WorldWideScience

Sample records for line-of-sight doppler velocity

  1. Micro-Doppler extraction of a small UAV in a non-line-of-sight urban scenario

    Science.gov (United States)

    Gustavsson, Magnus; Andersson, Åsa; Johansson, Tommy; Jonsson, Rolf; Karlsson, Nils; Nilsson, Stefan

    2017-05-01

    The appearance of small UAVs on the commercial market poses a real threat to both civilian safety and to military operations. In open terrain a radar can detect and track even small UAVs at long distances. In an urban environment with limited line-of-sight and strong static and non-static background, this capability can be severely reduced. The radar cross section of these UAVs are normally small compared to the background. However, the rotors of the UAVs produce a characteristic micro-Doppler signature that can be exploited for detection and classification. In this paper, we investigate in an experimental set-up whether it is possible in the radar non-line-of-sight to retrieve the micro-Doppler signature of the UAV rotors. This is done by exploring up to three multipath bounces in the measured signal. The measurements were made with a semi-monostatic single receiver-transmitter radar system operating at X-band in a pulsed single frequency mode. The radar response of the UAV, with plastic and metallic rotors, was measured at several positions inside a 4 m wide corridor with metallic walls. In this paper, data from one line-of-sight and two non-line-ofsight positions are presented. Results show that we are able to detect the micro-Doppler of the rotors and to retrieve the number of revolutions per minute, for both rotor types. Free space Finite-Difference Time-Domain calculations have also been performed on a CAD-model of the UAV rotor to determine the optimal choice of polarization and the short-time Fourier transform filter length.

  2. Differences between Doppler velocities of ions and neutral atoms in a solar prominence

    Science.gov (United States)

    Anan, T.; Ichimoto, K.; Hillier, A.

    2017-05-01

    Context. In astrophysical systems with partially ionized plasma, the motion of ions is governed by the magnetic field while the neutral particles can only feel the magnetic field's Lorentz force indirectly through collisions with ions. The drift in the velocity between ionized and neutral species plays a key role in modifying important physical processes such as magnetic reconnection, damping of magnetohydrodynamic waves, transport of angular momentum in plasma through the magnetic field, and heating. Aims: This paper aims to investigate the differences between Doppler velocities of calcium ions and neutral hydrogen in a solar prominence to look for velocity differences between the neutral and ionized species. Methods: We simultaneously observed spectra of a prominence over an active region in H I 397 nm, H I 434 nm, Ca II 397 nm, and Ca II 854 nm using a high dispersion spectrograph of the Domeless Solar Telescope at Hida observatory. We compared the Doppler velocities, derived from the shift of the peak of the spectral lines presumably emitted from optically-thin plasma. Results: There are instances when the difference in velocities between neutral atoms and ions is significant, for example 1433 events ( 3% of sets of compared profiles) with a difference in velocity between neutral hydrogen atoms and calcium ions greater than 3σ of the measurement error. However, we also found significant differences between the Doppler velocities of two spectral lines emitted from the same species, and the probability density functions of velocity difference between the same species is not significantly different from those between neutral atoms and ions. Conclusions: We interpreted the difference of Doppler velocities as being a result of the motions of different components in the prominence along the line of sight, rather than the decoupling of neutral atoms from plasma. The movie attached to Fig. 1 is available at http://www.aanda.org

  3. Discovery of the double Doppler-shifted emission-line systems in the X-ray spectrum of SS 433

    Science.gov (United States)

    Kotani, Taro; Kawai, Nobuyuki; Aoki, Takashi; Doty, John; Matsuoka, Masaru; Mitsuda, Kazuhisa; Nagase, Fumiaki; Ricker, George; White, Nick E.

    1994-01-01

    We have used the CCD X-ray spectrometers on ASCA and resolved the X-ray emission line from the jet of SS 433 both into Doppler-shifted components with two distinct velocities, and into emission from different ionization states of iron, i.e., Fe XXV and Fe XXVI. This is the first direct detection of the two Doppler shifted beams in the X-ray spectra of SS 433 and allows the radial velocity of the jet along the line of sight to be determined with an accuracy comparable to the optical spectroscopy. We also found pairs of emission lines from other atomic species, such as ionized silicon and sulfur, with the Doppler shifts consistent with each other. This confirms the origin of the X-ray emission in the high temperature plasma in the jets.

