the literature and found in excellent agreement.
Energy Technology Data Exchange (ETDEWEB)
Cho, Hee Keun [Andong National University, Andong (Korea, Republic of); Rowlands, Robert E. [University of Wisconsin-Madison, Madison (United States)
2015-09-15
To maximize buckling loads of composite laminates, optimization is carried out using a Genetic algorithm (GA) in conjunction with finite element analysis. A perforated laminated composite plate is used for buckling analysis. The geometry is discretized into solid three dimensional twenty node isoparametric layered composite elements developed for this study. Fiber orientations of each element and individual plies are controlled independently by the genetic algorithm, which is especially advantageous for complex problems including many design variables. This approach for composite buckling produces more enhanced results than conventional methods, such as changing the stacking sequence of various rectilinear orthotropic plies with different fiber orientations, different ply thicknesses or different local fiber densities. Additionally, it can be used in diverse areas from sensitive local buckling to global stability of structures. The genetic algorithm, finite element analysis and eigen buckling analysis are numerically combined into a composite optimization code, COMBO20. The successful performance of the proposed approach is demonstrated with an example.
Institute of Scientific and Technical Information of China (English)
王鹏飞; 曹其新
2015-01-01
The thin-walled structural instability phenomenon was considered for the buckling analysis after the lightweight and the thin-wall design of the key component for the long-distance maintenance. A local buckling stress calculation model based on Rayleigh-Ritz variational method was proposed.A calculation model based on elastic buckling theory of thin-walled plate was presented simultaneously, which considers buckling half wave number,rectangular geometry dimension and boundary con-straint.The thin-walled rectangular cantilever beam was reduced to four thin-walled plate,which was loaded elastic rotational restraint along unloaded edge.A practical method of buckling analysis for rec-tangular cantilever beam was proposed.And the finite element simulation of cantilever beam composed by rectangular thin-walled plate was carried out.The effectiveness of the proposed methods was veri-fied by the finite element metod simulation result,which was consistent with the theoretical calculat-ing value.%针对远距离维护机器人关键结构件（矩形截面薄壁梁）轻量化、薄壁化设计后发生的屈曲问题，为避免薄壁结构件发生失稳现象，提出了基于瑞利-里兹能量变分法建立屈曲应力计算模型，以及基于弹性薄板理论构件容纳屈曲半波数、矩形几何尺寸和边界扭矩约束刚度等因素的数学模型的融合方法。将矩形薄壁梁简化为四个非载荷端承受弹性扭转约束的薄壁矩形板件，为矩形梁屈曲分析提供了一种实用方法。运用有限元方法对矩形薄板组成的悬臂梁进行仿真分析，所得结果与理论计算值具有一致性，验证了方法的正确性。
DEFF Research Database (Denmark)
Madsen, Søren; Pinna, Rodney; Randolph, M. F.
2015-01-01
Using large monopod bucket foundations as an alternative to monopiles for offshore wind turbines offers the potential for large cost savings compared to typical piled foundations. In this paper, numerical simulations are carried out to assess the risk of structural buckling during installation...... is investigated. The effects of including soil restraint and soil–structure interaction on the buckling analysis are also addressed....
Radloff, H. D., II; Hyer, M. W.; Nemeth, M. P.
1994-01-01
The focus of this work is the buckling response of symmetrically laminated composite plates having a planform area in the shape of an isosceles trapezoid. The loading is assumed to be inplane and applied perpendicular to the parallel ends of the plate. The tapered edges of the plate are assumed to have simply supported boundary conditions, while the parallel ends are assumed to have either simply supported or clamped boundary conditions. A semi-analytic closed-form solution based on energy principles and the Trefftz stability criterion is derived and solutions are obtained using the Rayleigh-Ritz method. Intrinsic in this solution is a simplified prebuckling analysis which approximates the inplane force resultant distributions by the forms Nx=P/W(x) and Ny=Nxy=0, where P is the applied load and W(x) is the plate width which, for the trapezoidal planform, varies linearly with the lengthwise coordinate x. The out-of-plane displacement is approximated by a double trigonometric series. This analysis is posed in terms of four nondimensional parameters representing orthotropic and anisotropic material properties, and two nondimensional parameters representing geometric properties. For comparison purposes, a number of specific plate geometry, ply orientation, and stacking sequence combinations are investigated using the general purpose finite element code ABAQUS. Comparison of buckling coefficients calculated using the semi-analytical model and the finite element model show agreement within 5 percent, in general, and within 15 percent for the worst cases. In order to verify both the finite element and semi-analytical analyses, buckling loads are measured for graphite/epoxy plates having a wide range of plate geometries and stacking sequences. Test fixtures, instrumentation system, and experimental technique are described. Experimental results for the buckling load, the buckled mode shape, and the prebuckling plate stiffness are presented and show good agreement with the
Compositional Analysis for Linear Control Systems
Kerber, Florian; Schaft, Arjan van der
2010-01-01
The complexity of physical and engineering systems, both in terms of the governing physical phenomena and the number of subprocesses involved, is mirrored in ever more complex mathematical models. While the demand for precise models is indisputable, the analysis of such system models remains
Compositional Analysis for Linear Control Systems
Kerber, Florian; Schaft, Arjan van der
2010-01-01
The complexity of physical and engineering systems, both in terms of the governing physical phenomena and the number of subprocesses involved, is mirrored in ever more complex mathematical models. While the demand for precise models is indisputable, the analysis of such system models remains challen
Non-linear finite element analysis in structural mechanics
Rust, Wilhelm
2015-01-01
This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.
THERMAL POST-BUCKLING OF FUNCTIONALLY GRADED MATERIAL TIMOSHENKO BEAMS
Institute of Scientific and Technical Information of China (English)
LI Shi-rong; ZHANG Jing-hua; ZHAO Yong-gang
2006-01-01
Analysis of thermal post-buckling of FGM (Functionally Graded Material)Timoshenko beams subjected to transversely non-uniform temperature rise is presented.By accurately considering the axial extension and transverse shear deformation in the sense of theory of Timoshenko beam, geometrical nonlinear governing equations including seven basic unknown functions for functionally graded beams subjected to mechanical and thermal loads were formulated. In the analysis, it was assumed that the material properties of the beam vary continuously as a power function of the thickness coordinate. By using a shooting method, the obtained nonlinear boundary value problem was numerically solved and thermal buckling and post-buckling response of transversely non-uniformly heated FGM Timoshenko beams with fixed-fixed edges were obtained. Characteristic curves of the buckling deformation of the beam varying with thermal load and the power law index are plotted. The effects of material gradient property on the buckling deformation and critical temperature of beam were discussed in details. The results show that there exists the tension-bend coupling deformation in the uniformly heated beam because of the transversely non-uniform characteristic of materials.
Analysis of Linear Hybrid Systems in CLP
DEFF Research Database (Denmark)
Banda, Gourinath; Gallagher, John Patrick
2009-01-01
notation for specifying real-time systems. The main contributions are (i) a technique for capturing the reachable states of the continuously changing state variables of the LHA as CLP constraints; (ii) a way of representing events in the LHA as constraints in CLP, along with a product construction...... and argue that we contribute to the general field of using static analysis tools for verification...
Employment of CB models for non-linear dynamic analysis
Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.
1990-01-01
The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.
Analysis of latent structures in linear systems
DEFF Research Database (Denmark)
Høskuldsson, Agnar
2004-01-01
that are useful, when studying latent structures. It is shown how loading weight vectors are generated and how they can be interpreted in analyzing the latent structure. It is shown how the covariance can be used to get useful ‘apriori’ information on the modeling task. Also some simple methods are presented...... to use for deciding if single or multiple latent structures should be used. The last part is about choosing the variables that should be used in the analysis. The traditional procedures to select variables to include in the model are presented and the insufficiencies of such approaches are demonstrated...
Institute of Scientific and Technical Information of China (English)
赵丰; 张崇厚
2013-01-01
斜交网筒结构具有较大的抗侧刚度,但其延性较差,通过设置屈曲约束支撑可改善斜交网筒结构延性.以30层的斜交网筒结构模型为研究对象,分别对普通斜交网筒结构和设置屈曲约束支撑斜交网筒结构进行静力弹塑性推覆(Pushover)分析.结果表明:屈曲约束支撑可有效改善斜交网筒结构延性.此外,对立面中部、立面角部、底部楼层、上部楼层共4种局部区域布置屈曲约束支撑的方案进行了结构延性分析.局部设置屈曲约束支撑斜交网筒结构的设计应确保斜柱处于弹性工作状态,屈曲约束支撑率先进入塑性耗能状态.建议采用立面中部布置屈曲约束支撑的方案,可实现在保证结构受剪承载力的前提下,较好地改善斜交网筒结构的延性,避免结构发生脆性破坏.%Diagrid tube structures have excellent lateral force resistance but poor structural ductility,which can be improved through buckling restrained brace.With respect to 30-story diagrid tube structures,nonlinear static analysis,i.e.pushover analysis was conducted respectively for the conventional diagrid tube structure and those with buckling restrained brace.The results show that the structural ductility is improved by utilizing buckling restrained brace.Furthermore,four schemes of diagrid tube structures partially with buckling restrained brace in different parts of the facades,including the corner and the middle,the bottom and the upper,were investigated for structural ductility.Diagrid tube structures partially with buckling restrained brace should be designed so that conventional brace remain in elastic state,while buckling restrained brace turn into plastic state in advance for energy dissipation.Diagrid tube structure with buckling restrained brace in the middle part of facade is recommended,which could effectively improve structural ductility to avoid brittle failure without decreasing shear load-bearing capacity.
Controllability analysis of decentralised linear controllers for polymeric fuel cells
Energy Technology Data Exchange (ETDEWEB)
Serra, Maria; Aguado, Joaquin; Ansede, Xavier; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya - Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)
2005-10-10
This work deals with the control of polymeric fuel cells. It includes a linear analysis of the system at different operating points, the comparison and selection of different control structures, and the validation of the controlled system by simulation. The work is based on a complex non linear model which has been linearised at several operating points. The linear analysis tools used are the Morari resiliency index, the condition number, and the relative gain array. These techniques are employed to compare the controllability of the system with different control structures and at different operating conditions. According to the results, the most promising control structures are selected and their performance with PI based diagonal controllers is evaluated through simulations with the complete non linear model. The range of operability of the examined control structures is compared. Conclusions indicate good performance of several diagonal linear controllers. However, very few have a wide operability range. (author)
Sun, Zhibin; Chang, Chein-I.; Ren, Hsuan; D"Amico, Francis M.; Jensen, James O.
2003-12-01
Fully constrained linear spectral mixture analysis (FCLSMA) has been used for material quantification in remotely sensed imagery. In order to implement FCLSMA, two constraints are imposed on abundance fractions, referred to as Abundance Sum-to-one Constraint (ASC) and Abundance Nonnegativity Constraint (ANC). While the ASC is linear equality constraint, the ANC is a linear inequality constraint. A direct approach to imposing the ASC and ANC has been recently investigated and is called fully constrained least-squares (FCLS) method. Since there is no analytical solution resulting from the ANC, a modified fully constrained least-squares method (MFCLS) which replaces the ANC with an Absolute Abundance Sum-to-one Constraint (AASC) was proposed to convert a set of inequality constraints to a quality constraint. The results produced by these two approaches have been shown to be very close. In this paper, we take an oopposite approach to the MFCLS method, called least-squares with linear inequality constraints (LSLIC) method which also solves FCLSMA, but replaces the ASC with two linear inequalities. The proposed LSLIC transforms the FCLSMA to a linear distance programming problem which can be solved easily by a numerical algorithm. In order to demonstrate its utility in solving FCLSMA, the LSLIC method is compared to the FCLS and MFCLS methods. The experimental results show that these three methods perform very similarly with only subtle differences resulting from their problem formations.
Dynamic Buckling of Column Impacted by a Rigid Body
Institute of Scientific and Technical Information of China (English)
Zhijun Han; Hongwei Ma; Shanyuan Zhang
2004-01-01
The dynamic buckling of an elastic column subjected to axial impact by a rigid body is discussed in accordance with the energy law in this paper. The equation of lateral disturbance used to analysis the problem is developed by taking into account the effect of stress wave. The power series solution of this problem has been obtained by using the power series approach. The buckling criterion of this problem is proposed by analyzing the characteristics of the solution. The relationships between critical velocity and impacting mass as well as critical velocity and critical length are given by using theoretical analysis and numerical computation.
Buckling a Semiflexible Polymer Chain under Compression
Directory of Open Access Journals (Sweden)
Ekaterina Pilyugina
2017-03-01
Full Text Available Instability and structural transitions arise in many important problems involving dynamics at molecular length scales. Buckling of an elastic rod under a compressive load offers a useful general picture of such a transition. However, the existing theoretical description of buckling is applicable in the load response of macroscopic structures, only when fluctuations can be neglected, whereas membranes, polymer brushes, filaments, and macromolecular chains undergo considerable Brownian fluctuations. We analyze here the buckling of a fluctuating semiflexible polymer experiencing a compressive load. Previous works rely on approximations to the polymer statistics, resulting in a range of predictions for the buckling transition that disagree on whether fluctuations elevate or depress the critical buckling force. In contrast, our theory exploits exact results for the statistical behavior of the worm-like chain model yielding unambiguous predictions about the buckling conditions and nature of the buckling transition. We find that a fluctuating polymer under compressive load requires a larger force to buckle than an elastic rod in the absence of fluctuations. The nature of the buckling transition exhibits a marked change from being distinctly second order in the absence of fluctuations to being a more gradual, compliant transition in the presence of fluctuations. We analyze the thermodynamic contributions throughout the buckling transition to demonstrate that the chain entropy favors the extended state over the buckled state, providing a thermodynamic justification of the elevated buckling force.
Eigenvalue Buckling Analysis of FRP Transmission Tower%玻璃钢输电塔中稳定构件布置形式的研究
Institute of Scientific and Technical Information of China (English)
屈成忠; 朱瑞玲; 王孙宝
2013-01-01
以通用设计中的110 kV输电塔为计算模型,研究了将玻璃钢材料应用于输电塔上能满足结构稳定性的构件布置形式,采用特征值屈曲分析对风荷载作用下不同塔腿和塔身形式的输电塔进行了有限元计算.结果表明,主材用角钢、其他构件用玻璃钢的输电塔结构和改变塔腿形式或再进一步将塔身下半部改为具有水平材的双腹杆形式均能满足结构稳定性要求.%According to the 110 kV power transmission towers in general design, the stable form of transmission tower used FRP components was researched. Considering the influences of the different arrangement of tower legs and tower body on the stability of structure, the finite element calculation of transmission tower under wind load was carried out through the eigenvalue buckling analysis. It is concluded that the transmission tower whose principal material are angle steel and others are FRP can meet the requirements of the structure stability through modifying the form of legs or the first body to become the double ventral pole form with a level pole.
Non Linear Seismic Analysis of Masonry Structures
Directory of Open Access Journals (Sweden)
Sirajuddin, M
2011-12-01
Full Text Available Nowadays, even though many new construction techniques have been introduced, masonry has got its own importance in building industry. Masonry structures fail miserably under lateral loading conditions like earth quakes and impact loads. The occurrence of recent earthquakes in India and in different parts of the world have highlighted that most of the loss of human lives and damage to property have been due to the collapse of masonry structures. Though an earthquake could not be prevented, the loss of life and property could be minimized, if necessary steps could be taken to reduce the damages on the existing masonry structures. This paper investigates the application ofNonlinear Seismic Analysis of a masonry building using ANSYS software and check the efficacy of retrofit measuresto protect the existing building.
Analysis of Linear MHD Power Generators
Energy Technology Data Exchange (ETDEWEB)
Witalis, E.A.
1965-02-15
The finite electrode size effects on the performance of an infinitely long MHD power generation duct are calculated by means of conformal mapping. The general conformal transformation is deduced and applied in a graphic way. The analysis includes variations in the segmentation degree, the Hall parameter of the gas and the electrode/insulator length ratio as well as the influence of the external circuitry and loading. A general criterion for a minimum of the generator internal resistance is given. The same criterion gives the conditions for the occurrence of internal current leakage between adjacent electrodes. It is also shown that the highest power output at a prescribed efficiency is always obtained when the current is made to flow between exactly opposed electrodes. Curves are presented showing the power-efficiency relations and other generator properties as depending on the segmentation degree and the Hall parameter in the cases of axial and transverse power extraction. The implications of limiting the current to flow between a finite number of identical electrodes are introduced and combined with the condition for current flow between opposed electrodes. The characteristics of generators with one or a few external loads can then be determined completely and examples are given in a table. It is shown that the performance of such generators must not necessarily be inferior to that of segmented generators with many independent loads. However, the problems of channel end losses and off-design loading have not been taken into consideration.
Computational modelling of buckling of woven fabrics
CSIR Research Space (South Africa)
Anandjiwala, RD
2006-02-01
Full Text Available generalized model of a plain woven fabric and subsequently for modifying Huang’s extension analysis. Although, Kang et al have utilized Huang’s bilinearity in their model, the obvious inconsistency of applying the classical beam theory to the textile problem... couple which influences the behaviour of textile materials, such as yarns and fabrics. This implies that M a = 0 and B = B*. When substituting these values in Equations (4) to (16) equations are obtained that are similar to the buckling of a strut...
Axisymmetric buckling of laminated thick annular spherical cap
Dumir, P. C.; Dube, G. P.; Mallick, A.
2005-03-01
Axisymmetric buckling analysis is presented for moderately thick laminated shallow annular spherical cap under transverse load. Buckling under central ring load and uniformly distributed transverse load, applied statically or as a step function load is considered. The central circular opening is either free or plugged by a rigid central mass or reinforced by a rigid ring. Annular spherical caps have been analysed for clamped and simple supports with movable and immovable inplane edge conditions. The governing equations of the Marguerre-type, first order shear deformation shallow shell theory (FSDT), formulated in terms of transverse deflection w, the rotation ψ of the normal to the midsurface and the stress function Φ, are solved by the orthogonal point collocation method. Typical numerical results for static and dynamic buckling loads for FSDT are compared with the classical lamination theory and the dependence of the effect of the shear deformation on the thickness parameter for various boundary conditions is investigated.
Influence of central buckle on suspension bridge dynamic characteristics and driving comfort
Institute of Scientific and Technical Information of China (English)
王达; 邓扬; 刘扬
2015-01-01
The central buckle, which is often used in a suspension bridge, can improve bridges’ performance in the actual operation condition. The influence of the central buckle on natural vibration characteristics and bridge-deck driving comfort of a long-span suspension bridge is studied by using a case study of Siduhe Suspension Bridge in China. Based on the finite element software ANSYS and independently complied program, the influence of the central buckle on the structure force-applied characteristics of a long-span suspension bridge has been explored. The results show that the huge increases of natural frequencies can result in the presence of central buckles because of the increases of bending and torsional rigidities. The central buckle basically makes the stiffening girders and cables within the triangular area covered as a relatively approximate rigid area. Hence, the central buckle can reduce the torsional displacement of the main girder. However, the increases of bending and torsional rigidities have little influence on the impact factor, which is obtained by using vehicle-bridge coupled vibration analysis. This means that the central buckle has little effect on the comfort indices. In addition, it is found that the central buckle can enhance the bridge deck’s driving stability due to the decrease of the torsional displacements of the main girder.
Error Analysis in Frequency Domain for Linear Multipass Algorithms
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Error analysis methods in frequency domain are developed in this paper for determining the characteristic root and transfer function errors when the linear multipass algorithms are used to solve linear differential equations.the relation between the local truncation error in time domain and the error in frequency domain is established, which is the basis for developing the error estimation methods. The error estimation methods for the digital simulation model constructed by using the Runge-Kutta algorithms and the linear multistep predictor-corrector algorithms are also given.
Virtual estimator for piecewise linear systems based on observability analysis.
Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés, Luis G; Beltrán, Carlos Daniel García
2013-02-27
This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results.
Reproducing Kernel Particle Method for Non-Linear Fracture Analysis
Institute of Scientific and Technical Information of China (English)
Cao Zhongqing; Zhou Benkuan; Chen Dapeng
2006-01-01
To study the non-linear fracture, a non-linear constitutive model for piezoelectric ceramics was proposed, in which the polarization switching and saturation were taken into account. Based on the model, the non-linear fracture analysis was implemented using reproducing kernel particle method (RKPM). Using local J-integral as a fracture criterion, a relation curve of fracture loads against electric fields was obtained. Qualitatively, the curve is in agreement with the experimental observations reported in literature. The reproducing equation, the shape function of RKPM, and the transformation method to impose essential boundary conditions for meshless methods were also introduced. The computation was implemented using object-oriented programming method.
Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis
Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel
2013-01-01
This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007
Linear functional analysis an application-oriented introduction
Alt, Hans Wilhelm
2016-01-01
This book gives an introduction to Linear Functional Analysis, a synthesis of algebra, topology, and analysis. In addition to the basic theory it explains operator theory, distributions, Sobolev spaces, and many other things. The text is self-contained and includes all proofs, as well as many exercises, most of them with solutions. Moreover, there are a number of appendices, for example on Lebesgue integration theory. A complete introduction to the subject, Linear Functional Analysis will be particularly useful to readers who want to quickly get to the key statements and who are interested in applications to differential equations.
On the buckling eigenvalue problem
Energy Technology Data Exchange (ETDEWEB)
Antunes, Pedro R S, E-mail: pant@cii.fc.ul.pt [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Av. do Campo Grande, 376, 1749-024 Lisboa (Portugal); Group of Mathematical Physics of the University of Lisbon, Complexo Interdisciplinar, Av. Professor Gama Pinto 2, P-1649-003 Lisboa (Portugal)
2011-05-27
We prove a density result which allows us to justify the application of the method of fundamental solutions to solve the buckling eigenvalue problem of a plate. We address an example of an analytic convex domain for which the first eigenfunction does change the sign and present a large-scale numerical study with polygons providing numerical evidence to some new conjectures.
Combined scleral buckling and phacoemulsification
Directory of Open Access Journals (Sweden)
Pukhraj Rishi
2009-01-01
Conclusion: Combined scleral buckling and phacoemulsification is a safe and effective procedure that spares the patient the burden of repeated surgeries. It may be considered as a treatment option in selected cases of rhegmatogenous retinal detachment with significant cataract with/without early PVR.
Directory of Open Access Journals (Sweden)
Świta P.
2016-05-01
Full Text Available The main purpose is to present the stochastic perturbation-based Finite Element Method analysis of the stability in the issues related to the influence of high temperature resulting from a fire directly connected with the reliability analysis of such structures. The thin-walled beam structures with constant cross-sectional thickness are uploaded with typical constant loads, variable loads and, additionally, a temperature increase and we look for the first critical value equivalent to the global stability loss. Such an analysis is carried out in the probabilistic context to determine as precisely as possible the safety margins according to the civil engineering Eurocode statements. To achieve this goal we employ the additional design-oriented Finite Element Method program and computer algebra system to get the analytical polynomial functions relating the critical pressure (or force and several random design parameters; all the models are state-dependent as we consider an additional reduction of the strength parameters due to the temperature increase. The first four probabilistic moments of the critical forces are computed assuming that the input random parameters have all Gaussian probability functions truncated to the positive values only. Finally, the reliability index is calculated according to the First Order Reliability Method (FORM by an application of the limit function as a difference in-between critical pressure and maximum compression stress determined in the given structures to verify their durability according to the demands of EU engineering designing codes related to the fire situation.
Świta, P.; Kamiński, M.
2016-05-01
The main purpose is to present the stochastic perturbation-based Finite Element Method analysis of the stability in the issues related to the influence of high temperature resulting from a fire directly connected with the reliability analysis of such structures. The thin-walled beam structures with constant cross-sectional thickness are uploaded with typical constant loads, variable loads and, additionally, a temperature increase and we look for the first critical value equivalent to the global stability loss. Such an analysis is carried out in the probabilistic context to determine as precisely as possible the safety margins according to the civil engineering Eurocode statements. To achieve this goal we employ the additional design-oriented Finite Element Method program and computer algebra system to get the analytical polynomial functions relating the critical pressure (or force) and several random design parameters; all the models are state-dependent as we consider an additional reduction of the strength parameters due to the temperature increase. The first four probabilistic moments of the critical forces are computed assuming that the input random parameters have all Gaussian probability functions truncated to the positive values only. Finally, the reliability index is calculated according to the First Order Reliability Method (FORM) by an application of the limit function as a difference in-between critical pressure and maximum compression stress determined in the given structures to verify their durability according to the demands of EU engineering designing codes related to the fire situation.
