WorldWideScience

Sample records for linear accelerator dynamics

  1. Beam dynamics simulation of a double pass proton linear accelerator

    Science.gov (United States)

    Hwang, Kilean; Qiang, Ji

    2017-04-01

    A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015, 10.1016/j.nima.2015.05.056)] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.

  2. Spin dynamics in storage rings and linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.

    1994-04-01

    The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included.

  3. Beam dynamics in a long-pulse linear induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mc Cuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrato [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rose, Chris R [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Trainham, C [Los Alamos National Laboratory; Williams, John [Los Alamos National Laboratory; Scarpetti, Raymond [LLNL; Genoni, Thomas [VOSS; Hughes, Thomas [VOSS; Toma, Carsten [VOSS

    2010-01-01

    The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.

  4. Beam dynamics design for uranium drift tube linear accelerator

    Science.gov (United States)

    Dou, Wei-Ping; He, Yuan; Lu, Yuan-Rong

    2014-07-01

    KONUS beam dynamics design of uranium DTL with LORASR code is presented. The 238U34+ beam, whose current is 5.0 emA, is accelerated from injection energy of 0.35 MeV/u to output energy of 1.30 MeV/u by IH-DTL operated at 81.25 MHz in HIAF project at IMP of CAS. It achieves a transmission efficiency of 94.95% with a cavity length of 267.8 cm. The optimization aims are the reduction of emittance growth, beam loss and project costs. Because of the requirements of CW mode operation, the designed average acceleration gradient is about 2.48 MV/m. The maximum axial field is 10.2 MV/m, meanwhile the Kilpatrick breakdown field is 10.56 MV/m at 81.25 MHz.

  5. Beam dynamics simulation of the Spallation Neutron Source linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, H.; Billen, J.H.; Bhatia, T.S.

    1998-12-31

    The accelerating structure for Spallation Neutron Source (SNS) consists of a radio-frequency-quadrupole-linac (RFQ), a drift-tube-linac (DTL), a coupled-cavity-drift-tube-linac (CCDTL), and a coupled-cavity-linac (CCL). The linac is operated at room temperature. The authors discuss the detailed design of linac which accelerates an H{sup {minus}} pulsed beam coming out from RFQ at 2.5 MeV to 1000 MeV. They show a detailed transition from 402.5 MHz DTL with a 4 {beta}{lambda} structure to a CCDTL operated at 805 MHz with a 12 {beta}{lambda} structure. After a discussion of overall feature of the linac, they present an end-to-end particle simulation using the new version of the PARMILA code for a beam starting from the RFQ entrance through the rest of the linac. At 1000 MeV, the beam is transported to a storage ring. The storage ring requires a large ({+-}500-keV) energy spread. This is accomplished by operating the rf-phase in the last section of the linac so the particles are at the unstable fixed point of the separatrix. They present zero-current phase advance, beam size, and beam emittance along the entire linac.

  6. Fast and dynamic generation of linear octrees for geological bodies under hardware acceleration

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In the application of 3D Geoscience Modeling,we often need to generate the volumetric representations of geological bodies from their surface representations.Linear octree,as an efficient and easily operated volumetric model,is widely used in 3D Geoscience Modeling.This paper proposes an algorithm for fast and dynamic generation of linear octrees of geological bodies from their surface models under hardware acceleration.The Z-buffers are used to determine the attributes of octants and voxels in a fast way,and a divide-and-conquer strategy is adopted.A stack structure is exploited to record the subdivision,which allows generating linear octrees dynamically.The algorithm avoids large-scale sorting process and bypasses the compression in linear octrees generation.Experimental results indicate its high efficiency in generating linear octrees for large-scale geologic bodies.

  7. Report of the ICFA Beam Dynamics Workshop 'Accelerators for a Higgs Factory: Linear vs. Circular' (HF2012)

    CERN Document Server

    Blondel, Alain; Chou, Weiren; Gao, Jie; Schulte, Daniel; Yokoya, Kaoru

    2013-01-01

    This paper is a summary report of the ICFA Beam Dynamics Workshop 'Accelerators for a Higgs Factory: Linear vs. Circular' (HF2012). It discusses four types of accelerators as possible candidates for a Higgs factory: linear e+e- colliders, circular e+e- colliders, muon collider and photon colliders. The comparison includes: physics reach, performance (energy and luminosity), upgrade potential, technology maturity and readiness, and technical challenges requiring further R&D.

  8. Transverse beam dynamics in non-linear Fixed Field Alternating Gradient accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Haj, Tahar M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-02

    In this paper, we present some aspects of the transverse beam dynamics in Fixed Field Ring Accelerators (FFRA): we start from the basic principles in order to derive the linearized transverse particle equations of motion for FFRA, essentially FFAGs and cyclotrons are considered here. This is a simple extension of a previous work valid for linear lattices that we generalized by including the bending terms to ensure its correctness for FFAG lattice. The space charge term (contribution of the internal coulombian forces of the beam) is contained as well, although it is not discussed here. The emphasis is on the scaling FFAG type: a collaboration work is undertaken in view of better understanding the properties of the 150 MeV scaling FFAG at KURRI in Japan, and progress towards high intensity operation. Some results of the benchmarking work between different codes are presented. Analysis of certain type of field imperfections revealed some interesting features about this machine that explain some of the experimental results and generalize the concept of a scaling FFAG to a non-scaling one for which the tune variations obey a well-defined law.

  9. DTL cavity design and beam dynamics for a TAC linear proton accelerator

    Science.gov (United States)

    Caliskan, A.; Yılmaz, M.

    2012-02-01

    A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project. Optimization criteria in cavity design are effective shunt impedance (ZTT), transit-time factor and electrical breakdown limit. In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor. Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA. The results of both codes have been compared. In the beam dynamical studies, the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted.

  10. DTL cavity design and beam dynamics for a TAC linear proton accelerator

    Institute of Scientific and Technical Information of China (English)

    A. Caliskan; M. Yi1maz

    2012-01-01

    A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project.Optimization criteria in cavity design are effective shunt impedance (ZTT),transit-time factor and electrical breakdown limit.In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor.Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA.The results of both codes have been compared.In the beam dynamical studies,the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted.

  11. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  12. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mccuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrato [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rowton, Lawrence [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Scarpetti, Raymond [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Williams, John [Los Alamos National Laboratory; Hughes, Thomas [Los Alamos National Laboratory; Anaya, Richard [LLNL; Caporaso, George [LLNL; Chambers, Frank [LLNL; Chen, Yu - Jiuan [LLNL; Falabella, Steve [LLNL; Guethlein, Gary [LLNL; Raymond, Brett [LLNL; Richardson, Roger [LLNL; Trainham, C [NSTEC/STL; Watson, Jim [LLNL; Weir, John [LLNL; Genoni, Thomas [VOSS; Toma, Carsten [VOSS

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  13. Simulation of the relativistic electron dynamics and acceleration in a linearly-chirped laser pulse

    CERN Document Server

    Jisrawi, Najeh M; Salamin, Yousef I

    2014-01-01

    Theoretical investigations are presented, and their results are discussed, of the laser acceleration of a single electron by a chirped pulse. Fields of the pulse are modeled by simple plane-wave oscillations and a $\\cos^2$ envelope. The dynamics emerge from analytic and numerical solutions to the relativistic Lorentz-Newton equations of motion of the electron in the fields of the pulse. All simulations have been carried out by independent Mathematica and Python codes, with identical results. Configurations of acceleration from a position of rest as well as from injection, axially and sideways, at initial relativistic speeds are studied.

  14. Introduction to Microwave Linear [Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, David H

    1999-01-04

    The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.

  15. Linear accelerators of the future

    Energy Technology Data Exchange (ETDEWEB)

    Loew, G.A.

    1986-07-01

    Some of the requirements imposed on future linear accelerators to be used in electron-positron colliders are reviewed, as well as some approaches presently being examined for meeting those requirements. RF sources for use in these linacs are described, as well as wakefields, single bunches, and multiple-bunch trains. (LEW)

  16. Linear accelerator for radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    Hansborough, L.D.; Hamm, R.W.; Stovall, J.E.

    1982-02-01

    A 200- to 500-..mu..A source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. A 70-MeV linac is described, based on recent innovations in linear accelerator technology; it would be 27.3 m long and cost approx. $6 million. By operating the radio-frequency (rf) power system at a level necessary to produce a 500-..mu..A beam current, the cost of power deposited in the radioisotope-production target is comparable with existing cyclotrons. If the rf-power system is operated at full power, the same accelerator is capable of producing an 1140-..mu..A beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons.

  17. Accelerating structure with linear excitation

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J.; Srinivasan-Rao, T.

    1988-03-01

    The switched power linac (SPL) structures require a ring-shaped laser beam pulse of uniform intensity to avoid transverse field components of the accelerating field at the center. In order to also utilize the reflection of the outgoing EM wave, the switching element has to be very close to the outer edge of the structure to ensure nearly synchronous superposition at the beam hole with the original inward going wave. It is sometimes easier to produce linear (flat) laser beams, e.g., from powerful excimer lasers which have beams of rectangular cross section. Such flat beams could be used to excite linear photocathode switches or be used to produce flat electron beam pulses in electron sources. In this paper, an accelerator structure is proposed which may be considered a variant of the SPL disk structure, but could be used with linear beams. The structure utilizes a double parabolic horn. 8 refs., 9 figs.

  18. Repair of overheating linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Barkley, Walter; Baldwin, William; Bennett, Gloria; Bitteker, Leo; Borden, Michael; Casados, Jeff; Fitzgerald, Daniel; Gorman, Fred; Johnson, Kenneth; Kurennoy, Sergey; Martinez, Alberto; O’Hara, James; Perez, Edward; Roller, Brandon; Rybarcyk, Lawrence; Stark, Peter; Stockton, Jerry

    2004-01-01

    Los Alamos Neutron Science Center (LANSCE) is a proton accelerator that produces high energy particle beams for experiments. These beams include neutrons and protons for diverse uses including radiography, isotope production, small feature study, lattice vibrations and material science. The Drift Tube Linear Accelerator (DTL) is the first portion of a half mile long linear section of accelerator that raises the beam energy from 750 keV to 100 MeV. In its 31st year of operation (2003), the DTL experienced serious issues. The first problem was the inability to maintain resonant frequency at full power. The second problem was increased occurrences of over-temperature failure of cooling hoses. These shortcomings led to an investigation during the 2003 yearly preventative maintenance shutdown that showed evidence of excessive heating: discolored interior tank walls and coper oxide deposition in the cooling circuits. Since overheating was suspected to be caused by compromised heat transfer, improving that was the focus of the repair effort. Investigations revealed copper oxide flow inhibition and iron oxide scale build up. Acid cleaning was implemented with careful attention to protection of the base metal, selection of components to clean and minimization of exposure times. The effort has been very successful in bringing the accelerator through a complete eight month run cycle allowing an incredible array of scientific experiments to be completed this year (2003-2004). This paper will describe the systems, investigation analysis, repair, return to production and conclusion.

  19. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    P N Prakash; T S Datta; B P Ajith Kumar; J Antony; P Barua; J Chacko; A Choudhury; G K Chadhari; S Ghosh; S Kar; S A Krishnan; Manoj Kumar; Rajesh Kumar; A Mandal; D S Mathuria; R S Meena; R Mehta; K K Mistri; A Pandey; M V Suresh Babu; B K Sahu; A Sarkar; S S K Sonti; A Rai; S Venkatramanan; J Zacharias; R K Bhowmik; A Roy

    2002-11-01

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed sufficiently. Details of the entire accelerator system including the cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indigenously, and present status of the project are presented.

  20. Terahertz-driven linear electron acceleration

    CERN Document Server

    Nanni, Emilio Alessandro; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

    2014-01-01

    The cost, size and availability of electron accelerators is dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency (RF) accelerating structures operate with 30-50 MeV/m gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional RF structures. However, laser-driven electron accelerators require intense sources and suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here, we demonstrate the first linear acceleration of electrons with keV energy gain using optically-generated terahertz (THz) pulses. THz-driven accelerating structures enable high-gradient electron accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. Increasing the operational frequency of accelerators into the THz band allows for greatly increased accelerating ...

  1. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    Science.gov (United States)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-01

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 1011 n/cm2/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  2. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik, E-mail: hskang@postech.ac.kr [Pohang Accelerator Laboratory, San31, Hyoja-dong, Pohang, Gyeongbuk 790-784 (Korea, Republic of)

    2014-02-14

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E < 12.47% for 99% particles). The whole linac comprises mainly E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 10{sup 11} n/cm{sup 2}/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  3. Seventh International Accelerator School for Linear Colliders

    CERN Document Server

    Organizers of the Seventh International Accelerator School for Linear Colliders

    2012-01-01

    We are pleased to announce the Seventh International Accelerator School for Linear Colliders. This school is a continuation of the series of schools which began six years ago.  The first school was held in 2006 in Sokendai, Japan, the second in 2007 in Erice, Italy, the third in 2008 in Oakbrook Hills, USA, the fourth in 2009 in Huairou, China, the fifth in 2010 in Villars-sur-Ollon, Switzerland, and the sixth in 2011 in Pacific Grove, USA.   The school is organized by the International Linear Collider (ILC) Global Design Effort (GDE), the Compact Linear Collider (CLIC) and the International Committee for Future Accelerators (ICFA) Beam Dynamics Panel. The school this year will take place at the Radisson Blu Hotel, Indore, India from November 27 to December 8, 2012. It is hosted by the Raja Ramanna Center for Advanced Technology (RRCAT) and sponsored by a number of funding agencies and institutions around the world including the U.S. Department of Energy (DOE), the U.S. National Science...

  4. Combined generating-accelerating buncher for compact linear accelerators

    Science.gov (United States)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Sokolov, I. D.; Zavadtsev, A. A.

    2016-09-01

    Described in the previous article [1] method of the power extraction from the modulated electron beam has been applied to the compact standing wave electron linear accelerator feeding system, which doesnt require any connection waveguides between the power source and the accelerator itself [2]. Generating and accelerating bunches meet in the hybrid accelerating cell operating at TM020 mode, thus the accelerating module is placed on the axis of the generating module, which consists from the pulsed high voltage electron sources and electrons dumps. This combination makes the accelerator very compact in size which is very valuable for the modern applications such as portable inspection sources. Simulations and geometry cold tests are presented.

  5. Self-shielded electron linear accelerators designed for radiation technologies

    Science.gov (United States)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  6. Abstract Acceleration of General Linear Loops

    OpenAIRE

    2014-01-01

    International audience; We present abstract acceleration techniques for computing loop invariants for numerical programs with linear assignments and conditionals. Whereas abstract interpretation techniques typically over-approximate the set of reachable states iteratively, abstract acceleration captures the effect of the loop with a single, non-iterative transfer function applied to the initial states at the loop head. In contrast to previous acceleration techniques, our approach applies to a...

  7. Triplet Focusing for Recirculating Linear Muon Accelerators

    CERN Document Server

    Keil, Eberhard

    2001-01-01

    Focusing by symmetrical triplets is studied for the linear accelerator lattices in recirculating muon accelerators with several passes where the ratio of final to initial muon energy is about four. Triplet and FODO lattices are compared. At similar acceptance, triplet lattices have straight sections for the RF cavities that are about twice as long as in FODO lat-tices. For the same energy gain, the total lengths of the linear accelerators with triplet lattices are about the same as of those with FODO lattices.

  8. Accelerating abelian gauge dynamics

    CERN Document Server

    Adler, Stephen Louis

    1991-01-01

    In this paper, we suggest a new acceleration method for Abelian gauge theories based on linear transformations to variables which weight all length scales equally. We measure the autocorrelation time for the Polyakov loop and the plaquette at β=1.0 in the U(1) gauge theory in four dimensions, for the new method and for standard Metropolis updates. We find a dramatic improvement for the new method over the Metropolis method. Computing the critical exponent z for the new method remains an important open issue.

  9. Beam data measurements for dynamic wedges on Varian 600C (6 MV) and 2100C (6 and 10 MV) linear accelerators.

    Science.gov (United States)

    Bidmead, A M; Garton, A J; Childs, P J

    1995-03-01

    The measurement of beam data for dynamic wedge dosimetry requires the integration of radiation dose at points across the radiation field during the dose delivery. The different measurement techniques required when using a linear diode array to measure beam profiles and when using ionization chambers to measure depth doses and effective wedge factors are described. The segmented treatment tables (STTS), which specify the delivered dose as a function of jaw position, are used by the control algorithm to deliver dynamic wedge fields. The reproducibility achieved using STTS is very consistent (and the stability of the accelerators is very good) so there is no significant variation in effective wedge factor or profile shape. There is a unique set of 132 STTS for each energy and design of treatment machine, which encompasses all the dynamic wedge data. There are significant discontinuities of up to 14% in wedge factors at certain field sizes. This means that wedge factors have to be measured at small increments (0.5 cm) in field size, as it is the width of the dynamic wedge field that determines the STT used. Considerable care must be taken when implementing these data on a current generation treatment planning computer.

  10. Development and application of compact and on-chip electron linear accelerators for dynamic tracking cancer therapy and DNA damage/repair analysis

    Science.gov (United States)

    Uesaka, M.; Demachi, K.; Fujiwara, T.; Dobashi, K.; Fujisawa, H.; Chhatkuli, R. B.; Tsuda, A.; Tanaka, S.; Matsumura, Y.; Otsuki, S.; Kusano, J.; Yamamoto, M.; Nakamura, N.; Tanabe, E.; Koyama, K.; Yoshida, M.; Fujimori, R.; Yasui, A.

    2015-06-01

    We are developing compact electron linear accelerators (hereafter linac) with high RF (Radio Frequency) frequency (9.3 GHz, wavelength 32.3 mm) of X-band and applying to medicine and non-destructive testing. Especially, potable 950 keV and 3.95 MeV linac X-ray sources have been developed for on-site transmission testing at several industrial plants and civil infrastructures including bridges. 6 MeV linac have been made for pinpoint X-ray dynamic tracking cancer therapy. The length of the accelerating tube is ∼600 mm. The electron beam size at the X-ray target is less than 1 mm and X-ray spot size at the cancer is less than 3 mm. Several hardware and software are under construction for dynamic tracking therapy for moving lung cancer. Moreover, as an ultimate compact linac, we are designing and manufacturing a laser dielectric linac of ∼1 MeV with Yr fiber laser (283 THz, wavelength 1.06 pm). Since the wavelength is 1.06 μm, the length of one accelerating strcture is tens pm and the electron beam size is in sub-micro meter. Since the sizes of cell and nuclear are about 10 and 1 μm, respectively, we plan to use this “On-chip” linac for radiation-induced DNA damage/repair analysis. We are thinking a system where DNA in a nucleus of cell is hit by ∼1 μm electron or X-ray beam and observe its repair by proteins and enzymes in live cells in-situ.

  11. Distributed coupling high efficiency linear accelerator

    Science.gov (United States)

    Tantawi, Sami G.; Neilson, Jeffrey

    2016-07-19

    A microwave circuit for a linear accelerator includes multiple monolithic metallic cell plates stacked upon each other so that the beam axis passes vertically through a central acceleration cavity of each plate. Each plate has a directional coupler with coupling arms. A first coupling slot couples the directional coupler to an adjacent directional coupler of an adjacent cell plate, and a second coupling slot couples the directional coupler to the central acceleration cavity. Each directional coupler also has an iris protrusion spaced from corners joining the arms, a convex rounded corner at a first corner joining the arms, and a corner protrusion at a second corner joining the arms.

  12. Dynamics of pyroelectric accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ghaderi, R.; Davani, F. Abbasi, E-mail: fabbasi@sbu.ac.ir [Radiation Application Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2015-01-26

    Pyroelectric crystals are used to produce high energy electron beams. We have derived a method to model electric potential generation on LiTaO{sub 3} crystal during heating cycle. In this method, effect of heat transfer on the potential generation is investigated by some experiments. In addition, electron emission from the crystal surface is modeled by measurements and analysis. These spectral data are used to present a dynamic equation of electric potential with respect to thickness of the crystal and variation of its temperature. The dynamic equation's results for different thicknesses are compared with measured data. As a result, to attain more energetic electrons, best thickness of the crystals could be extracted from the equation. This allows for better understanding of pyroelectric crystals and help to study about current and energy of accelerated electrons.

  13. Accelerating Dense Linear Algebra on the GPU

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg

    and matrix-vector operations on GPUs. Such operations form the backbone of level 1 and level 2 routines in the Basic Linear Algebra Subroutines (BLAS) library and are therefore of great importance in many scientific applications. The target hardware is the most recent NVIDIA Tesla 20-series (Fermi...... architecture). Most of the techniques I discuss for accelerating dense linear algebra are applicable to memory-bound GPU algorithms in general....

  14. Nonlinear dynamics in particle accelerators

    CERN Document Server

    Dilão, Rui

    1996-01-01

    This book is an introductory course to accelerator physics at the level of graduate students. It has been written for a large audience which includes users of accelerator facilities, accelerator physicists and engineers, and undergraduates aiming to learn the basic principles of construction, operation and applications of accelerators.The new concepts of dynamical systems developed in the last twenty years give the theoretical setting to analyse the stability of particle beams in accelerator. In this book a common language to both accelerator physics and dynamical systems is integrated and dev

  15. Wide dynamic range FPGA-based TDC for monitoring a trigger timing distribution system in linear accelerators

    Science.gov (United States)

    Suwada, T.; Miyahara, F.; Furukawa, K.; Shoji, M.; Ikeno, M.; Tanaka, M.

    2015-06-01

    A new field-programmable gate array (FPGA)-based time-to-digital converter (TDC) with a wide dynamic range greater than 20 ms has been developed to monitor the timing of various pulsed devices in the trigger timing distribution system of the KEKB injector linac for the Super KEK B-factory project. The pulsed devices are driven by feeding regular as well as any irregular (or event-based) timing pulses. The timing pulses are distributed to these pulsed devices along the linac beam line with fiber-optic links on the basis of the parameters to be set pulse-by-pulse in the event-based timing and control system within 20 ms. For monitoring the timing as precisely as possible, a 16-ch FPGA-based TDC has been developed on a Xilinx Spartan-6 FPGA equipped on VME board with a resolution of 1 ns. The resolution was achieved by applying a multisampling technique, and the accuracies were 2.6 ns (rms) and less than 1 ns (rms) within the dynamic ranges of 20 ms and 7.5 ms, respectively. The various nonlinear effects were improved by implementing a high-precision external clock with a built-in temperature-compensated crystal oscillator.

  16. Wide dynamic range FPGA-based TDC for monitoring a trigger timing distribution system in linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Suwada, T., E-mail: tsuyoshi.suwada@kek.jp [Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Department of Accelerator Science, Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Miyahara, F.; Furukawa, K. [Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Department of Accelerator Science, Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Shoji, M.; Ikeno, M.; Tanaka, M. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2015-06-21

    A new field-programmable gate array (FPGA)-based time-to-digital converter (TDC) with a wide dynamic range greater than 20 ms has been developed to monitor the timing of various pulsed devices in the trigger timing distribution system of the KEKB injector linac for the Super KEK B-factory project. The pulsed devices are driven by feeding regular as well as any irregular (or event-based) timing pulses. The timing pulses are distributed to these pulsed devices along the linac beam line with fiber-optic links on the basis of the parameters to be set pulse-by-pulse in the event-based timing and control system within 20 ms. For monitoring the timing as precisely as possible, a 16-ch FPGA-based TDC has been developed on a Xilinx Spartan-6 FPGA equipped on VME board with a resolution of 1 ns. The resolution was achieved by applying a multisampling technique, and the accuracies were 2.6 ns (rms) and less than 1 ns (rms) within the dynamic ranges of 20 ms and 7.5 ms, respectively. The various nonlinear effects were improved by implementing a high-precision external clock with a built-in temperature-compensated crystal oscillator.

  17. Linear induction accelerator for heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, D.

    1976-09-01

    There is considerable recent interest in the use of high energy (..gamma.. = 1.1), heavy (A greater than or equal to 100) ions to irradiate deuterium--tritium pellets in a reactor vessel to constitute a power source at the level of 1 GW or more. Various accelerator configurations involving storage rings have been suggested. A discussion is given of how the technology of Linear Induction Accelerators--well known to be matched to high current and short pulse length--may offer significant advantages for this application.

  18. Emittance Growth in Linear Induction Accelerators

    OpenAIRE

    Ekdahl, Carl

    2017-01-01

    The Dual-Axis Radiographic Hydrotest (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. Some of the possible causes for the emittance growth in the DARHT LIA have been investigated using particle-in-ce...

  19. SU-E-J-156: Preclinical Inverstigation of Dynamic Tumor Tracking Using Vero SBRT Linear Accelerator: Motion Phantom Dosimetry Study

    Energy Technology Data Exchange (ETDEWEB)

    Mamalui-Hunter, M; Wu, J; Li, Z; Su, Z [University of Florida/Radiation Oncology, Jacksonville, FL (United States)

    2014-06-01

    Purpose: Following the ‘end-to-end testing’ paradigm of Dynamic Target Tracking option in our Image-Guided dedicated SBRT VeroTM linac, we verify the capability of the system to deliver planned dose to moving targets in the heterogeneous thorax phantom (CIRSTM). The system includes gimbaled C-band linac head, robotic 6 degree of freedom couch and a tumor tracking method based on predictive modeling of target position using fluoroscopically tracked implanted markers and optically tracked infrared reflecting external markers. Methods: 4DCT scan of the motion phantom with the VisicoilTM implanted marker in the close vicinity of the target was acquired, the ‘exhale’=most prevalent phase was used for planning (iPlan by BrainLabTM). Typical 3D conformal SBRT treatment plans aimed to deliver 6-8Gy/fx to two types of targets: a)solid water-equivalent target 3cm in diameter; b)single VisicoilTM marker inserted within lung equivalent material. The planning GTV/CTV-to-PTV margins were 2mm, the block margins were 3 mm. The dose calculated by MonteCarlo algorithm with 1% variance using option Dose-to-water was compared to the ion chamber (CC01 by IBA Dosimetry) measurements in case (a) and GafchromicTM EBT3 film measurements in case (b). During delivery, the target 6 motion patterns available as a standard on CIRSTM motion phantom were investigated: in case (a), the target was moving along the designated sine or cosine4 3D trajectory; in case (b), the inserted marker was moving sinusoidally in 1D. Results: The ion chamber measurements have shown the agreement with the planned dose within 1% under all the studied motion conditions. The film measurements show 98.1% agreement with the planar calculated dose (gamma criteria: 3%/3mm). Conclusion: We successfully verified the capability of the SBRT VeroTM linac to perform real-time tumor tracking and accurate dose delivery to the target, based on predictive modeling of the correlation between implanted marker motion and

  20. Megavoltage Image-Based Dynamic Multileaf Collimator Tracking of a NiTi Stent in Porcine Lungs on a Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Per R., E-mail: perpolse@rm.dk [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark); Carl, Jesper; Nielsen, Jane; Nielsen, Martin S.; Thomsen, Jakob B. [Department of Medical Physics, Aalborg Hospital, University of Aarhus, Aalborg (Denmark); Jensen, Henrik K. [Department of Pulmonary Medicine, Aalborg Hospital, University of Aarhus, Aalborg (Denmark); Kjaergaard, Benedict; Zepernick, Peter R. [Department of Thoracic Surgery, Aalborg Hospital, University of Aarhus, Aalborg (Denmark); Worm, Esben; Fledelius, Walther [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark); Cho, Byungchul [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Sawant, Amit [University of Texas Southwestern Medical Center, Dallas, TX (United States); Ruan, Dan [Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA (United States); Keall, Paul J. [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Sydney Medical School, University of Sydney, Sydney, New South Wales (Australia)

    2012-02-01

    Purpose: To investigate the accuracy and potential limitations of MV image-based dynamic multileaf collimator (DMLC) tracking in a porcine model on a linear accelerator. Methods and Materials: A thermo-expandable NiTi stent designed for kilovoltage (kV) X-ray visualization of lung lesions was inserted into the bronchia of three anaesthetized Goettingen minipigs. A four-dimensional computed tomography scan was used for planning a five-field conformal treatment with circular multileaf collimator (MLC) apertures. A 22.5 Gy single fraction treatment was delivered to the pigs. The peak-to-peak stent motion was 3 to 8 mm, with breathing periods of 1.2 to 4 s. Before treatment, X-ray images were used for image-guided setup based on the stent. During treatment delivery, continuous megavoltage (MV) portal images were acquired at 7.5 Hz. The stent was segmented in the images and used for continuous adaptation of the MLC aperture. Offline, the tracking error in beam's eye view of the treatment beam was calculated for each MV image as the difference between the MLC aperture center and the segmented stent position. The standard deviations of the systematic error {Sigma} and the random error {sigma} were determined and compared with the would-be errors for a nontracking treatment with pretreatment image-guided setup. Results: Reliable stent segmentation was obtained for 11 of 15 fields. Segmentation failures occurred when image contrast was dominated by overlapping anatomical structures (ribs, diaphragm) rather than by the stent, which was designed for kV rather than MV X-ray visibility. For the 11 fields with reliable segmentation, {Sigma} was 0.5 mm/0.4 mm in the two imager directions, whereas {sigma} was 0.5 mm/1.1 mm. Without tracking, {Sigma} and {sigma} would have been 1.7 mm/1.4 mm and 0.8 mm/1.4 mm, respectively. Conclusion: For the first time, in vivo DMLC tracking has been demonstrated on a linear accelerator showing the potential for improved targeting accuracy

  1. Wakefields and Instabilities in Linear Accelerators

    CERN Document Server

    Ferrario, M; Palumbo, L

    2014-01-01

    When a charged particle travels across the vacuum chamber of an accelerator, it induces electromagnetic fields, which are left mainly behind the generating particle. These electromagnetic fields act back on the beam and influence its motion. Such an interaction of the beam with its surro undings results in beam energy losses, alters the shape of the bunches, and shifts the betatron and synchrotron frequencies. At high beam current the fields can even lead to instabilities, thus limiting the performance of the accelerator in terms of beam quality and current intensity. We discuss in this lecture the general features of the electromagnetic fields, introducing the concepts of wakefields and giving a few simple examples in cylindrical geometry. We then show the effect of the wakefields on the dynamics of a beam in a linac, dealing in particular with the beam breakup instability and how to cure it.

  2. Acceleration in Linear and Circular Motion

    Science.gov (United States)

    Kellington, S. H.; Docherty, W.

    1975-01-01

    Describes the construction of a simple accelerometer and explains its use in demonstrating acceleration, deceleration, constant speed, measurement of acceleration, acceleration and the inclined plane and angular and radial acceleration. (GS)

  3. CULA: hybrid GPU accelerated linear algebra routines

    Science.gov (United States)

    Humphrey, John R.; Price, Daniel K.; Spagnoli, Kyle E.; Paolini, Aaron L.; Kelmelis, Eric J.

    2010-04-01

    The modern graphics processing unit (GPU) found in many standard personal computers is a highly parallel math processor capable of nearly 1 TFLOPS peak throughput at a cost similar to a high-end CPU and an excellent FLOPS/watt ratio. High-level linear algebra operations are computationally intense, often requiring O(N3) operations and would seem a natural fit for the processing power of the GPU. Our work is on CULA, a GPU accelerated implementation of linear algebra routines. We present results from factorizations such as LU decomposition, singular value decomposition and QR decomposition along with applications like system solution and least squares. The GPU execution model featured by NVIDIA GPUs based on CUDA demands very strong parallelism, requiring between hundreds and thousands of simultaneous operations to achieve high performance. Some constructs from linear algebra map extremely well to the GPU and others map poorly. CPUs, on the other hand, do well at smaller order parallelism and perform acceptably during low-parallelism code segments. Our work addresses this via hybrid a processing model, in which the CPU and GPU work simultaneously to produce results. In many cases, this is accomplished by allowing each platform to do the work it performs most naturally.

  4. 9th International Accelerator School for Linear Colliders

    CERN Document Server

    2015-01-01

    This school is a continuation of the series of schools that began nine years ago: Japan 2006, Italy 2007, United States 2008, China 2009, Switzerland 2010, United States 2011, India 2012 and Turkey 2013. Based on needs from the accelerator community, the Linear Collider Collaboration (LCC) and ICFA Beam Dynamics Panel are organising the Ninth International Accelerator School for Linear Colliders. The school will present instruction in TeV-scale linear colliders including the ILC, CLIC and other advanced accelerators. An important change of this year’s school from previous LC schools is that it will also include the free electron laser (FEL), a natural extension for applications of the ILC/CLIC technology. The school is offered to graduate students, postdoctoral fellows and junior researchers from around the world. We welcome applications from physicists who are considering changing to a career in accelerator physics and technology. This school adopts an in depth approach. A selective course on the FEL has b...

  5. Emittance growth in linear induction accelerators

    CERN Document Server

    Ekdahl, C A; Schulze, M E; Carlson, C A; Frayer, D K; Mostrum, C; Thoma, C H

    2014-01-01

    The Dual-Axis Radiographic Hydrotest (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT Axis-II LIA we measure an emittance higher than predicted by theoretical simulations, and even though this axis produces sub-millimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell (PIC) codes, although most of these are discounted based on beam measurements. The most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.

  6. Introduction to electrodynamics for microwave linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, D.H.

    1998-04-01

    This collection of notes and exercises is intended as a workbook to introduce the principles of microwave linear accelerators, starting with the underlying foundation in electrodynamics. The author reviewed Maxwell's equations, the Lorentz force law, and the behavior of fields near a conducting boundary. The author goes on to develop the principles of microwave electronics, including waveguide modes, circuit equivalence, shunt admittance of an iris, and voltage standing-wave ratio. The author constructed an elementary example of a waveguide coupled to a cavity, and examined its behavior during transient filling of the cavity, and in steady-state. He goes on to examine a periodic line. Then he examined the problem of acceleration in detail, studying first the properties of a single cavity-waveguide-beam system and developing the notions of wall Q, external Q, [R/Q], shunt impedance, and transformer ratio. He then examined the behavior of such a system on and off resonance, on the bench, and under conditions of transient and steady-state beam-loading. This work provides the foundation for the commonly employed circuit equivalents and the basic scalings for such systems. Following this he examined the coupling of two cavities, powered by a single feed, and goes on to consider structures constructed from multiple coupled cavities. The basic scalings for constant impedance and constant gradient traveling-wave structures are set down, including features of steady-state beam-loading, and the coupled-circuit model. Effects of uniform and random detuning are derived. These notes conclude with a brief outline of some problems of current interest in accelerator research.

  7. Dynamic Linear Models with R

    CERN Document Server

    Campagnoli, Patrizia; Petris, Giovanni

    2009-01-01

    State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.

  8. Luminosity Limitations in Linear Colliders Based on Plasma Acceleration

    CERN Document Server

    Lebedev, Valeri; Nagaitsev, Sergei

    2016-01-01

    Particle acceleration in plasma creates a possibility of exceptionally high accelerating gradients and appears as a very attractive option for future linear electron-positron and/or photon-photon colliders. These high accelerating gradients were already demonstrated in a number of experiments. However, a linear collider requires exceptionally high beam brightness which still needs to be demonstrated. In this article we discuss major phenomena which limit the beam brightness of accelerated beam and, consequently, the collider luminosity.

  9. Multi-beam linear accelerator EVT

    Energy Technology Data Exchange (ETDEWEB)

    Teryaev, Vladimir E., E-mail: vladimir_teryaev@mail.ru [Omega-P, Inc., New Haven, CT 06510 (United States); Kazakov, Sergey Yu. [Fermilab, Batavia, IL 60510 (United States); Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT 06510 (United States); Yale University, New Haven, CT 06511 (United States)

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  10. Vacuum systems of linear accelerators of the NICA injection complex

    Science.gov (United States)

    Kosachev, V. V.; Bazanov, A. M.; Butenko, A. V.; Galimov, A. R.; Nesterov, A. V.; Pivin, R. V.; Smirnov, A. V.

    2016-12-01

    The NICA project, which includes several accelerators of charged particles, is under construction in the Laboratory of High Energy Physics, Joint Institute for Nuclear Research (JINR), Dubna. Obtaining the required vacuum conditions is one of the key points in implementing the project, because reaching the required ion lifetime at all stages of particle acceleration is what determines the effective luminosity of the experiments in the long run. Currently, modernization of the vacuum system of the injection complex of the LU-20 linear accelerator of light ions, one of oldest accelerators in the JINR, is being carried out and the new HILAC linear accelerator for the acceleration of gold ions in the collider mode of the NICA complex is being installed. At the end parts of the linear accelerators, the residual gas pressure must be approximately 10-5 Pa, which is determined by the maximum amplitude of the RF electric field used for the acceleration of ions.

  11. Dynamics of multivalued linear operators

    Directory of Open Access Journals (Sweden)

    Chen Chung-Chuan

    2017-07-01

    Full Text Available We introduce several notions of linear dynamics for multivalued linear operators (MLO’s between separable Fréchet spaces, such as hypercyclicity, topological transitivity, topologically mixing property, and Devaney chaos. We also consider the case of disjointness, in which any of these properties are simultaneously satisfied by several operators. We revisit some sufficient well-known computable criteria for determining those properties. The analysis of the dynamics of extensions of linear operators to MLO’s is also considered.

  12. Electron linear accelerator system for natural rubber vulcanization

    Science.gov (United States)

    Rimjaem, S.; Kongmon, E.; Rhodes, M. W.; Saisut, J.; Thongbai, C.

    2017-09-01

    Development of an electron accelerator system, beam diagnostic instruments, an irradiation apparatus and electron beam processing methodology for natural rubber vulcanization is underway at the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The project is carried out with the aims to improve the qualities of natural rubber products. The system consists of a DC thermionic electron gun, 5-cell standing-wave radio-frequency (RF) linear accelerator (linac) with side-coupling cavities and an electron beam irradiation apparatus. This system is used to produce electron beams with an adjustable energy between 0.5 and 4 MeV and a pulse current of 10-100 mA at a pulse repetition rate of 20-400 Hz. An average absorbed dose between 160 and 640 Gy is expected to be archived for 4 MeV electron beam when the accelerator is operated at 400 Hz. The research activities focus firstly on assembling of the accelerator system, study on accelerator properties and electron beam dynamic simulations. The resonant frequency of the RF linac in π/2 operating mode is 2996.82 MHz for the operating temperature of 35 °C. The beam dynamic simulations were conducted by using the code ASTRA. Simulation results suggest that electron beams with an average energy of 4.002 MeV can be obtained when the linac accelerating gradient is 41.7 MV/m. The rms transverse beam size and normalized rms transverse emittance at the linac exit are 0.91 mm and 10.48 π mm·mrad, respectively. This information can then be used as the input data for Monte Carlo simulations to estimate the electron beam penetration depth and dose distribution in the natural rubber latex. The study results from this research will be used to define optimal conditions for natural rubber vulcanization with different electron beam energies and doses. This is very useful for development of future practical industrial accelerator units.

  13. Machine Protection Issues and Solutions for Linear Accelerator Complexes

    CERN Document Server

    Jonker, M; Schmidt, R; Schulte, D; Ross, M

    2013-01-01

    The workshop “Machine Protection focusing on Linear Accelerator Complexes” was held from 6-8 June 2012 at CERN. This workshop brought together experts working on machine protection systems for accelerator facilities with high brilliance or large stored beam energies, with the main focus on linear accelerators and their injectors. An overview of the machine protection systems for several accelerators was given. Beam loss mechanisms and their detection were discussed. Mitigation of failures and protection systems were presented. This paper summarises the workshop and reviews the current state of the art in machine protection systems.

  14. Design of four-beam IH-RFQ linear accelerator

    Science.gov (United States)

    Ikeda, Shota; Murata, Aki; Hayashizaki, Noriyosu

    2017-09-01

    The multi-beam acceleration method is an acceleration technique for low-energy high-intensity heavy ion beams, which involves accelerating multiple beams to decrease space charge effects, and then integrating these beams by a beam funneling system. At the Tokyo Institute of Technology a two beam IH-RFQ linear accelerator was developed using a two beam laser ion source with direct plasma injection scheme. This system accelerated a carbon ion beam with a current of 108 mA (54 mA/channel × 2) from 5 up to 60 keV/u. In order to demonstrate that a four-beam IH-RFQ linear accelerator is suitable for high-intensity heavy ion beam acceleration, we have been developing a four-beam prototype. A four-beam IH-RFQ linear accelerator consists of sixteen RFQ electrodes (4 × 4 set) with stem electrodes installed alternately on the upper and lower ridge electrodes. As a part of this development, we have designed a four-beam IH-RFQ linear accelerator using three dimensional electromagnetic simulation software and beam tracking simulation software. From these simulation results, we have designed the stem electrodes, the center plate and the side shells by evaluating the RF properties such as the resonance frequency, the power loss and the electric strength distribution between the RFQ electrodes.

  15. Accelerating transient simulation of linear reduced order models.

    Energy Technology Data Exchange (ETDEWEB)

    Thornquist, Heidi K.; Mei, Ting; Keiter, Eric Richard; Bond, Brad

    2011-10-01

    Model order reduction (MOR) techniques have been used to facilitate the analysis of dynamical systems for many years. Although existing model reduction techniques are capable of providing huge speedups in the frequency domain analysis (i.e. AC response) of linear systems, such speedups are often not obtained when performing transient analysis on the systems, particularly when coupled with other circuit components. Reduced system size, which is the ostensible goal of MOR methods, is often insufficient to improve transient simulation speed on realistic circuit problems. It can be shown that making the correct reduced order model (ROM) implementation choices is crucial to the practical application of MOR methods. In this report we investigate methods for accelerating the simulation of circuits containing ROM blocks using the circuit simulator Xyce.

  16. Linear accelerator radiosurgery for arteriovenous malformations: Updated literature review.

    Science.gov (United States)

    Yahya, S; Heyes, G; Nightingale, P; Lamin, S; Chavda, S; Geh, I; Spooner, D; Cruickshank, G; Sanghera, P

    2017-04-01

    Arteriovenous malformations (AVMs) are the leading causing of intra-cerebral haemorrhage. Stereotactic radiosurgery (SRS) is an established treatment for arteriovenous malformations (AVM) and commonly delivered using Gamma Knife within dedicated radiosurgery units. Linear accelerator (LINAC) SRS is increasingly available however debate remains over whether it offers an equivalent outcome. The aim of this project is to evaluate the outcomes using LINAC SRS for AVMs used within a UK neurosciences unit and review the literature to aid decision making across various SRS platforms. Results have shown comparability across platforms and strongly supports that an adapted LINAC based SRS facility within a dynamic regional neuro-oncology department delivers similar outcomes (in terms of obliteration and toxicity) to any other dedicated radio-surgical platform. Locally available facilities can facilitate discussion between options however throughput will inevitably be lower than centrally based dedicated national radiosurgery units.

  17. Application of local area networks to accelerator control systems at the Stanford Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Fox, J.D.; Linstadt, E.; Melen, R.

    1983-03-01

    The history and current status of SLAC's SDLC networks for distributed accelerator control systems are discussed. These local area networks have been used for instrumentation and control of the linear accelerator. Network topologies, protocols, physical links, and logical interconnections are discussed for specific applications in distributed data acquisition and control system, computer networks and accelerator operations.

  18. Space charge in linear accelerators workshop. [Eighteen papers

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A. (ed.)

    1978-05-01

    Nineteen papers and three summary sessions (theoretical, simulation codes, and experimental approach) are presented on the effects of space charge in linear accelerators. A separate abstract was prepared for each paper for inclusion in Energy Research Abstracts (ERA). (PMA)

  19. [The security system of SIEMENS digital linear accelerator].

    Science.gov (United States)

    Wang, Jianping

    2013-03-01

    The security system plays an important role to protect the safety of patients and equipment in radiotherapy. The principle and structure of three kinds of security system of the Siemens digital linear accelerator were analyzed with some examples.

  20. Detection of linear ego-acceleration from optic flow.

    Science.gov (United States)

    Festl, Freya; Recktenwald, Fabian; Yuan, Chunrong; Mallot, Hanspeter A

    2012-07-20

    Human observers are able to estimate various ego-motion parameters from optic flow, including rotation, translational heading, time-to-collision (TTC), time-to-passage (TTP), etc. The perception of linear ego-acceleration or deceleration, i.e., changes of translational velocity, is less well understood. While time-to-passage experiments indicate that ego-acceleration is neglected, subjects are able to keep their (perceived) speed constant under changing conditions, indicating that some sense of ego-acceleration or velocity change must be present. In this paper, we analyze the relation of ego-acceleration estimates and geometrical parameters of the environment using simulated flights through cylindrical and conic (narrowing or widening) corridors. Theoretical analysis shows that a logarithmic ego-acceleration parameter, called the acceleration rate ρ, can be calculated from retinal acceleration measurements. This parameter is independent of the geometrical layout of the scene; if veridical ego-motion is known at some instant in time, acceleration rate allows updating of ego-motion without further depth-velocity calibration. Results indicate, however, that subjects systematically confuse ego-acceleration with corridor narrowing and ego-deceleration with corridor widening, while veridically judging ego-acceleration in straight corridors. We conclude that judgments of ego-acceleration are based on first-order retinal flow and do not make use of acceleration rate or retinal acceleration.

  1. A beam-matching concept for medical linear accelerators

    DEFF Research Database (Denmark)

    Sjöström, David; Bjelkengren, Ulf; Ottosson, Wiviann

    2009-01-01

    The flexibility in radiotherapy can be improved if a patient can be moved between any one of the department's medical linear accelerators without the need to change anything in the patient's treatment plan. For this to be possible, the dosimetric characteristics of the various accelerators must...

  2. An overview of collective effects in circular and linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, R.D. (Stanford Linear Accelerator Center, Menlo Park, CA (USA))

    1989-04-01

    The purpose of both linear and circular accelerator is, of course, to accelerate beams of charged particles. In order to do this it is necessary not only to accelerate particles but also to confine them transversely so that they remain in the vacuum environment. Originally, as accelerators were developed, the intensity of the beams was rather low and so the external fields could be applied without regard to the effects of the space-charge forces of the beams. However, as the demand for high intensity increased, collective effects that are due to the space-charge forces became increasingly important. In order to control a beam of particles we apply external fields. These focus the beam transversely and accelerate it and focus it longitudinally. In addition to these externally applied fields a particle within the beam feels a field due to the charge and current of all the other particles in the beam. By collective effects, we mean all those modifications to the beam behavior which are due to these beam-induced forces. The first two major topics discussed are linear and circular accelerators. In the linear accelerator case, we will consider as examples only electron linacs that have relatively high energy and so particles will have {nu} {approx equal} c. For circular accelerators we'll consider both protons and electrons or their anti-particles. The next two topics are single bunches and multi-bunches. In both linear accelerators and circular accelerators the particles have a bunched character because they are accelerated by an RF system, and the RF has a natural wavelength. The next two topics arise from the natural separation of longitudinal and transverse effects. 40 refs., 30 figs., 1 tab.

  3. BBU design of linear induction accelerator cells for radiography application

    Energy Technology Data Exchange (ETDEWEB)

    Shang, C.C.; Chen, Y.J.; Gaporaso, G.J.; Houck, T.L.; Molau, N.E.; Focklen, J.; Gregory, S.

    1997-05-06

    There is an ongoing effort to develop accelerating modules for high-current electron accelerators for advanced radiography application. Accelerating modules with low beam-cavity coupling impedances along with gap designs with acceptable field stresses comprise a set of fundamental design criteria. We examine improved cell designs which have been developed for accelerator application in several radiographic operating regimes. We evaluate interaction impedances, analyze the effects of beam structure coupling on beam dynamics (beam break-up instability and corkscrew motion). We also provide estimates of coupling through interesting new high-gradient insulators and evaluate their potential future application in induction cells.

  4. KLYNAC: Compact linear accelerator with integrated power supply

    Energy Technology Data Exchange (ETDEWEB)

    Malyzhenkov, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-16

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scienti c community is working towards improving the quality of the accelerated beam and its parameters while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype, resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RF source, an accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simpli ed theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using particle-in-cell simulation studies for mono- resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.

  5. Energy shaping non-linear acceleration control for a pendulum-type mobility and experimental verification

    Science.gov (United States)

    Yokoyama, Kazuto; Takahashi, Masaki

    2015-02-01

    A dynamics-based non-linear controller with energy shaping to accelerate a pendulum-type mobility is proposed. The concept of this study is to control translational acceleration of the vehicle in a dynamically reasonable manner. The body angle is controlled to maintain a reference state where the vehicle is statically unstable but dynamically stable, which leads to a constant translational acceleration due to instability of the system. The accelerating motion is like a sprinter moving from crouch start and it fully exploits dynamics of the vehicle. To achieve it, the total energy of the system is shaped to have the minimum at a given reference state and the system is controlled to converge to it. The controller can achieve various properties through the energy shaping procedure. Especially, an energy function that will lead to safe operation of the vehicle is proposed. The effectiveness of the controller is verified in simulations and experiments.

  6. CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM

    Directory of Open Access Journals (Sweden)

    S.H. Nasseri

    2009-10-01

    Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.

  7. Linear to non linear analysis for positron acceleration in plasma hollow channel wakefields

    Science.gov (United States)

    Amorim, Ligia Diana; An, Weiming; Mori, Warren B.; Vieira, Jorge

    2016-10-01

    Plasma wakefield accelerators are promising candidates for future generation compact accelerators. The standard regime of operation, non-linear or blowout regime, is reached when a particle bunch space charge or laser pulse ponderomotive force radially expels plasma electrons forming a bucket of ions that defocus positron bunches, thus preventing their acceleration. To avoid defocusing, hollow plasma channels have been considered. The corresponding wakefields have been examined in the linear and non-linear excitation regimes for electrons. It is therefore important to extend the theory for positron acceleration, particularly in the nonlinear regime where the wakefields strongly differ. In this work we explore the wakefield structure, examine the differences between the electron and positron beam cases, and explore positron acceleration in nonlinear regimes. We support our findings with multi-dimensional particle-in-cell simulations performed with OSIRIS and quasi-3D and QuickPIC.

  8. Kinematics and hydrodynamics of linear acceleration in eels, Anguilla rostrata.

    Science.gov (United States)

    Tytell, Eric D

    2004-12-22

    The kinematics and hydrodynamics of routine linear accelerations were studied in American eels, Anguilla rostrata, using high-speed video and particle image velocimetry. Eels were examined both during steady swimming at speeds from 0.6 to 1.9 body lengths (L) per second and during accelerations from -1.4 to 1.3 L s(-2). Multiple regression of the acceleration and steady swimming speed on the body kinematics suggests that eels primarily change their tail-tip velocity during acceleration. By contrast, the best predictor of steady swimming speed is body wave speed, keeping tail-tip velocity an approximately constant fraction of the swimming velocity. Thus, during steady swimming, Strouhal number does not vary with speed, remaining close to 0.32, but during acceleration, it deviates from the steady value. The kinematic changes during acceleration are indicated hydrodynamically by axial fluid momentum in the wake. During steady swimming, the wake consists of lateral jets of fluid and has minimal net axial momentum, which reflects a balance between thrust and drag. During acceleration, those jets rotate to point downstream, adding axial momentum to the fluid. The amount of added momentum correlates with the acceleration, but is greater than the necessary inertial force by 2.8+/-0.6 times, indicating a substantial acceleration reaction.

  9. Staging optics considerations for a plasma wakefield acceleration linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrøm, C.A., E-mail: c.a.lindstrom@fys.uio.no [Department of Physics, University of Oslo, Oslo 0316 (Norway); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Adli, E. [Department of Physics, University of Oslo, Oslo 0316 (Norway); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Allen, J.M.; Delahaye, J.P.; Hogan, M.J. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Joshi, C. [Department of Electrical Engineering, UCLA, Los Angeles, CA 90095 (United States); Muggli, P. [Max Planck Institute for Physics, 80805 Munich (Germany); Raubenheimer, T.O.; Yakimenko, V. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2016-09-01

    Plasma wakefield acceleration offers acceleration gradients of several GeV/m, ideal for a next-generation linear collider. The beam optics requirements between plasma cells include injection and extraction of drive beams, matching the main beam beta functions into the next cell, canceling dispersion as well as constraining bunch lengthening and chromaticity. To maintain a high effective acceleration gradient, this must be accomplished in the shortest distance possible. A working example is presented, using novel methods to correct chromaticity, as well as scaling laws for a high energy regime.

  10. Next Linear Collider Test Accelerator conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This document presents the scientific justification and the conceptual design for the {open_quotes}Next Linear Collider Test Accelerator{close_quotes} (NLCTA) at SLAC. The goals of the NLCTA are to integrate the new technologies of X-band accelerator structures and rf systems being developed for the Next Linear Collider, to measure the growth of the {open_quotes}dark current{close_quotes} generated by rf field emission in the accelerator, to demonstrate multi-bunch beam-loading energy compensation and suppression of higher-order deflecting modes, and to measure any transverse components of the accelerating field. The NLCTA will be a 42-meter-long beam line consisting, consecutively, of a thermionic-cathode gun, an X-band buncher, a magnetic chicane, six 1.8-meter-long sections of 11.4-GHz accelerator structure, and a magnetic spectrometer. Initially, the unloaded accelerating gradient will be 50 MV/m. A higher-gradient upgrade option eventually would increase the unloaded gradient to 100 MV/m.

  11. Annotated bibliography on high-intensity linear accelerators. [240 citations

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A.; Roybal, E.U.

    1978-01-01

    A technical bibliography covering subjects important to the design of high-intensity beam transport systems and linear accelerators is presented. Space charge and emittance growth are stressed. Subject and author concordances provide cross-reference to detailed citations, which include an abstract and notes on the material. The bibliography resides in a computer database that can be searched for key words and phrases.

  12. linear accelerator simulation framework with placet and guinea-pig

    CERN Document Server

    Snuverink, Jochem; CERN. Geneva. ATS Department

    2016-01-01

    Many good tracking tools are available for simulations for linear accelerators. However, several simple tasks need to be performed repeatedly, like lattice definitions, beam setup, output storage, etc. In addition, complex simulations can become unmanageable quite easily. A high level layer would therefore be beneficial. We propose LinSim, a linear accelerator framework with the codes PLACET and GUINEA-PIG. It provides a documented well-debugged high level layer of functionality. Users only need to provide the input settings and essential code and / or use some of the many implemented imperfections and algorithms. It can be especially useful for first-time users. Currently the following accelerators are implemented: ATF2, ILC, CLIC and FACET. This note is the comprehensive manual, discusses the framework design and shows its strength in some condensed examples.

  13. Challenges in the design of linear accelerator tunnels and services

    CERN Document Server

    Osborne, John

    2008-01-01

    Studies are well underway for the next generation of linear accelerators. The International Linear Collider (ILC) is working towards a maximum collision energy of 1 TeV and the Compact Linear Collider (CLIC) even higher at 3 TeV. Although the accelerating technologies are very different, many similarities can be found between the two projects from a civil engineering and technical services point of view. Both projects would require a site of approximately 50 km in length with stable geological conditions. CERN has been selected as one of the sample sites for the preliminary studies. The aim of this paper is to present the key challenges in the design of civil engineering and technical services such as cooling, ventilation and electricity that need to be overcome to realise such large scale projects in the future.

  14. Lorentz-Dirac force from QED for linear acceleration

    Science.gov (United States)

    Higuchi, Atsushi; Martin, Giles D.

    2004-10-01

    We investigate the motion of a wave packet of a charged scalar particle linearly accelerated by a static potential in quantum electrodynamics. We calculate the expectation value of the position of the charged particle after the acceleration to first order in the fine structure constant in the ℏ→0 limit. We find that the change in the expectation value of the position (the position shift) due to radiation reaction agrees exactly with the result obtained using the Lorentz-Dirac force in classical electrodynamics. We also point out that the one-loop correction to the potential may contribute to the position change in this limit.

  15. Rotational total skin electron irradiation with a linear accelerator.

    Science.gov (United States)

    Reynard, Eric P; Evans, Michael D C; Devic, Slobodan; Parker, William; Freeman, Carolyn R; Roberge, David; Podgorsak, Ervin B

    2008-11-03

    The rotational total skin electron irradiation (RTSEI) technique at our institution has undergone several developments over the past few years. Replacement of the formerly used linear accelerator has prompted many modifications to the previous technique. With the current technique, the patient is treated with a single large field while standing on a rotating platform, at a source-to-surface distance of 380 cm. The electron field is produced by a Varian 21EX linear accelerator using the commercially available 6 MeV high dose rate total skin electron mode, along with a custom-built flattening filter. Ionization chambers, radiochromic film, and MOSFET (metal oxide semiconductor field effect transistor) detectors have been used to determine the dosimetric properties of this technique. Measurements investigating the stationary beam properties, the effects of full rotation, and the dose distributions to a humanoid phantom are reported. The current treatment technique and dose regimen are also described.