  4. Comparison of DMSP cross-track ion drifts and SuperDARN line-of-sight velocities

    Directory of Open Access Journals (Sweden)

    R. A. Drayton

    2005-10-01

    Full Text Available Cross-track ion drifts measured by the DMSP satellites are compared with line-of-sight SuperDARN HF velocities in approximately the same directions. Good overall agreement is found for a data set comprising of 209 satellite passes over the field of view of nine SuperDARN radars in both the Northern and Southern Hemispheres. The slope of the best linear fit line relating the SuperDARN and DMSP velocities is of the order of 0.7 with a tendency for SuperDARN velocities to be smaller. The agreement implies that the satellite and radar data can be merged into a common set provided that spatial and temporal variations of the velocity as measured by both instruments are smooth.

    Keywords. Ionosphere (Ionospheric irregularities; Plasma convection; Auroral ionosphere

  5. Techniques for obtaining velocity distributions of atoms or ions from Doppler-broadened spectral line profiles

    International Nuclear Information System (INIS)

    Moran, T.G.

    1986-12-01

    Analysis of the doppler-broadened profiles of spectral lines radiated by atoms or ions in plasmas yields information about their velocity distributions. Researchers have analysed profiles of lines radiated by atoms in isotropic velocity distributions in several ways, one being the inversion of the integral equation which relates the velocity distribution to the line profile. This inversion formula was derived for a separate application and was given to within an arbitrary multiplicative constant. This paper presents a new derivation which obtains the inversion exactly, using a method which is easily generalized for determination of anisotropic velocity distribution functions. The technique to obtain an anisotropic velocity distribution function from line profiles measured at different angles is outlined

  6. MGN V RSS LINE OF SIGHT ACCELERATION PROFILES V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Line of Sight Acceleration Profile Data Records (LOSAPDR) consist of data from Doppler tracking of the orbiting spacecraft. The relative motion of the spacecraft and...

  7. The Coincident Coherence of Extreme Doppler Velocity Events with p-mode Patches in the Solar Photosphere.

    Science.gov (United States)

    McClure, Rachel Lee

    2018-06-01

    Observations of the solar photosphere show many spatially compact Doppler velocity events with short life spans and extreme values. In the IMaX spectropolarimetric inversion data of the first flight of the SUNRISE balloon in 2009 these striking flashes in the intergranule lanes and complementary outstanding values in the centers of granules have line of sight Doppler velocity values in excess of 4 sigma from the mean. We conclude that values outside 4 sigma are a result from the superposition of the granulation flows and the p-modes.To determine how granulation and p-modes contribute to these outstanding Doppler events, I separate the two components using the Fast Fourier Transform. I produce the power spectrum of the spatial wave frequencies and their corresponding frequency in time for each image, and create a k-omega filter to separate the two components. Using the filtered data, test the hypothesis that extreme events occur because of strict superposition between the p-mode Doppler velocities and the granular velocities. I compare event counts from the observational data to those produced by random superposition of the two flow components and find that the observational event counts are consistent with the model event counts in the limit of small number statistics. Poisson count probabilities of event numbers observed are consistent with expected model count probability distributions.

  8. Increase in the Amplitude of Line-of-sight Velocities of the Small-scale Motions in a Solar Filament before Eruption

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Daikichi; Isobe, Hiroaki [Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Sakyo, Kyoto 606-8306 (Japan); Otsuji, Kenichi; Ishii, Takako T.; Sakaue, Takahito; Hirose, Kumi, E-mail: seki@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)