Lattice Boltzmann methods for global linear instability analysis
Pérez, José Miguel; Aguilar, Alfonso; Theofilis, Vassilis
2016-11-01
Modal global linear instability analysis is performed using, for the first time ever, the lattice Boltzmann method (LBM) to analyze incompressible flows with two and three inhomogeneous spatial directions. Four linearization models have been implemented in order to recover the linearized Navier-Stokes equations in the incompressible limit. Two of those models employ the single relaxation time and have been proposed previously in the literature as linearization of the collision operator of the lattice Boltzmann equation. Two additional models are derived herein for the first time by linearizing the local equilibrium probability distribution function. Instability analysis results are obtained in three benchmark problems, two in closed geometries and one in open flow, namely the square and cubic lid-driven cavity flow and flow in the wake of the circular cylinder. Comparisons with results delivered by classic spectral element methods verify the accuracy of the proposed new methodologies and point potential limitations particular to the LBM approach. The known issue of appearance of numerical instabilities when the SRT model is used in direct numerical simulations employing the LBM is shown to be reflected in a spurious global eigenmode when the SRT model is used in the instability analysis. Although this mode is absent in the multiple relaxation times model, other spurious instabilities can also arise and are documented herein. Areas of potential improvements in order to make the proposed methodology competitive with established approaches for global instability analysis are discussed.
Institute of Scientific and Technical Information of China (English)
郭鹏; 张景旭; 杨飞; 赵宏超; 王富国
2015-01-01
30 m望远镜三镜为长轴3.594 m,短轴2.536 m的椭圆形微晶玻璃反射镜.其支撑结构采用了多种柔性结构,以释放非支撑方向的自由度. 使得轴向支承和侧向支撑能够相互解耦,并减小支撑结构与镜子材料的热胀系数不匹配带来的热应力.柔性件柔度越高,在望远镜观测条件的扰动下镜面面形越好.但过高的柔度会降低柔性件的屈曲临界载荷,导致结构发生屈曲失效.为此需要计算出望远镜观测过程中柔性结构所承受的最大压力载荷, 计算相应的屈曲安全系数SFBuckling. 对比了典型结构非线性屈曲分析和特征值屈曲分析的区别,不断迭代设计和分析,柔性元件的SFBuckling和柔度取得了一个较好的平衡点,热扰动下的面形也达到了设计要求.%Thirty Meter Telescopeˊs tertiary mirror is an elliptical ceramic glass reflector whose major axis is 3.594 m and minor axis is 2.536 m. Flexure structure was widely used in the mirrorˊs support structure to release all the other degree of freedom except those along the support direction. The design decoupled the axial and lateral support and reduce the thermal stress due to the material mismatch. The higher compliance would benefit the telescopeˊs mirror surface under distortion, but the buckling criteria load would decrease correspondingly, either. So the limit load of each flexure structure should be calculated as the design input. And the buckling safety factor SFBuckling was analyzed for each part under the limit loads. Eigenvalue buckling analysisand nonlinear buckling analysis were both taken and compared. Based on the analysis results, the design were optimized iteratively to achieve balanced values of compliance for all the flexure. The mirror surface error under thermal distortion met the design requirements.
A buckling mechanism for ESCRT-III budding
Lenz, Martin; Joanny, Jean-François
2009-01-01
The ESCRT-III protein complex binds to the membrane of eukaryotic cells, causing it to bud into long tubes. Here we propose that this budding is akin to a buckling instability. We analyze the linear stability of flat ESCRT-III-dressed membranes and account for the formation of long tubes. We study strongly deformed dressed membranes and their bifurcation diagram numerically. Our mechanism is compatible with reasonable in vivo parameter values and we propose an experiment allowing its validation.
Buckling-driven Delamination in Layered Spherical Shells
DEFF Research Database (Denmark)
Sørensen, Kim Dalsten; Jensen, Henrik Myhre
2008-01-01
An analysis of buckling-driven delamination of a thin film on a spherical substrate has been carried out. The effects of the substrate having a double curvature compared to previous studies of delamination on cylindrical substrates turn out to be non-trivial: In addition to the effect of the shap...
Computing and Visualizing Log-linear Analysis Interactively
Directory of Open Access Journals (Sweden)
Pedro M. Valero-Mora
2002-09-01
Full Text Available The purpose of this paper is to describe a simple program for computing log-linear analysis based on a direct manipulation interface that emphasizes the use of plots for guiding the analysis and evaluating the results obtained. The program described here works as a plugin for ViSta (Young 1997 and receives the name of LoginViSta (for Log-linear analysis in ViSTa. ViSta is a statistical package based on Lisp-Stat. Lisp-Stat is a statistical programming environment developed by Luke Tierney (1990 that features an object-oriented approach for statistical computing and one that allows for The purpose of this paper is to describe a simple program for computing log-linear analysis based on a direct manipulation interface that emphasizes the use of plots for guiding the analysis and evaluating the results obtained. The program described here works as a plugin for ViSta (Young 1997 and receives the name of LoginViSta (for Log-linear analysis in ViSTa. ViSta is a statistical package based on Lisp-Stat. Lisp-Stat is a statistical programming environment developed by Luke Tierney (1990 that features an object-oriented approach for statistical computing and one that allows for Computing and Visualizing Pedro Valero-Mora and Forrest W. Young interactive and dynamic graphs.
Hammerand, Daniel C.
Over the past several decades, the use of composite materials has grown considerably. Typically, fiber-reinforced polymer-matrix composites are modeled as being linear elastic. However, it is well-known that polymers are viscoelastic in nature. Furthermore, the analysis of complex structures requires a numerical approach such as the finite element method. In the present work, a triangular flat shell element for linear elastic composites is extended to model linear viscoelastic composites. Although polymers are usually modeled as being incompressible, here they are modeled as compressible. Furthermore, the macroscopic constitutive properties for fiber-reinforced composites are assumed to be known and are not determined using the matrix and fiber properties along with the fiber volume fraction. Hygrothermo-rheologically simple materials are considered for which a change in the hygrothermal environment results in a horizontal shifting of the relaxation moduli curves on a log time scale, in addition to the usual hygrothermal loads. Both the temperature and moisture are taken to be prescribed. Hence, the heat energy generated by the viscoelastic deformations is not considered. When the deformations and rotations are small under an applied load history, the usual engineering stress and strain measures can be used and the time history of a viscoelastic deformation process is determined using the original geometry of the structure. If, however, sufficiently large loads are applied, the deflections and rotations will be large leading to changes in the structural stiffness characteristics and possibly the internal loads carried throughout the structure. Hence, in such a case, nonlinear effects must be taken into account and the appropriate stress and strain measures must be used. Although a geometrically-nonlinear finite element code could always be used to compute geometrically-linear deformation processes, it is inefficient to use such a code for small deformations, due to
Institute of Scientific and Technical Information of China (English)
钟轶峰; 余文斌
2011-01-01
为有效分析反对称角铺设复合材料层压板热后屈曲性能,由渐近修正几何非线性理论推导双耦合四阶偏微分方程(即协调方程和动态控制方程),通过双Fourier级数将耦合非线性控制偏微分方程转换为系列非线性常微分方程,从而获得相对简单的求解方法.使用广义Galerkin方法求解与角交铺设复合层合板相关的边界值问题,研究了模态跃迁前后不同复杂程度的后屈曲模式.通过四边简支、面内不可移边界下复合层合板的数值计算表明:该解析法与有限元方法在主后屈曲区域的计算结果有很好的吻合性；有限元方法在解靠近二次分岔点时失去收敛性,而解析法仍具有深入探索后屈曲区域和准确捕捉模态跃迁现象的能力.%In order to effectively analyze the thermal post-buckling performance of antisymmetric angle-ply composite laminates, the two coupled fourth-order governing partial differential equations, namely, the compatibility equation and dynamic governing equation, were deduced according to the asymptotically correct, geometrically nonlinear theory. A relatively simpler solution method was developed to solve those equations by transforming the coupled nonlinear governing equations into a system of nonlinear ordinary differential equations and using double Fourier series. The generalized Galerkin method was used to solve boundary value problems corresponding to antisymmetric angle-ply composite plates. The post buckling patterns with different complex before and after mode jumping were analyzed. An example of 4-layers composite laminates under simple-supported, in-plane constrained boundary condition shows that the numerical results of the present method in the primary post-buckling region agree with the finite element analysis ( FEA) results. While the FEA may lose its convergence when solution comes close to the secondary bifurcation point, the analytic method presented has the capability
Institute of Scientific and Technical Information of China (English)
朱江; 李帼昌; 马传正
2012-01-01
Computer models of buckling restrained braces-reinforced concrete frame and RC frame were set up,and seismic performances of the models were calculated by adopting response spectrum analysis and Pushover analysis based on SAP2000.The results show that the RC frame including buckling restrained braces will increase story-stiffness,decrease lateral deformation of frame structure significantly,and reach requirement of more defences in seismic concept design of buildings.%利用SAP2000软件建立包含和不包含屈曲约束支撑的钢筋混凝土框架计算模型,分别采用反应谱分析和Pushover分析方法对两种模型进行对比计算分析。结果表明：在纯钢筋混凝土框架结构中合理设置屈曲约束支撑,可以达到增加框架结构的侧向刚度、明显降低结构侧向变形、实现多道设防的效果。
Analysis of linear and nonlinear genotype × environment interaction
Directory of Open Access Journals (Sweden)
Rong-Cai eYang
2014-07-01
Full Text Available The usual analysis of genotype × environment interaction (GxE is based on the linear regression of genotypic performance on environmental changes (e.g., classic stability analysis. This linear model may often lead to lumping together of the nonlinear responses to the whole range of environmental changes from suboptimal and superoptimal conditions, thereby lowering the power of detecting GxE variation. On the other hand, the GxE is present when the magnitude of the genetic effect differs across the range of environmental conditions regardless of whether the response to environmental changes is linear or nonlinear. The objectives of this study are: (i explore the use of four commonly used nonlinear functions (logistic, parabola, normal and Cauchy functions for modeling nonlinear genotypic responses to environmental changes and (ii to investigate the difference in the magnitude of estimated genetic effects under different environmental conditions. The use of nonlinear functions was illustrated through the analysis of one data set taken from barley cultivar trials in Alberta, Canada (Data A and the examination of change in effect sizes is through the analysis another data set taken from the North America Barley Genome Mapping Project (Data B. The analysis of Data A showed that the Cauchy function captured an average of >40% of total GxE variation whereas the logistic function captured less GxE variation than the linear function. The analysis of Data B showed that genotypic responses were largely linear and that strong QTL × environment interaction existed as the positions, sizes and directions of QTL detected differed in poor vs. good environments. We conclude that (i the nonlinear functions should be considered when analyzing multi-environmental trials with a wide range of environmental variation and (ii QTL × environment interaction can arise from the difference in effect sizes across environments.
Mathematical modelling and linear stability analysis of laser fusion cutting
Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg; Thombansen, Ulrich
2016-06-01
A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process' amount of dynamic behavior.
Spectral Analysis using Linearly Chirped Gaussian Pulse Stacking
Institute of Scientific and Technical Information of China (English)
ZHENG Huan; WANG An-Ting; XU Li-Xin; MING Hai
2009-01-01
We analyze the spectrum of a stacked pulse with the technique of linearly chirped Gaussian pulse stacking.Our results show that there are modulation structures in the spectrum of the stacked pulse. The modulation frequencies are discussed in detail. By applying spectral analysis, we find that the intensity fluctuation cannot be smoothed by introducing an optical amplitude filter.
Energy Technology Data Exchange (ETDEWEB)
Chen, Z., E-mail: njuchenzq@gmail.co [Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Tyson, T.A.; Ahn, K.H. [Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Zhong, Z. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973 (United States); Hu, J. [X17C of NSLS, Cars, University of Chicago, Upton, NY 11973 (United States)
2010-10-15
High-pressure resistivity and X-ray diffraction measurements were conducted on La{sub 0.85}MnO{sub 3-{delta}} at {approx}6 and {approx}7 GPa, respectively. At low pressures the metal-insulator transition temperature (T{sub MI}) increases linearly up to a critical pressure, P{sup *} {approx}3.4 GPa, followed by reduction in T{sub MI} at higher pressure. Analysis of the bond distances and bond angles reveals that a bandwidth increase drives the increase in T{sub MI} below P{sup *}. The reduction in T{sub MI} at higher pressures is found to result from Jahn-Teller distortions of the MnO{sub 6} octahedra. The role of anharmonic interatomic potentials is discussed.
Energy Technology Data Exchange (ETDEWEB)
Chen, Z.; Zhong, Z.; Tyson, T.A.; Ahn, K.H., Hu, J.
2010-04-20
High-pressure resistivity and X-ray diffraction measurements were conducted on La{sub 0.85}MnO{sub 3-{delta}} at 6 and 7 GPa, respectively. At low pressures the metal-insulator transition temperature (TMI) increases linearly up to a critical pressure, P* {approx} 3.4 GPa, followed by reduction in T{sub MI} at higher pressure. Analysis of the bond distances and bond angles reveals that a bandwidth increase drives the increase in T{sub MI} below P*. The reduction in T{sub MI} at higher pressures is found to result from Jahn-Teller distortions of the MnO{sub 6} octahedra. The role of anharmonic interatomic potentials is discussed.
Linear and Non-linear Analysis of Fibre Reinforced Plastic Bridge Deck due to Vehicle Loads
Ray, Chaitali; Mandal, Bibekananda
2015-06-01
The present work deals with linear and nonlinear static analysis of fibre reinforced plastics composite bridge deck structures using the finite element method. The nonlinear static analysis has been carried out considering geometric nonlinearity. The analysis of bridge deck has been carried out under vehicle load as specified by IRC Class B wheel load classification. The formulation has been carried out using the finite element software package ANSYS 14.0 and the SHELL281 element is used to model the bridge deck. The bridge deck has also been modeled as a plate stiffened with closely spaced hollow box sections and a computer code is developed based on this formulation. The results obtained from the present formulation are compared with those available in the published literature. A parametric study on the stiffened bridge deck has also been carried out with varying dimensions of the stiffeners under vehicle loads.
Structural analysis with the finite element method linear statics
Oñate, Eugenio
2013-01-01
STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1 : The Basis and Solids Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elas...
AN ANALYSIS OF AXISYMMETRIC MAGNETIC FIELD OF LINEAR OSCILLATION MOTOR
Institute of Scientific and Technical Information of China (English)
汪玉凤; 臧小杰; 和乔
2000-01-01
In this paper, using axial-field finite analysis method, the field of a movable core-type linear oscillation motor is analyzed. The program of axial-field finite analysis is worked out. Using this program, we analyze various fields, including the field excited by permanent magnet materials, the field by two coils respectively, and the fields with the core moving to various positions.
Institute of Scientific and Technical Information of China (English)
Su-deok SHON; Seung-jae LEE; Kang-guk LEE
2013-01-01
This study investigated characteristics of bifurcation and critical buckling load by shape imperfection of space truss,which were sensitive to initial conditions.The critical point and buckling load were computed by the analysis of the eigenvalues and determinants of the tangential stiffness matrix.The two-free-nodes example and star dome were selected for the case study in order to examine the nodal buckling and global buckling by the sensitivity to the eigen buckling mode and the analyses of the influence,and characteristics of the parameters as defined by the load ratio of the center node and surrounding node,as well as rise-span ratio were performed.The sensitivity to the imperfection of the initial shape of the two-free-nodes example,which occurs due 1o snapping at the critical point,resulted in bifurcation before the limit point due to the buckling mode,and the buckling load was reduced by the increase in the amount of imperfection.The two sensitive buckling patterns of the numerical model are established by investigating the displaced position of the free nodes,and the asymmetric eigenmode greatly influenced the behavior of the imperfection shape whether it was at limit point or bifurcation.Furthermore,the sensitive mode of the two-free-nodes example was similar to the in-extensional basis mechanism of a simplified model.The star dome,which was used to examine the influence among several nodes,indicated that the influence of nodal buckling was greater than that of global buckling as the rise-span ratio was higher.Besides,global buckling is occurred with reaching bifurcation point as the value of load ratio was higher,and the buckling load level was about 50％-70％ of load level at limit point.
Computerized Buckling Analysis of Shells
1981-06-01
Flight Dynamics Laboratory (AFWAL/ FIBRA ) June 1981 AF Wright Aeronautical Laboratories (AFSC) 13 NI•RfPA;ES Wright-Patterson Air Force BWse OH 45433...tures." The work was administered by Lt Col J. D. Morgan (AFOSR) and Dr N. S. Khot (AFWAL/ FIBRA ) The contract work was performed between October 1977 and
Directory of Open Access Journals (Sweden)
R. A. Jafari-Talookolaei
2011-01-01
Full Text Available The aim of this paper is to present analytical and exact expressions for the frequency and buckling of large amplitude vibration of the symmetrical laminated composite beam (LCB with simple and clamped end conditions. The equations of motion are derived by using Hamilton's principle. The influences of axial force, Poisson effect, shear deformation, and rotary inertia are taken into account in the formulation. First, the geometric nonlinearity based on the von Karman's assumptions is incorporated in the formulation while retaining the linear behavior for the material. Then, the displacement fields used for the analysis are coupled using the equilibrium equations of the composite beam. Substituting this coupled displacement fields in the potential and kinetic energies and using harmonic balance method, we obtain the ordinary differential equation in time domain. Finally, applying first order of homotopy analysis method (HAM, we get the closed form solutions for the natural frequency and deflection of the LCB. A detailed numerical study is carried out to highlight the influences of amplitude of vibration, shear deformation and rotary inertia, slenderness ratios, and layup in the case of laminates on the natural frequency and buckling load.
EEG based Autism Diagnosis Using Regularized Fisher Linear Discriminant Analysis
Directory of Open Access Journals (Sweden)
Mahmoud I. Kamel
2012-04-01
Full Text Available Diagnosis of autism is one of the difficult problems facing researchers. To reveal the discriminative pattern between autistic and normal children via electroencephalogram (EEG analysis is a big challenge. The feature extraction is averaged Fast Fourier Transform (FFT with the Regulated Fisher Linear Discriminant (RFLD classifier. Gaussinaty condition for the optimality of Regulated Fisher Linear Discriminant (RFLD has been achieved by a well-conditioned appropriate preprocessing of the data, as well as optimal shrinkage technique for the Lambda parameter. Winsorised Filtered Data gave the best result.
Linearly Polarized IR Spectroscopy Theory and Applications for Structural Analysis
Kolev, Tsonko
2011-01-01
A technique that is useful in the study of pharmaceutical products and biological molecules, polarization IR spectroscopy has undergone continuous development since it first emerged almost 100 years ago. Capturing the state of the science as it exists today, "Linearly Polarized IR Spectroscopy: Theory and Applications for Structural Analysis" demonstrates how the technique can be properly utilized to obtain important information about the structure and spectral properties of oriented compounds. The book starts with the theoretical basis of linear-dichroic infrared (IR-LD) spectroscop
Institute of Scientific and Technical Information of China (English)
杨杰; 沈惠申
2001-01-01
Buckling analysis for uniaxially or biaxially compressed laminated plates resting on a twoparameter foundation is presented based on the classical laminated plate theory. A semianalytical approach, which makes use of DQ approximation and Galerkin method, is developed to determine the buckling loads for the plate. Numerical examples show that fiber orientation, foundation parameters, plate aspect ratio and boundary conditions have great effects on the loadcarrying capacity of the plate.%采用经典层合板理论，分析弹性地基上复合材料层合板在单向或双向受压时的屈曲特性，给出了相应的半解析计算格式.通过实际算例讨论了层合板纤维铺设角、地基参数、边界约束条件、板长宽比、弹性转动刚度等因素对其屈曲特性的影响.
Institute of Scientific and Technical Information of China (English)
桂良进; 郦正能; 章怡宁; 杨旭
2001-01-01
建立了分析含任意形状分层的缝纫增强复合材料层合板压缩屈曲问题的连续分析模型.该模型允许缝纫层合板含有一个或多个形状不同的分层.分析结果表明,缝纫针脚在分层区域的分布、缝纫密度和缝线的等效刚度系数对分层子板的压缩屈曲应变均有较大影响.%A continuous model for determining the buckling strains of stitched laminates including arbitrary embedded delamination is developed. The analysis allows stitched laminates to have a multiple number of delminations of various shapes and sizes, and at any locations. The method treats the discontinuous laminates as a body without delamination but with a force system added at a number of discrete points in the delaminated region so as to make the net interfacial tractions to vanish at these points. Hence, the procedure solves problems of delaminated stitched laminates directly as a continuous system. Numerical results accounting for the effects of location of stitches in the delamination region, stitching density, and equivalent stiffness coefficient of stitching thread on buckling strains are presented.
Dynamic Response of Linear Mechanical Systems Modeling, Analysis and Simulation
Angeles, Jorge
2012-01-01
Dynamic Response of Linear Mechanical Systems: Modeling, Analysis and Simulation can be utilized for a variety of courses, including junior and senior-level vibration and linear mechanical analysis courses. The author connects, by means of a rigorous, yet intuitive approach, the theory of vibration with the more general theory of systems. The book features: A seven-step modeling technique that helps structure the rather unstructured process of mechanical-system modeling A system-theoretic approach to deriving the time response of the linear mathematical models of mechanical systems The modal analysis and the time response of two-degree-of-freedom systems—the first step on the long way to the more elaborate study of multi-degree-of-freedom systems—using the Mohr circle Simple, yet powerful simulation algorithms that exploit the linearity of the system for both single- and multi-degree-of-freedom systems Examples and exercises that rely on modern computational toolboxes for both numerical and symbolic compu...
Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis
Directory of Open Access Journals (Sweden)
Ilse Cervantes
2013-02-01
Full Text Available This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system’s outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results.
A Direct Estimation Approach to Sparse Linear Discriminant Analysis
Cai, Tony
2011-01-01
This paper considers sparse linear discriminant analysis of high-dimensional data. In contrast to the existing methods which are based on separate estimation of the precision matrix $\\O$ and the difference $\\de$ of the mean vectors, we introduce a simple and effective classifier by estimating the product $\\O\\de$ directly through constrained $\\ell_1$ minimization. The estimator can be implemented efficiently using linear programming and the resulting classifier is called the linear programming discriminant (LPD) rule. The LPD rule is shown to have desirable theoretical and numerical properties. It exploits the approximate sparsity of $\\O\\de$ and as a consequence allows cases where it can still perform well even when $\\O$ and/or $\\de$ cannot be estimated consistently. Asymptotic properties of the LPD rule are investigated and consistency and rate of convergence results are given. The LPD classifier has superior finite sample performance and significant computational advantages over the existing methods that req...
Digital deblurring based on linear-scale differential analysis
Bezzubik, Vitali; Belashenkov, Nikolai; Vdovin, Gleb V.
2014-09-01
A novel method of sharpness improvement is proposed for digital images. This method is realized via linear multi-scale analysis of source image and sequent synthesis of restored image. The analysis comprises the procedure of computation of intensity gradient values using the special filters providing simultaneous edge detection and noise filtering. Restoration of image sharpness is achieved by simple subtraction of some discrete recovery function from blurred image. Said recovery function is calculated as a sum of several normalized gradient responses found by linear multi-scale analysis using the operation of spatial transposition of those gradient response values relative the points of zero-crossing of first derivatives of gradients. The proposed method provides the restoration of sharpness of edges in digital image without additional operation of spatial noise filtering and a priori knowledge of blur kernel.
Directory of Open Access Journals (Sweden)
Zoltán Juhász
2015-01-01
Full Text Available We analyse the buckling process of composite plates with through-the-width delamination and straight crack front applying uniaxial compression. We are focusing on the mixed mode buckling case, where the non-uniform distribution of the in-plane forces controls the occurence of the buckling of the delaminated layers. For the analysis, semi-discrete finite elements will be derived based on the Lèvy-type method. The method of harmonic balance is used for taking into account the force distribution that is generally non uniform in-plane.