  16. Linear accelerator radiosurgery for trigeminal neuralgia: case report

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyong Geun [Dongguk University International Hospital, Goyang (Korea, Republic of)

    2006-06-15

    Trigeminal neuralgia is defined as an episodic electrical shock-like sensation in a dermatomal distribution of the trigeminal nerve. When medications fail to control pain, various procedures are used to attempt to control refractory pain. Of available procedures, stereotactic radiosurgery is the least invasive procedure and has been demonstrated to produce significant pain relief with minimal side effects. Recently, linear accelerators were introduced as a tool for radiosurgery of trigeminal neuralgia beneath the already accepted gamma unit. Author have experienced one case with trigeminal neuralgia treated with linear accelerator. The patient was treated with 85 Gy by means of 5 mm collimator directed to trigeminal nerve root entry zone. The patient obtained pain free without medication at 20 days after the procedure and remain pain free at 6 months after the procedure. He didn't experience facial numbness or other side effects.

  17. LINEAR LATTICE AND TRAJECTORY RECONSTRUCTION AND CORRECTION AT FAST LINEAR ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A. [Fermilab; Edstrom, D. [Fermilab; Halavanau, A. [Northern Illinois U.

    2017-07-16

    The low energy part of the FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned [1]. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to their magnetic axes. Details of used methods and experimental results are presented.

  18. Organizational cultural survey of the Stanford Linear Accelerator Center

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    At the request of the Department of Energy, an Organizational Survey (OS) was administered at the Stanford Linear Accelerator Center (SLAC). The OS measured employees' opinions on subjects such as organizational culture, communication, commitment, group cohesion, coordination, safety, environmental issues, and job satisfaction. The result of this work was a quantitative measure of the notion of culture at the SLAC site. This report presents these results and discusses their interpretation.

  19. Clinical implementation of electron energy changes of varian linear accelerators.

    Science.gov (United States)

    Zhang, Sean; Liengsawangwong, Praimakorn; Lindsay, Patricia; Prado, Karl; Sun, Tzouh-Liang; Steadham, Roy; Wang, Xiaochun; Salehpour, Mohammad; Gillin, Michael

    2009-10-27

    Modern dual photon energy linear accelerators often come with a few megavoltage electron beams. The megavoltage electron beam has limited range and relative sharp distal falloff in its depth dose curve compared to that of megavoltage photon beam. Its radiation dose is often delivered appositionally to cover the target volume to its distal 90% depth dose (d90), while avoiding the normal--sometimes critical--structure immediately distal to the target. Varian linear accelerators currently offer selected electron beams of 4, 6, 9, 12, 16 and 20 MeV electron beam energies. However, intermediate electron energy is often needed for optimal dose distribution. In this study we investigated electron beam characteristics and implemented two intermediate 7 and 11 MeV electron beams on Varian linear accelerators. Comprehensive tests and measurements indicated the new electron beams met all dosimetry parameter criteria and operational safety standards. Between the two new electron beams and the existing electron beams we were able to provide a choice of electron beams of 4, 6, 7, 9, 11, 12, 16 and 20 MeV electron energies, which had d90 depth between 1.5 cm and 6.0 cm (from 1.5 cm to 4.0 cm in 0.5 cm increments) to meet our clinical needs.

  20. Versatile Low Level RF System For Linear Accelerators

    Science.gov (United States)

    Potter, James M.

    2011-06-01

    The Low Level RF (LLRF) system is the source of all of the rf signals required for an rf linear accelerator. These signals are amplified to drive accelerator and buncher cavities. It can even provide the synchronizing signal for the rf power for a synchrotron. The use of Direct Digital Synthesis (DDS) techniques results in a versatile system that can provide multiple coherent signals at the same or different frequencies with adjustable amplitudes and phase relations. Pulsing the DDS allows rf switching with an essentially infinite on/off ratio. The LLRF system includes a versatile phase detector that allows phase-locking the rf frequency to a cavity at any phase angle over the full 360° range. With the use of stepper motor driven slug tuners multiple cavity resonant frequencies can be phase locked to the rf source frequency. No external phase shifters are required and there is no feedback loop phase setup required. All that is needed is to turn the frequency feedback on. The use of Digital Signal Processing (DSP) allows amplitude and phase control over the entire rf pulse. This paper describes the basic principles of a LLRF system that has been used for both proton accelerators and electron accelerators, including multiple tank accelerators, sub-harmonic and fundamental bunchers, and synchrotrons.

  1. Particle Dynamics in Linear Resonance Accelerators,

    Science.gov (United States)

    1982-11-08

    depends clearly on time, since parameters p-, ., are the assigned functions of time. However, let us assume that parameters Ps, vs are changed...axis of real short lens. Page 71. The initial parameters for the rational design of quadrupole lens are the gradient of focusing field and distance...NI =- 10.Gal. Empiricism established/installed, that to account for steel core a number of ampere-turns should be increased by lOo/o. This gives NI

  2. Control system analysis for the perturbed linear accelerator rf system

    CERN Document Server

    Sung Il Kwon

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.

  3. Heterogenous Acceleration for Linear Algebra in Multi-coprocessor Environments

    Energy Technology Data Exchange (ETDEWEB)

    Luszczek, Piotr R [ORNL; Tomov, Stanimire Z [ORNL; Dongarra, Jack J [ORNL

    2015-01-01

    We present an efficient and scalable programming model for the development of linear algebra in heterogeneous multi-coprocessor environments. The model incorporates some of the current best design and implementation practices for the heterogeneous acceleration of dense linear algebra (DLA). Examples are given as the basis for solving linear systems' algorithms - the LU, QR, and Cholesky factorizations. To generate the extreme level of parallelism needed for the efficient use of coprocessors, algorithms of interest are redesigned and then split into well-chosen computational tasks. The tasks execution is scheduled over the computational components of a hybrid system of multi-core CPUs and coprocessors using a light-weight runtime system. The use of lightweight runtime systems keeps scheduling overhead low, while enabling the expression of parallelism through otherwise sequential code. This simplifies the development efforts and allows the exploration of the unique strengths of the various hardware components.

  4. Radiation protection in large linear accelerators; Seguranca radiologica de aceleradores lineares de grande porte

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Jose de Jesus Rivero, E-mail: rivero@con.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Departamento de Engenharia Nuclear; Sousa, Fernando Nuno Carneiro de, E-mail: fernandonunosousa@gmail.com [Aceletron Irradiacao lndustrial, Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The electron linear accelerators can be used in industrial applications that require powerful sources of ionizing radiation. They have the important characteristic of not representing a radiation hazard when the accelerators remain electrically disconnected. With the plant in operation, a high reliability defense in depth reduces the risk of radiological accidents to extremely small levels. It is practically impossible that a person could enter into the radiation bunker with the accelerators connected. Aceletron Irradiacao Industrial, located in Rio de Janeiro, offers services of irradiation by means of two powerful electron linear accelerators, with 15 kW power and 10 MeV electron energy. Despite the high level of existing radiation safety, a simplified risk study is underway to identify possible sequences of radiological accidents. The study is based on the combined application of the event and fault trees techniques. Preliminary results confirm that there is a very small risk of entering into the irradiation bunker with the accelerators in operation, but the risk of an operator entering into the bunker during a process interruption and remaining there without notice after the accelerators were restarted may be considerably larger. Based on these results the Company is considering alternatives to reduce the likelihood of human error of this type that could lead to a radiological accident. The paper describes the defense in depth of the irradiation process in Aceletron Irradiacao Industrial, as well as the models and preliminary results of the ongoing risk analysis, including the additional safety measures which are being evaluated. (author)

  5. Ion acceleration in a scalable MEMS RF-structure for a compact linear accelerator

    CERN Document Server

    Persaud, A; Feinberg, E; Seidl, P A; Waldron, W L; Lal, A; Vinayakumar, K B; Ardanuc, S; Schenkel, T

    2016-01-01

    A new approach for a compact radio-frequency(rf) accelerator structure is presented. The idea is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC allowed scaling of rf-structure down to dimensions of centimeters while at the same time allowing for higher beam currents through parallel beamlets. Using micro-electro-mechanical systems (MEMS) for highly scalable fabrication, we reduce the critical dimension to the sub-millimeter regime, while massively scaling up the potential number of parallel beamlets. The technology is based on rf-acceleration components and electrostatic quadrupoles (ESQs) implemented in a silicon wafer based design where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach allows fast and cheap batch fabrication of the components and flexibility in system design for different applications. For prototyping these ...

  6. The general RF tuning for IH-DTL linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.R. [Key State Laboratory of Nuclear Physics and Technology, Peking University (China)], E-mail: yrlu@pku.edu.cn; Ratzinger, U. [Institute of Applied Physics, Frankfurt University (Germany); Schlitt, B. [Gesellschaft fuer Schwerionenforschung, mbH, Darmstadt (Germany); Tiede, R. [Institute of Applied Physics, Frankfurt University (Germany)

    2007-11-21

    The RF tuning is the most important research for achieving the resonant frequency and the flatness of electric field distributions along the axis of RF accelerating structures. The six different tuning concepts and that impacts on the longitudinal field distributions have been discussed in detail combining the RF tuning process of a 1:2 modeled 20.85 MV compact IH-DTL cavity, which was designed to accelerate proton, helium, oxygen or C{sup 4+} from 400 keV/u to 7 MeV/u and used as the linear injector of 430 MeV/u synchrotron [Y.R. Lu, S. Minaev, U. Ratzinger, B. Schlitt, R.Tiede, The Compact 20MV IH-DTL for the Heidelberg Therapy Facility, in: Proceedings of the LINAC Conference, Luebeck, Germany, 2004 ; Y.R. Lu, Frankfurt University Dissertation, 2005. ] in Heidelberg Heavy Ion Cancer Therapy (HICAT). Some of tuning concepts are also suitable and effective for the tuning of RFQ and/or other RF accelerating structures. Finally good field flatness in IH-DTL cavity has been realized successfully. The experience got from the model cavity tuning benefits real power cavity tuning, which is only needed to be tuned by the plungers. The cavity had a beam commissioning successfully for the initial beam acceleration at the end of 2006.

  7. Safety managements of the linear IFMIF/EVEDA prototype accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroki, E-mail: takahashi.hiroki@jaea.go.jp [IFMIF Accelerator Facility Development Group, Directorates of Fusion Energy Research, JAEA (Japan); Maebara, Sunao; Kojima, Toshiyuki; Narita, Takahiro; Tsutsumi, Kazuyoshi [IFMIF Accelerator Facility Development Group, Directorates of Fusion Energy Research, JAEA (Japan); Sakaki, Hironao [Photo Medical Research Center, JAEA (Japan); Suzuki, Hiromitsu [IFMIF Accelerator Facility Development Group, Directorates of Fusion Energy Research, JAEA (Japan); Sugimoto, Masayoshi [Directorates of Fusion Energy Research, JAEA (Japan)

    2014-10-15

    Highlights: •Safety management is needed to secure the personnel safety from high dose rate. •The management of access to the accelerator vault is mainly performed by PPS. •The operation management is needed for safety during Injector and RFQ commissioning. •Pulse Duty Management system is newly developed for Injector commissioning for operation management. •PDM system is useful to reduce the radioactivation of equipment and the radiation exposure during and after beam operation. -- Abstract: On the Linear IFMIF/EVEDA Prototype Accelerator (LIPAc), the validation up to 9 MeV deuteron beam with 125 mA continuous wave is planned in Rokkasho, Aomori, Japan. Since the deuteron beam power exceeds 1 MW, safety issue related to γ-ray and neutron production is critical. To establish the safety management indispensable to reduce radiation exposure for personnel and activation of accelerator equipment, Personnel Protection System (PPS) of LIPAc control system, which works together with Radiation Monitoring System and Access Control System, was developed for LIPAc. The management of access to the accelerator vault by PPS and the beam duty management of PPS are presented in details.

  8. Linear and Nonlinear Dynamical Chaos

    CERN Document Server

    Chirikov, B V

    1997-01-01

    Interrelations between dynamical and statistical laws in physics, on the one hand, and between the classical and quantum mechanics, on the other hand, are discussed with emphasis on the new phenomenon of dynamical chaos. The principal results of the studies into chaos in classical mechanics are presented in some detail, including the strong local instability and robustness of the motion, continuity of both the phase space as well as the motion spectrum, and time reversibility but nonrecurrency of statistical evolution, within the general picture of chaos as a specific case of dynamical behavior. Analysis of the apparently very deep and challenging contradictions of this picture with the quantum principles is given. The quantum view of dynamical chaos, as an attempt to resolve these contradictions guided by the correspondence principle and based upon the characteristic time scales of quantum evolution, is explained. The picture of the quantum chaos as a new generic dynamical phenomenon is outlined together wit...

  9. The general RF tuning for IH-DTL linear accelerators

    Science.gov (United States)

    Lu, Y. R.; Ratzinger, U.; Schlitt, B.; Tiede, R.

    2007-11-01

    The RF tuning is the most important research for achieving the resonant frequency and the flatness of electric field distributions along the axis of RF accelerating structures. The six different tuning concepts and that impacts on the longitudinal field distributions have been discussed in detail combining the RF tuning process of a 1:2 modeled 20.85 MV compact IH-DTL cavity, which was designed to accelerate proton, helium, oxygen or C 4+ from 400 keV/ u to 7 MeV/u and used as the linear injector of 430 MeV/ u synchrotron [Y.R. Lu, S. Minaev, U. Ratzinger, B. Schlitt, R.Tiede, The Compact 20MV IH-DTL for the Heidelberg Therapy Facility, in: Proceedings of the LINAC Conference, Luebeck, Germany, 2004 [1]; Y.R. Lu, Frankfurt University Dissertation, 2005. [2

  10. A dosimetric characterization of a novel linear accelerator collimator

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, C. M.; Weston, S. J., E-mail: steve.weston@leedsth.nhs.uk; Cosgrove, V. C. [Leeds Cancer Centre, Bexley Wing, St. James’ University Hospital, Leeds LS9 7TF (United Kingdom); Thwaites, D. I. [Institute of Medical Physics, School of Physics, University of Sydney, Sydney NSW 2006, Australia and Division of Medical Physics, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2014-03-15

    Purpose: The aim of this work is to characterize a new linear accelerator collimator which contains a single pair of sculpted diaphragms mounted orthogonally to a 160 leaf multileaf collimator (MLC). The diaphragms have “thick” regions providing full attenuation and “thin” regions where attenuation is provided by both the leaves and the diaphragm. The leaves are mounted on a dynamic leaf guide allowing rapid leaf motion and leaf travel over 350 mm. Methods: Dosimetric characterization, including assessment of leaf transmission, leaf tip transmission, penumbral width, was performed in a plotting tank. Head scatter factor was measured using a mini-phantom and the effect of leaf guide position on output was assessed using a water phantom. The tongue and groove effect was assessed using multiple exposures on radiochromic film. Leaf reproducibility was assessed from portal images of multiple abutting fields. Results: The maximum transmission through the multileaf collimator is 0.44% at 6 MV and 0.52% at 10 MV. This reduced to 0.22% and 0.27%, respectively, when the beam passes through the dynamic leaf guide in addition to the MLC. The maximum transmission through the thick part of the diaphragm is 0.32% and 0.36% at 6 and 10 MV. The combination of leaf and diaphragm transmission ranges from 0.08% to 0.010% at 6 MV and 0.10% to 0.14% depending on whether the shielding is through the thick or thin part of the diaphragm. The off-axis intertip transmission for a zero leaf gap is 2.2% at 6 and 10 MV. The leaf tip penumbra for a 100 × 100 mm field ranges from 5.4 to 4.3 mm at 6 and 10 MV across the full range of leaf motion when measured in the AB direction, which reduces to 4.0–3.4 mm at 6 MV and 4.5–3.8 mm at 10 MV when measured in the GT direction. For a 50 × 50 mm field, the diaphragm penumbra ranges from 4.3 to 3.7 mm at 6 MV and 4.5 to 4.1 mm at 10 MV in the AB direction and 3.7 to 3.2 mm at 6 MV and 4.2 to 3.7 mm when measured in the GT direction. The

  11. Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

    Science.gov (United States)

    Machida, S.; Barlow, R.; Berg, J. S.; Bliss, N.; Buckley, R. K.; Clarke, J. A.; Craddock, M. K.; D'Arcy, R.; Edgecock, R.; Garland, J. M.; Giboudot, Y.; Goudket, P.; Griffiths, S.; Hill, C.; Hill, S. F.; Hock, K. M.; Holder, D. J.; Ibison, M. G.; Jackson, F.; Jamison, S. P.; Johnstone, C.; Jones, J. K.; Jones, L. B.; Kalinin, A.; Keil, E.; Kelliher, D. J.; Kirkman, I. W.; Koscielniak, S.; Marinov, K.; Marks, N.; Martlew, B.; McIntosh, P. A.; McKenzie, J. W.; Méot, F.; Middleman, K. J.; Moss, A.; Muratori, B. D.; Orrett, J.; Owen, H. L.; Pasternak, J.; Peach, K. J.; Poole, M. W.; Rao, Y.-N.; Saveliev, Y.; Scott, D. J.; Sheehy, S. L.; Shepherd, B. J. A.; Smith, R.; Smith, S. L.; Trbojevic, D.; Tzenov, S.; Weston, T.; Wheelhouse, A.; Williams, P. H.; Wolski, A.; Yokoi, T.

    2012-03-01

    In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a `scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10mm in radius over an electron momentum range of 12-18MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

  12. Accelerating sparse linear algebra using graphics processing units

    Science.gov (United States)

    Spagnoli, Kyle E.; Humphrey, John R.; Price, Daniel K.; Kelmelis, Eric J.

    2011-06-01

    The modern graphics processing unit (GPU) found in many standard personal computers is a highly parallel math processor capable of over 1 TFLOPS of peak computational throughput at a cost similar to a high-end CPU with excellent FLOPS-to-watt ratio. High-level sparse linear algebra operations are computationally intense, often requiring large amounts of parallel operations and would seem a natural fit for the processing power of the GPU. Our work is on a GPU accelerated implementation of sparse linear algebra routines. We present results from both direct and iterative sparse system solvers. The GPU execution model featured by NVIDIA GPUs based on CUDA demands very strong parallelism, requiring between hundreds and thousands of simultaneous operations to achieve high performance. Some constructs from linear algebra map extremely well to the GPU and others map poorly. CPUs, on the other hand, do well at smaller order parallelism and perform acceptably during low-parallelism code segments. Our work addresses this via hybrid a processing model, in which the CPU and GPU work simultaneously to produce results. In many cases, this is accomplished by allowing each platform to do the work it performs most naturally. For example, the CPU is responsible for graph theory portion of the direct solvers while the GPU simultaneously performs the low level linear algebra routines.

  13. Linear analysis of active-medium two-beam accelerator

    Directory of Open Access Journals (Sweden)

    Miron Voin

    2015-07-01

    Full Text Available We present detailed development of the linear theory of wakefield amplification by active medium and its possible application to a two-beam accelerator (TBA is discussed. A relativistic train of triggering microbunches traveling along a vacuum channel in an active medium confined by a cylindrical waveguide excites Cherenkov wake in the medium. The wake is a superposition of azimuthally symmetric transverse magnetic modes propagating along a confining waveguide, with a phase velocity equal to the velocity of the triggering bunches. The structure may be designed in such a way that the frequency of one of the modes is close to active-medium resonant frequency, resulting in amplification of the former and domination of a single mode far behind the trigger bunches. Another electron bunch placed in proper phase with the amplified wakefield may be accelerated by the latter. Importantly, the energy for acceleration is provided by the active medium and not the drive bunch as in a traditional TBA. Based on a simplified model, we analyze extensively the impact of various parameters on the wakefield amplification process.

  14. Solution Methods for Stochastic Dynamic Linear Programs.

    Science.gov (United States)

    1980-12-01

    Linear Programming, IIASA , Laxenburg, Austria, June 2-6, 1980. [2] Aghili, P., R.H., Cramer and H.W. Thompson, "On the applicability of two- stage...Laxenburg, Austria, May, 1978. [52] Propoi, A. and V. Krivonozhko, ’The simplex method for dynamic linear programs", RR-78-14, IIASA , Vienna, Austria

  15. RF properties of periodic accelerating structures for linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.W.

    1989-07-01

    With the advent of the SLAC electron-positron linear collider (SLC) in the 100 GeV center-of-mass energy range, research and development work on even higher energy machines of this type has started in several laboratories in the United States, Europe, the Soviet Union and Japan. These linear colliders appear to provide the only promising approach to studying e/sup /plus//e/sup /minus// physics at center-of-mass energies approaching 1 TeV. This thesis concerns itself with the study of radio frequency properties of periodic accelerating structures for linear colliders and their interaction with bunched beams. The topics that have been investigated are: experimental measurements of the energy loss of single bunches to longitudinal modes in two types of structures, using an equivalent signal on a coaxial wire to simulate the beam; a method of canceling the energy spread created within a single bunch by longitudinal wakefields, through appropriate shaping of the longitudinal charge distribution of the bunch; derivation of the complete transient beam-loading equation for a train of bunches passing through a constant-gradient accelerator section, with application to the calculation and minimization of multi-bunch energy spread; detailed study of field emission and radio frequency breakdown in disk-loaded structures at S-, C- and X-band frequencies under extremely high-gradient conditions, with special attention to thermal effects, radiation, sparking, emission of gases, surface damage through explosive emission and its possible control through RF-gas processing. 53 refs., 49 figs., 9 tabs.

  16. Dynamical systems generated by linear maps

    CERN Document Server

    Dolićanin, Ćemal B

    2014-01-01

    The book deals with dynamical systems, generated by linear mappings of finite dimensional spaces and their applications. These systems have a relatively simple structure from the point of view of the modern dynamical systems theory. However, for the dynamical systems of this sort, it is possible to obtain explicit answers to specific questions being useful in applications. The considered problems are natural and look rather simple, but in reality in the course of investigation, they confront users with plenty of subtle questions, and their detailed analysis needs a substantial effort. The problems arising are related to linear algebra and dynamical systems theory, and therefore, the book can be considered as a natural amplification, refinement and supplement to linear algebra and dynamical systems theory textbooks.

  17. The Modern Temperature-Accelerated Dynamics Approach.

    Science.gov (United States)

    Zamora, Richard J; Uberuaga, Blas P; Perez, Danny; Voter, Arthur F

    2016-06-07

    Accelerated molecular dynamics (AMD) is a class of MD-based methods used to simulate atomistic systems in which the metastable state-to-state evolution is slow compared with thermal vibrations. Temperature-accelerated dynamics (TAD) is a particularly efficient AMD procedure in which the predicted evolution is hastened by elevating the temperature of the system and then recovering the correct state-to-state dynamics at the temperature of interest. TAD has been used to study various materials applications, often revealing surprising behavior beyond the reach of direct MD. This success has inspired several algorithmic performance enhancements, as well as the analysis of its mathematical framework. Recently, these enhancements have leveraged parallel programming techniques to enhance both the spatial and temporal scaling of the traditional approach. We review the ongoing evolution of the modern TAD method and introduce the latest development: speculatively parallel TAD.

  18. Smartphone application for mechanical quality assurance of medical linear accelerators

    Science.gov (United States)

    Kim, Hwiyoung; Lee, Hyunseok; In Park, Jong; Choi, Chang Heon; Park, So-Yeon; Kim, Hee Jung; Kim, Young Suk; Ye, Sung-Joon

    2017-06-01

    Mechanical quality assurance (QA) of medical linear accelerators consists of time-consuming and human-error-prone procedures. We developed a smartphone application system for mechanical QA. The system consists of two smartphones: one attached to a gantry for obtaining real-time information on the mechanical parameters of the medical linear accelerator, and another displaying real-time information via a Bluetooth connection with the former. Motion sensors embedded in the smartphone were used to measure gantry and collimator rotations. Images taken by the smartphone’s high-resolution camera were processed to evaluate accuracies of jaw-positioning, crosshair centering and source-to-surface distance (SSD). The application was developed using Android software development kit and OpenCV library. The accuracy and precision of the system was validated against an optical rotation stage and digital calipers, prior to routine QA measurements of five medical linear accelerators. The system accuracy and precision in measuring angles and lengths were determined to be 0.05  ±  0.05° and 0.25  ±  0.14 mm, respectively. The mean absolute errors (MAEs) in QA measurements of gantry and collimator rotation were 0.05  ±  0.04° and 0.05  ±  0.04°, respectively. The MAE in QA measurements of light field was 0.39  ±  0.36 mm. The MAEs in QA measurements of crosshair centering and SSD were 0.40  ±  0.35 mm and 0.41  ±  0.32 mm, respectively. In conclusion, most routine mechanical QA procedures could be performed using the smartphone application system with improved precision and within a shorter time-frame, while eliminating potential human errors.

  19. Beam dynamics issues for linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, R.D.

    1987-09-01

    In this paper we discuss various beam dynamics issues for linear colliders. The emphasis is to explore beam dynamics effects which lead to an effective dilution of the emittance of the beam and thus to a loss of luminosity. These considerations lead to various tolerances which are evaluated for a particular parameter set.

  20. The Fast Linear Accelerator Modeling Engine for FRIB Online Model Service

    CERN Document Server

    He, Z; Davidsaver, M; Fukushima, K; Shen, G; Ikegami, M

    2016-01-01

    Commissioning of a large accelerator facility like FRIB needs support from an online beam dynamics model. Considering the new physics challenges of FRIB such as modeling of non-axisymmetric superconducting RF cavities and multi-charge state acceleration, there is no readily available online beam tuning code. The design code of FRIB super-conducting linac, IMPACT-Z, is not suitable for online tuning because of its code design and running speed. Therefore, the Fast Linear Accelerator Modeling Engine (FLAME), specifically designed to fulfill FRIB's online modeling challenges, is proposed. The physics model of FLAME, especially its novel way of modeling non-axisymmetric superconducting RF cavities using a multipole expansion based thin-lens kick model, is discussed in detail, and the benchmark results against FRIB design code is presented, after which the software design strategy of FLAME and its execution speed is presented.

  1. Non-linear stochastic optimal control of acceleration parametrically excited systems

    Science.gov (United States)

    Wang, Yong; Jin, Xiaoling; Huang, Zhilong

    2016-02-01

    Acceleration parametrical excitations have not been taken into account due to the lack of physical significance in macroscopic structures. The explosive development of microtechnology and nanotechnology, however, motivates the investigation of the acceleration parametrically excited systems. The adsorption and desorption effects dramatically change the mass of nano-sized structures, which significantly reduces the precision of nanoscale sensors or can be reasonably utilised to detect molecular mass. This manuscript proposes a non-linear stochastic optimal control strategy for stochastic systems with acceleration parametric excitation based on stochastic averaging of energy envelope and stochastic dynamic programming principle. System acceleration is approximately expressed as a function of system displacement in a short time range under the conditions of light damping and weak excitations, and the acceleration parametrically excited system is shown to be equivalent to a constructed system with an additional displacement parametric excitation term. Then, the controlled system is converted into a partially averaged Itô equation with respect to the total system energy through stochastic averaging of energy envelope, and the optimal control strategy for the averaged system is derived from solving the associated dynamic programming equation. Numerical results for a controlled Duffing oscillator indicate the efficacy of the proposed control strategy.

  2. Electronic emulator of linear dynamic systems

    OpenAIRE

    Garan, Maryna; Kovalenko, Iaroslav; Moučka, Michal; Vagaská, Alena

    2015-01-01

    The aim of this article is development and realization of electronic emulator of dynamic systems with setting of parameters from PC. This emulator is the first prototype, which is meant to prove the possibility of emulating the behavior of dynamic systems by microprocessor. The main goal of research is creating of equipment, which can emulate a behavior of pneumatic muscle with sufficient accuracy. Dynamic of pneumatic muscles is significantly non-linear and changeable in the dependence on...

  3. Longitudinal Jitter Analysis of a Linear Accelerator Electron Gun

    Directory of Open Access Journals (Sweden)

    MingShan Liu

    2016-11-01

    Full Text Available We present measurements and analysis of the longitudinal timing jitter of a Beijing Electron Positron Collider (BEPCII linear accelerator electron gun. We simulated the longitudinal jitter effect of the gun using PARMELA to evaluate beam performance, including: beam profile, average energy, energy spread, and XY emittances. The maximum percentage difference of the beam parameters is calculated to be 100%, 13.27%, 42.24% and 65.01%, 86.81%, respectively. Due to this, the bunching efficiency is reduced to 54%. However, the longitudinal phase difference of the reference particle was 9.89°. The simulation results are in agreement with tests and are helpful to optimize the beam parameters by tuning the trigger timing of the gun during the bunching process.

  4. Recent advances in kicker pulser technology for linear induction accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y J; Cook, E; Davis, B; Dehope, W J; Yen, B

    1999-06-01

    Recent progress in the development and understanding of linear induction accelerator have produced machines with 10s of MeV of beam energy and multi-kiloampere currents. Near-term machines, such as DARHT-2, are envisioned with microsecond pulselengths. Fast beam kickers, based on cylindrical electromagnetic stripline structures, will permit effective use of these extremely high-energy beams in an increasing number of applications. In one application, radiography, kickers were an essential element in resolving temporal evolution of hydrodynamic events by cleaving out individual pulses from long, microsecond beams. Advanced schemes are envisioned where these individual pulses are redirected through varying length beam lines and suitably recombined for stereographic imaging or tomographic reconstruction. Recent advances in fast kickers and their pulsed power technology are described. Kicker pulsers based on both planar triode and all solid-state componentry are discussed and future development plans are presented.

  5. Longitudinal jitter analysis of linear accelerator electron gun

    CERN Document Server

    Mingshan, Liu; Iqbal, Munawar

    2015-01-01

    We present measurement and analyses of longitudinal timing jitter of Beijing Electron Positron Collider (BEPCII) linear accelerator electron gun. We simulated longitudinal jitter effect of the gun using PARMELA about beam performance including beam profile, average energy, energy spread, longitudinal phase of reference particle and XY emittance. The maximum percentage difference of the beam parameters are calculated to be; 100%, 13.27%, 42.24%, 7.79% and 65.01%, 86.81%, respectively due to which the bunching efficiency is reduced to 54%. The simulation results are in agreement with test and are helpful to optimize the beam parameters by tuning the trigger timing of the gun during the bunching process.

  6. Terahertz radiation source using an industrial electron linear accelerator

    CERN Document Server

    Kalkal, Yashvir

    2015-01-01

    High power ($\\sim 100$ kW) industrial electron linear accelerators (linacs) are used for irradiation applications e.g., for pasteurization of food products, disinfection of medical waste, etc. We propose that high power electron beam from such an industrial linac can be first passed through an undulator to generate powerful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for industrial applications. This will enhance the utilisation of a high power industrial linac. We have performed calculation of spontaneous emission in the undulator to show that for typical parameters, continuous terahertz radiation having power of the order of $\\mu$W can be produced, which may be useful for many scientific applications.

  7. Review of diagnostics for next generation linear accelerators

    CERN Document Server

    Ross, M

    2001-01-01

    New electron linac designs incorporate substantial advances in critical beam parameters such as beam loading and bunch length and will require new levels of performance in stability and phase space control. In the coming decade, e- (and e+) linacs will be built for a high power linear collider (TESLA, CLIC, JLC/NLC), for fourth generation X-ray sources (TESLA FEL, LCLS, Spring 8 FEL) and for basic accelerator research and development (Orion). Each project assumes significant instrumentation performance advances across a wide front. This review will focus on basic diagnostics for beam position and phase space monitoring. Research and development efforts aimed at high precision multi-bunch beam position monitors, transverse and longitudinal profile monitors and timing systems will be described.

  8. Novel Approach to Linear Accelerator Superconducting Magnet System

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, Vladimir; /Fermilab

    2011-11-28

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  9. LIGA-fabricated compact mm-wave linear accelerator cavities.

    Energy Technology Data Exchange (ETDEWEB)

    Song, J.J.; Bajikar, S.S.; DeCarlo, F.; Kang, Y.W.; Kustom, R.L.; Mancini, D.C.; Nassiri, A.; Lai, B.; Feinerman, A.D.; White, V.

    1998-03-23

    Millimeter-wave rf cavities for use in linear accelerators, free-electron lasers, and mm-wave undulatory are under development at Argonne National Laboratory. Typical cavity dimensions are in the 1000 mm range, and the overall length of the accelerator structure, which consists of 30-100 cavities, is about 50-100 mm. An accuracy of 0.2% in the cavity dimensions is necessary in order to achieve a high Q-factor of the cavity. To achieve this these structures are being fabricated using deep X-ray lithography, electroforming, and assembly (LIGA). The first prototype cavity structures are designed for 108 GHz and 2p/3-mode operation. Input and output couplers are integrated with the cavity structures. The cavities are fabricated on copper substrates by electroforming copper into 1-mm-thick PMMA resists patterned by deep x-ray lithography and polishing the copper down to the desired thickness. These are fabricated separately and subsequently assembled with precision spacing and alignment using microspheres, optical fibers, or microfabricated spacers/alignment pieces. Details of the fabrication process, alignment, and assembly work are presented in here.

  10. Fixed bending current for Elekta SL25 linear accelerators.

    Science.gov (United States)

    Kok, J G

    2001-01-01

    In a medical linear accelerator a bending magnet is used to bend the electron beam produced by the accelerator tube, in the treatment direction. For each electron energy the strength of the magnetic field has to be set to a specific level. Changing the magnetic field strength is done by changing the electric current through the bending magnet. When electron energy and magnetic field strength are not matched, performance of the linac can be affected. As electron energy, magneticfield strength and electrical current through the bending magnet are related to each other, it is reasonable to assume that for each electron energy the correct bending current can be predetermined. This calculated bending current reduces the number of variable parameters used to set up a treatment beam. Predetermining a variable simplifies the tuning procedures. It also prevents a deviation of the electron beam energy being compensated by variation of the bending current. Preventing false machine settings can contribute to increase linac performance and reduce down time and cost of ownership.

  11. Laser-Induced Linear Electron Acceleration in Free Space

    CERN Document Server

    Wong, Liang Jie; Carbajo, Sergio; Fallahi, Arya; Soljačić, Marin; Joannopoulos, John D; Kärtner, Franz X; Kaminer, Ido

    2016-01-01

    Linear acceleration in free space is a topic that has been studied for over 20 years, and its ability to eventually produce high-quality, high energy multi-particle bunches has remained a subject of great interest. Arguments can certainly be made that such an ability is very doubtful. Nevertheless, we chose to develop an accurate and truly predictive theoretical formalism to explore this remote possibility in a computational experiment. The formalism includes exact treatment of Maxwell's equations, exact relativistic treatment of the interaction among the multiple individual particles, and exact treatment of the interaction at near and far field. Several surprising results emerged. For example, we find that 30 keV electrons (2.5% energy spread) can be accelerated to 7.7 MeV (2.5% spread) and to 205 MeV (0.25% spread) using 25 mJ and 2.5 J lasers respectively. These findings should hopefully guide and help develop compact, high-quality, ultra-relativistic electron sources, avoiding conventional limits imposed ...

  12. Acceleration of the direct reconstruction of linear parametric images using nested algorithms.

    Science.gov (United States)

    Wang, Guobao; Qi, Jinyi

    2010-03-01

    Parametric imaging using dynamic positron emission tomography (PET) provides important information for biological research and clinical diagnosis. Indirect and direct methods have been developed for reconstructing linear parametric images from dynamic PET data. Indirect methods are relatively simple and easy to implement because the image reconstruction and kinetic modeling are performed in two separate steps. Direct methods estimate parametric images directly from raw PET data and are statistically more efficient. However, the convergence rate of direct algorithms can be slow due to the coupling between the reconstruction and kinetic modeling. Here we present two fast gradient-type algorithms for direct reconstruction of linear parametric images. The new algorithms decouple the reconstruction and linear parametric modeling at each iteration by employing the principle of optimization transfer. Convergence speed is accelerated by running more sub-iterations of linear parametric estimation because the computation cost of the linear parametric modeling is much less than that of the image reconstruction. Computer simulation studies demonstrated that the new algorithms converge much faster than the traditional expectation maximization (EM) and the preconditioned conjugate gradient algorithms for dynamic PET.

  13. HOM-Free Linear Accelerating Structure for e+ e- Linear Collider at C-Band

    CERN Document Server

    Kubo, K

    2003-01-01

    HOM-free linear acceleration structure using the choke mode cavity (damped cavity) is now under design for e sup + e sup - linear collider project at C-band frequency (5712 MHz). Since this structure shows powerful damping effect on most of all HOMs, there is no multibunch problem due to long range wakefields. The structure will be equipped with the microwave absorbers in each cells and also the in-line dummy load in the last few cells. The straightness tolerance for 1.8 m long structure is closer than 30 (micro)m for 25% emittance dilution limit, which can be achieved by standard machining and braising techniques. Since it has good vacuum pumping conductance through annular gaps in each cell, instabilities due to the interaction of beam with the residual-gas and ions can be minimized.

  14. Bayes linear covariance matrix adjustment for multivariate dynamic linear models

    CERN Document Server

    Wilkinson, Darren J

    2008-01-01

    A methodology is developed for the adjustment of the covariance matrices underlying a multivariate constant time series dynamic linear model. The covariance matrices are embedded in a distribution-free inner-product space of matrix objects which facilitates such adjustment. This approach helps to make the analysis simple, tractable and robust. To illustrate the methods, a simple model is developed for a time series representing sales of certain brands of a product from a cash-and-carry depot. The covariance structure underlying the model is revised, and the benefits of this revision on first order inferences are then examined.

  15. Linear Stability Analysis of Dynamical Quadratic Gravity

    CERN Document Server

    Ayzenberg, Dimitry; Yunes, Nicolas

    2013-01-01

    We perform a linear stability analysis of dynamical, quadratic gravity in the high-frequency, geometric optics approximation. This analysis is based on a study of gravitational and scalar modes propagating on spherically-symmetric and axially-symmetric, vacuum solutions of the theory. We find dispersion relations that do no lead to exponential growth of the propagating modes, suggesting the theory is linearly stable on these backgrounds. The modes are found to propagate at subluminal and superluminal speeds, depending on the propagating modes' direction relative to the background geometry, just as in dynamical Chern-Simons gravity.

  16. Shielding design of the linear accelerator at RAON: Accelerator tunnel and utility gallery

    Science.gov (United States)

    Kim, Suna; Kang, Bo Sun; Lee, Sangjin; Nam, Shinwoo; Chung, Yeonsei

    2015-10-01

    RAON is the first Korean heavy-ion accelerator for various rare-isotope experiments and will be constructed by the year of 2021. The building for the about 550-m-long superconducting linear accelerator at RAON has three divisions in the vertical layout: accelerator tunnel, intermediate tunnel, and utility gallery. One of the requirements for the building design is that the effective dose rate in the utility gallery should be well below the dose limit for workers. Other parts of the building underground are classified as high-radiation zones where access is strictly controlled. The radiation dose distribution in the building has been calculated by using the Monte Carlo transport code MCNPX including the radiation streaming effects through the intermediate tunnel and penetrating holes. We have applied a point beam loss model in which the continuous beam loss along the beam line is treated as an equivalent point loss with a simple target. We describe the details of the calculation and discuss the results.

  17. Transverse emittance dilution due to coupler kicks in linear accelerators

    Directory of Open Access Journals (Sweden)

    Brandon Buckley

    2007-11-01

    Full Text Available One of the main concerns in the design of low emittance linear accelerators (linacs is the preservation of beam emittance. Here we discuss one possible source of emittance dilution, the coupler kick, due to transverse electromagnetic fields in the accelerating cavities of the linac caused by the power coupler geometry. In addition to emittance growth, the coupler kick also produces orbit distortions. It is common wisdom that emittance growth from coupler kicks can be strongly reduced by using two couplers per cavity mounted opposite each other or by having the couplers of successive cavities alternate from above to below the beam pipe so as to cancel each individual kick. While this is correct, including two couplers per cavity or alternating the coupler location requires large technical changes and increased cost for superconducting cryomodules where cryogenic pipes are arranged parallel to a string of several cavities. We therefore analyze consequences of alternate coupler placements. We show here that alternating the coupler location from above to below compensates the emittance growth as well as the orbit distortions. For sufficiently large Q values, alternating the coupler location from before to after the cavity leads to a cancellation of the orbit distortion but not of the emittance growth, whereas alternating the coupler location from before and above to behind and below the cavity cancels the emittance growth but not the orbit distortion. We show that cancellations hold for sufficiently large Q values. These compensations hold even when each cavity is individually detuned, e.g., by microphonics. Another effective method for reducing coupler kicks that is studied is the optimization of the phase of the coupler kick so as to minimize the effects on emittance from each coupler. This technique is independent of the coupler geometry but relies on operating on crest. A final technique studied is symmetrization of the cavity geometry in the

  18. Static and dynamic characteristics of angular velocity and acceleration transducers based on optical tunneling effect

    Science.gov (United States)

    Busurin, V. I.; Korobkov, V. V.; Htoo Lwin, Naing; Tuan, Phan Anh

    2016-08-01

    Theoretical and experimental analysis of quasi-linear conversion function of angular velocity and acceleration microoptoelectromechnical (MOEM) transducers based on optical tunneling effect (OTE) are conducted. Equivalent oscillating circuit is developed and dynamic characteristics of angular velocity and acceleration MOEM-transducers are investigated.

  19. Image-guided linear accelerator-based spinal radiosurgery for hemangioblastoma.

    Science.gov (United States)

    Selch, Michael T; Tenn, Steve; Agazaryan, Nzhde; Lee, Steve P; Gorgulho, Alessandra; De Salles, Antonio A F

    2012-01-01

    To retrospectively review the efficacy and safety of image-guided linear accelerator-based radiosurgery for spinal hemangioblastomas. Between August 2004 and September 2010, nine patients with 20 hemangioblastomas underwent spinal radiosurgery. Five patients had von Hipple-Lindau disease. Four patients had multiple tumors. Ten tumors were located in the thoracic spine, eight in the cervical spine, and two in the lumbar spine. Tumor volume varied from 0.08 to 14.4 cc (median 0.72 cc). Maximum tumor dimension varied from 2.5 to 24 mm (median 10.5 mm). Radiosurgery was performed with a dedicated 6 MV linear accelerator equipped with a micro-multileaf collimator. Median peripheral tumor dose and prescription isodose were 12 Gy and 90%, respectively. Image guidance was performed by optical tracking of infrared reflectors, fusion of oblique radiographs with dynamically reconstructed digital radiographs, and automatic patient positioning. Follow-up varied from 14 to 86 months (median 51 months). Kaplan-Meier estimated 4-year overall and solid tumor local control rates were 90% and 95%, respectively. One tumor progressed 12 months after treatment and a new cyst developed 10 months after treatment in another tumor. There has been no clinical or imaging evidence for spinal cord injury. Results of this limited experience indicate linear accelerator-based radiosurgery is safe and effective for spinal cord hemangioblastomas. Longer follow-up is necessary to confirm the durability of tumor control, but these initial results imply linear accelerator-based radiosurgery may represent a therapeutic alternative to surgery for selected patients with spinal hemangioblastomas.

  20. Multipurpose 5-MeV linear induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L. Smith, M.W.

    1984-06-11

    Although linear induction accelerators (LIAs) are quite reliable by most standards, they are limited in repeating rate, average power, and reliability because the final stage of energy delivery is based on spark gap performance. In addition, they have a low duty factor of operation. To provide a higher burst rate and greater reliability, the researchers used new technology to develop a magnetic pulse compression scheme that eliminates all spark gaps and exceeds requirements. The paper describes the scheme. The magnetic drive system can be tailored to drive induction cells from a few kA to over 10 kA at 500 kV, with average beam power levels in the megawatts. This new 5-MeV, 2.5-kA LIA under construction at the Lawrence Livermore National Laboratory (LLNL) will be used for the development of high brightness sources and will provide a test bed for the new technology, which should lead to LIAs that surpass the radio frequency linacs for efficiency and reliability, as well as fit other industrial applications, such as sewage sterilization.

  1. Environmental Survey preliminary report, Stanford Linear Accelerator Center, Stanford, California

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This report presents the preliminary findings from the first phase of the Survey of the US Department of Energy (DOE) Stanford Linear Accelerator Center (SLAC) at Stanford, California, conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the SLAC. The Survey covers all environmental media and all areas of environmental regulation and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the SLAC, and interviews with site personnel. The Survey team is developing a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the SLAC facility. The Interim Report will reflect the final determinations of the SLAC Survey. 95 refs., 25 figs., 25 tabs.

  2. Multipurpose 5-MeV linear induction accelerator

    Science.gov (United States)

    Birx, D. L.; Hawkins, S. A.; Poor, S. E.; Reginato, L. L.; Smith, M. W.

    1984-06-01

    Although linear induction accelerators (LIAs) are quite reliable by most standards, they are limited in repeating rate, average power, and reliability because the final stage of energy delivery is based on spark gap performance. In addition, they have a low duty factor of operation. To provide a higher burst rate and greater reliability, new technology was used to develop a magnetic pulse compression scheme that eliminates all spark gaps and exceeds requirements. The magnetic drive system are tailored to drive induction cells from a few kA to over 10 kA at 500 kV, with average beam power levels in the megawatts. This new 5-MeV, 2.5-kA LIA under construction at the Lawrence Livermore National Laboratory (LLNL) will be used for the development of high brightness sources and will provide a test bed for the new technology, which should lead to LIAs that surpass the radio frequency linacs for efficiency and reliability, as well as fit other industrial applications, such as sewage sterilization.

  3. Hamiltonian analysis for linearly acceleration-dependent Lagrangians

    Science.gov (United States)

    Cruz, Miguel; Gómez-Cortés, Rosario; Molgado, Alberto; Rojas, Efraín

    2016-06-01

    We study the constrained Ostrogradski-Hamilton framework for the equations of motion provided by mechanical systems described by second-order derivative actions with a linear dependence in the accelerations. We stress out the peculiar features provided by the surface terms arising for this type of theories and we discuss some important properties for this kind of actions in order to pave the way for the construction of a well defined quantum counterpart by means of canonical methods. In particular, we analyse in detail the constraint structure for these theories and its relation to the inherent conserved quantities where the associated energies together with a Noether charge may be identified. The constraint structure is fully analyzed without the introduction of auxiliary variables, as proposed in recent works involving higher order Lagrangians. Finally, we also provide some examples where our approach is explicitly applied and emphasize the way in which our original arrangement results in propitious for the Hamiltonian formulation of covariant field theories.

  4. Activation of Dosimeters Used in qa of Medical Linear Accelerators

    Science.gov (United States)

    Polaczek-Grelik, Kinga; Nowacka, Magdalena; Raczkowski, Maciej

    2017-09-01

    This paper presents the first results of a project intended to investigate γ-radiation activity induced in dosimeters used in clinical practice during routine quality assurance of high-energy photon beams emitted by electron linear accelerators. Two aspects of the activation via photonuclear reactions (X, n) of therapeutic beam and subsequent capture of secondary neutrons (n,γ) are under considerations: the influence of activation on intrinsic background of the dosimeters and exposure of dosimetrists who operate this equipment. The activation of several types of ionization chambers as well as the silicon diodes was studied after long-time exposure (10 000 MUs) of the 15 MV photon beam (Elekta Synergy). Photon fluxes obtained from spectra of γ-rays registered by HPGe spectrometer were subsequently converted to equivalent doses using appropriate coefficients. The main contribution to the induced activity comes from the neutron capture process on Al, Mn and Cu, therefore it decays quite fast with the half-lives of the order of 15 minutes. Nevertheless, the activation of chlorine was also observed. The estimated equivalent doses to skin and eye lens were in the range 0.19 - 0.62 μSv/min. However, no influence on intrinsic background signal of all studied dosimeters was observed. The preliminary results indicate that induced radioactivity of dosimeters is strongly influenced by therapeutic beam quality and neutron source strength of particular linac. This dependence will be studied deeper in order to quantify it more precisely.

  5. Portable X-Band Linear Electron Accelerators for Radiographic Applications

    CERN Document Server

    Saverskiy, Aleksandr J; Hernandez, Michael; Mishin, Andrey V; Skowbo, Dave

    2005-01-01

    The MINAC series portable linear electron accelerator systems designed and manufactured at American Science and Engineering, Inc. High Energy Systems Division (AS&E HESD) are discussed in this paper. Each system can be configured as either an X-ray or electron beam source. The powerful 4 MeV and 6 MeV linacs powered by a 1,5 MW magnetron permit operation in a dose rate range from 100 R/min at 80 cm to 600 R/min at 80 cm. Each MINAC is a self-contained source with radiation leakage outside of the X-ray head less than 0,1% of the maximum dose. Along with these systems a 1 MeV ultra compact MINAC has been successfully tested. The unit is available with radiation leakage less then 0.01% and permits producing X-ray beam in an energy range (1…2) MeV at a high output dose rate. Design and experimental parameters are presented. The common and system specific features are also discussed.

  6. Measurement of activity distribution using photostimulable phosphor imaging plates in decommissioned 10 MV medical linear accelerator.

    Science.gov (United States)

    Fujibuchi, Toshioh; Yonai, Shunsuke; Yoshida, Masahiro; Sakae, Takeji; Watanabe, Hiroshi; Abe, Yoshihisa; Itami, Jun

    2014-08-01

    Photonuclear reactions generate neutrons in the head of the linear accelerator. Therefore, some parts of the linear accelerator can become activated. Such activated materials must be handled as radioactive waste. The authors attempted to investigate the distribution of induced radioactivity using photostimulable phosphor imaging plates. Autoradiographs were produced from some parts of the linear accelerator (the target, upper jaw, multileaf collimator and shielding). The levels of induced radioactivity were confirmed to be non-uniform within each part from the autoradiographs. The method was a simple and highly sensitive approach to evaluating the relative degree of activation of the linear accelerators, so that appropriate materials management procedures can be carried out.

  7. General linear dynamics - quantum, classical or hybrid

    CERN Document Server

    Elze, H-T; Vallone, F

    2011-01-01

    We describe our recent proposal of a path integral formulation of classical Hamiltonian dynamics. Which leads us here to a new attempt at hybrid dynamics, which concerns the direct coupling of classical and quantum mechanical degrees of freedom. This is of practical as well as of foundational interest and no fully satisfactory solution of this problem has been established to date. Related aspects will be observed in a general linear ensemble theory, which comprises classical and quantum dynamics in the form of Liouville and von Neumann equations, respectively, as special cases. Considering the simplest object characterized by a two-dimensional state-space, we illustrate how quantum mechanics is special in several respects among possible linear generalizations.

  8. Accelerated Molecular Dynamics Simulations of Reactive Hydrocarbon Systems

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Steven J.

    2014-02-25

    The research activities in this project consisted of four different sub-projects. Three different accelerated dynamics techniques (parallel replica dynamics, hyperdynamics, and temperature-accelerated dynamics) were applied to the modeling of pyrolysis of hydrocarbons. In addition, parallel replica dynamics was applied to modeling of polymerization.

  9. Radiation doses inside industrial irradiation installation with linear electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Alexandre R., E-mail: alexandre.lima@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Pelegrineli, Samuel Q.; Alo, Gabriel F., E-mail: samuelfisica@yahoo.com.br, E-mail: gabriel.alo@aceletron.com.br [Aceletron Irradiacao Industrial, Aceletrica Comercio e Representacoes Ltda, Rio de Janeiro, RJ (Brazil); Silva, Francisco C.A. Da, E-mail: dasilva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Aceletron Industrial Irradiation Company is the unique installation in South America to provide industrial irradiation service using two linear electron accelerators of 18 kW and 10 MeV energy. The electron beam technology allows using electrons to irradiate many goods and materials, such as hospital and medical equipment, cosmetics, herbal products, polymers, peat, gemstones and food. Aceletron Company uses a concrete bunker with 3.66 m of thickness to provide the necessary occupational and environmental radiation protection of X-rays produced. The bunker is divided in main four areas: irradiation room, maze, tower and pit. Inside the irradiation room the x-rays radiation rates are measured in two ways: direct beam and 90 deg C. The rates produced in the conveyor system using 10 MeV energy are 500 Gy/min/mA and 15 Gy/min/mA, respectively. For a 1.8 mA current, the rates produced are 900 Gy/min and 27 Gy/min, respectively. Outside the bunker the radiation rate is at background level, but in the tower door and modulation room the radiation rate is 10 μSv/h. In 2014, during a routine operation, an effective dose of 30.90 mSv was recorded in a monthly individual dosimeter. After the investigation, it was concluded that the dose was only in the dosimeter because it felt inside the irradiation room. As Aceletron Company follows the principles of safety culture, it was decided to perform the radiation isodose curves, inside the four areas of the installation, to know exactly the hotspots positions, exposure times and radiation doses. Five hotspots were chosen taking into account worker's routes and possible operational places. The first experiment was done using a package with three TLD and OSLD dosimeters to obtain better statistical results. The first results for the five hotspots near the accelerator machine showed that the radiation dose rates were between 26 Gy/h and 31 Gy/h. The final measurements were performed using a package with one TLD and one OSLD

  10. Lie Algebraic Treatment of Linear and Nonlinear Beam Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Alex J. Dragt; Filippo Neri; Govindan Rangarajan; David Douglas; Liam M. Healy; Robert D. Ryne

    1988-12-01

    The purpose of this paper is to present a summary of new methods, employing Lie algebraic tools, for characterizing beam dynamics in charged-particle optical systems. These methods are applicable to accelerator design, charged-particle beam transport, electron microscopes, and also light optics. The new methods represent the action of each separate element of a compound optical system, including all departures from paraxial optics, by a certain operator. The operators for the various elements can then be concatenated, following well-defined rules, to obtain a resultant operator that characterizes the entire system. This paper deals mostly with accelerator design and charged-particle beam transport. The application of Lie algebraic methods to light optics and electron microscopes is described elsewhere (1, see also 44). To keep its scope within reasonable bounds, they restrict their treatment of accelerator design and charged-particle beam transport primarily to the use of Lie algebraic methods for the description of particle orbits in terms of transfer maps. There are other Lie algebraic or related approaches to accelerator problems that the reader may find of interest (2). For a general discussion of linear and nonlinear problems in accelerator physics see (3).

  11. Synaptic dynamics: linear model and adaptation algorithm.

    Science.gov (United States)

    Yousefi, Ali; Dibazar, Alireza A; Berger, Theodore W

    2014-08-01

    In this research, temporal processing in brain neural circuitries is addressed by a dynamic model of synaptic connections in which the synapse model accounts for both pre- and post-synaptic processes determining its temporal dynamics and strength. Neurons, which are excited by the post-synaptic potentials of hundred of the synapses, build the computational engine capable of processing dynamic neural stimuli. Temporal dynamics in neural models with dynamic synapses will be analyzed, and learning algorithms for synaptic adaptation of neural networks with hundreds of synaptic connections are proposed. The paper starts by introducing a linear approximate model for the temporal dynamics of synaptic transmission. The proposed linear model substantially simplifies the analysis and training of spiking neural networks. Furthermore, it is capable of replicating the synaptic response of the non-linear facilitation-depression model with an accuracy better than 92.5%. In the second part of the paper, a supervised spike-in-spike-out learning rule for synaptic adaptation in dynamic synapse neural networks (DSNN) is proposed. The proposed learning rule is a biologically plausible process, and it is capable of simultaneously adjusting both pre- and post-synaptic components of individual synapses. The last section of the paper starts with presenting the rigorous analysis of the learning algorithm in a system identification task with hundreds of synaptic connections which confirms the learning algorithm's accuracy, repeatability and scalability. The DSNN is utilized to predict the spiking activity of cortical neurons and pattern recognition tasks. The DSNN model is demonstrated to be a generative model capable of producing different cortical neuron spiking patterns and CA1 Pyramidal neurons recordings. A single-layer DSNN classifier on a benchmark pattern recognition task outperforms a 2-Layer Neural Network and GMM classifiers while having fewer numbers of free parameters and

  12. Acceleration-induced nonlocality: kinetic memory versus dynamic memory

    OpenAIRE

    Chicone, C.; Mashhoon, B.

    2001-01-01

    The characteristics of the memory of accelerated motion in Minkowski spacetime are discussed within the framework of the nonlocal theory of accelerated observers. Two types of memory are distinguished: kinetic and dynamic. We show that only kinetic memory is acceptable, since dynamic memory leads to divergences for nonuniform accelerated motion.