    2017-07-10

    We present a study on the evolution of the small-scale velocity field in a solar filament as it approaches the eruption. The observation was carried out by the Solar Dynamics Doppler Imager (SDDI) that was newly installed on the Solar Magnetic Activity Research Telescope at Hida Observatory. The SDDI obtains a narrowband full-disk image of the Sun at 73 channels from H α − 9.0 Å to H α + 9.0 Å, allowing us to study the line-of-sight (LOS) velocity of the filament before and during the eruption. The observed filament is a quiescent filament that erupted on 2016 November 5. We derived the LOS velocity at each pixel in the filament using the Becker’s cloud model, and made the histograms of the LOS velocity at each time. The standard deviation of the LOS velocity distribution can be regarded as a measure for the amplitude of the small-scale motion in the filament. We found that the standard deviation on the previous day of the eruption was mostly constant around 2–3 km s{sup −1}, and it slightly increased to 3–4 km s{sup −1} on the day of the eruption. It shows a further increase, with a rate of 1.1 m s{sup −2}, about three hours before eruption, and another increase, with a rate of 2.8 m s{sup −2}, about an hour before eruption. From this result we suggest that the increase in the amplitude of the small-scale motions in a filament can be regarded as a precursor of the eruption.

  9. Measuring Velocity and Acceleration Using Doppler Shift of a ...

    Indian Academy of Sciences (India)

    to be used to measure its velocity and acceleration. We also apply this method, as an example here, to spectral lines of the blue-shifted jet in micro-quasar SS433 and discuss the intricacies of these measurements. Key words. Doppler effect—measuring velocity and acceleration of the source— jet in SS433. 1. Introduction.

  10. A new method for measurement of granular velocities

    International Nuclear Information System (INIS)

    Nyborg Andersen, B.

    1984-01-01

    A new, supplementary method to measure granular velocities is presented. The method utilizes the Doppler shift caused by the line of sight component of the solar rotation to cause a wavelength shift through spectral lines as function of heliocentric angle. By measuring the center-to-limb variation of the granular intensity fluctations at different wavelength positions in the lines, the velocities are found. To do this, assumptions regarding the geometrical structure of the velocity and intensity fields have to be made. Preliminary application of the method results in a steep velocity gradient suggesting zero velocity at a hight of 200 km above tau 500 = 1. Possible causes are discussed

  11. Line-of-Sight Velocity As a Tracer of Coronal Cavity Magnetic Structure

    International Nuclear Information System (INIS)

    Bąk-Stȩślicka, Urszula; Gibson, Sarah E.; Chmielewska, Ewa

    2016-01-01

    We present a statistical analysis of 66 days of observations of quiescent (non-erupting) coronal cavities and associated velocity and thermal structures. We find that nested rings of LOS-oriented velocity are common in occurrence and spatially well correlated with cavities observed in emission. We find that the majority of cavities possess multiple rings, and a range in velocity on the order of several km∕sec. We find that the tops of prominences lie systematically below the cavity center and location of largest Doppler velocity. Finally, we use DEM analysis to consider the temperature structure of two cavities in relation to cavity, prominence, and flows. These observations yield new constraints on the magnetic structure of cavities, and on the conditions leading up to solar eruptions.

  12. ISM chemical abundances in two intermediate-velocity clouds in the line of sight to SN 1987A

    Science.gov (United States)

    Morgan, Siobahn; Bohm-Vitense, Erika

    1988-01-01

    The earliest IUE high-resolution spectra of SN 1987A have been studied and reveal the presence of several clouds in the line of sight to the LMC. In particular, there are two clouds with radial velocities of about 130 km/s and about 180 km/s. These clouds' velocities are between those of Galactic clouds at 0-80 km/s and those of LMC gas at about 270 km/s. Chemical-abundance determinations may help to determine the origin and location of these clouds. Curve-of-growth analysis and 21-cm observations show that they may be underabundant in heavy elements by about a factor of 2 as compared to solar abundances. No depletion indicative of grain formation can be seen.

  13. Line-of-sight velocity as a tracer of coronal cavity magnetic structure

    Directory of Open Access Journals (Sweden)

    Urszula eBak-Steslicka

    2016-03-01

    Full Text Available We present a statistical analysis of 66 days of observations of quiescent (non-erupting coronal cavities and associated velocity and thermal structures. We find that nested rings of LOS-oriented velocity are common in occurrence and spatially well correlated with cavities observed in emission. We find that the majority of cavities possess multiple rings, and a range in velocity on the order of several $km/sec$. We find that the tops of prominences lie systematically below the cavity center and location of largest Doppler velocity. Finally, we use DEM analysis to consider the temperature structure of two cavities in relation to cavity, prominence, and flows. These observations yield new constraints on the magnetic structure of cavities, and on the conditions leading up to solar eruptions.