Buckling Experiment on Anisotropic Long and Short Cylinders
Directory of Open Access Journals (Sweden)
Atsushi Takano
2016-07-01
Full Text Available A buckling experiment was performed on anisotropic, long and short cylinders with various radius-to-thickness ratios. The 13 cylinders had symmetric and anti-symmetric layups, were between 2 and 6 in terms of the length-to-radius ratio, between 154 and 647 in radius-to-thickness ratio, and made of two kinds of carbon fiber reinforced plastic (CFRP prepreg with high or low fiber modulus. The theoretical buckling loads for the cylinders were calculated from the previously published solution by using linear bifurcation theory considering layup anisotropy and transverse shear deformation and by using deep shell theory to account for the effect of length and compared with the test results. The theoretical buckling loads for the cylinders were calculated from the previously published solution by using linear bifurcation theory considering layup anisotropy and transverse shear deformation and by using deep shell theory to account for the effect of length. The knockdown factor, defined as the ratio of the experimental value to the theoretical value, was found to be between 0.451 and 0.877. The test results indicated that a large length-to-radius ratio reduces the knockdown factor, but the radius-to-thickness ratio and other factors do not affect it.
DEFF Research Database (Denmark)
Fuhrman, David R.; Bingham, Harry B.; Madsen, Per A.;
2004-01-01
This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly non-linear and extremely dispersive water waves. The analysis demonstrates the near-equivalence of classical linear Fourier (von Neumann......) techniques with matrix-based methods for formulations in both one and two horizontal dimensions. The matrix-based method is also extended to show the local de-stabilizing effects of the non-linear terms, as well as the stabilizing effects of numerical dissipation. A comparison of the relative stability...... moderately non-normal, suggesting that the eigenvalues are likely suitable for analysis purposes. Numerical experiments demonstrate excellent agreement with the linear analysis, and good qualitative agreement with the local non-linear analysis. The various methods of analysis combine to provide significant...
Linear and nonlinear subspace analysis of hand movements during grasping.
Cui, Phil Hengjun; Visell, Yon
2014-01-01
This study investigated nonlinear patterns of coordination, or synergies, underlying whole-hand grasping kinematics. Prior research has shed considerable light on roles played by such coordinated degrees-of-freedom (DOF), illuminating how motor control is facilitated by structural and functional specializations in the brain, peripheral nervous system, and musculoskeletal system. However, existing analyses suppose that the patterns of coordination can be captured by means of linear analyses, as linear combinations of nominally independent DOF. In contrast, hand kinematics is itself highly nonlinear in nature. To address this discrepancy, we sought to to determine whether nonlinear synergies might serve to more accurately and efficiently explain human grasping kinematics than is possible with linear analyses. We analyzed motion capture data acquired from the hands of individuals as they grasped an array of common objects, using four of the most widely used linear and nonlinear dimensionality reduction algorithms. We compared the results using a recently developed algorithm-agnostic quality measure, which enabled us to assess the quality of the dimensional reductions that resulted by assessing the extent to which local neighborhood information in the data was preserved. Although qualitative inspection of this data suggested that nonlinear correlations between kinematic variables were present, we found that linear modeling, in the form of Principle Components Analysis, could perform better than any of the nonlinear techniques we applied.
Buckling of Bilayer Laminates - A Novel Approach to Synthetic Papillae
2013-10-01
a very small region. This method of immobilization was used in some experiments. We also d indentatio with a sin this layer scale inde be measu...must select the lowest energy mode. (Fig. 8). (3) Radial buckling of an annulus where the buckling mode cannot be predicted by linear stability...conductivity, volume conservation can be approximated, at least for small deformations. We considered two typical forms of the anisotropic thermal expansion
A map of competing buckling-driven failure modes of substrate-supported thin brittle films
Energy Technology Data Exchange (ETDEWEB)
Jia, Zheng [Department of Mechanical Engineering and Maryland NanoCenter, University of Maryland, College Park, MD 20742 (United States); Peng, Cheng [Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005 (United States); Lou, Jun, E-mail: jlou@rice.edu [Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005 (United States); Li, Teng, E-mail: lit@umd.edu [Department of Mechanical Engineering and Maryland NanoCenter, University of Maryland, College Park, MD 20742 (United States)
2012-08-31
Our in situ experiments of polyimide-supported thin indium tin oxide (ITO) films reveal buckling-driven film cracking in some samples and buckling-driven interfacial delamination in other samples. Although studies of individual buckling-driven failure mode exist, it still remains unclear what governs the competition between these two different failure modes in a given film/substrate structure. Through theoretical analysis and numerical simulations, we delineate a map of competing buckling-driven failure modes of substrate-supported thin brittle films in the parameter space of interfacial adhesion and interfacial imperfection size. Such a map can offer insight on the mechanical durability of functional thin films. For example, interestingly, we show that strongly bonded thin brittle films are more prone to buckling-driven cracking, a more detrimental failure mode for thin brittle ITO transparent conductors widely used in displays and flexible electronics. - Highlights: Black-Right-Pointing-Pointer Map of buckling-driven failure modes of thin brittle films on substrates. Black-Right-Pointing-Pointer We study key parameters that govern buckling-driven failure modes. Black-Right-Pointing-Pointer The map offers insights on optimal design of functional thin films.
DEFF Research Database (Denmark)
Sönmez, Ümit; Tutum, Cem Celal
2008-01-01
In this work, a new compliant bistable mechanism design is introduced. The combined use of pseudo-rigid-body model (PRBM) and the Elastica buckling theory is presented for the first time to analyze the new design. This mechanism consists of the large deflecting straight beams, buckling beams......, and a slider. The kinematic analysis of this new mechanism is studied, using nonlinear Elastica buckling beam theory, the PRBM of a large deflecting cantilever beam, the vector loop closure equations, and numerically solving nonlinear algebraic equations. A design method of the bistable mechanism...... and the buckling Elastica solution for an original compliant mechanism kinematic analysis. New compliant mechanism designs are presented to highlight where such combined kinematic analysis is required....
Linear Analysis of Drift Ballooning Modes in Tokamak Edge Plasmas
Tangri, Varun; Kritz, Arnold; Rafiq, Tariq; Pankin, Alexei
2012-10-01
The H-mode pedestal structure depends on the linear stability of drift ballooning modes (DBMs) in many H-mode pedestal models. Integrated modeling that uses these pedestal models requires fast evaluation of linear stability of DBMs. Linear analysis of DBMs is also needed in the computations of effective diffusivities associated with anomalous transport that is driven by the DBMs in tokamak edge plasmas. In this study several numerical techniques of linear analysis of the DBMs are investigated. Differentiation matrix based spectral methods are used to compute the physical eigenvalues of the DBMs. The model for DBMs used here consists of six differential equations [T. Rafiq et al. Phys. Plasmas, 17, 082511, (2010)]. It is important to differentiate among non-physical (numerical) modes and physical modes. The determination of the number of eigenvalues is solved by a computation of the `nearest' and `ordinal' distances. The Finite Difference, Hermite and Sinc based differentiation matrices are used. It is shown that spectral collocation methods are more accurate than finite difference methods. The technique that has been developed for calculating eigenvalues is quite general and is relevant in the computation of other modes that utilize the ballooning mode formalism.
DEFF Research Database (Denmark)
Fuhrman, David R.; Bingham, Harry B.; Madsen, Per A.
2004-01-01
This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly non-linear and extremely dispersive water waves. The analysis demonstrates the near-equivalence of classical linear Fourier (von Neumann...
Directory of Open Access Journals (Sweden)
Shi-Chao Yi
2017-01-01
Full Text Available Closed-form solution of a special higher-order shear and normal deformable plate theory is presented for the static situations, natural frequencies, and buckling responses of simple supported functionally graded materials plates (FGMs. Distinguished from the usual theories, the uniqueness is the differentia of the new plate theory. Each individual FGM plate has special characteristics, such as material properties and length-thickness ratio. These distinctive attributes determine a set of orthogonal polynomials, and then the polynomials can form an exclusive plate theory. Thus, the novel plate theory has two merits: one is the orthogonality, where the majority of the coefficients of the equations derived from Hamilton’s principle are zero; the other is the flexibility, where the order of the plate theory can be arbitrarily set. Numerical examples with different shapes of plates are presented and the achieved results are compared with the reference solutions available in the literature. Several aspects of the model involving relevant parameters, length-to-thickness, stiffness ratios, and so forth affected by static and dynamic situations are elaborate analyzed in detail. As a consequence, the applicability and the effectiveness of the present method for accurately computing deflection, stresses, natural frequencies, and buckling response of various FGM plates are demonstrated.
Determination of the critical buckling pressure of blood vessels using the energy approach.
Han, Hai-Chao
2011-03-01
The stability of blood vessels under lumen blood pressure is essential to the maintenance of normal vascular function. Differential buckling equations have been established recently for linear and nonlinear elastic artery models. However, the strain energy in bent buckling and the corresponding energy method have not been investigated for blood vessels under lumen pressure. The purpose of this study was to establish the energy equation for blood vessel buckling under internal pressure. A buckling equation was established to determine the critical pressure based on the potential energy. The critical pressures of blood vessels with small tapering along their axis were estimated using the energy approach. It was demonstrated that the energy approach yields both the same differential equation and critical pressure for cylindrical blood vessel buckling as obtained previously using the adjacent equilibrium approach. Tapering reduced the critical pressure of blood vessels compared to the cylindrical ones. This energy approach provides a useful tool for studying blood vessel buckling and will be useful in dealing with various imperfections of the vessel wall.
Credibility analysis of risk classes by generalized linear model
Erdemir, Ovgucan Karadag; Sucu, Meral
2016-06-01
In this paper generalized linear model (GLM) and credibility theory which are frequently used in nonlife insurance pricing are combined for reliability analysis. Using full credibility standard, GLM is associated with limited fluctuation credibility approach. Comparison criteria such as asymptotic variance and credibility probability are used to analyze the credibility of risk classes. An application is performed by using one-year claim frequency data of a Turkish insurance company and results of credible risk classes are interpreted.
[Relations between biomedical variables: mathematical analysis or linear algebra?].
Hucher, M; Berlie, J; Brunet, M
1977-01-01
The authors, after a short reminder of one pattern's structure, stress on the possible double approach of relations uniting the variables of this pattern: use of fonctions, what is within the mathematical analysis sphere, use of linear algebra profiting by matricial calculation's development and automatiosation. They precise the respective interests on these methods, their bounds and the imperatives for utilization, according to the kind of variables, of data, and the objective for work, understanding phenomenons or helping towards decision.
Buckling and Post-buckling Performance of Advanced Composite Stiffened Panel Under Compression
Directory of Open Access Journals (Sweden)
ZHANG Haoyu
2016-08-01
Full Text Available The axial compressive experiment was conducted on the domestic advanced composite stiffened panel, and its buckling and post-buckling performance was analyzed by monitoring strain and out-of-plane displacement of typical positions. The initial buckling load and buckling mode of panels were calculated by engineering methods to direct the follow-up axial compressive experiment. The experimental results show that the buckling patterns are mainly local buckling of panels between stiffeners, the second buckling of few positions of panels and cylindrical buckling of all 4 stiffeners successively; after local buckling of panels, part of load bearded by panels before is transferred to stiffeners and then stiffeners become the main bearing part; after fracture failure of stiffeners, the specimen is destroyed rapidly; the average value of failure load is 482.67 kN, which is 2.37 times of 204 kN of the average value of buckling load; the composite stiffened panel can bear more load after buckling.
Nemeth, Michael P.
2013-01-01
Nondimensional linear-bifurcation buckling equations for balanced, symmetrically laminated cylinders with negligible shell-wall anisotropies and subjected to uniform axial compression loads are presented. These equations are solved exactly for the practical case of simply supported ends. Nondimensional quantities are used to characterize the buckling behavior that consist of a stiffness-weighted length-to-radius parameter, a stiffness-weighted shell-thinness parameter, a shell-wall nonhomogeneity parameter, two orthotropy parameters, and a nondimensional buckling load. Ranges for the nondimensional parameters are established that encompass a wide range of laminated-wall constructions and numerous generic plots of nondimensional buckling load versus a stiffness-weighted length-to-radius ratio are presented for various combinations of the other parameters. These plots are expected to include many practical cases of interest to designers. Additionally, these plots show how the parameter values affect the distribution and size of the festoons forming each response curve and how they affect the attenuation of each response curve to the corresponding solution for an infinitely long cylinder. To aid in preliminary design studies, approximate formulas for the nondimensional buckling load are derived, and validated against the corresponding exact solution, that give the attenuated buckling response of an infinitely long cylinder in terms of the nondimensional parameters presented herein. A relatively small number of "master curves" are identified that give a nondimensional measure of the buckling load of an infinitely long cylinder as a function of the orthotropy and wall inhomogeneity parameters. These curves reduce greatly the complexity of the design-variable space as compared to representations that use dimensional quantities as design variables. As a result of their inherent simplicity, these master curves are anticipated to be useful in the ongoing development of
Linear stability analysis of Clarke-Riley diffusion flames
Gomez-Lendinez, Daniel; Coenen, Wilfried; Sanchez, Antonio L.
2016-11-01
The buoyancy-driven laminar flow associated with the Burke-Schumann diffusion flame developing from the edge of a semi-infinite horizontal fuel surface burning in a quiescent oxidizing atmosphere displays a self-similar structure, first described by Clarke and Riley (Journal of Fluid Mechanics, 74:415-431). Their analysis was performed for unity reactant Lewis numbers, with the viscosity and thermal conductivity taken to be linearly proportional to the temperature. Our work extends this seminal work by considering fuels with non-unity Lewis numbers and gas mixtures with a realistic power-law dependence of the different transport properties. The problem is formulated in terms of chemistry-free, Shvab-Zel'dovich, linear combinations of the temperature and reactant mass fractions, not changed directly by the reactions, as conserved scalars. The resulting self-similar base-flow solution is used in a linear stability analysis to determine the critical value of the boundary-layer thickness-measured by the local Grashof number-at which the flow becomes unstable, leading to the development of Görtler-like streamwise vortices. The analysis provides the dependence of the critical Grashof number on the relevant flame parameters.
Nemeth, Michael P.
2004-01-01
An approach for synthesizing buckling results for thin balanced and unbalanced symmetric laminates that are subjected to uniform heating or cooling and elastically restrained against thermal expansion or contraction is presented. This approach uses a nondimensional analysis for infinitely long, flexural anisotropic plates that are subjected to combined mechanical loads. In addition, stiffness-weighted laminate thermal-expansion parameters and compliance coefficients are derived that are used to determine critical temperatures in terms of physically intuitive mechanical-buckling coefficients. Many results are presented for some common laminates that are intended to facilitate a structural designer s transition to the use of the generic buckling design curves. Several curves that illustrate the fundamental parameters used in the analysis are presented, for nine contemporary material systems, that provide physical insight into the buckling response in addition to providing useful design data. Examples are presented that demonstrate the use of the generic design curves.
Linear systems analysis of the fMRI signal.
Boynton, Geoffrey M; Engel, Stephen A; Heeger, David J
2012-08-15
In 1995 when we began our investigations of the human visual system using fMRI, little was known about the temporal properties of the fMRI signal. Before we felt comfortable making quantitative estimates of neuronal responses with this new technique, we decided to first conduct a basic study of how the time-course of the fMRI response varied with stimulus timing and strength. The results ended up showing strong evidence that to a first approximation the hemodynamic transformation was linear in time. This was both important and remarkable: important because nearly all fMRI data analysis techniques assume or require linearity, and remarkable because the physiological basis of the hemodynamic transformation is so complex that we still have a far from complete understanding of it. In this paper, we provide highlights of the results of our original paper supporting the linear transform hypothesis. A reanalysis of the original data provides some interesting new insights into the published results. We also provide a detailed appendix describing of the properties and predictions of a linear system in time in the context of the transformation between neuronal responses and the BOLD signal.
Linear discriminant analysis of character sequences using occurrences of words
Dutta, Subhajit
2014-02-01
Classification of character sequences, where the characters come from a finite set, arises in disciplines such as molecular biology and computer science. For discriminant analysis of such character sequences, the Bayes classifier based on Markov models turns out to have class boundaries defined by linear functions of occurrences of words in the sequences. It is shown that for such classifiers based on Markov models with unknown orders, if the orders are estimated from the data using cross-validation, the resulting classifier has Bayes risk consistency under suitable conditions. Even when Markov models are not valid for the data, we develop methods for constructing classifiers based on linear functions of occurrences of words, where the word length is chosen by cross-validation. Such linear classifiers are constructed using ideas of support vector machines, regression depth, and distance weighted discrimination. We show that classifiers with linear class boundaries have certain optimal properties in terms of their asymptotic misclassification probabilities. The performance of these classifiers is demonstrated in various simulated and benchmark data sets.
Flexural-slip during visco-elastic buckle folding
Damasceno, Davi R.; Eckert, Andreas; Liu, Xiaolong
2017-07-01
Flexural-slip is considered as an important mechanism during folding and a general conceptual and qualitative understanding has been provided by various field studies. However, quantitative evidence of the importance of the flexural-slip mechanism during fold evolution is sparse due to the lack of suitable strain markers. In this study, 2D finite element analysis is used to overcome these disadvantages and to simulate flexural-slip during visco-elastic buckle folding. Variations of single and multilayer layer fold configurations are investigated, showing that flexural-slip is most likely to occur in effective single layer buckle folds, where slip occurs between contacts of competent layers. Based on effective single layer buckle folds, the influence of the number of slip surfaces, the degree of mechanical coupling (based on the friction coefficient), and layer thickness, on the resulting slip distribution are investigated. The results are in agreement with the conceptual flexural-slip model and show that slip is initiated sequentially during the deformation history and is maximum along the central slip surface of the fold limb. The cumulative amount of slip increases as the number of slip surfaces is increased. For a lower degree of mechanical coupling increased slip results in different fold shapes, such as box folds, during buckling. In comparison with laboratory experiments, geometrical relationships and field observations, the numerical modeling results show similar slip magnitudes. It is concluded that flexural-slip should represent a significant contribution during buckle folding, affecting the resulting fold shape for increased amounts of slip.
Flexural buckling of fire exposed aluminium columns
Maljaars, J.; Twilt, L.; Soetens, F.
2009-01-01
In order to study buckling of fire exposed aluminium columns, a finite element model is developed. The results of this model are verified with experiments. Based on a parametric study with the finite element model, it is concluded that the simple calculation model for flexural buckling of fire expos
Jiao, Zongxia; Wang, Tianyi; Yan, Liang
2016-11-01
A linear oscillating motor is an electromagnetic actuator that can achieve short-stroke reciprocating movement directly without auxiliary transmission mechanisms. It has been widely used in linear pump applications as the source of power and motion. However, because of the demand of high power density in a linear actuation system, the performance of linear oscillating motors has been the focus of studies and deserves further research for high power density. In this paper, a general framework of linear oscillating motor design and optimization is addressed in detail, including the electromagnetic, dynamics, and thermal aspects. First, the electromagnetic and dynamics characteristics are modeled to reveal the principle for optimization. Then, optimization and analysis on magnetic structure, resonant system, and thermal features are conducted, which provide the foundation for prototype development. Finally, experimental results are provided for validation. As a whole, this process offers complete guidance for high power density linear oscillating motors in linear pump applications.
Jiao, Zongxia; Wang, Tianyi; Yan, Liang
2016-12-01
A linear oscillating motor is an electromagnetic actuator that can achieve short-stroke reciprocating movement directly without auxiliary transmission mechanisms. It has been widely used in linear pump applications as the source of power and motion. However, because of the demand of high power density in a linear actuation system, the performance of linear oscillating motors has been the focus of studies and deserves further research for high power density. In this paper, a general framework of linear oscillating motor design and optimization is addressed in detail, including the electromagnetic, dynamics, and thermal aspects. First, the electromagnetic and dynamics characteristics are modeled to reveal the principle for optimization. Then, optimization and analysis on magnetic structure, resonant system, and thermal features are conducted, which provide the foundation for prototype development. Finally, experimental results are provided for validation. As a whole, this process offers complete guidance for high power density linear oscillating motors in linear pump applications.
Linear Feedback Analysis of Cardiovascular System using Seismocardiogram
Directory of Open Access Journals (Sweden)
Marcel Jiřina
2005-01-01
Full Text Available The paper deals with an analysis of relationship between heart rate described by a sequence of cardiac interbeat intervals and mechanical activity of heart represented by a sequence of systolic forces. Both the quantities were determined from seismocardiograms recorded from healthy subjects under two different experimental conditions. The method of the linear feedback baroreflex approach originally developed in [1], [2] and [3] was applied for the analysis. Different character of obtained results in comparison to those described in [1], [2] or [3], is explained by differences between frequency properties of the recorded sequences of the systolic forces and values of systolic blood pressure.
Linear stability analysis reveals exclusion zone for sliding bed transport
Directory of Open Access Journals (Sweden)
Talmon Arnold M.
2015-06-01
Full Text Available A bend or any another pipe component disturbs solids transport in pipes. Longitudinal pressure profiles downstream of such a component may show a stationary transient harmonic wave, as revealed by a recent settling slurry laboratory experiment. Therefore the fundamental transient response of the two-layer model for fully stratified flow is investigated as a first approach. A linear stability analysis of the sliding bed configuration is conducted. No stationary transient harmonic waves are found in this analysis, but adaptation lengths for exponential recovery are quantified. An example calculation is given for a 0.1 m diameter pipeline.
Buckling of Bucket Foundations During Installation
DEFF Research Database (Denmark)
Madsen, Søren
in order to reduce the cost of energy. This limits the on land application due to transportation limitations and unwillingness from prospect neighbours. Thus, offshore wind energy started developing over the last couple of years. Although installing the wind turbines offshore resolves the before men tioned...... issues, it brings up the cost of energy mainly due to increased installation and maintenance costs. A very large part—up to 30–50% using current technology—of the installation cost origins from the expenses related to the installation of foundations. A new foundation concept—the bucket foundation...... the suction assisted installation process. In this thesis, the phenomenon of buckling of the bucket foundation during installation is investigated by means of Finite Element Analysis. The influence of boundary conditions on the bucket foundation is adressed as well as the effect of including the surrounding...
Institute of Scientific and Technical Information of China (English)
邓国杰; 傅昶彬
2012-01-01
采用SAP2000V14.1对防屈曲耗能支撑在矩形平面三边简支一边自由的斜放四角锥网架结构进行了弹塑性时程分析.在难以直接比较多方案网架结构减震优劣的情况下,提出了以综合轴力减震值作为进一步的比较指标的方法,并用此方法对9种防屈曲耗能支撑替换方案的减震效果进行了对比分析.得出了较优的替换方案.为今后该类网架结构的耗能减震设计提供了参考依据.此外对结构不同部位的动力响应也作了分析.%The elastic-plastic time history analysis of a rectangular planar trilateral simply-supported and one side free diagonal square pyramid grids with buckling-restrained brace was explored with the SAP2000V14. 1 software. Facing the difficulty of determining the better scheme directly, further comparison index synthetic parameters -comprehensive anti-seismic value of axial force were put forward. Comparison analysis of the anti-seismic effect of 9 replacement schemes of buckling-restrained brace in the dynamic process was carried out using this method, and then a replacement scheme of the optimal solution was obtained, providing reference for the energy dissipation and anti-seismic design of grid structure of this kind in the future. The analysis of dynamic response in different parts of the structure was also made.
Sequential buckling of an elastic wall
Bico, Jose; Bense, Hadrien; Keiser, Ludovic; Roman, Benoit; Melo, Francisco; Abkarian, Manouk
A beam under quasistatic compression classically buckles beyond a critical threshold. In the case of a free beam, the lowest buckling mode is selected. We investigate the case of a long ``wall'' grounded of a compliant base and compressed in the axial compression. In the case of a wall of slender rectangular cross section, the selected buckling mode adopts a nearly fixed wavelength proportional to the height of the wall. Higher compressive loads only increase the amplitude of the buckle. However if the cross section has a sharp shape (such as an Eiffel tower profile), we observe successive buckling modes of increasing wavelength. We interpret this unusual evolution in terms of scaling arguments. At small scales, this variable periodicity might be used to develop tunable optical devices. We thank ECOS C12E07, CNRS-CONICYT, and Fondecyt Grant No. N1130922 for partially funding this work.