  13. Tuning the DARHT Axis-II linear induction accelerator focusing

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. [Los Alamos National Laboratory

    2012-04-24

    Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST) to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an

  14. Visual Outcome in Meningiomas Around Anterior Visual Pathways Treated With Linear Accelerator Fractionated Stereotactic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Stiebel-Kalish, Hadas, E-mail: kalishhadas@gmail.com [Neuro-Ophthalmology Unit, Rabin Medical Center, Petah Tikva (Israel); Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Reich, Ehud [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Department of Ophthalmology, Rabin Medical Center, Petah Tikva (Israel); Gal, Lior [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Rappaport, Zvi Harry [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Department of Neurosurgery, Rabin Medical Center, Petah Tikva (Israel); Nissim, Ouzi [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Stereotactic Radiosurgery Unit, Sheba Medical Center, Ramat Gan (Israel); Department of Neurosurgery, Sheba Medical Center, Ramat Gan (Israel); Pfeffer, Raphael [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Stereotactic Radiosurgery Unit, Sheba Medical Center, Ramat Gan (Israel); Spiegelmann, Roberto [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Stereotactic Radiosurgery Unit, Sheba Medical Center, Ramat Gan (Israel); Department of Neurosurgery, Sheba Medical Center, Ramat Gan (Israel)

    2012-02-01

    Purpose: Meningiomas threatening the anterior visual pathways (AVPs) and not amenable for surgery are currently treated with multisession stereotactic radiotherapy. Stereotactic radiotherapy is available with a number of devices. The most ubiquitous include the gamma knife, CyberKnife, tomotherapy, and isocentric linear accelerator systems. The purpose of our study was to describe a case series of AVP meningiomas treated with linear accelerator fractionated stereotactic radiotherapy (FSRT) using the multiple, noncoplanar, dynamic conformal rotation paradigm and to compare the success and complication rates with those reported for other techniques. Patients and Methods: We included all patients with AVP meningiomas followed up at our neuro-ophthalmology unit for a minimum of 12 months after FSRT. We compared the details of the neuro-ophthalmologic examinations and tumor size before and after FSRT and at the end of follow-up. Results: Of 87 patients with AVP meningiomas, 17 had been referred for FSRT. Of the 17 patients, 16 completed >12 months of follow-up (mean 39). Of the 16 patients, 11 had undergone surgery before FSRT and 5 had undergone FSRT as first-line management. Tumor control was achieved in 14 of the 16 patients, with three meningiomas shrinking in size after RT. Two meningiomas progressed, one in an area that was outside the radiation field. The visual function had improved in 6 or stabilized in 8 of the 16 patients (88%) and worsened in 2 (12%). Conclusions: Linear accelerator fractionated RT using the multiple noncoplanar dynamic rotation conformal paradigm can be offered to patients with meningiomas that threaten the anterior visual pathways as an adjunct to surgery or as first-line treatment, with results comparable to those reported for other stereotactic RT techniques.

  15. RF linear accelerators for medical and industrial applications

    CERN Document Server

    Hanna, Samy

    2012-01-01

    This unique resource offers you a clear overview of medical and industrial accelerators. Using minimal mathematics, this book focuses on offering thorough explanations of basic concepts surrounding the operation of accelerators. you find well illustrated discussions designed to help you use accelerator-based systems in a safer, more productive, and more reliable manner.This practical book details the manufacturing process for producing accelerators for medical and industrial applications. You become knowledgeable about the commonly encountered real-world manufacturing issues and potential sources of defects which help you avoid costly production problems. From principles of operation and the role of accelerators in cancer radiation therapy, to manufacturing techniques and future trends in accelerator design and applications, this easy-to-comprehend volume quickly brings you up-to-speed with the critical concepts you need to understand for your work in the field.

  16. Method for validating radiobiological samples using a linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Brengues, Muriel [The University of Arizona College of Medicine, Center for Applied NanoBioscience and Medicine, Phoenix, AZ (United States); Liu, David; Korn, Ronald [Scottsdale Clinical Research Institute, Scottsdale Healthcare, Scottsdale, AZ (United States); Zenhausern, Frederic [The University of Arizona College of Medicine, Center for Applied NanoBioscience and Medicine, Phoenix, AZ (United States); Scottsdale Clinical Research Institute, Scottsdale Healthcare, Scottsdale, AZ (United States)

    2014-12-15

    There is an immediate need for rapid triage of the population in case of a large scale exposure to ionizing radiation. Knowing the dose absorbed by the body will allow clinicians to administer medical treatment for the best chance of recovery for the victim. In addition, today's radiotherapy treatment could benefit from additional information regarding the patient's sensitivity to radiation before starting the treatment. As of today, there is no system in place to respond to this demand. This paper will describe specific procedures to mimic the effects of human exposure to ionizing radiation creating the tools for optimization of administered radiation dosimetry for radiotherapy and/or to estimate the doses of radiation received accidentally during a radiation event that could pose a danger to the public. In order to obtain irradiated biological samples to study ionizing radiation absorbed by the body, we performed ex-vivo irradiation of human blood samples using the linear accelerator (LINAC). The LINAC was implemented and calibrated for irradiating human whole blood samples. To test the calibration, a 2 Gy test run was successfully performed on a tube filled with water with an accuracy of 3% in dose distribution. To validate our technique the blood samples were ex-vivo irradiated and the results were analyzed using a gene expression assay to follow the effect of the ionizing irradiation by characterizing dose responsive biomarkers from radiobiological assays. The response of 5 genes was monitored resulting in expression increase with the dose of radiation received. The blood samples treated with the LINAC can provide effective irradiated blood samples suitable for molecular profiling to validate radiobiological measurements via the gene-expression based biodosimetry tools. (orig.)

  17. Outcome of cerebral arteriovenous malformations after linear accelerator reirradiation

    Science.gov (United States)

    Moraes, Paulo L.; Dias, Rodrigo S.; Weltman, Eduardo; Giordani, Adelmo J.; Benabou, Salomon; Segreto, Helena R. C.; Segreto, Roberto A.

    2015-01-01

    Background: The aim of this study was to evaluate the clinical outcome of patients undergoing single-dose reirradiation using the Linear Accelerator (LINAC) for brain arteriovenous malformations (AVM). Methods: A retrospective study of 37 patients with brain AVM undergoing LINAC reirradiation between April 2003 and November 2011 was carried out. Patient characteristics, for example, gender, age, use of medications, and comorbidities; disease characteristics, for example, Spetzler–Martin grading system, location, volume, modified Pollock–Flickinger score; and treatment characteristics, for example, embolization, prescription dose, radiation dose–volume curves, and conformity index were analyzed. During the follow-up period, imaging studies were performed to evaluate changes after treatment and AVM cure. Complications, such as edema, rupture of the blood–brain barrier, and radionecrosis were classified as symptomatic and asymptomatic. Results: Twenty-seven patients underwent angiogram after reirradiation and the percentage of angiographic occlusion was 55.5%. In three patients without obliteration, AVM shrinkage made it possible to perform surgical resection with a 2/3 cure rate. A reduction in AVM nidus volume greater than 50% after the first procedure was shown to be the most important predictor of obliteration. Another factor associated with AVM cure was a prescription dose higher than 15.5 Gy in the first radiosurgery. Two patients had permanent neurologic deficits. Factors correlated with complications were the prescription dose and maximum dose in the first procedure. Conclusion: This study suggests that single-dose reirradiation is safe and feasible in partially occluded AVM. Reirradiation may not benefit candidates whose prescribed dose was lower than 15.5 Gy in the first procedure and initial AVM nidus volume did not decrease by more than 50% before reirradiation. PMID:26110078

  18. Characteristics of induced activity from medical linear accelerators.

    Science.gov (United States)

    Wang, Yi Zhen; Evans, Michael D C; Podgorsak, Ervin B

    2005-09-01

    A study of the induced activity in a medical linear accelerator (linac) room was carried out on several linac installations. Higher beam energy, higher dose rate, and larger field size generally result in higher activation levels at a given point of interest, while the use of multileaf collimators (MLC) can also increase the activation level at the isocenter. Both theoretical and experimental studies reveal that the activation level in the morning before any clinical work increases from Monday to Saturday and then decreases during the weekend. This weekly activation picture keeps stable from one week to another during standard clinical operation of the linac. An effective half-life for a given point in the treatment room can be determined from the measured or calculated activity decay curves. The effective half-life for points inside the treatment field is longer than that for points outside of the field in the patient plane, while a larger field and longer irradiation time can also make the effective half-life longer. The activation level reaches its practical saturation value after a 30 min continuous irradiation, corresponding to 12 000 MU at a "dose rate" of 400 MU/min. A "dose" of 300 MU was given 20 times in 15 min intervals to determine the trends in the activation level in a typical clinical mode. As well, a long-term (85 h over a long weekend) decay curve was measured to evaluate the long-term decay of room activation after a typical day of clinical linac use. A mathematical model for the activation level at the isocenter has been established and shown to be useful in explaining and predicting the induced activity levels for typical clinical and experimental conditions. The activation level for a 22 MeV electron beam was also measured and the result shows it is essentially negligible.

  19. Outcome of cerebral arteriovenous malformations after linear accelerator reirradiation

    Directory of Open Access Journals (Sweden)

    Paulo L Moraes

    2015-01-01

    Full Text Available Background: The aim of this study was to evaluate the clinical outcome of patients undergoing single-dose reirradiation using the Linear Accelerator (LINAC for brain arteriovenous malformations (AVM. Methods: A retrospective study of 37 patients with brain AVM undergoing LINAC reirradiation between April 2003 and November 2011 was carried out. Patient characteristics, for example, gender, age, use of medications, and comorbidities; disease characteristics, for example, Spetzler-Martin grading system, location, volume, modified Pollock-Flickinger score; and treatment characteristics, for example, embolization, prescription dose, radiation dose-volume curves, and conformity index were analyzed. During the follow-up period, imaging studies were performed to evaluate changes after treatment and AVM cure. Complications, such as edema, rupture of the blood-brain barrier, and radionecrosis were classified as symptomatic and asymptomatic. Results: Twenty-seven patients underwent angiogram after reirradiation and the percentage of angiographic occlusion was 55.5%. In three patients without obliteration, AVM shrinkage made it possible to perform surgical resection with a 2/3 cure rate. A reduction in AVM nidus volume greater than 50% after the first procedure was shown to be the most important predictor of obliteration. Another factor associated with AVM cure was a prescription dose higher than 15.5 Gy in the first radiosurgery. Two patients had permanent neurologic deficits. Factors correlated with complications were the prescription dose and maximum dose in the first procedure. Conclusion: This study suggests that single-dose reirradiation is safe and feasible in partially occluded AVM. Reirradiation may not benefit candidates whose prescribed dose was lower than 15.5 Gy in the first procedure and initial AVM nidus volume did not decrease by more than 50% before reirradiation.

  20. MEMS linear and nonlinear statics and dynamics

    CERN Document Server

    Younis, Mohammad I

    2011-01-01

    MEMS Linear and Nonlinear Statics and Dynamics presents the necessary analytical and computational tools for MEMS designers to model and simulate most known MEMS devices, structures, and phenomena. This book also provides an in-depth analysis and treatment of the most common static and dynamic phenomena in MEMS that are encountered by engineers. Coverage also includes nonlinear modeling approaches to modeling various MEMS phenomena of a nonlinear nature, such as those due to electrostatic forces, squeeze-film damping, and large deflection of structures. The book also: Includes examples of nume

  1. Non-Linear Dynamics and Fundamental Interactions

    CERN Document Server

    Khanna, Faqir

    2006-01-01

    The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.

  2. Dynamics of linear maps of idempotent measures

    CERN Document Server

    Rozikov, U A

    2012-01-01

    We describe all linear operators which maps $n-1$-dimensional simplex of idempotent measures to itself. Such operators divided to two classes: the first class contains all $n\\times n$-matrices with non-negative entries which has at least one zero-row; the second class contains all $n\\times n$-matrices with non-negative entries which in each row and in each column has exactly one non-zero entry. These matrices play a role of the stochastic matrices in case of idempotent matrices. For both classes of linear maps we find fixed points. We also study the dynamical systems generated by the linear maps of the set of idempotent measures.

  3. Identification and Modelling of Linear Dynamic Systems

    Directory of Open Access Journals (Sweden)

    Stanislav Kocur

    2006-01-01

    Full Text Available System identification and modelling are very important parts of system control theory. System control is only as good as good is created model of system. So this article deals with identification and modelling problems. There are simple classification and evolution of identification methods, and then the modelling problem is described. Rest of paper is devoted to two most known and used models of linear dynamic systems.

  4. Nearly linear dynamics of nonlinear dispersive waves

    CERN Document Server

    Erdogan, M B; Zharnitsky, V

    2010-01-01

    Dispersive averaging e?ffects are used to show that KdV equation with periodic boundary conditions possesses high frequency solutions which behave nearly linearly. Numerical simulations are presented which indicate high accuracy of this approximation. Furthermore, this result is applied to shallow water wave dynamics in the limit of KdV approximation, which is obtained by asymptotic analysis in combination with numerical simulations of KdV.

  5. Beam Dynamics Studies for a Laser Acceleration Experiment

    CERN Document Server

    Spencer, James; Noble, Robert; Palmer, Dennis T; Siemann, Robert

    2005-01-01

    The NLC Test Accelerator at SLAC was built to address various beam dynamics issues for the Next Linear Collider. An S-Band RF gun, originally proposed for the NLCTA, is being installed together with a large-angle extraction line at 60 MeV. This is followed by a matching section, final focus and buncher for the laser acceleration experiment, E163. The laser-electron interaction area is followed by a broad range, high resolution spectrometer (HES) for electron bunch analysis. The RF gun is discussed in another paper. We discuss only the beam dynamics and high resolution analysis system at 6 MeV based on using Parmela and high-order Transport for bunch charges from 50 pC to 1 nC. Beyond the diagnostics, this system uses the emittance compensating solenoids and a low energy, high resolution spectrometer (LES) to help tune for best operating point and match to the linac. Optical symmetries in the design of the 25.5° extraction line provide 1:1 phase space transfer without linear dispersion or use of sextu...

  6. Design of cavities of a standing wave accelerating tube for a 6 MeV electron linear accelerator

    Directory of Open Access Journals (Sweden)

    S Zarei

    2017-08-01

    Full Text Available Side-coupled standing wave tubes in  mode are widely used in the low-energy electron linear accelerator, due to high accelerating gradient and low sensitivity to construction tolerances. The use of various simulation software for designing these kinds of tubes is very common nowadays. In this paper, SUPERFISH code and COMSOL are used for designing the accelerating and coupling cavities for a 6 MeV electron linear accelerator. Finite difference method in SUPERFISH code and Finite element method in COMSOL are used to solve the equations. Besides, dimension of accelerating and coupling cavities and also coupling iris dimension are optimized to achieve resonance frequency of 2.9985 MHz and coupling constant of 0.0112. Considering the results of this study and designing of the RF energy injection port subsequently, the construction of 6 MeV electron tube will be provided

  7. [Evaluating photonuclear activation for clearance of decommissioned medical linear accelerators].

    Science.gov (United States)

    Shida, Koichi; Isobe, Tomonori; Takada, Kenta; Kobayashi, Daisuke; Tadano, Kiichi; Takahashi, Hideki; Seki, Masashi; Yokota, Hiroshi; Sakurai, Hideyuki; Sakae, Takeji

    2011-01-01

    In a linear accelerator (linac) that operates at greater than an accelerating energy of 10 MV, neutrons are generated by a photonuclear reaction and the head section of the linac becomes radioactive. The purpose of this research is to obtain data for ensuring the safety of linac decommissioning and upgrading. The decommissioned linac investigated in this study was a Clinac 2100 C/D (Varian) installed in April 1999. Its total time of use was 2757.7 h (equivalent to 496,386 Gy). The dosage for its last three months of use was 7213.67 Gy. After being allowed to sit for a 7-day cooling period, the apparatus was disassembled and the parts of the gantry head portion were removed. The ambient dose equivalent rates, H*(10), (microSv/h) from the removed parts were measured in air, at a location with low background, by using a gamma ray scintillation survey meter. The target was also analyzed with an HP-Ge semiconductor detector, in order to identify the nuclides responsible for the observed radiation. On day 7 after the last use of the linac, the ambient dose equivalent rates, H*(10), (microSv/h) in air at the surface of all parts, except the target and the beryllium window, were within the limit of normal background radiation. The measured value (microSv/h) for the beryllium window decreased to within the background limit on day 10. The measured value (microSv/h) of the target decreased to about 1.5 times the background on day 19. At a distance of 10 cm, all the parts were within the background limit after the initial 7-day cooling period. In the analysis of the target with the HP-Ge semiconductor detector, peaks at 125, 333, 352, 356, 426, 511, 583, 609, 689, 811, 835, 911, 969, 1091, 1099, 1120, 1173, 1238, 1292, 1333, 1461 and 1764keV were detected on day 23. Seven months after the linac was last used, peaks were detected at 352, 511, 583, 609, 835, 911, 969, 1120, 1173, 1238, 1333, 1461 and 1764 keV. From these results, the natural radioactive nuclides can be assigned

  8. On a Natural Dynamics for Linear Programming

    CERN Document Server

    Straszak, Damian

    2015-01-01

    In this paper we study dynamics inspired by Physarum polycephalum (a slime mold) for solving linear programs [NTY00, IJNT11, JZ12]. These dynamics are arrived at by a local and mechanistic interpretation of the inner workings of the slime mold and a global optimization perspective has been lacking even in the simplest of instances. Our first result is an interpretation of the dynamics as an optimization process. We show that Physarum dynamics can be seen as a steepest-descent type algorithm on a certain Riemannian manifold. Moreover, we prove that the trajectories of Physarum are in fact paths of optimizers to a parametrized family of convex programs, in which the objective is a linear cost function regularized by an entropy barrier. Subsequently, we rigorously establish several important properties of solution curves of Physarum. We prove global existence of such solutions and show that they have limits, being optimal solutions of the underlying LP. Finally, we show that the discretization of the Physarum dy...

  9. Daily QA of linear accelerators using only EPID and OBI

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Baozhou, E-mail: bsun@radonc.wustl.edu; Goddu, S. Murty; Yaddanapudi, Sridhar; Noel, Camille; Li, Hua; Cai, Bin; Kavanaugh, James; Mutic, Sasa [Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110 (United States)

    2015-10-15

    Purpose: As treatment delivery becomes more complex, there is a pressing need for robust quality assurance (QA) tools to improve efficiency and comprehensiveness while simultaneously maintaining high accuracy and sensitivity. This work aims to present the hardware and software tools developed for comprehensive QA of linear accelerator (LINAC) using only electronic portal imaging devices (EPIDs) and kV flat panel detectors. Methods: A daily QA phantom, which includes two orthogonally positioned phantoms for QA of MV-beams and kV onboard imaging (OBI) is suspended from the gantry accessory holder to test both geometric and dosimetric components of a LINAC and an OBI. The MV component consists of a 0.5 cm water-equivalent plastic sheet incorporating 11 circular steel plugs for transmission measurements through multiple thicknesses and one resolution plug for MV-image quality testing. The kV-phantom consists of a Leeds phantom (TOR-18 FG phantom supplied by Varian) for testing low and high contrast resolutions. In the developed process, the existing LINAC tools were used to automate daily acquisition of MV and kV images and software tools were developed for simultaneous analysis of these images. A method was developed to derive and evaluate traditional QA parameters from these images [output, flatness, symmetry, uniformity, TPR{sub 20/10}, and positional accuracy of the jaws and multileaf collimators (MLCs)]. The EPID-based daily QA tools were validated by performing measurements on a detuned 6 MV beam to test its effectiveness in detecting errors in output, symmetry, energy, and MLC positions. The developed QA process was clinically commissioned, implemented, and evaluated on a Varian TrueBeam LINAC (Varian Medical System, Palo Alto, CA) over a period of three months. Results: Machine output constancy measured with an EPID (as compared against a calibrated ion-chamber) is shown to be within ±0.5%. Beam symmetry and flatness deviations measured using an EPID and a 2D

  10. Accelerated molecular dynamics simulations of protein folding.

    Science.gov (United States)

    Miao, Yinglong; Feixas, Ferran; Eun, Changsun; McCammon, J Andrew

    2015-07-30

    Folding of four fast-folding proteins, including chignolin, Trp-cage, villin headpiece and WW domain, was simulated via accelerated molecular dynamics (aMD). In comparison with hundred-of-microsecond timescale conventional molecular dynamics (cMD) simulations performed on the Anton supercomputer, aMD captured complete folding of the four proteins in significantly shorter simulation time. The folded protein conformations were found within 0.2-2.1 Å of the native NMR or X-ray crystal structures. Free energy profiles calculated through improved reweighting of the aMD simulations using cumulant expansion to the second-order are in good agreement with those obtained from cMD simulations. This allows us to identify distinct conformational states (e.g., unfolded and intermediate) other than the native structure and the protein folding energy barriers. Detailed analysis of protein secondary structures and local key residue interactions provided important insights into the protein folding pathways. Furthermore, the selections of force fields and aMD simulation parameters are discussed in detail. Our work shows usefulness and accuracy of aMD in studying protein folding, providing basic references in using aMD in future protein-folding studies.

  11. Linear and angular head accelerations during heading of a soccer ball.

    Science.gov (United States)

    Naunheim, Rosanne S; Bayly, Philip V; Standeven, John; Neubauer, Jeremy S; Lewis, Larry M; Genin, Guy M

    2003-08-01

    Cognitive deficits observed in professional soccer players may be related to heading of a soccer ball. To assess the severity of a single instance of heading a soccer ball, this study experimentally and theoretically evaluated the linear and angular accelerations experienced by the human head during a frontal heading maneuver. Accelerations were measured using a set of three triaxial accelerometers mounted to the head of each of four adult male subjects. These measurements (nine signals) were used to estimate the linear acceleration of the mass center and the angular acceleration of the head. Results were obtained for ball speeds of 9 and 12 m.s(-1) (approximately 20 and 26 mph). A simple mathematical model was derived for comparison. At 9 m.s(-1), peak linear acceleration of the head was 158 +/- 19 m.s(-2) (mean +/- standard deviation) and peak angular acceleration was 1302 +/- 324 rad.s(-2); at 12 m.s(-1), the values were 199 +/- 27 m.s-2 and 1457 +/- 297 rad.s-2, respectively. The initial acceleration pulses lasted approximately 25 ms. Measured head accelerations confirmed laboratory headform measurements reported in the literature and fell within the ranges predicted by the theoretical model. Linear and angular acceleration levels for a single heading maneuver were well below those thought to be associated with traumatic brain injury, as were computed values of the Gadd Severity Index and the Head Injury Criterion. However, the effect of repeated acceleration at this relatively low level is unknown.

  12. Proceedings of the Oak Ridge Electron Linear Accelerator (ORELA) Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, M.E.

    2006-02-27

    The Oak Ridge National Laboratory (ORNL) organized a workshop at ORNL July 14-15, 2005, to highlight the unique measurement capabilities of the Oak Ridge Electron Linear Accelerator (ORELA) facility and to emphasize the important role of ORELA for performing differential cross-section measurements in the low-energy resonance region that is important for nuclear applications such as nuclear criticality safety, nuclear reactor and fuel cycle analysis, stockpile stewardship, weapons research, medical diagnosis, and nuclear astrophysics. The ORELA workshop (hereafter referred to as the Workshop) provided the opportunity to exchange ideas and information pertaining to nuclear cross-section measurements and their importance for nuclear applications from a variety of perspectives throughout the U.S. Department of Energy (DOE). Approximately 50 people, representing DOE, universities, and seven U.S. national laboratories, attended the Workshop. The objective of the Workshop was to emphasize the technical community endorsement for ORELA in meeting nuclear data challenges in the years to come. The Workshop further emphasized the need for a better understanding of the gaps in basic differential nuclear measurements and identified the efforts needed to return ORELA to a reliable functional measurement facility. To accomplish the Workshop objective, nuclear data experts from national laboratories and universities were invited to provide talks emphasizing the unique and vital role of the ORELA facility for addressing nuclear data needs. ORELA is operated on a full cost-recovery basis with no single sponsor providing complete base funding for the facility. Consequently, different programmatic sponsors benefit by receiving accurate cross-section data measurements at a reduced cost to their respective programs; however, leveraging support for a complex facility such as ORELA has a distinct disadvantage in that the programmatic funds are only used to support program

  13. Proceedings of the Oak Ridge Electron Linear Accelerator (ORELA) Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, M.E.

    2006-02-27

    The Oak Ridge National Laboratory (ORNL) organized a workshop at ORNL July 14-15, 2005, to highlight the unique measurement capabilities of the Oak Ridge Electron Linear Accelerator (ORELA) facility and to emphasize the important role of ORELA for performing differential cross-section measurements in the low-energy resonance region that is important for nuclear applications such as nuclear criticality safety, nuclear reactor and fuel cycle analysis, stockpile stewardship, weapons research, medical diagnosis, and nuclear astrophysics. The ORELA workshop (hereafter referred to as the Workshop) provided the opportunity to exchange ideas and information pertaining to nuclear cross-section measurements and their importance for nuclear applications from a variety of perspectives throughout the U.S. Department of Energy (DOE). Approximately 50 people, representing DOE, universities, and seven U.S. national laboratories, attended the Workshop. The objective of the Workshop was to emphasize the technical community endorsement for ORELA in meeting nuclear data challenges in the years to come. The Workshop further emphasized the need for a better understanding of the gaps in basic differential nuclear measurements and identified the efforts needed to return ORELA to a reliable functional measurement facility. To accomplish the Workshop objective, nuclear data experts from national laboratories and universities were invited to provide talks emphasizing the unique and vital role of the ORELA facility for addressing nuclear data needs. ORELA is operated on a full cost-recovery basis with no single sponsor providing complete base funding for the facility. Consequently, different programmatic sponsors benefit by receiving accurate cross-section data measurements at a reduced cost to their respective programs; however, leveraging support for a complex facility such as ORELA has a distinct disadvantage in that the programmatic funds are only used to support program

  14. Computation of Normal Conducting and Superconducting Linear Accelerator (LINAC) Availabilities

    Energy Technology Data Exchange (ETDEWEB)

    Haire, M.J.

    2000-07-11

    A brief study was conducted to roughly estimate the availability of a superconducting (SC) linear accelerator (LINAC) as compared to a normal conducting (NC) one. Potentially, SC radio frequency cavities have substantial reserve capability, which allows them to compensate for failed cavities, thus increasing the availability of the overall LINAC. In the initial SC design, there is a klystron and associated equipment (e.g., power supply) for every cavity of an SC LINAC. On the other hand, a single klystron may service eight cavities in the NC LINAC. This study modeled that portion of the Spallation Neutron Source LINAC (between 200 and 1,000 MeV) that is initially proposed for conversion from NC to SC technology. Equipment common to both designs was not evaluated. Tabular fault-tree calculations and computer-event-driven simulation (EDS) computer computations were performed. The estimated gain in availability when using the SC option ranges from 3 to 13% under certain equipment and conditions and spatial separation requirements. The availability of an NC LINAC is estimated to be 83%. Tabular fault-tree calculations and computer EDS modeling gave the same 83% answer to within one-tenth of a percent for the NC case. Tabular fault-tree calculations of the availability of the SC LINAC (where a klystron and associated equipment drive a single cavity) give 97%, whereas EDS computer calculations give 96%, a disagreement of only 1%. This result may be somewhat fortuitous because of limitations of tabular fault-tree calculations. For example, tabular fault-tree calculations can not handle spatial effects (separation distance between failures), equipment network configurations, and some failure combinations. EDS computer modeling of various equipment configurations were examined. When there is a klystron and associated equipment for every cavity and adjacent cavity, failure can be tolerated and the SC availability was estimated to be 96%. SC availability decreased as

  15. Parameter identifiability of linear dynamical systems

    Science.gov (United States)

    Glover, K.; Willems, J. C.

    1974-01-01

    It is assumed that the system matrices of a stationary linear dynamical system were parametrized by a set of unknown parameters. The question considered here is, when can such a set of unknown parameters be identified from the observed data? Conditions for the local identifiability of a parametrization are derived in three situations: (1) when input/output observations are made, (2) when there exists an unknown feedback matrix in the system and (3) when the system is assumed to be driven by white noise and only output observations are made. Also a sufficient condition for global identifiability is derived.

  16. Consequences of bounds on longitudinal emittance growth for the design of recirculating linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    Recirculating linear accelerators (RLAs) are a cost-effective method for the acceleration of muons for a muon collider in energy ranges from a couple GeV to a few 10s of GeV. Muon beams generally have longitudinal emittances that are large for the RF frequency that is used, and it is important to limit the growth of that longitudinal emittance. This has particular consequences for the arc design of the RLAs. I estimate the longitudinal emittance growth in an RLA arising from the RF nonlinearity. Given an emittance growth limitation and other design parameters, one can then compute the maximum momentum compaction in the arcs. I describe how to obtain an approximate arc design satisfying these requirements based on the deisgn in [1]. Longitudinal dynamics also determine the energy spread in the beam, and this has consequences on the transverse phase advance in the linac. This in turn has consequences for the arc design due to the need to match beta functions. I combine these considerations to discuss design parameters for the acceleration of muons for a collider in an RLA from 5 to 63 GeV.

  17. Chaotic Discrimination and Non-Linear Dynamics

    Directory of Open Access Journals (Sweden)

    Partha Gangopadhyay

    2005-01-01

    Full Text Available This study examines a particular form of price discrimination, known as chaotic discrimination, which has the following features: sellers quote a common price but, in reality, they engage in secret and apparently unsystematic price discounts. It is widely held that such forms of price discrimination are seriously inconsistent with profit maximization by sellers.. However, there is no theoretical salience to support this kind of price discrimination. By straining the logic of non-linear dynamics this study explains why such secret discounts are chaotic in the sense that sellers fail to adopt profit-maximising price discounts. A model is developed to argue that such forms of discrimination may derive from the regions of instability of a dynamic model of price discounts.

  18. Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mastoridis, Themistoklis [Stanford Univ., CA (United States)

    2010-08-01

    The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC

  19. Radio to $\\gamma$-Ray Emission from Shell-type Supernova Remnants Predictions from Non-linear Shock Acceleration Models

    CERN Document Server

    Baring, M G; Reynolds, S P; Grenier, I; Goret, P; Baring, Matthew G.; Ellison, Donald C.; Reynolds, Stephen P; Grenier, Isabelle; Goret, Philippe

    1999-01-01

    Supernova remnants (SNRs) are widely believed to be the principal source of galactic cosmic rays. Such energetic particles can produce gamma-rays and lower energy photons via interactions with the ambient plasma. In this paper, we present results from a Monte Carlo simulation of non-linear shock structure and acceleration coupled with photon emission in shell-like SNRs. These non-linearities are a by-product of the dynamical influence of the accelerated cosmic rays on the shocked plasma and result in distributions of cosmic rays which deviate from pure power-laws. Such deviations are crucial to acceleration efficiency and spectral considerations, producing GeV/TeV intensity ratios that are quite different from test particle predictions. The Sedov scaling solution for SNR expansions is used to estimate important shock parameters for input into the Monte Carlo simulation. We calculate ion and electron distributions that spawn neutral pion decay, bremsstrahlung, inverse Compton, and synchrotron emission, yieldin...

  20. Characterizing THz Coherent Synchrotron Radiation at Femtosecond Linear Accelerator

    Institute of Scientific and Technical Information of China (English)

    LIN Xu-Ling; ZHANG Jian-Bing; LU YU; LUO Feng; LU Shan-Liang; YU Tie-Min; DAI Zhi-Min

    2009-01-01

    The generation and observation of coherent THz synchrotron radiation from femtosecond electron bunches in the Shanghai Institute of Applied Physics femtosecond accelerator device is reported.We describe the experiment setup and present the first result of THz radiation properties such as power and spectrum.

  1. A system for monitoring the radiation effects of a proton linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Skorkin, V. M., E-mail: skorkin@inr.ru; Belyanski, K. L.; Skorkin, A. V. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2016-12-15

    The system for real-time monitoring of radioactivity of a high-current proton linear accelerator detects secondary neutron emission from proton beam losses in transport channels and measures the activity of radionuclides in gas and aerosol emissions and the radiation background in the environment affected by a linear accelerator. The data provided by gamma, beta, and neutron detectors are transferred over a computer network to the central server. The system allows one to monitor proton beam losses, the activity of gas and aerosol emissions, and the radiation emission level of a linear accelerator in operation.

  2. Accelerating Calculations of Reaction Dissipative Particle Dynamics in LAMMPS

    Science.gov (United States)

    2017-05-17

    and generally requires more time to solve per particle . This means that roughly half of the MPI processes will have higher reaction run times, while...ARL-TR-8018 ● MAY 2017 US Army Research Laboratory Accelerating Calculations of Reaction Dissipative Particle Dynamics in LAMMPS...Research Laboratory Accelerating Calculations of Reaction Dissipative Particle Dynamics in LAMMPS by Christopher P Stone Computational

  3. Accelerating R with high performance linear algebra libraries

    Directory of Open Access Journals (Sweden)

    Bogdan Oancea

    2015-09-01

    Full Text Available Linear algebra routines are basic building blocks for the statistical software. In this paper we analyzed how can we improve R performance for matrix computations. We benchmarked few matrix operations using the standard linear algebra libraries included in the R distribution and high performance libraries like OpenBLAS, GotoBLAS and MKL. Our tests showed the best results are obtained with the MKL library, the other two libraries having similar performances, but lower than MKL.

  4. Non-Linear Dynamics of Saturn's Rings

    Science.gov (United States)

    Esposito, L. W.

    2015-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw', as observed ny Cassini cameras. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn's rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. This confirms the triple architecture of ring particles: a broad size distribution of particles; these aggregate into temporary rubble piles; coated by a regolith of dust. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from

  5. An organizational survey of the Stanford Linear Accelerator Center

    Energy Technology Data Exchange (ETDEWEB)

    Shurberg, D.A.; Haber, S.B.

    1991-11-01

    At the request of the Department of Energy, an Organizational Survey (OS) was administered at the Stanford Accelerator Center (SLAC). The OS measured employees` opinions on subjects such as organizational culture, communication, commitment, group cohesion, coordination, safety, environmental issues, and job satisfaction. The result of this work was a quantitative measure of the notion of culture at the SLAC site. This report presents these results and discusses their interpretation.

  6. An organizational survey of the Stanford Linear Accelerator Center

    Energy Technology Data Exchange (ETDEWEB)

    Shurberg, D.A.; Haber, S.B.

    1991-11-01

    At the request of the Department of Energy, an Organizational Survey (OS) was administered at the Stanford Accelerator Center (SLAC). The OS measured employees' opinions on subjects such as organizational culture, communication, commitment, group cohesion, coordination, safety, environmental issues, and job satisfaction. The result of this work was a quantitative measure of the notion of culture at the SLAC site. This report presents these results and discusses their interpretation.

  7. Cryogenic system for the MYRRHA superconducting linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, Nicolas R.; Junquera, Tomas [Accelerators and Cryogenic Systems, 86, rue de Paris, 91400 Orsay (France); Thermeau, Jean-Pierre [Institut de Physique Nucléaire, Université Paris Sud, 91400 Orsay (France); Romão, Luis Medeiros; Vandeplassche, Dirk [SCK-CEN, Boeretang 200, 2400 Mol (Belgium)

    2014-01-29

    SCK⋅CEN, the Belgian Nuclear Research Centre, is designing MYRRHA, a flexible fast spectrum research reactor (80 MW{sub th}), conceived as an accelerator driven system (ADS), able to operate in sub-critical and critical modes. It contains a continuous-wave (CW) superconducting (SC) proton accelerator of 600 MeV, a spallation target and a multiplying core with MOX fuel, cooled by liquid lead-bismuth (Pb-Bi). From 17 MeV onward, the SC accelerator will consist of 48 β=0.36 spoke-loaded cavities (352 MHz), 34 β=0.47 elliptical cavities (704 MHz) and 60 β=0.65 elliptical cavities (704 MHz). We present an analysis of the thermal loads and of the optimal operating temperature of the cryogenic system. In particular, the low operating frequency of spoke cavities makes their operation in CW mode possible both at 4.2 K or at 2 K. Our analysis outlines the main factors that determine at what temperature the spoke cavities should be operated. We then present different cryogenic fluid distribution schemes, important characteristics (storage, transfer line, etc.) and the main challenges offered by MYRRHA in terms of cryogenics.

  8. Radiosurgery with photon beams; Physical aspects and adequacy of linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Podgorsak, E.B.; Pla, M.; Souhami, L. (McGill University, Montreal (Canada). Department of Radiation Oncology); Pike, G.B.; Olivier, A. (McGill University, Montreal (Canada). Department of Neurosurgery)

    1990-03-01

    The question of the adequacy of isocentric linear accelerators (linacs) for use in radiosurgery is addressed. The general physical requirements for radiosurgery, mainly a high spatial and numerical accuracy of dose delivery, reasonable treatment time, and low skin and leakage dose as well as cost considerations are examined. Various linac-based procedures are analyzed in view of their ability to meet these requirements and are contrasted with the clinically proven system of the Gamma unit. It is shown that the linac-based multiple converging arcs techniques and the dynamic rotation meet the stringent physical requirements on dose delivery and are thus viable alternatives to radiosurgery with the commercially available and dedicated Gamma unit. (author). 15 refs.; 2 figs.; 1 tab.

  9. Influence of emittance on transverse dynamics of accelerated bunches in the plasma–dielectric wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kniaziev, R.R., E-mail: rkniaziev@gmail.com [V.N. Karazin Kharkov National University, Kharkov (Ukraine); NSC Kharkov Institute of Physics and Technology, Kharkov (Ukraine); Sotnikov, G.V. [NSC Kharkov Institute of Physics and Technology, Kharkov (Ukraine)

    2016-09-01

    We study theoretically transverse dynamics of the bunch of charged particles with the finite emittance in the plasma–dielectric wakefield accelerator. Parameters of bunches are chosen the same as available from the 15 MeV Argonne Wakefield Accelerator beamline. The goal of the paper is to study the behavior of bunches of charged particles with different emittances while accelerating these bunches by wakefields in plasma–dielectric structures. Obtained results allow us to determine the limits of the emittance of the bunch where dynamics of the accelerated particles remains stable.

  10. Traveling wave linear accelerator with RF power flow outside of accelerating cavities

    Science.gov (United States)

    Dolgashev, Valery A.

    2016-06-28

    A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities has a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.

  11. Jacobs Engineering Group Inc. receives architectural and engineering design contract from Stanford Linear Accelerator Centre

    CERN Multimedia

    2004-01-01

    "Jacobs Engineering Group Inc. announced that a subsidiary company won a contract from Stanford Linear Accelerator Center (SLAC), to provide architectural and engineering design services for the Linac Coherent Light Source (LCLS) conventional facilities" (1/2 page)

  12. Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations

    CERN Document Server

    Gottwald, Fabian; Ivanov, Sergei D; Kühn, Oliver

    2015-01-01

    Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation (GLE), which can be rigorously derived by means of a linear projection (LP) technique. Within this framework a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here we discuss that this task is most naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importa...

  13. Control of robot dynamics using acceleration control

    Science.gov (United States)

    Workman, G. L.; Prateru, S.; Li, W.; Hinman, Elaine

    1992-01-01

    Acceleration control of robotic devices can provide improvements to many space-based operations using flexible manipulators and to ground-based operations requiring better precision and efficiency than current industrial robots can provide. This paper reports on a preliminary study of acceleration measurement on robotic motion during parabolic flights on the NASA KC-135 and a parallel study of accelerations with and without gravity arising from computer simulated motions using TREETOPS software.

  14. Fast online Monte Carlo-based IMRT planning for the MRI linear accelerator

    NARCIS (Netherlands)

    Bol, G.H.; Hissoiny, S.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2012-01-01

    The MRI accelerator, a combination of a 6 MV linear accelerator with a 1.5 T MRI, facilitates continuous patient anatomy updates regarding translations, rotations and deformations of targets and organs at risk. Accounting for these demands high speed, online intensity-modulated radiotherapy (IMRT) r

  15. Linear accelerators for high energies. A report on the 1962 conference at Brookhaven

    Energy Technology Data Exchange (ETDEWEB)

    Blewett, John P.

    1963-01-01

    The linear accelerator was invented very early in the history of particle accelerators, but it has been one of the latest accelerators to be exploited. This is principally because of the very large quantities of radio-frequency power required to attain respectable energies in a reasonable distance. Radar developments during World War II resulted in production of the necessary megawatt oscillators or amplifiers, and linear accelerators, both for electrons and positive ions, are now operating in several centers. The electron linear accelerator has been extended to billion-volt energies, and in the Stanford two-mile version it will soon set new energy records between 20 and 40 BeV. The proton linear accelerator has had a less spectacular history. The highest energy yet achieved in a proton linac is about 70 MeV (at the University of Minnesota). Smaller proton linacs are in use as injectors for proton-synchrotrons, but no machine has been built or is under construction for the range above 100 MeV. This is because synchro-cyclotrons for this energy range are much cheaper and have been preferred for this reason, in spite of the fact that the beam from a synchro-cyclotron cannot be nearly as intense or as well collimated as the beam from a linear accelerator.

  16. Quasi-linear dynamics of Weibel instability

    Directory of Open Access Journals (Sweden)

    O. A. Pokhotelov

    2011-11-01

    Full Text Available The quasi-linear dynamics of resonant Weibel mode is discussed. It is found that nonlinear saturation of Weibel mode is accompanied by substantial modification of the distribution function in resonant region. With the growth of the wave amplitude the parabolic bell-like form of the electron distribution function in this region converts into flatter shape, such as parabola of the fourth order. This results in significant weakening of the resonant interaction of the wave with particles. The latter becomes weaker and then becomes adiabatic interaction with the bulk of the plasma. This is similar to the case of Bernstein-Greene-Kruskal (Bernstein et al., 1957 electrostatic waves. The mathematical similarity of the Weibel and magnetic mirror instabilities is discussed.

  17. Dynamics of delayed piecewise linear systems

    Directory of Open Access Journals (Sweden)

    Laszlo E. Kollar

    2003-02-01

    Full Text Available In this paper the dynamics of the controlled pendulum is investigated assuming backlash and time delays. The upper equilibrium of the pendulum is stabilized by a piecewise constant control force which is the linear combination of the sampled values of the angle and the angular velocity of the pendulum. The control force is provided by a motor which drives one of the wheels of the cart through an elastic teeth belt. The contact between the teeth of the gear (rigid and the belt (elastic introduces a nonlinearity known as ``backlash" and causes the oscillation of the controlled pendulum around its upper equilibrium. The processing and sampling delays in the determination of the control force tend to destabilize the controlled system as well. We obtain conditions guaranteeing that the pendulum remains in the neighborhood of the upper equilibrium. Experimental findings obtained on a computer controlled inverted pendulum cart structure are also presented showing good agreement with the simulation results.

  18. A prototype piecewise-linear dynamic attenuator

    Science.gov (United States)

    Hsieh, Scott S.; Peng, Mark V.; May, Christopher A.; Shunhavanich, Picha; Fleischmann, Dominik; Pelc, Norbert J.

    2016-07-01

    The piecewise-linear dynamic attenuator has been proposed as a mechanism in CT scanning for personalizing the x-ray illumination on a patient- and application-specific basis. Previous simulations have shown benefits in image quality, scatter, and dose objectives. We report on the first prototype implementation. This prototype is reduced in scale and speed and is integrated into a tabletop CT system with a smaller field of view (25 cm) and longer scan time (42 s) compared to a clinical system. Stainless steel wedges were machined and affixed to linear actuators, which were in turn held secure by a frame built using rapid prototyping technologies. The actuators were computer-controlled, with characteristic noise of about 100 microns. Simulations suggest that in a clinical setting, the impact of actuator noise could lead to artifacts of only 1 HU. Ring artifacts were minimized by careful design of the wedges. A water beam hardening correction was applied and the scan was collimated to reduce scatter. We scanned a 16 cm water cylinder phantom as well as an anthropomorphic pediatric phantom. The artifacts present in reconstructed images are comparable to artifacts normally seen with this tabletop system. Compared to a flat-field reference scan, increased detectability at reduced dose is shown and streaking is reduced. Artifacts are modest in our images and further refinement is possible. Issues of mechanical speed and stability in the challenging clinical CT environment will be addressed in a future design.

  19. Beam dynamics in resonant plasma wakefield acceleration at SPARC_LAB

    Science.gov (United States)

    Romeo, S.; Anania, M. P.; Chiadroni, E.; Croia, M.; Ferrario, M.; Marocchino, A.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    Strategies to mitigate the increase of witness emittance and energy spread in beam driven plasma wakefield acceleration are investigated. Starting from the proposed resonant wakefield acceleration scheme in quasi-non-linear regime that is going to be carried out at SPARC_LAB, we performed systematic scans of the parameters to be used for drivers. The analysis will show that one of the main requirements to preserve witness quality during the acceleration is to have accelerating and focusing fields that are very stable during all the accelerating length. The difference between the dynamics of the leading bunch and the trailing bunch is pointed out. The classical condition on bunch length kpσz =√{ 2 } seems to be an ideal condition for the first driver within long accelerating lengths. The other drivers show to follow different longitudinal matching conditions. In the end a new method for the investigation of the matching for the first driver is introduced.

  20. Dynamic Range Selection in Linear Space

    CERN Document Server

    He, Meng; Nicholson, Patrick K

    2011-01-01

    Given a set $S$ of $n$ points in the plane, we consider the problem of answering range selection queries on $S$: that is, given an arbitrary $x$-range $Q$ and an integer $k > 0$, return the $k$-th smallest $y$-coordinate from the set of points that have $x$-coordinates in $Q$. We present a linear space data structure that maintains a dynamic set of $n$ points in the plane with real coordinates, and supports range selection queries in $O((\\lg n / \\lg \\lg n)^2)$ time, as well as insertions and deletions in $O((\\lg n / \\lg \\lg n)^2)$ amortized time. The space usage of this data structure is an $\\Theta(\\lg n / \\lg \\lg n)$ factor improvement over the previous best result, while maintaining asymptotically matching query and update times. We also present the first succinct data structure that supports range selection queries on a dynamic array of $n$ values drawn from a bounded universe.

  1. Note: A pulsed laser ion source for linear induction accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H., E-mail: bamboobbu@hotmail.com [Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-106, Mianyang 621900 (China); School of Physics, Peking University, Beijing 100871 (China); Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J. [Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-106, Mianyang 621900 (China)

    2015-01-15

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 10{sup 8} W/cm{sup 2}. The laser-produced plasma supplied a large number of Cu{sup +} ions (∼10{sup 12} ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm{sup 2} from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  2. LAPACKrc: Fast linear algebra kernels/solvers for FPGA accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Juan; Nunez, Rafael C, E-mail: juan.gonzalez@accelogic.co [Accelogic, 1830 Main Street, Suite 204, Weston, FL (United States)

    2009-07-01

    We present LAPACKrc, a family of FPGA-based linear algebra solvers able to achieve more than 100x speedup per commodity processor on certain problems. LAPACKrc subsumes some of the LAPACK and ScaLAPACK functionalities, and it also incorporates sparse direct and iterative matrix solvers. Current LAPACKrc prototypes demonstrate between 40x-150x speedup compared against top-of-the-line hardware/software systems. A technology roadmap is in place to validate current performance of LAPACKrc in HPC applications, and to increase the computational throughput by factors of hundreds within the next few years.

  3. Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations

    Science.gov (United States)

    Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D.; Kühn, Oliver

    2015-06-01

    Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom.

  4. Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D., E-mail: sergei.ivanov@uni-rostock.de; Kühn, Oliver [Institute of Physics, Rostock University, Universitätsplatz 3, 18055 Rostock (Germany)

    2015-06-28

    Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom.

  5. Assessment Of Some Acceleration Schemes In The Solution Of Systems Of Linear Equations.

    Directory of Open Access Journals (Sweden)

    S. Azizu

    2015-06-01

    Full Text Available Abstract In this paper assessment of acceleration schemes in the solution of systems of linear equations has been studied. The iterative methods Jacobi Gauss-Seidel and SOR methods were incorporated into the acceleration scheme Chebyshev extrapolation Residual smoothing Accelerated gradient and Richardson Extrapolation to speed up their convergence. The Conjugate gradient methods of GMRES BICGSTAB and QMR were also assessed. The research focused on Banded systems Tridiagonal systems and Dense Symmetric positive definite systems of linear equations for numerical experiments. The experiments were based on the following performance criteria convergence number of iterations speed of convergence and relative residual of each method. Matlab version 7.0.1 was used for the computation of the resulting algorithms. Assessment of the numerical results showed that the accelerated schemes improved the performance of Jacobi Gauss-Seidel and SOR methods. The Chebyshev and Richardson acceleration methods converged faster than the conjugate gradient methods of GMRES MINRES QMR and BICGSTAB in general.

  6. Linear Accelerator Test Facility at LNF Conceptual Design Report

    CERN Document Server

    Valente, Paolo; Bolli, Bruno; Buonomo, Bruno; Cantarella, Sergio; Ceccarelli, Riccardo; Cecchinelli, Alberto; Cerafogli, Oreste; Clementi, Renato; Di Giulio, Claudio; Esposito, Adolfo; Frasciello, Oscar; Foggetta, Luca; Ghigo, Andrea; Incremona, Simona; Iungo, Franco; Mascio, Roberto; Martelli, Stefano; Piermarini, Graziano; Sabbatini, Lucia; Sardone, Franco; Sensolini, Giancarlo; Ricci, Ruggero; Rossi, Luis Antonio; Rotundo, Ugo; Stella, Angelo; Strabioli, Serena; Zarlenga, Raffaele

    2016-01-01

    Test beam and irradiation facilities are the key enabling infrastructures for research in high energy physics (HEP) and astro-particles. In the last 11 years the Beam-Test Facility (BTF) of the DA{\\Phi}NE accelerator complex in the Frascati laboratory has gained an important role in the European infrastructures devoted to the development and testing of particle detectors. At the same time the BTF operation has been largely shadowed, in terms of resources, by the running of the DA{\\Phi}NE electron-positron collider. The present proposal is aimed at improving the present performance of the facility from two different points of view: extending the range of application for the LINAC beam extracted to the BTF lines, in particular in the (in some sense opposite) directions of hosting fundamental physics and providing electron irradiation also for industrial users; extending the life of the LINAC beyond or independently from its use as injector of the DA{\\Phi}NE collider, as it is also a key element of the electron/...

  7. Stereotactic radiosurgery for intracranial lesions using a linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Kazufusa [Mie Univ., Tsu (Japan). School of Medicine; Toyota, Shun; Seta, Hidetoshi [and others

    1996-09-01

    Experiences in 47 cases of stereotactic radiosurgery were reported. The surgery was carried out using stereotactic radiosurgery system of Fisher STP system (Leibinger Co.). The accelerator was Clinac 2100c (Varian Co., 10 mV X ray) or EXL-15 SP (Mitsubishi Co., 6 mV) equipped with collimator. CT and MRI imaging data were firstly transported to the working station to determine the target volume, target coordinates and radiation dose. Irradiation from 90deg to -90deg directions from isocenter of the linac was done within an error of 1 mm after the actual measurement of the target on the port film. The treatment was necessary for 6-8 hr and and irradiation was essentially complete for it. The dose was 20 Gy for metastatic brain tumors (31 patients), 14-16 Gy for acoustic neuroma (1) and 16 Gy for arteriovenous malformation (1). The local control rate of the brain tumors was as high as 90%. The complication was cerebral necrosis (1 case) and exacerbation of neurological symptoms (1), which exhibited remission with steroid treatment. Thus stereotactic radiosurgery with linac made it possible to treat intracranial lesions without invasion effectively and safely. (K.H.)

  8. Recording Vavilov-Cherenkov radiation in a linear accelerator using a picosecond streak camera

    Science.gov (United States)

    Vorob'ev, N. S.; Gornostaev, P. B.; Gurov, S. M.; Dorokhov, V. L.; Zubko, A. E.; Lozovoi, V. I.; Meshkov, O. I.; Nikiforov, D. A.; Smirnov, A. V.; Shashkov, E. V.; Schelev, M. Ya

    2016-09-01

    Using a picosecond image converter camera with a linear sweep (PS-1/S1 streak camera developed at GPI RAS, Moscow), we have measured temporal parameters of Vavilov-Cherenkov radiation pulses. The radiation was generated by relativistic electrons passing through a quartz cone mounted on the axis of a vacuum chamber of a linear accelerator, which is a part of the VEPP-5 injection complex at the Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences (BINP SB RAS, Novosibirsk). The data obtained in these experiments provide an insight into the processes of formation of electron bunches and their 'quality' in a linear accelerator prior to injection of electrons into the accumulator-cooler. A conclusion is made regarding the advisability of streak camera application in tuning the linear accelerators for optimisation of electron bunch parameters.

  9. Acceleration tests of a 3 GHz proton linear accelerator (LIBO) for hadrontherapy

    Energy Technology Data Exchange (ETDEWEB)

    De Martinis, C., E-mail: carlo.demartinis@mi.infn.it [University of Milan and INFN, Milan (Italy); Giove, D. [University of Milan and INFN, Milan (Italy); Amaldi, U.; Berra, P.; Crandall, K.; Mauri, M.; Weiss, M.; Zennaro, R. [TERA Foundation, Novara (Italy); Rosso, E.; Szeless, B.; Vretenar, M. [CERN, Geneva (Switzerland); Masullo, M.R.; Vaccaro, V. [University and INFN of Naples (Italy); Calabretta, L.; Rovelli, A. [INFN-LNS Catania (Italy)

    2012-07-21

    This paper describes the acceleration tests performed at the Catania LNS Laboratory on a 3 GHz linac module of the side coupled type, which boosts the proton energy of a beam extracted from a cyclotron from 62 to 72 MeV. The output proton energy was measured with two devices: a NaI(Tl) crystal and a bending magnet. The experimental spectra are in good agreement with the calculated ones. From their shape it is obtained that (18{+-}3.0)% of the transmitted protons fall in a {+-}2 MeV interval centered around 72 MeV. This result is in good agreement with the 20% value derived from the simulation of the acceleration process. The measured energy of the accelerated protons was used to check that the shunt impedance of the structure is equal to the computed one within 3%. This was the first time that a 3 GHz structure has been used to accelerate protons, and the results of the tests have demonstrated that a high frequency linac can be used as a cyclotron booster.

  10. Acceleration tests of a 3 GHz proton linear accelerator (LIBO) for hadrontherapy

    Science.gov (United States)

    De Martinis, C.; Giove, D.; Amaldi, U.; Berra, P.; Crandall, K.; Mauri, M.; Weiss, M.; Zennaro, R.; Rosso, E.; Szeless, B.; Vretenar, M.; Masullo, M. R.; Vaccaro, V.; Calabretta, L.; Rovelli, A.

    2012-07-01

    This paper describes the acceleration tests performed at the Catania LNS Laboratory on a 3 GHz linac module of the side coupled type, which boosts the proton energy of a beam extracted from a cyclotron from 62 to 72 MeV. The output proton energy was measured with two devices: a NaI(Tl) crystal and a bending magnet. The experimental spectra are in good agreement with the calculated ones. From their shape it is obtained that (18±3.0)% of the transmitted protons fall in a ±2 MeV interval centered around 72 MeV. This result is in good agreement with the 20% value derived from the simulation of the acceleration process. The measured energy of the accelerated protons was used to check that the shunt impedance of the structure is equal to the computed one within 3%. This was the first time that a 3 GHz structure has been used to accelerate protons, and the results of the tests have demonstrated that a high frequency linac can be used as a cyclotron booster.

  11. Spectral Ewald Acceleration of Stokesian Dynamics for polydisperse suspensions

    OpenAIRE

    Wang, Mu; Brady, John F.

    2015-01-01

    In this work we develop the Spectral Ewald Accelerated Stokesian Dynamics (SEASD), a novel computational method for dynamic simulations of polydisperse colloidal suspensions with full hydrodynamic interactions. SEASD is based on the framework of Stokesian Dynamics (SD) with extension to compressible solvents, and uses the Spectral Ewald (SE) method [Lindbo & Tornberg, J. Comput. Phys. 229 (2010) 8994] for the wave-space mobility computation. To meet the performance requirement of dynamic simu...

  12. Scanning transmission electron microscopy imaging dynamics at low accelerating voltages

    Energy Technology Data Exchange (ETDEWEB)

    Lugg, N.R. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Shibata, N. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Mizoguchi, T. [Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505 (Japan); D' Alfonso, A.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Allen, L.J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Ikuhara, Y. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Nanostructures Research Laboratory, Japan Fine Ceramic Center, Nagoya 456-8587 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2011-07-15

    Motivated by the desire to minimize specimen damage in beam sensitive specimens, there has been a recent push toward using relatively low accelerating voltages (<100kV) in scanning transmission electron microscopy. To complement experimental efforts on this front, this paper seeks to explore the variations with accelerating voltage of the imaging dynamics, both of the channelling of the fast electron and of the inelastic interactions. High-angle annular-dark field, electron energy loss spectroscopic imaging and annular bright field imaging are all considered. -- Highlights: {yields} Both elastic and inelastic scattering in STEM are acceleration voltage dependent. {yields} HAADF, EELS and ABF imaging are assessed with a view to optimum imaging. {yields} Lower accelerating voltages improve STEM EELS contrast in very thin crystals. {yields} Higher accelerating voltages give better STEM EELS contrast in thicker crystals. {yields} At fixed resolution, higher accelerating voltage aids ABF imaging of light elements.

  13. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    Science.gov (United States)

    Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  14. [Dosimetric characteristics of the bremsstrahlung beam from the LUE-15M medical linear electron accelerator].

    Science.gov (United States)

    Vatnitskiĭ, S M; Ermakov, I A; Puzanov, V P; Sinitsyn, R V; Cherviakov, A M

    1983-10-01

    The paper presents methods and results of a study of radiation-physical characteristics of inhibitory radiation beam with the Grenz energy of 15MeV generated by an electron linear accelerator LUE-15M. Special emphasis is laid on primary dosimetric information used for the planning of radiotherapy: depth doses, beam profiles, dose functions of a collimated beam. It has been shown that in general the accelerator meets the requirements of the International Electrotechnical Commission. General error in the focal absorbed dose at the expense of variable parameters of the accelerator was evaluated. It does not exceed +/- 3.5%.