  14. Microwave line of sight link engineering

    CERN Document Server

    Angueira, Pablo

    2012-01-01

    A comprehensive guide to the design, implementation, and operation of line of sight microwave link systems The microwave Line of Sight (LOS) transport network of any cellular operator requires at least as much planning effort as the cellular infrastructure itself. The knowledge behind this design has been kept private by most companies and has not been easy to find. Microwave Line of Sight Link Engineering solves this dilemma. It provides the latest revisions to ITU reports and recommendations, which are not only key to successful design but have changed dramatically in

  15. Doppler velocity measurements from large and small arteries of mice

    Science.gov (United States)

    Reddy, Anilkumar K.; Madala, Sridhar; Entman, Mark L.; Michael, Lloyd H.; Taffet, George E.

    2011-01-01

    With the growth of genetic engineering, mice have become increasingly common as models of human diseases, and this has stimulated the development of techniques to assess the murine cardiovascular system. Our group has developed nonimaging and dedicated Doppler techniques for measuring blood velocity in the large and small peripheral arteries of anesthetized mice. We translated technology originally designed for human vessels for use in smaller mouse vessels at higher heart rates by using higher ultrasonic frequencies, smaller transducers, and higher-speed signal processing. With these methods one can measure cardiac filling and ejection velocities, velocity pulse arrival times for determining pulse wave velocity, peripheral blood velocity and vessel wall motion waveforms, jet velocities for the calculation of the pressure drop across stenoses, and left main coronary velocity for the estimation of coronary flow reserve. These noninvasive methods are convenient and easy to apply, but care must be taken in interpreting measurements due to Doppler sample volume size and angle of incidence. Doppler methods have been used to characterize and evaluate numerous cardiovascular phenotypes in mice and have been particularly useful in evaluating the cardiac and vascular remodeling that occur following transverse aortic constriction. Although duplex ultrasonic echo-Doppler instruments are being applied to mice, dedicated Doppler systems are more suitable for some applications. The magnitudes and waveforms of blood velocities from both cardiac and peripheral sites are similar in mice and humans, such that much of what is learned using Doppler technology in mice may be translated back to humans. PMID:21572013

  16. Evaluation of the Legibility of Broken Lines for Partial Sight

    OpenAIRE

    小林, 秀之

    2000-01-01

    The present study was designed to investigate the legibility of broken lines for persons with partial sight. The subjects were 10 persons with simulated partial sight, and 4 persons with partial sight. The simulation was obtained using filters and convex lenses. The 30 kind of broken lines was evaluated by the original test that the subjects were read directions of the broken lines in distinction from solid lines. The thickness of lines varied from 0.1mm. to 0.7mm. in 4 steps. The results...

  17. A young solar twin in the Rosette cluster NGC 2244 line of sight

    Science.gov (United States)

    Huber, Jeremy M.; Kielkopf, John F.; Mengel, Matthew; Carter, Bradley D.; Ferland, Gary J.; Clark, Frank O.

    2018-05-01

    Based on prior precision photometry and cluster age analysis, the bright star GSC 00154-01819 is a possible young pre-main sequence member of the Rosette cluster, NGC 2244. As part of a comprehensive study of the large-scale structure of the Rosette and its excitation by the cluster stars, we noted this star as a potential backlight for a probe of the interstellar medium and extinction along the sight line towards a distinctive nebular feature projected on to the cluster centre. New high-resolution spectra of the star were taken with the University College London Echelle Spectrograph of the AAT. They reveal that rather than being a reddened spectral type B or A star within the Mon OB2 association, it is a nearby, largely unreddened, solar twin of spectral type G2V less than 180 Myr old. It is about 219 pc from the Sun with a barycentric radial velocity of +14.35 ± 1.99 km s-1. The spectrum of the Rosette behind it and along this line of sight shows a barycentric radial velocity of +26.0 ± 2.4 km s-1 in H α, and a full width at half-maximum velocity dispersion of 61.94 ± 1.38 km s-1.