Reliability-based design optimization of composite stiffened panels in post-buckling regime
Lopez, C.; Bacarreza Nogales, OR; Baldomir, A.; Hernandez, S; Aliabadi, MH
2016-01-01
This paper focuses on Deterministic and Reliability Based Design Optimization (DO and RBDO) of composite stiffened panels considering post-buckling regime and progressive failure analysis. The ultimate load that a post-buckled panel can hold is to be maximised by changing the stacking sequence of both skin and stringers composite layups. The RBDO problem looks for a design that collapses beyond the shortening of failure obtained in the DO phase with a target reliability while considering unce...
Linear analysis of degree correlations in complex networks
Indian Academy of Sciences (India)
JU XIANG; TAO HU; YAN ZHANG; KE HU; YAN-NI TANG; YUAN-YUAN GAO; KE DENG
2016-12-01
Many real-world networks such as the protein–protein interaction networks and metabolic networks often display nontrivial correlations between degrees of vertices connected by edges. Here, we analyse the statistical methods used usually to describe the degree correlation in the networks, and analytically give linear relation in the degree correlation. It provides a simple and interesting perspective on the analysis of the degree correlation in networks, which is usefully complementary to the existing methods for degree correlation in networks. Especially, the slope in the linear relation corresponds exactly to the degree correlation coefficient in networks, meaning that it can not only characterize the level of degree correlation in networks, but also reflects the speed that the average nearest neighbours’ degree varies with the vertex degree. Finally, we applied our results to several real-world networks, validating the conclusions of the linear analysis of degree correlation. We hope that the work in this paper can be helpful for further understanding the degree correlation in complex networks.
Near infrared reflectance analysis by Gauss-Jordan linear algebra
Honigs, D. E.; Freelin, J. M.; Hieftje, G. M.
1983-02-01
Near-infrared reflectance analysis (NIRA) is an analytical technique that uses the near-infrared diffuse reflectance of a sample at several discrete wavelengths to predict the concentration of one or more of the chemical species in that sample. However, because near-infrared bands from solid samples are both abundant and broad, the reflectance at a given wavelength usually contains contributions from several sample components, requiring extensive calculations on overlapped bands. In the present study, these calculations have been performed using an approach similar to that employed in multi-component spectrophotometry, but with Gauss-Jordan linear algebra serving as the computational vehicle. Using this approach, correlations for percent protein in wheat flour and percent benzene in hydrocarbons have been obtained and are evaluated. The advantages of a linear-algebra approach over the common one employing stepwise regression are explored.
Linear stability analysis of capillary instabilities for concentric cylindrical shells
Liang, X; Nave, J -C; Johnson, S G
2010-01-01
Motivated by complex multi-fluid geometries currently being explored in fibre-device manufacturing, we study capillary instabilities in concentric cylindrical flows of N fluids with arbitrary viscosities, thicknesses, densities, and surface tensions in both the Stokes regime and for the full Navier--Stokes problem. Generalising previous work by Tomotika (N=2), Stone & Brenner (N=3, equal viscosities) and others, we present a full linear stability analysis of the growth modes and rates, reducing the system to a linear generalised eigenproblem in the Stokes case. Furthermore, we demonstrate by Plateau-style geometrical arguments that only axisymmetric instabilities need be considered. We show that the N=3 case is already sufficient to obtain several interesting phenomena: limiting cases of thin shells or low shell viscosity that reduce to N=2 problems, and a system with competing breakup processes at very different length scales. The latter is demonstrated with full 3-dimensional simulations. Many $N > 3$ c...
Theoretical analysis of balanced truncation for linear switched systems
DEFF Research Database (Denmark)
Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef
2012-01-01
In this paper we present theoretical analysis of model reduction of linear switched systems based on balanced truncation, presented in [1,2]. More precisely, (1) we provide a bound on the estimation error using L2 gain, (2) we provide a system theoretic interpretation of grammians...... for showing this independence is realization theory of linear switched systems. [1] H. R. Shaker and R. Wisniewski, "Generalized gramian framework for model/controller order reduction of switched systems", International Journal of Systems Science, Vol. 42, Issue 8, 2011, 1277-1291. [2] H. R. Shaker and R....... Wisniewski, "Switched Systems Reduction Framework Based on Convex Combination of Generalized Gramians", Journal of Control Science and Engineering, 2009....
Institute of Scientific and Technical Information of China (English)
闵加丰; 阚伟良; 朱海清
2012-01-01
Taking the variable cross-section compressive bar as an example, the concept modeling in ANSYS Workbench has been adopted to set up 3D modeling. Constraints have been enacted to both sides of the bar as per the actual application condition. The critical bending load of the variable cross-section has been calculated by enacting unit load from buckling analysis module of ANSYS Workbench.%以工程应用中变截面压杆为例,运用ANSYS Workbench中概念建模方法进行3D建模,根据实际应用条件对压杆两端施加约束,在ANSYS Workbench的屈曲分析模块中通过施加单位载荷计算出变截面压杆临界弯曲载荷.
含脱层层合简支梁的屈曲模态%Analysis on Buckling Modes of Simply Supported Delaminated Beams
Institute of Scientific and Technical Information of China (English)
朱波; 周叮; 刘伟庆
2011-01-01
Based on the two-dimensional elasticity theory,the buckling modes of delaminated composite beams were studied.Firstly,according to the plane elasticity theory,the analytical solution of a piece of homogeneous beam is obtained,which exactly satisfies the simply-supported conditions of the beam at two ends.Then,using the point collocation technique,taking the series terms equal to the matching points,the critical buckling loads were obtained by means of the interface equations at every points as well as the upper and lower surface conditions of the beam.The displacement modes of the beam are given by substituting the critical loads back to the eigenvalue equations.The possible contact on the delaminated interfaces is considered in the present study.＂Free＂ and ＂contact＂ modes are separately computed.According to the situations of the vertical displacements and normal stresses on the delaminated interfaces,the real buckling modes can be judged.The effects of the sizes and positions of the delaminations on the buckling modes were investigated.The present method is applicable not only to the slender beams,but also to the thick beams.And the contact problem was also well solved.%基于二维弹性力学理论,研究在轴向荷载作用下含脱层层合简支梁的屈曲模态.由位移法求得各单层梁受均布轴压时的弹性力学解,采用配点法联合各层得到整个系统的解.在层间界面上取与级数项数相等的点,将各点处的界面方程与梁上下表面的边界方程联立求解,得到屈曲临界载荷,返回特征方程得到梁的屈曲模态.研究了脱层界面的接触问题,在脱层处的每个配点上分别使用界面接触和界面自由模型进行计算,分析各配点处脱层表面竖向位移及法向应力的状态,迭代求得真实解.算例分析了不同脱层尺寸和脱层位置对层合梁屈曲模态的影响,并考虑了脱层间的接触.
Robust Linear Models for Cis-eQTL Analysis.
Directory of Open Access Journals (Sweden)
Mattias Rantalainen
Full Text Available Expression Quantitative Trait Loci (eQTL analysis enables characterisation of functional genetic variation influencing expression levels of individual genes. In outbread populations, including humans, eQTLs are commonly analysed using the conventional linear model, adjusting for relevant covariates, assuming an allelic dosage model and a Gaussian error term. However, gene expression data generally have noise that induces heavy-tailed errors relative to the Gaussian distribution and often include atypical observations, or outliers. Such departures from modelling assumptions can lead to an increased rate of type II errors (false negatives, and to some extent also type I errors (false positives. Careful model checking can reduce the risk of type-I errors but often not type II errors, since it is generally too time-consuming to carefully check all models with a non-significant effect in large-scale and genome-wide studies. Here we propose the application of a robust linear model for eQTL analysis to reduce adverse effects of deviations from the assumption of Gaussian residuals. We present results from a simulation study as well as results from the analysis of real eQTL data sets. Our findings suggest that in many situations robust models have the potential to provide more reliable eQTL results compared to conventional linear models, particularly in respect to reducing type II errors due to non-Gaussian noise. Post-genomic data, such as that generated in genome-wide eQTL studies, are often noisy and frequently contain atypical observations. Robust statistical models have the potential to provide more reliable results and increased statistical power under non-Gaussian conditions. The results presented here suggest that robust models should be considered routinely alongside other commonly used methodologies for eQTL analysis.
Directory of Open Access Journals (Sweden)
Caiqi Zhao
2016-06-01
Full Text Available To solve the problem of critical buckling in the structural analysis and design of the new long-span hollow core roof architecture proposed in this paper (referred to as a “honeycomb panel structural system” (HSSS, lateral compression tests and finite element analyses were employed in this study to examine the lateral compressive buckling performance of this new type of honeycomb panel with different length-to-thickness ratios. The results led to two main conclusions: (1 Under the experimental conditions that were used, honeycomb panels with the same planar dimensions but different thicknesses had the same compressive stiffness immediately before buckling, while the lateral compressive buckling load-bearing capacity initially increased rapidly with an increasing honeycomb core thickness and then approached the same limiting value; (2 The compressive stiffnesses of test pieces with the same thickness but different lengths were different, while the maximum lateral compressive buckling loads were very similar. Overall instability failure is prone to occur in long and flexible honeycomb panels. In addition, the errors between the lateral compressive buckling loads from the experiment and the finite element simulations are within 6%, which demonstrates the effectiveness of the nonlinear finite element analysis and provides a theoretical basis for future analysis and design for this new type of spatial structure.
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
Elasto-plastic time history analysis on a buckling-restrained braced frames%某防屈曲支撑框架结构弹塑性时程分析
Institute of Scientific and Technical Information of China (English)
王奇; 干钢; 方鸿强
2012-01-01
结合现行国家规范与规程,采用弹塑性时程分析方法,对某防屈曲支撑框架结构进行抗震分析,探讨该类结构在罕遇地震作用下的动力响应。重点讨论了在罕遇地震作用下结构的基底剪力、剪重比、层间位移角、构件塑性发展过程以及防屈曲支撑滞回耗能特性。计算结果显示,结构X向顶点最大位移为655mm,最大层间位移角为1/111;Y向顶点最大位移为745mm,最大层间位移角为1/103,均满足抗震规范的相关要求。动力弹塑性分析结果显示,无论从杆件塑性铰出现情况,还是从杆件的地震响应,以及不同位置防屈曲支撑的滞回曲线都可以看出,防屈曲支撑有效地吸收了一部分地震动传给结构的能量,减小了其地震响应。%Combined with present national codes and regulations, elasto-plastic time history analysis on buckling-restrained braced frames was carried out. The dynamic response of this kind of strueture under rare earthquake was discussed. The base shear force, shear-weight ratio, inter-story drift, plastic development process of the whole structure and hysteresis characteristic of buckling-restrained braces were studied. The analysis results show that the maximum shift on X direction is 655mm and the inter-story drift is 1/111, meanwhile the maximum shift on Y direction is 745mm and the inter-story drift is 1/103, and it is in good requirement with the code of seismic. The elasto-plastic time history analysis results show that no matter the appearance of plastic hinges, or the seismic response of members, even the hysteretic curves of buckling- restrained braces on different positions all indicate that a part of ground motion energy which passed to the structure is effectively absorbed by the buckling-restrained braces, and the seismic response is also reduced.
Stability Analysis of Long-Span Continuous Rigid Frame Bridge with Thin-Wall Pier
Institute of Scientific and Technical Information of China (English)
HE Bo; SHI Ya-nan; ZHU Hong-ping; GUO Wen-zeng; CHEN Yong
2008-01-01
During cantilever cast in construction of high-pier and large-span continuous rigid frame bridges, structural stability in the longest cantilevered stage is very important. Based on a practical design case of a large-span continuous rigid frame bridge in Wuhan, the longest span stability coefficient is calculated with linear-buckling and nonlinear-buckling methods, respectively. The influences of both geometrical nonlinearity and the dual nonlinearity of material and geometry are considered. Numerical results indicate that the nonlinear solution is necessary to stability analysis because linear buckling loads axe much higher than those of nonlinear buckling. Thus, the edge fiber yield criterion is more convenient and faster than ultimate loading criterion when estimating nonlinear stability of structure, and can be used easily in the initial engineering design.
Institute of Scientific and Technical Information of China (English)
Wu Tuo; Chen Hongyi; Qian Dahong
2009-01-01
Based on the Gummel-Poon model of BJT, the change of the DC bias as a function of the AC input signal in RF linear power amplifiers is theoretically derived, so that the linearity of different DC bias circuits can be interpreted and compared. According to the analysis results, a quantitative adaptive DC bias circuit is proposed,which can improve the linearity and efficiency. From the simulation and test results, we draw conclusions on how to improve the design of linear power amplifier.
Observation of optomechanical buckling transitions
Xu, H.; Kemiktarak, U.; Fan, J.; Ragole, S.; Lawall, J.; Taylor, J. M.
2017-03-01
Correlated phases of matter provide long-term stability for systems as diverse as solids, magnets and potential exotic quantum materials. Mechanical systems, such as buckling transition spring switches, can have engineered, stable configurations whose dependence on a control variable is reminiscent of non-equilibrium phase transitions. In hybrid optomechanical systems, light and matter are strongly coupled, allowing engineering of rapid changes in the force landscape, storing and processing information, and ultimately probing and controlling behaviour at the quantum level. Here we report the observation of first- and second-order buckling transitions between stable mechanical states in an optomechanical system, in which full control of the nature of the transition is obtained by means of the laser power and detuning. The underlying multiwell confining potential we create is highly tunable, with a sub-nanometre distance between potential wells. Our results enable new applications in photonics and information technology, and may enable explorations of quantum phase transitions and macroscopic quantum tunnelling in mechanical systems.
Analysis of the Tem Mode Linearly Tapered Slot Antenna
Janaswamy, R.; Schaubert, D. H.; Pozar, D. M.
1985-01-01
The theoretical analysis of the radiation characteristics of the TEM mode Linearly Tapered Slot Antenna (LTSA) is presented. The theory presented is valid for antennas with air dielectric and forms the basis for analysis of the more popular dielectric-supported antennas. The method of analysis involves two steps. In the first step, the aperture distribution in the flared slot is determined. In the second step, the equivalent magnetic current in the slot is treated as radiating in the presence of a conducting half-plane and the far-field components are obtained. Detailed comparison with experiment is made and excellent agreement is obtained. Design curves for the variation of the 3 dB and 10 dB beamwidths as a function of the antenna length, with the flare angle as a parameter, are presented.
Analysis of the transverse electromagnetic mode linearly tapered slot antenna
Janaswamy, R.; Schaubert, D. H.; Pozar, D. M.
1986-01-01
A theoretical analysis of the radiation characteristics of the transverse electromagnetic mode linearly tapered slot antenna is presented. The theory presented is valid for antennas with air dielectric and forms the basis for analysis of the more popular dielectric-supported antennas. The method of analysis involves two steps. In the first step, the aperture distribution in the flared slot is determined. In the second step, the equivalent magnetic current in the slot is treated as radiating in the presence of a conducting half-plane, and the far-field components are obtained. Design curves for the variation of the 3-dB and 10-dB beamwidths as a function of the antenna length, with the flare angle as a parameter, are presented.
Considering Complexity: Toward A Strategy for Non-linear Analysis
Directory of Open Access Journals (Sweden)
Ken Hatt
2009-01-01
Full Text Available This paper explores complexity and a strategy for non-linear analysis with a consistent ontological, epistemological and methodological orientation. Complexity is defined and approaches in the natural sciences, ecosystems research, discursive studies and the social sciences are reviewed. In social science, theoretical efforts associated with problems of social order (Luhmann, critical sociology (Byrne and post-structuralism (Cilliers as well as representative studies are examined. The review concludes that there is need for an approach that will address morphogenesis and facilitate analysis of multilateral mutual causal relations. The remainder of the paper approaches these matters by outlining Archer’s approach to morphogenesis, Maruyama’s morphogenetic casual-loop model of epistemology and illustrating Maruyama’s method for analysis which employs both positive and negative feedback loops. The result is a strategy based on morphogenetic causal loop models that can be used to analyze structuring and the connections through which structures may be reproduced or transformed.
Non-linear analysis of vibrations of irregular plates
Lobitz, D. W.; Nayfeh, A. H.; Mook, D. T.
1977-01-01
A numerical perturbation method is used to investigate the forced vibrations of irregular plates. Nonlinear terms associated with the midplane stretching are retained in the analysis. The numerical part of the method involves the use of linear, finite element techniques to determine the free oscillation mode shapes and frequencies and to obtain the linear midplane stress resultants caused by the midplane stretching. Representing the solution as an expansion in terms of these linear mode shapes, these modes and the resultants are used to determine the equations governing the time-dependent coefficients of this expansion. These equations are solved by using the method of multiple scales. Specific solutions are given for the main-resonant vibrations of an elliptical plate in the presence of internal resonances. The results indicate that modes other than the driven mode can be drawn into the steady state response. Though the excitation is composed of a single harmonic, the response may not be periodic. Moreover, the particular types of responses that can occur are highly dependent on the mode being excited and are sensitive to small geometrical changes.
Residuals analysis of the generalized linear models for longitudinal data.
Chang, Y C
2000-05-30
The generalized estimation equation (GEE) method, one of the generalized linear models for longitudinal data, has been used widely in medical research. However, the related sensitivity analysis problem has not been explored intensively. One of the possible reasons for this was due to the correlated structure within the same subject. We showed that the conventional residuals plots for model diagnosis in longitudinal data could mislead a researcher into trusting the fitted model. A non-parametric method, named the Wald-Wolfowitz run test, was proposed to check the residuals plots both quantitatively and graphically. The rationale proposedin this paper is well illustrated with two real clinical studies in Taiwan.
Stability Analysis for Multi-Parameter Linear Periodic Systems
DEFF Research Database (Denmark)
Seyranian, A.P.; Solem, Frederik; Pedersen, Pauli
1999-01-01
This paper is devoted to stability analysis of general linear periodic systems depending on real parameters. The Floquet method and perturbation technique are the basis of the development. We start out with the first and higher-order derivatives of the Floquet matrix with respect to problem...... parameters. Then the behaviour of simple and multiple multipliers of the system with a change of parameters is studied. Weak and strong interactions of multipliers in the complex plane are treated separately. The presented theory is exemplified and discussed....
Analysis of shaking beam actuator for piezoelectric linear ultrasonic motor.
Lee, Kyongjai; Lee, Dong-Kyun; Borodinas, Sergejus; Vasiljev, Piotr; Nahm, Sahn; Yoon, Seok-Jin
2004-11-01
In this paper, piezoelectric linear ultrasonic motors (PLUM) have been investigated on the elliptic trajectory of a contact point in shaking beam, which has been accomplished by two resonance vibration modes of the actuators. The actuators have generated the vibration modes, longitudinal and flexural, by two longitudinal mechanical vibrations with phase difference of pi/2. Modal and harmonic analysis of the shaking beam actuator were performed by the finite element method (FEM) to calculate a resonance frequency and a modal shape and to perform harmonic response. Experimental results proved that a contact point of the PLUM tends to move with an elliptic trajectory.
Micromechanics of collective buckling in CNT turfs
Torabi, Hamid; Radhakrishnan, Harish; Mesarovic, Sinisa Dj.
2014-12-01
Complex structures consisting of intertwined, nominally vertical carbon nanotubes (CNTs) are called turfs. Under uniform compression experiments, CNT turfs exhibit irreversible collective buckling of a layer preceded by reorientation of CNT segments. Experimentally observed independence of the buckling stress and the buckling wavelength on the turf width suggests the existence of an intrinsic material length. To investigate the relationship the macroscopic material properties and the statistical parameters describing the nano-scale geometry of the turf (tortuosity, density and connectivity) we develop a nano-scale computational model, based on the representation of CNT segments as elastica finite elements with van der Waals interactions. The virtual turfs are generated by means of a constrained random walk algorithm and subsequent relaxation. The resulting computational model is robust and is capable of modeling the collective behavior of CNTs. We first establish the dependence of statistical parameters on the computational parameters used for turf generation, then establish relationships between post-buckling stress, initial elastic modulus and buckling wavelength on statistical turf parameters. Finally, we analyze the reorientation of buckling planes of individual CNTs during the collective buckling process.
NOLB : Non-linear rigid block normal mode analysis method.
Hoffmann, Alexandre; Grudinin, Sergei
2017-04-05
We present a new conceptually simple and computationally efficient method for non-linear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a non-linear extrapolation of motion out of these velocities. The key observation of our method is that the angular velocity of a rigid block can be interpreted as the result of an implicit force, such that the motion of the rigid block can be considered as a pure rotation about a certain center. We demonstrate the motions produced with the NOLB method on three different molecular systems and show that some of the lowest frequency normal modes correspond to the biologically relevant motions. For example, NOLB detects the spiral sliding motion of the TALE protein, which is capable of rapid diffusion along its target DNA. Overall, our method produces better structures compared to the standard approach, especially at large deformation amplitudes, as we demonstrate by visual inspection, energy and topology analyses, and also by the MolProbity service validation. Finally, our method is scalable and can be applied to very large molecular systems, such as ribosomes. Standalone executables of the NOLB normal mode analysis method are available at https://team.inria.fr/nano-d/software/nolb-normal-modes. A graphical user interfaces created for the SAMSON software platform will be made available at https: //www.samson-connect.net.
Linear Stability Analysis of an Acoustically Vaporized Droplet
Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi
2015-11-01
Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.
Linear stability analysis of magnetized jets: the rotating case
Bodo, G; Rossi, P; Mignone, A
2016-01-01
We perform a linear stability analysis of magnetized rotating cylindrical jet flows in the approximation of zero thermal pressure. We focus our analysis on the effect of rotation on the current driven mode and on the unstable modes introduced by rotation. We find that rotation has a stabilizing effect on the current driven mode only for rotation velocities of the order of the Alfv\\'en velocity. Rotation introduces also a new unstable centrifugal buoyancy mode and the "cold" magnetorotational instability. The first mode is analogous to the Parker instability with the centrifugal force playing the role of effective gravity. The magnetorotational instability can be present, but only in a very limited region of the parameter space and is never dominant. The current driven mode is characterized by large wavelenghts and is dominant at small values of the rotational velocity, while the buoyancy mode becomes dominant as rotation is increased and is characterized by small wavelenghts.
An Analytical Solution for Lateral Buckling Critical Load Calculation of Leaning-Type Arch Bridge
Directory of Open Access Journals (Sweden)
Ai-rong Liu
2014-01-01
Full Text Available An analytical solution for lateral buckling critical load of leaning-type arch bridge was presented in this paper. New tangential and radial buckling models of the transverse brace between the main and stable arch ribs are established. Based on the Ritz method, the analytical solution for lateral buckling critical load of the leaning-type arch bridge with different central angles of main arch ribs and leaning arch ribs under different boundary conditions is derived for the first time. Comparison between the analytical results and the FEM calculated results shows that the analytical solution presented in this paper is sufficiently accurate. The parametric analysis results show that the lateral buckling critical load of the arch bridge with fixed boundary conditions is about 1.14 to 1.16 times as large as that of the arch bridge with hinged boundary condition. The lateral buckling critical load increases by approximately 31.5% to 41.2% when stable arch ribs are added, and the critical load increases as the inclined angle of stable arch rib increases. The differences in the center angles of the main arch rib and the stable arch rib have little effect on the lateral buckling critical load.
Glassy Spin Dynamics in Geometrically Frustrated Buckled Colloidal Crystals
Zhou, Di; Wang, Feng; Li, Bo; Lou, Xiaojie; Han, Yilong
2017-04-01
Geometrical frustration arises when the lattice geometry prevents local interaction energies from minimizing simultaneously. Whether and how geometrically frustrated spins or charges in clean crystals exhibit glassy dynamics remain elusive due to the lack of measurements on microscopic dynamics. Here, we employ buckled monolayer colloidal crystals to mimic frustrated antiferromagnetic Ising spins on triangular lattices and measure single-spin dynamics using video microscopy. Both attractive and repulsive colloidal crystals buckled into zigzag stripes with glassy dynamics at low effective temperatures in experiment and simulation. The simple local spin configurations enable uncovering correlations among structure, dynamics, and soft vibrational modes. Machine learning analysis further reveals facilitated dynamics to be an important mechanism of structural relaxation. Moreover, our simulation reveals a similar structure and dynamics in lattice Coulomb liquids. Hence, spin-lattice coupling and long-range interaction can similarly lift degeneracy, induce a rugged landscape, and, thus, produce glassy dynamics.