  15. Investigation of linear accelerator pulse delivery using fast organic scintillator measurements

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Andersen, Claus Erik; Lindvold, Lars René;

    2010-01-01

    Fiber-coupled organic plastic scintillators present an attractive method for time-resolved dose measurements during radiotherapy. Most organic scintillators exhibit a fast response, making it possible to use them to measure individual high-energy X-ray pulses from a medical linear accelerator. Th...... performed on Varian medical linear accelerators, delivering 6 MV X-ray beams. The dose delivery per radiation pulse was found to agree with expectations within roughly 1%, although minor discrepancies and transients were evident in the measurements....

  16. Accelerated Monte Carlo by Embedded Cluster Dynamics

    Science.gov (United States)

    Brower, R. C.; Gross, N. A.; Moriarty, K. J. M.

    1991-07-01

    We present an overview of the new methods for embedding Ising spins in continuous fields to achieve accelerated cluster Monte Carlo algorithms. The methods of Brower and Tamayo and Wolff are summarized and variations are suggested for the O( N) models based on multiple embedded Z2 spin components and/or correlated projections. Topological features are discussed for the XY model and numerical simulations presented for d=2, d=3 and mean field theory lattices.

  17. Dynamic stabilization of regular linear systems

    NARCIS (Netherlands)

    Weiss, G; Curtain, RF

    We consider a general class of infinite-dimensional linear systems, called regular linear systems, for which convenient representations are known to exist both in time and in frequency domain, For this class of systems, we investigate the concepts of stabilizability and detectability, in particular,

  18. Dynamic stabilization of regular linear systems

    NARCIS (Netherlands)

    Weiss, G; Curtain, RF

    1997-01-01

    We consider a general class of infinite-dimensional linear systems, called regular linear systems, for which convenient representations are known to exist both in time and in frequency domain, For this class of systems, we investigate the concepts of stabilizability and detectability, in particular,

  19. Proposed Physics Experiments for Laser-Driven Electron Linear Acceleration in a Dielectric Loaded Vacuum, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Byer, Robert L. [Stanford Univ., CA (United States). Dept. of Applied Physics. Edward L. Ginzton Lab.

    2016-07-08

    This final report summarizes the last three years of research on the development of advanced linear electron accelerators that utilize dielectric wave-guide vacuum channels pumped by high energy laser fields to accelerate beams of electrons.

  20. Non-linear eye movements during visual-vestibular interaction under body oscillation with step-mode lateral linear acceleration.

    Science.gov (United States)

    Mori, Shigeo; Katayama, Naomi

    2005-02-01

    We investigated visual-vestibular interactions in normal humans, where a constant speed of optokinetic stimulation was combined with whole body oscillation of lateral linear acceleration (10 m stroke). The acceleration mode was not sinusoidal, but rectangular (step). The pure optokinetic reflex (reference OKR) and the OKR under combined stimulation (combined OKR) were induced by a random-dot pattern projected onto a hemispherical dome-screen affixed to a chair on a linear accelerator. The translational vestibulo-ocular reflex (tVOR) was determined separately in the dark during acceleration-step oscillation. Since the tVOR was masked by the OKR under combined stimulation, the interaction was assessed as changes in combined-OKR velocity at two segments of opposing acceleration; in other words, tVOR directions identical to (agonistic) and opposite to (antagonistic) the OKR direction. When a moderate optokinetic stimulus-speed of 40 deg/s was combined with a moderate acceleration of 0.3 G (3.0 m/s2) as in Experiment 1 (N=10), the combined-OKR velocity always increased during the agonistic condition, and the motion of the visual pattern was perceived as slow and clear in this segment. On the other hand, during the antagonistic condition, the combined-OKR velocity either remained unchanged or increased moderately, and the motion of the visual pattern was sensed as fast and unclear. Notably, in most subjects, the velocity difference in combined-OKR between the agonistic and antagonistic conditions was around the value of the tVOR velocity. In five of the ten subjects who completed an additional test session with the acceleration level increased from 0.3 to 0.5 G (4.9 m/s2), similar findings were maintained individually, suggesting independent behavior of tVOR. Therefore, we hypothesized that the interaction could be direction-selective; in other words, both tVOR and OKR are additive during the agonistic condition, but tVOR is suppressed during the antagonistic condition

  1. SU-E-T-136: Assessment of Seasonal Linear Accelerator Output Variations and Associated Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Bartolac, S; Letourneau, D [Princess Margaret Cancer Centre, Toronto, Ontario (Canada); University of Toronto, Toronto, Ontario (Canada)

    2015-06-15

    Purpose: Application of process control theory in quality assurance programs promises to allow earlier identification of problems and potentially better quality in delivery than traditional paradigms based primarily on tolerances and action levels. The purpose of this project was to characterize underlying seasonal variations in linear accelerator output that can be used to improve performance or trigger preemptive maintenance. Methods: Review of runtime plots of daily (6 MV) output data acquired using in house ion chamber based devices over three years and for fifteen linear accelerators of varying make and model were evaluated. Shifts in output due to known interventions with the machines were subtracted from the data to model an uncorrected scenario for each linear accelerator. Observable linear trends were also removed from the data prior to evaluation of periodic variations. Results: Runtime plots of output revealed sinusoidal, seasonal variations that were consistent across all units, irrespective of manufacturer, model or age of machine. The average amplitude of the variation was on the order of 1%. Peak and minimum variations were found to correspond to early April and September, respectively. Approximately 48% of output adjustments made over the period examined were potentially avoidable if baseline levels had corresponded to the mean output, rather than to points near a peak or valley. Linear trends were observed for three of the fifteen units, with annual increases in output ranging from 2–3%. Conclusion: Characterization of cyclical seasonal trends allows for better separation of potentially innate accelerator behaviour from other behaviours (e.g. linear trends) that may be better described as true out of control states (i.e. non-stochastic deviations from otherwise expected behavior) and could indicate service requirements. Results also pointed to an optimal setpoint for accelerators such that output of machines is maintained within set tolerances

  2. Development of high intensity linear accelerator for heavy ion inertial fusion driver

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Liang, E-mail: luliang@riken.jp [Institute of Modern Physics, 509 Nanchang Road, Lanzhou 730000 (China); Riken Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hattori, Toshiyuki [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555 (Japan); Hayashizaki, Noriyosu [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-25 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Ishibashi, Takuya [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Okamura, Masahiro [Brookhaven National Laboratory, Upton, NY 11973 (United States); Kashiwagi, Hirotsugu [Japan Atomic Energy Research Institute, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Takeuchi, Takeshi [Accelerator Engineering Corporation, 301, 6-18-1 Konakadai, Inage-ku, Chiba 263-0043 (Japan); Zhao, Hongwei; He, Yuan [Institute of Modern Physics, 509 Nanchang Road, Lanzhou 730000 (China)

    2013-11-21

    In order to verify the direct plasma injection scheme (DPIS), an acceleration test was carried out in 2001 using a radio frequency quadrupole (RFQ) heavy ion linear accelerator (linac) and a CO{sub 2}-laser ion source (LIS) (Okamura et al., 2002) [1]. The accelerated carbon beam was observed successfully and the obtained current was 9.22 mA for C{sup 4+}. To confirm the capability of the DPIS, we succeeded in accelerating 60 mA carbon ions with the DPIS in 2004 (Okamura et al., 2004; Kashiwagi and Hattori, 2004) [2,3]. We have studied a multi-beam type RFQ with an interdigital-H (IH) cavity that has a power-efficient structure in the low energy region. We designed and manufactured a two-beam type RFQ linac as a prototype for the multi-beam type linac; the beam acceleration test of carbon beams showed that it successfully accelerated from 5 keV/u up to 60 keV/u with an output current of 108 mA (2×54 mA/channel) (Ishibashi et al., 2011) [4]. We believe that the acceleration techniques of DPIS and the multi-beam type IH-RFQ linac are technical breakthroughs for heavy-ion inertial confinement fusion (HIF). The conceptual design of the RF linac with these techniques for HIF is studied. New accelerator-systems using these techniques for the HIF basic experiment are being designed to accelerate 400 mA carbon ions using four-beam type IH-RFQ linacs with DPIS. A model with a four-beam acceleration cavity was designed and manufactured to establish the proof of principle (PoP) of the accelerator.

  3. Development of an Automatic Frequency Control (AFC) System for RF Electron Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Joo, Youngwoo; Lee, Soo Min; Lee, Byung Cheol; Cha, Hyungki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Hyung Dal [Radiation Technology eXcellence, Daejeon (Korea, Republic of); Lee, Seung Hyun [Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-10-15

    In this paper, the design, fabrication, and RF power test of the AFC system for the X-band linac are presented. The main function of the AFC system is automatically matching of the resonance frequency of the accelerating structure and the RF frequency of the magnetron. For the frequency tuning, a fine tuning of 10 kHz is possible by rotating the tuning shaft with a rotation of 0.72 degree per pulse. Therefore, the frequency deviation is about 0.01%, and almost full RF power (2.1 MW) transmission was obtained because the reflected power is minimized. The Radiation Equipment Research Division of the Korea Atomic Energy Research Institute has been developing and upgrading a medical/industrial X-band RF electron linear accelerators. The medical compact RF electron linear accelerator consists of an electron gun, an acceleration tube (accelerating structure), two solenoid magnets, two steering magnets, a magnetron, modulator, an automatic frequency control (AFC) system, and an X-ray generating target. The accelerating structure of the component is composed of oxygen-free high-conductivity copper (OFHC). Therefore, the volume of the structure, hence, its resonance frequency can easily be changeable if the ambient temperature and pressure are changed. If the RF frequency of the 9300 MHz magnetron and the resonance frequency of accelerating structure are not matched, performance of the structure can be degraded. An AFC system is automatically matched with the RF frequency of the magnetron and resonance frequency of the accelerating structure, which obtained a high output power and reliable accelerator operation.

  4. Linear induction accelerators at the Los Alamos National Laboratory DARHT facility

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Subrata [Los Alamos National Laboratory

    2010-09-07

    The Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) at Los Alamos National Laboratory consists of two linear induction accelerators at right angles to each other. The First Axis, operating since 1999, produces a nominal 20-MeV, 2-kA single beam-pulse with 60-nsec width. In contrast, the DARHT Second Axis, operating since 2008, produces up to four pulses in a variable pulse format by slicing micro-pulses out of a longer {approx}1.6-microseconds (flat-top) pulse of nominal beam-energy and -current of 17 MeV and 2 kA respectively. Bremsstrahlung x-rays, shining on a hydro-dynamical experimental device, are produced by focusing the electron beam-pulses onto a high-Z target. Variable pulse-formats allow for adjustment of the pulse-to-pulse doses to record a time sequence of x-ray images of the explosively driven imploding mock device. Herein, we present a sampling of the numerous physics and engineering aspects along with the current status of the fully operational dual axes capability. First successful simultaneous use of both the axes for a hydrodynamic experiment was achieved in 2009.

  5. The neutron dose equivalent around high energy medical electron linear accelerators

    Directory of Open Access Journals (Sweden)

    Poje Marina

    2014-01-01

    Full Text Available The measurement of neutron dose equivalent was made in four dual energy linear accelerator rooms. Two of the rooms were reconstructed after decommissioning of 60Co units, so the main limitation was the space. The measurements were performed by a nuclear track etched detectors LR-115 associated with the converter (radiator that consist of 10B and with the active neutron detector Thermo BIOREM FHT 742. The detectors were set at several locations to evaluate the neutron ambient dose equivalent and/or neutron dose rate to which medical personnel could be exposed. Also, the neutron dose dependence on collimator aperture was analyzed. The obtained neutron dose rates outside the accelerator rooms were several times smaller than the neutron dose rates inside the accelerator rooms. Nevertheless, the measured neutron dose equivalent was not negligible from the aspect of the personal dosimetry with almost 2 mSv a year per person in the areas occupied by staff (conservative estimation. In rooms with 15 MV accelerators, the neutron exposure to the personnel was significantly lower than in the rooms having 18 MV accelerators installed. It was even more pronounced in the room reconstructed after the 60Co decommissioning. This study confirms that shielding from the neutron radiation should be considered when building vaults for high energy linear accelerators, especially when the space constraints exist.

  6. Stanford Linear Accelerator Center selects Verity Ultraseek for public and internal Web Sites

    CERN Multimedia

    2004-01-01

    Verity Inc., a provider of enterprise software has announced the latest version of its powerful, downloadable Verity(R) Ultraseek(R) enterprise search engine is being used by the Stanford Linear Accelerator Center, a research facility funded by the U.S. Department of Energy and operated by Stanford University (1/2 page).

  7. DZ-12/4 Multi-energy Electron Linear Accelerator Acceptance Test

    Institute of Scientific and Technical Information of China (English)

    XIA; Wen; YE; Hong-sheng; ZHANG; Wei-dong; CHEN; Yi-zhen; LIN; Min; XU; Li-jun; CHEN; Ke-sheng; LI; Ming

    2015-01-01

    DZ-12/4multi-energy electron linear accelerator device established by China Institute of Atomic Energy can provide 6 MeV,8 MeV,10MeV,12MeV electron energy beam,mainly used to establish electron beam reference radiation fields of radiation processing dose level,and

  8. Efficient SAT engines for concise logics: Accelerating proof search for zero-one linear constraint systems

    DEFF Research Database (Denmark)

    Fränzle, Martin; Herde, Christian

    2003-01-01

    We investigate the problem of generalizing acceleration techniques as found in recent satisfiability engines for conjunctive normal forms (CNFs) to linear constraint systems over the Booleans. The rationale behind this research is that rewriting the propositional formulae occurring in e.g. bounde...

  9. Acquiring beam data for a flattening-filter free linear accelerator using organic scintillators

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Behrens, C.F.; Hoffmann, L.;

    2013-01-01

    -resolved dosimetry on a highly detailed level. In this study, we present beam data for a Varian TrueBeam linear accelerator, which is capable of delivering flattening-filter free (FFF1) clinical X-ray beams. The beam data have been acquired using an in-house developed dosimetry system based on fibre-coupled organic...

  10. Engineering method of calculation and choice of main parameters of the linear induction accelerator inductors

    Directory of Open Access Journals (Sweden)

    В.Т. Чемерис

    2006-04-01

    Full Text Available  There is a method of simplified calculation and design parameters choice elaborated in this article with corresponding basing for the induction system of electron-beam sterilizer on the base of linear induction accelerator taking into account the parameters of magnetic material for production of cores and parameters of pulsed voltage.

  11. Head linear and rotational accelerations and craniocervical loads in lateral impact

    NARCIS (Netherlands)

    Yoganandan, N.; Pintar, F.A.; Maiman, D.; Phillippens, M.M.G.M.; Wismans, J.S.H.M.

    2006-01-01

    The objective of the study was to determine lateral impact-induced three-dimensional temporal head center of gravity linear and angular accelerations, and craniocervical forces and moments from post mortem human subject (PMHS) sled tests and compare with the European side impact dummy, ES-II, respon

  12. ARIEL e-linac. Electron linear accelerator for photo-fission

    Science.gov (United States)

    Koscielniak, Shane

    2014-01-01

    The design and implementation of a 1/2 MW beam power electron linear accelerator (e-linac) for the production of rare isotope beams (RIB) via photo-fission in the context of the Advanced Rare IsotopE Laboratory, ARIEL (Koscielniak et al. 2008; Merminga et al. 2011; Dilling et al., Hyperfine Interact, 2013), is described. The 100 % duty factor e-linac is based on super-conducting radiofrequency (SRF) technology at 1.3 GHz and has a nominal energy of 50 MeV. This paper provides an overview of the accelerator major components including the gun, cryomodules and cryoplant, high power RF sources, and machine layout including beam lines. Design features to facilitate operation of the linac as a Recirculating Linear Accelerator (RLA) for various applications, including Free Electron Lasers, are also noted.

  13. Experimental confirmation of transverse focusing and adiabatic damping in a standing wave linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Reiche, S.; Rosenzweig, J.B.; Anderson, S.; Frigola, P.; Hogan, M.; Murokh, A.; Pellegrini, C.; Serafini, L.; Travish, G.; Tremaine, A. [Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095-1547 (United States)

    1997-09-01

    The measurement of the transverse phase-space map, or transport matrix, of a relativistic electron in a high-gradient, radio-frequency linear accelerator (rf linac) at the UCLA photoinjector is reported. This matrix, which indicates the effects of acceleration (adiabatic damping), first-order transient focusing, and ponderomotive second-order focusing, is measured as a function of both rf field amplitude and phase in the linac. The elements of the matrix, determined by observation of centroid motion at a set of downstream diagnostics due to deflections induced by a set of upstream steering magnets, compare well with previously developed analytical theory [J. Rosenzweig and L. Serafini, Phys. Rev. E {bold 49}, 1599 (1994)]. The determinant of the matrix is obtained, yielding a direct confirmation of trace space adiabatic damping. Implications of these results on beam optics at moderate energy in high-gradient linear accelerators such as rf photoinjectors are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  14. Direct imaging of the dynamics of a laser-plasma accelerator operating in the bubble-regime

    CERN Document Server

    Sävert, A; Schnell, M; Cole, J M; Nicolai, M; Reuter, M; Schwab, M B; Möller, M; Poder, K; Jäckel, O; Paulus, G G; Spielmann, C; Najmudin, Z; Kaluza, M C

    2014-01-01

    Laser-plasma accelerators operating in the bubble-regime generate quasi-monoenergetic multi-gigaelectronvolt electron beams with femtosecond duration and micrometre size. These beams are produced by accelerating in laser-driven plasma waves in only centimetre distances. Hence they have the potential to be compact alternatives to conventional accelerators. However, since the plasma wave moves at ultra-relativistic speed making detailed observation extremely difficult, most of our current understanding has been gained from high-performance computer simulations. Here, we present experimental results from an ultra-fast optical imaging technique visualising for the first time the non-linear dynamics in a laser-plasma accelerator. By freezing the relativistic motion of the plasma wave, our measurements reveal insight of unprecedented detail. In particular, we observe the plasma wave's non-linear formation, breaking, and transformation into a single bubble for the first time. Understanding the acceleration dynamics ...

  15. Studies of beam dynamics in relativistic klystron two- beam accelerators

    Science.gov (United States)

    Lidia, Steven Michael

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka-band (~30-35 GHz) frequency regions. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. A mapping algorithm is used so that tens or hundreds of thousands of macroparticles can be pushed from the solution of a few hundreds of differential equations. This is a great cost-savings device from the standpoint of CPU cycles. It can increase by several orders of magnitude the number of macroparticles that take place in the simulation, enabling more accurate modeling of the evolution of the beam distribution and enhanced sensitivity to effects due to the beam's halo. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split- operator algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The beam-cavity interaction is analyzed and divided naturally into two distinct times scales. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 TW of power from 40 input, gain

  16. Accelerating glassy dynamics using graphics processing units

    CERN Document Server

    Colberg, Peter H

    2009-01-01

    Modern graphics hardware offers peak performances close to 1 Tflop/s, and NVIDIA's CUDA provides a flexible and convenient programming interface to exploit these immense computing resources. We demonstrate the ability of GPUs to perform high-precision molecular dynamics simulations for nearly a million particles running stably over many days. Particular emphasis is put on the numerical long-time stability in terms of energy and momentum conservation. Floating point precision is a crucial issue here, and sufficient precision is maintained by double-single emulation of the floating point arithmetic. As a demanding test case, we have reproduced the slow dynamics of a binary Lennard-Jones mixture close to the glass transition. The improved numerical accuracy permits us to follow the relaxation dynamics of a large system over 4 non-trivial decades in time. Further, our data provide evidence for a negative power-law decay of the velocity autocorrelation function with exponent 5/2 in the close vicinity of the transi...

  17. Electronic tissue compensation achieved with both dynamic and static multileaf collimator in eclipse treatment planning system for Clinac 6 EX and 2100 CD Varian linear accelerators: Feasibility and dosimetric study

    Science.gov (United States)

    Kinhikar, Rajesh A.; Sharma, Pramod K.; Patkar, Sachin; Tambe, Chandrashekhar M.; Deshpande, Deepak D.

    2007-01-01

    Dynamic multileaf collimator (DMLC) and static multileaf collimator (SMLC), along with three-dimensional treatment planning system (3-D TPS), open the possibility of tissue compensation. A method using electronic tissue compensator (ETC) has been implemented in Eclipse 3-D TPS (V 7.3, Varian Medical Systems, Palo Alto, USA) at our center. The ETC was tested for head and neck conformal radiotherapy planning. The purpose of this study was to verify the feasibility of DMLC and SMLC in head and neck field irradiation for delivering homogeneous dose in the midplane at a pre-defined depth. In addition, emphasis was given to the dosimetric aspects in commissioning ETC in Eclipse. A Head and Neck Phantom (The Phantom Laboratory, USA) was used for the dosimetric verification. Planning was carried out for both DMLC and SMLC ETC plans. The dose calculated at central axis by eclipse with DMLC and SMLC was noted. This was compared with the doses measured on machine with ion chamber and thermoluminescence dosimetry (TLD). The calculated isodose curves and profiles were compared with the measured ones. The dose profiles along the two major axes from Eclipse were also compared with the profiles obtained from Amorphous Silicon (AS500) Electronic portal imaging device (EPID) on Clinac 6 EX machine. In uniform dose regions, measured dose values agreed with the calculated doses within 3%. Agreement between calculated and measured isodoses in the dose gradient zone was within 3 mm. The isodose curves and the profiles were found to be in good agreement with the measured curves and profiles. The measured and the calculated dose profiles along the two major axes were flat for both DMLC and SMLC. The dosimetric verification of ETC for both the linacs demonstrated the feasibility and the accuracy of the ETC treatment modality for achieving uniform dose distributions. Therefore, ETC can be used as a tool in head and neck treatment planning optimization for improved dose uniformity. PMID

  18. Electronic tissue compensation achieved with both dynamic and static multileaf collimator in eclipse treatment planning system for Clinac 6 EX and 2100 CD Varian linear accelerators: Feasibility and dosimetric study

    Directory of Open Access Journals (Sweden)

    Kinhikar Rajesh

    2007-01-01

    Full Text Available Dynamic multileaf collimator (DMLC and static multileaf collimator (SMLC, along with three-dimensional treatment planning system (3-D TPS, open the possibility of tissue compensation. A method using electronic tissue compensator (ETC has been implemented in Eclipse 3-D TPS (V 7.3, Varian Medical Systems, Palo Alto, USA at our center. The ETC was tested for head and neck conformal radiotherapy planning. The purpose of this study was to verify the feasibility of DMLC and SMLC in head and neck field irradiation for delivering homogeneous dose in the midplane at a pre-defined depth. In addition, emphasis was given to the dosimetric aspects in commissioning ETC in Eclipse. A Head and Neck Phantom (The Phantom Laboratory, USA was used for the dosimetric verification. Planning was carried out for both DMLC and SMLC ETC plans. The dose calculated at central axis by eclipse with DMLC and SMLC was noted. This was compared with the doses measured on machine with ion chamber and thermoluminescence dosimetry (TLD. The calculated isodose curves and profiles were compared with the measured ones. The dose profiles along the two major axes from Eclipse were also compared with the profiles obtained from Amorphous Silicon (AS500 Electronic portal imaging device (EPID on Clinac 6 EX machine. In uniform dose regions, measured dose values agreed with the calculated doses within 3%. Agreement between calculated and measured isodoses in the dose gradient zone was within 3 mm. The isodose curves and the profiles were found to be in good agreement with the measured curves and profiles. The measured and the calculated dose profiles along the two major axes were flat for both DMLC and SMLC. The dosimetric verification of ETC for both the linacs demonstrated the feasibility and the accuracy of the ETC treatment modality for achieving uniform dose distributions. Therefore, ETC can be used as a tool in head and neck treatment planning optimization for improved dose uniformity.

  19. Wakefield damping in a pair of X-band accelerators for linear colliders

    Directory of Open Access Journals (Sweden)

    Roger M. Jones

    2006-10-01

    Full Text Available We consider the means to damp the wakefield left behind ultrarelativistic charges. In particular, we focus on a pair of traveling wave accelerators operating at an X-band frequency of 11.424 GHz. In order to maximize the efficiency of acceleration, in the context of a linear collider, multiple bunches of charged particles are accelerated within a given pulse of the electromagnetic field. The wakefield left behind successive bunches, if left unchecked, can seriously disturb the progress of trailing bunches and can lead to an appreciable dilution in the emittance of the beam. We report on a method to minimize the influence of the wakefield on trailing bunches. This method entails detuning the characteristic mode frequencies which make up the electromagnetic field, damping the wakefield, and interleaving the frequencies of adjacent accelerating structures. Theoretical predictions of the wakefield and modes, based on a circuit model, are compared with experimental measurements of the wakefield conducted within the ASSET facility at SLAC. Very good agreement is obtained between theory and experiment and this allows us to have some confidence in designing the damping of wakefields in a future linear collider consisting of several thousand of these accelerating structures.

  20. Linearized supergravity with a dynamical preferred frame

    CERN Document Server

    Marakulin, Arthur

    2016-01-01

    We study supersymmetric extension of the Einstein-aether gravitational model where local Lorentz invariance is broken down to the subgroup of spatial rotations by a vacuum expectation value of a timelike vector field. By restricting to the level of linear perturbations around Lorentz-violating vacuum and using the superfield formalism we construct the most general action invariant under the linearized supergravity transformations. We show that, unlike its non-supersymmetric counterpart, the model contains only a single free dimensionless parameter, besides the usual dimensionful gravitational coupling. This makes the model highly predictive. An analysis of the spectrum of physical excitations reveal superluminal velocity of gravitons. The latter property leads to the extension of the gravitational multiplet by additional fermonic and bosonic states with helicities $\\pm 3/2$ and $\\pm 1$. We outline the observational constraints on the model following from its low-energy phenomenology.

  1. Dynamic Pricing Criteria in Linear Programming

    Science.gov (United States)

    1988-07-01

    Dantzig, M.A.H. Dempster and M. Kallio, eds.), pp. 631- 662, IIASA , Laxenburg, Austria. [23] Karmarkar, N. (1984). A new polynomial-time algorithm for...simplex method, in Large Scale Linear Programming (G.B. Dantzig, M.A.H. Dempster and M. Kallio, eds.), pp. 55-66, IIASA , Laxenburg, Austria. [39] Perold...M.J. Kallio, eds.), pp. 67-96, IIASA , Laxenburg, Austria. [40] Pyle, L.D. (1987). Generalizations of the simplex algorithm, Department of Compvter

  2. Thresholds for perception of direction of linear acceleration as a possible evaluation of the otolith function

    Directory of Open Access Journals (Sweden)

    Kingma H

    2005-06-01

    Full Text Available Abstract Background Previous attempts to measure otolith function using ocular counter-rolling have shown poor sensitivity and specificity, thereby hindering a useful clinical application. We have conducted a study to investigate whether thresholds for the perception of the direction of linear acceleration might be an alternative for the clinical evaluation of otolith or statolith function. Methods Perception of the direction of motion was evaluated in 28 healthy subjects while all external auditory and visual cues were eliminated. Whole body motion stimulus was generated by a motor driven linear sled at a stimulus frequency of 1 Hz at a linear acceleration ranging from 0 to maximum 40 cm/ s2. Subjects were required to correctly indicate the direction of motion (anterior-posterior or lateral or whether they were stationary. Both velocity and acceleration thresholds were measured. Results The median acceleration thresholds for the perception of direction of linear movement for anterior-posterior movement was 8.5 cm/s2 and for lateral movement 6.5 cm/s2. According to the literature, acceleration thresholds depend on the stimulus profile whereas velocity thresholds do not. The median velocity thresholds for the perception of direction of linear movement for anterior-posterior movement was 13.5 cm/s and for lateral movement was 10.4 cm/s. The median velocity thresholds for the perception of direction of linear movement for anterior-posterior movement increased linearly with age, whereas the median velocity threshold for lateral movement was not correlated with age. Conclusion The thresholds found in this study are lower than reported in the literature before which may be due to the repetative predictive sinusoidal stimulus which makes it relatively easy to lower the threshold by learning already within one test prophile. The variablity is large in line with the previous literature, but our experiments indicate that variability decreases after a

  3. The Gent University 15 MeV high-current linear electron accelerator facility

    Science.gov (United States)

    Mondelaers, W.; Van Laere, K.; Goedefroot, A.; Van den Bossche, K.

    1996-01-01

    The Gent University 15 MeV 20kW linear electron accelerator facility was initially designed for fundamental nuclear physics research. During the last years a large effort has been devoted to the expansion of the range of machine applications in view of a new extensive experimental programme in the fields of atomic and solid-state physics, biomaterials research, polymer chemistry, space research, food technology, high-dose dosimetry and radiation therapy. The accelerator facility in its present configuration, the peripheral equipment and the experimental programme are described with emphasis on the original features.

  4. Accelerated complete-linearization method for calculating NLTE model stellar atmospheres

    Science.gov (United States)

    Hubeny, I.; Lanz, T.

    1992-01-01

    Two approaches to accelerating the method of complete linearization for calculating NLTE model stellar atmospheres are suggested. The first one, the so-called Kantorovich variant of the Newton-Raphson method, consists of keeping the Jacobi matrix of the system fixed, which allows us to calculate the costly matrix inversions only a few times and then keep them fixed during the subsequent computations. The second method is an application of the Ng acceleration. Both methods are extremely easy to implement with any model atmosphere code based on complete linearization. It is demonstrated that both methods, and especially their combination, yield a rapidly and globally convergent algorithm, which takes 2 to 5 times less computer time, depending on the model at hand and the required accuracy, than the ordinary complete linearization. Generally, the time gain is more significant for more complicated models. The methods were tested for a broad range of atmospheric parameters, and in all cases they exhibited similar behavior. Ng acceleration applied on the Kantorovich variant thus offers a significant improvement of the standard complete-linearization method, and may now be used for calculating relatively involved NLTE model stellar atmospheres.

  5. Laser fields in dynamically ionized plasma structures for coherent acceleration

    CERN Document Server

    Luu-Thanh, Ph.; Pukhov, A.; Kostyukov, I.

    2015-01-01

    With the emergence of the CAN (Coherent Amplification Network) laser technology, a new scheme for direct particle acceleration in periodic plasma structures has been proposed. By using our full electromagnetic relativistic particle-in-cell (PIC) simulation code equipped with ionisation module, we simulate the laser fields dynamics in the periodic structures of different materials. We study how the dynamic ionization influences the field structure.

  6. The Experimental Study of Rayleigh-Taylor Instability using a Linear Induction Motor Accelerator

    Science.gov (United States)

    Yamashita, Nicholas; Jacobs, Jeffrey

    2009-11-01

    The experiments to be presented utilize an incompressible system of two stratified miscible liquids of different densities that are accelerated in order to produce the Rayleigh-Taylor instability. Three liquid combinations are used: isopropyl alcohol with water, a calcium nitrate solution or a lithium polytungstate solution, giving Atwood numbers of 0.11, 0.22 and 0.57, respectively. The acceleration required to drive the instability is produced by two high-speed linear induction motors mounted to an 8 m tall drop tower. The motors are mounted in parallel and have an effective acceleration length of 1.7 m and are each capable of producing 15 kN of thrust. The liquid system is contained within a square acrylic tank with inside dimensions 76 x76x184 mm. The tank is mounted to an aluminum plate, which is driven by the motors to create constant accelerations in the range of 1-20 g's, though the potential exists for higher accelerations. Also attached to the plate are a high-speed camera and an LED backlight to provide continuous video of the instability. In addition, an accelerometer is used to provide acceleration measurements during each experiment. Experimental image sequences will be presented which show the development of a random three-dimensional instability from an unforced initial perturbation. Measurements of the mixing zone width will be compared with traditional growth models.

  7. Acceleration of dynamic fluorescence molecular tomography with principal component analysis.

    Science.gov (United States)

    Zhang, Guanglei; He, Wei; Pu, Huangsheng; Liu, Fei; Chen, Maomao; Bai, Jing; Luo, Jianwen

    2015-06-01

    Dynamic fluorescence molecular tomography (FMT) is an attractive imaging technique for three-dimensionally resolving the metabolic process of fluorescent biomarkers in small animal. When combined with compartmental modeling, dynamic FMT can be used to obtain parametric images which can provide quantitative pharmacokinetic information for drug development and metabolic research. However, the computational burden of dynamic FMT is extremely huge due to its large data sets arising from the long measurement process and the densely sampling device. In this work, we propose to accelerate the reconstruction process of dynamic FMT based on principal component analysis (PCA). Taking advantage of the compression property of PCA, the dimension of the sub weight matrix used for solving the inverse problem is reduced by retaining only a few principal components which can retain most of the effective information of the sub weight matrix. Therefore, the reconstruction process of dynamic FMT can be accelerated by solving the smaller scale inverse problem. Numerical simulation and mouse experiment are performed to validate the performance of the proposed method. Results show that the proposed method can greatly accelerate the reconstruction of parametric images in dynamic FMT almost without degradation in image quality.

  8. FPGA Acceleration by Dynamically-Loaded Hardware Libraries

    DEFF Research Database (Denmark)

    Lomuscio, Andrea; Nannarelli, Alberto; Re, Marco

    Hardware acceleration is a viable solution to obtain energy efficiency in data intensive computation. In this work, we present a hardware framework to dynamically load hardware libraries, HLL, on reconfigurable platforms (FPGAs). Provided a library of application-specific processors, we load on...

  9. A linear model of population dynamics

    Science.gov (United States)

    Lushnikov, A. A.; Kagan, A. I.

    2016-08-01

    The Malthus process of population growth is reformulated in terms of the probability w(n,t) to find exactly n individuals at time t assuming that both the birth and the death rates are linear functions of the population size. The master equation for w(n,t) is solved exactly. It is shown that w(n,t) strongly deviates from the Poisson distribution and is expressed in terms either of Laguerre’s polynomials or a modified Bessel function. The latter expression allows for considerable simplifications of the asymptotic analysis of w(n,t).

  10. The vestibular evoked response to linear, alternating, acceleration pulses without acoustic masking as a parameter of vestibular function

    NARCIS (Netherlands)

    Oei, MLYM; Segenhout, JM; Wit, HP; Albers, FWJ

    In this study, short latency vestibular evoked potentials (VsEPs) were recorded in five guinea pigs in response to alternating linear acceleration pulses with and without acoustic masking. A steel bolt was implanted in the skull and coupled to a shaker. Linear acceleration pulses (n = 400) in

  11. The vestibular evoked response to linear, alternating, acceleration pulses without acoustic masking as a parameter of vestibular function

    NARCIS (Netherlands)

    Oei, MLYM; Segenhout, JM; Wit, HP; Albers, FWJ

    2001-01-01

    In this study, short latency vestibular evoked potentials (VsEPs) were recorded in five guinea pigs in response to alternating linear acceleration pulses with and without acoustic masking. A steel bolt was implanted in the skull and coupled to a shaker. Linear acceleration pulses (n = 400) in upward

  12. Employment of CB models for non-linear dynamic analysis

    Science.gov (United States)

    Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.

    1990-01-01

    The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.

  13. Harnessing piecewise-linear systems to construct dynamic logic architecture.

    Science.gov (United States)

    Peng, Haipeng; Yang, Yixian; Li, Lixiang; Luo, Hong

    2008-09-01

    This paper explores piecewise-linear systems to construct dynamic logic architecture. We present three schemes to obtain various basic logic gates, adders, and memory by using piecewise-linear systems. These schemes can switch easily among different operational roles by changing parameters. The proposed schemes are computationally efficient and easy to use. It is convenient for us to study and analyze them with the theory of linear systems.

  14. Dynamic compensator design for robust stability of linear uncertain systems

    Science.gov (United States)

    Yedavalli, R. K.

    1986-01-01

    This paper presents a robust linear dynamic compensator design algorithm for linear uncertain systems whose parameters vary within given bounded sets. The algorithm explicitly incorporates the structure of the uncertainty into the design procedure and utilizes the elemental perturbation bounds developed recently. The special cases of linear state feedback and measurement feedback controllers are considered and the relative trade offs are discussed. The design algorithm is illustrated with the help of a simple example.

  15. Linear dynamic range enhancement in a CMOS imager

    Science.gov (United States)

    Pain, Bedabrata (Inventor)

    2008-01-01

    A CMOS imager with increased linear dynamic range but without degradation in noise, responsivity, linearity, fixed-pattern noise, or photometric calibration comprises a linear calibrated dual gain pixel in which the gain is reduced after a pre-defined threshold level by switching in an additional capacitance. The pixel may include a novel on-pixel latch circuit that is used to switch in the additional capacitance.

  16. Dynamic deviation Volterra predistorter designed for linearizing power amplifiers

    OpenAIRE

    2011-01-01

    Polynomial models of predistorter combined by the "black box" principle have been considered. A Volterra model using one-dimensional dynamic deviation was proposed. An adaptive predistorter was synthesized for linearizing the Wiener–Hammerstein model of power amplifiers. Estimates of the linearization accuracy and a comparative analysis of predistorter models were also presented.

  17. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    J Banerji

    2001-02-01

    We have compared the non-linear wave packet dynamics of coherent states of various symmetry groups and found that certain generic features of non-linear evolution are present in each case. Thus the initial coherent structures are quickly destroyed but are followed by Schrödinger cat formation and revival. We also report important differences in their evolution.

  18. BEAM DYNAMICS SIMULATIONS OF SARAF ACCELERATOR INCLUDING ERROR PROPAGATION AND IMPLICATIONS FOR THE EURISOL DRIVER

    CERN Document Server

    J. Rodnizki, D. Berkovits, K. Lavie, I. Mardor, A. Shor and Y. Yanay (Soreq NRC, Yavne), K. Dunkel, C. Piel (ACCEL, Bergisch Gladbach), A. Facco (INFN/LNL, Legnaro, Padova), V. Zviagintsev (TRIUMF, Vancouver)

    AbstractBeam dynamics simulations of SARAF (Soreq Applied Research Accelerator Facility) superconducting RF linear accelerator have been performed in order to establish the accelerator design. The multi-particle simulation includes 3D realistic electromagnetic field distributions, space charge forces and fabrication, misalignment and operation errors. A 4 mA proton or deuteron beam is accelerated up to 40 MeV with a moderated rms emittance growth and a high real-estate gradient of 2 MeV/m. An envelope of 40,000 macro-particles is kept under a radius of 1.1 cm, well below the beam pipe bore radius. The accelerator design of SARAF is proposed as an injector for the EURISOL driver accelerator. The Accel 176 MHZ β0=0.09 and β0=0.15 HWR lattice was extended to 90 MeV based on the LNL 352 MHZ β0=0.31 HWR. The matching between both lattices ensures smooth transition and the possibility to extend the accelerator to the required EURISOL ion energy.

  19. [Evaluation of a risk communication approach for maintenance staff working with induced radioactivity in medical linear accelerators].

    Science.gov (United States)

    Watanabe, Hiroshi; Yamaguchi, Ichiro; Maehara, Yoshiaki; Koizumi, Mitsue; Fujibuchi, Toshioh; Kida, Tetsuo; Tsukamoto, Atsuko; Horitsugi, Genki; Hiraki, Hitoshi; Kimura, Yumi; Oyama, Masaya

    2013-12-01

    In order to promote consensus building on decommissioning operation rules for medical linear accelerators in Japan, we carried out a risk communication (RC) approach mainly providing knowledge for maintenance staff regarding induced radioactivity. In February 2012, we created a booklet (26 pages) to present an overview of the amended law, the mechanism and the distribution of induced radioactivity showing the actual radiation dose rate around a linear accelerator and actual exposure doses to staff. In addition, we co-sponsored a seminar for workers in this field organized by the Japan Medical Imaging and Radiological Systems Industries Association to explain the contents of this booklet, and answer questions regarding induced radioactivity of linear accelerators as an RC program. As a result, the understanding of staff regarding the regulations on maximum X-ray energy on linear accelerators (Papproach suggests that consensus building should be used to make rules on decommissioning operations for linear medical accelerators.

  20. Survey and Alignment of the 100MeV Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Bumsik; Kwon, Hyeokjung; Jang, Jiho; Kim, Hansung; Kim, Daeil; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The 100MeV linear accelerator was installed and under commissioning at the Gyeongju site. The 100MeV proton linac was developed by the KOMAC according to the survey work and the alignment process. 100MeV proton beam will be supplied to the users after the beam commissioning. KOMAC is developing a 100MeV high-duty-factor proton linac. Linac is composed with a 50keV proton injector, a 3MeV RFQ, DTL tanks and a beam dump. In this paper, the survey and alignment scheme are described. To install the accelerator, the align network was built and the survey work was accomplished. On the basis of the survey result, all of the accelerator components were installed in the tunnel with two laser trackers.

  1. ESS-Bilbao light-ion linear accelerator and neutron source: design and applications

    Science.gov (United States)

    Abad, E.; Arredondo, I.; Badillo, I.; Belver, D.; Bermejo, F. J.; Bustinduy, I.; Cano, D.; Cortazar, D.; de Cos, D.; Djekic, S.; Domingo, S.; Echevarria, P.; Eguiraun, M.; Etxebarria, V.; Fernandez, D.; Fernandez, F. J.; Feuchtwanger, J.; Garmendia, N.; Harper, G.; Hassanzadegan, H.; Jugo, J.; Legarda, F.; Magan, M.; Martinez, R.; Megia, A.; Muguira, L.; Mujika, G.; Muñoz, J. L.; Ortega, A.; Ortega, J.; Perlado, M.; Portilla, J.; Rueda, I.; Sordo, F.; Toyos, V.; Vizcaino, A.

    2011-10-01

    The baseline design for the ESS-Bilbao light-ion linear accelerator and neutron source has been completed and the normal conducting section of the linac is at present under construction. The machine has been designed to be compliant with ESS specifications following the international guidelines of such project as described in Ref. [1]. The new accelerator facility in Bilbao will serve as a base for support of activities on accelerator physics carried out in Spain and southern Europe in the frame of different ongoing international collaborations. Also, a number of applications have been envisaged in the new Bilbao facility for the outgoing light ion beams as well as from fast neutrons produced by low-energy neutron-capture targets, which are briefly described.

  2. Proceedings of the conference on computer codes and the linear accelerator community

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.K. (comp.)

    1990-07-01

    The conference whose proceedings you are reading was envisioned as the second in a series, the first having been held in San Diego in January 1988. The intended participants were those people who are actively involved in writing and applying computer codes for the solution of problems related to the design and construction of linear accelerators. The first conference reviewed many of the codes both extant and under development. This second conference provided an opportunity to update the status of those codes, and to provide a forum in which emerging new 3D codes could be described and discussed. The afternoon poster session on the second day of the conference provided an opportunity for extended discussion. All in all, this conference was felt to be quite a useful interchange of ideas and developments in the field of 3D calculations, parallel computation, higher-order optics calculations, and code documentation and maintenance for the linear accelerator community. A third conference is planned.

  3. Characterization of the neutron for linear accelerator shielding wall using a Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Yeon [Dept. of Radiation Oncology, Dongnam Inst. of Radiological and Medical Science, Busan (Korea, Republic of); Park, Eun Tae [Dept. of Radiation Oncology, Inje University Busan Paik Hospital, Busan (Korea, Republic of); Kim, Jung Hoon [Dept. of Radiologic Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of)

    2016-03-15

    As previous studies to proceed with the evaluation of the radioactive at linear accelerator's shielding concrete wall. And the shielding wall was evaluated the characteristics for the incoming neutron. As a result, the shielding wall is the average amount of incoming neutrons 10 MV 4.63E-7%, 15 MV 9.69E-6%, showed the occurrence of 20 MV 2.18E-5%. The proportion of thermal neutrons of which are found to be approximately 18-33%. The neutron generation rate can be seen as a slight numerical order. However, in consideration of the linear accelerator operating time we can not ignore the effects of neutrons. Accordingly radioactive problem of the radiation shield wall of the treatment room will be this should be considered.

  4. Linear inverse problem of the reactor dynamics

    Science.gov (United States)

    Volkov, N. P.

    2017-01-01

    The aim of this work is the study transient processes in nuclear reactors. The mathematical model of the reactor dynamics excluding reverse thermal coupling is investigated. This model is described by a system of integral-differential equations, consisting of a non-stationary anisotropic multispeed kinetic transport equation and a delayed neutron balance equation. An inverse problem was formulated to determine the stationary part of the function source along with the solution of the direct problem. The author obtained sufficient conditions for the existence and uniqueness of a generalized solution of this inverse problem.

  5. Dynamics of Kicked and Accelerated Massive Black Holes in Galaxies

    CERN Document Server

    Kornreich, David A

    2008-01-01

    A study is made of the behavior of massive black holes in disk galaxies that have received an impulsive kick from a merger or a sustained acceleration from an asymmetric jet. The motion of the gas, stars, dark matter, and massive black hole are calculated using the GADGET-2 simulation code. The massive black hole escapes the galaxy for kick velocities above about 600 km/s or accelerations above about 4*10^{-8} cm/s^2 over time-scales of the order of 10^8 yr. For smaller velocity kicks or smaller accelerations, the black hole oscillates about the center of mass with a frequency which decreases as the kick velocity or acceleration increases. The black hole displacements may give rise to observable nonaxisymmetries in the morphology and dynamics of the stellar and gaseous disk of the galaxy. In some cases the dynamical center of the galaxy is seen to be displaced towards the direction of the BH acceleration with a characteristic ``tongue--'' shaped extension of the velocity contours on the side of the galaxy opp...

  6. Improving linear accelerator service response with a real- time electronic event reporting system.

    Science.gov (United States)

    Hoisak, Jeremy D P; Pawlicki, Todd; Kim, Gwe-Ya; Fletcher, Richard; Moore, Kevin L

    2014-09-08

    To track linear accelerator performance issues, an online event recording system was developed in-house for use by therapists and physicists to log the details of technical problems arising on our institution's four linear accelerators. In use since October 2010, the system was designed so that all clinical physicists would receive email notification when an event was logged. Starting in October 2012, we initiated a pilot project in collaboration with our linear accelerator vendor to explore a new model of service and support, in which event notifications were also sent electronically directly to dedicated engineers at the vendor's technical help desk, who then initiated a response to technical issues. Previously, technical issues were reported by telephone to the vendor's call center, which then disseminated information and coordinated a response with the Technical Support help desk and local service engineers. The purpose of this work was to investigate the improvements to clinical operations resulting from this new service model. The new and old service models were quantitatively compared by reviewing event logs and the oncology information system database in the nine months prior to and after initiation of the project. Here, we focus on events that resulted in an inoperative linear accelerator ("down" machine). Machine downtime, vendor response time, treatment cancellations, and event resolution were evaluated and compared over two equivalent time periods. In 389 clinical days, there were 119 machine-down events: 59 events before and 60 after introduction of the new model. In the new model, median time to service response decreased from 45 to 8 min, service engineer dispatch time decreased 44%, downtime per event decreased from 45 to 20 min, and treatment cancellations decreased 68%. The decreased vendor response time and reduced number of on-site visits by a service engineer resulted in decreased downtime and decreased patient treatment cancellations.

  7. Photoneutron production in tungsten, praseodymium, copper and beryllium by using high energy electron linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jallu, F. E-mail: jalluf@macadam.cea.fr; Lyoussi, A.; Payan, E.; Recroix, H.; Mariani, A.; Nurdin, G.; Buisson, A.; Allano, J

    1999-09-01

    This paper presents comparisons between photoneutron production measurements in tungsten, copper, praseodymium and beryllium, and calculated data resulting from the ELEPHANT (ELEctron, PHoton And Neutron Transport) code. Measurements were made using the DGA/ETCA linear electron accelerator located at Arcueil, France. Bremsstrahlung endpoints varying in the 15-25 MeV energy range were used. Detectors were positioned at different angles with respect to the electron beam axis. Each measured value is compared with the corresponding calculated value.

  8. Complications following linear accelerator based stereotactic radiation for cerebral arteriovenous malformations

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Jane; Roed, Henrik; Ohlhues, Lars;

    2010-01-01

    Primarily, gamma knife centers are predominant in publishing results on arteriovenous malformations (AVM) treatments including reports on risk profile. However, many patients are treated using a linear accelerator-most of these at smaller centers. Because this setting is different from a large...... gamma knife center, the risk profile at Linac departments could be different from the reported experience. Prescribed radiation doses are dependent on AVM volume. This study details results from a medium sized Linac department center focusing on risk profiles....

  9. The R&D Works on the High Intensity Proton Linear Accelerator for Nuclear Waste Transmutation

    CERN Document Server

    Ito, N; Ino, H; Kawai, M; Kusano, J; Mizumoto, M; Murata, H; Oguri, H; Okumura, Y; Touchi, Y

    1996-01-01

    The R&D works of the 10MeV/10mA proton linear accelerator have been carried out for last four years. A high brightness hydrogen ion source, an RFQ and an RF power source have been developed and examined to achieve 2MeV proton beam. A DTL hot test model was also fabricated and a high power test has been carried out. The present status of the R&D works are described in this paper.

  10. Towards radiation pressure acceleration of protons using linearly polarized ultrashort petawatt laser pulses

    CERN Document Server

    Kim, I Jong; Kim, Chul Min; Kim, Hyung Taek; Sung, Jae Hee; Lee, Seong Ku; Yu, Tae Jun; Choi, Il Woo; Lee, Chang-Lyoul; Nam, Kee Hwan; Nickles, Peter V; Jeong, Tae Moon; Lee, Jongmin

    2013-01-01

    Particle acceleration using ultraintense, ultrashort laser pulses is one of the most attractive topics in relativistic laser-plasma research. We report proton/ion acceleration in the intensity range of 5x1019 W/cm2 to 3.3x1020 W/cm2 by irradiating linearly polarized, 30-fs, 1-PW laser pulses on 10- to 100-nm-thick polymer targets. The proton energy scaling with respect to the intensity and target thickness was examined. The experiments demonstrated, for the first time with linearly polarized light, a transition from the target normal sheath acceleration to radiation pressure acceleration and showed a maximum proton energy of 45 MeV when a 10-nm-thick target was irradiated by a laser intensity of 3.3x1020 W/cm2. The experimental results were further supported by two- and three-dimensional particle-in-cell simulations. Based on the deduced proton energy scaling, proton beams having an energy of ~ 200 MeV should be feasible at a laser intensity of 1.5x1021 W/cm2.

  11. Accelerating Dynamic Cardiac MR Imaging Using Structured Sparse Representation

    Directory of Open Access Journals (Sweden)

    Nian Cai

    2013-01-01

    Full Text Available Compressed sensing (CS has produced promising results on dynamic cardiac MR imaging by exploiting the sparsity in image series. In this paper, we propose a new method to improve the CS reconstruction for dynamic cardiac MRI based on the theory of structured sparse representation. The proposed method user the PCA subdictionaries for adaptive sparse representation and suppresses the sparse coding noise to obtain good reconstructions. An accelerated iterative shrinkage algorithm is used to solve the optimization problem and achieve a fast convergence rate. Experimental results demonstrate that the proposed method improves the reconstruction quality of dynamic cardiac cine MRI over the state-of-the-art CS method.

  12. Additional dose assessment from the activation of high-energy linear accelerators used in radiation therapy

    Directory of Open Access Journals (Sweden)

    Ateia Embarka

    2008-01-01

    Full Text Available It is well known that medical linear accelerators generate activation products when operated above certain electron (photon energies. The aim of the present work is to assess the activation behavior of a medium-energy radiotherapy linear accelerator by applying in situ gamma-ray spectrometry and dose measurements, and to estimate the additional dose to radiotherapy staff on the basis of these results. Spectral analysis was performed parallel to dose rate measurements in the isocenter of the linear accelerator, immediately after the termination of irradiation. The following radioisotopes were detected by spectral analysis: 28Al, 62Cu, 56Mn, 64Cu, 187W, and 57Ni. The short-lived isotopes such as 28Al and 62Cu are the most important factors of the clinical routine, while the contribution to the radiation dose of medium-lived isotopes such as 56Mn, 57Ni, 64Cu, and 187W increases during the working day. Measured dose rates at the isocenter ranged from 2.2 µSv/h to 10 µSv/h in various measuring points of interest for the members of the radiotherapy staff. Within the period of 10 minutes, the dose rate decreased to values of 0.8 µSv/h. According to actual workloads in radiotherapy departments, a realistic exposure scenario was set, resulting in a maximal additional annual whole body dose to the radiotherapy staff of about 3.5 mSv.

  13. Control of Switching Characteristics of Silicon-based Semiconductor Diode Using High Energy Linear Accelerator

    Directory of Open Access Journals (Sweden)

    N. Harihara Krishnan

    2013-05-01

    Full Text Available This paper reports control of switching characteristics of silicon-based semiconductor diode using electron beam produced using linear accelerator. Conventionally, p-n junction chips of diode are exposed to gamma rays from a radioactive source or electron beam from a microtron, depending upon the required level of correction. High energy linear accelerators featuring simultaneous exposure of multiple chips are recent advancements in radiation technology. The paper presents the results of the radiation process using a 10 MeV linear accelerator as applied in industrial manufacturing of a high voltage diode (2600 V. The achieved values of reverse recovery time were found to be within the design limits. The suitability of the new process was verified by constructing the trade-off curve between the switching and conduction parameters of the diode for the complete range using large number of experimental samples. The paper summarizes the advantages of the new process over the conventional methods specifically with reference to industrial requirements. The developed process has been successfully implemented in semiconductor manufacturing.

  14. Measurement of fissile mass in large-size containers with a transportable linear accelerator

    Science.gov (United States)

    Romeyer Dherbey, Jacques; Lyoussi, A.; Buisson, A.

    1997-02-01

    The quantification of transuranic material (TRU) in waste packages is a common problem of countries working in the field of nuclear nondestructive inspection. The direct measurement of TRU mass inside large size closed containers is difficult due to several effects, mainly the matrix attenuation and uncertainty on the localization of the radioactive mass. The present document describes the method being developed to assay conditioned waste packages using a transportable linear accelerator which is called Mini- Linatron. The system uses a pulsed electron beam from the Mini-Linatron to produce high energy bremsstrahlung photon bursts from thin metallic converter. The transportable linear accelerator operates at 6, 9 and 11 MeV with a repetition rate between 10 to 300 Hz and a 4.5 microsecond(s) pulse duration. The maximum gamma dose rate is about 23 Gy/mn at 1 m. The photons induce fission in fissile and fertile nuclei. We counted delayed neutrons emitted after each pulse by using Sequential Photon Interrogation and Neutron Counting Signatures technique which has ben developed in this framework. Results of measurements on an experimental active gamma interrogation facility for embedded intermediate and low level wastes are presented. Finally, the advantages and performances of the photofission interrogation technique, the use of a transportable electron linear accelerator as a particle source, and the experimental and electronic details will be discussed.

  15. FLUKA Monte Carlo for Basic Dosimetric Studies of Dual Energy Medical Linear Accelerator

    Directory of Open Access Journals (Sweden)

    K. Abdul Haneefa

    2014-01-01

    Full Text Available General purpose Monte Carlo code for simulation of particle transport is used to study the basic dosimetric parameters like percentage depth dose and dose profiles and compared with the experimental measurements from commercial dual energy medical linear accelerator. Varian Clinac iX medical linear accelerator with dual energy photon beams (6 and 15 MV is simulated using FLUKA. FLAIR is used to visualize and edit the geometry. Experimental measurements are taken for 100 cm source-to-surface (SSD in 50 × 50 × 50 cm3 PTW water phantom using 0.12 cc cylindrical ionization chamber. Percentage depth dose for standard square field sizes and dose profiles for various depths are studied in detail. The analysis was carried out using ROOT (a DATA analysis frame work developed at CERN system. Simulation result shows good agreement in percentage depth dose and beam profiles with the experimental measurements for Varian Clinac iX dual energy medical linear accelerator.

  16. Infinite-Dimensional Linear Dynamical Systems with Chaoticity

    CERN Document Server

    Fu Xin Chu; Fu, Xin-Chu; Duan, Jinqiao

    1998-01-01

    The authors present two results on infinite-dimensional linear dynamical systems with chaoticity. One is about the chaoticity of the backward shift map in the space of infinite sequences on a general Fréchet space. The other is about the chaoticity of a translation map in the space of real continuous functions. The chaos is shown in the senses of both Li-Yorke and Wiggins. Treating dimensions as freedoms, the two results imply that in the case of an infinite number of freedoms, a system may exhibit complexity even when the action is linear. Finally, the authors discuss physical applications of infinite-dimensional linear chaotic dynamical systems.

  17. Dynamics of hydrogen-like atom bounded by maximal acceleration

    CERN Document Server

    Friedman, Yaakov

    2012-01-01

    The existence of a maximal acceleration for massive objects was conjectured by Caianiello 30 years ago based on the Heisenberg uncertainty relations. Many consequences of this hypothesis have been studied, but until now, there has been no evidence that boundedness of the acceleration may lead to quantum behavior. In previous research, we predicted the existence of a universal maximal acceleration and developed a new dynamics for which all admissible solutions have an acceleration bounded by the maximal one. Based on W. K\\"{u}ndig's experiment, as reanalyzed by Kholmetskii et al, we estimated its value to be of the order $10^{19}m/s^2$. We present here a solution of our dynamical equation for a classical hydrogen-like atom and show that this dynamics leads to some aspects of quantum behavior. We show that the position of an electron in a hydrogen-like atom can be described only probabilistically. We also show that in this model, the notion of "center of mass" must be modified. This modification supports the no...