  18. Doppler Velocity Signatures of Idealized Elliptical Vortices

    Directory of Open Access Journals (Sweden)

    Wen-Chau Lee

    2006-01-01

    Full Text Available Doppler radar observations have revealed a class of atmospheric vortices (tropical cyclones, tornadoes, dust devils that possess elliptical radar reflectivity signatures. One famous example is Typhoon Herb (1996 that maintained its elliptical reflectivity structure over a 40-hour period. Theoretical work and dual-Doppler analyses of observed tropical cyclones have suggested two physical mechanisms that can explain the formation of two types of elliptical vortices observed in nature, namely, the combination of a circular vortex with either a wavenumber two vortex Rossby wave or a deformation field. The characteristics of these two types of elliptical vortices and their corresponding Doppler velocity signatures have not been previously examined.

  19. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, R. K. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States); Shippert, T. R. [DOE ARM Climate Research Facility, Washington, DC (United States); Riihimaki, L. D. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2015-07-01

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  20. Observation of E×B Flow Velocity Profile Change Using Doppler Reflectometry in HL-2A

    Institute of Scientific and Technical Information of China (English)

    XIAO Wei-Wen; ZOU Xiao-Lan; DING Xuan-Tong; DONG Jia-Qi; LIU Ze-Tian; SONG Shao-Dong; GAO Ya-Dong; YAO Liang-Hua; FENG Bei-Bin; SONG Xian-Ming; CHEN Cheng-Yuan; SUN Hong-Juan; LI Yong-Gao; YANG Qing-Wei; YAN Long-Wen; LIU Yi; DUAN Xu-Ru; PAN Chuan-Hong; LIU Yong

    2009-01-01

    A broadband,O-mode sweeping Doppler reflectometry designed for measuring plasma E×B flow velocity profiles is operated in HL-2A.The main feature of the Doppler reflectometry is its capability to be tuned to any selected frequency in total waveband from 26-40 GHz.This property enables us to probe several plasma layers within a short time interval during a discharge,permitting the characterization of the radial distribution of plasma fluctuations.The system allows us to extract important information about the velocity change layer,namely its spatial localization.In purely Ohmic discharge a change of the E×B flow velocity profiles has been observed in the region for 28 < r < 30cm if only the line average density exceeds 2.2×1019 m-3.The density gradient change is measured in the same region,too.

  1. Determination of the Ion Velocity Distribution in a Rotating Plasma from Measurements of Doppler Broadening

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1979-01-01

    The Doppler-broadened profile of the He II 4685.75 AA line was measured along a chord in a rotating plasma, transverse to the magnetic field. Using a single-particle orbit picture, the corresponding velocity spectrum of ions confirm the measurements, so it can be concluded that the single-particl...

  2. Power spectral density of velocity fluctuations estimated from phase Doppler data

    OpenAIRE

    Jicha Miroslav; Lizal Frantisek; Jedelsky Jan

    2012-01-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain – calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused...

  3. Ratio of deuterium to hydrogen in interstellar space. IV. The lines of sight to delta, epsilon, and iota Orionis

    International Nuclear Information System (INIS)

    Laurent, C.; Vidal-Madjar, A.; York, D.G.

    1979-01-01

    We have analyzed the deuterium absorption features in the spectra of delta, epsilon, and iota Ori obtained with Copernicus. The iota Ori line-of-sight analysis, which is quite detailed because of the high-velocity H I components superposed on the deuterium features, gives a D/H ratio (which is uncertain because of a complex profile) of 1.4 x 10 -5 . We determined a D/H ratio of the order of 7 x 10 -6 for delta and epsilon Ori. For the complex line profiles involved, one may regard this as a formal lower limit. Several attempts were made to increase the ratio N (DI)/N (H I) in the context of reasonable models for the line of sight, but with no success; we therefore regard the derived values as actual values, not lower limits. Since our derived value is an average on the line of sight, we cannot rule out the possibility that the true ratios N (D I)/N (H I) in individual nearby components (Δν -1 ) differ from the mean values. Our mean value for these two directions is lower by a factor of 4 than our best value for the zeta Pup line of sight

  4. Clustering of galaxies around gamma-ray burst sight-lines

    DEFF Research Database (Denmark)

    Sudilovsky, V.; Greiner, J.; Rau, A.