The computer simulation of portal rigid frame static buckling%门式刚架静力屈曲的计算机模拟
Institute of Scientific and Technical Information of China (English)
杨卫奇
2015-01-01
This paper made linear static buckling simulation to portal rigid frame steel structure using ANSYS finite element analysis software, given first-order static buckling mode,buckling load,the calculation length coefficient of column of a time frame,analyzed the relationship be-tween column calculation length coefficient computer simulation value with the theoretical value,provided basis for the research on similar problems.%采用ANSYS有限元分析软件对门式刚架结构进行线性静力屈曲模拟，给出了某一时刻刚架的一阶屈曲模态、屈曲载荷、柱的计算长度系数，分析了柱的计算长度系数计算机模拟值与理论值的关系，为类似问题的研究提供了依据。
Snap-Through Buckling Problem of Spherical Shell Structure
Directory of Open Access Journals (Sweden)
Sumirin Sumirin
2014-12-01
Full Text Available This paper presents results of a numerical study on the nonlinear behavior of shells undergoing snap-through instability. This research investigates the problem of snap-through buckling of spherical shells applying nonlinear finite element analysis utilizing ANSYS Program. The shell structure was modeled by axisymmetric thin shell of finite elements. Shells undergoing snap-through buckling meet with significant geometric change of their physical configuration, i.e. enduring large deflections during their deformation process. Therefore snap-through buckling of shells basically is a nonlinear problem. Nonlinear numerical operations need to be applied in their analysis. The problem was solved by a scheme of incremental iterative procedures applying Newton-Raphson method in combination with the known line search as well as the arc- length methods. The effects of thickness and depth variation of the shell is taken care of by considering their geometrical parameter l. The results of this study reveal that spherical shell structures subjected to pressure loading experience snap-through instability for values of l≥2.15. A form of ‘turn-back’ of the load-displacement curve took place at load levels prior to the achievement of the critical point. This phenomenon was observed for values of l=5.0 to l=7.0.
Parappagoudar, Mahesh B.; Pratihar, Dilip K.; Datta, Gouranga L.
2008-08-01
A cement-bonded moulding sand system takes a fairly long time to attain the required strength. Hence, the moulds prepared with cement as a bonding material will have to wait a long time for the metal to be poured. In this work, an accelerator was used to accelerate the process of developing the bonding strength. Regression analysis was carried out on the experimental data collected as per statistical design of experiments (DOE) to establish input-output relationships of the process. The experiments were conducted to measure compression strength and hardness (output parameters) by varying the input variables, namely amount of cement, amount of accelerator, water in the form of cement-to-water ratio, and testing time. A two-level full-factorial design was used for linear regression model, whereas a three-level central composite design (CCD) had been utilized to develop non-linear regression model. Surface plots and main effects plots were used to study the effects of amount of cement, amount of accelerator, water and testing time on compression strength, and mould hardness. It was observed from both the linear as well as non-linear models that amount of cement, accelerator, and testing time have some positive contributions, whereas cement-to-water ratio has negative contribution to both the above responses. Compression strength was found to have linear relationship with the amount of cement and accelerator, and non-linear relationship with the remaining process parameters. Mould hardness was seen to vary linearly with testing time and non-linearly with the other parameters. Analysis of variance (ANOVA) was performed to test statistical adequacy of the models. Twenty random test cases were considered to test and compare their performances. Non-linear regression models were found to perform better than the linear models for both the responses. An attempt was also made to express compression strength of the moulding sand system as a function of mould hardness.
POST-BUCKLING OF A CANTILEVER ROD WITH VARIABLE CROSS-SECTIONS UNDER COMBINED LOAD
Institute of Scientific and Technical Information of China (English)
吴莹; 李世荣; 滕兆春
2003-01-01
Based on the geometrically nonlinear theory of axially extensible elastic rods,the governing equations of post-buckling of a clamped-free rod with variable cross-sections,subjected to a combined load, a concentrated axial load P at the free end and a nonuniformly distributed axial load q, are established. By using shooting method, the strong nonlinear boundary value problems are numerically solved. The secondary equilibrium paths and the post-buckling configurations of the rod with linearly varied cross-sections are presented.
Linear Stability Analysis of Compressible Channel Flow with Porous Walls
Rahbari, Iman
2015-01-01
We have investigated the effects of permeable walls, modeled by linear acoustic impedance with zero reactance, on compressible channel flow via linear stability analysis (LSA). Base flow profiles are taken from impermeable isothermal-wall laminar and turbulent channel flow simulations at bulk Reynolds number, $Re_b$= 6900 and Mach numbers, $M_b$ = 0.2, 0.5, 0.85. For a sufficiently high value of permeability, two dominant modes are excited: a bulk pressure mode, causing symmetric expulsion and suction of mass from the porous walls (Mode 0); a standing-wave-like mode, with a pressure node at the centerline (Mode 1). In the case of turbulent mean flow profiles, both modes generate additional Reynolds shear stresses augmenting the (base) turbulent ones, but concentrated in the viscous sublayer region; the trajectories of the two modes in the complex phase velocity space follow each other very closely for values of wall permeability spanning two orders of magnitude, suggesting their coexistence. The transition fr...
Multitask linear discriminant analysis for view invariant action recognition.
Yan, Yan; Ricci, Elisa; Subramanian, Ramanathan; Liu, Gaowen; Sebe, Nicu
2014-12-01
Robust action recognition under viewpoint changes has received considerable attention recently. To this end, self-similarity matrices (SSMs) have been found to be effective view-invariant action descriptors. To enhance the performance of SSM-based methods, we propose multitask linear discriminant analysis (LDA), a novel multitask learning framework for multiview action recognition that allows for the sharing of discriminative SSM features among different views (i.e., tasks). Inspired by the mathematical connection between multivariate linear regression and LDA, we model multitask multiclass LDA as a single optimization problem by choosing an appropriate class indicator matrix. In particular, we propose two variants of graph-guided multitask LDA: 1) where the graph weights specifying view dependencies are fixed a priori and 2) where graph weights are flexibly learnt from the training data. We evaluate the proposed methods extensively on multiview RGB and RGBD video data sets, and experimental results confirm that the proposed approaches compare favorably with the state-of-the-art.
A Novel Linear Switched Reluctance Machine: Analysis and Experimental Verification
Directory of Open Access Journals (Sweden)
N. C. Lenin
2010-01-01
Full Text Available The important problems to be solved in Linear Switched Reluctance Machines (LSRMs are: (1 to design the shape and size of poles in stator and translator cores; (2 to optimize their geometrical configuration. A novel stator geometry for LSRMs that improved the force profile was presented in this study. In the new geometry, pole shoes were affixed on the stator poles. Static and dynamic characteristics for the proposed structure had been highlighted using Two Dimensional (2-D Finite Element Analyses (FEA. Motor performance for variable load conditions was discussed. The finite element analyses and the experimental results of this study proved that, LSRMs were one of the strong candidates for linear propulsion drives. Problem statement: To mitigate the force ripple without any loss in average force and force density. Approach: Design modifications in the magnetic structures. Results: 2-D finite element analysis was used to predict the performance of the studied structures. Conclusion/Recommendations: The proposed structure not only reduces the force ripple, also reduced the volume and mass. The future study is to make an attempt on vibration, thermal and stress analyses.
Scleral buckle infection with Alcaligenes xylosoxidans
Directory of Open Access Journals (Sweden)
Chih-Kang Hsu
2014-01-01
Full Text Available We describe a rare case of extraocular inflammation secondary to scleral buckle infection with Alcaligenes xylosoxidans. A 60-year-old female with a history of retinal detachment repair with open-book technique of scleral buckling presented with purulent discharge and irritation in the right eye that had begun 4 weeks earlier and had been treated ineffectively at another hospital. Conjunctival erosion with exposure of the scleral buckle was noted. The scleral buckle was removed and cultured. The explanted material grew gram-negative rod later identified as A. xylosoxidans. On the basis of the susceptibility test results, the patient was treated by subconjunctival injection and fortified topical ceftazidime. After 4 weeks of treatment, the infection resolved.
Scleral buckle infection with Alcaligenes xylosoxidans.
Hsu, Chih-Kang; Chang, Yun-Hsiang; Chen, Jiann-Torng
2014-06-01
We describe a rare case of extraocular inflammation secondary to scleral buckle infection with Alcaligenes xylosoxidans. A 60-year-old female with a history of retinal detachment repair with open-book technique of scleral buckling presented with purulent discharge and irritation in the right eye that had begun 4 weeks earlier and had been treated ineffectively at another hospital. Conjunctival erosion with exposure of the scleral buckle was noted. The scleral buckle was removed and cultured. The explanted material grew gram-negative rod later identified as A. xylosoxidans. On the basis of the susceptibility test results, the patient was treated by subconjunctival injection and fortified topical ceftazidime. After 4 weeks of treatment, the infection resolved.
Buckling optimisation of sandwich cylindrical panels
Abouhamzeh, M.; Sadighi, M.
2016-06-01
In this paper, the buckling load optimisation is performed on sandwich cylindrical panels. A finite element program is developed in MATLAB to solve the governing differential equations of the global buckling of the structure. In order to find the optimal solution, the genetic algorithm Toolbox in MATLAB is implemented. Verifications are made for both the buckling finite element code and also the results from the genetic algorithm by comparisons to the results available in literature. Sandwich cylindrical panels are optimised for the buckling strength with isotropic or orthotropic cores with different boundary conditions. Results are presented in terms of stacking sequence of fibers in the face sheets and core to face sheet thickness ratio.
Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan
2017-01-01
This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second
Evaluation of beach cleanup effects using linear system analysis.
Kataoka, Tomoya; Hinata, Hirofumi
2015-02-15
We established a method for evaluating beach cleanup effects (BCEs) based on a linear system analysis, and investigated factors determining BCEs. Here we focus on two BCEs: decreasing the total mass of toxic metals that could leach into a beach from marine plastics and preventing the fragmentation of marine plastics on the beach. Both BCEs depend strongly on the average residence time of marine plastics on the beach (τ(r)) and the period of temporal variability of the input flux of marine plastics (T). Cleanups on the beach where τ(r) is longer than T are more effective than those where τ(r) is shorter than T. In addition, both BCEs are the highest near the time when the remnants of plastics reach the local maximum (peak time). Therefore, it is crucial to understand the following three factors for effective cleanups: the average residence time, the plastic input period and the peak time.
Denoising and robust non-linear wavelet analysis
Bruce, Andrew G.; Donoho, David L.; Gao, Hong-Ye; Martin, R. D.
1994-04-01
In a series of papers, Donoho and Johnstone develop a powerful theory based on wavelets for extracting non-smooth signals from noisy data. Several nonlinear smoothing algorithms are presented which provide high performance for removing Gaussian noise from a wide range of spatially inhomogeneous signals. However, like other methods based on the linear wavelet transform, these algorithms are very sensitive to certain types of non-Gaussian noise, such as outliers. In this paper, we develop outlier resistance wavelet transforms. In these transforms, outliers and outlier patches are localized to just a few scales. By using the outlier resistant wavelet transforms, we improve upon the Donoho and Johnstone nonlinear signal extraction methods. The outlier resistant wavelet algorithms are included with the S+Wavelets object-oriented toolkit for wavelet analysis.
Analysis of Power Model for Linear Plasma Device
Zhang, Weiwei; Deng, Baiquan; Zuo, Haoyi; Zheng, Xianjun; Cao, Xiaogang; Xue, Xiaoyan; Ou, Wei; Cao, Zhi; Gou, Fujun
2016-08-01
A single cathode linear plasma device has been designed and constructed to investigate the interactions between plasma and materials at the Sichuan University. In order to further investigate the Ohmic power of the device, the output heat load on the specimen and electric potential difference (between cathode and anode) have been tested under different discharge currents. This special power distribution in the radial direction of the plasma discharge channel has also been discussed and described by some improved integral equations in this paper; it can be further simplified as P ∝ α-2 in one-parameter. Besides, we have measured the power loss of the channel under different discharge currents by the calorimetric method, calculated the effective power of the device and evaluated the performances of the plasma device through the power efficiency analysis. supported by International Thermonuclear Experimental Reactor (ITER) Program (No. 2013GB114003) and National Natural Science Foundation of China (Nos. 11275135 and 11475122)
Performance Analysis of Thermal Energy System with Linear System Method
Institute of Scientific and Technical Information of China (English)
Liping LI; Chunfa ZHANG
2007-01-01
The paper addresses the system performance of coal-fired power unit with changed auxiliary system or other local heat disturbance. The idea of state space model is imported and the universal formula for the calculation of system performance output is deduced on the system state equation. Two important vector of system are worked out under linear system assumption and transform. The transfer matrix is the characteristics of system itself and is constant for a similar condition, which greatly facilitates the analysis. The concept of thermal disturbance vector is proposed to construct the thermal disturbance input easily. The method can be helpful for analyzing any thermal disturbance input satisfying the assumption and also for supplementing the correction means of performance test. An example of 600MW power unit is presented to demonstrate its availability.
Multiscale Analysis of Information Dynamics for Linear Multivariate Processes
Faes, Luca; Stramaglia, Sebastiano; Nollo, Giandomenico; Stramaglia, Sebastiano
2016-01-01
In the study of complex physical and physiological systems represented by multivariate time series, an issue of great interest is the description of the system dynamics over a range of different temporal scales. While information-theoretic approaches to the multiscale analysis of complex dynamics are being increasingly used, the theoretical properties of the applied measures are poorly understood. This study introduces for the first time a framework for the analytical computation of information dynamics for linear multivariate stochastic processes explored at different time scales. After showing that the multiscale processing of a vector autoregressive (VAR) process introduces a moving average (MA) component, we describe how to represent the resulting VARMA process using state-space (SS) models and how to exploit the SS model parameters to compute analytical measures of information storage and information transfer for the original and rescaled processes. The framework is then used to quantify multiscale infor...
Longitudinal Jitter Analysis of a Linear Accelerator Electron Gun
Directory of Open Access Journals (Sweden)
MingShan Liu
2016-11-01
Full Text Available We present measurements and analysis of the longitudinal timing jitter of a Beijing Electron Positron Collider (BEPCII linear accelerator electron gun. We simulated the longitudinal jitter effect of the gun using PARMELA to evaluate beam performance, including: beam profile, average energy, energy spread, and XY emittances. The maximum percentage difference of the beam parameters is calculated to be 100%, 13.27%, 42.24% and 65.01%, 86.81%, respectively. Due to this, the bunching efficiency is reduced to 54%. However, the longitudinal phase difference of the reference particle was 9.89°. The simulation results are in agreement with tests and are helpful to optimize the beam parameters by tuning the trigger timing of the gun during the bunching process.
Analysis of Robust Quasi-deviances for Generalized Linear Models
Directory of Open Access Journals (Sweden)
Eva Cantoni
2004-04-01
Full Text Available Generalized linear models (McCullagh and Nelder 1989 are a popular technique for modeling a large variety of continuous and discrete data. They assume that the response variables Yi , for i = 1, . . . , n, come from a distribution belonging to the exponential family, such that E[Yi ] = ?i and V[Yi ] = V (?i , and that ?i = g(?i = xiT?, where ? ? IR p is the vector of parameters, xi ? IR p, and g(. is the link function. The non-robustness of the maximum likelihood and the maximum quasi-likelihood estimators has been studied extensively in the literature. For model selection, the classical analysis-of-deviance approach shares the same bad robustness properties. To cope with this, Cantoni and Ronchetti (2001 propose a robust approach based on robust quasi-deviance functions for estimation and variable selection. We refer to that paper for a deeper discussion and the review of the literature.
A Reduction Factor for Buckling Load of Spherical Cap Shells
Directory of Open Access Journals (Sweden)
P.N. Khakina
2011-12-01
Full Text Available The classical buckling theory usually overestimates the buckling load of shells. In this study, a reduction factor is determined using geometrical parameters so as to reduce the classical buckling load to a more realistic value based on the post-buckling load. It is observed that the buckling load is directly proportional to the thickness and rise and inversely proportional to the span of the spherical cap. Finite element modeling and simulation using ABAQUS was conducted to determine the buckling behavior of a spherical cap shell subjected to different initial geometrical imperfections. The load-deflection curves drawn from the simulation formed a plateau at the post-buckling load. It is observed that as the initial geometrical imperfection is increased, the value of the initial buckling load is almost the same as the value of the post-buckling load on the plateau. The results obtained from different shells were used to derive a formula for the reduction factor.
MAGNETIC-ELASTIC BUCKLING OF A THIN CURRENT CARRYING PLATE SIMPLY SUPPORTED AT THREE EDGES
Institute of Scientific and Technical Information of China (English)
WANG Zhiren; WANG Ping; BAI Xiangzhong
2008-01-01
The magnetic-elasticity buckling problem of a current plate under the action of a mechanical load in a magnetic field was studied by using the Mathieu function. According to the magnetic-elasticity non-linear kinetic equation, physical equations, geometric equations, the expression for Lorenz force and the electrical dynamic equation, the magnetic-elasticity dynamic buckling equation is derived. The equation is changed into a standard form of the Mathieu equation using Galerkin's method. Thus, the buckling problem can be solved with a Mathieu equation. The criterion equation of the buckling problem also has been obtained by discussing the eigenvalue relation of the coefficients λ and η in the Mathieu equation. As an example, a thin plate simply supported at three edges is solved here. Its magnetic-elasticity dynamic buckling equation and the relation curves of the instability state with variations in some parameters are also shown in this paper. The conclusions show that the electrical magnetic forces may be controlled by changing the parameters of the current or the magnetic field so that the aim of controlling the deformation, stress, strain and stability of the current carrying plate is achieved.
Linear to non linear analysis for positron acceleration in plasma hollow channel wakefields
Amorim, Ligia Diana; An, Weiming; Mori, Warren B.; Vieira, Jorge
2016-10-01
Plasma wakefield accelerators are promising candidates for future generation compact accelerators. The standard regime of operation, non-linear or blowout regime, is reached when a particle bunch space charge or laser pulse ponderomotive force radially expels plasma electrons forming a bucket of ions that defocus positron bunches, thus preventing their acceleration. To avoid defocusing, hollow plasma channels have been considered. The corresponding wakefields have been examined in the linear and non-linear excitation regimes for electrons. It is therefore important to extend the theory for positron acceleration, particularly in the nonlinear regime where the wakefields strongly differ. In this work we explore the wakefield structure, examine the differences between the electron and positron beam cases, and explore positron acceleration in nonlinear regimes. We support our findings with multi-dimensional particle-in-cell simulations performed with OSIRIS and quasi-3D and QuickPIC.
Scleral buckle infection with aspergillus flavus
Directory of Open Access Journals (Sweden)
Bouhaimed Manal
2008-01-01
Full Text Available Purpose: To present a case of scleral buckle infection with Aspergillus flavus in a tertiary eye center in Saudi Arabia. Methods: A retrospective case report of a 28-year-old Saudi male who presented with a six-month history of conjunctival injection and discharge from the left eye which had undergone uncomplicated conventional retinal detachment surgery, at the King Khaled Eye Specialist Hospital in Riyadh, Saudi Arabia, in the form of cryopexy, subretinal fluid drainage and scleral buckle (grooved segmental sponge and circumferential band with sleeve for a macula on retinal detachment four years earlier. A diagnosis of infected extruded scleral buckle was made and the buckle was removed. Results: The infected scleral buckle was removed under local anesthesia with administration of sub-conjunctival irrigation of 50 mg solution of Vancomycin, and sub-conjunctival injection of 25mg of Vancomycin. Post operative microbiological studies revealed infection with silver staining of moderate Aspergillus flavus hyphae. Visual acuity of the left eye improved from 20/200 before surgery to 20/60 in the two years follow-up visit. Conclusion: This case report indicates the importance of considering infection with multiple organisms - including fungal ones - in cases of scleral buckle infections in our population.
Buckling transition in long α-helices
Energy Technology Data Exchange (ETDEWEB)
Palenčár, Peter; Bleha, Tomáš, E-mail: bleha@savba.sk [Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava (Slovakia)
2014-11-07
The treatment of bending and buckling of stiff biopolymer filaments by the popular worm-like chain model does not provide adequate understanding of these processes at the microscopic level. Thus, we have used the atomistic molecular-dynamic simulations and the Amber03 force field to examine the compression buckling of α-helix (AH) filaments at room temperature. It was found that the buckling instability occurs in AHs at the critical force f{sub c} in the range of tens of pN depending on the AH length. The decrease of the force f{sub c} with the contour length follows the prediction of the classic thin rod theory. At the force f{sub c} the helical filament undergoes the swift and irreversible transition from the smoothly bent structure to the buckled one. A sharp kink in the AH contour arises at the transition, accompanied by the disruption of the hydrogen bonds in its vicinity. The kink defect brings in an effective softening of the AH molecule at buckling. Nonbonded interactions between helical branches drive the rearrangement of a kinked AH into the ultimate buckled structure of a compact helical hairpin described earlier in the literature.
Institute of Scientific and Technical Information of China (English)
张国凡; 孙侠生; 孙中雷
2015-01-01
The load carrying capacity prediction of stiffened composite structure is an important part of air-craft designing,and the key problem is post-buckling analysis taken material failure into account.A con-cise progressive damage analysis methodology considering intralaminar failure,delamination and stiffness degradation was established based on cohesive elements and Hashin damage criteria subjected to the post-buckling analysis beared compressive loading,and UMAT subroutines of ABAQUS were developed.The comparison indicates that the load carrying capacity,failure mode and strain analysis results of this paper agree well with test results,and the relative error is less than 10% which proves the effectiveness of the present methodology.%复合材料加筋结构的承载能力预估是飞机设计中的重要内容，其关键问题就是考虑材料失效的后屈曲分析。针对复合材料加筋壁板承受压缩载荷的后屈曲承载能力预估问题，考虑层内损伤、层间分层以及刚度退化，基于内聚力单元与Hashin损伤准则，建立了一种简洁的渐进损伤分析方法，编制了相应的ABAQUS UMAT子程序，并利用复合材料加筋结构破坏试验进行了验证。验证结果表明，预估的承载能力、破坏模式和结构应力状态与物理试验结果符合得很好，承载能力误差在10％以内，证明了方法的准确性和工程实用性。
Graphical and Analytical Analysis of the Non-Linear PLL
de Boer, Bjorn; Radovanovic, S.; Annema, Anne J.; Nauta, Bram
The fixed width control pulses from the Bang-Bang Phase Detector in non-linear PLLs allow for operation at higher data rates than the linear PLL. The high non-linearity of the Bang- Bang Phase Detector gives rise to unwanted effects, such as limit-cycles, not yet fully described. This paper
Energy Technology Data Exchange (ETDEWEB)
Yao, T.; Fujikubo, M.; Yanagihara, D.; Irisawa, M. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering
1997-10-01
Buckling and plastic collapse of upper decks and bottom outer plates of a hull results directly in longitudinal bending collapse of the hull. Therefore, discussions were given on analysis for pressure destruction strength of a detection control panel which assumes an upper deck and a bottom outer plate. Pressure destruction behavior of the panting panel is a complex phenomenon accompanying non-linearity and geometrical non-linearity of the materials. Its whole phenomenon may be analyzed by using the finite element method (FEM) as a principle, but the analysis is not efficient. Therefore, considerations were given in relation to modeling when using the FEM. The considerations were given on a panel attached with flat steel panting members with respect to the modeling scope which considers the buckling mode according to the aspect ratio of the panel partitioned by the deflection control members. If the local buckling mode of the panel is an even number wave mode in the longitudinal direction, a triple span model is required. A modeling scope for a case of being subjected to water pressure and in-plane compression was considered on a panel attached with angle-type steel members having non-symmetric cross section. In this case, a triple bay model is more preferable to reproduce the behavior under water pressure loading. 1 ref., 6 figs.