  18. The Dynamic test of Novel Punch Driven by Linear Motor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The key character of punch is its impulsion. For the novel punch driven by linear motor, the computer-aided test system is used. Its frequency performance is calculated by the identification method according to the dynamic demarcation. This dynamic test system presented here can be applied in the sample machines under development and performance test of finished products.

  19. Design and test of a superconducting magnet in a linear accelerator for an Accelerator Driven Subcritical System

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Quanling, E-mail: pengql@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Xu, Fengyu [Harbin Institute of Technology, Heilongjiang 150006 (China); Wang, Ting [Beijing Huantong Special Equipment Co., LTD, Beijing 100192 (China); Yang, Xiangchen [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Anbin [Harbin Institute of Technology, Heilongjiang 150006 (China); Wei, Xiaotao [Beijing Huantong Special Equipment Co., LTD, Beijing 100192 (China); Gao, Yao; Hou, Zhenhua; Wang, Bing; Chen, Yuan; Chen, Haoshu [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-11-11

    A batch superconducting solenoid magnet for the ADS proton linear accelerator has been designed, fabricated, and tested in a vertical dewar in Sept. 2013. A total of ten superconducting magnets will be installed into two separate cryomodules. Each cryomodule contains six superconducting spoke RF cavities for beam acceleration and five solenoid magnets for beam focusing. The multifunction superconducting magnet contains a solenoid for beam focusing and two correctors for orbit correction. The design current for the solenoid magnet is 182 A. A quench performance test shows that the operating current of the solenoid magnet can reach above 300 A after natural quenching on three occasions during current ramping (260 A, 268 A, 308 A). The integrated field strength and leakage field at the nearby superconducting spoke cavities all meet the design requirements. The vertical test checked the reliability of the test dewar and the quench detection system. This paper presents the physical and mechanical design of the batch magnets, the quench detection technique, field measurements, and a discussion of the residual field resulting from persistent current effects.

  20. Application of International Linear Collider superconducting cavities for acceleration of protons

    Directory of Open Access Journals (Sweden)

    P. N. Ostroumov

    2007-12-01

    Full Text Available Beam acceleration in the International Linear Collider (ILC will be provided by 9-cell 1300 MHz superconducting (SC cavities. The cavities are designed for effective acceleration of charged particles moving with the speed of light and are operated on π-mode to provide a maximum accelerating gradient. A significant research and development effort has been devoted to develop ILC SC technology and its rf system which resulted in excellent performance of ILC cavities. Therefore, the proposed 8-GeV proton driver in Fermilab is based on ILC cavities above ∼1.2  GeV. The efficiency of proton beam acceleration by ILC cavities drops fast for lower velocities and it was proposed to develop squeezed ILC-type (S-ILC cavities operating at 1300 MHz and designed for β_{G}=0.81, geometrical beta, to accelerate protons or H^{-} from ∼420  MeV to 1.2 GeV. This paper discusses the possibility of avoiding the development of new β_{G}=0.81 cavities by operating ILC cavities on 8/9π-mode of standing wave oscillations.

  1. Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems

    CERN Document Server

    Vázquez, Luis

    2013-01-01

    Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems explores how Newton's equation for the motion of one particle in classical mechanics combined with finite difference methods allows creation of a mechanical scenario to solve basic problems in linear algebra and programming. The authors present a novel, unified numerical and mechanical approach and an important analysis method of optimization. This book also: Presents mechanical method for determining matrix singularity or non-independence of dimension and complexity Illustrates novel mathematical applications of classical Newton’s law Offers a new approach and insight to basic, standard problems Includes numerous examples and applications Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems is an ideal book for undergraduate and graduate students as well as researchers interested in linear problems and optimization, and nonlinear dynamics.      

  2. Improvement of PEP-II Linear Optics with a MIA-Derived Virtual Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Cerio, B.; /Colgate U.

    2006-08-30

    In several past studies, model independent analysis, in conjunction with a virtual accelerator model, has been successful in improving PEP-II linear geometric optics. In many cases, optics improvement yielded an increase in machine luminosity. In this study, an updated characterization of linear optics is presented. With the PEP-II beam position monitor (BPM) system, four independent beam centroid orbits were extracted and used to determine phase advances and linear Green's functions among BPM locations. A magnetic lattice model was then constructed with a singular value decomposition-enhanced least-square fitting of phase advances and Green's functions, which are functions of quadrupole strengths, sextupole feed-downs, as well as BPM errors, to the corresponding measured quantities. The fitting process yielded a machine model that matched the measured linear optics of the real machine and was therefore deemed the virtual accelerator. High beta beat, as well as linear coupling, was observed in both LER and HER of the virtual accelerator. Since there was higher beta beating in LER, focus was shifted to the improvement of this ring. By adjusting select quadrupoles of the virtual LER and fitting the resulting beta functions and phase advances to those of the desired lattice, the average beta beat of the virtual machine was effectively reduced. The new magnet configuration was dialed into LER on August 10, 2006, and beta beat was reduced by a factor of three. After fine tuning HER to match the improved LER for optimal collision, a record peak luminosity of 12.069 x 10{sup 33} cm{sup -2} s{sup -1} was attained on August 16, 2006.

  3. On Dynamic Systems with Piecewise Linear Feature

    Directory of Open Access Journals (Sweden)

    Amalia Ţîrdea

    2010-10-01

    Full Text Available Impact dynamics is considered to be one of the most important problems which arise in vibrating systems. Such impact oscillator occurs in the motion with amplitude constraining stop. In the past years, this simple model has been found rich phenomena and given benefit for understanding of impact systems. Different types of impacting response, such as periodic and non-periodic oscillations, can be predicted by using bifurcation diagrams. Many mechanical systems in engineering applications represent systems which are driven in some way and which undergo intermittent or a continuous sequence of contacts with limiting motion by constraints. For example, the principles of the operation of vibration hammers, impact dampers, inertial shakers, milling and forming machines etc, are based on the impact action for moving bodies. With other equipment, machines with clearances, heat exchangers, steam generator tubes, fuel rods in nuclear power plants, rolling railway wheel sets, piping systems, gear transmissions and so on, impacts also occur, but they are undesirable as they bring about failures, strains, and increased noise levels.

  4. X-ray beam hardening correction for measuring density in linear accelerator industrial computed tomography

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ri-Feng; WANG Jue; CHEN Wei-Min

    2009-01-01

    Due to X-ray attenuation being approximately proportional to material density, it is possible to measure the inner density through Industrial Computed Tomography (ICT) images accurately. In practice, however, a number of factors including the non-linear effects of beam hardening and diffuse scattered radia-tion complicate the quantitative measurement of density variations in materials. This paper is based on the linearization method of beam hardening correction, and uses polynomial fitting coefficient which is obtained by the curvature of iron polychromatic beam data to fit other materials. Through theoretical deduction, the paper proves that the density measure error is less than 2% if using pre-filters to make the spectrum of linear accelerator range mainly 0.3 MeV to 3 MeV. Experiment had been set up at an ICT system with a 9 MeV electron linear accelerator. The result is satisfactory. This technique makes the beam hardening correction easy and simple, and it is valuable for measuring the ICT density and making use of the CT images to recognize materials.

  5. Acceleration of multiple solution of a boundary value problem involving a linear algebraic system

    Science.gov (United States)

    Gazizov, Talgat R.; Kuksenko, Sergey P.; Surovtsev, Roman S.

    2016-06-01

    Multiple solution of a boundary value problem that involves a linear algebraic system is considered. New approach to acceleration of the solution is proposed. The approach uses the structure of the linear system matrix. Particularly, location of entries in the right columns and low rows of the matrix, which undergo variation due to the computing in the range of parameters, is used to apply block LU decomposition. Application of the approach is considered on the example of multiple computing of the capacitance matrix by method of moments used in numerical electromagnetics. Expressions for analytic estimation of the acceleration are presented. Results of the numerical experiments for solution of 100 linear systems with matrix orders of 1000, 2000, 3000 and different relations of variated and constant entries of the matrix show that block LU decomposition can be effective for multiple solution of linear systems. The speed up compared to pointwise LU factorization increases (up to 15) for larger number and order of considered systems with lower number of variated entries.

  6. Accelerated solution of non-linear flow problems using Chebyshev iteration polynomial based RK recursions

    Energy Technology Data Exchange (ETDEWEB)

    Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.

  7. Stochastic Dynamics of Infrared Fluctuations in Accelerating Universe

    CERN Document Server

    Cho, Gihyuk; Kitamoto, Hiroyuki

    2015-01-01

    We extend investigations of infrared dynamics in accelerating universes. In the presence of massless and minimally coupled scalar fields, physical quantities may acquire growing time dependences through quantum fluctuations at super-horizon scales. From a semiclassical viewpoint, it was proposed that such infrared effects are described by a Langevin equation. In de Sitter space, the stochastic approach has been proved to be equivalent to resummation of the growing time dependences at the leading power. In this paper, we make the resummation derivation of the Langevin equation in a general accelerating universe. We first consider an accelerating universe whose slow-roll parameter is constant, and then extend the background as the slow-roll parameter becomes time dependent. The resulting Langevin equation contains a white noise term and the coefficient of each term is modified by the slow-roll parameter. Furthermore we find that the semiclassical description of the scalar fields leads to the same stochastic equ...

  8. Clinical commissioning and use of the Novalis Tx linear accelerator for SRS and SBRT.

    Science.gov (United States)

    Kim, Jinkoo; Wen, Ning; Jin, Jian-Yue; Walls, Nicole; Kim, Sangroh; Li, Haisen; Ren, Lei; Huang, Yimei; Doemer, Anthony; Faber, Kathleen; Kunkel, Tina; Balawi, Ahssan; Garbarino, Kimberly; Levin, Kenneth; Patel, Samir; Ajlouni, Munther; Miller, Brett; Nurushev, Teamor; Huntzinger, Calvin; Schulz, Raymond; Chetty, Indrin J; Movsas, Benjamin; Ryu, Samuel

    2012-05-10

    The purpose of this study was to perform comprehensive measurements and testing of a Novalis Tx linear accelerator, and to develop technical guidelines for com-missioning from the time of acceptance testing to the first clinical treatment. The Novalis Tx (NTX) linear accelerator is equipped with, among other features, a high-definition MLC (HD120 MLC) with 2.5 mm central leaves, a 6D robotic couch, an optical guidance positioning system, as well as X-ray-based image guidance tools to provide high accuracy radiation delivery for stereotactic radiosurgery and stereotactic body radiation therapy procedures. We have performed extensive tests for each of the components, and analyzed the clinical data collected in our clinic. We present technical guidelines in this report focusing on methods for: (1) efficient and accurate beam data collection for commissioning treatment planning systems, including small field output measurements conducted using a wide range of detectors; (2) commissioning tests for the HD120 MLC; (3) data collection for the baseline characteristics of the on-board imager (OBI) and ExacTrac X-ray (ETX) image guidance systems in conjunction with the 6D robotic couch; and (4) end-to-end testing of the entire clinical process. Established from our clinical experience thus far, recommendations are provided for accurate and efficient use of the OBI and ETX localization systems for intra- and extracranial treatment sites. Four results are presented. (1) Basic beam data measurements: Our measurements confirmed the necessity of using small detectors for small fields. Total scatter factors varied significantly (30% to approximately 62%) for small field measurements among detectors. Unshielded stereotactic field diode (SFD) overestimated dose by ~ 2% for large field sizes. Ion chambers with active diameters of 6 mm suffered from significant volume averaging. The sharpest profile penumbra was observed for the SFD because of its small active diameter (0.6 mm). (2

  9. Effects of Frequency and Motion Paradigm on Perception of Tilt and Translation During Periodic Linear Acceleration

    Science.gov (United States)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, Scott J.

    2009-01-01

    Previous studies have demonstrated an effect of frequency on the gain of tilt and translation perception. Results from different motion paradigms are often combined to extend the stimulus frequency range. For example, Off-Vertical Axis Rotation (OVAR) and Variable Radius Centrifugation (VRC) are useful to test low frequencies of linear acceleration at amplitudes that would require impractical sled lengths. The purpose of this study was to compare roll-tilt and lateral translation motion perception in 12 healthy subjects across four paradigms: OVAR, VRC, sled translation and rotation about an earth-horizontal axis. Subjects were oscillated in darkness at six frequencies from 0.01875 to 0.6 Hz (peak acceleration equivalent to 10 deg, less for sled motion below 0.15 Hz). Subjects verbally described the amplitude of perceived tilt and translation, and used a joystick to indicate the direction of motion. Consistent with previous reports, tilt perception gain decreased as a function of stimulus frequency in the motion paradigms without concordant canal tilt cues (OVAR, VRC and Sled). Translation perception gain was negligible at low stimulus frequencies and increased at higher frequencies. There were no significant differences between the phase of tilt and translation, nor did the phase significantly vary across stimulus frequency. There were differences in perception gain across the different paradigms. Paradigms that included actual tilt stimuli had the larger tilt gains, and paradigms that included actual translation stimuli had larger translation gains. In addition, the frequency at which there was a crossover of tilt and translation gains appeared to vary across motion paradigm between 0.15 and 0.3 Hz. Since the linear acceleration in the head lateral plane was equivalent across paradigms, differences in gain may be attributable to the presence of linear accelerations in orthogonal directions and/or cognitive aspects based on the expected motion paths.

  10. Enhancing protein adsorption simulations by using accelerated molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Christian Mücksch

    Full Text Available The atomistic modeling of protein adsorption on surfaces is hampered by the different time scales of the simulation ([Formula: see text][Formula: see text]s and experiment (up to hours, and the accordingly different 'final' adsorption conformations. We provide evidence that the method of accelerated molecular dynamics is an efficient tool to obtain equilibrated adsorption states. As a model system we study the adsorption of the protein BMP-2 on graphite in an explicit salt water environment. We demonstrate that due to the considerably improved sampling of conformational space, accelerated molecular dynamics allows to observe the complete unfolding and spreading of the protein on the hydrophobic graphite surface. This result is in agreement with the general finding of protein denaturation upon contact with hydrophobic surfaces.

  11. SU-E-T-543: Measurement of Neutron Activation From Different High Energy Varian Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Thatcher, T; Madsen, S; Sudowe, R [University of Nevada, Las Vegas, Las Vegas, NV (United States); Meigooni, A Soleimani [University of Nevada, Las Vegas, Las Vegas, NV (United States); Comprehensive Cancer Center of Nevada, Las Vegas, Nevada (United States)

    2015-06-15

    Purpose: Linear accelerators producing photons above 10 MeV may induce photonuclear reactions in high Z components of the accelerator. These liberated neutrons can then activate the structural components of the accelerator and other materials in the beam path through neutron capture reactions. The induced activity within the accelerator may contribute to additional dose to both patients and personnel. This project seeks to determine the total activity and activity per activated isotope following irradiation in different Varian accelerators at energies above 10 MeV. Methods: A Varian 21IX accelerator was used to irradiate a 30 cm × 30 cm × 20 cm solid water phantom with 15 MV x-rays. The phantom was placed at an SSD of 100 cm and at the center of a 20 cm × 20 cm field. Activation induced gamma spectra were acquired over a 5 minute interval after 1 and 15 minutes from completion of the irradiation. All measurements were made using a CANBERRA Falcon 5000 Portable HPGe detector. The majority of measurements were made in scattering geometry with the detector situated at 90° to the incident beam, 30 cm from the side of the phantom and approximately 10 cm from the top. A 5 minute background count was acquired and automatically subtracted from all subsequent measurements. Photon spectra were acquired for both open and MLC fields. Results: Based on spectral signatures, nuclides have been identified and their activities calculated for both open and MLC fields. Preliminary analyses suggest that activities from the activation products in the microcurie range. Conclusion: Activation isotopes have been identified and their relative activities determined. These activities are only gross estimates since efficiencies have not been determined for this source-detector geometry. Current efforts are focused on accurate determination of detector efficiencies using Monte Carlo calculations.

  12. AMS of heavy elements with an ECR ion source and the ATLAS linear accelerator

    CERN Document Server

    Paul, M; Ahmad, I; Borasi, F; Caggiano, J; Davids, C N; Greene, J P; Harss, B; Heinz, A; Henderson, D J; Henning, W F; Jiang, C L; Pardo, R C; Rehm, K E; Rejoub, R; Seweryniak, D; Sonzogni, A; Uusitalo, J; Vondrasek, R C

    2000-01-01

    Detection of heavy elements by accelerator mass spectrometry with the electron cyclotron resonance ion source, Argonne linear accelerator and fragment mass analyzer (ECRIS-ATLAS-FMA) system has been developed. The use of the ECR-ATLAS system for AMS of heavy elements has two interesting features: (i) the efficient production of high-charge state ions in the ECR source ensures the elimination of molecular ions at the source stage, a highly attractive feature for any mass-spectrometric use not exploited so far; (ii) the linear acceleration based on velocity matching and the beam transport system act as a powerful mass filter for background suppression. We have shown that our system reaches an abundance sensitivity of 1x10 sup - sup 1 sup 4 for Pb isotopes. The sup 2 sup 3 sup 6 U detection sensitivity is sup 2 sup 3 sup 6 U/U > or approx. 1x10 sup - sup 1 sup 2 , limited mainly by the ion source output.

  13. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    CERN Document Server

    Adolphsen, Chris; Barish, Barry; Buesser, Karsten; Burrows, Philip; Carwardine, John; Clark, Jeffrey; Durand, Helene Mainaud; Dugan, Gerry; Elsen, Eckhard; Enomoto, Atsushi; Foster, Brian; Fukuda, Shigeki; Gai, Wei; Gastal, Martin; Geng, Rongli; Ginsburg, Camille; Guiducci, Susanna; Harrison, Mike; Hayano, Hitoshi; Kershaw, Keith; Kubo, Kiyoshi; Kuchler, Victor; List, Benno; Liu, Wanming; Michizono, Shinichiro; Nantista, Christopher; Osborne, John; Palmer, Mark; Paterson, James McEwan; Peterson, Thomas; Phinney, Nan; Pierini, Paolo; Ross, Marc; Rubin, David; Seryi, Andrei; Sheppard, John; Solyak, Nikolay; Stapnes, Steinar; Tauchi, Toshiaki; Toge, Nobu; Walker, Nicholas; Yamamoto, Akira; Yokoya, Kaoru

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  14. The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \\& in the Technical Design Phase

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, Chris [SLAC National Accelerator Lab., Menlo Park, CA (United States); et al.

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  15. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, Chris [SLAC National Accelerator Lab., Menlo Park, CA (United States); et al.

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  16. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    Science.gov (United States)

    Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Houck, T. L.; Westenskow, G. A.; Vanecek, D. L.; Yu, S. S.

    1999-05-01

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.

  17. The generation and acceleration of low emittance flat beams for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of {gamma}{epsilon}{sub x} = 3{times}10{sup {minus}6} m-rad and {gamma}{epsilon}{sub y} = 3{times}10{sup {minus}8} m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate ``fundamental`` limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  18. The generation and acceleration of low emittance flat beams for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of {gamma}{epsilon}{sub x} = 3{times}10{sup {minus}6} m-rad and {gamma}{epsilon}{sub y} = 3{times}10{sup {minus}8} m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate fundamental'' limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  19. Strain-accelerated dynamics of soft colloidal glasses

    KAUST Repository

    Agarwal, Praveen

    2011-04-11

    We have investigated strain-accelerated dynamics of soft glasses theoretically and experimentally. Mechanical rheology measurements performed on a variety of systems reveal evidence for the speeding-up of relaxation at modest shear strains in both step and oscillatory shear flows. Using the soft glassy rheology (SGR) model framework, we show that the observed behavior is a fundamental, but heretofore unexplored attribute of soft glasses. © 2011 American Physical Society.

  20. Evaluation of source term induced by beam loss in the superconducting linear accelerator at RAON

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Jin; Kim, Su Na; Nam, Shin Woo; Chung, Yon Sei [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2014-11-15

    As a new world-class heavy ion accelerator, RAON is able to accelerate heavy ions from proton to uranium with the energy up to -400 MeV/u and produce rare isotopes. These high purity, high intensity, and high energy beams generate the various secondary radiation which will impact on the shielding aspects of the main linear accelerator tunnels. In the main tunnel the secondary neutrons are produced by uniform beam-loss or accident criteria. In this paper evaluations of several source terms induced by beam-loss will be discussed along with the physics model of the Monte Carlo simulation codes. The beam-loss criteria were tested for the evaluation of source term for the main beam line tunnel of the RAON accelerator. It was found that the amount of the secondary neutrons depends on the incident angle of projectile on the beam pipe and the mass and energy of projectile. The influence of selected physics models and libraries of MCNPX and PHITS has been examined. The secondary neutrons were produced most in the CEM and LAQGSM model.

  1. TERA high gradient test program of RF cavities for medical linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Degiovanni, A., E-mail: alberto.degiovanni@cern.ch [TERA Foundation-via G. Puccini 11, 28100 Novara (Italy); Ecole Polytechnique Federale Lausanne EPFL-1015 Lausanne (Switzerland); Amaldi, U. [TERA Foundation-via G. Puccini 11, 28100 Novara (Italy); Universita Milano Bicocca-Piazza della Scienza 1, 20126 Milan (Italy); Bonomi, R. [TERA Foundation-via G. Puccini 11, 28100 Novara (Italy); Politecnico di Torino-Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Garlasche, M. [TERA Foundation-via G. Puccini 11, 28100 Novara (Italy); Garonna, A. [TERA Foundation-via G. Puccini 11, 28100 Novara (Italy); Ecole Polytechnique Federale Lausanne EPFL-1015 Lausanne (Switzerland); Verdu-Andres, S. [TERA Foundation-via G. Puccini 11, 28100 Novara (Italy); Instituto de Fisica Corpuscular IFIC (CSIC-UVEG)-Paterna, 46071 Valencia (Spain); Wegner, R. [CERN- 1211 Geneva (Switzerland)

    2011-11-21

    The scientific community and the medical industries are putting a considerable effort into the design of compact, reliable and cheap accelerators for hadrontherapy. Up to now only circular accelerators are used to deliver beams with energies suitable for the treatment of deep seated tumors. The TERA Foundation has proposed and designed a hadrontherapy facility based on the cyclinac concept: a high gradient linear accelerator placed downstream of a cyclotron used as an injector. The overall length of the linac, and therefore its final cost, is almost inversely proportional to the average accelerating gradient achieved in the linac. TERA, in collaboration with the CLIC RF group, has started a high gradient test program. The main goal is to study the high gradient behavior of prototype cavities and to determine the appropriate linac operating frequency considering important issues such as machine reliability and availability of distributed power sources. A preliminary test of a 3 GHz cavity has been carried out at the beginning of 2010, giving encouraging results. Further investigations are planned before the end of 2011. A set of 5.7 GHz cavities is under production and will be tested in a near future. The construction and test of a multi-cell structure is also foreseen.

  2. TERA high gradient test program of RF cavities for medical linear accelerators

    Science.gov (United States)

    Degiovanni, A.; Amaldi, U.; Bonomi, R.; Garlasché, M.; Garonna, A.; Verdú-Andrés, S.; Wegner, R.

    2011-11-01

    The scientific community and the medical industries are putting a considerable effort into the design of compact, reliable and cheap accelerators for hadrontherapy. Up to now only circular accelerators are used to deliver beams with energies suitable for the treatment of deep seated tumors. The TERA Foundation has proposed and designed a hadrontherapy facility based on the cyclinac concept: a high gradient linear accelerator placed downstream of a cyclotron used as an injector. The overall length of the linac, and therefore its final cost, is almost inversely proportional to the average accelerating gradient achieved in the linac. TERA, in collaboration with the CLIC RF group, has started a high gradient test program. The main goal is to study the high gradient behavior of prototype cavities and to determine the appropriate linac operating frequency considering important issues such as machine reliability and availability of distributed power sources. A preliminary test of a 3 GHz cavity has been carried out at the beginning of 2010, giving encouraging results. Further investigations are planned before the end of 2011. A set of 5.7 GHz cavities is under production and will be tested in a near future. The construction and test of a multi-cell structure is also foreseen.

  3. Dynamical symmetries of semi-linear Schrodinger and diffusion equations

    Energy Technology Data Exchange (ETDEWEB)

    Stoimenov, Stoimen [Laboratoire de Physique des Materiaux , Laboratoire associe au CNRS UMR 7556, Universite Henri Poincare Nancy I, B.P. 239, F-54506 Vandoeuvre les Nancy Cedex (France); Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria); Henkel, Malte [Laboratoire de Physique des Materiaux, Laboratoire associe au CNRS UMR 7556, Universite Henri Poincare Nancy I, B.P. 239, F-54506 Vandoeuvre les Nancy Cedex (France)]. E-mail: henkel@lpm.u-nancy.fr

    2005-09-12

    Conditional and Lie symmetries of semi-linear 1D Schrodinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrodinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf{sub 3}){sub C}. We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf{sub 3}){sub C} are classified and the complete list of conditionally invariant semi-linear Schrodinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed.

  4. Non-linear dynamics in pulse combustor: A review

    Indian Academy of Sciences (India)

    Sirshendu Mondal; Achintya Kukhopadhyay; Swarnendu Sen

    2015-03-01

    The state of the art of non-linear dynamics applied to pulse combustor theoretically and experimentally is reviewed. Pulse combustors are a class of air-breathing engines in which pulsations in combustion are utilized to improve the performance. As no analytical solution can be obtained for most of the nonlinear systems, the whole set of solutions can be investigated with the help of dynamical system theory. Many studies have been carried out on pulse combustors whose dynamics include limit cycle behaviour, Hopf bifurcation and period-doubling bifurcation. The dynamic signature has also been used for early prediction of extinction.

  5. Spectral Ewald Acceleration of Stokesian Dynamics for polydisperse suspensions

    CERN Document Server

    Wang, Mu

    2015-01-01

    In this work we develop the Spectral Ewald Accelerated Stokesian Dynamics (SEASD), a novel computational method for dynamic simulations of polydisperse colloidal suspensions with full hydrodynamic interactions. SEASD is based on the framework of Stokesian Dynamics (SD) with extension to compressible solvents, and uses the Spectral Ewald (SE) method [Lindbo & Tornberg, J. Comput. Phys. 229 (2010) 8994] for the wave-space mobility computation. To meet the performance requirement of dynamic simulations, we use Graphic Processing Units (GPU) to evaluate the suspension mobility, and achieve an order of magnitude speedup compared to a CPU implementation. For further speedup, we develop a novel far-field block-diagonal preconditioner to reduce the far-field evaluations in the iterative solver, and SEASD-nf, a polydisperse extension of the mean-field Brownian approximation of Banchio & Brady [J. Chem. Phys. 118 (2003) 10323]. We extensively discuss implementation and parameter selection strategies in SEASD, a...

  6. Controllability, observability, realizability, and stability of dynamic linear systems

    OpenAIRE

    Davis, John M.; Gravagne, Ian A.; Jackson, Billy J.; Marks II, Robert J.

    2009-01-01

    We develop a linear systems theory that coincides with the existing theories for continuous and discrete dynamical systems, but that also extends to linear systems defined on nonuniform time scales. The approach here is based on generalized Laplace transform methods (e.g. shifts and convolution) from the recent work [13]. We study controllability in terms of the controllability Gramian and various rank conditions (including Kalman's) in both the time invariant and time varying settings...

  7. Correlated L\\'evy noise in linear dynamical systems

    OpenAIRE

    Srokowski, Tomasz

    2010-01-01

    Linear dynamical systems, driven by a non-white noise which has the Levy distribution, are analysed. Noise is modelled by a specific stochastic process which is defined by the Langevin equation with a linear force and the Levy distributed symmetric white noise. Correlation properties of the process are discussed. The Fokker-Planck equation driven by that noise is solved. Distributions have the Levy shape and their width, for a given time, is smaller than for processes in the white noise limit...

  8. Input design for linear dynamic systems using maxmin criteria

    DEFF Research Database (Denmark)

    Sadegh, Payman; Hansen, Lars H.; Madsen, Henrik

    1998-01-01

    This paper considers the problem of input design for maximizing the smallest eigenvalue of the information matrix for linear dynamic systems. The optimization of the smallest eigenvalue is of interest in parameter estimation and parameter change detection problems. We describe a simple cutting...... plane algorithm to determine the optimal frequency power weights of the input, using successive solutions to linear programs. We present a case study related to estimation of thermal parameters of a building....

  9. GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations.

    Science.gov (United States)

    Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto; Santana, Sidney Ramos; Cabral, Lucidio Anjos Formiga; Rocha, Gerd B

    2012-09-11

    In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.

  10. Power System Design Compromises for Large-Scale Linear Particle Accelerators

    CERN Document Server

    Papastergiou, K D

    2014-01-01

    This paper discusses various design aspects of a 280MW Power System for the Compact Linear Collider (CLIC), a 50km long electrons-positrons accelerator, under feasibility evaluation. The key requirements are a very high accelerator availability and constant power flow from the utility grid, considering the pulsed power nature of CLIC. Firstly, the possible power network and cabling layouts are discussed along with potential difficulties on electrical fault clearance. Following, the use of active front-end converters is examined as a means to control the power flow and power quality seen by the 400kV grid. In particular a modular multilevel converter preliminary configuration is described and the compromises related to energy storage and voltage level are discussed.

  11. Assessing Risk in Costing High-energy Accelerators: from Existing Projects to the Future Linear Collider

    CERN Document Server

    Lebrun, Philippe

    2010-01-01

    High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-of markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.

  12. Dosimetric aspects of the therapeutic photon beams from a dual-energy linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghazi, M.S.A.L.; Arjune, B.; Fiedler, J.A.; Sharma, P.D.

    1988-03-01

    Parameters of the photon beams (6 and 20 MV) from a dual-energy linear accelerator (Mevatron-KD, Siemens Medical Laboratories, CA) are presented. The depth dose characteristics of the photon beams are d/sub max/ of 1.8 and 3.8 cm and percentage depth dose of 68% and 80% at 10-cm depth and 100-cm source--surface distance for a field size of 10 x 10 cm/sup 2/ for 6 and 20 MV, respectively. The 6 and 20 MV beams were found to correspond to nominal accelerating potentials of 4.7 and 17 MV, respectively. The stability of output is within +- 1% and flatness and symmetry are within +- 3%. These figures compare favorably with the manufacturer's specifications.

  13. Parameter choices for a muon recirculating linear accelerator from 5 to 63 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-06-19

    A recirculating linear accelerator (RLA) has been proposed to accelerate muons from 5 to 63 GeV for a muon collider. It should be usable both for a Higgs factory and as a stage for a higher energy collider. First, the constraints due to the beam loading are computed. Next, an expression for the longitudinal emittance growth to lowest order in the longitudinal emittance is worked out. After finding the longitudinal expression, a simplified model that describes the arcs and their approximate expression for the time of flight dependence on energy in those arcs is found. Finally, these results are used to estimate the parameters required for the RLA arcs and the linac phase.

  14. A review of vector convergence acceleration methods, with applications to linear algebra problems

    Science.gov (United States)

    Brezinski, C.; Redivo-Zaglia, M.

    In this article, in a few pages, we will try to give an idea of convergence acceleration methods and extrapolation procedures for vector sequences, and to present some applications to linear algebra problems and to the treatment of the Gibbs phenomenon for Fourier series in order to show their effectiveness. The interested reader is referred to the literature for more details. In the bibliography, due to space limitation, we will only give the more recent items, and, for older ones, we refer to Brezinski and Redivo-Zaglia, Extrapolation methods. (Extrapolation Methods. Theory and Practice, North-Holland, 1991). This book also contains, on a magnetic support, a library (in Fortran 77 language) for convergence acceleration algorithms and extrapolation methods.

  15. Dynamic Model of Linear Induction Motor Considering the End Effects

    Directory of Open Access Journals (Sweden)

    H. A. Hairik

    2009-01-01

    Full Text Available In this paper the dynamic behavior of linear induction motor is described by a mathematical model taking into account the end effects and the core losses. The need for such a model rises due to the complexity of linear induction motors electromagnetic field theory. The end affects by introducing speed dependent scale factor to the magnetizing inductance and series resistance in the d-axis equivalent circuit. Simulation results are presented to show the validity of the model during both no-load and sudden load change intervals. This model can also be used directly in simulation researches for linear induction motor vector control drive systems.

  16. Tracking control of chaotic dynamical systems with feedback linearization

    Institute of Scientific and Technical Information of China (English)

    QI Dong-lian; MA Guo-jin

    2005-01-01

    A new method was proposed for tracking the desired output of chaotic dynamical system using the feedback linearization and nonlinear extended statement observer method. The feedback linearization was used to convert the nonlinear chaotic system into linear system. The extended Luenberger-like statements observer was designed to reconstructing and observing the unmeasured statements when the tracking controller was designed. By this way, the chaotic system could be forced to track variable desired output, which could be a time variant function or an equilibrium points.Taken the Lorenz chaotic system as example, the simulation results show the validity of the conclusion and effectiveness of the algorithm.

  17. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.

    Science.gov (United States)

    Nwankwo, Obioma; Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens

    2017-01-01

    To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.

  18. The first implementation of respiratory triggered 4DCBCT on a linear accelerator

    Science.gov (United States)

    O'Brien, Ricky T.; Cooper, Benjamin J.; Shieh, Chun-Chien; Stankovic, Uros; Keall, Paul J.; Sonke, Jan-Jakob

    2016-05-01

    signal to noise and contrast to noise ratios. RT-4DCBCT has been experimentally realised and reduced to practice on a linear accelerator with a measurable imaging dose reductions over conventional 4DCBCT and little degradation in image quality.

  19. Hospital-based proton linear accelerator for particle therapy and radioisotope production

    Science.gov (United States)

    Lennox, Arlene J.

    1991-05-01

    Taking advantage of recent advances in linear accelerator technology, it is possible for a hospital to use a 70 MeV proton linac for fast neutron therapy, boron neutron capture therapy, proton therapy for ocular melanomas, and production of radiopharmaceuticals. The linac can also inject protons into a synchrotron for proton therapy of deep-seated tumors. With 180 μA average current, a single linac can support all these applications. This paper presents a conceptual design for a medical proton linac, switchyard, treatment rooms, and isotope production rooms. Special requirements for each application are outlined and a layout for sharing beam among the applications is suggested.

  20. Design of a Linear Induction 1-MV Injector for the Relativisitic Two-Beam Accelerator

    Science.gov (United States)

    Anderson, D. E.; Henestroza, E.; Houck, T.; Lidia, S.; Reginato, L.; Vanecek, D.; Westenskow, G.; Yu, S.

    1997-05-01

    A Relativisitic Klystron Two-Beam Accelerator (RTA) is envisioned as a RF power source upgrade of the Next Linear Collider. A prototype to study physics, engineering and costing issues is presently under construction at Lawrence Berkeley National Laboratory. The first half of the injector, a 1 MeV, 1.2 kA, 300 ns induction electron gun, has been built and is presently being tested. The design of the injector cells and pulsed power drive units will be presented. Preliminary test results of the power drive units will also be given.

  1. Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

    1999-09-20

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233U in the energy range from 0.36 eV to ~700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV.

  2. Proposal of the Next Incarnation of Accelerator Test Facility at KEK for the International Linear Collider

    CERN Document Server

    Hayano, Hitoshi; Angal-Kalinin, Deepa; Appleby, Robert; Araki, Sakae; Bambade, Philip; Bane, Karl Leopold Freitag; Blair, Grahame A; Boogert, Stewart Takashi; Boorman, Gary; Brachmann, Axel; Braun, Hans Heinrich; Burrows, P N; Carter, John; Choi Jae Young; Christian, Glenn B; Danagulyan, S; Delerue, Nicolas; Driouichi, Chafik; Gao, Jie; Grishanov, Boris I; Gronberg, Jeff; Higashi, Yasuo; Himel, Thomas; Honda, Yosuke; Howell, David Francis; Iwashita, Yoshihisa; Jones, James; Kalinin, Alexander; Kanazawa, Ken Ichi; Kang Heung Sik; Kim Eun San; Kim Sang Hee; Kubo, Kiyoshi; Kumada, Masayuki; Kume, T; Kuriki, Masao; Kuroda, Shigeru; Lyapin, A; Liu Wan Ming; Logatchev, P V; Malton, Stephen; Markiewicz, Thomas W; Masuzawa, Mika; Mihara, Takanori; Molloy, Stephen; Mtingwa, S; Naito, Takashi; Napoly, Olivier; Nelson, Janice; Okugi, Toshiyuki; Payet, Jacques; Pei Guo Xi; Phinney, Nan; Pivi, M T F; Podgorny, Fedor; Price, Michael T; Raubenheimer, Tor O; Reichold, Armin; Ross, Marc; Ruland, Robert; Sanuki, Tomoyuki; Schulte, Daniel; Seryi, Andrei; Soo Ko In; Spencer, Cherrill M; Suehara, Taikan; Sugahara, Ryuhei; Takahashi, Takeshi; Tauchi, Toshiaki; Telnov, Valery I; Tenenbaum, P G; Terunuma, Nobuhiro; Toge, Nobu; Torrence, Eric; Urakawa, Junji; Urner, David; Vogel, Vladimir; Walker, Nicholas J; Wang Jiu Qing; White, Glen; Woodley, Mark; Yamaoka, Hiroshi; Yokoya, Kaoru; Yun Huang Jung; Zimmermann, Frank

    2005-01-01

    The realization of the International Linear Collider (ILC) will require the ability to create and reliably maintain nanometer size beams. The ATF damping ring is the unique facility where ILC emittancies are possible. In this paper we present and evaluate the proposal to create a final focus facility at the ATF which, using compact final focus optics and an ILC-like bunch train, would be capable of achieving 35nm beam size. Such a facility would enable the development of beam diagnostics and tuning methods, as well as the training of young accelerator physicists.

  3. Contemporary methods of radiosurgery treatment with the Novalis linear accelerator system.

    Science.gov (United States)

    Chen, Joseph C T; Rahimian, Javad; Girvigian, Michael R; Miller, Michael J

    2007-01-01

    Radiosurgery has emerged as an indispensable component of the multidisciplinary approach to neoplastic, functional, and vascular diseases of the central nervous system. In recent years, a number of newly developed integrated systems have been introduced for radiosurgery and fractionated stereotactic radiotherapy treatments. These modern systems extend the flexibility of radiosurgical treatment in allowing the use of frameless image-guided radiation delivery as well as high-precision fractionated treatments. The Novalis linear accelerator system demonstrates adequate precision and reliability for cranial and extracranial radiosurgery, including functional treatments utilizing either frame-based or frameless image-guided methods.

  4. Proposal of the Next Incarnation of Accelerator Test Facility at KEK for the International Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Araki, S.; Hayano, H.; Higashi, Y.; Honda, Y.; Kanazawa, K.; Kubo, K.; Kume, T.; Kuriki, M.; Kuroda, S.; Masuzawa, M.; Naito, T.; Okugi, T.; Sugahara, R.; Takahashi, T.; Tauchi, T.; Terunuma, N.; Toge, N.; Urakawa, J.; Vogel, V.; Yamaoka, H.; Yokoya, K.; /KEK, Tsukuba /Beijing, Inst. High Energy Phys. /Novosibirsk, IYF /Daresbury /CERN /Hiroshima

    2005-05-27

    To reach design luminosity, the International Linear Collider (ILC) must be able to create and reliably maintain nanometer size beams. The ATF damping ring is the unique facility where ILC emittances are possible. In this paper we present and evaluate the proposal to create a final focus facility at the ATF which, using compact final focus optics and an ILC-like bunch train, would be capable of achieving 37 nm beam size. Such a facility would enable the development of beam diagnostics and tuning methods, as well as the training of young accelerator physicists.

  5. Asymmetric acceleration/deceleration dynamics in heart rate variability

    Science.gov (United States)

    Alvarez-Ramirez, J.; Echeverria, J. C.; Meraz, M.; Rodriguez, E.

    2017-08-01

    The heart rate variability (HRV) is an important physiological signal used either to assess the risk of cardiac death or to model the cardiovascular regulatory dynamics. Asymmetries in HRV data have been observed using 2D Poincare plots, which have been linked to a non-equilibrium operation of the cardiac autonomic system. This work further explores the presence of asymmetries but in the serial correlations of the dynamics of HRV data. To this end, detrended fluctuation analysis (DFA) was used to estimate the Hurst exponent both when the heart rate is accelerating and when it is decelerating. The analysis is conducted using data collected from subjects under normal sinus rhythm (NSR), congestive heart failure (CHF) and atrial fibrillation (AF) . For the NSR cases, it was found that correlations are stronger (p heart rate is accelerating than when it is decelerating over different scales in the range 20-40 beats. In contrast, the opposite behavior was detected for the CHF and AF patients. Possible links between asymmetric correlations in the dynamics and the mechanisms controlling the operation of the heart rate are discussed, as well as their implications for modeling the cardiovascular regulatory dynamics.

  6. Successful Application of Neutron Bubble Detectors in Neutron Dose Monitoring for Primus-M Election Linear Accelerators

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Neutrons produced by 10 MeV medical electronic linear accelerators used for radiotherapy treatments may be harmful for medical personnel and patients. These neutrons are generated by the photon-induced

  7. Linear vs. nonlinear acceleration in plasma turbulence. I. Global versus local measures

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sanjoy [Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723 (United States); Parashar, Tulasi N. [University of Delaware, Newark, Delaware 19716 (United States)

    2015-04-15

    Magnetized turbulent plasmas are generally characterized as strongly or weakly turbulent based on the average relative strengths of the linear and nonlinear terms. While this description is useful, it does not represent the full picture and can be misleading. We study the variation of linear and nonlinear accelerations in the Fourier space of a magnetohydrodynamic system with a mean magnetic field and broad selection of initial states and plasma parameters. We show that the local picture can show significant departures from what is expected from the general global picture. We find that high cross helicity systems that are traditionally believed to have relatively weaker nonlinearities, compared to low cross helicity systems, can show strong nonlinearities in parts of the Fourier space that are orthogonal to the mean magnetic field direction. In some cases, these nonlinearities can exceed in strength the level of nonlinearities recovered from low cross helicity systems.

  8. Ant colony method to control variance reduction techniques in the Monte Carlo simulation of clinical electron linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Pareja, S. [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' Carlos Haya' , Avda. Carlos Haya, s/n, E-29010 Malaga (Spain)], E-mail: garciapareja@gmail.com; Vilches, M. [Servicio de Fisica y Proteccion Radiologica, Hospital Regional Universitario ' Virgen de las Nieves' , Avda. de las Fuerzas Armadas, 2, E-18014 Granada (Spain); Lallena, A.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)

    2007-09-21

    The ant colony method is used to control the application of variance reduction techniques to the simulation of clinical electron linear accelerators of use in cancer therapy. In particular, splitting and Russian roulette, two standard variance reduction methods, are considered. The approach can be applied to any accelerator in a straightforward way and permits, in addition, to investigate the 'hot' regions of the accelerator, an information which is basic to develop a source model for this therapy tool.

  9. GPU accelerated dynamic functional connectivity analysis for functional MRI data.

    Science.gov (United States)

    Akgün, Devrim; Sakoğlu, Ünal; Esquivel, Johnny; Adinoff, Bryon; Mete, Mutlu

    2015-07-01

    Recent advances in multi-core processors and graphics card based computational technologies have paved the way for an improved and dynamic utilization of parallel computing techniques. Numerous applications have been implemented for the acceleration of computationally-intensive problems in various computational science fields including bioinformatics, in which big data problems are prevalent. In neuroimaging, dynamic functional connectivity (DFC) analysis is a computationally demanding method used to investigate dynamic functional interactions among different brain regions or networks identified with functional magnetic resonance imaging (fMRI) data. In this study, we implemented and analyzed a parallel DFC algorithm based on thread-based and block-based approaches. The thread-based approach was designed to parallelize DFC computations and was implemented in both Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) programming platforms. Another approach developed in this study to better utilize CUDA architecture is the block-based approach, where parallelization involves smaller parts of fMRI time-courses obtained by sliding-windows. Experimental results showed that the proposed parallel design solutions enabled by the GPUs significantly reduce the computation time for DFC analysis. Multicore implementation using OpenMP on 8-core processor provides up to 7.7× speed-up. GPU implementation using CUDA yielded substantial accelerations ranging from 18.5× to 157× speed-up once thread-based and block-based approaches were combined in the analysis. Proposed parallel programming solutions showed that multi-core processor and CUDA-supported GPU implementations accelerated the DFC analyses significantly. Developed algorithms make the DFC analyses more practical for multi-subject studies with more dynamic analyses.

  10. Thermally driven molecular linear motors - A molecular dynamics study

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard Lawrence

    2009-01-01

    We conduct molecular dynamics simulations of a molecular linear motor consisting of coaxial carbon nanotubes with a long outer carbon nanotube confining and guiding the motion of an inner short, capsule-like nanotube. The simulations indicate that the motion of the capsule can be controlled...

  11. Beam dynamics studies on the EURISOL driver accelerator

    CERN Document Server

    Facco, A; Paparella, R; Zenere, D; Biarrotte, J. L; Bousson, S; Ponton, A; Berkovits, D; Rodnizki, J; Duperrier, R; Uriot, D; Zvyagintsev, V

    A 1 GeV, 5 mA cw superconducting proton/H- linac, with the capability of supplying cw primary beam to up to four targets simultaneously by means of a new beam splitting scheme, is under study in the framework of the EURISOL DS project which aims to produce an engineering-oriented design of a next generation European Radioactive beam facility. The EURISOL driver accelerator would be able to accelerate also a 100 μA, 3He beam up to 2.2 GeV, and a 5 mA deuteron beam up to 264 MeV. The linac characteristics and the status of the beam dynamics studies will be presented.

  12. Accelerating convergence of molecular dynamics-based structural relaxation

    DEFF Research Database (Denmark)

    Christensen, Asbjørn

    2005-01-01

    We describe strategies to accelerate the terminal stage of molecular dynamics (MD)based relaxation algorithms, where a large fraction of the computational resources are used. First, we analyze the qualitative and quantitative behavior of the QuickMin family of MD relaxation algorithms and explore...... the influence of spectral properties and dimensionality of the molecular system on the algorithm efficiency. We test two algorithms, the MinMax and Lanczos, for spectral estimation from an MD trajectory, and use this to derive a practical scheme of time step adaptation in MD relaxation algorithms to improve...... efficiency. We also discuss the implementation aspects. Secondly, we explore the final state refinement acceleration by a combination with the conjugate gradient technique, where the key ingredient is an implicit corrector step. Finally, we test the feasibility of passive Hessian matrix accumulation from...

  13. Dynamics of annihilation. I. Linearized Boltzmann equation and hydrodynamics.

    Science.gov (United States)

    García de Soria, María Isabel; Maynar, Pablo; Schehr, Grégory; Barrat, Alain; Trizac, Emmanuel

    2008-05-01

    We study the nonequilibrium statistical mechanics of a system of freely moving particles, in which binary encounters lead either to an elastic collision or to the disappearance of the pair. Such a system of ballistic annihilation therefore constantly loses particles. The dynamics of perturbations around the free decay regime is investigated using the spectral properties of the linearized Boltzmann operator, which characterize linear excitations on all time scales. The linearized Boltzmann equation is solved in the hydrodynamic limit by a projection technique, which yields the evolution equations for the relevant coarse-grained fields and expressions for the transport coefficients. We finally present the results of molecular dynamics simulations that validate the theoretical predictions.

  14. Neutron dose calculation at the maze entrance of medical linear accelerator rooms.

    Science.gov (United States)

    Falcão, R C; Facure, A; Silva, A X

    2007-01-01

    Currently, teletherapy machines of cobalt and caesium are being replaced by linear accelerators. The maximum photon energy in these machines can vary from 4 to 25 MeV, and one of the great advantages of these equipments is that they do not have a radioactive source incorporated. High-energy (E > 10 MV) medical linear accelerators offer several physical advantages over lower energy ones: the skin dose is lower, the beam is more penetrating, and the scattered dose to tissues outside the target volume is smaller. Nevertheless, the contamination of undesirable neutrons in the therapeutic beam, generated by the high-energy photons, has become an additional problem as long as patient protection and occupational doses are concerned. The treatment room walls are shielded to attenuate the primary and secondary X-ray fluence, and this shielding is generally adequate to attenuate the neutrons. However, these neutrons are scattered through the treatment room maze and may result in a radiological problem at the door entrance, a high occupancy area in a radiotherapy facility. In this article, we used MCNP Monte Carlo simulation to calculate neutron doses in the maze of radiotherapy rooms and we suggest an alternative method to the Kersey semi-empirical model of neutron dose calculation at the entrance of mazes. It was found that this new method fits better measured values found in literature, as well as our Monte Carlo simulated ones.

  15. Monte Carlo Simulation of a Linear Accelerator and Electron Beam Parameters Used in Radiotherapy

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Bahreyni Toossi

    2009-06-01

    Full Text Available Introduction: In recent decades, several Monte Carlo codes have been introduced for research and medical applications. These methods provide both accurate and detailed calculation of particle transport from linear accelerators. The main drawback of Monte Carlo techniques is the extremely long computing time that is required in order to obtain a dose distribution with good statistical accuracy. Material and Methods: In this study, the MCNP-4C Monte Carlo code was used to simulate the electron beams generated by a Neptun 10 PC linear accelerator. The depth dose curves and related parameters to depth dose and beam profiles were calculated for 6, 8 and 10 MeV electron beams with different field sizes and these data were compared with the corresponding measured values. The actual dosimetry was performed by employing a Welhofer-Scanditronix dose scanning system, semiconductor detectors and ionization chambers. Results: The result showed good agreement (better than 2% between calculated and measured depth doses and lateral dose profiles for all energies in different field sizes. Also good agreements were achieved between calculated and measured related electron beam parameters such as E0, Rq, Rp and R50. Conclusion: The simulated model of the linac developed in this study is capable of computing electron beam data in a water phantom for different field sizes and the resulting data can be used to predict the dose distributions in other complex geometries.

  16. The use of a transportable linear accelerator for fissile mass measurements

    Science.gov (United States)

    Romeyer Dherbey, J.; Lyoussi, A.; Buisson, A.

    1997-02-01

    The quantification of transuranic material (TRU) in waste packages is a common care of countries working in the field of nuclear nondestructive prospecting. The direct control of TRU mass inside large size closed containers is difficult due to several effects, mainly the matrix attenuation and uncertainty on the localization of the radioactive mass. The present document describes the method being developed to assay conditioned waste packages using a transportable linear accelerator which is called Mini-Linatron. The system uses a pulsed electron beam from the Mini-Linatron to produce high energy bremsstrahlung photon bursts from thin metallic converter. The transportable linear accelerator operates at 6, 9 and 11 MeV with a repetition rate between 10 to 300 Hz and a 4.5 μs pulse duration. The maximum gamma dose rate is about 23 Gy/mn at 1 m. The photons induce fission in fissile and fertile nuclei. We counted delayed neutrons emitted after each pulse. Results of measurements on an experimental active gamma interrogation facility for embedded intermediate and low level wastes are presented.

  17. On higher ground: how well can dynamic body acceleration determine speed in variable terrain?

    Directory of Open Access Journals (Sweden)

    Owen R Bidder

    Full Text Available INTRODUCTION: Animal travel speed is an ecologically significant parameter, with implications for the study of energetics and animal behaviour. It is also necessary for the calculation of animal paths by dead-reckoning. Dead-reckoning uses heading and speed to calculate an animal's path through its environment on a fine scale. It is often used in aquatic environments, where transmission telemetry is difficult. However, its adoption for tracking terrestrial animals is limited by our ability to measure speed accurately on a fine scale. Recently, tri-axial accelerometers have shown promise for estimating speed, but their accuracy appears affected by changes in substrate and surface gradients. The purpose of the present study was to evaluate four metrics of acceleration; Overall dynamic body acceleration (ODBA, vectorial dynamic body acceleration (VDBA, acceleration peak frequency and acceleration peak amplitude, as proxies for speed over hard, soft and inclined surfaces, using humans as a model species. RESULTS: A general linear model (GLM showed a significant difference in the relationships between the metrics and speed depending on substrate or surface gradient. When the data from all surface types were considered together, VeDBA had the highest coefficient of determination. CONCLUSIONS: All of the metrics showed some variation in their relationship with speed according to the surface type. This indicates that changes in the substrate or surface gradient during locomotion by animals would produce errors in speed estimates, and also in dead-reckoned tracks if they were calculated from speeds based entirely on a priori calibrations. However, we describe a method by which the relationship between acceleration metrics and speed can be corrected ad hoc, until tracks accord with periodic ground truthed positions, obtained via a secondary means (e.g. VHF or GPS telemetry. In this way, dead-reckoning provides a means to obtain fine scale movement data

  18. SU-E-T-124: Anthropomorphic Phantoms for Confirmation of Linear Accelerator Based Small Animal Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Perks, J; Benedict, S [UC Davis Cancer Center, Sacramento, CA (United States); Lucero, S [UC Davis, Davis, CA (United States)

    2015-06-15

    Purpose: To document the support of radiobiological small animal research by a modern radiation oncology facility. This study confirms that a standard, human use linear accelerator can cover the range of experiments called for by researchers performing animal irradiation. A number of representative, anthropomorphic murine phantoms were made. The phantoms confirmed the small field photon and electron beams dosimetry validated the use of the linear accelerator for rodents. Methods: Laser scanning a model, CAD design and 3D printing produced the phantoms. The phantoms were weighed and CT scanned to judge their compatibility to real animals. Phantoms were produced to specifically mimic lung, gut, brain, and othotopic lesion irradiations. Each phantom was irradiated with the same protocol as prescribed to the live animals. Delivered dose was measured with small field ion chambers, MOS/FETs or TLDs. Results: The density of the phantom material compared to density range across the real mice showed that the printed material would yield sufficiently accurate measurements when irradiated. The whole body, lung and gut irradiations were measured within 2% of prescribed doses with A1SL ion chamber. MOSFET measurements of electron irradiations for the orthotopic lesions allowed refinement of the measured small field output factor to better than 2% and validated the immunology experiment of irradiating one lesion and sparing another. Conclusion: Linacs are still useful tools in small animal bio-radiation research. This work demonstrated a strong role for the clinical accelerator in small animal research, facilitating standard whole body dosing as well as conformal treatments down to 1cm field. The accuracy of measured dose, was always within 5%. The electron irradiations of the phantom brain and flank tumors needed adjustment; the anthropomorphic phantoms allowed refinement of the initial output factor measurements for these fields which were made in a large block of solid water.

  19. Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics

    Science.gov (United States)

    Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.

    1996-01-01

    An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.

  20. Multimodal tuned dynamic absorber for split Stirling linear cryocooler

    Science.gov (United States)

    Veprik, Alexander; Tuito, Avi

    2016-05-01

    Low size, weight, power and price split Stirling linear cryocooler usually comprises electro-dynamically driven compressor and pneumatically driven expander which are side-by-side fixedly mounted upon the common frame and interconnected by the configurable transfer line. Vibration export produced by such a cryocooler comprises of a pair of tonal forces, the frequency of which essentially equals fixed driving frequency. In vibration sensitive applications, this may result in excessive angular line of sight jitter and translational defocusing affecting the image quality. The authors present Multimodal Tuned Dynamic Absorber, having one translational and two tilting modes essentially tuned to the driving frequency. Dynamic analysis shows that the dynamic reactions (force and moment) produced by such a dynamic absorber are capable of simultaneous attenuation of translational and tilting components of cryocooler induced vibration. The authors reveal the preferable design, the method of fine tuning and outcomes of numerical simulation on attainable performance.

  1. Accelerating convergence of molecular dynamics-based structural relaxation

    DEFF Research Database (Denmark)

    Christensen, Asbjørn

    2005-01-01

    We describe strategies to accelerate the terminal stage of molecular dynamics (MD)based relaxation algorithms, where a large fraction of the computational resources are used. First, we analyze the qualitative and quantitative behavior of the QuickMin family of MD relaxation algorithms and explore...... the influence of spectral properties and dimensionality of the molecular system on the algorithm efficiency. We test two algorithms, the MinMax and Lanczos, for spectral estimation from an MD trajectory, and use this to derive a practical scheme of time step adaptation in MD relaxation algorithms to improve...

  2. Application of linear programming techniques for controlling linear dynamic plants in real time

    Science.gov (United States)

    Gabasov, R.; Kirillova, F. M.; Ha, Vo Thi Thanh

    2016-03-01

    The problem of controlling a linear dynamic plant in real time given its nondeterministic model and imperfect measurements of the inputs and outputs is considered. The concepts of current distributions of the initial state and disturbance parameters are introduced. The method for the implementation of disclosable loop using the separation principle is described. The optimal control problem under uncertainty conditions is reduced to the problems of optimal observation, optimal identification, and optimal control of the deterministic system. To extend the domain where a solution to the optimal control problem under uncertainty exists, a two-stage optimal control method is proposed. Results are illustrated using a dynamic plant of the fourth order.

  3. On Nonnegative Solutions of Fractional q-Linear Time-Varying Dynamic Systems with Delayed Dynamics

    Directory of Open Access Journals (Sweden)

    M. De la Sen

    2014-01-01

    Full Text Available This paper is devoted to the investigation of nonnegative solutions and the stability and asymptotic properties of the solutions of fractional differential dynamic linear time-varying systems involving delayed dynamics with delays. The dynamic systems are described based on q-calculus and Caputo fractional derivatives on any order.