    2013-01-01

    -lines, as strong MgII tends to trace these sources. In this work, we test this expectation by calculating the two point angular correlation function of galaxies within 120'' (~470 h Kpc470h71-1Kpc at z ~ 0.4) of GRB afterglows. We compare the gamma-ray burst optical and near-infrared detector (GROND) GRB afterglow.......3. This result is contrary to the expectations from the MgII excess derived from GRB afterglow spectroscopy, although many confirmed galaxy counterparts to MgII absorbers may be too faint to detect in our sample-especially those at z > 1. We note that the addition of higher sensitivity Spitzer/IRAC or HST/WFC3......There is evidence of an overdensity of strong intervening MgII absorption line systems distributed along the lines of sight toward gamma-ray burst (GRB) afterglows relative to quasar sight-lines. If this excess is real, one should also expect an overdensity of field galaxies around GRB sight...

  5. Enhancement of the FIDA diagnostic at ASDEX Upgrade for velocity space tomography

    DEFF Research Database (Denmark)

    Weiland, M.; Geiger, B.; Jacobsen, Asger Schou

    2016-01-01

    Recent upgrades to the FIDA (fast-ion D-alpha) diagnostic at ASDEX Upgrade are discussed. The diagnostic has been extended from three to five line of sight arrays with different angles to the magnetic field, and a spectrometer redesign allows the simultaneous measurement of red- and blue-shifted ......Recent upgrades to the FIDA (fast-ion D-alpha) diagnostic at ASDEX Upgrade are discussed. The diagnostic has been extended from three to five line of sight arrays with different angles to the magnetic field, and a spectrometer redesign allows the simultaneous measurement of red- and blue......-shifted parts of the Doppler spectrum. These improvements make it possible to reconstruct the 2D fast-ion velocity distribution from the FIDA measurements by tomographic inversion under a wide range of plasma parameters. Two applications of the tomography are presented: a comparison between the distributions...... resulting from 60 keV and 93 keV neutral beam injection and a velocity-space resolved study of fast-ion redistribution induced by a sawtooth crash inside and outside the sawtooth inversion radius....

  6. The ratio of deuterium to hydrogen in interstellar space. IV - The lines of sight to Delta, Epsilon, and Iota Orionis

    Science.gov (United States)

    Laurent, C.; Vidal-Madjar, A.; York, D. G.

    1979-01-01

    Deuterium absorption features in spectra of Delta, Epsilon, and Iota Ori obtained with Copernicus are analyzed. The Iota Ori line-of-sight analysis, which is quite detailed because of the high-velocity H I components superposed on the deuterium features, gives a D/H ratio (which is uncertain because of a complex profile) of 0.000014. A D/H ratio of the order of 7 millionths is determined for Delta and Epsilon Ori. For the complex line profiles involved, one may regard this as a formal lower limit. Several attempts were made to increase the ratio N(D I)/N(H I) in the context of reasonable models for the line of sight, but with no success; the derived values are therefore regarded as actual values, not lower limits. Since the derived value is an average on the line of sight, the possibility cannot be ruled out that the true ratios N(D I)/N(H I) in individual nearby components differ from the mean values. The mean value for these two directions is lower by a factor of 4 than the best value for the Zeta Pup line of sight (the highest yet derived for path lengths greater than 50 pc).

  7. DeepVel: Deep learning for the estimation of horizontal velocities at the solar surface

    Science.gov (United States)

    Asensio Ramos, A.; Requerey, I. S.; Vitas, N.