压电体表面金属电极脱层的屈曲分析%BUCKLING ANALYSIS OF THE ELECTRODE DELAMINATION ON THE PIEZOELECTRIC SUBSTRATE
Institute of Scientific and Technical Information of China (English)
杨昌锦; 李尧臣
2009-01-01
基于弹性有限变形理论和电弹性体偏场理论,对半无限压电体及其表面电极层间存在穿透脱层的屈曲问题进行了分析.采用平面应变模型,在脱层远处作用有平行于脱层的应变载荷.使用Fourier积分变换,应用脱层界面的连续条件和电极表面的边界条件将问题归为第2类Cauchy型奇异积分方程组.利用Gauss-Chebyshev积分公式将奇异积分方程组变为齐次线性代数方程组,以确定临界应变载荷.通过数值算例,给出了底层为PZT-4材料、电极为金属Pt在不同的脱层长厚比时的临界应变载荷和屈曲形状,分析了压电体的压电、介电效应对屈曲载荷的影响.另外给出了脱层屈曲时,脱层尖端奇异性振荡因子随不同脱层长厚比的关系曲线.%The paper investigated the electrode delamination buckling of the layered system containing a through-the-width delamination between the metallic electrode and the hag-space piezoelectric substrate based on the finite deformation theory of elasticity and the biasing field theory of the electroelastic body. The layered system in the plane strain problem is subjected to the compressive strain-load parallel to the free surface. Mean-while, the theoretical model is reduced to the second kind Cauchy-type singular integral equations by means of the Fourier integral transform, the boundary conditions and the interracial continuous conditions. The singular integral equations are solved numerically by utilizing Gauss-Chebyshev integral formulae. As an example, the layered system of the metallic electrode Pt and piezoelectric substrate PZT-4 is considered. Numerical results for the critical strains of budding and the corresponding delamination buckling shapes are presented for, re-spectively, various ratios of the delamination length to thickness and the effect of electromechanical coupling in the piezoelectric substrate. The curves of the singular oscillating factors in the delamination
Non-Linear Piezoelectric Actuator with a Preloaded Cantilever Beam
Directory of Open Access Journals (Sweden)
Yue Wu
2015-08-01
Full Text Available Piezoelectric actuation is widely used for the active vibration control of smart structural systems, and corresponding research has largely focused on linear electromechanical devices. This paper investigates the design and analysis of a novel piezoelectric actuator that uses a piezoelectric cantilever beam with a loading spring to produce displacement outputs. This device has a special nonlinear property relating to converting between kinetic energy and potential energy, and it can be used to increase the output displacement at a lower voltage. The system is analytically modeled with Lagrangian functional and Euler–Lagrange equations, numerically simulated with MATLAB, and experimentally realized to demonstrate its enhanced capabilities. The model is validated using an experimental device with several pretensions of the loading spring, therein representing three interesting cases: a linear system, a low natural frequency system with a pre-buckled beam, and a system with a buckled beam. The motivating hypothesis for the current work is that nonlinear phenomena could be exploited to improve the effectiveness of the piezoelectric actuator’s displacement output. The most practical configuration seems to be the pre-buckled case, in which the proposed system has a low natural frequency, a high tip displacement, and a stable balanced position.
Stochastic analysis of Chemical Reaction Networks using Linear Noise Approximation.
Cardelli, Luca; Kwiatkowska, Marta; Laurenti, Luca
2016-11-01
Stochastic evolution of Chemical Reactions Networks (CRNs) over time is usually analyzed through solving the Chemical Master Equation (CME) or performing extensive simulations. Analysing stochasticity is often needed, particularly when some molecules occur in low numbers. Unfortunately, both approaches become infeasible if the system is complex and/or it cannot be ensured that initial populations are small. We develop a probabilistic logic for CRNs that enables stochastic analysis of the evolution of populations of molecular species. We present an approximate model checking algorithm based on the Linear Noise Approximation (LNA) of the CME, whose computational complexity is independent of the population size of each species and polynomial in the number of different species. The algorithm requires the solution of first order polynomial differential equations. We prove that our approach is valid for any CRN close enough to the thermodynamical limit. However, we show on four case studies that it can still provide good approximation even for low molecule counts. Our approach enables rigorous analysis of CRNs that are not analyzable by solving the CME, but are far from the deterministic limit. Moreover, it can be used for a fast approximate stochastic characterization of a CRN.
Energy Technology Data Exchange (ETDEWEB)
Sahmani, S.; Ansari, R. [University of Guilan, Rasht (Iran, Islamic Republic of)
2011-09-15
Buckling analysis of nanobeams is investigated using nonlocal continuum beam models of the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Levinson beam theory (LBT). To this end, Eringen's equations of nonlocal elasticity are incorporated into the classical beam theories for buckling of nanobeams with rectangular cross-section. In contrast to the classical theories, the nonlocal elastic beam models developed here have the capability to predict critical buckling loads that allowing for the inclusion of size effects. The values of critical buckling loads corresponding to four commonly used boundary conditions are obtained using state-space method. The results are presented for different geometric parameters, boundary conditions, and values of nonlocal parameter to show the effects of each of them in detail. Then the results are fitted with those of molecular dynamics simulations through a nonlinear least square fitting procedure to find the appropriate values of nonlocal parameter for the buckling analysis of nanobeams relevant to each type of nonlocal beam model and boundary conditions analysis.
Analysis of Brace Stiffness Influence on Stability of the Truss
Directory of Open Access Journals (Sweden)
Krajewski M.
2015-02-01
Full Text Available The paper is devoted to the numerical and experimental research of stability of a truss with side elastic supports at the top chord. The structure is a model of a real roof truss scaled by factor ¼. The linear buckling analysis and non-linear static analysis were carried out. The buckling length factor for the compressed top chord was calculated and the limit load for the imperfect truss shell model with respect to brace stiffness was obtained. The relation between brace normal force and loading of the truss is presented. The threshold stiffness of braces necessary to obtain the maximum buckling load was found. The truss load bearing capacity obtained from numerical analysis was compared with Eurocode 3 requirements.
Institute of Scientific and Technical Information of China (English)
刘淼鑫; 魏路; 伍阳; 钟维浩
2014-01-01
以某实际高层框筒结构工程为例，根据规范设定较高的抗震性能目标，研究分析屈曲约束支撑体系对提高结构的整体抗震性能的效果。分别进行多遇地震作用下的弹性反应谱分析和罕遇地震作用下的推覆分析，结果表明：加设屈曲约束支撑后结构的抗震性能得到明显加强。在多遇地震作用下，屈曲约束支撑体系减小层间位移角；在罕遇地震作用下，屈曲约束支撑体系有效耗散地震能量，减小主体结构变形和损伤，形成合理的整体型结构屈服机制。%In this paper, Based on the higher seismic performance objectives set by the code, a real high-rise framed-tube building is established to research and analysis the overall seismic performance and to investigate damping control effect of the anti-buckling brace. Respectively, the elastic earthquake response spectrum analysis and rare earthquake pushover analysis show that anti-buckling brace has significantly enhanced the seismic performance of the structure.The results show that anti-buckling brace system significantly reduces drift angle in the weak earthquake and in rare earthquake, the anti-buckling brace system effectively dissipate seismic energy, reducing the main structural damage and form a reasonable yield mechanism to the overall structure.
State-variable analysis of non-linear circuits with a desk computer
Cohen, E.
1981-01-01
State variable analysis was used to analyze the transient performance of non-linear circuits on a desk top computer. The non-linearities considered were not restricted to any circuit element. All that is required for analysis is the relationship defining each non-linearity be known in terms of points on a curve.
Lidov-Kozai Mechanism in Hydrodynamical Disks: Linear Stability Analysis
Zanazzi, J. J.; Lai, Dong
2017-01-01
Recent SPH simulations by Martin et al. (2014) suggest a circumstellar gaseous disk may exhibit coherent eccentricity-inclination oscillations due to the tidal forcing of an inclined binary companion, in a manner that resembles Lidov-Kozai oscillations in hierarchical triple systems. We carry out linear stability analysis for the eccentricity growth of circumstellar disks in binaries, including the effects of gas pressure and viscosity and secular (orbital-averaged) tidal force from the inclined companion. We find that the growth of disk eccentricity depends on the dimensionless ratio (S) between c_s^2 (the disk sound speed squared) and the tidal torque acting on the disk (per unit mass) from the companion. For S ≪ 1, the standard Lidov-Kozai result is recovered for a thin disk annulus: eccentricity excitation occurs when the mutual inclination I between the disk and binary lies between 39° and 141°. As S increases, the inclination window for eccentricity growth generally becomes narrower. For S ≳ a few, eccentricity growth is suppressed for all inclination angles. Surprisingly, we find that for S ˜ 1 and certain disk density/pressure profiles, eccentricity excitation can occur even when I is much less than 39°.
Unbiased bootstrap error estimation for linear discriminant analysis.
Vu, Thang; Sima, Chao; Braga-Neto, Ulisses M; Dougherty, Edward R
2014-12-01
Convex bootstrap error estimation is a popular tool for classifier error estimation in gene expression studies. A basic question is how to determine the weight for the convex combination between the basic bootstrap estimator and the resubstitution estimator such that the resulting estimator is unbiased at finite sample sizes. The well-known 0.632 bootstrap error estimator uses asymptotic arguments to propose a fixed 0.632 weight, whereas the more recent 0.632+ bootstrap error estimator attempts to set the weight adaptively. In this paper, we study the finite sample problem in the case of linear discriminant analysis under Gaussian populations. We derive exact expressions for the weight that guarantee unbiasedness of the convex bootstrap error estimator in the univariate and multivariate cases, without making asymptotic simplifications. Using exact computation in the univariate case and an accurate approximation in the multivariate case, we obtain the required weight and show that it can deviate significantly from the constant 0.632 weight, depending on the sample size and Bayes error for the problem. The methodology is illustrated by application on data from a well-known cancer classification study.
Are oil markets chaotic? A non-linear dynamic analysis
Energy Technology Data Exchange (ETDEWEB)
Panas, E.; Ninni, V. [Athens University of Economics and Business, Athens (Greece)
2000-10-01
The analysis of products' price behaviour continues to be an important empirical issue. This study contributes to the current literature on price dynamics of products by examining for the presence of chaos and non-linear dynamics in daily oil products for the Rotterdam and Mediterranean petroleum markets. Previous studies using only one invariant, such as the correlation dimension may not effectively determine the chaotic structure of the underlying time series. To obtain better information on the time series structure, a framework is developed, where both invariant and non-invariant quantities were also examined. In this paper various invariants for detecting a chaotic time series were analysed along with the associated Brock's theorem and Eckman-Ruelle condition, to return series for the prices of oil products. An additional non-invariant quantity, the BDS statistic, was also examined. The correlation dimension, entropies and Lyapunov exponents show strong evidence of chaos in a number of oil products considered. 30 refs.
Face Recognition Using Holistic Features and Simplified Linear Discriminant Analysis
Directory of Open Access Journals (Sweden)
Gou Koutaki
2012-08-01
Full Text Available This paper proposed an alternative approach to face recognition algorithm that is based on global/holistic features of face image and simplified Linear Discriminant Analysis (LDA. The proposed method can overcome main problems of the conventional LDA in terms of large processing time for retraining when a new class data was registered into the training data set. The holistic features of face image were proposed as dimensional reduction of raw face image. While, the simplified LDA which is the redefinition of between class scatter using constant global mean assignment was proposed to decrease time complexity of retraining process. In order to know the performance of the proposed method, several experiments were performed using several challenging face databases: ORL, YALE, ITS-Lab, INDIA, and FERET database. Furthermore, we compared the developed algorithm experimental results to the best traditional subspace methods such as DLDA, 2DLDA, (2D2DLDA, 2DPCA, and (2D22DPCA. The experimental results show that the proposed method can solve the retraining problem of the conventional LDA indicated by requiring short retraining time and stable recognition rate.
Sparse linear discriminant analysis by thresholding for high dimensional data
Shao, Jun; Deng, Xinwei; Wang, Sijian; 10.1214/10-AOS870
2011-01-01
In many social, economical, biological and medical studies, one objective is to classify a subject into one of several classes based on a set of variables observed from the subject. Because the probability distribution of the variables is usually unknown, the rule of classification is constructed using a training sample. The well-known linear discriminant analysis (LDA) works well for the situation where the number of variables used for classification is much smaller than the training sample size. Because of the advance in technologies, modern statistical studies often face classification problems with the number of variables much larger than the sample size, and the LDA may perform poorly. We explore when and why the LDA has poor performance and propose a sparse LDA that is asymptotically optimal under some sparsity conditions on the unknown parameters. For illustration of application, we discuss an example of classifying human cancer into two classes of leukemia based on a set of 7,129 genes and a training ...
Analysis of linear trade models and relation to scale economies.
Gomory, R E; Baumol, W J
1997-09-01
We discuss linear Ricardo models with a range of parameters. We show that the exact boundary of the region of equilibria of these models is obtained by solving a simple integer programming problem. We show that there is also an exact correspondence between many of the equilibria resulting from families of linear models and the multiple equilibria of economies of scale models.
On the dynamic analysis of piecewise-linear networks
Heemels, WPMH; Camlibel, MK; Schumacher, JM
2002-01-01
Piecewise-linear (PL) modeling is often used to approximate the behavior of nonlinear circuits. One of the possible PL modeling methodologies is based on the linear complementarity problem, and this approach has already been used extensively in the circuits and systems community for static networks.
Absolute stability analysis of linear systems with Duhem hysteresis operator
Ouyang, Ruiyue; Jayawardhana, Bayu
2014-01-01
In this paper, we investigate the stability of positive and negative feedback interconnections of a linear system and a Duhem hysteresis operator. We provide sufficient conditions on the linear plant and on the Duhem operator which are based on the counterclockwise (CCW) or clockwise (CW) input–outp
Microlocal analysis of a seismic linearized inverse problem
Stolk, C.C.
2001-01-01
The seismic inverse problem is to determine the wavespeed c x in the interior of a medium from measurements at the boundary In this paper we analyze the linearized inverse problem in general acoustic media The problem is to nd a left inverse of the linearized forward map F or equivalently to nd the
Analytic central path, sensitivity analysis and parametric linear programming
A.G. Holder; J.F. Sturm; S. Zhang (Shuzhong)
1998-01-01
textabstractIn this paper we consider properties of the central path and the analytic center of the optimal face in the context of parametric linear programming. We first show that if the right-hand side vector of a standard linear program is perturbed, then the analytic center of the optimal face
Analysis of Nonlinear Missile Guidance Systems Through Linear Adjoint Method
Directory of Open Access Journals (Sweden)
Khaled Gamal Eltohamy
2015-12-01
Full Text Available In this paper, a linear simulation algorithm, the adjoint method, is modified and employed as an efficient tool for analyzing the contributions of system parameters to the miss - distance of a nonlinear time-varying missile guidance system model. As an example for the application of the linear adjoint method, the effect of missile flight time on the miss - distance is studied. Since the missile model is highly nonlinear and a time-varying linearized model is required to apply the adjoint method, a new technique that utilizes the time-reversed linearized coefficients of the missile as a replacement for the time-varying describing functions is applied and proven to be successful. It is found that, when compared with Monte Carlo generated results, simulation results of this linear adjoint technique provide acceptable accuracy and can be produced with much less effort.
Buckling Behavior of Long Anisotropic Plates Subjected to Fully Restrained Thermal Expansion
Nemeth, Michael P.
2003-01-01
An approach for synthesizing buckling results and behavior for thin, balanced and unbalanced symmetric laminates that are subjected to uniform heating or cooling and which are fully-restrained against thermal expansion or contraction is presented. This approach uses a nondimensional analysis for infinitely long, flexurally anisotropic plates that are subjected to combined mechanical loads and is based on useful nondimensional parameters. In addition, stiffness-weighted laminate thermal-expansion parameters are derived and used to determine critical temperature changes in terms of physically intuitive mechanical buckling coefficients. The effects of membrane orthotropy and anisotropy are included. Many results are presented for some common laminates that are intended to facilitate a structural designer's transition to the use of the generic buckling design curves that are presented in the paper. Several generic buckling design curves are presented that provide physical insight into buckling response and provide useful design data. Examples are presented that demonstrate the use of generic design curves. The analysis approach and generic results indicate the effects and characteristics of laminate thermal expansion, membrane orthotropy and anisotropy, and flexural orthotropy and anisotropy in a very general, unifying manner.
Institute of Scientific and Technical Information of China (English)
吴钰川
2015-01-01
In view of the problem of elastic and plastic buckling for axial loaded the cylindrical shells made of functionally graded materials,we employ the finite element software ABAQUS to conduct a nu-merical simulation and analysis. The laminated model and the model of TTO are used in the analysis, which takes full consideration of the physical characteristic of the material,namely,the influence of the physical nonlinearity and the geometrical nonlinear buckling. The influence of the shell thickness and component parameters on the buckling critical state is analyzed through calculating the critical load and deformation pattern of elastic-plastic functionally graded material cylindrical shell buckling.%针对功能梯度材料圆柱壳的考虑缺陷的弹塑性屈曲问题，采用有限元软件ABAQUS进行了数值模拟与分析。分析中采用叠层模型和TTO模型，充分考虑了材料的物性特性，即材料的物理非线性和前屈曲几何非线性的影响。计算得到缺陷作用下的弹塑性功能梯度材料圆柱壳的屈曲临界荷载和变形模式，研究了壳体厚度、组分参数对屈曲临界状态的影响。
Buckled Graphene for Efficient Energy Harvest, Storage, and Conversion
Jiang, Jin-Wu
2016-01-01
Buckling is one of the most common phenomena in atomic-thick layered structures like graphene. While the buckling phenomenon usually causes disaster for most nano-devices, we illustrate one positive application of the buckled graphene for energy harvest, storage, and conversion. More specifically, we perform molecular dynamical simulations to show that the buckled graphene can be used to collect the wasted mechanical energy and store the energy in the form of internal knotting potential. Thro...
Institute of Scientific and Technical Information of China (English)
强国平
2012-01-01
高层钢结构中框架—支撑结构是一种常用的结构形式,文中介绍了支撑结构体系的发展情况.以某实际工程为例,说明了普通钢支撑和屈曲约束支撑两种不同支撑对结构弹性性能的影响,通过静力弹塑性推覆分析对比研究了两种方案的弹塑性性能,并对屈曲约束支撑采用偏心布置形式对框架梁的影响进行了探讨.%Braced steel frame is a normal structural system in high-rise steel buildings. The development of the braced steel frame is introduced. Based on a practical project, the influences of steel braces and bucking restrained braces on the elastic and elasto-plastic behavior are analyzed. By pushover analysis, the seismic behaviors of two frames are studied. And the buckling restrained braces used in eccentrically braces steel frames are analyzed.
Energy and environmental analysis of a linear concentrating photovoltaic system
Kerzmann, Tony
The world is facing an imminent energy supply crisis. In order to sustain and increase our energy supply in an environmentally-conscious manner, it is necessary to advance renewable technologies. Despite this urgency, however, it is paramount to consider the larger environmental effects associated with using renewable energy resources. This research is meant to better understand linear concentrating photovoltaics (LCPVs) from an engineering and environmental standpoint. In order to analyze the LCPV system, a simulation and life cycle assessment (LCA) were developed. The LCPV system serves two major purposes: it produces electricity, and waste heat is collected for heating use. There are three parts to the LCPV simulation. The first part simulates the multijunction cell output so as to calculate the temperature-dependent electricity generation. The second part simulates the cell cooling and waste heat recovery system using a model consisting of heat transfer and fluid flow equations. The waste heat recovery in the LCPV system was linked to a hot water storage system, which was also modeled. Coupling the waste heat recovery simulation and the hot water storage system gives an overall integrated system that is useful for system design, optimization, and acts as a stepping stone for future multijunction cell Photovoltaic/Thermal (PV/T) systems. Finally, all of the LCPV system components were coded in Engineering Equation Solver (EES) and were used in an energy analysis under actual weather and solar conditions for the Phoenix, AZ, region. The life cycle assessment for the LCPV system allowed for an environmental analysis of the system where areas of the highest environmental impact were pinpointed. While conducting the LCA research, each component of the system was analyzed from a resource extraction, production, and use standpoint. The collective production processes of each LCPV system component were gathered into a single inventory of materials and energy flows
THE DYNAMIC BUCKLING OF ELASTIC-PLASTIC COLUMN SUBJECTED TO AXIAL IMPACT BY A RIGID BODY
Institute of Scientific and Technical Information of China (English)
Han Zhijun; Wang Jingchao; Cheng Guoqiang; Ma Hongwei; Zhang Shanyuan
2005-01-01
The dynamic buckling of an elastic-plastic column subjected to axial impact by a rigid body has been discussed in this paper. The whole traveling process of elastic-plastic waves under impact action is analyzed with the characteristics method. The regularity of stress changes in both column ends and the first separating time of a rigid body and column are obtained. By using the energy principle and taking into account the propagation and reflection of stress waves the lateral disturbance equation is derived and the power series solution is given. In addition,the critical buckling condition can be obtained from the stability analysis of the solution. By numerical computation and analysis, the relationship among critical velocity and impact mass,hardening modulus, and buckling time is given.
21 CFR 886.3300 - Absorbable implant (scleral buckling method).
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbable implant (scleral buckling method). 886... SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3300 Absorbable implant (scleral buckling method). (a) Identification. An absorbable implant (scleral buckling method) is a...
Vibration and Buckling of Web Plate of the Plate Girder
高橋, 和雄; 呉, 明強; 中澤, 聡志; 筑紫, 宏之
1998-01-01
The vibration and buckling of the web of the plate girder are studied in this paper. The small deflection theory of the thin plate is used. The finite strip method is employed to solve vibration and buckling of the plate girder. Natural frequenies of buckling properties are shown for various plate girder bridges.
Electromagnetic linear machines with dual Halbach array design and analysis
Yan, Liang; Peng, Juanjuan; Zhang, Lei; Jiao, Zongxia
2017-01-01
This book extends the conventional two-dimensional (2D) magnet arrangement into 3D pattern for permanent magnet linear machines for the first time, and proposes a novel dual Halbach array. It can not only effectively increase the radial component of magnetic flux density and output force of tubular linear machines, but also significantly reduce the axial flux density, radial force and thus system vibrations and noises. The book is also the first to address the fundamentals and provide a summary of conventional arrays, as well as novel concepts for PM pole design in electric linear machines. It covers theoretical study, numerical simulation, design optimization and experimental works systematically. The design concept and analytical approaches can be implemented to other linear and rotary machines with similar structures. The book will be of interest to academics, researchers, R&D engineers and graduate students in electronic engineering and mechanical engineering who wish to learn the core principles, met...
Buckling instability in amorphous carbon films
Zhu, X. D.; Narumi, K.; Naramoto, H.
2007-06-01
In this paper, we report the buckling instability in amorphous carbon films on mirror-polished sapphire (0001) wafers deposited by ion beam assisted deposition at various growth temperatures. For the films deposited at 150 °C, many interesting stress relief patterns are found, which include networks, blisters, sinusoidal patterns with π-shape, and highly ordered sinusoidal waves on a large scale. Starting at irregular buckling in the centre, the latter propagate towards the outer buckling region. The maximum length of these ordered patterns reaches 396 µm with a height of ~500 nm and a wavelength of ~8.2 µm. However, the length decreases dramatically to 70 µm as the deposition temperature is increased to 550 °C. The delamination of the film appears instead of sinusoidal waves with a further increase of the deposition temperature. This experimental observation is correlated with the theoretic work of Crosby (1999 Phys. Rev. E 59 R2542).
Scleral Buckle Extrusion Associated with Phthisis
Directory of Open Access Journals (Sweden)
Tural Galbinur
2011-01-01
Full Text Available Exposure of implanted episcleral element is a rare complication of buckling procedures. We describe a 40-year-old man who presented to our clinic complaining of foreign body sensation and irritation in his left eye which lasted several months. The patient history was positive for bilateral rhegmatogenous retinal detachment which was treated with sclera buckling. Upon presentation the left eye demonstrated phthisis and an exposed and infected sclera buckle and explant in the lower quadrants. The explant was removed, and the patient was treated with antibiotics. This case suggests that wide encircling sclera element might erode through the conjunctiva of eyes undergoing phthisis. Integrity of the conjunctiva overlying episcleral implant should be evaluated during routine follow-up exams to exclude exposure of the implant particularly in eyes undergoing phthisis.
Jamison, J. W.
1994-01-01
CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.