  4. Beam dynamics studies for the relativistic klystron two-beam accelerator experiment

    Science.gov (United States)

    Lidia, Steven M.

    2001-04-01

    Two-beam accelerators (TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band \\(~8-12 GHz\\) through Ka-band \\(~30-35 GHz\\) frequency regions. The relativistic klystron two-beam accelerator project, whose aim is to study TBAs based upon extended relativistic klystrons, is described, and a new simulation code is used to design the latter portions of the experiment. Detailed, self-consistent calculations of the beam dynamics and of the rf cavity output are presented and discussed together with a beam line design that will generate nearly 1.2 GW of power from 40 rf cavities over a 10 m distance. The simulations show that beam current losses are acceptable and that longitudinal and transverse focusing techniques are sufficiently capable of maintaining a high degree of beam quality along the entire beam line.

  5. Electron-beam dynamics for an advanced flash-radiography accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Laboratory

    2015-06-22

    Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.

  6. Linear and nonlinear dynamic systems in financial time series prediction

    Directory of Open Access Journals (Sweden)

    Salim Lahmiri

    2012-10-01

    Full Text Available Autoregressive moving average (ARMA process and dynamic neural networks namely the nonlinear autoregressive moving average with exogenous inputs (NARX are compared by evaluating their ability to predict financial time series; for instance the S&P500 returns. Two classes of ARMA are considered. The first one is the standard ARMA model which is a linear static system. The second one uses Kalman filter (KF to estimate and predict ARMA coefficients. This model is a linear dynamic system. The forecasting ability of each system is evaluated by means of mean absolute error (MAE and mean absolute deviation (MAD statistics. Simulation results indicate that the ARMA-KF system performs better than the standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may suggest that the linear component found in the S&P500 return series is more dominant than the nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process provides an effective system for S&P500 time series prediction.

  7. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lemos-Pinto, M.M.P.; Cadena, M.; Santos, N.; Fernandes, T.S.; Borges, E.; Amaral, A., E-mail: marcelazoo@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

    2015-10-15

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates. (author)

  8. Why most traumatic brain injuries are not caused by linear acceleration but skull fractures are.

    Directory of Open Access Journals (Sweden)

    Svein eKleiven

    2013-11-01

    Full Text Available Injury statistics have found the most common accident situation to be an oblique impact. An oblique impact will give rise to both linear and rotational head kinematics. The human brain is most sensitive to rotational motion. The bulk modulus of brain tissue is roughly five to six orders of magnitude larger than the shear modulus so that for a given impact it tends to deform predominantly in shear. This gives a large sensitivity of the strain in the brain to rotational loading and a small sensitivity to linear kinematics. Therefore, rotational kinematics should be a better indicator of traumatic brain injury risk than linear acceleration. To illustrate the difference between radial and oblique impacts, perpendicular impacts through the center of gravity of the head and 45o oblique impacts were simulated. It is obvious that substantially higher strain levels in the brain are obtained for an oblique impact, compared to a corresponding perpendicular one, when impacted into the same padding using an identical impact velocity. It was also clearly illustrated that the radial impact causes substantially higher stresses in the skull with an associated higher risk of skull fractures, and traumatic brain injuries secondary to those.

  9. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator

    Science.gov (United States)

    Lemos-Pinto, M.M.P.; Cadena, M.; Santos, N.; Fernandes, T.S.; Borges, E.; Amaral, A.

    2015-01-01

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates. PMID:26445334

  10. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator.

    Science.gov (United States)

    Lemos-Pinto, M M P; Cadena, M; Santos, N; Fernandes, T S; Borges, E; Amaral, A

    2015-10-01

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates.

  11. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator

    Directory of Open Access Journals (Sweden)

    M.M.P. Lemos-Pinto

    2015-01-01

    Full Text Available Biological dosimetry (biodosimetry is based on the investigation of radiation-induced biological effects (biomarkers, mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA. Two software programs, CABAS (Chromosomal Aberration Calculation Software and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates.

  12. Dynamic generalized linear models for monitoring endemic diseases

    DEFF Research Database (Denmark)

    Lopes Antunes, Ana Carolina; Jensen, Dan Børge; Halasa, T.

    The objective was to use a Dynamic Generalized Linear Model (DGLM) based on abinomial distribution with a linear trend, for monitoring the PRRS (Porcine Reproductive and Respiratory Syndrome sero-prevalence in Danish swine herds. The DGLM was described and its performance for monitoring control...... in sero-prevalence. Based on this, it was possible to detect variations in the growth model component. This study is a proof-of-concept, demonstrating the use of DGLMs for monitoring endemic diseases. In addition, the principles stated might be useful in general research on monitoring and surveillance...

  13. Note: A high dynamic range, linear response transimpedance amplifier.

    Science.gov (United States)

    Eckel, S; Sushkov, A O; Lamoreaux, S K

    2012-02-01

    We have built a high dynamic range (nine decade) transimpedance amplifier with a linear response. The amplifier uses junction-gate field effect transistors (JFETs) to switch between three different resistors in the feedback of a low input bias current operational amplifier. This allows for the creation of multiple outputs, each with a linear response and a different transimpedance gain. The overall bandwidth of the transimpedance amplifier is set by the bandwidth of the most sensitive range. For our application, we demonstrate a three-stage amplifier with transimpedance gains of approximately 10(9)Ω, 3 × 10(7)Ω, and 10(4)Ω with a bandwidth of 100 Hz.

  14. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunckhorst, Elin

    2009-02-26

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a {sup 10}B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with {sup 6}Li and {sup 7}Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined

  15. The Development of a Dual-Warhead Impact System for Dynamic Linearity Measurement of a High-g Micro-Electro-Mechanical-Systems (MEMS) Accelerometer.

    Science.gov (United States)

    Shi, Yunbo; Yang, Zhicai; Ma, Zongmin; Cao, Huiliang; Kou, Zhiwei; Zhi, Dan; Chen, Yanxiang; Feng, Hengzhen; Liu, Jun

    2016-06-08

    Despite its extreme significance, dynamic linearity measurement for high-g accelerometers has not been discussed experimentally in previous research. In this study, we developed a novel method using a dual-warhead Hopkinson bar to measure the dynamic linearity of a high-g acceleration sensor with a laser interference impact experiment. First, we theoretically determined that dynamic linearity is a performance indicator that can be used to assess the quality merits of high-g accelerometers and is the basis of the frequency response. We also found that the dynamic linearity of the dual-warhead Hopkinson bar without an accelerometer is 2.5% experimentally. Further, we verify that dynamic linearity of the accelerometer is 3.88% after calibrating the Hopkinson bar with the accelerometer. The results confirm the reliability and feasibility of measuring dynamic linearity for high-g accelerometers using this method.

  16. The Development of a Dual-Warhead Impact System for Dynamic Linearity Measurement of a High-g Micro-Electro-Mechanical-Systems (MEMS Accelerometer

    Directory of Open Access Journals (Sweden)

    Yunbo Shi

    2016-06-01

    Full Text Available Despite its extreme significance, dynamic linearity measurement for high-g accelerometers has not been discussed experimentally in previous research. In this study, we developed a novel method using a dual-warhead Hopkinson bar to measure the dynamic linearity of a high-g acceleration sensor with a laser interference impact experiment. First, we theoretically determined that dynamic linearity is a performance indicator that can be used to assess the quality merits of high-g accelerometers and is the basis of the frequency response. We also found that the dynamic linearity of the dual-warhead Hopkinson bar without an accelerometer is 2.5% experimentally. Further, we verify that dynamic linearity of the accelerometer is 3.88% after calibrating the Hopkinson bar with the accelerometer. The results confirm the reliability and feasibility of measuring dynamic linearity for high-g accelerometers using this method.

  17. Optimal Piecewise-Linear Approximation of the Quadratic Chaotic Dynamics

    Directory of Open Access Journals (Sweden)

    J. Petrzela

    2012-04-01

    Full Text Available This paper shows the influence of piecewise-linear approximation on the global dynamics associated with autonomous third-order dynamical systems with the quadratic vector fields. The novel method for optimal nonlinear function approximation preserving the system behavior is proposed and experimentally verified. This approach is based on the calculation of the state attractor metric dimension inside a stochastic optimization routine. The approximated systems are compared to the original by means of the numerical integration. Real electronic circuits representing individual dynamical systems are derived using classical as well as integrator-based synthesis and verified by time-domain analysis in Orcad Pspice simulator. The universality of the proposed method is briefly discussed, especially from the viewpoint of the higher-order dynamical systems. Future topics and perspectives are also provided

  18. The Acceleration Scale, Modified Newtonian Dynamics, and Sterile Neutrinos

    CERN Document Server

    Diaferio, Antonaldo

    2012-01-01

    General Relativity is able to describe the dynamics of galaxies and larger cosmic structures only if most of the matter in the Universe is dark, namely it does not emit any electromagnetic radiation. Intriguingly, on the scale of galaxies, there is strong observational evidence that the presence of dark matter appears to be necessary only when the gravitational field inferred from the distribution of the luminous matter falls below an acceleration of the order of 10^(-10) m/s^2. In the standard model, which combines Newtonian gravity with dark matter, the origin of this acceleration scale is challenging and remains unsolved. On the contrary, the full set of observations can be neatly described, and were partly predicted, by a modification of Newtonian dynamics, dubbed MOND, that does not resort to the existence of dark matter. On the scale of galaxy clusters and beyond, however, MOND is not as successful as on the scale of galaxies, and the existence of some dark matter appears unavoidable. A model combining ...

  19. Radiosurgery with a linear accelerator in cerebral arteriovenous malformations Radiocirurgia com acelerador linear em malformações arteriovenosas cerebrais

    Directory of Open Access Journals (Sweden)

    Sérgio Carlos Barros Esteves

    2008-04-01

    Full Text Available OBJECTIVE: To evaluate results achieved with radiosurgery and complications of the procedure when treating arteriovenous malformations with linear accelerator. METHODS: This retrospective study was conducted between October 1993 and December 1996. Sixty-one patients with arteriovenous malformations were treated with radiosurgery utilizing a 6MV energy linear accelerator. Ages of the 32 female and 29 male patients ranged from 6 to 54 years (mean: 28.3 years. The most frequent initial symptom was cephalea (45.9%, followed by neurological deficit (36.1%. Cerebral hemorrhage diagnosed by image was observed in 35 patients (57.3%. Most arteriovenous malformations (67.2% were graded Spetzler III and IV. Venous stenosis (21.3% and aneurysm (13.1% were the most frequent angioarchitecture changes. The dose administered varied from 12 to 27.5Gy in the periphery of the lesion. RESULTS: Out of twenty-eight patients that underwent conclusive angiography control, complete obliteration was achieved in 18 (72% and treatment failed in 7 (absence of occlusion with more than 3 years of follow-up. Four were submitted to a second radiosurgery, and one of these has shown obliteration after 18 months of follow-up. DISCUSSION: Several factors were analyzed regarding the occlusion rate (gender, age, volume, localization, Spetzler, flow, embolization, total of isocenters, prescribed dose and chosen isodose and complications (total of isocenters, localization, volume, maximum dose, prescribed dose and chosen isodose. Analyzed variables showed no statistical significance for obliteration of the vessel, as well as for treatment complications. The largest diameter of the arteriovenous malformation, its volume and the dose administered did not influence time of obliteration. CONCLUSION: Radiosurgery is effective in the treatment of arteriovenous malformations and can be an alternative for patients with clinical contraindication or with lesions in eloquent areas. In the studied

  20. Accelerated molecular dynamics methods: introduction and recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Uberuaga, Blas Pedro [Los Alamos National Laboratory; Voter, Arthur F [Los Alamos National Laboratory; Perez, Danny [Los Alamos National Laboratory; Shim, Y [UNIV OF TOLEDO; Amar, J G [UNIV OF TOLEDO

    2009-01-01

    reaction pathways may be important, we return instead to a molecular dynamics treatment, in which the trajectory itself finds an appropriate way to escape from each state of the system. Since a direct integration of the trajectory would be limited to nanoseconds, while we are seeking to follow the system for much longer times, we modify the dynamics in some way to cause the first escape to happen much more quickly, thereby accelerating the dynamics. The key is to design the modified dynamics in a way that does as little damage as possible to the probability for escaping along a given pathway - i.e., we try to preserve the relative rate constants for the different possible escape paths out of the state. We can then use this modified dynamics to follow the system from state to state, reaching much longer times than we could reach with direct MD. The dynamics within any one state may no longer be meaningful, but the state-to-state dynamics, in the best case, as we discuss in the paper, can be exact. We have developed three methods in this accelerated molecular dynamics (AMD) class, in each case appealing to TST, either implicitly or explicitly, to design the modified dynamics. Each of these methods has its own advantages, and we and others have applied these methods to a wide range of problems. The purpose of this article is to give the reader a brief introduction to how these methods work, and discuss some of the recent developments that have been made to improve their power and applicability. Note that this brief review does not claim to be exhaustive: various other methods aiming at similar goals have been proposed in the literature. For the sake of brevity, our focus will exclusively be on the methods developed by the group.

  1. Critical scaling in hidden state inference for linear Langevin dynamics

    OpenAIRE

    Bravi, Barbara; Sollich, Peter

    2016-01-01

    We consider the problem of inferring the dynamics of unknown (i.e. hidden) nodes from a set of observed trajectories and we study analytically the average prediction error given by the Extended Plefka Expansion applied to it, as presented in [1]. We focus on a stochastic linear dynamics of continuous degrees of freedom interacting via random Gaussian couplings in the infinite network size limit. The expected error on the hidden time courses can be found as the equal-time hidden-to-hidden cova...

  2. 3D vesicle dynamics simulations with a linearly triangulated surface

    Science.gov (United States)

    Boedec, G.; Leonetti, M.; Jaeger, M.

    2011-02-01

    Simulations of biomembranes have gained an increasing interest in the past years. Specificities of these membranes propose new challenges for the numerics. In particular, vesicle dynamics are governed by bending forces as well as a surface incompressibility constraint. A method to compute the bending force density resultant onto piecewise linearly triangulated surface meshes is described. This method is coupled with a boundary element method solver for inner and outer fluids, to compute vesicle dynamics under external flows. The surface incompressibility constraint is satisfied by the construction of a projection operator.

  3. A harmonic linear dynamical system for prominent ECG feature extraction.

    Science.gov (United States)

    Thi, Ngoc Anh Nguyen; Yang, Hyung-Jeong; Kim, SunHee; Do, Luu Ngoc

    2014-01-01

    Unsupervised mining of electrocardiography (ECG) time series is a crucial task in biomedical applications. To have efficiency of the clustering results, the prominent features extracted from preprocessing analysis on multiple ECG time series need to be investigated. In this paper, a Harmonic Linear Dynamical System is applied to discover vital prominent features via mining the evolving hidden dynamics and correlations in ECG time series. The discovery of the comprehensible and interpretable features of the proposed feature extraction methodology effectively represents the accuracy and the reliability of clustering results. Particularly, the empirical evaluation results of the proposed method demonstrate the improved performance of clustering compared to the previous main stream feature extraction approaches for ECG time series clustering tasks. Furthermore, the experimental results on real-world datasets show scalability with linear computation time to the duration of the time series.

  4. A Harmonic Linear Dynamical System for Prominent ECG Feature Extraction

    Directory of Open Access Journals (Sweden)

    Ngoc Anh Nguyen Thi

    2014-01-01

    Full Text Available Unsupervised mining of electrocardiography (ECG time series is a crucial task in biomedical applications. To have efficiency of the clustering results, the prominent features extracted from preprocessing analysis on multiple ECG time series need to be investigated. In this paper, a Harmonic Linear Dynamical System is applied to discover vital prominent features via mining the evolving hidden dynamics and correlations in ECG time series. The discovery of the comprehensible and interpretable features of the proposed feature extraction methodology effectively represents the accuracy and the reliability of clustering results. Particularly, the empirical evaluation results of the proposed method demonstrate the improved performance of clustering compared to the previous main stream feature extraction approaches for ECG time series clustering tasks. Furthermore, the experimental results on real-world datasets show scalability with linear computation time to the duration of the time series.

  5. Some basic principles for linear coupled dynamic thermopiezoelectricity

    Institute of Scientific and Technical Information of China (English)

    罗恩; 邝君尚

    1999-01-01

    According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way some basic principles for linear coupled dynamic thermopiezoelectricity can be established systematically. An important integral relation in terms of convolutions is given, which can be considered as the generalized principle of virtual work in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work and the reciprocal theorem in linear coupled dynamic thermopiezoelectricity, but also to derive systematically the complementary functionals for eleven-field, nine-field, six-field and three-field simplified Gurtin-type variational principles. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.

  6. Stochastic dynamics of active swimmers in linear flows

    CERN Document Server

    Sandoval, Mario; Subramanian, Ganesh; Lauga, Eric

    2014-01-01

    Most classical work on the hydrodynamics of low-Reynolds-number swimming addresses deterministic locomotion in quiescent environments. Thermal fluctuations in fluids are known to lead to a Brownian loss of the swimming direction. As most cells or synthetic swimmers are immersed in external flows, we consider theoretically in this paper the stochastic dynamics of a model active particle (a self-propelled sphere) in a steady general linear flow. The stochasticity arises both from translational diffusion in physical space, and from a combination of rotary diffusion and run-and-tumble dynamics in orientation space. We begin by deriving a general formulation for all components of the long-time mean square displacement tensor for a swimmer with a time-dependent swimming velocity and whose orientation decorrelates due to rotary diffusion alone. This general framework is applied to obtain the convectively enhanced mean-squared displacements of a steadily-swimming particle in three canonical linear flows (extension, s...

  7. Integration of a linear accelerator into a production line of mechanically deboned separated poultry meat

    Energy Technology Data Exchange (ETDEWEB)

    Sadat, Theo; Volle, Christophe

    2000-03-01

    Linear accelerators, commonly called Linacs, are being used for different industrial processes. This kind of machine produces high power electron beams and can treat many products with a high throughput. The main application of a Linac is the sterilization of medical disposable devices, polymerization and decontamination of food products. Salmonella commonly contaminates poultry. Thanks to E-beam treatment, it eradicates the pathogen quickly and permits the use of meat that should have been thrown away because of its infection. The world's first Linac dedicated to treat mechanically deboned poultry meat is located in Brittany at the Societe des Proteines Industrielles. It is a Thomson CSF Linac product, the CIRCE II, with an energy of 10 MeV and a power of 10 kW. This Linac has been used for more than 8 years, and its technology is fully proven. (author)

  8. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Science.gov (United States)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-09-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  9. Large area polycrystalline diamond films as high current photocathodes for linear induction accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Shurter, R.P.; Moir, D.C.; Devlin, D.J.; Springer, R.W.

    1997-08-01

    Investigations are underway at Los Alamos to develop a new generation of high current, low source temperature photo cathodes able to operate in vacuum environments with pressures above 10e-6 torr without poisoning or degradation of emission properties. Polycrystalline diamond films are emerging as the ideal material for these photocathodes. Robustness, high quantum efficiency and high thermal conductivity are fundamental necessary attributes that are found in diamond. The high electron/hole mobility in the boron doped diamond lattice and the ability to create a negative electron affinity surface through downward band bending allow for high current density emission with quantum efficiencies of 0.5% when illuminated by a ArF laser. We report the results to date toward the development of a four kiloampere photocathode with a source temperature below 5eV for the DARHT linear induction Accelerator

  10. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  11. Performance of Superconducting Magnet Prototypes for LCLS-II Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, Vladimir [Fermilab; Andreev, Nikolai [Fermilab; DiMarco, Joseph [Fermilab; Makarov, Alexander [Fermilab; Tartaglia, Michael [Fermilab; Velev, George [Fermilab

    2016-12-30

    The new LCLS-II Linear Superconducting Accelerator at SLAC needs superconducting magnet packages installed inside SCRF Cryomodules to focus and steer an electron beam. Two magnet prototypes were built and successfully tested at Fermilab. Magnets have an iron dominated configuration, quadrupole and dipole NbTi superconducting coils, and splittable in the vertical plane configuration. Magnets inside the Cryomodule are conductively cooled through pure Al heat sinks. Both magnets performance was verified by magnetic measurements at room temperature, and during cold tests in liquid helium. Test results including magnetic measurements are discussed. Special attention was given to the magnet performance at low currents where the iron yoke and the superconductor hysteresis effects have large influence. Both magnet prototypes were accepted for the installation in FNAL and JLAB prototype Cryomodules.

  12. One Year assessment of shielding for a multi-energy linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Gi; Carlson, Joel; Lee, Hyun Seok; Ye, Sung Joon [Seoul National University Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Chung, Jin Beom; Kim, Jae Sung [Dept. of Radiation Oncology, Seoul National University Bundang Hospital, Seoul (Korea, Republic of); Kim, Jung In [Dept. of of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-11-15

    In 2005, the publication of Report No. 151 of the National Council on Radiation Protection and Measurements (NCRP) suggested shielding methodologies along with shielding data. Recently, intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have become more widely used for cancer treatment. Thus, we analyzed shielding parameters for a multi-energy medical linear accelerator using the VMAT technique. Calculated total workload was similar to the recommendation of NCRP Report No. 49 and No. 51. However, these results were higher than the previous results in the NCRP Report No. 151. Also, the VMAT technique uses an intensity modulated beams with various gantry angles so that scattered and leakage doses should be carefully considered by retrospective analysis using the treatment data from each facility.

  13. Cost-benefit analysis on radiotherapy services for cancer treatment, with LINAC type equipments (linear accelerators

    Directory of Open Access Journals (Sweden)

    Luiz Alberto Blois

    2014-12-01

    Full Text Available This work consists in analyzing the economic feasibility of the investment to implement a Radiotherapy sector for radiological of cancer treatment by type linear accelerators equipments, based on the case of a public hospital in São Paulo. From technical and financial details of the project and the survey reference values for health care to their procedures, the statistical outcome of treatment on patients' life expectancy and average income indicators of the state's population, were estimated to income (private and social and expenses of this health service and other elements that make up the flow of the investment project box. From these estimates we evaluated public and private investment return, ie, if it fits only on the public sector or if private sector could also implement this projects geared exclusively to free admittance.

  14. Terahertz radiation source using a high-power industrial electron linear accelerator

    Indian Academy of Sciences (India)

    YASHVIR KALKAL; VINIT KUMAR

    2017-04-01

    High-power $(\\sim 100 kW)$ industrial electron linear accelerators (linacs) are used for irradiations, e.g., for pasteurization of food products, disinfection of medical waste, etc.We propose that high-power electron beam from such an industrial linac can first pass through an undulator to generate useful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for the intended industrial applications. This will enhance the utilization of a high-power industrial linac. We have performed calculation of spontaneous emission in the undulator to show that for typical parameters, continuous terahertz radiation having power of the order of $\\mu$W can be produced, which may be useful for many scientific applications such as multispectral imaging of biological samples, chemical samples etc.

  15. Terahertz radiation source using a high-power industrial electron linear accelerator

    Science.gov (United States)

    Kalkal, Yashvir; Kumar, Vinit

    2017-04-01

    High-power (˜ 100 kW) industrial electron linear accelerators (linacs) are used for irradiations, e.g., for pasteurization of food products, disinfection of medical waste, etc. We propose that high-power electron beam from such an industrial linac can first pass through an undulator to generate useful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for the intended industrial applications. This will enhance the utilization of a high-power industrial linac. We have performed calculation of spontaneous emission in the undulator to show that for typical parameters, continuous terahertz radiation having power of the order of μW can be produced, which may be useful for many scientific applications such as multispectral imaging of biological samples, chemical samples etc.

  16. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    Energy Technology Data Exchange (ETDEWEB)

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  17. Conserved linear dynamics of single-molecule Brownian motion

    KAUST Repository

    Serag, Maged F.

    2017-06-06

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  18. STABILITY, BIFURCATIONS AND CHAOS IN UNEMPLOYMENT NON-LINEAR DYNAMICS

    Directory of Open Access Journals (Sweden)

    Pagliari Carmen

    2013-07-01

    Full Text Available The traditional analysis of unemployment in relation to real output dynamics is based on some empirical evidences deducted from Okun’s studies. In particular the so called Okun’s Law is expressed in a linear mathematical formulation, which cannot explain the fluctuation of the variables involved. Linearity is an heavy limit for macroeconomic analysis and especially for every economic growth study which would consider the unemployment rate among the endogenous variables. This paper deals with an introductive study about the role of non-linearity in the investigation of unemployment dynamics. The main idea is the existence of a non-linear relation between the unemployment rate and the gap of GDP growth rate from its trend. The macroeconomic motivation of this idea moves from the consideration of two concatenate effects caused by a variation of the unemployment rate on the real output growth rate. These two effects are concatenate because there is a first effect that generates a secondary one on the same variable. When the unemployment rate changes, the first effect is the variation in the level of production in consequence of the variation in the level of such an important factor as labour force; the secondary effect is a consecutive variation in the level of production caused by the variation in the aggregate demand in consequence of the change of the individual disposal income originated by the previous variation of production itself. In this paper the analysis of unemployment dynamics is carried out by the use of the logistic map and the conditions for the existence of bifurcations (cycles are determined. The study also allows to find the range of variability of some characteristic parameters that might be avoided for not having an absolute unpredictability of unemployment dynamics (deterministic chaos: unpredictability is equivalent to uncontrollability because of the total absence of information about the future value of the variable to

  19. Bifurcations and Chaos in Time Delayed Piecewise Linear Dynamical Systems

    OpenAIRE

    Senthilkumar, D. V.; Lakshmanan, M.

    2004-01-01

    We reinvestigate the dynamical behavior of a first order scalar nonlinear delay differential equation with piecewise linearity and identify several interesting features in the nature of bifurcations and chaos associated with it as a function of the delay time and external forcing parameters. In particular, we point out that the fixed point solution exhibits a stability island in the two parameter space of time delay and strength of nonlinearity. Significant role played by transients in attain...

  20. Estimating dynamic equilibrium economies: linear versus nonlinear likelihood

    OpenAIRE

    2004-01-01

    This paper compares two methods for undertaking likelihood-based inference in dynamic equilibrium economies: a sequential Monte Carlo filter proposed by Fernández-Villaverde and Rubio-Ramírez (2004) and the Kalman filter. The sequential Monte Carlo filter exploits the nonlinear structure of the economy and evaluates the likelihood function of the model by simulation methods. The Kalman filter estimates a linearization of the economy around the steady state. The authors report two main results...

  1. Simulation of dynamics of a permanent magnet linear actuator

    DEFF Research Database (Denmark)

    Yatchev, Ivan; Ritchie, Ewen

    2010-01-01

    Comparison of two approaches for the simulation of the dynamic behaviour of a permanent magnet linear actuator is presented. These are full coupled model, where the electromagnetic field, electric circuit and mechanical motion problems are solved simultaneously, and decoupled model, where first...... flexibility when the actuator response is required to be estimated for different external conditions, e.g. external circuit parameters or mechanical loads....

  2. Prediction of Typhoon Tracks Using Dynamic Linear Models

    Institute of Scientific and Technical Information of China (English)

    Keon-Tae SOHN; H. Joe KWON; Ae-Sook SUH

    2003-01-01

    This paper presents a study on the statistical forecasts of typhoon tracks. Numerical models havetheir own systematic errors, like a bias. In order to improve the accuracy of track forecasting, a statisticalmodel called DLM (dynamic linear model) is applied to remove the systematic error. In the analysis oftyphoons occurring over the western North Pacific in 1997 and 2000, DLM is useful as an adaptive modelfor the prediction of typhoon tracks.

  3. A comparison of robotic arm versus gantry linear accelerator stereotactic body radiation therapy for prostate cancer.

    Science.gov (United States)

    Avkshtol, Vladimir; Dong, Yanqun; Hayes, Shelly B; Hallman, Mark A; Price, Robert A; Sobczak, Mark L; Horwitz, Eric M; Zaorsky, Nicholas G

    2016-01-01

    Prostate cancer is the most prevalent cancer diagnosed in men in the United States besides skin cancer. Stereotactic body radiation therapy (SBRT; 6-15 Gy per fraction, up to 45 minutes per fraction, delivered in five fractions or less, over the course of approximately 2 weeks) is emerging as a popular treatment option for prostate cancer. The American Society for Radiation Oncology now recognizes SBRT for select low- and intermediate-risk prostate cancer patients. SBRT grew from the notion that high doses of radiation typical of brachytherapy could be delivered noninvasively using modern external-beam radiation therapy planning and delivery methods. SBRT is most commonly delivered using either a traditional gantry-mounted linear accelerator or a robotic arm-mounted linear accelerator. In this systematic review article, we compare and contrast the current clinical evidence supporting a gantry vs robotic arm SBRT for prostate cancer. The data for SBRT show encouraging and comparable results in terms of freedom from biochemical failure (>90% for low and intermediate risk at 5-7 years) and acute and late toxicity (cancer-specific mortality) cannot be compared, given the indolent course of low-risk prostate cancer. At this time, neither SBRT device is recommended over the other for all patients; however, gantry-based SBRT machines have the abilities of treating larger volumes with conventional fractionation, shorter treatment time per fraction (~15 minutes for gantry vs ~45 minutes for robotic arm), and the ability to achieve better plans among obese patients (since they are able to use energies >6 MV). Finally, SBRT (particularly on a gantry) may also be more cost-effective than conventionally fractionated external-beam radiation therapy. Randomized controlled trials of SBRT using both technologies are underway.

  4. Monte Carlo Simulation of Siemens ONCOR Linear Accelerator with BEAMnrc and DOSXYZnrc Code.

    Science.gov (United States)

    Jabbari, Keyvan; Anvar, Hossein Saberi; Tavakoli, Mohammad Bagher; Amouheidari, Alireza

    2013-07-01

    The Monte Carlo method is the most accurate method for simulation of radiation therapy equipment. The linear accelerators (linac) are currently the most widely used machines in radiation therapy centers. In this work, a Monte Carlo modeling of the Siemens ONCOR linear accelerator in 6 MV and 18 MV beams was performed. The results of simulation were validated by measurements in water by ionization chamber and extended dose range (EDR2) film in solid water. The linac's X-ray particular are so sensitive to the properties of primary electron beam. Square field size of 10 cm × 10 cm produced by the jaws was compared with ionization chamber and film measurements. Head simulation was performed with BEAMnrc and dose calculation with DOSXYZnrc for film measurements and 3ddose file produced by DOSXYZnrc analyzed used homemade MATLAB program. At 6 MV, the agreement between dose calculated by Monte Carlo modeling and direct measurement was obtained to the least restrictive of 1%, even in the build-up region. At 18 MV, the agreement was obtained 1%, except for in the build-up region. In the build-up region, the difference was 1% at 6 MV and 2% at 18 MV. The mean difference between measurements and Monte Carlo simulation is very small in both of ONCOR X-ray energy. The results are highly accurate and can be used for many applications such as patient dose calculation in treatment planning and in studies that model this linac with small field size like intensity-modulated radiation therapy technique.

  5. Gamma-ray and neutron area monitoring system of linear IFMIF prototype accelerator building

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroki, E-mail: takahashi.hiroki@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Rokkasho, Aomori (Japan); Kojima, Toshiyuki; Narita, Takahiro; Tsutsumi, Kazuyoshi; Maebara, Sunao [Japan Atomic Energy Agency (JAEA), Rokkasho, Aomori (Japan); Sakaki, Hironao [JAEA, Kizugawa, Kyoto (Japan); Nishiyama, Koichi [IFMIF/EVEDA Project Team, Rokkasho, Aomori (Japan)

    2013-10-15

    Highlights: • Area monitoring system and control system are needed for LIPAc radiation management. • To secure the radiation safety, these systems are linked with two kinds of data path. • Hardwired data paths are adopted to realize the fast transfer of interlock signals. • Dual LAN and shared memory are adopted to the reliable transfer of monitoring data. • Data transfers without unnecessary load are designed and configured for these systems. -- Abstract: The linear IFMIF prototype accelerator (LIPAc) produces deuteron beam with 1 MW power. Since huge number of neutrons occur from such a high power beam, therefore, it is important for the radiation management to design a high reliability area monitoring system for gamma-rays and neutrons. To obtain the valuable operation data of the high-power deuteron beam at LIPAc, it is important to link and record the beam operation data and the area monitoring data. We realize the reliable data transfer to provide the area monitoring data to the accelerator control system which needs a high reliability using the shared-memory data link method. This paper describes the area monitoring system in the LIPAc building and the data-link between this system and the LIPAc control system.

  6. Neutron research and facility development at the Oak Ridge Electron Linear Accelerator 1970 to 1995

    Energy Technology Data Exchange (ETDEWEB)

    Peelle, R.W.; Harvey, J.A.; Maienschein, F.C.; Weston, L.W.; Olsen, D.K.; Larson, D.C.; Macklin, R.L.

    1982-07-01

    This report reviews the accomplishments of the first decade of operation of the Oak Ridge Electron Linear Accelerator (ORELA) and discusses the plans for the facility in the coming decade. Motivations for scientific and applied research during the next decade are included. In addition, ORELA is compared with competing facilities, and prospects for ORELA's improvement and even replacement are reported. Development efforts for the next few years are outlined that are consistent with the anticipated research goals. Recommendations for hardware development include improving the electron injection system to give much larger short-pulse currents on a reliable basis, constructing an Electron Beam Injector Laboratory to help make this improvement possible, continuing a study of possibly replacing the electron accelerator with a proton machine, and replacing or upgrading the facility's data-acquistion and immediate-analysis computer systems. Increased operating time and more involvement of nuclear theorists are recommended, and an effective staff size for optimum use of this unique facility is discussed. A bibliography of all ORELA-related publications is included.

  7. Digital base-band rf control system for the superconducting Darmstadt electron linear accelerator

    Directory of Open Access Journals (Sweden)

    M. Konrad

    2012-05-01

    Full Text Available The accelerating field in superconducting cavities has to be stabilized in amplitude and phase by a radio-frequency (rf control system. Because of their high loaded quality factor superconducting cavities are very susceptible for microphonics. To meet the increased requirements with respect to accuracy, availability, and diagnostics, the previous analog rf control system of the superconducting Darmstadt electron linear accelerator S-DALINAC has been replaced by a digital rf control system. The new hardware consists of two components: An rf module that converts the signal from the cavity down to the base-band and a field-programmable gate array board including a soft CPU that carries out the signal processing steps of the control algorithm. Different algorithms are used for normal-conducting and superconducting cavities. To improve the availability of the control system, techniques for automatic firmware and software deployment have been implemented. Extensive diagnostic features provide the operator with additional information. The architecture of the rf control system as well as the functionality of its components will be presented along with measurements that characterize the performance of the system, yielding, e.g., an amplitude stabilization down to (ΔA/A_{rms}=7×10^{-5} and a phase stabilization of (Δϕ_{rms}=0.8° for superconducting cavities.

  8. Characterestics of pico-second single bunch at the S-band linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Uesaka, Mitsuru (Nuclear Engineering Research Laboratory, University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-11 (Japan)); Kozawa, Takahiro (Nuclear Engineering Research Laboratory, University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-11 (Japan)); Kobayashi, Toshiaki (Nuclear Engineering Research Laboratory, University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-11 (Japan)); Ueda, Toru (Nuclear Engineering Research Laboratory, University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-11 (Japan)); Miya, Kenzo (Nuclear Engineering Research Laboratory, University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-11 (Japan))

    1994-06-15

    Measurement of the bunch structure of a pico-second single bunch was performed using a femto-second streak camera at the S-band linear accelerator of the University of Tokyo. The aim of this research is to investigate the feasibility of the generation of a femto-second single bunch at the S-band linac. The details of the bunch structure and energy spectrum of an original single bunch were precisely investigated in several operation modes where the RF phases in accelerating tubes and a prebuncher were varied. The femto-second streak camera was utilized to measure the bunch structure by one shot via Cherenkov radiation emitted by the electrons in the bunch. Next, an experiment for magnetic pulse compression of the original single bunch was carried out. Pulse shapes of the compressed bunchs for different energy modulation were also obtained by measuring Cherenkov radiation by one shot using the femto-second streak camera. Prior to the experiment, numerical tracking analysis to determine operating parameters for the magnetic pulse compression was also done. Measured pulse widths were compared with calculated ones. Finally, a 2 ps (full width at half maximum; FWHM) single bunch with an electric charge of 0.3 nC could be generated by the magnetic pulse compression. ((orig.))

  9. The development of seismic guidelines for the Stanford Linear Accelerator Center

    Energy Technology Data Exchange (ETDEWEB)

    Huggins, R.

    1996-08-01

    This paper describes the development of Seismic Guidelines for the Stanford Linear Accelerator Center (SLAC). Although structures have always been built conservatively, SLAC management decided to review and update their seismic guidelines. SLAC is about mid-way between the epicenters of the 8.3 Richter magnitude 1906 San Francisco and the 7.2 Loma Prieta Earthquakes. The west end of the two mile long electron/positron particle accelerator lies a half mile from the large San Andreas Fault. Suggestions for seismic planning processes were solicited from local computer manufacturing firms, universities, and federal laboratories. A Committee of the various stakeholders in SLAC`s seismic planning retained an internationally known Seismic Planning Consultant and reviewed relevant standards and drafted Guidelines. A panel of seismic experts was convened to help define the hazard, site response spectra, probabilistic analysis of shaking, and near field effects. The Facility`s structures were assigned to seismic classes of importance, and an initial assessment of a sample of a dozen buildings conducted. This assessment resulted in emergency repairs to one structure, and provided a {open_quotes}reality basis{close_quotes} for establishing the final Guidelines and Administrative Procedures, and a program to evaluate remaining buildings, shielding walls, tunnels, and other special structures.

  10. Wavelet approach to accelerator problems. 1: Polynomial dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fedorova, A.; Zeitlin, M. [Russian Academy of Sciences, St. Petersburg (Russian Federation). Inst. of Problems of Mechanical Engineering; Parsa, Z. [Brookhaven National Lab., Upton, NY (United States). Dept. of Physics

    1997-05-01

    This is the first part of a series of talks in which the authors present applications of methods from wavelet analysis to polynomial approximations for a number of accelerator physics problems. In the general case they have the solution as a multiresolution expansion in the base of compactly supported wavelet basis. The solution is parameterized by solutions of two reduced algebraical problems, one is nonlinear and the second is some linear problem, which is obtained from one of the next wavelet constructions: Fast Wavelet Transform, Stationary Subdivision Schemes, the method of Connection Coefficients. In this paper the authors consider the problem of calculation of orbital motion in storage rings. The key point in the solution of this problem is the use of the methods of wavelet analysis, relatively novel set of mathematical methods, which gives one a possibility to work with well-localized bases in functional spaces and with the general type of operators (including pseudodifferential) in such bases.

  11. Manufacturing Error Effects on Mechanical Properties and Dynamic Characteristics of Rotor Parts under High Acceleration

    Science.gov (United States)

    Jia, Mei-Hui; Wang, Cheng-Lin; Ren, Bin

    2017-07-01

    Stress, strain and vibration characteristics of rotor parts should be changed significantly under high acceleration, manufacturing error is one of the most important reason. However, current research on this problem has not been carried out. A rotor with an acceleration of 150,000 g is considered as the objective, the effects of manufacturing errors on rotor mechanical properties and dynamic characteristics are executed by the selection of the key affecting factors. Through the force balance equation of the rotor infinitesimal unit establishment, a theoretical model of stress calculation based on slice method is proposed and established, a formula for the rotor stress at any point derives. A finite element model (FEM) of rotor with holes is established with manufacturing errors. The changes of the stresses and strains of a rotor in parallelism and symmetry errors are analyzed, which verify the validity of the theoretical model. The pre-stressing modal analysis is performed based on the aforementioned static analysis. The key dynamic characteristics are analyzed. The results demonstrated that, as the parallelism and symmetry errors increase, the equivalent stresses and strains of the rotor slowly increase linearly, the highest growth rate does not exceed 4%, the maximum change rate of natural frequency is 0.1%. The rotor vibration mode is not significantly affected. The FEM construction method of the rotor with manufacturing errors can be utilized for the quantitative research on rotor characteristics, which will assist in the active control of rotor component reliability under high acceleration.

  12. Effects of energy chirp on bunch length measurement in linear accelerator beams

    Science.gov (United States)

    Sabato, L.; Arpaia, P.; Giribono, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Vaccarezza, C.; Variola, A.

    2017-08-01

    The effects of assumptions about bunch properties on the accuracy of the measurement method of the bunch length based on radio frequency deflectors (RFDs) in electron linear accelerators (LINACs) are investigated. In particular, when the electron bunch at the RFD has a non-negligible energy chirp (i.e. a correlation between the longitudinal positions and energies of the particle), the measurement is affected by a deterministic intrinsic error, which is directly related to the RFD phase offset. A case study on this effect in the electron LINAC of a gamma beam source at the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) is reported. The relative error is estimated by using an electron generation and tracking (ELEGANT) code to define the reference measurements of the bunch length. The relative error is proved to increase linearly with the RFD phase offset. In particular, for an offset of {{7}\\circ} , corresponding to a vertical centroid offset at a screen of about 1 mm, the relative error is 4.5%.

  13. Making anatomical dynamic film using the principle of linear motion

    Institute of Scientific and Technical Information of China (English)

    Sun Guosheng

    2015-01-01

    Objective:The aim of this study was to develop the dynamic aids to help students to combine human morphology and function during study, and to understand and memorize important and difficult contents u-sing physiological function of analog organs and system. Methods:The design of the aids was based on our innova-tion. The linear movement is derived from the number of lines, the thickness of a line, distance and angle between lines. Therefore, according to the effect of line stripes, the stripes were divided into two types: ( 1 ) the parallel straight lines which meet the following criteria - 12 stripes per cm, the equal thickness of the stripes, the equal distance between adjacent stripes and printable on a transparent film;(2)the straight line and curved stripes which meet the following criteria -an equal or unequal linear fringe space between the stripes, the curve stripes being drawn by a mathematical equation, and being digitalized and stored in a computer. Results:(1) Demonstrating a dynamic effect:The parallel straight stripes with a 12 percentimeter space between the stripes were printed on a transparent film. The film was termed"the moving film" as its effect was displayed while moving the film. Another static film was made. The static film shown different directions. After the moving film was overlaid on the static film, slowly moving the film produced a wave-like spread. (2)Producing a dynamic film:The quality of a dynamic film was determined by the quality of the "static film". The first was to design and draw the drawings, and leave space for generating dynamic sense to prepare the paste, with the detection of dynamic effects until satisfaction. It appeared impossible to draw the difficult curvilinear motion in fringes by hands. We input mathematical equations into the computer and connected the automatic plotter to draw. A variety of drawn"static diagram fringe pattern as the library was stored in a computer to access at any time. Conclusions

  14. Multiscale Analysis of Information Dynamics for Linear Multivariate Processes

    CERN Document Server

    Faes, Luca; Stramaglia, Sebastiano; Nollo, Giandomenico; Stramaglia, Sebastiano

    2016-01-01

    In the study of complex physical and physiological systems represented by multivariate time series, an issue of great interest is the description of the system dynamics over a range of different temporal scales. While information-theoretic approaches to the multiscale analysis of complex dynamics are being increasingly used, the theoretical properties of the applied measures are poorly understood. This study introduces for the first time a framework for the analytical computation of information dynamics for linear multivariate stochastic processes explored at different time scales. After showing that the multiscale processing of a vector autoregressive (VAR) process introduces a moving average (MA) component, we describe how to represent the resulting VARMA process using state-space (SS) models and how to exploit the SS model parameters to compute analytical measures of information storage and information transfer for the original and rescaled processes. The framework is then used to quantify multiscale infor...

  15. State aggregation and population dynamics in linear systems.

    Science.gov (United States)

    Rowe, Jonathan E; Vose, Michael D; Wright, Alden H

    2005-01-01

    We consider complex systems that are composed of many interacting elements, evolving under some dynamics. We are interested in characterizing the ways in which these elements may be grouped into higher-level, macroscopic states in a way that is compatible with those dynamics. Such groupings may then be thought of as naturally emergent properties of the system. We formalize this idea and, in the case that the dynamics are linear, prove necessary and sufficient conditions for this to happen. In cases where there is an underlying symmetry among the components of the system, group theory may be used to provide a strong sufficient condition. These observations are illustrated with some artificial life examples.

  16. A Dynamic Linear Modeling Approach to Public Policy Change

    DEFF Research Database (Denmark)

    Loftis, Matthew; Mortensen, Peter Bjerre

    2017-01-01

    Theories of public policy change, despite their differences, converge on one point of strong agreement. The relationship between policy and its causes can and does change over time. This consensus yields numerous empirical implications, but our standard analytical tools are inadequate for testing...... them. As a result, the dynamic and transformative relationships predicted by policy theories have been left largely unexplored in time-series analysis of public policy. This paper introduces dynamic linear modeling (DLM) as a useful statistical tool for exploring time-varying relationships in public...... policy. The paper offers a detailed exposition of the DLM approach and illustrates its usefulness with a time series analysis of U.S. defense policy from 1957-2010. The results point the way for a new attention to dynamics in the policy process and the paper concludes with a discussion of how...

  17. Space charges can significantly affect the dynamics of accelerator maps

    Science.gov (United States)

    Bountis, Tassos; Skokos, Charalampos

    2006-10-01

    Space charge effects can be very important for the dynamics of intense particle beams, as they repeatedly pass through nonlinear focusing elements, aiming to maximize the beam's luminosity properties in the storage rings of a high energy accelerator. In the case of hadron beams, whose charge distribution can be considered as “frozen” within a cylindrical core of small radius compared to the beam's dynamical aperture, analytical formulas have been recently derived [C. Benedetti, G. Turchetti, Phys. Lett. A 340 (2005) 461] for the contribution of space charges within first order Hamiltonian perturbation theory. These formulas involve distribution functions which, in general, do not lead to expressions that can be evaluated in closed form. In this Letter, we apply this theory to an example of a charge distribution, whose effect on the dynamics can be derived explicitly and in closed form, both in the case of 2-dimensional as well as 4-dimensional mapping models of hadron beams. We find that, even for very small values of the “perveance” (strength of the space charge effect) the long term stability of the dynamics changes considerably. In the flat beam case, the outer invariant “tori” surrounding the origin disappear, decreasing the size of the beam's dynamical aperture, while beyond a certain threshold the beam is almost entirely lost. Analogous results in mapping models of beams with 2-dimensional cross section demonstrate that in that case also, even for weak tune depressions, orbital diffusion is enhanced and many particles whose motion was bounded now escape to infinity, indicating that space charges can impose significant limitations on the beam's luminosity.

  18. Space charges can significantly affect the dynamics of accelerator maps

    Energy Technology Data Exchange (ETDEWEB)

    Bountis, Tassos [Department of Mathematics, University of Patras, GR-26500 Patras (Greece) and Center for Research and Applications of Nonlinear Systems (CRANS), University of Patras, GR-26500 Patras (Greece)]. E-mail: tassos50@otenet.gr; Skokos, Charalampos [Center for Research and Applications of Nonlinear Systems (CRANS), University of Patras, GR-26500 Patras (Greece)

    2006-10-09

    Space charge effects can be very important for the dynamics of intense particle beams, as they repeatedly pass through nonlinear focusing elements, aiming to maximize the beam's luminosity properties in the storage rings of a high energy accelerator. In the case of hadron beams, whose charge distribution can be considered as 'frozen' within a cylindrical core of small radius compared to the beam's dynamical aperture, analytical formulas have been recently derived [C. Benedetti, G. Turchetti, Phys. Lett. A 340 (2005) 461] for the contribution of space charges within first order Hamiltonian perturbation theory. These formulas involve distribution functions which, in general, do not lead to expressions that can be evaluated in closed form. In this Letter, we apply this theory to an example of a charge distribution, whose effect on the dynamics can be derived explicitly and in closed form, both in the case of 2-dimensional as well as 4-dimensional mapping models of hadron beams. We find that, even for very small values of the 'perveance' (strength of the space charge effect) the long term stability of the dynamics changes considerably. In the flat beam case, the outer invariant 'tori' surrounding the origin disappear, decreasing the size of the beam's dynamical aperture, while beyond a certain threshold the beam is almost entirely lost. Analogous results in mapping models of beams with 2-dimensional cross section demonstrate that in that case also, even for weak tune depressions, orbital diffusion is enhanced and many particles whose motion was bounded now escape to infinity, indicating that space charges can impose significant limitations on the beam's luminosity.

  19. Evaluation of calculation methods of collimator scatter factors in a linear accelerator equipped with MLC instead of lower collimators.

    Science.gov (United States)

    Kojima, Tomo; Sasaki, Koji

    2009-09-20

    In the monitor unit verification for high-energy radiation therapy, we evaluated methods of calculation of collimator scatter factors (S(c)) in a linear accelerator equipped with MLC instead of lower collimators. Routinely,S(c) is calculated from rectangular fields shaped by upper and lower jaws in the linear accelerator. However, this calculation method should not be used for the linear accelerator equipped with MLC instead of lower collimators. Consequently, we used a backprojected field at the flattening filter plane projected by calculation point's eye view on each MLC. We then attempted to deviseS(c) by using Clarkson's integration for these backprojected irregular fields. This method makes it possible to calculate collimator scatter factors in error of less than +/-0.3% in all of sixteen measured irregular fields.

  20. The dynamics of climate-induced deglacial ice stream acceleration

    Science.gov (United States)

    Robel, A.; Tziperman, E.

    2015-12-01

    Geological observations indicate that ice streams were a significant contributor to ice flow in the Laurentide Ice Sheet during the Last Glacial Maximum. Conceptual and simple model studies have also argued that the gradual development of ice streams increases the sensitivity of large ice sheets to weak climate forcing. In this study, we use an idealized configuration of the Parallel Ice Sheet Model to explore the role of ice streams in rapid deglaciation. In a growing ice sheet, ice streams develop gradually as the bed warms and the margin expands outward onto the continental shelf. Then, a weak change in equilibrium line altitude commensurate with Milankovitch forcing results in a rapid deglacial response, as ice stream acceleration leads to enhanced calving and surface melting at low elevations. We explain the dynamical mechanism that drives this ice stream acceleration and its broader applicability as a feedback for enhancing ice sheet decay in response to climate forcing. We show how our idealized ice sheet simulations match geomorphological observations of deglacial ice stream variability and previous model-data analyses. We conclude with observations on the potential for interaction between ice streams and other feedback mechanisms within the earth system.

  1. Non-Linear Dynamics of Saturn’s Rings

    Science.gov (United States)

    Esposito, Larry W.

    2015-11-01

    Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects

  2. Dynamic Response of Linear Mechanical Systems Modeling, Analysis and Simulation

    CERN Document Server

    Angeles, Jorge

    2012-01-01

    Dynamic Response of Linear Mechanical Systems: Modeling, Analysis and Simulation can be utilized for a variety of courses, including junior and senior-level vibration and linear mechanical analysis courses. The author connects, by means of a rigorous, yet intuitive approach, the theory of vibration with the more general theory of systems. The book features: A seven-step modeling technique that helps structure the rather unstructured process of mechanical-system modeling A system-theoretic approach to deriving the time response of the linear mathematical models of mechanical systems The modal analysis and the time response of two-degree-of-freedom systems—the first step on the long way to the more elaborate study of multi-degree-of-freedom systems—using the Mohr circle Simple, yet powerful simulation algorithms that exploit the linearity of the system for both single- and multi-degree-of-freedom systems Examples and exercises that rely on modern computational toolboxes for both numerical and symbolic compu...

  3. On the Transience of Linear Max-Plus Dynamical Systems

    CERN Document Server

    Charron-Bost, Bernadette; Nowak, Thomas

    2011-01-01

    We study the transients of linear max-plus dynamical systems. For that, we consider for each irreducible max-plus matrix A, the weighted graph G(A) such that A is the adjacency matrix of G(A). Based on a novel graph-theoretic counterpart to the number-theoretic Brauer's theorem, we propose two new methods for the construction of arbitrarily long paths in G(A) with maximal weight. That leads to two new upper bounds on the transient of a linear max-plus system which both improve on the bounds previously given by Even and Rajsbaum (STOC 1990, Theory of Computing Systems 1997), by Bouillard and Gaujal (Research Report 2000), and by Soto y Koelemeijer (PhD Thesis 2003), and are, in general, incomparable with Hartmann and Arguelles' bound (Mathematics of Operations Research 1999). With our approach, we also show how to improve the latter bound by a factor of two. A significant benefit of our bounds is that each of them turns out to be linear in the size of the system in various classes of linear max-plus system whe...

  4. Linear dynamical quantum systems analysis, synthesis, and control

    CERN Document Server

    Nurdin, Hendra I

    2017-01-01

    This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...

  5. Controllability, observability, realizability, and stability of dynamic linear systems

    Directory of Open Access Journals (Sweden)

    John M. Davis

    2009-03-01

    Full Text Available We develop a linear systems theory that coincides with the existing theories for continuous and discrete dynamical systems, but that also extends to linear systems defined on nonuniform time scales. The approach here is based on generalized Laplace transform methods (e.g. shifts and convolution from the recent work [13]. We study controllability in terms of the controllability Gramian and various rank conditions (including Kalman's in both the time invariant and time varying settings and compare the results. We explore observability in terms of both Gramian and rank conditions and establish related realizability results. We conclude by applying this systems theory to connect exponential and BIBO stability problems in this general setting. Numerous examples are included to show the utility of these results.

  6. Controllability, Observability, Reachability, and Stability of Dynamic Linear Systems

    CERN Document Server

    Jackson, Billy J; Gravagne, Ian A; Marks, Robert J

    2009-01-01

    We develop a linear systems theory that coincides with the existing theories for continuous and discrete dynamical systems, but that also extends to linear systems defined on nonuniform time domains. The approach here is based on generalized Laplace transform methods (e.g. shifts and convolution) from our recent work \\cite{DaGrJaMaRa}. We study controllability in terms of the controllability Gramian and various rank conditions (including Kalman's) in both the time invariant and time varying settings and compare the results. We also explore observability in terms of both Gramian and rank conditions as well as realizability results. We conclude by applying this systems theory to connect exponential and BIBO stability problems in this general setting. Numerous examples are included to show the utility of these results.

  7. Accelerating Scientific Applications using High Performance Dense and Sparse Linear Algebra Kernels on GPUs

    KAUST Repository

    Abdelfattah, Ahmad

    2015-01-15

    High performance computing (HPC) platforms are evolving to more heterogeneous configurations to support the workloads of various applications. The current hardware landscape is composed of traditional multicore CPUs equipped with hardware accelerators that can handle high levels of parallelism. Graphical Processing Units (GPUs) are popular high performance hardware accelerators in modern supercomputers. GPU programming has a different model than that for CPUs, which means that many numerical kernels have to be redesigned and optimized specifically for this architecture. GPUs usually outperform multicore CPUs in some compute intensive and massively parallel applications that have regular processing patterns. However, most scientific applications rely on crucial memory-bound kernels and may witness bottlenecks due to the overhead of the memory bus latency. They can still take advantage of the GPU compute power capabilities, provided that an efficient architecture-aware design is achieved. This dissertation presents a uniform design strategy for optimizing critical memory-bound kernels on GPUs. Based on hierarchical register blocking, double buffering and latency hiding techniques, this strategy leverages the performance of a wide range of standard numerical kernels found in dense and sparse linear algebra libraries. The work presented here focuses on matrix-vector multiplication kernels (MVM) as repre- sentative and most important memory-bound operations in this context. Each kernel inherits the benefits of the proposed strategies. By exposing a proper set of tuning parameters, the strategy is flexible enough to suit different types of matrices, ranging from large dense matrices, to sparse matrices with dense block structures, while high performance is maintained. Furthermore, the tuning parameters are used to maintain the relative performance across different GPU architectures. Multi-GPU acceleration is proposed to scale the performance on several devices. The

  8. A comparison of robotic arm versus gantry linear accelerator stereotactic body radiation therapy for prostate cancer

    Directory of Open Access Journals (Sweden)

    Avkshtol V

    2016-08-01

    Full Text Available Vladimir Avkshtol, Yanqun Dong, Shelly B Hayes, Mark A Hallman, Robert A Price, Mark L Sobczak, Eric M Horwitz,* Nicholas G Zaorsky* Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA *These authors contributed equally to this work Abstract: Prostate cancer is the most prevalent cancer diagnosed in men in the United States besides skin cancer. Stereotactic body radiation therapy (SBRT; 6–15 Gy per fraction, up to 45 minutes per fraction, delivered in five fractions or less, over the course of approximately 2 weeks is emerging as a popular treatment option for prostate cancer. The American Society for Radiation Oncology now recognizes SBRT for select low- and intermediate-risk prostate cancer patients. SBRT grew from the notion that high doses of radiation typical of brachytherapy could be delivered noninvasively using modern external-beam radiation therapy planning and delivery methods. SBRT is most commonly delivered using either a traditional gantry-mounted linear accelerator or a robotic arm-mounted linear accelerator. In this systematic review article, we compare and contrast the current clinical evidence supporting a gantry vs robotic arm SBRT for prostate cancer. The data for SBRT show encouraging and comparable results in terms of freedom from biochemical failure (>90% for low and intermediate risk at 5–7 years and acute and late toxicity (<6% grade 3–4 late toxicities. Other outcomes (eg, overall and cancer-specific mortality cannot be compared, given the indolent course of low-risk prostate cancer. At this time, neither SBRT device is recommended over the other for all patients; however, gantry-based SBRT machines have the abilities of treating larger volumes with conventional fractionation, shorter treatment time per fraction (~15 minutes for gantry vs ~45 minutes for robotic arm, and the ability to achieve better plans among obese patients (since they are able to use energies >6 MV. Finally

  9. Output trends, characteristics, and measurements of three megavoltage radiotherapy linear accelerators.

    Science.gov (United States)

    Hossain, Murshed

    2014-07-08

    The purpose of this study is to characterize and understand the long-term behavior of the output from megavoltage radiotherapy linear accelerators. Output trends of nine beams from three linear accelerators over a period of more than three years are reported and analyzed. Output, taken during daily warm-up, forms the basis of this study. The output is measured using devices having ion chambers. These are not calibrated by accredited dosimetry laboratory, but are baseline-compared against monthly output which is measured using calibrated ion chambers. We consider the output from the daily check devices as it is, and sometimes normalized it by the actual output measured during the monthly calibration of the linacs. The data show noisy quasi-periodic behavior. The output variation, if normalized by monthly measured "real' output, is bounded between ± 3%. Beams of different energies from the same linac are correlated with a correlation coefficient as high as 0.97, for one particular linac, and as low as 0.44 for another. These maximum and minimum correlations drop to 0.78 and 0.25 when daily output is normalized by the monthly measurements. These results suggest that the origin of these correlations is both the linacs and the daily output check devices. Beams from different linacs, independent of their energies, have lower correlation coefficient, with a maximum of about 0.50 and a minimum of almost zero. The maximum correlation drops to almost zero if the output is normalized by the monthly measured output. Some scatter plots of pairs of beam output from the same linac show band-like structures. These structures are blurred when the output is normalized by the monthly calibrated output. Fourier decomposition of the quasi-periodic output is consistent with a 1/f power law. The output variation appears to come from a distorted normal distribution with a mean of slightly greater than unity. The quasi-periodic behavior is manifested in the seasonally averaged output

  10. Studies and measurements of linear coupling and nonlinearities in hadron circular accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Franchi, A.