Euler buckling and nonlinear kinking of double-stranded DNA.
Fields, Alexander P; Meyer, Elisabeth A; Cohen, Adam E
2013-11-01
The bending stiffness of double-stranded DNA (dsDNA) at high curvatures is fundamental to its biological activity, yet this regime has been difficult to probe experimentally, and literature results have not been consistent. We created a 'molecular vise' in which base-pairing interactions generated a compressive force on sub-persistence length segments of dsDNA. Short dsDNA strands (Euler buckling'. We monitored the buckling transition via Förster Resonance Energy Transfer (FRET) between appended fluorophores. For low-to-moderate concentrations of monovalent salt (up to ∼150 mM), our results are in quantitative agreement with the worm-like chain (WLC) model of DNA elasticity, without the need to invoke any 'kinked' states. Greater concentrations of monovalent salts or 1 mM Mg(2+) induced an apparent softening of the dsDNA, which was best accounted for by a kink in the region of highest curvature. We tested the effects of all single-nucleotide mismatches on the DNA bending. Remarkably, the propensity to kink correlated with the thermodynamic destabilization of the mismatched DNA relative the perfectly complementary strand, suggesting that the kinked state is locally melted. The molecular vise is exquisitely sensitive to the sequence-dependent linear and nonlinear elastic properties of dsDNA.
Energy Technology Data Exchange (ETDEWEB)
MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK
2007-02-14
This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to global
Generating Feature Spaces for Linear Algorithms with Regularized Sparse Kernel Slow Feature Analysis
Böhmer, W.; Grünewälder, S.; Nickisch, H.; Obermayer, K.
2013-01-01
Without non-linear basis functions many problems can not be solved by linear algorithms. This article proposes a method to automatically construct such basis functions with slow feature analysis (SFA). Non-linear optimization of this unsupervised learning method generates an orthogonal basis on the
Error Analysis on Plane-to-Plane Linear Approximate Coordinate Transformation
Indian Academy of Sciences (India)
Q. F. Zhang; Q. Y. Peng; J. H. Fan
2014-09-01
In this paper, the error analysis has been done for the linear approximate transformation between two tangent planes in celestial sphere in a simple case. The results demonstrate that the error from the linear transformation does not meet the requirement of high-precision astrometry under some conditions, so the linear approximate transformation should be taken seriously.
Modeling and analysis of linear hyperbolic systems of balance laws
Bartecki, Krzysztof
2016-01-01
This monograph focuses on the mathematical modeling of distributed parameter systems in which mass/energy transport or wave propagation phenomena occur and which are described by partial differential equations of hyperbolic type. The case of linear (or linearized) 2 x 2 hyperbolic systems of balance laws is considered, i.e., systems described by two coupled linear partial differential equations with two variables representing physical quantities, depending on both time and one-dimensional spatial variable. Based on practical examples of a double-pipe heat exchanger and a transportation pipeline, two typical configurations of boundary input signals are analyzed: collocated, wherein both signals affect the system at the same spatial point, and anti-collocated, in which the input signals are applied to the two different end points of the system. The results of this book emerge from the practical experience of the author gained during his studies conducted in the experimental installation of a heat exchange cente...
Performance analysis of the ultra-linear optical intensity modulator
Madamopoulos, Nicholas; Dingel, Benjamin
2006-10-01
The linear optical intensity modulator is a key component in any broadband optical access-based analog fiber-optic link systems such as sub-carrier multiplexing (SCM) systems, ultra-dense CATV, Radio-over-Fiber (RoF) communications, and other platform access systems. Previously, we have proposed a super-linear optical modulator, having SFDR = 130 -140 dB-Hz 2/3, based on a unique combination of phase-modulator (PM) and a weak ring resonator (RR) modulator within a Mach-Zehnder interferometer (MZI). We presented some of its unique features. In this paper, we characterize further this ultra-linear optical intensity modulator, analyze its RF performance and provide method for parameter optimization. Other excellent features of this modulator design such as high manufacturing tolerance, effect of link insertion loss, adaptive characteristic and device simplicity are also discussed.
An Asymptotic Analysis of the MIMO BC under Linear Filtering
Hunger, Raphael
2008-01-01
We investigate the MIMO broadcast channel in the high SNR regime when linear filtering is applied instead of dirty paper coding. Using a user-wise rate duality where the streams of every single user are not treated as self-interference as in the hitherto existing stream-wise rate dualities for linear filtering, we solve the weighted sum rate maximization problem of the broadcast channel in the dual multiple access channel. Thus, we can exactly quantify the asymptotic rate loss of linear filtering compared to dirty paper coding for any channel realization. Having converted the optimum covariance matrices to the broadcast channel by means of the duality, we observe that the optimal covariance matrices in the broadcast channel feature quite complicated but still closed form expressions although the respective transmit covariance matrices in the dual multiple access channel share a very simple structure. We immediately come to the conclusion that block-diagonalization is the asymptotically optimum transmit strate...
Linear Analysis and Verification Suite for Edge Turbulence
Energy Technology Data Exchange (ETDEWEB)
Myra, J R; Umansky, M
2008-04-24
The edge and scrape-off-layer region of a tokamak plasma is subject to well known resistive and ideal instabilities that are driven by various curvature- and sheath-related mechanisms. While the boundary plasma is typically strongly turbulent in experiments, it is useful to have computational tools that can analyze the linear eigenmode structure, predict quantitative trends in growth rates and elucidate and the underlying drive mechanisms. Furthermore, measurement of the linear growth rate of unstable modes emerging from a known, established equilibrium configuration provides one of the few quantitative ways of rigorously benchmarking large-scale plasma turbulence codes with each other and with a universal standard. In this report, a suite of codes that can describe linearized, nonlocal (e.g. separatrix-spanning) modes in axisymmetric (realistic divertor), toroidal geometry is discussed. Examples of several benchmark comparisons are given, and future development plans for a new eigenvalue edge code are presented.
Control system analysis for the perturbed linear accelerator rf system
Sung Il Kwon
2002-01-01
This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.
Buckling modes of elastic thin films on elastic substrates
Mei, Haixia; Huang, Rui; Chung, Jun Young; Stafford, Christopher M.; Yu, Hong-Hui
2007-04-01
Two buckling modes have been observed in thin films: buckle delamination and wrinkling. This letter identifies the conditions for selecting the favored buckling modes for elastic films on elastic substrates. Transition from one buckling mode to another is predicted as the stiffness ratio between the substrate and the film or is predicted for variation of the stiffness ratio between the substrate and the film or variation of theinterfacial defect size. The theoretical results are demonstrated experimentally by observing the coexistence of both buckling modes and mode transition in one film-substrate system.
Analysis of the Structured Perturbation for the BCSCB Linear System
Directory of Open Access Journals (Sweden)
Xia Tang
2015-01-01
Full Text Available Circulant and block circulant type matrices are important tools in solving networked systems. In this paper, based on the style spectral decomposition of the basic circulant matrix and the basic skew circulant matrix, the block style spectral decomposition of the BCSCB matrix is obtained. And then, the structure perturbation is analysed, which includes the condition number and relative error of the BCSCB linear system. Then the optimal backward perturbation bound of the BCSCB linear system is discussed. Simultaneously, the algorithm for the optimal backward perturbation bound is given. Finally, a numerical example is provided to verify the effectiveness of the algorithm.
Analysis of Linear Time-varying Systems via Haar Wavelet
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
In this paper Haar wavelet integral operational matrices are introduced and the n applied to analyse linear time-varying systems. The method converts the origi nal problem to solving linear algebraic equations. Hence, computational difficulties are considerably reduced. Based on the property of time-frequency localization of Haar wavelet bases, the solution of a system includes both the frequency information and the time information. Other orthogonal functions do not have this property. An example is given, and the results are shown to be ver y accurate.
Analytic central path, sensitivity analysis and parametric linear programming
A.G. Holder; Sturm, J.F.; Zhang, Shuzhong
1998-01-01
textabstractIn this paper we consider properties of the central path and the analytic center of the optimal face in the context of parametric linear programming. We first show that if the right-hand side vector of a standard linear program is perturbed, then the analytic center of the optimal face is one-side differentiable with respect to the perturbation parameter. In that case we also show that the whole analytic central path shifts in a uniform fashion. When the objective vector is pertur...
Algorithms for Linear Time Series Analysis: With R Package
Directory of Open Access Journals (Sweden)
A. Ian McLeod
2007-11-01
Full Text Available Our ltsa package implements the Durbin-Levinson and Trench algorithms and provides a general approach to the problems of fitting, forecasting and simulating linear time series models as well as fitting regression models with linear time series errors. For computational efficiency both algorithms are implemented in C and interfaced to R. Examples are given which illustrate the efficiency and accuracy of the algorithms. We provide a second package FGN which illustrates the use of the ltsa package with fractional Gaussian noise (FGN. It is hoped that the ltsa will provide a base for further time series software.
Free vibration analysis of Mindlin plates with linearly varying thickness
Aksu, G.; Al-Kaabi, S. A.
1987-12-01
A method based on the variational principles in conjunction with the finite difference technique is applied to examine the free vibration characteristics of isotropic rectangular plates of linearly varying thickness by including the effects of transverse shear deformation and rotary inertia. The validity of the present approach is demonstrated by comparing the results with other solutions proposed for plates with uniform and linearly varying thickness. Natural frequencies and mode shapes of Mindlin plates with simply supported and clamped edges are determined for various values of relative thickness ratio and the taper thickness constant.
National Research Council Canada - National Science Library
IKUNO, Soichiro; CHEN, Gong; YAMAMOTO, Susumu; ITOH, Taku; ABE, Kuniyoshi; NAKAMURA, Hiroaki
2016-01-01
Krylov subspace method and the variable preconditioned Krylov subspace method with communication avoiding technique for a linear system obtained from electromagnetic analysis are numerically investigated. In the k...
Energy Technology Data Exchange (ETDEWEB)
Firouz-Abadi, R. D.; Fotouhi, M. M.; Permoon, M. R.; Haddadpour, H. [Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2012-02-15
The small-scale effect on the natural frequencies and buckling of pressurized nanotubes is investigated in this study. Based on the firstorder shear deformable shell theory, the nonlocal theory of elasticity is used to account for the small-scale effect and the governing equations of motion are obtained. Applying modal analysis technique and based on Galerkin's method a procedure is proposed to obtain natural frequencies of vibrations. For the case of nanotubes with simply supported boundary conditions, explicit expressions are obtained which establish the dependency of the natural frequencies and buckling loads of the nanotube on the small-scale parameter and natural frequencies obtained by local continuum mechanics. The obtained solutions generalize the results of nano-bar and -beam models and are verified by the literature. Based on several numerical studies some conclusions are drawn about the small-scale effect on the natural frequencies and buckling pressure of the nanotubes.
DYNAMIC BUCKLING OF ELASTIC-PLASTIC COLUMN IMPACTED BY RIGID BODY
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The dynamic buckling of an elastic-plastic column subjected to an axial impact by a rigid body was discussed by using the energy law. The traveling process of elastic-plastic waves under impact action was analyzed by characteristics method. The equation of lateral disturbance used to analyze the problem was developed by taking into account the effect of elastic-plastic stress wave. The power series solution of this problem has been the power series approach. The buckling criterion of this problem was proposed by analyzing the characteristics of the solution. The relationship among critical velocity and impact mass, critical buckling length, hardening modulus was given by using theoretical analysis and numerical computation.
A note on parametric analysis in linear assignment
Volgenant, A.
2008-01-01
A classic application of the linear assignment problem is the assignment of people to jobs (or jobs to people). In this context, it is interesting to measure competition for jobs and to generate a suitable list of jobs from which a person can choose; the length of the list is a parameter. A known
Reachability analysis of switched linear discrete singular systems
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This paper studies the reachability problem of the switched linear discrete singular (SLDS) systems. Under the condition that all subsystems are regular, the reachability of the SLDS systems is characterized based on a peculiar repeatedly introduced switching sequence. The necessary and sufficient conditions are obtained for the reachability of the SLDS systems.
Simulated Analysis of Linear Reversible Enzyme Inhibition with SCILAB
Antuch, Manuel; Ramos, Yaquelin; Álvarez, Rubén
2014-01-01
SCILAB is a lesser-known program (than MATLAB) for numeric simulations and has the advantage of being free software. A challenging software-based activity to analyze the most common linear reversible inhibition types with SCILAB is described. Students establish typical values for the concentration of enzyme, substrate, and inhibitor to simulate…
Observability analysis of nonlinear systems using pseudo-linear transformation
Kawano, Yu; Ohtsuka, Toshiyuki
2013-01-01
In the linear control theory, the observability Popov-Belevitch-Hautus (PBH) test plays an important role in studying observability along with the observability rank condition and observability Gramian. The observability rank condition and observability Gramian have been extended to nonlinear system
ASYMPTOTIC ANALYSIS OF LINEARLY ELASTIC SHALLOW SHELLS WITH VARIABLE THICKNESS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The author considers a linearly elastic shallow shell with variable thickness and shows that, as the thickness of the shell goes to zero, the solution of the three-dimensional equations converges to the solution of the two-dimensional shallow shell equations with variable thickness.
ANALYSIS OF A MECHANICAL SOLVER FOR LINEAR SYSTEMS OF EQUATIONS
Institute of Scientific and Technical Information of China (English)
Luis Vázquez; Salvador Jiménez
2001-01-01
In this contribution we analyse some fundamental features of an iterative method to solve systems of linear equations, following the approach introduced in a previous work[1].Such questions range from optimal parameters and initial conditions to comparison with other methods. An interesting result is that a priori we can give an estimation of the number of iterations to get a given accuracy.
Growth of buckling instabilities during radial collapse of an impulsively-loaded cylindrical shell
Energy Technology Data Exchange (ETDEWEB)
Duffey, T.A.; Warnes, R.H.; Greene, J.M.
1987-01-01
Conditions leading to the growth of initial imperfections for rings or cylindrical shells subjected to initial uniform inward impulsive velocity loading are investigated. The work is motivated by a need to prevent buckling of rings during the contracting ring test, which is used to determine intermediate strain rate compressive stress-strain data. A previous analysis by Abrahamson is extended to include deceleration of the ring during inward motion; and the results of this deceleration are found to greatly influence the growth of imperfections (buckling). Qualitative comparisons with experimental data are presented.
Linear matrix inequalities for analysis and control of linear vector second-order systems
Energy Technology Data Exchange (ETDEWEB)
Adegas, Fabiano D. [Aalborg Univ. (Denmark); Stoustrup, Jakob [Aalborg Univ. (Denmark)
2014-10-06
Many dynamical systems are modeled as vector second-order differential equations. This paper presents analysis and synthesis conditions in terms of LMI with explicit dependence in the coefficient matrices of vector second-order systems. These conditions benefit from the separation between the Lyapunov matrix and the system matrices by introducing matrix multipliers, which potentially reduce conservativeness in hard control problems. Multipliers facilitate the usage of parameter-dependent Lyapunov functions as certificates of stability of uncertain and time-varying vector second-order systems. The conditions introduced in this work have the potential to increase the practice of analyzing and controlling systems directly in vector second-order form.
Plastic Buckling of Cylindrical Shells Under Transverse Loading
Institute of Scientific and Technical Information of China (English)
ZHANG Chonghou; LIU Yansheng; Yoshiaki Goto
2008-01-01
Thick cylindrical shells under transverse loading exhibit an elephant foot buckling mode, whereas moderately thick cylindrical shells show a diamond buckling mode. There exists some intermediate geome- try at which the transition between buckling modes can take place. This behavior is significantly influenced by the radius-to-thickness ratio and the material yield strength, rather than the length-to-radius ratio and the axial force. This paper presents a critical value at which the transition of buckling modes occurs as a func- tion of the radius-to-thickness ratio and the material yield strength. The result shows that the circumferential wave number of the diamond buckling mode increases with decreasing wall thickness. The strain concentra- tion is also intensified for the diamond buckling modes compared with the elephant foot buckling modes.
Dynamic Analysis of Steel Frame with Double-tube Buckling Restrained Braces%带改进型双钢管约束屈曲支撑的钢框架力学性能分析
Institute of Scientific and Technical Information of China (English)
殷占忠; 张素峰; 孙源; 王立功
2016-01-01
Pushover analysis and nonlinear time-history analysis of the retrofitted steel frame structures with im-proved double-tube buckling restrained braces and original steel frame were performed using Opensees and the seis-mic performances were compared.The conclusions are following: the stiffness and strength of the retrofitted steel frame are improved, and the roof drift ratio reduces while the base shear ratio has a little increase;under the earth quake, the degree of damage is far less than that of original steel frame, and the formed plastic hinges mainly con-centrate on the middle beams and brace, avoiding the damages on other members.%基于Opensees程序对原框架和增设改进型双钢管约束屈曲支撑加固的钢框架进行Pushover分析和非线性时程分析，对两者的抗震性能进行比较。得出以下结论：加固后的钢框架刚度和强度明显提高，顶层侧移比减小而底部剪力比增加较小；地震作用下，加固后的框架破坏程度远小于原框架，所产生的塑性铰主要集中在中间跨梁和支撑处，避免了其他构件发生破坏。说明对原框架增设改进型双钢管约束屈曲支撑加固，可提高结构的抗震性能。
Ncibi, Mohamed Chaker
2008-05-01
In any single component isotherm study, determining the best-fitting model is a key analysis to mathematically describe the involved sorption system and, therefore, to explore the related theoretical assumptions. Hence, several error calculation functions have been widely used to estimate the error deviations between experimental and theoretically predicted equilibrium adsorption values (Q(e,exp)vs.Q(e,theo) as X- and Y-axis, respectively), including the average relative error deviation, the Marquardt's percent standard error deviation, the hybrid fractional error function, the sum of the squares of the errors, the correlation coefficient and the residuals. In this study, five other statistical functions are analysed to investigate their applicability as suitable tools to evaluate isotherm model fitness, namely the Pearson correlation coefficient, the coefficient of determination, the Chi-square test, the F-test and the Student's T-test, using the commonly-used functions as references. The adsorption of textile dye onto Posidonia oceanica seagrass fibres was carried out, as study case, in batch mode at 20 degrees C. Besides, and in order to get an overall approach of the possible utilization of these statistical functions within the studied item, the examination was realized for both linear and non-linear regression analysis. The related results showed that, among the five studied statistical tools, the chi(2) and Student's T-tests were suitable to determine the best-fitting isotherm model for the case of linear modelling approach. On the other hand, dealing with the non-linear analysis, despite the Student's T-test, all the other functions gave satisfactorily results, by agreeing the commonly-used error functions calculation.
Critical Buckling Load on Large Spherical Shells
DEFF Research Database (Denmark)
Wedellsborg, B. W.
1962-01-01
Approximate evaluation for watertanks, hortonspheres, vapor containers, containment vessels for nuclear reactors, and so forth, has been computed, taking into account out-of-roundness and local flattened areas; graphs have been plotted giving critical buckling load as function of maximum radial...
Dynamic Pulse Buckling--Theory and Experiment
1983-02-01
34Buckling of Bars Subject to Axial Shock," Studii si Cercetari de Mecanica Applicata (Roumania), 7, 1, pp. 173-178, January 1956. 26. A.F. Schmitt, "A...Procopovici, "Transverse Deformation of an Elastic Bar Subjected to an Axial Impulsive Force," Studii si Ceretari de Mecanica Applicata. 8, 3, pp. 839
Selective buckling via states of self-stress in topological metamaterials
Paulose, Jayson; Meeussen, Anne S.; Vitelli, Vincenzo
2015-01-01
States of self-stress—tensions and compressions of structural elements that result in zero net forces—play an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with tunable mechanical properties. We exploit a class of recently introduced states of self-stress analogous to topological quantum states to sculpt localized buckling regions in the interior of periodic cellular metamaterials. Although the topological states of self-stress arise in the linear response of an idealized mechanical frame of harmonic springs connected by freely hinged joints, they leave a distinct signature in the nonlinear buckling behavior of a cellular material built out of elastic beams with rigid joints. The salient feature of these localized buckling regions is that they are indistinguishable from their surroundings as far as material parameters or connectivity of their constituent elements are concerned. Furthermore, they are robust against a wide range of structural perturbations. We demonstrate the effectiveness of this topological design through analytical and numerical calculations as well as buckling experiments performed on two- and three-dimensional metamaterials built out of stacked kagome lattices. PMID:26056303
Selective buckling via states of self-stress in topological metamaterials.
Paulose, Jayson; Meeussen, Anne S; Vitelli, Vincenzo
2015-06-23
States of self-stress--tensions and compressions of structural elements that result in zero net forces--play an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with tunable mechanical properties. We exploit a class of recently introduced states of self-stress analogous to topological quantum states to sculpt localized buckling regions in the interior of periodic cellular metamaterials. Although the topological states of self-stress arise in the linear response of an idealized mechanical frame of harmonic springs connected by freely hinged joints, they leave a distinct signature in the nonlinear buckling behavior of a cellular material built out of elastic beams with rigid joints. The salient feature of these localized buckling regions is that they are indistinguishable from their surroundings as far as material parameters or connectivity of their constituent elements are concerned. Furthermore, they are robust against a wide range of structural perturbations. We demonstrate the effectiveness of this topological design through analytical and numerical calculations as well as buckling experiments performed on two- and three-dimensional metamaterials built out of stacked kagome lattices.
A linear circuit analysis program with stiff systems capability
Cook, C. H.; Bavuso, S. J.
1973-01-01
Several existing network analysis programs have been modified and combined to employ a variable topological approach to circuit translation. Efficient numerical integration techniques are used for transient analysis.
Linear dynamical quantum systems analysis, synthesis, and control
Nurdin, Hendra I
2017-01-01
This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...
Practical likelihood analysis for spatial generalized linear mixed models
DEFF Research Database (Denmark)
Bonat, W. H.; Ribeiro, Paulo Justiniano
2016-01-01
We investigate an algorithm for maximum likelihood estimation of spatial generalized linear mixed models based on the Laplace approximation. We compare our algorithm with a set of alternative approaches for two datasets from the literature. The Rhizoctonia root rot and the Rongelap are, respectiv......We investigate an algorithm for maximum likelihood estimation of spatial generalized linear mixed models based on the Laplace approximation. We compare our algorithm with a set of alternative approaches for two datasets from the literature. The Rhizoctonia root rot and the Rongelap are...... of Laplace approximation include the computation of the maximized log-likelihood value, which can be used for model selection and tests, and the possibility to obtain realistic confidence intervals for model parameters based on profile likelihoods. The Laplace approximation also avoids the tuning...
Parametric Analysis of Fiber Non-Linearity in Optical systems
Directory of Open Access Journals (Sweden)
Abhishek Anand
2013-06-01
Full Text Available With the advent of technology Wavelength Division Multiplexing (WDM is always an area of interest in the field of optical communication. When combined with Erbium Doped Fiber Amplifier (EDFA, it provides high data transmission rate and low attenuation. But due to fiber non-linearity such as Self Phase Modulation (SPM and Cross Phase Modulation (XPM the system performance has degraded. This non-linearity depends on different parameters of an optical system such as channel spacing, power of the channel and length of the fiber section. The degradation can be seen in terms of phase deviation and Bit Error Rate (BER performance. Even after dispersion compensation at the fiber end, residual pulse broadening still exists due to cross talk penalty.
Institute of Scientific and Technical Information of China (English)
侯朝胜; 李婧; 龙泉
2003-01-01
The cubic B-splines taken as trial function, the large deflection of a circular plate with arbitrarily variable thickness,as well as the buckling load, have been calculated by the method of point collocation. The support can be elastic. Loads imposed can be polynomial distributed loads, uniformly distributed radial forces or moments along the edge respectively or their combinations. Convergent solutions can still be obtained by this method under the load whose value is in great excess of normal one. Under the action of the uniformly distributed loads, linear solutions of circular plates with linearly or quadratically variable thickness are compared with those obtained by the parameter method. Buckling of a circular plate with identical thickness beyond critical thrust is compared with those obtained by the power series method.
Asymptotical stability analysis of linear fractional differential systems
Institute of Scientific and Technical Information of China (English)
LI Chang-pin; ZHAO Zhen-gang
2009-01-01
It has been recently found that many models were established with the aid of fractional derivatives, such as viscoelastic systems, colored noise, electrode-electrolyte polarization, dielectric polarization, boundary layer effects in ducts,electromagnetic waves, quantitative finance, quantum evolution of complex systems, and fractional kinetics. In this paper, the asymptotical stability of higher-dimensional linear fractional differential systems with the Riemann-Liouville fractional order and Caputo fractional order were studied. The asymptotical stability theorems were also derived.
Stability analysis of linear multistep methods for delay differential equations
Directory of Open Access Journals (Sweden)
V. L. Bakke
1986-01-01
Full Text Available Stability properties of linear multistep methods for delay differential equations with respect to the test equation y′(t=ay(λt+by(t, t≥0,0<λ<1, are investigated. It is known that the solution of this equation is bounded if and only if |a|<−b and we examine whether this property is inherited by multistep methods with Lagrange interpolation and by parametrized Adams methods.
Contact Analysis and Modeling of Standing Wave Linear Ultrasonic Motor
Institute of Scientific and Technical Information of China (English)
SHI Yunlai; ZHAO Chunsheng; ZHANG Jianhui
2011-01-01
A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented.The proposed model starts from the assumption that the vibration characteristics of the stator is not affected by the contact process.A modified friction models was used to analyze the contact problems.Firstly,the dynamic normal contact force,interface friction force,and steady-state characteristics were analyzed.Secondly,the influences of the contact layer material,the dynamic characteristics of the stator,and the pre-load on motor performance were simulated.Finally,to validate the contact model,a linear ultrasonic motor based on in-plane modes was used as an example.The corresponding results show that a set of simulation of motor performances based on the proposed contact mechanism is in good agreement with experimental results.This model is helpful to understanding the operation principle of the standing wave linear motor and thus contributes to the design of these tvpes of motor.
Non-linear ultimate strength and stability limit state analysis of a wind turbine blade
DEFF Research Database (Denmark)
Rosemeier, Malo; Berring, Peter; Branner, Kim
2016-01-01
flap-wise loading has been compared with a linear response to determine the blade's resistance in the ultimate strength and stability limit states. The linear analysis revealed an unrealistic failure mechanism and failure mode. Further, it did not capture the highly non-linear response of the blade...... of an imperfection. The more realistic non-linear approaches yielded more optimistic results than the mandatory linear bifurcation analysis. Consequently, the investigated blade designed after the lesser requirements was sufficient. Using the non-linear approaches, considering inter-fibre failure as the critical...... failure mode, yielded still a significant safety margin for the designer (7–28%). The non-linear response was significantly dependent on the scaling of the imperfection. Eurocode's method of applying an imperfection appeared more realistic than the GL method. Since the considered blade withstood 135...
Institute of Scientific and Technical Information of China (English)
辛克贵; 姜美兰
2001-01-01
根据势能驻值原理，提出在横向荷载作用下薄壁杆件稳定分析的样条有限杆元法。方法采用转换B3样条函数模拟杆件横截面的翘曲位移场，并考虑了杆壁中面上剪切变形的影响，能很好地描述剪力滞后现象。适用于任意横截面形状和任意边界条件的薄壁杆件，为高层建筑和桥梁结构的稳定分析提供了可靠而有效的分析方法。文中讨论了横向荷载作用下具有不同边界条件的工字型薄壁梁的屈曲分析。数值算例的结果表明了方法的灵活性、精确性和有效性。%The displacement variational principle was used to develop thespline finite member element method for buckling analysis of thin-walled members with shear lag effect. A transformed B3 spline function was used to simulate the warping displacements along the cross section of the thin-walled members. The proposed method is applicable to thin-walled members of any cross section with any boundary condition. The method was evaluated by studying the elastic modes of I-beams subjected to various loading conditions and different boundary conditions. The versatility, accuracy and efficiency of the proposed method compares well with classical theory.
Linear and Nonlinear Analysis of Brain Dynamics in Children with Cerebral Palsy
Sajedi, Firoozeh; Ahmadlou, Mehran; Vameghi, Roshanak; Gharib, Masoud; Hemmati, Sahel
2013-01-01
This study was carried out to determine linear and nonlinear changes of brain dynamics and their relationships with the motor dysfunctions in CP children. For this purpose power of EEG frequency bands (as a linear analysis) and EEG fractality (as a nonlinear analysis) were computed in eyes-closed resting state and statistically compared between 26…
European column buckling curves and finite element modelling including high strength steels
DEFF Research Database (Denmark)
Jönsson, Jeppe; Stan, Tudor-Cristian
2017-01-01
Eurocode allows for finite element modelling of plated steel structures, however the information in the code on how to perform the analysis or what assumptions to make is quite sparse. The present paper investigates the deterministic modelling of flexural column buckling using plane shell element...
The Mexican hat effect on the delamination buckling of a compressed thin film
Zhang, Yin; Liu, Yun
2014-12-01
Because of the interaction between film and substrate, the film buckling stress can vary significantly, depending on the delamination geometry, the film and substrate mechanical properties. The Mexican hat effect indicates such interaction. An analytical method is presented, and related dimensional analysis shows that a single dimensionless parameter can effectively evaluate the effect.
Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis
Jeffrey, Alan
1971-01-01
The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)
Non-modal linear stability analysis of miscible viscous fingering in a Hele-Shaw cell
Hota, Tapan Kumar; Mishra, Manoranjan
2015-01-01
For miscible viscous fingering (VF) in a Hele-Shaw cell or in two dimensional homogeneous porous media, the transient growth of disturbances is investigated by non-modal linear stability analysis (NMA). Due to the non-autonomous nature of the linearized perturbed equations, the linear stability theory prohibits using the normal mode analysis. The linearized perturbed equations for Darcy's law coupled with a convection-diffusion equation is discretized using finite difference method. The resultant matrix valued initial value problem is then solved by fourth order Runge-Kutta method, followed by a singular value decomposition (SVD) of the propagator matrix. We demonstrate the dominant perturbation that experiences the maximum amplification within the linear regime which lead to the transient growth. This feature was previously unattained in the existing linear stability methods for miscible VF. To explore the relevance of the optimal perturbation obtained from non-modal analysis of the physical system, we perfo...
AN ASYMPTOTIC ANALYSIS METHOD FOR THE LINEAR SHELL
Institute of Scientific and Technical Information of China (English)
李开泰; 张文岭; 黄艾香
2004-01-01
In this paper, using the formal approach of asymptotic expansion for linear elastic shell we can get each term uk successively. According this metnod the leading term u0 will be identified by an elliptic boundary value problem, other terms will be obtained by the algebraic operations without solving partial differential equations. We give the variational formulation for the leading term U(x) and construct an approximate solution UKT(x,ζ):=U(x)+Ⅱ1Uζ+Ⅱ2Uζ2,then we give the estimation.
Tanev, George; Saadi, Dorthe B; Hoppe, Karsten; Sorensen, Helge B D
2014-01-01
Chronic stress detection is an important factor in predicting and reducing the risk of cardiovascular disease. This work is a pilot study with a focus on developing a method for detecting short-term psychophysiological changes through heart rate variability (HRV) features. The purpose of this pilot study is to establish and to gain insight on a set of features that could be used to detect psychophysiological changes that occur during chronic stress. This study elicited four different types of arousal by images, sounds, mental tasks and rest, and classified them using linear and non-linear HRV features from electrocardiograms (ECG) acquired by the wireless wearable ePatch® recorder. The highest recognition rates were acquired for the neutral stage (90%), the acute stress stage (80%) and the baseline stage (80%) by sample entropy, detrended fluctuation analysis and normalized high frequency features. Standardizing non-linear HRV features for each subject was found to be an important factor for the improvement of the classification results.
Non Linear Analysis of MPPT for Power Quality Improvement
Directory of Open Access Journals (Sweden)
S. Sankar
2015-08-01
Full Text Available In this study the conventional inverter interfacing renewable energy sources with the grid, without any additional hardware cost. Here, the main idea is the maximum utilization of inverter rating which is most of the time underutilized due to intermittent nature of RES. Based on the non-linear characteristics of PV, these thesis designs a VSS controller to realize the maximum power output of PV arrays. The output power from renewable energy sources fluctuates because of weather variations. This study proposes an effective power quality control strategy of renewable energy sources connected to power system using Photovoltaic (PV array. If the main controller used is a PR controller, any dc offset in a control loop will propagate through the system and the inverter terminal voltage will have a nonzero average value. In this strategy both load and inverter current sensing is required to compensate the load current harmonics. The non-linear load current harmonics may result in voltage harmonics and can create a serious PQ problem in the power system network.
Design and Analysis of Tubular Permanent Magnet Linear Wave Generator
Directory of Open Access Journals (Sweden)
Jikai Si
2014-01-01
Full Text Available Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.
Design and analysis of tubular permanent magnet linear wave generator.
Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng
2014-01-01
Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.
Multichannel linear descriptors analysis for sustained attention-related electroencephalography.
Liu, Tian; Yan, Nan; Chen, Yanni; Wang, Jue
2013-08-07
This study investigated the differences in brain functional state between sustained attention and ignoring task conditions using the electroencephalography in association with sustained attention to response task (SART) performance. Multichannel electroencephalography data were obtained from 10 male healthy volunteers while performing the SART. Three multichannel linear descriptors, that is spatial complexity (Ω), field strength (Σ), and frequency of field changes (Φ), were applied to analyze three frequency bands (θ, α, and β) for sustained attention and ignoring task conditions. The experimental results showed that participants had a significantly lower Ω value in the θ and α band in the SART state. The Σ value was significantly higher in each frequency band of interest in almost all region of interest areas during SART performance. In addition, the Φ value was significantly lower in the θ band and significantly higher in the β band during the sustained attention condition. The results indicated that multichannel linear descriptors could show the differences in brain functions between sustained attention and ignoring task conditions, and might be used to evaluate disorders with an attentional dysfunction.
Buckling of Rectangular Delamination Bridged by Fibers%有纤维搭桥的矩形脱层屈曲
Institute of Scientific and Technical Information of China (English)
翟三栋; 张扬; 李四平
2011-01-01
The problem of buckling of delamination stitched with fiber-bridge in 3D composites was solved by FEA.Linear springs of tension-only or compression-only distributed on the nodes of delamination cells are used to simulate the fibers and substrate respectively.The problem of eigenvalue buckling is transformed into the problem of geometric nonlinearities with an initial imperfection and solved by FEA of incremental non-linear structural analysis.The results show that there are period contact points（districts） between delamination and substrate.And as the elastic coefficient of the fiber bridge increases,the critical buckling loads may also increase.The relation of the characteristic length and fiber-bridge is expressed by mathematical formula.%用有限元方法求解了3D复合材料中有纤维搭桥的矩形脱层屈曲问题.搭桥纤维和基体分别用分布于脱层单元节点上的只拉不压和只压不拉的线性弹簧单元来模拟,并把有纤维搭桥脱层屈曲的特征值问题转化成考虑初始缺陷的结构几何非线性强度问题,用增量非线性结构分析的有限元方法求解.结果表明,引进纤维搭桥后,脱层屈曲模态上存在与基体周期性的接触点（区）,屈曲临界载荷随着纤维搭桥刚度的增加而增加.最后,通过数学公式给出了脱层屈曲的特征长度与纤维搭桥的关系式.
Buckling Behavior of Long Anisotropic Plates Subjected to Elastically Restrained Thermal Expansion
Nemeth, Michael P.
2002-01-01
An approach for synthesizing buckling results for, and behavior of, thin balanced and unbalanced symmetric laminates that are subjected to uniform heating or cooling and elastically restrained against thermal expansion or contraction is presented. This approach uses a nondimensional analysis for infinitely long, flexurally anisotropic plates that are subjected to combined mechanical loads and is based on useful nondimensional parameters. In addition, stiffness-weighted laminate thermal-expansion parameters and compliance coefficients are derived that are used to determine critical temperatures in terms of physically intuitive mechanical-buckling coefficients. The effects of membrane orthotropy and membrane anisotropy are included in the general formulation. Many results are presented for some common laminates that are intended to facilitate a structural designer's transition to the use of generic buckling design curves. Several curves that illustrate the fundamental parameters used in the analysis are presented, for nine contemporary material systems, that provide physical insight into the buckling response in addition to providing useful design data. Examples are presented that demonstrate the use of generic design curves. The analysis approach and generic results indicate the effects and characteristics of elastically restrained laminate thermal expansion or contraction, membrane orthotropy and anisotropy, and flexural orthotropy and anisotropy in a very general and unifying manner.
A linear mixture analysis-based compression for hyperspectral image analysis
Energy Technology Data Exchange (ETDEWEB)
C. I. Chang; I. W. Ginsberg
2000-06-30
In this paper, the authors present a fully constrained least squares linear spectral mixture analysis-based compression technique for hyperspectral image analysis, particularly, target detection and classification. Unlike most compression techniques that directly deal with image gray levels, the proposed compression approach generates the abundance fractional images of potential targets present in an image scene and then encodes these fractional images so as to achieve data compression. Since the vital information used for image analysis is generally preserved and retained in the abundance fractional images, the loss of information may have very little impact on image analysis. In some occasions, it even improves analysis performance. Airborne visible infrared imaging spectrometer (AVIRIS) data experiments demonstrate that it can effectively detect and classify targets while achieving very high compression ratios.
Identification of noise in linear data sets by factor analysis
Energy Technology Data Exchange (ETDEWEB)
Roscoe, B.A.; Hopke, Ph.K. (Illinois Univ., Urbana (USA))
1982-01-01
A technique which has the ability to identify bad data points, after the data has been generated, is classical factor analysis. The ability of classical factor analysis to identify two different types of data errors make it ideally suited for scanning large data sets. Since the results yielded by factor analysis indicate correlations between parameters, one must know something about the nature of the data set and the analytical techniques used to obtain it to confidentially isolate errors.
Computational aspects of sensitivity calculations in linear transient structural analysis
Greene, W. H.; Haftka, R. T.
1991-01-01
The calculation of sensitivities of displacements, velocities, accelerations, and stresses in linear, structural, and transient response problems is studied. Several existing sensitivity calculation methods and two new methods are compared for three example problems. Approximation vectors such as vibration mode shapes are used to reduce the dimensionality of the finite model. To be computationally practical in large-order problems, the overall finite difference methods must use the approximation vectors from the original design in the analyses of the perturbed models. This was found to result in poor convergence of stress sensitivities in several cases. Two semianalytical techniques are developed to overcome this poor convergence. Both new methods result in very good convergence of the stress sensitivities; the computational cost is much less than would result if the vibration modes were recalculated and then used in an overall finite difference method.
Linear Vlasov analysis for stability of a bunched beam
Energy Technology Data Exchange (ETDEWEB)
Warnock, Robert; Stupakov, Gennady; Venturini, Marco; Ellison, James A.
2004-06-30
We study the linearized Vlasov equation for a bunched beam subject to an arbitrary wake function. Following Oide and Yokoya, the equation is reduced to an integral equation expressed in angle-action coordinates of the distorted potential well. Numerical solution of the equation as a formal eigenvalue problem leads to difficulties, because of singular eigenmodes from the incoherent spectrum. We rephrase the equation so that it becomes non-singular in the sense of operator theory, and has only regular solutions for coherent modes. We report on a code that finds thresholds of instability by detecting zeros of the determinant of the system as they enter the upper-half frequency plane, upon increase of current. Results are compared with a time-domain integration of the nonlinear Vlasov equation with a realistic wake function for the SLC damping rings. There is close agreement between the two calculations.
Linear Vlasov Analysis for Stability of a Bunched Beam
Energy Technology Data Exchange (ETDEWEB)
Warnock, R
2004-08-12
The authors study the linearized Vlasov equation for a bunched beam subject to an arbitrary wake function. Following Oide and Yokoya, the equation is reduced to an integral equation expressed in angle-action coordinates of the distorted potential well. Numerical solution of the equation as a formal eigenvalue problem leads to difficulties, because of singular eigenmodes from the incoherent spectrum. The authors rephrase the equation so that it becomes non-singular in the sense of operatory theory, and has only regular solutions for coherent modes. They report on a code that finds thresholds of instability by detecting zeros of the determinant of the system as they enter the upper-half frequency plane, upon increase of current. Results are compared with a time-domain integration of the nonlinear Vlasov equation with a realistic wake function for the SLC damping rings. There is close agreement between the two calculations.
Modeling and Analysis of Linearized Wheel-Rail Contact Dynamics
Directory of Open Access Journals (Sweden)
Zulfiqar Ali Soomro
2014-07-01
Full Text Available The dynamics of the railway vehicles are nonlinear and depend upon several factors including vehicle speed, normal load and adhesion level. The presence of contaminants on the railway track makes them unpredictable too. Therefore in order to develop an effective control strategy it is important to analyze the effect of each factor on dynamic response thoroughly. In this paper a linearized model of a railway wheel-set is developed and is later analyzed by varying the speed and adhesion level by keeping the normal load constant. A wheel-set is the wheel-axle assembly of a railroad car. Patch contact is the study of the deformation of solids that touch each other at one or more points
Longitudinal jitter analysis of linear accelerator electron gun
Mingshan, Liu; Iqbal, Munawar
2015-01-01
We present measurement and analyses of longitudinal timing jitter of Beijing Electron Positron Collider (BEPCII) linear accelerator electron gun. We simulated longitudinal jitter effect of the gun using PARMELA about beam performance including beam profile, average energy, energy spread, longitudinal phase of reference particle and XY emittance. The maximum percentage difference of the beam parameters are calculated to be; 100%, 13.27%, 42.24%, 7.79% and 65.01%, 86.81%, respectively due to which the bunching efficiency is reduced to 54%. The simulation results are in agreement with test and are helpful to optimize the beam parameters by tuning the trigger timing of the gun during the bunching process.
Black Hole Hair Removal: Non-linear Analysis
Jatkar, Dileep P; Srivastava, Yogesh K
2009-01-01
BMPV black holes in flat transverse space and in Taub-NUT space have identical near horizon geometries but different microscopic degeneracies. It has been proposed that this difference can be accounted for by different contribution to the degeneracies of these black holes from hair modes, -- degrees of freedom living outside the horizon. In this paper we explicitly construct the hair modes of these two black holes as finite bosonic and fermionic deformations of the black hole solution satisfying the full non-linear equations of motion of supergravity and preserving the supersymmetry of the original solutions. Special care is taken to ensure that these solutions do not have any curvature singularity at the future horizon when viewed as the full ten dimensional geometry. We show that after removing the contribution due to the hair degrees of freedom from the microscopic partition function, the partition functions of the two black holes agree.
Black hole hair removal: non-linear analysis
Jatkar, Dileep P.; Sen, Ashoke; Srivastava, Yogesh K.
2010-02-01
BMPV black holes in flat transverse space and in Taub-NUT space have identical near horizon geometries but different microscopic degeneracies. It has been proposed that this difference can be accounted for by different contribution to the degeneracies of these black holes from hair modes, — degrees of freedom living outside the horizon. In this paper we explicitly construct the hair modes of these two black holes as finite bosonic and fermionic deformations of the black hole solution satisfying the full non-linear equations of motion of supergravity and preserving the supersymmetry of the original solutions. Special care is taken to ensure that these solutions do not have any curvature singularity at the future horizon when viewed as the full ten dimensional geometry. We show that after removing the contribution due to the hair degrees of freedom from the microscopic partition function, the partition functions of the two black holes agree.
Snow, L. S.; Kuhn, A. E.
1975-01-01
Previous error analyses conducted by the Guidance and Dynamics Branch of NASA have used the Guidance Analysis Program (GAP) as the trajectory simulation tool. Plans are made to conduct all future error analyses using the Space Vehicle Dynamics Simulation (SVDS) program. A study was conducted to compare the inertial measurement unit (IMU) error simulations of the two programs. Results of the GAP/SVDS comparison are presented and problem areas encountered while attempting to simulate IMU errors, vehicle performance uncertainties and environmental uncertainties using SVDS are defined. An evaluation of the SVDS linear error analysis capability is also included.
Three-dimensional linear system analysis for breast tomosynthesis
Zhao, Bo; Zhao, Wei
2008-01-01
The optimization of digital breast tomosynthesis (DBT) geometry and reconstruction is crucial for the clinical translation of this exciting new imaging technique. In the present work, the authors developed a three-dimensional (3D) cascaded linear system model for DBT to investigate the effects of detector performance, imaging geometry, and image reconstruction algorithm on the reconstructed image quality. The characteristics of a prototype DBT system equipped with an amorphous selenium flat-panel detector and filtered backprojection reconstruction were used as an example in the implementation of the linear system model. The propagation of signal and noise in the frequency domain was divided into six cascaded stages incorporating the detector performance, imaging geometry, and reconstruction filters. The reconstructed tomosynthesis imaging quality was characterized by spatial frequency dependent presampling modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) in 3D. The results showed that both MTF and NPS were affected by the angular range of the tomosynthesis scan and the reconstruction filters. For image planes parallel to the detector (in-plane), MTF at low frequencies was improved with increase in angular range. The shape of the NPS was affected by the reconstruction filters. Noise aliasing in 3D could be introduced by insufficient voxel sampling, especially in the z (slice-thickness) direction where the sampling distance (slice thickness) could be more than ten times that for in-plane images. Aliasing increases the noise at high frequencies, which causes degradation in DQE. Application of a reconstruction filter that limits the frequency components beyond the Nyquist frequency in the z direction, referred to as the slice thickness filter, eliminates noise aliasing and improves 3D DQE. The focal spot blur, which arises from continuous tube travel during tomosynthesis acquisition, could degrade DQE significantly
Application of Bounded Linear Stability Analysis Method for Metrics-Driven Adaptive Control
Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje
2009-01-01
This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics-driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a second order system that represents a pitch attitude control of a generic transport aircraft. The analysis shows that the system with the metrics-conforming variable adaptive gain becomes more robust to unmodeled dynamics or time delay. The effect of analysis time-window for BLSA is also evaluated in order to meet the stability margin criteria.
Voltage-Induced Buckling of Dielectric Films using Fluid Electrodes
Tavakol, Behrouz
2016-01-01
Accurate and integrable control of different flows within microfluidic channels is crucial to further development of lab-on-a-chip and fully integrated adaptable structures. Here we introduce a flexible microactuator that buckles at a high deformation rate and alters the downstream fluid flow. The microactuator consists of a confined, thin, dielectric film that buckles into the microfluidic channel when exposed to voltage supplied through conductive fluid electrodes. We estimate the critical buckling voltage, and characterize the buckled shape of the actuator. Finally, we investigate the effects of frequency, flow rate, and the pressure differences on the behavior of the buckling structure and the resulting fluid flow. These results demonstrate that the voltage--induced buckling of embedded microstructures using fluid electrodes provides a means for high speed attenuation of microfluidic flow.
Circumferential buckling instability of a growing cylindrical tube
Moulton, D.E.
2011-03-01
A cylindrical elastic tube under uniform radial external pressure will buckle circumferentially to a non-circular cross-section at a critical pressure. The buckling represents an instability of the inner or outer edge of the tube. This is a common phenomenon in biological tissues, where it is referred to as mucosal folding. Here, we investigate this buckling instability in a growing elastic tube. A change in thickness due to growth can have a dramatic impact on circumferential buckling, both in the critical pressure and the buckling pattern. We consider both single- and bi-layer tubes and multiple boundary conditions. We highlight the competition between geometric effects, i.e. the change in tube dimensions, and mechanical effects, i.e. the effect of residual stress, due to differential growth. This competition can lead to non-intuitive results, such as a tube growing to be thinner and yet buckle at a higher pressure. © 2011 Elsevier Ltd. All rights reserved.
Buckled graphene for efficient energy harvest, storage and conversion.
Jiang, Jin-Wu
2016-10-07
Buckling is one of the most common phenomena in atom-thick layered structures like graphene. While the buckling phenomenon usually causes disaster for most nanodevices, we illustrate one positive application of buckled graphene for energy harvest, storage and conversion. More specifically, we perform molecular dynamical simulations to show that buckled graphene can be used to collect wasted mechanical energy and store the energy in the form of internal knotting potential. Through strain engineering, the knotting potential can be converted into useful kinetic (thermal) energy that is highly concentrated at the free edges of buckled graphene. The present study demonstrates potential applications of buckled graphene for converting dispersed wasted mechanical energy into concentrated useful kinetic (thermal) energy.