    2006-07-01

    In this thesis a beam-based method has been developed to measure the strength and the polarity of corrector magnets (skew quadrupoles and sextupoles) in circular accelerators. The algorithm is based on the harmonic analysis (via FFT) of beam position monitor (BPM) data taken turn by turn from an accelerator in operation. It has been shown that, from the differences of the spectral line amplitudes between two consecutive BPMs, both the strength and the polarity of non-linear elements placed in between can be measured. The method has been successfully tested using existing BPM data from the SPS of CERN. A second beam-based method has been studied for a fast measurement and correction of betatron coupling driven by skew quadrupole field errors and tilted focusing quadrupoles. In this thesis it has been shown how the correction for minimizing the coupling stop band C can be performed in a single machine cycle from the harmonic analysis of multi-BPM data. The method has been successfully applied to RHIC. A third theoretical achievement is a new description of the betatron motion close to the difference resonance in presence of linear coupling. New formulae describing the exchange of RMS resonances have been derived here making use of Lie algebra providing a better description of the emittance behavior. A new way to decouple the equations of motion and explicit expressions for the individual single particle invariants have been found. For the first time emittance exchange studies have been carried out in the SIS-18 of GSI. Applications of this manipulation are: emittance equilibration under consideration for future operations of the SIS-18 as booster for the SIS-100; emittance transfer during multi-turn injection to improve the efficiency and to protect the injection septum in high intensity operations, by shifting part of the horizontal emittance into the vertical plane. Multi-particle simulations with 2D PIC space-charge solver have been run to infer heuristic scaling

  11. Simulation of dynamics of a permanent magnet linear actuator

    DEFF Research Database (Denmark)

    Yatchev, Ivan; Ritchie, Ewen

    2010-01-01

    Comparison of two approaches for the simulation of the dynamic behaviour of a permanent magnet linear actuator is presented. These are full coupled model, where the electromagnetic field, electric circuit and mechanical motion problems are solved simultaneously, and decoupled model, where first...... a set of static magnetic filed analysis is carried out and then the electric circuit and mechanical motion equations are solved employing bi-cubic spline approximations of the field analysis results. The results show that the proposed decoupled model is of satisfactory accuracy and gives more...

  12. Control of stage by stage changing linear dynamic systems

    Directory of Open Access Journals (Sweden)

    Barseghyan V.R.

    2012-01-01

    Full Text Available In this paper, the control problems of linear dynamic systems stage by stage changing and the optimal control with the criteria of quality set for the whole range of time intervals are considered. The necessary and sufficient conditions of total controllability are also stated. The constructive solving method of a control problem is offered, as well as the definitions of conditions for the existence of programmed control and motions. The explicit form of control action for a control problem is constructed. The method for solving optimal control problem is offered, and the solution of optimal control of a specific target is brought.

  13. Diffusive limit for a quantum linear Boltzmann dynamics

    CERN Document Server

    Clark, Jeremy

    2010-01-01

    We study the diffusive behavior for a quantum test particle interacting with a dilute background gas. The model we begin with is a reduced picture for the test particle dynamics given by a quantum linear Boltzmann equation in which the scattering with the gas particles is assumed to occur through a hard-sphere interaction. The state of the particle is represented by a density matrix evolving according to a translation-covariant Lindblad equation. Our main result is a proof that the particle diffuses for large times.

  14. Exponential Synchronization of the Linearly Coupled Dynamical Networks with Delays

    Institute of Scientific and Technical Information of China (English)

    Xiwei LIU; Tianping CHEN

    2007-01-01

    In this paper, the authors investigate the synchronization of an array of linearly coupled identical dynamical systems with a delayed coupling. Here the coupling matrix can be asymmetric and reducible. Some criteria ensuring delay-independent and delay-dependent global synchronization are derived respectively. It is shown that if the coupling delay is less than a positive threshold, then the coupled network will be synchronized. On the other hand, with the increase of coupling delay, the synchronization stability of the network will be restrained, even eventually de-synchronized.

  15. Trypsinogen activation as observed in accelerated molecular dynamics simulations.

    Science.gov (United States)

    Boechi, Leonardo; Pierce, Levi; Komives, Elizabeth A; McCammon, J Andrew

    2014-11-01

    Serine proteases are involved in many fundamental physiological processes, and control of their activity mainly results from the fact that they are synthetized in an inactive form that becomes active upon cleavage. Three decades ago Martin Karplus's group performed the first molecular dynamics simulations of trypsin, the most studied member of the serine protease family, to address the transition from the zymogen to its active form. Based on the computational power available at the time, only high frequency fluctuations, but not the transition steps, could be observed. By performing accelerated molecular dynamics (aMD) simulations, an interesting approach that increases the configurational sampling of atomistic simulations, we were able to observe the N-terminal tail insertion, a crucial step of the transition mechanism. Our results also support the hypothesis that the hydrophobic effect is the main force guiding the insertion step, although substantial enthalpic contributions are important in the activation mechanism. As the N-terminal tail insertion is a conserved step in the activation of serine proteases, these results afford new perspective on the underlying thermodynamics of the transition from the zymogen to the active enzyme.

  16. Accelerated Molecular Dynamics studies of He Bubble Growth in Tungsten

    Science.gov (United States)

    Uberuaga, Blas; Sandoval, Luis; Perez, Danny; Voter, Arthur

    2015-11-01

    Understanding how materials respond to extreme environments is critical for predicting and improving performance. In materials such as tungsten exposed to plasmas for nuclear fusion applications, novel nanoscale fuzzes, comprised of tendrils of tungsten, form as a consequence of the implantation of He into the near surface. However, the detailed mechanisms that link He bubble formation to the ultimate development of fuzz are unclear. Molecular dynamics simulations provide insight into the He implantation process, but are necessarily performed at implantation rates that are orders of magnitudes faster than experiment. Here, using accelerated molecular dynamics methods, we examine the role of He implantation rates on the physical evolution of He bubbles in tungsten. We find that, as the He rate is reduced, new types of events involving the response of the tungsten matrix to the pressure in the bubble become competitive and change the overall evolution of the bubble as well as the subsequent morphology of the tungsten surface. We have also examined how bubble growth differs at various microstructural features. These results highlight the importance of performing simulations at experimentally relevant conditions in order to correctly capture the contributions of the various significant kinetic processes and predict the overall response of the material.

  17. Improved scaling of temperature-accelerated dynamics using localization.

    Science.gov (United States)

    Shim, Yunsic; Amar, Jacques G

    2016-07-07

    While temperature-accelerated dynamics (TAD) is a powerful method for carrying out non-equilibrium simulations of systems over extended time scales, the computational cost of serial TAD increases approximately as N(3) where N is the number of atoms. In addition, although a parallel TAD method based on domain decomposition [Y. Shim et al., Phys. Rev. B 76, 205439 (2007)] has been shown to provide significantly improved scaling, the dynamics in such an approach is only approximate while the size of activated events is limited by the spatial decomposition size. Accordingly, it is of interest to develop methods to improve the scaling of serial TAD. As a first step in understanding the factors which determine the scaling behavior, we first present results for the overall scaling of serial TAD and its components, which were obtained from simulations of Ag/Ag(100) growth and Ag/Ag(100) annealing, and compare with theoretical predictions. We then discuss two methods based on localization which may be used to address two of the primary "bottlenecks" to the scaling of serial TAD with system size. By implementing both of these methods, we find that for intermediate system-sizes, the scaling is improved by almost a factor of N(1/2). Some additional possible methods to improve the scaling of TAD are also discussed.

  18. Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator

    Science.gov (United States)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad

    2016-04-01

    The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.

  19. Dynamics of ion cloud in a linear Paul trap

    CERN Document Server

    Mandal, P

    2013-01-01

    A linear ion trap setup has been developed for studying the dynamics of trapped ion cloud and thereby realizing possible systematics of a high precision measurement on a single ion within it. The dynamics of molecular nitrogen ion cloud has been investigated to extract the characteristics of the trap setup. The stability of trap operation has been studied with observation of narrow nonlinear resonances pointing out the region of instabilities within the broad stability region. The secular frequency has been measured and the motional spectra of trapped ion oscillation have been obtained by using electric dipole excitation. It is applied to study the space charge effect and the axial coupling in the radial plane.

  20. Dynamic Performance of Subway Vehicle with Linear Induction Motor System

    Science.gov (United States)

    Wu, Pingbo; Luo, Ren; Hu, Yan; Zeng, Jing

    The light rail vehicle with Linear Induction Motor (LIM) bogie, which is a new type of urban rail traffic tool, has the advantages of low costs, wide applicability, low noise, simple maintenance and better dynamic behavior. This kind of vehicle, supported and guided by the wheel and rail, is not driven by the wheel/rail adhesion force, but driven by the electromagnetic force between LIM and reaction plate. In this paper, three different types of suspensions and their characteristic are discussed with considering the interactions both between wheel and rail and between LIM and reaction plate. A nonlinear mathematical model of the vehicle with LIM bogie is set up by using the software SIMPACK, and the electromechanical model is also set up on Simulink roof. Then the running behavior of the LIM vehicle is simulated, and the influence of suspension on the vehicle dynamic performance is investigated.

  1. Modeling and Analysis of Linearized Wheel-Rail Contact Dynamics

    Directory of Open Access Journals (Sweden)

    Zulfiqar Ali Soomro

    2014-07-01

    Full Text Available The dynamics of the railway vehicles are nonlinear and depend upon several factors including vehicle speed, normal load and adhesion level. The presence of contaminants on the railway track makes them unpredictable too. Therefore in order to develop an effective control strategy it is important to analyze the effect of each factor on dynamic response thoroughly. In this paper a linearized model of a railway wheel-set is developed and is later analyzed by varying the speed and adhesion level by keeping the normal load constant. A wheel-set is the wheel-axle assembly of a railroad car. Patch contact is the study of the deformation of solids that touch each other at one or more points

  2. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study.

    Science.gov (United States)

    Mancosu, Pietro; Fogliata, Antonella; Stravato, Antonella; Tomatis, Stefano; Cozzi, Luca; Scorsetti, Marta

    2016-01-01

    Frameless stereotactic radiosurgery (SRS) requires dedicated systems to monitor the patient position during the treatment to avoid target underdosage due to involuntary shift. The optical surface monitoring system (OSMS) is here evaluated in a phantom-based study. The new EDGE linear accelerator from Varian (Varian, Palo Alto, CA) integrates, for cranial lesions, the common cone beam computed tomography (CBCT) and kV-MV portal images to the optical surface monitoring system (OSMS), a device able to detect real-time patient׳s face movements in all 6 couch axes (vertical, longitudinal, lateral, rotation along the vertical axis, pitch, and roll). We have evaluated the OSMS imaging capability in checking the phantoms׳ position and monitoring its motion. With this aim, a home-made cranial phantom was developed to evaluate the OSMS accuracy in 4 different experiments: (1) comparison with CBCT in isocenter location, (2) capability to recognize predefined shifts up to 2° or 3cm, (3) evaluation at different couch angles, (4) ability to properly reconstruct the surface when the linac gantry visually block one of the cameras. The OSMS system showed, with a phantom, to be accurate for positioning in respect to the CBCT imaging system with differences of 0.6 ± 0.3mm for linear vector displacement, with a maximum rotational inaccuracy of 0.3°. OSMS presented an accuracy of 0.3mm for displacement up to 1cm and 1°, and 0.5mm for larger displacements. Different couch angles (45° and 90°) induced a mean vector uncertainty < 0.4mm. Coverage of 1 camera produced an uncertainty < 0.5mm. Translations and rotations of a phantom can be accurately detect with the optical surface detector system.

  3. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Mancosu, Pietro; Fogliata, Antonella, E-mail: Antonella.Fogliata@humanitas.it; Stravato, Antonella; Tomatis, Stefano; Cozzi, Luca; Scorsetti, Marta

    2016-07-01

    Frameless stereotactic radiosurgery (SRS) requires dedicated systems to monitor the patient position during the treatment to avoid target underdosage due to involuntary shift. The optical surface monitoring system (OSMS) is here evaluated in a phantom-based study. The new EDGE linear accelerator from Varian (Varian, Palo Alto, CA) integrates, for cranial lesions, the common cone beam computed tomography (CBCT) and kV-MV portal images to the optical surface monitoring system (OSMS), a device able to detect real-time patient's face movements in all 6 couch axes (vertical, longitudinal, lateral, rotation along the vertical axis, pitch, and roll). We have evaluated the OSMS imaging capability in checking the phantoms' position and monitoring its motion. With this aim, a home-made cranial phantom was developed to evaluate the OSMS accuracy in 4 different experiments: (1) comparison with CBCT in isocenter location, (2) capability to recognize predefined shifts up to 2° or 3 cm, (3) evaluation at different couch angles, (4) ability to properly reconstruct the surface when the linac gantry visually block one of the cameras. The OSMS system showed, with a phantom, to be accurate for positioning in respect to the CBCT imaging system with differences of 0.6 ± 0.3 mm for linear vector displacement, with a maximum rotational inaccuracy of 0.3°. OSMS presented an accuracy of 0.3 mm for displacement up to 1 cm and 1°, and 0.5 mm for larger displacements. Different couch angles (45° and 90°) induced a mean vector uncertainty < 0.4 mm. Coverage of 1 camera produced an uncertainty < 0.5 mm. Translations and rotations of a phantom can be accurately detect with the optical surface detector system.

  4. Chaotic dynamics and diffusion in a piecewise linear equation.

    Science.gov (United States)

    Shahrear, Pabel; Glass, Leon; Edwards, Rod

    2015-03-01

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.

  5. Chaotic dynamics and diffusion in a piecewise linear equation

    Energy Technology Data Exchange (ETDEWEB)

    Shahrear, Pabel, E-mail: pabelshahrear@yahoo.com [Department of Mathematics, Shah Jalal University of Science and Technology, Sylhet–3114 (Bangladesh); Glass, Leon, E-mail: glass@cnd.mcgill.ca [Department of Physiology, 3655 Promenade Sir William Osler, McGill University, Montreal, Quebec H3G 1Y6 (Canada); Edwards, Rod, E-mail: edwards@uvic.ca [Department of Mathematics and Statistics, University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2 (Canada)

    2015-03-15

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.

  6. Production Of Intense, Tunable, Quasi-monochromatic X- Rays Using The Rpi Linear Accelerator

    CERN Document Server

    Sones, B A

    2004-01-01

    This research investigated the production of parametric X-rays (PXR) using the 60-MeV electron linear accelerator at Rensselaer Polytechnic Institute. PXR is an intense, energy tunable, and polarized X-ray source derived from the interaction of relativistic electrons and the periodic structure of crystal materials. In this work, PXR photon yields and the associated bremsstrahlung background were characterized for graphite, LiF, Si, Ge, Cu, and W target crystals. A model that considers the experimental geometry and crystal mosaicity was employed to predict PXR energy broadening. Measured energy linewidths consistently agreed with predicted values except in cases using poor quality graphite in which the mosaicity was greater than the PXR characteristic angle, 8.5 mrad for 60 MeV electrons. When the predicted energy linewidth was more narrow than our Si X-ray detector resolution, a near-absorption edge transmission technique was used to measure the PXR energy linewidth for Si(400) FWHM of 134 eV at 9.0 keV (2%) ...

  7. Prototyping a large field size IORT applicator for a mobile linear accelerator

    Science.gov (United States)

    Janssen, Rogier W. J.; Faddegon, Bruce A.; Dries, Wim J. F.

    2008-04-01

    The treatment of large tumors such as sarcomas with intra-operative radiotherapy using a Mobetron® is often complicated because of the limited field size of the primary collimator and the available applicators (max Ø100 mm). To circumvent this limitation a prototype rectangular applicator of 80 × 150 mm2 was designed and built featuring an additional scattering foil located at the top of the applicator. Because of its proven accuracy in modeling linear accelerator components the design was based on the EGSnrc Monte Carlo simulation code BEAMnrc. First, the Mobetron® treatment head was simulated both without an applicator and with a standard 100 mm applicator. Next, this model was used to design an applicator foil consisting of a rectangular Al base plate covering the whole beam and a pyramid of four stacked cylindrical slabs of different diameters centered on top of it. This foil was mounted on top of a plain rectangular Al tube. A prototype was built and tested with diode dosimetry in a water tank. Here, the prototype showed clinically acceptable 80 × 150 mm2 dose distributions for 4 MeV, 6 MeV and 9 MeV, obviating the use of complicated multiple irradiations with abutting field techniques. In addition, the measurements agreed well with the MC simulations, typically within 2%/1 mm.

  8. Total skin electron therapy at two energies on a linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.R.; Wymme, C.J. [Christchurch Hospital (New Zealand); Hugtenburg, R.P. [Canterbury Univ., Christchurch (New Zealand). Dept. of Physics

    1995-12-01

    Extensive measurements have been performed on the Varian 2100c linear accelerator with a water equivalent phantom, cylindrical phantoms and an anthropomorphic phantom to validate the 12 beam technique and to measure calibration factors with respect to total skin electron therapy (TEST) for the treatment of Mycosis Fungoides. The technique was developed at 2.5 MeV and 3.5 MeV (mean energy at the surface) with the energy degrading screen at 30 cm from the patient. Field flatness over the treatment area was within {+-} 3% with no significant regional variation of energy. The bremstrahlung contamination was 0.06 - 1.2 %. The absolute calibration of absorbed dose to the patient required the measurement of the ratio skin dose to calibration point dose, this was confirmed by measurements with a parallel plate ionization chamber and thermoluminescence dosimetry. The results indicate the care that must be taken with ionization chamber measurements under TSET condition to avoid erroneous readings due to the `polarity effect`. A protocol is suggested for the practical implementation and quality assurance of the technique. The results of two successful treatments are presented and compared with the predicted results from phantoms. 18 refs., 2 tabs., 10 figs.

  9. Analytical calculation of central-axis dosimetric data for a dedicated 6-MV radiosurgery linear accelerator.

    Science.gov (United States)

    Yang, James N; Pino, Ramiro

    2008-10-01

    Narrow beams are extensively used in stereotactic radiosurgery. The accuracy of treatment planning dose calculation depends largely on how well the dosimetric data are measured during the machine commissioning. Narrow beams are characterized by the lack of lateral electronic equilibrium. The lateral electronic disequilibrium in the radiation field and detector's finite size are likely to compromise the accuracy in dose measurements in these beams. This may have a profound impact on outcome in patients who undergo stereotactic radiosurgery. To confirm the measured commissioning data for a dedicated 6-MV linear accelerator-based radiosurgery system, we developed an analytical model to calculate the narrow photon beam central-axis dose. This model is an extension of a previously reported method of Nizin and Mooij for the calculation of the absorbed dose under lateral electronic disequilibrium conditions at depth of dmax or greater. The scatter factor and tissue-maximum ratio were calculated for narrow beams using the parametrized model and compared to carefully measured results for the same beams. For narrow beam radii ranging from 0.2 to 1.5 cm, the differences between the analytical and measured scatter factors were no greater than 1.4%. In addition, the differences between the analytical and measured tissue-maximum ratios were within 3.3% for regions greater than the maximum dose depth. The estimated error of this analytical calculation was less than 2%, which is sufficient to validate measurement results.

  10. Monte Carlo simulations for 20 MV X-ray spectrum reconstruction of a linear induction accelerator

    Institute of Scientific and Technical Information of China (English)

    WANG Yi; LI Qin; JIANG Xiao-Guo

    2012-01-01

    To study the spectrum reconstruction of the 20 MV X-ray generated by the Dragon-I linear induction accelerator,the Monte Carlo method is applied to simulate the attenuations of the X-ray in the attenuators of different thicknesses and thus provide the transmission data.As is known,the spectrum estimation from transmission data is an ill-conditioned problem.The method based on iterative perturbations is employed to derive the X-ray spectra,where initial guesses are used to start the process.This algorithm takes into account not only the minimization of the differences between the measured and the calculated transmissions but also the smoothness feature of the spectrum function.In this work,various filter materials are put to use as the attenuator,and the condition for an accurate and robust solution of the X-ray spectrum calculation is demonstrated.The influences of the scattering photons within different intervals of emergence angle on the X-ray spectrum reconstruction are also analyzed.

  11. Application of variance reduction techniques in Monte Carlo simulation of clinical electron linear accelerator

    Science.gov (United States)

    Zoubair, M.; El Bardouni, T.; El Gonnouni, L.; Boulaich, Y.; El Bakkari, B.; El Younoussi, C.

    2012-01-01

    Computation time constitutes an important and a problematic parameter in Monte Carlo simulations, which is inversely proportional to the statistical errors so there comes the idea to use the variance reduction techniques. These techniques play an important role in reducing uncertainties and improving the statistical results. Several variance reduction techniques have been developed. The most known are Transport cutoffs, Interaction forcing, Bremsstrahlung splitting and Russian roulette. Also, the use of a phase space seems to be appropriate to reduce enormously the computing time. In this work, we applied these techniques on a linear accelerator (LINAC) using the MCNPX computer Monte Carlo code. This code gives a rich palette of variance reduction techniques. In this study we investigated various cards related to the variance reduction techniques provided by MCNPX. The parameters found in this study are warranted to be used efficiently in MCNPX code. Final calculations are performed in two steps that are related by a phase space. Results show that, comparatively to direct simulations (without neither variance-reduction nor phase space), the adopted method allows an improvement in the simulation efficiency by a factor greater than 700.

  12. Nonlinear combination parametric resonance of axially accelerating viscoelastic strings constituted by the standard linear solid model

    Institute of Scientific and Technical Information of China (English)

    LIM; C.W.

    2010-01-01

    Nonlinear combination parametric resonance is investigated for an axially accelerating viscoelastic string.The governing equation of in-planar motion of the string is established by introducing a coordinate transform in the Eulerian equation of a string with moving boundaries.The string under investigation is constituted by the standard linear solid model in which the material,not partial,time derivative was used.The governing equation leads to the Mote model for transverse vibration by omitting the longitudinal component and higher order terms.The Kirchhoff model is derived from the Mote model by replacing the tension with the averaged tension over the string.The two models are respectively analyzed via the method of multiple scales for principal parametric resonance.The amplitudes and the existence conditions of steady-state response and its stability can be numerically determined.Numerical calculations demonstrate the effects of the string material parameters,the initial tension,and the axial speed fluctuation amplitude.The outcomes of the two models are qualitatively and quantitatively compared.

  13. Development Of A Four Cavity Second-harmonic Gyroklystron As Driver For A Linear Accelerator

    CERN Document Server

    Gouveia, E S

    2004-01-01

    Gyroklystrons are microwave amplifiers that combine the multi-cavity configuration of a klystron with the energy extraction mechanism of the cyclotron maser instability. These devices have been studied at the University of Maryland for several years. This work is focused on the development of a 17.14 GHz four-cavity frequency-doubling gyroklystron circuit. This device was designed specifically to drive a high gradient linear accelerator recently developed by the Haimson Corporation. The gyroklystron was designed using the code MAGYKL, yielding a predicted output power of 87 MW for an input drive power of 250 W, with a velocity pitch ratio (α) of 1.4. The tube was later fabricated, and underwent a series of experimental tests to evaluate its performance. The highest peak power observed was 18.5 ± 1.7 MW, corresponding to an efficiency of 7.0% and a gain of 24.0 dB. This result fell short of the theoretical design, yet it was consistent with the low value of the velocity pitch ratio (&a...

  14. Retrospective study on therapy options of brain metastases surgery versus stereotactic radiotherapy with the linear accelerator

    CERN Document Server

    Fortunati, M K S

    2001-01-01

    Background: in the therapy of brain metastases there has been a great progress in the last years. It was shown, that more aggressive therapies can not only extend the survival of the patients, but also improve quality of life. The major question of this study was, whether surgery or stereotactic radiotherapy with the linear accelerator show better results in behalf of the survival. Beside this major question many parameters regarding the patient or his primary cancer were examined. Methods: from the 1st of January 1995 until the 30th of June 2000 233 patients with one or more brain metastases have been treated in the Wagner Jauregg Landesnervenkrankenhaus Oberoesterreich (WJ LNKH OeO). The LINAC has been established on the 1st of July 1997. The patients have been distributed in three groups: 1. LINAC-group: 81 patients have been treated from the 1st of July 1997 until the 30th of June 2000 with the LINAC. 2. Surgery-group: 81 patients have been operated from the 1st of July 1997 until the 30th June 2000. 3 Co...

  15. Rotational IMRT delivery using a digital linear accelerator in very high dose rate 'burst mode'

    Science.gov (United States)

    Salter, Bill J.; Sarkar, Vikren; Wang, Brian; Shukla, Himanshu; Szegedi, Martin; Rassiah-Szegedi, Prema

    2011-04-01

    Recently, there has been a resurgence of interest in arc-based IMRT, through the use of 'conventional' multileaf collimator (MLC) systems that can treat large tumor volumes in a single, or very few pass(es) of the gantry. Here we present a novel 'burst mode' modulated arc delivery approach, wherein 2000 monitor units per minute (MU min-1) high dose rate bursts of dose are facilitated by a flattening-filter-free treatment beam on a Siemens Artiste (Oncology Care Systems, Siemens Medical Solutions, Concord, CA, USA) digital linear accelerator in a non-clinical configuration. Burst mode delivery differs from continuous mode delivery, used by Elekta's VMAT (Elekta Ltd, Crawley, UK) and Varian's RapidArc (Varian Medical Systems, Palo Alto, CA, USA) implementations, in that dose is not delivered while MLC leaves are moving. Instead, dose is delivered in bursts over very short arc angles and only after an MLC segment shape has been completely formed and verified by the controller. The new system was confirmed to be capable of delivering a wide array of clinically relevant treatment plans, without machine fault or other delivery anomalies. Dosimetric accuracy of the modulated arc platform, as well as the Prowess (Prowess Inc., Concord, CA, USA) prototype treatment planning version utilized here, was quantified and confirmed, and delivery times were measured as significantly brief, even with large hypofractionated doses. The burst mode modulated arc approach evaluated here appears to represent a capable, accurate and efficient delivery approach.

  16. Comparison of dosimetric characteristics of Siemens virtual and physical wedges for ONCOR linear accelerator

    Directory of Open Access Journals (Sweden)

    Attalla Ehab

    2010-01-01

    Full Text Available Dosimetric properties of virtual wedge (VW and physical wedge (PW in 6- and 10-MV photon beams from a Siemens ONCOR linear accelerator, including wedge factors, depth doses, dose profiles, peripheral doses, are compared. While there is a great difference in absolute values of wedge factors, VW factors (VWFs and PW factors (PWFs have a similar trend as a function of field size. PWFs have stronger depth dependence than VWF due to beam hardening in PW fields. VW dose profiles in the wedge direction, in general, match very well with those of PW, except in the toe area of large wedge angles with large field sizes. Dose profiles in the nonwedge direction show a significant reduction in PW fields due to off-axis beam softening and oblique filtration. PW fields have significantly higher peripheral doses than open and VW fields. VW fields have similar surface doses as the open fields, while PW fields have lower surface doses. Surface doses for both VW and PW increase with field size and slightly with wedge angle. For VW fields with wedge angles 45° and less, the initial gap up to 3 cm is dosimetrically acceptable when compared to dose profiles of PW. VW fields in general use less monitor units than PW fields.

  17. Outcome of radiosurgery treatment with a linear accelerator in patients with trigeminal neuralgia.

    Science.gov (United States)

    Cordero Tous, N; Cruz Sabido, J de la; Román Cutillas, A M; Saura Rojas, E J; Jorques Infante, A M; Olivares Granados, G

    2017-04-01

    An overview of the effectiveness of radiosurgery in patients diagnosed with trigeminal neuralgia with an analysis of potential predictors of good outcome. All patients treated with linear accelerator radiosurgery between 2004 and 2011 were analysed. A dose of 60Gy dose was administered 1 to 2mm from the root entry zone with a maximum isodose of 20% delivered to the brainstem. Clinical results for pain control and any side effects were analysed at 12 and 36 months (BNI score). The study included 71 patients (mean follow-up 50.5 months). Pain improvement at 12 months was observed in 68.11% of the total (28.98% with BNI score i-ii; 39.12% with BNI score iii) and at 36 months in 58.21% (23.88% BNI score i-ii; 34.32% BNI score iii). Average recovery time was 3.69 months and the relapse rate was 44.68%. Patients with typical pain displayed statistically significant differences in improvement rates at 12 and at 36 months (Pfacial numbness (13.43%); only 2 cases were clinically relevant (2.98%). According to our results, radiosurgery is an effective treatment for trigeminal neuralgia, with few side effects. Typical pain seems to be a good predictor of pain relief. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Beam Characterization of 10-MV Photon Beam from Medical Linear Accelerator without Flattening Filter.

    Science.gov (United States)

    Shimozato, Tomohiro; Aoyama, Yuichi; Matsunaga, Takuma; Tabushi, Katsuyoshi

    2017-01-01

    This work investigated the dosimetric properties of a 10-MV photon beam emitted from a medical linear accelerator (linac) with no flattening filter (FF). The aim of this study is to analyze the radiation fluence and energy emitted from the flattening filter free (FFF) linac using Monte Carlo (MC) simulations. The FFF linac was created by removing the FF from a linac in clinical use. Measurements of the depth dose (DD) and the off-axis profile were performed using a three-dimensional water phantom with an ionization chamber. A MC simulation for a 10-MV photon beam from this FFF linac was performed using the BEAMnrc code. The off-axis profiles for the FFF linac exhibited a chevron-like distribution, and the dose outside the irradiation field was found to be lower for the FFF linac than for a linac with an FF (FF linac). The DD curves for the FFF linac included many contaminant electrons in the build-up region. Therefore, for clinical use, a metal filter is additionally required to reduce the effects of the electron contamination. The mean energy of the FFF linac was found to be lower than that of the FF linac owing to the absence of beam hardening caused by the FF.

  19. An Analytic Linear Accelerator Source Model for Monte Carlo Dose Calculations. I. Model Representation and Construction

    CERN Document Server

    Tian, Zhen; Folkerts, Michael; Shi, Feng; Jiang, Steve B; Jia, Xun

    2015-01-01

    Monte Carlo (MC) simulation is considered as the most accurate method for radiation dose calculations. Accuracy of a source model for a linear accelerator is critical for the overall dose calculation accuracy. In this paper, we presented an analytical source model that we recently developed for GPU-based MC dose calculations. A key concept called phase-space-ring (PSR) was proposed. It contained a group of particles that are of the same type and close in energy and radial distance to the center of the phase-space plane. The model parameterized probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. For a primary photon PSRs, the particle direction is assumed to be from the beam spot. A finite spot size is modeled with a 2D Gaussian distribution. For a scattered photon PSR, multiple Gaussian components were used to model the particle direction. The direction distribution of an electron PSRs was also modeled as a 2D Gaussian distributi...

  20. Occupational doses due to photoneutrons in medical linear accelerators rooms; Doses ocupacionais devido a neutrons em salas de aceleradores lineares de uso medico

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Alessandro Facure Neves de Salles

    2006-04-15

    Medical linear accelerators, with maximum photon energies above 10 MeV, are becoming of common use in Brazil. Although desirable in the therapeutic point of view, the increase in photon energies causes the generation of undesired neutrons, which are produced through nuclear reactions between photons and the high Z target nuclei of the materials that constitute the accelerator head. In this work, MCNP simulation was undertaken to examine the neutron equivalent doses around the accelerators head and at the entrance of medical linear accelerators treatment rooms, some of them licensed in Brazil by the National Regulatory Agency (CNEN). The simulated neutron dose equivalents varied between 2 e 26 {mu} Sv/Gy{sub RX}, and the results were compared with calculations performed with the use of some semi-empirical equations found in literature. It was found that the semi-empirical equations underestimate the simulated neutron doses in the majority of the cases, if compared to the simulated values, suggesting that these equations must be revised, due to the increasing number of high energy machines in the country. (author)

  1. Design and analysis of linear oscillating motor for linear pump application-magnetic field, dynamics and thermotics

    Science.gov (United States)

    Jiao, Zongxia; Wang, Tianyi; Yan, Liang

    2016-11-01

    A linear oscillating motor is an electromagnetic actuator that can achieve short-stroke reciprocating movement directly without auxiliary transmission mechanisms. It has been widely used in linear pump applications as the source of power and motion. However, because of the demand of high power density in a linear actuation system, the performance of linear oscillating motors has been the focus of studies and deserves further research for high power density. In this paper, a general framework of linear oscillating motor design and optimization is addressed in detail, including the electromagnetic, dynamics, and thermal aspects. First, the electromagnetic and dynamics characteristics are modeled to reveal the principle for optimization. Then, optimization and analysis on magnetic structure, resonant system, and thermal features are conducted, which provide the foundation for prototype development. Finally, experimental results are provided for validation. As a whole, this process offers complete guidance for high power density linear oscillating motors in linear pump applications.

  2. Design and analysis of linear oscillating motor for linear pump application-magnetic field, dynamics and thermotics

    Science.gov (United States)

    Jiao, Zongxia; Wang, Tianyi; Yan, Liang

    2016-12-01

    A linear oscillating motor is an electromagnetic actuator that can achieve short-stroke reciprocating movement directly without auxiliary transmission mechanisms. It has been widely used in linear pump applications as the source of power and motion. However, because of the demand of high power density in a linear actuation system, the performance of linear oscillating motors has been the focus of studies and deserves further research for high power density. In this paper, a general framework of linear oscillating motor design and optimization is addressed in detail, including the electromagnetic, dynamics, and thermal aspects. First, the electromagnetic and dynamics characteristics are modeled to reveal the principle for optimization. Then, optimization and analysis on magnetic structure, resonant system, and thermal features are conducted, which provide the foundation for prototype development. Finally, experimental results are provided for validation. As a whole, this process offers complete guidance for high power density linear oscillating motors in linear pump applications.

  3. Commissioning of a linear accelerator to execute volumetric modulated arc therapy; Comissionamento de um acelerador linear para realizacao da radioterapia em arco modulada volumetricamente

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Leandro R.; Santos, Gabriela R.; Menegussi, Gisela; Silva, Marco A.; Passaro, Anderson M.; Rodrigues, Laura N., E-mail: leandrorg11@hotmail.com [Instituto do Cancer do Estado de Sao Paulo (ICESP), Sao Paulo, SP (Brazil)

    2013-08-15

    Radiotherapy techniques like VMAT allow complex dose distributions modulating the beam intensity within the irradiation field from the handling of multi-blade collimators, variations in dose rate, different speeds of rotation of the gantry and collimator angle allowing greater conformation of the dose to the tumor volume and a lower dose to healthy tissues. To ensure proper dose delivery, the linear particle accelerator must be able to monitor and perform all the variation in these parameters simultaneously. In this work dosimetric tests obtained in the literature that aims to commission, implement and ensure the quality of VMAT treatments were performed performed in the Institute of Cancer of Sao Paulo State (ICESP). From the results obtained it was established a program of quality control for the linear accelerator studied. The linearity and stability response of ionization chamber monitoring, leafs accuracy positioning, flatness and symmetry of beam to VMAT irradiations were evaluated. The obtained results are in agreement with the literature. It can be concluded that the accelerator studied is able to satisfactorily control the variation of all necessary parameters to perform the VMAT treatments. (author)

  4. Evaluation of the repeatability of dosimetric parameters of a linear accelerator beam; Avaliacao da repetibilidade de parametros dosimetricos do feixe de um acelerador linear

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, Humberto A.S.; Oliveira, Harley F. de; Silva, Maelson do N.; Pavoni, Juliana F., E-mail: h.morelli@hotmail.com [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Servico de Radioterapia

    2016-07-01

    This study aims to evaluate the repeatability of symmetry and flatness of the photon beam of 6 MV linear accelerator Oncor Impression, Siemens, from the Radiotherapy Department of the Hospital das Clinicas da Faculdade de Medicina de Ribeirao Preto - USP. In total they were collected 102 measures, weekly, through two-dimensional detector of ionization chambers, Matrixx Evolution, IBA Dosimetry, connected to a computer with software OmniProI'mrt. The isocenter of the linear accelerator was placed in the center of the sensitive volume of the detector with solid water plates above and below these. Data were collected with 100 UM, with field size 10 x 10 cm². The flatness and symmetry values were calculated by the software used. The first measurement of this work was used as reference, the others were compared with it, taking into account the values of permissible variation for these parameters. The minimum, maximum and average value were analyzed. The literature indicates that the flatness and symmetry values should not vary by more than 2 and 3%, respectively. The results of this work show that the values of these parameters for the linear accelerator study are within the permissible variations in protocols and are therefore able to appropriate clinical use. (author)

  5. Electron acceleration in vacuum by a linearly-polarized ultra-short tightly-focused THz pulse

    Science.gov (United States)

    Salamin, Yousef I.

    2017-09-01

    The analytic expressions for the electric and magnetic fields of an ultra-short, tightly-focused, linearly-polarized laser pulse propagating in vacuum, derived elsewhere (Salamin, 2015) [13] to lowest-order of a truncated power-series expansion from vector and scalar potentials, are employed here for single electron acceleration calculations by THz radiation. It is shown that, while currently available THz peak powers cannot accelerate electrons appreciably, yet they result in substantial energy gradients. The field equations are used to show that an electron can be accelerated, in vacuum, from rest to 4.83 MeV by interaction with a single THz pulse of 1 TW power. Similarly, a 1 GW power pulse focused to sub-wavelength waist radius at focus is shown to accelerate the electron from rest to 5.76 keV.

  6. Polynomial chaos expansion in structural dynamics: Accelerating the convergence of the first two statistical moment sequences

    Science.gov (United States)

    Jacquelin, E.; Adhikari, S.; Sinou, J.-J.; Friswell, M. I.

    2015-11-01

    Polynomial chaos solution for the frequency response of linear non-proportionally damped dynamic systems has been considered. It has been observed that for lightly damped systems the convergence of the solution can be very poor in the vicinity of the deterministic resonance frequencies. To address this, Aitken's transformation and its generalizations are suggested. The proposed approach is successfully applied to the sequences defined by the first two moments of the responses, and this process significantly accelerates the polynomial chaos convergence. In particular, a 2-dof system with respectively 1 and 2 parameter uncertainties has been studied. The first two moments of the frequency response were calculated by Monte Carlo simulation, polynomial chaos expansion and Aitken's transformation of the polynomial chaos expansion. Whereas 200 polynomials are required to have a good agreement with Monte Carlo results around the deterministic eigenfrequencies, less than 50 polynomials transformed by the Aitken's method are enough. This latter result is improved if a generalization of Aitken's method (recursive Aitken's transformation, Shank's transformation) is applied. With the proposed convergence acceleration, polynomial chaos may be reconsidered as an efficient method to estimate the first two moments of a random dynamic response.

  7. Dose reduction using a dynamic, piecewise-linear attenuator

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Scott S., E-mail: sshsieh@stanford.edu [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Fleischmann, Dominik [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States)

    2014-02-15

    Purpose: The authors recently proposed a dynamic, prepatient x-ray attenuator capable of producing a piecewise-linear attenuation profile customized to each patient and viewing angle. This attenuator was intended to reduce scatter-to-primary ratio (SPR), dynamic range, and dose by redistributing flux. In this work the authors tested the ability of the attenuator to reduce dose and SPR in simulations. Methods: The authors selected four clinical applications, including routine full field-of-view scans of the thorax and abdomen, and targeted reconstruction tasks for an abdominal aortic aneurysm and the pancreas. Raw data were estimated by forward projection of the image volume datasets. The dynamic attenuator was controlled to reduce dose while maintaining peak variance by solving a convex optimization problem, assuminga priori knowledge of the patient anatomy. In targeted reconstruction tasks, the noise in specific regions was given increased weighting. A system with a standard attenuator (or “bowtie filter”) was used as a reference, and used either convex optimized tube current modulation (TCM) or a standard TCM heuristic. The noise of the scan was determined analytically while the dose was estimated using Monte Carlo simulations. Scatter was also estimated using Monte Carlo simulations. The sensitivity of the dynamic attenuator to patient centering was also examined by shifting the abdomen in 2 cm intervals. Results: Compared to a reference system with optimized TCM, use of the dynamic attenuator reduced dose by about 30% in routine scans and 50% in targeted scans. Compared to the TCM heuristics which are typically used withouta priori knowledge, the dose reduction is about 50% for routine scans. The dynamic attenuator gives the ability to redistribute noise and variance and produces more uniform noise profiles than systems with a conventional bowtie filter. The SPR was also modestly reduced by 10% in the thorax and 24% in the abdomen. Imaging with the dynamic

  8. Some generalisations of linear-graph modelling for dynamic systems

    Science.gov (United States)

    de Silva, Clarence W.; Pourazadi, Shahram

    2013-11-01

    Proper modelling of a dynamic system can benefit analysis, simulation, design, evaluation and control of the system. The linear-graph (LG) approach is suitable for modelling lumped-parameter dynamic systems. By using the concepts of graph trees, it provides a graphical representation of the system, with a direct correspondence to the physical component topology. This paper systematically extends the application of LGs to multi-domain (mixed-domain or multi-physics) dynamic systems by presenting a unified way to represent different domains - mechanical, electrical, thermal and fluid. Preservation of the structural correspondence across domains is a particular advantage of LGs when modelling mixed-domain systems. The generalisation of Thevenin and Norton equivalent circuits to mixed-domain systems, using LGs, is presented. The structure of an LG model may follow a specific pattern. Vector LGs are introduced to take advantage of such patterns, giving a general LG representation for them. Through these vector LGs, the model representation becomes simpler and rather compact, both topologically and parametrically. A new single LG element is defined to facilitate the modelling of distributed-parameter (DP) systems. Examples are presented using multi-domain systems (a motion-control system and a flow-controlled pump), a multi-body mechanical system (robot manipulator) and DP systems (structural rods) to illustrate the application and advantages of the methodologies developed in the paper.

  9. Dynamic inversion method based on the time-staggered stereo-modeling scheme and its acceleration

    Science.gov (United States)

    Jing, Hao; Yang, Dinghui; Wu, Hao

    2016-12-01

    A set of second-order differential equations describing the space-time behaviour of derivatives of displacement with respect to model parameters (i.e. waveform sensitivities) is obtained via taking the derivative of the original wave equations. The dynamic inversion method obtains sensitivities of the seismic displacement field with respect to earth properties directly by solving differential equations for them instead of constructing sensitivities from the displacement field itself. In this study, we have taken a new perspective on the dynamic inversion method and used acceleration approaches to reduce the computational time and memory usage to improve its ability of performing high-resolution imaging. The dynamic inversion method, which can simultaneously use different waves and multicomponent observation data, is appropriate for directly inverting elastic parameters, medium density or wave velocities. Full wavefield information is utilized as much as possible at the expense of a larger amount of calculations. To mitigate the computational burden, two ways are proposed to accelerate the method from a computer-implementation point of view. One is source encoding which uses a linear combination of all shots, and the other is to reduce the amount of calculations on forward modeling. We applied a new finite-difference (FD) method to the dynamic inversion to improve the computational accuracy and speed up the performance. Numerical experiments indicated that the new FD method can effectively suppress the numerical dispersion caused by the discretization of wave equations, resulting in enhanced computational efficiency with less memory cost for seismic modeling and inversion based on the full wave equations. We present some inversion results to demonstrate the validity of this method through both checkerboard and Marmousi models. It shows that this method is also convergent even with big deviations for the initial model. Besides, parallel calculations can be easily

  10. A collimated detection system for assessing leakage dose from medical linear accelerators at the patient plane.

    Science.gov (United States)

    Lonski, P; Taylor, M L; Franich, R D; Kron, T

    2014-03-01

    Leakage radiation from linear accelerators can make a significant contribution to healthy tissue dose in patients undergoing radiotherapy. In this work thermoluminescent dosimeters (LiF:Mg,Cu,P TLD chips) were used in a focused lead cone loaded with TLD chips for the purpose of evaluating leakage dose at the patient plane. By placing the TLDs at one end of a stereotactic cone, a focused measurement device is created; this was tested both in and out of the primary beam of a Varian 21-iX linac using 6 MV photons. Acrylic build up material of 1.2 cm thickness was used inside the cone and measurements made with either one or three TLD chips at a given distance from the target. Comparing the readings of three dosimeters in one plane inside the cone offered information regarding the orientation of the cone relative to a radiation source. Measurements in the patient plane with the linac gantry at various angles demonstrated that leakage dose was approximately 0.01% of the primary beam out of field when the cone was pointed directly towards the target and 0.0025% elsewhere (due to scatter within the gantry). No specific 'hot spots' (e.g., insufficient shielding or gaps at abutments) were observed. Focused cone measurements facilitate leakage dose measurements from the linac head directly at the patient plane and allow one to infer the fraction of leakage due to 'direct' photons (along the ray-path from the bremsstrahlung target) and that due to scattered photons.

  11. Linear Accelerator-Based Radiosurgery Alone for Arteriovenous Malformation: More Than 12 Years of Observation

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Takayuki, E-mail: takayuki@nagasaki-u.ac.jp; Kamada, Kensaku; Izumo, Tsuyoshi; Hayashi, Nobuyuki; Nagata, Izumi

    2014-07-01

    Purpose: Although radiosurgery is an accepted treatment method for intracranial arteriovenous malformations (AVMs), its long-term therapeutic effects have not been sufficiently evaluated, and many reports of long-term observations are from gamma-knife facilities. Furthermore, there are few reported results of treatment using only linear accelerator (LINAC)-based radiosurgery (LBRS). Methods and Materials: Over a period of more than 12 years, we followed the long-term results of LBRS treatment performed in 51 AVM patients. Results: The actuarial obliteration rates, after a single radiosurgery session, at 3, 5, 10, and 15 years were 46.9%, 54.0%, 64.4%, and 68.0%, respectively; when subsequent radiosurgeries were included, the rates were 46.9%, 61.3%, 74.2%, and 90.3%, respectively. Obliteration rates were significantly related to target volumes ≥4 cm{sup 3}, marginal doses ≥12 Gy, Spetzler-Martin grades (1 vs other), and AVM scores ≥1.5; multivariate analyses revealed a significant difference for target volumes ≥4 cm{sup 3}. The postprocedural actuarial symptomatic radiation injury rates, after a single radiation surgery session, at 5, 10, and 15 years were 12.3%, 16.8%, and 19.1%, respectively. Volumes ≥4 cm{sup 3}, location (lobular or other), AVM scores ≥1.5, and the number of radiosurgery were related to radiation injury incidence; multivariate analyses revealed significant differences associated with volumes ≥4 cm{sup 3} and location (lobular or other). Conclusions: Positive results can be obtained with LBRS when performed with a target volume ≤4 cm{sup 3}, an AVM score ≤1.5, and ≥12 Gy radiation. Bleeding and radiation injuries may appear even 10 years after treatment, necessitating long-term observation.

  12. Evaluation of the small field of for the detector type medical linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Woon; Jung, Kang Kyo; Cho, Pyong Kon [Dept. of Radiological Science, Catholic University of DaeGu, Daegu (Korea, Republic of); Shin, Gwi Soon [Dept. of Radiological Technology, Songho College, Hoengseong (Korea, Republic of)

    2016-06-15

    Recently linear accelerator of radiation therapy intensity modulated radiation therapy, stereotactic radiation therapy are widely used. Such radiation treatment techniques are generally difficult to exclude the small field by using the inverse treatment plan. It is necessary to dose an accurate measurement of characteristics of the small field. Thus, using different detectors to measure the volume of the effective percentage depth dose, beam profile, and the output factor of the small field was to evaluate the dose characteristics of each detector. Experimental results for the X-ray beam 6 MV energy beam quality(PDD20/PDD10) is 10 × 10 cm{sup 2} Diode detector is as high as 2.4% compared to Pinpoint detector. All field size to lesser effective volume of Diode detector shows that it is far better than other detectors by more than 50% of small penumbra, therefore spatial resolution far excellent. In field size 2 × 2 cm{sup 2} Semiflex detector was measured about 2% less than the other detector. Field size 1 × 1 cm{sup 2} is that there is no judgment about the validity show the difference between 20%. Field size 1 × 1 cm{sup 2} from the measured values of the Diode detector and Pinpoint detector showed a 13% difference. Less than field size 3 × 3 cm{sup 2} the feed to the difference between the output factor of the effective volume of the detector to be used for the effective volume available to the detector.

  13. Automating quality assurance of digital linear accelerators using a radioluminescent phosphor coated phantom and optical imaging

    Science.gov (United States)

    Jenkins, Cesare H.; Naczynski, Dominik J.; Yu, Shu-Jung S.; Yang, Yong; Xing, Lei

    2016-09-01

    Performing mechanical and geometric quality assurance (QA) tests for medical linear accelerators (LINAC) is a predominantly manual process that consumes significant time and resources. In order to alleviate this burden this study proposes a novel strategy to automate the process of performing these tests. The autonomous QA system consists of three parts: (1) a customized phantom coated with radioluminescent material; (2) an optical imaging system capable of visualizing the incidence of the radiation beam, light field or lasers on the phantom; and (3) software to process the captured signals. The radioluminescent phantom, which enables visualization of the radiation beam on the same surface as the light field and lasers, is placed on the couch and imaged while a predefined treatment plan is delivered from the LINAC. The captured images are then processed to self-calibrate the system and perform measurements for evaluating light field/radiation coincidence, jaw position indicators, cross-hair centering, treatment couch position indicators and localizing laser alignment. System accuracy is probed by intentionally introducing errors and by comparing with current clinical methods. The accuracy of self-calibration is evaluated by examining measurement repeatability under fixed and variable phantom setups. The integrated system was able to automatically collect, analyze and report the results for the mechanical alignment tests specified by TG-142. The average difference between introduced and measured errors was 0.13 mm. The system was shown to be consistent with current techniques. Measurement variability increased slightly from 0.1 mm to 0.2 mm when the phantom setup was varied, but no significant difference in the mean measurement value was detected. Total measurement time was less than 10 minutes for all tests as a result of automation. The system’s unique features of a phosphor-coated phantom and fully automated, operator independent self-calibration offer the

  14. Small field detector correction factors: effects of the flattening filter for Elekta and Varian linear accelerators.

    Science.gov (United States)

    Tyler, Madelaine K; Liu, Paul Z Y; Lee, Christopher; McKenzie, David R; Suchowerska, Natalka

    2016-05-08

    Flattening filter-free (FFF) beams are becoming the preferred beam type for stereotactic radiosurgery (SRS) and stereotactic ablative radiation therapy (SABR), as they enable an increase in dose rate and a decrease in treatment time. This work assesses the effects of the flattening filter on small field output factors for 6 MV beams generated by both Elekta and Varian linear accelerators, and determines differences between detector response in flattened (FF) and FFF beams. Relative output factors were measured with a range of detectors (diodes, ionization cham-bers, radiochromic film, and microDiamond) and referenced to the relative output factors measured with an air core fiber optic dosimeter (FOD), a scintillation dosimeter developed at Chris O'Brien Lifehouse, Sydney. Small field correction factors were generated for both FF and FFF beams. Diode measured detector response was compared with a recently published mathematical relation to predict diode response corrections in small fields. The effect of flattening filter removal on detector response was quantified using a ratio of relative detector responses in FFF and FF fields for the same field size. The removal of the flattening filter was found to have a small but measurable effect on ionization chamber response with maximum deviations of less than ± 0.9% across all field sizes measured. Solid-state detectors showed an increased dependence on the flattening filter of up to ± 1.6%. Measured diode response was within ± 1.1% of the published mathematical relation for all fields up to 30 mm, independent of linac type and presence or absence of a flattening filter. For 6 MV beams, detector correction factors between FFF and FF beams are interchangeable for a linac between FF and FFF modes, providing that an additional uncertainty of up to ± 1.6% is accepted.

  15. Treatment vault shielding for a flattening filter-free medical linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kry, Stephen F; Howell, Rebecca M; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)], E-mail: sfkry@mdanderson.org

    2009-03-07

    The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m{sup 3} less concrete to shield the single-energy linac and 36 m{sup 3} less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.

  16. Development and Dosimetric Characterization of a Tissue Substitute (Bolus) For Use in Linear Accelerator Electron Radiotherapy

    Science.gov (United States)

    Estrada Trujillo, Jorge; Villaseñor Navarro, Luis Felipe; Mitsoura, Eleni

    2003-09-01

    We propose the design of a new custom made material, to be used as a tissue substitute in external beam electron radiotherapy, based on cotton fabric and beeswax. Due to its inexpensive, easy preparation, constant thickness, flexibility, uniform density and physical properties similar to those of soft tissue, this bolus will insure personalized optimal dose build up and dose distribution in irregular treatment regions. Materials and Methods: We used commercial Campeche beeswax and 100% cotton fabric to prepare the bolus. Beeswax's physical characteristics were determined by thermal and density analysis. Its chemical properties are to be determined by electronic microcopy. We performed quality control tests and calibration of the Varian 2100C linear accelerator. The tissue equivalence of the material is established for a range of electron energies (6, 9, 12, 16, 20 MeV) using a water equivalent solid phantom (PTW; Freiburg, Germany) and a plane parallel ionization chamber (PTW) associated to a PTW electrometer. Results: Beeswax's absolute density was found to be 0.9181g/ml at 21°C, with a melting point of 45°C. For the bolus elaboration, the cotton fabric was soaked in liquid beeswax and thin sheets of approximately 1 mm were obtained. These presented high flexibility, physical stability (color, texture, thickness) and homogeneity. Determination of this dosimetric characteristics and equivalent thickness are still in process. Discussion and conclusions: Our preliminary results suggest that the tissue substitute is easily made, inexpensive to produce, molds well to the treatment area and its positioning is easy and reproducible over the course of the treatment. So we consider that it's a good alternative to the commercial bolus.

  17. A Comparison Between GATE and MCNPX Monte Carlo Codes in Simulation of Medical Linear Accelerator

    Science.gov (United States)

    Sadoughi, Hamid-Reza; Nasseri, Shahrokh; Momennezhad, Mahdi; Sadeghi, Hamid-Reza; Bahreyni-Toosi, Mohammad-Hossein

    2014-01-01

    Radiotherapy dose calculations can be evaluated by Monte Carlo (MC) simulations with acceptable accuracy for dose prediction in complicated treatment plans. In this work, Standard, Livermore and Penelope electromagnetic (EM) physics packages of GEANT4 application for tomographic emission (GATE) 6.1 were compared versus Monte Carlo N-Particle eXtended (MCNPX) 2.6 in simulation of 6 MV photon Linac. To do this, similar geometry was used for the two codes. The reference values of percentage depth dose (PDD) and beam profiles were obtained using a 6 MV Elekta Compact linear accelerator, Scanditronix water phantom and diode detectors. No significant deviations were found in PDD, dose profile, energy spectrum, radial mean energy and photon radial distribution, which were calculated by Standard and Livermore EM models and MCNPX, respectively. Nevertheless, the Penelope model showed an extreme difference. Statistical uncertainty in all the simulations was MCNPX, Standard, Livermore and Penelope models, respectively. Differences between spectra in various regions, in radial mean energy and in photon radial distribution were due to different cross section and stopping power data and not the same simulation of physics processes of MCNPX and three EM models. For example, in the Standard model, the photoelectron direction was sampled from the Gavrila-Sauter distribution, but the photoelectron moved in the same direction of the incident photons in the photoelectric process of Livermore and Penelope models. Using the same primary electron beam, the Standard and Livermore EM models of GATE and MCNPX showed similar output, but re-tuning of primary electron beam is needed for the Penelope model. PMID:24696804

  18. Screening Approach to the Activation of Soil and Contamination of Groundwater at Linear Proton Accelerator Sites

    CERN Document Server

    Otto, Thomas

    The activation of soil and the contamination of groundwater at proton accelerator sites with the radionuclides 3H and 22Na are estimated with a Monte-Carlo calculation and a conservative soil- and ground water model. The obtained radionuclide concentrations show that the underground environment of future accelerators must be adequately protected against a migration of activation products. This study is of particular importance for the proton driver accelerator in the planned EURISOL facility.

  19. Linear_Accelerator_C+6_Ions_as_Injector_for_a_Synchrotron, Intended for Hadrons Therapy

    CERN Document Server

    Dolya, S N

    2013-01-01

    We consider acceleration light ions by the field of a traveling-wave in a helical waveguide. The frequency of the accelerating RF field f = 100 MHz, generator power P = 2 MW. Ion focusing is provided by a solenoidal magnetic field with the intensity B = 3.5 Tesla. With increasing the accelerator length up to L = 15 m, the final energy of the ions can be increased up to a value of E = 7 MeV / nucleon.

  20. Real and virtual propagation dynamics of angular accelerating white light beams

    CSIR Research Space (South Africa)

    Vetter, C

    2017-08-01

    Full Text Available Accelerating waves have received significant attention of late, first in the optical domain and later in the form of electron matter waves, and have found numerous applications in non-linear optics, material processing, microscopy, particle...

  1. IS IT PSYCHOLOGY ABOUT LINEAR OR DYNAMIC SYSTEMS?

    Directory of Open Access Journals (Sweden)

    Dana BALAS-TIMAR

    2014-06-01

    Full Text Available Advances in Physics and Mathematics have proven that our complex world does not obey anymore the standard linear modelling systems rules. This paradigm seems to take over much of the scientific research in all sciences. Psychologists, no matter what their orientation is, are striving to create global models that can explain and predict human behaviour and emotions. In this quest, there have been elaborated many meta-analyses that gather relevant findings in order to create a conceptual framework of understanding human behaviour and affect. This paper presents arguments for sustaining the curvilinear relationships hypothesis that occur between variables (job satisfaction, job performance, age in an organizational context research. Conclusions set up a new conceptualization of the variable dynamic relationship inferences in Psychology.

  2. Linear nonequilibrium thermodynamics describes the dynamics of an autocatalytic system.

    Science.gov (United States)

    Cortassa, S; Aon, M A; Westerhoff, H V

    1991-01-01

    A model simulating oscillations in glycolysis was formulated in terms of nonequilibrium thermodynamics. In the kinetic rate equations every metabolite concentration was replaced with an exponential function of its chemical potential. This led to nonlinear relations between rates and chemical potentials. Each chemical potential was then expanded around its steady-state value as a Taylor series. The linear (first order) term of the Taylor series sufficed to simulate the dynamic behavior of the system, including the damped and even sustained oscillations at low substrate input or high free-energy load. The glycolytic system is autocatalytic in the first half. Because oscillations were obtained only in the presence of that autocatalytic feed-back loop we conclude that this type of kinetic nonlinearity was sufficient to account for the oscillatory behavior. The matrix of phenomenological coefficients of the system is nonsymmetric. Our results indicate that this is the symmetry property and not the linearity of the flow-force relations in the near equilibrium domain that precludes oscillations. Given autocatalytic properties, a system exhibiting liner flow-force relations and being outside the near equilibrium domain may show bifurcations, leading to self-organized behavior. Images FIGURE 5 PMID:1742453

  3. Left-Right Non-Linear Dynamical Higgs

    Science.gov (United States)

    Shu, Jing; Yepes, Juan

    2016-12-01

    All the possible CP-conserving non-linear operators up to the p4-order in the Lagrangian expansion are analysed here for the left-right symmetric model in the non-linear electroweak chiral context coupled to a light dynamical Higgs. The low energy effects will be triggered by an emerging new physics field content in the nature, more specifically, from spin-1 resonances sourced by the straightforward extension of the SM local gauge symmetry to the larger local group SU(2)L × SU(2)R × U(1)B-L. Low energy phenomenology will be altered by integrating out the resonances from the physical spectrum, being manifested through induced corrections onto the left handed operators. Such modifications are weighted by powers of the scales ratio implied by the symmetries of the model and will determine the size of the effective operator basis to be used. The recently observed diboson excess around the invariant mass 1.8 TeV-2 TeV entails a scale suppression that suggests to encode the low energy effects via a much smaller set of effective operators. J. Y. also acknowledges KITPC financial support during the completion of this work

  4. Characteristic parameters of 6--21 MeV electron beams from a 21 MeV linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghazi, M.S.A.L. (Department of Medical Physics, Thunder Bay Regional Cancer Centre, Ontario Cancer Treatment and Research Foundation, Thunder Bay, Ontario P7A 7T1, (Canada) Department of Physics, Lakehead University, Thunder Bay, Ontario P7B 5E1, (Canada) Lingman, D. Department of Medical Physics, Thunder Bay Regional Cancer Centre, Ontario Cancer Treatment and Research Foundation, Thunder Bay, Ontario P7A 7T1, (Canada) Department of Computer Science, Lakehead University, Thunder Bay, Ontario P7B 5E1, (Canada)); Gilbert, L.D. (Thekkumthala, J. Department of Medical Physics, Thunder Bay Regional Cancer Centre, Ontario Cancer Treatment and Research Foundation, Thunder Bay, Ontario P7A 7T1, (Canada))

    1991-07-01

    Dosimetry measurements have been carried out for the electron beams produced by a linear accelerator at energies 6, 8, 10, 14, 18, and 21 MeV. Characteristic parameters of the central axis dose distributions were derived and compared to corresponding values of electron beams from other accelerators in clinical use where such a comparison is appropriate. A comprehensive set of dosimetric parameters is provided for electron beam treatment planning. The data include central axis depth dose, range--energy parameters, beam penumbra and uniformity.

  5. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Antonia

    2011-12-16

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of {approx}50 pC total charge were accelerated to energies up to 450 MeV with a divergence of {approx}2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10{sup 18} cm{sup -3} the maximum electric field strength in the plasma wave was determined to be {approx}160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length

  6. Are oil markets chaotic? A non-linear dynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Panas, E.; Ninni, V. [Athens University of Economics and Business, Athens (Greece)

    2000-10-01

    The analysis of products' price behaviour continues to be an important empirical issue. This study contributes to the current literature on price dynamics of products by examining for the presence of chaos and non-linear dynamics in daily oil products for the Rotterdam and Mediterranean petroleum markets. Previous studies using only one invariant, such as the correlation dimension may not effectively determine the chaotic structure of the underlying time series. To obtain better information on the time series structure, a framework is developed, where both invariant and non-invariant quantities were also examined. In this paper various invariants for detecting a chaotic time series were analysed along with the associated Brock's theorem and Eckman-Ruelle condition, to return series for the prices of oil products. An additional non-invariant quantity, the BDS statistic, was also examined. The correlation dimension, entropies and Lyapunov exponents show strong evidence of chaos in a number of oil products considered. 30 refs.

  7. Motion-induced interruptions and postural equilibrium in linear lateral accelerations.

    Science.gov (United States)

    Matsangas, P; McCauley, M E; Gehl, G; Kiser, J; Bandstra, A; Blankenship, J; Pierce, E

    2014-01-01

    This study assesses lateral tipping motion-induced interruptions (MIIs) in a simulated motion environment. The objective is to revisit MII occurrence and sway motion relationship by focusing on the frequency and acceleration of the lateral motion stimulus. Results verify that MIIs increase with increasing peak sway acceleration, but the effect of sway frequency is not as clear as that of acceleration. Complex multidirectional motions create more tipping MIIs than unidirectional motion. Research should incorporate acceleration, frequency and motion complexity as factors influencing MII occurrence. To describe a temporary loss of balance without tipping, the term 'probable' MII is introduced. This term fills the gap between the theoretical definition and a human-centred perception of an MII where loss of balance is not a binary phenomenon. The 'probable' MIIs were 16-67% more common than the 'definite' MIIs. The developed mathematical model of MII occurrence versus sway acceleration (amplitude, frequency) approximated the observed MIIs with less than 9% difference.

  8. Responses to rotating linear acceleration vectors considered in relation to a model of the otolith organs. [human oculomotor response to transverse acceleration stress

    Science.gov (United States)

    Benson, A. J.; Barnes, G. R.

    1973-01-01

    Human subjects were exposed to a linear acceleration vector that rotated in the transverse plane of the skull without angular counterrotation. Lateral eye movements showed a sinusoidal change in slow phase velocity and an asymmetry or bias in the same direction as vector rotation. A model is developed that attributes the oculomotor response to otolithic mechanisms. It is suggested that the bias component is the manifestation of torsion of the statoconial plaque relative to the base of the utricular macula and that the sinusoidal component represents the translational oscillation of the statoconia. The model subsumes a hypothetical neural mechanism which allows x- and y-axis accelerations to be resolved. Derivation of equations of motion for the statoconial plaque in torsion and translation, which take into account forces acting in shear and normal to the macula, yield estimates of bias and sinusoidal components that are in qualitative agreement with the diverse experimental findings.

  9. Dynamic Analysis of HSDB System and Evaluation of Boundary Non-linearity through Experiments

    Directory of Open Access Journals (Sweden)

    K. Chandrakar

    2016-04-01

    Full Text Available This paper deals with mechanical design and development of high speed digital board (HSDB system which consists of printed circuit board (PCB with all electronic components packaged inside the cavity for military application. The military environment poses a variety of extreme dynamic loading conditions, namely, quasi static, vibration, shock and acoustic loads that can seriously degrade or even cause failure of electronics. The vibrational requirement for the HSDB system is that the natural frequency should be more than 200 Hz and sustain power spectrum density of 14.8 Grms in the overall spectrum. Structural integrity of HSDB is studied in detail using finite element analysis (FEA tool against the dynamic loads and configured the system. Experimental vibration tests are conducted on HSDB with the help of vibration shaker and validated the FE results. The natural frequency and maximum acceleration response computed from vibration tests for the configured design were found. The finite element results show a good correlation with the experiment results for the same boundary conditions. In case of fitment scenario of HSDB system, it is observed that the influence of boundary non-linearity during experiments. This influence of boundary non-linearity is evaluated to obtain the closeout of random vibration simulation results.

  10. Translational Vestibulo-Ocular Reflex and Motion Perception During Interaural Linear Acceleration: Comparison of Different Motion Paradigms

    Science.gov (United States)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, S. J.

    2011-01-01

    The neural mechanisms to resolve ambiguous tilt-translation motion have been hypothesized to be different for motion perception and eye movements. Previous studies have demonstrated differences in ocular and perceptual responses using a variety of motion paradigms, including Off-Vertical Axis Rotation (OVAR), Variable Radius Centrifugation (VRC), translation along a linear track, and tilt about an Earth-horizontal axis. While the linear acceleration across these motion paradigms is presumably equivalent, there are important differences in semicircular canal cues. The purpose of this study was to compare translation motion perception and horizontal slow phase velocity to quantify consistencies, or lack thereof, across four different motion paradigms. Twelve healthy subjects were exposed to sinusoidal interaural linear acceleration between 0.01 and 0.6 Hz at 1.7 m/s/s (equivalent to 10 tilt) using OVAR, VRC, roll tilt, and lateral translation. During each trial, subjects verbally reported the amount of perceived peak-to-peak lateral translation and indicated the direction of motion with a joystick. Binocular eye movements were recorded using video-oculography. In general, the gain of translation perception (ratio of reported linear displacement to equivalent linear stimulus displacement) increased with stimulus frequency, while the phase did not significantly vary. However, translation perception was more pronounced during both VRC and lateral translation involving actual translation, whereas perceptions were less consistent and more variable during OVAR and roll tilt which did not involve actual translation. For each motion paradigm, horizontal eye movements were negligible at low frequencies and showed phase lead relative to the linear stimulus. At higher frequencies, the gain of the eye movements increased and became more inphase with the acceleration stimulus. While these results are consistent with the hypothesis that the neural computational strategies for

  11. Efficient modeling of plasma wakefield acceleration in quasi-non-linear-regimes with the hybrid code Architect

    Science.gov (United States)

    Marocchino, A.; Massimo, F.; Rossi, A. R.; Chiadroni, E.; Ferrario, M.

    2016-09-01

    In this paper we present a hybrid approach aiming to assess feasible plasma wakefield acceleration working points with reduced computation resources. The growing interest for plasma wakefield acceleration and especially the need to control with increasing precision the quality of the accelerated bunch demands for more accurate and faster simulations. Particle in cell codes are the state of the art technique to simulate the underlying physics, however the run-time represents the major drawback. Architect is a hybrid code that treats the bunch kinetically and the background electron plasma as a fluid, initialising bunches in vacuum so to take into account for the transition from vacuum to plasma. Architect solves directly the Maxwell's equations on a Yee lattice. Such an approach allows us to drastically reduce run time without loss of generality or accuracy up to the weakly non linear regime.

  12. Efficient modeling of plasma wakefield acceleration in quasi-non-linear-regimes with the hybrid code Architect

    Energy Technology Data Exchange (ETDEWEB)

    Marocchino, A., E-mail: albz.uk@gmail.com [Dipartimento SBAI, “Sapienza” University of Rome and INFN-Roma 1, Rome (Italy); Massimo, F. [Dipartimento SBAI, “Sapienza” University of Rome and INFN-Roma 1, Rome (Italy); Rossi, A.R. [Dipartimento di Fisica, University of Milan and INFN-Milano, Milano (Italy); Chiadroni, E.; Ferrario, M. [INFN-LNF, Frascati (Italy)

    2016-09-01

    In this paper we present a hybrid approach aiming to assess feasible plasma wakefield acceleration working points with reduced computation resources. The growing interest for plasma wakefield acceleration and especially the need to control with increasing precision the quality of the accelerated bunch demands for more accurate and faster simulations. Particle in cell codes are the state of the art technique to simulate the underlying physics, however the run-time represents the major drawback. Architect is a hybrid code that treats the bunch kinetically and the background electron plasma as a fluid, initialising bunches in vacuum so to take into account for the transition from vacuum to plasma. Architect solves directly the Maxwell's equations on a Yee lattice. Such an approach allows us to drastically reduce run time without loss of generality or accuracy up to the weakly non linear regime.

  13. The Variation of Surface Dose by Beam Spoiler in 10 MV Photon Beam from Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Cheol; Kim, Jun Ho; Lee, Choul Soo [Dept. of Radiation Oncology, Kosin University Gospel Hospital, Busan (Korea, Republic of)

    2006-03-15

    The purpose of this study is to find a optimal beam spoiler condition on the dose distribution near the surface, when treating a squamous cell carcinoma of the head and neck and a lymphatic region with 10 MV photon beam. The use of a optimal spoiler allows delivering high dose to a superficial tumor volume, while maintaining the skin-sparing effect in the area between the surface to the depth of 0.4 cm. The lucite beam spoiler, which were a tissue equivalent, were made and placed between the surface and the photon collimators of linear accelerator. The surface-dose, the dose at the depth of 0.4 cm, and the maximum dose at the dmax were measured with a parallel-plate ionization chamber for 5 x 5 cm to 30 x 30 cm{sup 2} field sizes using lucite spoilers with different thicknesses at varying skin-to-spoiler separation (SSS). In the same condition, the dose was measured with bolus and compared with beam spoiler. The spoiler increased the surface and build-up dose and shifted the depth of maximum dose toward the surface. With a 10 MV x-ray beam and a optimal beam spoiler when treating a patient, a similar build-up dose with a 6 MV photon beam could be achieved, while maintaining a certain amount of skin spring. But it was provided higher surface dose under SSS of less than 5 cm, the spoiler thickness of more than 1.8 cm or more, and larger field size than 20 x 20 cm{sup 2} provided higher surface dose like bolus and obliterated the spin-sparing effect. the effects of the beam spoiler on beam profile was reduced with increasing depths. The lucite spoiler allowed using of a 10 MV photon beam for the radiation treatment of head and neck caner by yielding secondary scattered electron on the surface. The dose at superficial depth was increased and the depth of maximum dose was moved to near the skin surface. Spoiling the 10 MV x-ray beam resulted in treatment plans that maintained dose homogeneity without the consequence of increased skin reaction or treat volume underdose

  14. Treatment of arteriovenous malformations with linear accelerator-based radiosurgery compared with Gamma Knife surgery.

    Science.gov (United States)

    Orio, Peter; Stelzer, Keith J; Goodkin, Robert; Douglas, James G

    2006-12-01

    The authors sought to compare the outcomes of patients with arteriovenous malformations (AVMs) treated by Gamma Knife surgery (GKS) with those of patients treated by linear accelerator-based (LINAC) radiosurgery. One hundred and eighty-seven patients with AVMs were treated at our institution between 1992 and 2003. Ninety-one patients were treated with GKS and 96 patients were treated with LINAC radiosurgery. Patient and treatment characteristics in the two groups included the following. In the LINAC group, the median age was 33 years (range 9-66 years); the median dose was 16 Gy (70% isodose line); the median treated AVM volume was 5.5 cm3; and 46% of patients in this group were treated after hemorrhage. In the GKS group, the median age was 38 years (range 6-63 years); the median dose was 20 Gy (50% isodose line); the median treated AVM volume was 4.3 cm3; and 44% of patients in this group were treated after hemorrhage. Obliteration of AVMs was determined by performing computed tomography (CT) angiography and/or magnetic resonance (MR) angiography and angiography. Patient follow-up evaluation included obtaining an MR angiogram/MR image or CT angiogram at 6 months, at 1 year, and then annually thereafter. Angiography was performed to confirm obliteration when MR angiography and/or CT angiography no longer revealed evidence of an AVM. The 5-year estimated AVM obliteration rate was 66% in the entire patient group; the LINAC group was 60%; the GKS group was 72%; this difference was not statistically significant (p = 0.97). Twelve patients who underwent treatment with LINAC radiosurgery underwent retreatment with GKS and one was retreated with LINAC radiosurgery. The obliteration rate was 82%. Six patients treated with GKS were retreated with GKS, but the follow-up time is of short duration. Chronic toxicity occurred in 8% of both the GKS and the LINAC groups (p = 0.61). Posttreatment hemorrhage during the time of risk before AVM obliteration was 13% in the GKS group

  15. Symposium on electron linear accelerators in honor of Richard B. Neal's 80th birthday: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.H. [ed.

    1998-07-01

    The papers presented at the conference are: (1) the construction of SLAC and the role of R.B. Neal; (2) symposium speech; (3) lessons learned from the SLC; (4) alternate approaches to future electron-positron linear colliders; (5) the NLC technical program; (6) advanced electron linacs; (7) medical uses of linear accelerators; (8) linac-based, intense, coherent X-ray source using self-amplified spontaneous emission. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  16. Dose linearity and uniformity of Siemens ONCOR impression plus linear accelerator designed for step-and-shoot intensity-modulated radiation therapy

    Directory of Open Access Journals (Sweden)

    Bhangle Janhavi

    2007-01-01

    Full Text Available For step-and-shoot type delivery of intensity-modulated radiation therapy (IMRT, beam stability characteristics during the first few monitor units need to be investigated to ensure the planned dose delivery. This paper presents the study done for Siemens ONCOR impression plus linear accelerator before commissioning it for IMRT treatment. The beam stability for 6 and 15 MV in terms of dose monitor linearity, monitor unit stability and beam uniformity is investigated in this work. Monitor unit linearity is studied using FC65G chamber for the range 1-100 MU. The dose per MU is found to be linear for small monitor units down to 1 MU for both 6 and 15 MV beams. The monitor unit linearity is also studied with portal imaging device for the range 1-20 MU for 6 MV beam. The pixel values are within ±1σ confidence level up to 2 MU; for 1 MU, the values are within ±2σ confidence level. The flatness and symmetry analysis is done for both energies in the range of 1-10 MU with Kodak diagnostic films. The flatness and symmetry are found to be within ±3% up to 2 MU for 6 MV and up to 3 MU for 15 MV.

  17. Neural Network for Combining Linear and Non-Linear Modelling of Dynamic Systems

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1994-01-01

    The purpose of this paper is to develop a method to combine linear models with MLP networks. In other words to find a method to make a non-linear and multivariable model that performs at least as good as a linear model, when the training data lacks information.......The purpose of this paper is to develop a method to combine linear models with MLP networks. In other words to find a method to make a non-linear and multivariable model that performs at least as good as a linear model, when the training data lacks information....

  18. Theoretical aspects of implementation of kilovoltage cone-beam CT onboard linear accelerator for image-guided radiotherapy.

    Science.gov (United States)

    Rodríguez Cordón, Marta; Ferrer Albiach, Carlos

    2009-08-01

    The main objective of image-guided radiation therapy (IGRT) equipment is to reduce and correct inherent errors in external radiotherapy processes. At the present time, there are different IGRT systems available, but here we will refer exclusively to the kilovoltage cone-beam CT onboard linear accelerator (CBkVCT) and the different aspects that, from a clinical point of view, should be taken into consideration before the implementation of this equipment.

  19. Advances in X-Band and S-Band Linear Accelerators for Security, NDT, and Other Applications

    CERN Document Server

    Mishin, Andrey V

    2005-01-01

    At AS&E High Energy Systems Division, we designed several new advanced high energy electron beam and X-ray sources. Our primary focus has always been in building the world's most portable commercial X-band accelerators. Today, our X-band systems frequently exceed performance of the similar S-band machines, while they are more portable compared to the latter. The new designs of the X-band accelerators in the most practical energy range from 1 MeV to 6 MeV have been tested delivering outstanding results. Seventy 6 MeV X-band linacs systems have been produced. The most compact linac for security is used by AS&E in a self-shielded, Shaped Energy™ cargo screening system. We pioneered using the X-band linear accelerators for CT, producing high quality images of oil pipes and wood logs. An X-band linear accelerator head on a robotic arm has been used for electron beam radiation curing of an odd-shaped graphite composite part. We developed the broad-range 4 MeV to over 10 MeV energy-regulated X-band ...

  20. Filtering nonlinear dynamical systems with linear stochastic models

    Science.gov (United States)

    Harlim, J.; Majda, A. J.

    2008-06-01

    An important emerging scientific issue is the real time filtering through observations of noisy signals for nonlinear dynamical systems as well as the statistical accuracy of spatio-temporal discretizations for filtering such systems. From the practical standpoint, the demand for operationally practical filtering methods escalates as the model resolution is significantly increased. For example, in numerical weather forecasting the current generation of global circulation models with resolution of 35 km has a total of billions of state variables. Numerous ensemble based Kalman filters (Evensen 2003 Ocean Dyn. 53 343-67 Bishop et al 2001 Mon. Weather Rev. 129 420-36 Anderson 2001 Mon. Weather Rev. 129 2884-903 Szunyogh et al 2005 Tellus A 57 528-45 Hunt et al 2007 Physica D 230 112-26) show promising results in addressing this issue; however, all these methods are very sensitive to model resolution, observation frequency, and the nature of the turbulent signals when a practical limited ensemble size (typically less than 100) is used. In this paper, we implement a radical filtering approach to a relatively low (40) dimensional toy model, the L-96 model (Lorenz 1996 Proc. on Predictability (ECMWF, 4-8 September 1995) pp 1-18) in various chaotic regimes in order to address the 'curse of ensemble size' for complex nonlinear systems. Practically, our approach has several desirable features such as extremely high computational efficiency, filter robustness towards variations of ensemble size (we found that the filter is reasonably stable even with a single realization) which makes it feasible for high dimensional problems, and it is independent of any tunable parameters such as the variance inflation coefficient in an ensemble Kalman filter. This radical filtering strategy decouples the problem of filtering a spatially extended nonlinear deterministic system to filtering a Fourier diagonal system of parametrized linear stochastic differential equations (Majda and Grote

  1. Non-linear dynamics of a spur gear pair

    Science.gov (United States)

    Kahraman, A.; Singh, R.

    1990-10-01

    Non-linear frequency response characteristics of a spur gear pair with backlash are examined in this paper for both external and internal excitations. The internal excitation is of importance from the high frequency noise and vibration control viewpoint and it represents the overall kinematic or static transmission error. Such problems may be significantly different from the rattle problems associated with external, low frequency torque excitation. Two solution methods, namely the digital simulation technique and the method of harmonic balance, have been used to develop the steady state solutions for the internal sinusoidal excitation. Difficulties associated with the determination of the multiple solutions at a given frequency in the digital simulation technique have been resolved, as one must search the entire initial conditions map. Such solutions and the transition frequencies for various impact situations are easily found by the method of harmonic balance. Further, the principle of superposition can be employed to analyze the periodic transmission error excitation and/or combined excitation problems provided that the excitation frequencies are sufficiently apart from each other. Our analytical predictions match satisfactorily with the limited experimental data available in the literature. Using the digital simulation, we have also observed that the chaotic and subharmonic resonances may exist in a gear pair depending upon the mean or design load, mean to alternating force ratio, damping and backlash. Specifically, the mean load determines the conditions for no impacts, single-sided impacts and double-sided impacts. Our results are different from the frequency response characteristics of the conventional, single-degree-of-freedom, clearance type non-linear system. Our formulation should form the basis of further analytical and experimental work in the geared rotor dynamics area.

  2. Implementation of intraoperative radiotherapy in a linear accelerator Varian 21EX; Implementacao da radioterapia intraoperatoria em um acelerador linear VARIAN 21EX

    Energy Technology Data Exchange (ETDEWEB)

    Piriz, Gustavo H.; Lozano, Enrique; Banguero, Yolma; Varon, Carlos Fernando; Mancilla, Claudio S. [Instituto Nacional del Cancer, Santiago (Chile). Radioterapia; Parra, Cristian [Universidad de la Frontera, Temuco (Chile); Pacheco, P. [Universidad Nacional Mayor de San Marcos, Lima (Peru)

    2011-07-01

    The aim of this paper is to present the experience on intraoperative radiotherapy, which has as the reference center the network of radiotherapy in Chile. It is detailed the construction of a system of applicators with an easy coupling on a linear accelerator collimator. It is also detailed the cost and the measurements set up with their corresponding percentage depth dose and isodose curves. This technique was implemented in a Varian Clinac 21EX for beams with 6, 9 and 12 MeV electron energy. The coupling system provides a good dose distribution both laterally and in depth for different energies. This provides a good coverage of treatment planning volume. (author)

  3. Design and Factory Test of the E /E- Frascati Linear Accelerator for DAFNE

    Energy Technology Data Exchange (ETDEWEB)

    Anamkath, H.; Lyons, S.; Nett, D.; Treas, P.; Whitham, K.; Zante, T.; /Titan Beta, Dublin; Miller, R.; /Titan Beta, Dublin /SLAC; Boni, R.; Hsieh, H.; Sannibale, F.; Vescovi, M.; Vignola, G.; /Frascati

    2011-11-28

    The electron-positron accelerator for the DAFNE project has been built and is in test at Titan Beta in Dublin, CA. This S-Band RF linac system utilizes four 45 MW sledded klystrons and 16-3 m accelerating structures to achieve the required performance. It delivers a 4 ampere electron beam to the positron converter and accelerates the resulting positrons to 550 MeV. The converter design uses a 4.3T pulsed tapered flux compressor along with a pseudo-adiabatic tapered field to a 5 KG solenoid over the first two positron accelerating sections. Quadrupole focusing is used after 100 MeV. The system performance is given in Table 1. This paper briefly describes the design and development of the various subassemblies in this system and gives the initial factory test data.

  4. Status and perspectives of the R&D programs for the XADS linear accelerator

    CERN Document Server

    Junquera, T

    2003-01-01

    In the last years, several laboratories in Europe have developed programs to study, design and test the main components of a high intensity proton accelerator. The broad field of applications covered by this new generation of accelerators (spallation sources, transmutation, radioactive beams, neutrino beams,...)has contributed to a good synergy by developing complementary activities. These programs have succe- eded in this preliminary stage to propose accelerator designs, which fulfil the required specifications, and to launch R&D programs necessary to prove the technical feasibi- lity of the most critical components. For the XADS, the accelerator must exhibit an extremely low number of beam trips, and the new R&D programs must be focused on reliability and fault tolerance disign.

  5. Investigating the performances of a 1 MV high pulsed power linear transformer driver: from beam dynamics to x radiation

    Science.gov (United States)

    Maisonny, R.; Ribière, M.; Toury, M.; Plewa, J. M.; Caron, M.; Auriel, G.; d'Almeida, T.

    2016-12-01

    The performance of a 1 MV pulsed high-power linear transformer driver accelerator were extensively investigated based on a numerical approach which utilizes both electromagnetic and Monte Carlo simulations. Particle-in-cell calculations were employed to examine the beam dynamics throughout the magnetically insulated transmission line which governs the coupling between the generator and the electron diode. Based on the information provided by the study of the beam dynamics, and using Monte Carlo methods, the main properties of the resulting x radiation were predicted. Good agreement was found between these simulations and experimental results. This work provides a detailed understanding of mechanisms affecting the performances of this type of high current, high-voltage pulsed accelerator, which are very promising for a growing number of applications.

  6. Simulations of the Acceleration of Externally Injected Electrons in a Plasma Excited in the Linear Regime

    CERN Document Server

    Delerue, Nicolas; Jenzer, Stéphane; Kazamias, Sophie; Lucas, Bruno; Maynard, Gilles; Pittman, Moana

    2016-01-01

    We have investigated numerically the coupling between a 10 \\si{MeV} electron bunch of high charge (\\SI{> 100}{pc}) with a laser generated accelerating plasma wave. Our results show that a high efficiency coupling can be achieved using a \\SI{50}{TW}, \\SI{100}{\\micro \\meter} wide laser beam, yielding accelerating field above \\SI{1}{ GV/m}. We propose an experiment where these predictions could be tested.

  7. Emittance Growth Due to Multiple Coulomb Scattering in a Linear Collider Based on Plasma Wakefield Acceleration

    CERN Document Server

    Mete, Oznur; Xia, Guoxing; Labiche, Marc; Karamyshev, Oleg; Wei, Yelong; Welsch, Carsten; Wing, Matthew

    2014-01-01

    Alternative acceleration technologies are currently under development for cost-effective, robust, compact and efficient solutions. One such technology is plasma wakefield acceleration, driven by either a charged particle or laser beam. However, the potential issues must be studied in detail. In this paper, the emittance growth of the witness beam through elastic scattering from gaseous media is derived. The model is compared with the numerical studies.

  8. Game Port Physics Introductory Experiments in Linear Dynamics.

    Science.gov (United States)

    McInerney, Michael

    1984-01-01

    Describes physics experiments (including speed, acceleration, and acceleration due to gravity) in which students write programs to obtain and manipulate experimental data using the Atari microcomputer game port. The approach emphasizes the essential physics of the experiments while affording students useful experience of automatic data collection.…

  9. Recursive Factorization of the Inverse Overlap Matrix in Linear-Scaling Quantum Molecular Dynamics Simulations.

    Science.gov (United States)

    Negre, Christian F A; Mniszewski, Susan M; Cawkwell, Marc J; Bock, Nicolas; Wall, Michael E; Niklasson, Anders M N

    2016-07-12

    We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive, iterative refinement of an initial guess of Z (inverse square root of the overlap matrix S). The initial guess of Z is obtained beforehand by using either an approximate divide-and-conquer technique or dynamical methods, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under the incomplete, approximate, iterative refinement of Z. Linear-scaling performance is obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables efficient shared-memory parallelization. As we show in this article using self-consistent density-functional-based tight-binding MD, our approach is faster than conventional methods based on the diagonalization of overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4158-atom water-solvated polyalanine system, we find an average speedup factor of 122 for the computation of Z in each MD step.

  10. Non-linear Dynamics of Speech in Schizophrenia

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Simonsen, Arndis; Weed, Ethan

    Background The speech of patients with schizophrenia is often described as monotonous, flat and without emotion. Distinctive speech patterns are qualitatively assessed in the diagnostic process and deeply impact the quality of everyday social interactions. In this project, we investigate and mode...... to the symptoms. Automated analysis of voice dynamics reveals potential for the assessment and monitoring of the disorder. Future work includes further validation of the approach, as well as more detailed investigation of the relation between speech patterns and other symptoms.......Background The speech of patients with schizophrenia is often described as monotonous, flat and without emotion. Distinctive speech patterns are qualitatively assessed in the diagnostic process and deeply impact the quality of everyday social interactions. In this project, we investigate and model...... speech patterns of people with schizophrenia contrasting them with matched controls and in relation to positive and negative symptoms. We employ both traditional measures (pitch mean and range, pause number and duration, speech rate, etc.) and 2) non-linear techniques measuring the temporal structure...

  11. Transverse linear dynamics in an axisymmetric ionization cooling channel

    Directory of Open Access Journals (Sweden)

    G. Dugan

    2001-10-01

    Full Text Available This paper outlines a formalism for the description of the linear transverse dynamics of charged particles in an axisymmetric ionization cooling channel. The particle trajectories in the absence of Coulomb scattering are described in terms of lattice functions à la Courant and Snyder, which depend only on the electric and magnetic fields in the channel. The process of multiple Coulomb scattering, which introduces stochastic terms into the particle equations of motion, is treated (in Gaussian approximation by obtaining the distribution function in phase space as a solution of a Fokker-Planck equation. The distribution function is then used to obtain moment equations for the transverse variables and for combinations of variables such as the emittance and angular momentum. The distribution function is also used to obtain an expression for the peak four-dimensional phase space density and for the fraction of the beam that is within a certain area in phase space. The special case of a periodic channel is then considered and expressions for the asymptotic rms emittance and peak phase space density are obtained. Finally, the application of the general formalism to a numerical example, based on the reported design of a cooling channel for a neutrino source, is considered, and comparisons are made with numerical simulations of that channel.

  12. Factorial switching linear dynamical systems applied to physiological condition monitoring.

    Science.gov (United States)

    Quinn, John A; Williams, Christopher K I; McIntosh, Neil

    2009-09-01

    Condition monitoring often involves the analysis of systems with hidden factors that switch between different modes of operation in some way. Given a sequence of observations, the task is to infer the filtering distribution of the switch setting at each time step. In this paper, we present factorial switching linear dynamical systems as a general framework for handling such problems. We show how domain knowledge and learning can be successfully combined in this framework, and introduce a new factor (the "X-factor") for dealing with unmodeled variation. We demonstrate the flexibility of this type of model by applying it to the problem of monitoring the condition of a premature baby receiving intensive care. The state of health of a baby cannot be observed directly, but different underlying factors are associated with particular patterns of physiological measurements and artifacts. We have explicit knowledge of common factors and use the X-factor to model novel patterns which are clinically significant but have unknown cause. Experimental results are given which show the developed methods to be effective on typical intensive care unit monitoring data.

  13. A linear systems analysis of the yaw dynamics of a dynamically scaled insect model.

    Science.gov (United States)

    Dickson, William B; Polidoro, Peter; Tanner, Melissa M; Dickinson, Michael H

    2010-09-01

    Recent studies suggest that fruit flies use subtle changes to their wing motion to actively generate forces during aerial maneuvers. In addition, it has been estimated that the passive rotational damping caused by the flapping wings of an insect is around two orders of magnitude greater than that for the body alone. At present, however, the relationships between the active regulation of wing kinematics, passive damping produced by the flapping wings and the overall trajectory of the animal are still poorly understood. In this study, we use a dynamically scaled robotic model equipped with a torque feedback mechanism to study the dynamics of yaw turns in the fruit fly Drosophila melanogaster. Four plausible mechanisms for the active generation of yaw torque are examined. The mechanisms deform the wing kinematics of hovering in order to introduce asymmetry that results in the active production of yaw torque by the flapping wings. The results demonstrate that the stroke-averaged yaw torque is well approximated by a model that is linear with respect to both the yaw velocity and the magnitude of the kinematic deformations. Dynamic measurements, in which the yaw torque produced by the flapping wings was used in real-time to determine the rotation of the robot, suggest that a first-order linear model with stroke-average coefficients accurately captures the yaw dynamics of the system. Finally, an analysis of the stroke-average dynamics suggests that both damping and inertia will be important factors during rapid body saccades of a fruit fly.

  14. Error analysis of linear optics measurements via turn-by-turn beam position data in circular accelerators

    CERN Document Server

    Franchi, Andrea

    2016-01-01

    Many advanced techniques have been developed, tested and implemented in the last decades in almost all circular accelerators across the world to measure the linear optics. However, the greater availability and accuracy of beam diagnostics and the ever better correction of linear magnetic lattice imperfections (beta beating at 1% level and coupling at 0.1%) are reaching what seems to be the intrinsic accuracy and precision of different measurement techniques. This paper aims to highlight and quantify, when possible, the limitations of one standard method, the harmonic analysis of turn-by-turn beam position data. To this end, new analytic formulas for the evaluation of lattice parameters modified by focusing errors are derived. The unexpected conclusion of this study is that for the ESRF storage ring (and possibly for any third generation light source operating at ultra-low coupling and with similar diagnostics), measurement and correction of linear optics via orbit beam position data are to be preferred to the...

  15. Studies of beam dynamics in relativistic klystron two-beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lidia, Steven M.

    1999-11-01

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka band (~ 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional experimental efforts are also

  16. A 7MeV S-Band 2998MHz Variable Pulse Length Linear Accelerator System

    CERN Document Server

    Hernandez, Michael; Mishin, Andrey V; Saverskiy, Aleksandr J; Skowbo, Dave; Smith, Richard

    2005-01-01

    American Science and Engineering High Energy Systems Division (AS&E HESD) has designed and commissioned a variable pulse length 7 MeV electron accelerator system. The system is capable of delivering a 7 MeV electron beam with a pulse length of 10 nS FWHM and a peak current of 1 ampere. The system can also produce electron pulses with lengths of 20, 50, 100, 200, 400 nS and 3 uS FWHM with corresponding lower peak currents. The accelerator system consists of a gridded electron gun, focusing coil, an electrostatic deflector system, Helmholtz coils, a standing wave side coupled S-band linac, a 2.6 MW peak power magnetron, an RF circulator, a fast toroid, vacuum system and a PLC/PC control system. The system has been operated at repetition rates up to 250pps. The design, simulations and experimental results from the accelerator system are presented in this paper.

  17. Effect of carbonation on the linear and nonlinear dynamic properties of cement-based materials

    Science.gov (United States)

    Eiras, Jesus N.; Kundu, Tribikram; Popovics, John S.; Monzó, José; Borrachero, María V.; Payá, Jordi

    2016-01-01

    Carbonation causes a physicochemical alteration of cement-based materials, leading to a decrease of porosity and an increase of material hardness and strength. However, carbonation will decrease the pH of the internal pore water solution, which may depassivate the internal reinforcing steel, giving rise to structural durability concerns. Therefore, the proper selection of materials informed by parameters sensitive to the carbonation process is crucial to ensure the durability of concrete structures. The authors investigate the feasibility of using linear and nonlinear dynamic vibration response data to monitor the progression of the carbonation process in cement-based materials. Mortar samples with dimensions of 40×40×160 mm were subjected to an accelerated carbonation process through a carbonation chamber with 55% relative humidity and >95% of CO2 atmosphere. The progress of carbonation in the material was monitored using data obtained with the test setup of the standard resonant frequency test (ASTM C215-14), from a pristine state until an almost fully carbonated state. Linear dynamic modulus, quality factor, and a material nonlinear response, evaluated through the upward resonant frequency shift during the signal ring-down, were investigated. The compressive strength and the depth of carbonation were also measured. Carbonation resulted in a modest increase in the dynamic modulus, but a substantive increase in the quality factor (inverse attenuation) and a decrease in the material nonlinearity parameter. The combined measurement of the vibration quality factor and nonlinear parameter shows potential as a sensitive measure of material changes brought about by carbonation.

  18. Accelerating Steered Molecular Dynamics: Toward Smaller Velocities in Forced Unfolding Simulations.

    Science.gov (United States)

    Mücksch, Christian; Urbassek, Herbert M

    2016-03-08

    The simulation of forced unfolding experiments, in which proteins are pulled apart, is conventionally done using steered molecular dynamics. We present here a hybrid scheme in which accelerated molecular dynamics is used together with steered molecular dynamics. We show that the new scheme changes the force-distance curves mainly in the region around the force maximum and thus demonstrate that the improved equilibration of the protein-solvent system brought about by using accelerated molecular dynamics makes the simulation more comparable to experimental data.

  19. Dynamics on the positron capture and accelerating sections of CLIC

    CERN Document Server

    Poirier, Freddy; Vivoli, Alessandro; Dadoun, Olivier; Lepercq, Pierre; Variola, Alessandro

    2011-01-01

    The CLIC Pre-Injector Linac for the e+ beam is composed of an Adiabatic Matching Device (AMD) followed by 4 (or 5) accelerating RF structures embedded in a solenoidal magnetic field. The accelerating sections are based on 2 GHz long travelling wave structures. In this note, the positrons capture strategy downstream the AMD is reviewed. The first RF structure can be phased either for full acceleration or for deceleration. In the latter case, the simulations results show that the number of e+ capture at the end of the 200 MeV Pre-Injector Linac is increased. Then the impact of the space charge is presented. Additional techniques are also studied to explore the potentiality of increasing the number of e+ namely an extra RF field at the beginning of the capture section and a higher solenoidal field.

  20. Linear Riccati Dynamics, Constant Feedback, and Controllability in Linear Quadratic Control Problems

    OpenAIRE

    Ronald J. Balvers; Douglas W. Mitchell

    2005-01-01

    Conditions are derived for linear-quadratic control (LQC) problems to exhibit linear evolution of the Riccati matrix and constancy of the control feedback matrix. One of these conditions involves a matrix upon whose rank a necessary condition and a sufficient condition for controllability are based. Linearity of Riccati evolution allows for rapid iterative calculation, and constancy of the control feedback matrix allows for time-invariant comparative static analysis of policy reactions.

  1. Non-linear Ion-Wake Excitation by Plasma Electron Wakefields of an Electron or Positron Beam for Positron Acceleration

    Science.gov (United States)

    Katsouleas, Thomas; Sahai, Aakash

    2015-11-01

    The excitation of a non-linear ion-wake by a train of non-linear electron wake of an electron and a positron beam is modeled and its use for positron acceleration is explored. The ion-wake is shown to be a driven non-linear ion-acoustic wave in the form of a cylindrical ion-soliton similar to the solution of the cKdV equation. The phases of the oscillating radial electric fields of the slowly-propagating electron wake are asymmetric in time and excite time-averaged inertial ion motion radially. The radial field of the electron compression region sucks-in the ions and the field of space-charge region of the wake expels them, driving a cylindrical ion-soliton structure with on-axis and bubble-edge density-spikes. Once formed, the channel-edge density-spike is driven radially outwards by the thermal pressure of the thermalized wake energy. Its channel-like structure due to the flat-residue left behind by the propagating ion-soliton, is independent of the energy-source driving the non-linear electron wake. We explore the use of the partially-filled channel formed by the cylindrical ion-soliton for a novel regime of positron acceleration. PIC simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration (arXiv:1504.03735). Work supported by the US Department of Energy under DE-SC0010012 and the National Science Foundation under NSF-PHY-0936278.

  2. Development of an automatic frequency control system for an X-band (=9300 MHz) RF electron linear accelerator

    Science.gov (United States)

    Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad

    2017-05-01

    KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per

  3. The International Linear Collider Technical Design Report - Volume 3.I: Accelerator R&D in the Technical Design Phase

    CERN Document Server

    Adolphsen, Chris; Barish, Barry; Buesser, Karsten; Burrows, Philip; Carwardine, John; Clark, Jeffrey; Durand, Hélène Mainaud; Dugan, Gerry; Elsen, Eckhard; Enomoto, Atsushi; Foster, Brian; Fukuda, Shigeki; Gai, Wei; Gastal, Martin; Geng, Rongli; Ginsburg, Camille; Guiducci, Susanna; Harrison, Mike; Hayano, Hitoshi; Kershaw, Keith; Kubo, Kiyoshi; Kuchler, Victor; List, Benno; Liu, Wanming; Michizono, Shinichiro; Nantista, Christopher; Osborne, John; Palmer, Mark; Paterson, James McEwan; Peterson, Thomas; Phinney, Nan; Pierini, Paolo; Ross, Marc; Rubin, David; Seryi, Andrei; Sheppard, John; Solyak, Nikolay; Stapnes, Steinar; Tauchi, Toshiaki; Toge, Nobu; Walker, Nicholas; Yamamoto, Akira; Yokoya, Kaoru

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  4. 直线加速器粒子模拟可视化%Particle Simulation Visualization for the Linear Accelerator

    Institute of Scientific and Technical Information of China (English)

    田东; 张智磊; 单桂华; 杨磊; 齐记; 张阔

    2013-01-01

    直线加速器被广泛应用于国防、能源、医疗等多个领域,加速器粒子模拟可视化是研究大规模高能粒子运动规律的重要方法。本文利用OpenGL和GLSL混合编程,给出了一套针对直线加速器粒子的科学模拟可视化与可视分析的方案,可清晰展示粒子在加速过程中的整体状态和运动趋势,体现出高速粒子的分类属性及其变化规律,为直线加速器的诊断分析提供了有效的工具。%Programming mixed with OpenGL and GLSL, we proposed a set of programs of scientiifc visualization and visual analysis for linear accelerator particles, which not only clearly present the particle acceleration process in overall status and exercise trends, but also relfect the high-speed particle properties and their classiifcation attributes, and it provided useful tools for linear accelerator diagnostic analysis.

  5. Two-dimensional accelerated MP-RAGE imaging with flexible linear reordering.

    Science.gov (United States)

    Brenner, Daniel; Stirnberg, Rüdiger; Pracht, Eberhard D; Stöcker, Tony

    2014-10-01

    Implementation of an accelerated Magnetization Prepared RApid Gradient Echo (MP-RAGE) sequence for T1 weighted neuroimaging; exploiting modern MRI technologies to minimize scan time while preserving the image quality. A custom MP-RAGE sequence was implemented on a state-of-the-art 3T MR scanner equipped with a 32-channel receiver array head coil. The sequence utilized a shifted CAIPIRINHA k y -k z under-sampling pattern combined with elliptical scanning and a two-dimensional view ordering scheme to achieve high parallel imaging acceleration factors at maintained image contrast. It could be shown that MP-RAGE accelerated in two k-space directions outperforms single direction acceleration, which is the common practice with standard view ordering. Applying the CAIPIRINHA technique in conjunction with elliptical scanning further increased this benefit. By combining MP-RAGE with CAIPIRINHA sampling and elliptical scanning, the scan time can be reduced from 4-5 min to 2-3 min with insignificant reduction in image quality.

  6. Measurement of dynamic comfort in cycling using wireless acceleration sensors

    NARCIS (Netherlands)

    Olieman, Mark; Marin-Perianu, Raluca; Marin-Perianu, Mihai

    2012-01-01

    Comfort in cycling is related to the level of vibration of the bicycle: more vibration results in less comfort for the rider. In this study, the level of vibration is measured in real time using wireless inertial acceleration sensors mounted at four places on the bike: front wheel axel, rear wheel a

  7. The CLIC RF power source a novel scheme of two-beam acceleration for electron-positron linear colliders

    CERN Document Server

    Braun, Hans Heinrich; D'Amico, Tommaso Eric; Delahaye, Jean Pierre; Guignard, Gilbert; Johnson, C D; Millich, Antonio; Pearce, Peter; Riche, A J; Rinolfi, Louis; Ruth, Ronald D; Schulte, Daniel; Thorndahl, Lars; Valentini, M; Wilson, Ian H; Wuensch, Walter; CERN. Geneva

    1998-01-01

    We discuss a new approach to two-beam acceleration. The energy for RF production is initially stored in a long-pulse electron beam which is efficiently accelerated to about 1.2 GeV by a fully loaded conventional, low-frequency (approx. 1 GHz) linac. The beam pulse length is twice the length of the high-gradient linac. Segments of this long pulse beam are compressed using combiner rings to create a sequence of higher peak power drive-beams with gaps between. This train of drive beams is distributed from the end of the linac in the opposite direction to the main beam down a common transport line so that each drive beam can power a section of the main linac. After a 180-degree turn, each high-current, low-energy drive beam is decelerated in low-impedance decelerator structures, and the resulting power is used to accelerate the low-current, high-energy beam in the main linac. The method discussed here seems relatively inexpensive, is very flexible, and can be used to accelerate beams for linear colliders over the...

  8. Gas-dynamic acceleration of bodies till the hyper sonic velocity

    CERN Document Server

    Dolya, S N

    2014-01-01

    The article considers an opportunity of gas-dynamic acceleration of body from the initial zero velocity till the finite velocity: five kilometers per second. When the gas flow rate of the body pre-acceleration reaches one kilometer per second, the body is accelerated at the front of the explosion wave propagating along the coils of the hexogen spiral. This wave accelerates the body and, finally, it reaches the velocity of five kilometers per second. The accelerated body has mass one-tenth of a kilogram and diameter eleven and three tenths of a millimeter. Acceleration length is six meters. At the slope of the spiral to the horizon equal to seventy degrees the flight range of the body is equal to sixteen hundred kilometers and the maximum height of the flight is eleven hundred kilometers.

  9. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  10. Study of the electronics architecture for the mechanical stabilisation of the quadrupoles of the CLIC linear accelerator

    CERN Document Server

    Artoos, K; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Janssens, S; Kuzmin, A; Slaathaug, A

    2010-01-01

    To reach a sufficient luminosity, the transverse beam sizes and emittances in future linear particle accelerators should be reduced to the nanometer level. Mechanical stabilisation of the quadrupole magnets is of the utmost importance for this. The piezo actuators used for this purpose can also be used to make fast incremental orientation adjustments with a nanometer resolution. The main requirements for the CLIC stabilisation electronics is a robust, low noise, low delay, high accuracy and resolution, low band and radiation resistant feedback control loop. Due to the high number of controllers (about 4000) a cost optimization should also be made. Different architectures are evaluated for a magnet stabilisation prototype, including the sensors type and configuration, partition between software and hardware for control algorithms, and optimization of the ADC/DAC converters. The controllers will be distributed along the 50 km long accelerator and a communication bus should allow external control. Furthermore, o...

  11. A study of the energy enhancement of electron in radio frequency (RF) linear accelerator of iris loaded waveguards

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Huy-Bich [Nong Lam Univ., Hochiminh City (Viet Nam). Faculty of Engineering and Technology; National Univ., Hochiminh City (Viet Nam). National Key Lab. of Digital Control and System Engineering (DCSELAB); Trinh, Hoa-Lang [Natural Science Univ., Hochiminh City (Viet Nam). Faculty of Physics - Physical Engineering; Nong Lam Univ., Hochiminh City (Viet Nam). Faculty of Engineering and Technology; Chau, Van-Tao; Nguyen, Van-Tuong [Natural Science Univ., Hochiminh City (Viet Nam). Faculty of Physics - Physical Engineering

    2014-06-15

    In this paper, the Hamiltonian theory of particle motion has been applied for developing the motion equations of electrons in linear accelerator of Iris-loaded waveguides. Using J. C. Slater assumption for determining electric field in Oz direction, the energy increase of electron in the guide wave pipe following the linacs resonance cavity with circulated electromagnetic distribution and repeat-cycle of given number of resonance cavities has been developed. The energy gain of electron following the electron way in Oz axle direction of the accelerator with the different injection phase and phase shift of RF has been obtained. The results indicate that the energy increase of electron depends on the injection phase of RF and cell-to-cell phase shift.

  12. A Statistical Comparison Method of the Differences among Single Points for Linear Dynamic Experimental Data

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The experimental random error and desired valuse of non-observed points in dynamic indexes were estimated by establishing the linear regression equations about variety regulations of dynamic indexes. The methods for difference significant test among different treatments using dynamic point as indexes were presented without setting the replication on each dynamic point observed.

  13. Dynamics of wide binary stars: A case study for testing Newtonian dynamics in the low acceleration regime

    CERN Document Server

    Scarpa, Riccardo; Falomo, Renato; Treves, Aldo

    2016-01-01

    Extremely wide binary stars represent ideal systems to probe Newtonian dynamics in the low acceleration regimes (0.15 pc that are useful for the proposed test. While it would be premature to draw any conclusion about the validity of Newtonian dynamics at these low accelerations, our main result is that very wide binary stars seem to exist in the harsh environment of the solar neighborhood. This could provide a tool to test Newtonian dynamics versus modified dynamics theories in the low acceleration conditions typical of galaxies. In the near future the GAIA satellite will provide data to increase significantly the number of wide pairs that, with the appropriate follow up spectroscopic observations, will allow the implementation of this experiment with unprecedented accuracy.

  14. Dynamics and transport of laser-accelerated particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Stefan

    2010-04-19

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  15. New half-voltage and double phase operation of the Hermes III linear induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelson, K.A.; Westfall, R.L.; Harper-Slaboszewicz, V.J. (Sandia National Labs., Albuquerque, NM (United States)); Neely, S.M. (K-Tech Corp., Albuquerque, NM (United States))

    1991-01-01

    The standard operating mode produces bremsstrahlung with an endpoint energy of about 18 MeV. This paper describes a new mode with a 8.5 MeV endpoint energy and the same standard mode pulse characteristics achieved by operating only half of the accelerator at full charge with the advantage of minimal setup time. An extension of the new half-voltage mode is to use the other half of the accelerator for delivering a second pulse at a later time with the same technique. The double pulse mode is ideal for beam generation which requires a long interpulse time in the millisecond regime. The beam characteristics of the two half-voltage pulses are nearly identical with the nominal radiation pulse full width at half maximum of 21 ns and 10--90 risetime of 11 ns recorded by the same Compton diode radiation monitors on instruments triggered 30 ms apart.

  16. Feasibility of an XUV FEL Oscillator Driven by a SCRF Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H.; Freund, H. P.; Reinsch, M.

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) facility is currently under construction at Fermi National Accelerator Laboratory. Using a1-ms-long macropulse composed of up to 3000 micropulses, and with beam energies projected from 45 to 800 MeV, the possibility for an extreme ultraviolet (XUV) free-electron laser oscillator (FELO) with the higher energy is evaluated. We have used both GINGER with an oscillator module and the MEDUSA/OPC code to assess FELO saturation prospects at 120 nm, 40 nm, and 13.4 nm. The results support saturation at all of these wavelengths which are also shorter than the demonstrated shortest wavelength record of 176 nm from a storage-ring-based FELO. This indicates linac-driven FELOs can be extended into this XUV wavelength regime previously only reached with single-pass FEL configurations.

  17. On the dynamic analysis of piecewise-linear networks

    NARCIS (Netherlands)

    Heemels, WPMH; Camlibel, MK; Schumacher, JM

    2002-01-01

    Piecewise-linear (PL) modeling is often used to approximate the behavior of nonlinear circuits. One of the possible PL modeling methodologies is based on the linear complementarity problem, and this approach has already been used extensively in the circuits and systems community for static networks.

  18. Single-particle dynamics-linear machine lattices

    CERN Document Server

    Keil, Eberhard

    1977-01-01

    A linear machine lattice is an arrangement of linear elements such as quadrupoles, bending magnets and straight sections, which is repeated periodically around the circumference of the machine. In order to arrive at simple expressions for the parameters alpha , beta , eta and mu for particular machine lattices, the thin-lens approximation is introduced. (10 refs).

  19. Beam dynamics at the main LEBT of RAON accelerator

    CERN Document Server

    Jin, Hyunchang

    2015-01-01

    The high-intensity rare-isotope accelerator (RAON) of the Rare Isotope Science Project (RISP) in Daejeon, Korea, has been designed to accelerate multiple-charge-state beams. The ion beams, which are generated by Electron Cyclotron Resonance Ion Source (ECR-IS), will be transported through the main Low Energy Beam Transport (LEBT) system to the Radio Frequency Quadrupole (RFQ). While passing the beams through LEBT, we should keep the transverse beam size and longitudinal emittance small. Furthermore, the matching of required twiss parameter at the RFQ entrance will be performed by using electro-static quadrupoles at the main LEBT matching section which is from the multi-harmonic buncher (MHB) to the entrance of RFQ. We will briefly review the new aspects of main LEBT lattice and the beam matching at the main LEBT matching section will be presented. In addition, the effects of various errors on the beam orbit and the correction of distorted orbit will be discussed.

  20. Self-accelerating Universe in modified gravity with dynamical torsion

    CERN Document Server

    Nikiforova, V; Rubakov, V

    2016-01-01

    We consider a model belonging to the class of Poincare gauge gravities. The model is free of ghosts and gradient instabilities about Minkowski and torsionless Einstein backgrounds. We find that at zero cosmological constant, the model admits a self-accelerating solution with non-Riemannian connection. Small value of the effective cosmological constant is obtained at the expense of the hierarchy between the dimensionless couplings.