    2017-07-01

    Many phenomena taking place in the solar photosphere are controlled by plasma motions. Although the line-of-sight component of the velocity can be estimated using the Doppler effect, we do not have direct spectroscopic access to the components that are perpendicular to the line of sight. These components are typically estimated using methods based on local correlation tracking. We have designed DeepVel, an end-to-end deep neural network that produces an estimation of the velocity at every single pixel, every time step, and at three different heights in the atmosphere from just two consecutive continuum images. We confront DeepVel with local correlation tracking, pointing out that they give very similar results in the time and spatially averaged cases. We use the network to study the evolution in height of the horizontal velocity field in fragmenting granules, supporting the buoyancy-braking mechanism for the formation of integranular lanes in these granules. We also show that DeepVel can capture very small vortices, so that we can potentially expand the scaling cascade of vortices to very small sizes and durations. The movie attached to Fig. 3 is available at http://www.aanda.org

  8. 375-nm ultraviolet-laser based non-line-of-sight underwater optical communication

    KAUST Repository

    Sun, Xiaobin; Cai, Wenqi; Alkhazragi, Omar; Ooi, Ee-Ning; He, Hongsen; Chaaban, Anas; Shen, Chao; Oubei, Hassan M.; Khan, Mohammed Zahed Mustafa; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S.

    2018-01-01

    For circumventing the alignment requirement of line-of-sight (LOS) underwater wireless optical communication (UWOC), we demonstrated a non-line-of-sight (NLOS) UWOC link adequately enhanced using ultraviolet (UV) 375-nm laser. Path loss was chosen

  9. Bias Correction and Random Error Characterization for the Assimilation of HRDI Line-of-Sight Wind Measurements

    Science.gov (United States)

    Tangborn, Andrew; Menard, Richard; Ortland, David; Einaudi, Franco (Technical Monitor)

    2001-01-01

    A new approach to the analysis of systematic and random observation errors is presented in which the error statistics are obtained using forecast data rather than observations from a different instrument type. The analysis is carried out at an intermediate retrieval level, instead of the more typical state variable space. This method is carried out on measurements made by the High Resolution Doppler Imager (HRDI) on board the Upper Atmosphere Research Satellite (UARS). HRDI, a limb sounder, is the only satellite instrument measuring winds in the stratosphere, and the only instrument of any kind making global wind measurements in the upper atmosphere. HRDI measures doppler shifts in the two different O2 absorption bands (alpha and B) and the retrieved products are tangent point Line-of-Sight wind component (level 2 retrieval) and UV winds (level 3 retrieval). This analysis is carried out on a level 1.9 retrieval, in which the contributions from different points along the line-of-sight have not been removed. Biases are calculated from O-F (observed minus forecast) LOS wind components and are separated into a measurement parameter space consisting of 16 different values. The bias dependence on these parameters (plus an altitude dependence) is used to create a bias correction scheme carried out on the level 1.9 retrieval. The random error component is analyzed by separating the gamma and B band observations and locating observation pairs where both bands are very nearly looking at the same location at the same time. It is shown that the two observation streams are uncorrelated and that this allows the forecast error variance to be estimated. The bias correction is found to cut the effective observation error variance in half.

  10. Dynamical critical scaling of electric field fluctuations in the greater cusp and magnetotail implied by HF radar observations of F-region Doppler velocity

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2006-03-01

    Full Text Available Akasofu's solar wind ε parameter describes the coupling of solar wind energy to the magnetosphere and ionosphere. Analysis of fluctuations in ε using model independent scaling techniques including the peaks of probability density functions (PDFs and generalised structure function (GSF analysis show the fluctuations were self-affine (mono-fractal, single exponent scaling over 9 octaves of time scale from ~46 s to ~9.1 h. However, the peak scaling exponent α0 was a function of the fluctuation bin size, so caution is required when comparing the exponents for different data sets sampled in different ways. The same generic scaling techniques revealed the organisation and functional form of concurrent fluctuations in azimuthal magnetospheric electric fields implied by SuperDARN HF radar measurements of line-of-sight Doppler velocity, vLOS, made in the high-latitude austral ionosphere. The PDFs of vLOS fluctuation were calculated for time scales between 1 min and 256 min, and were sorted into noon sector results obtained with the Halley radar, and midnight sector results obtained with the TIGER radar. The PDFs were further sorted according to the orientation of the interplanetary magnetic field, as well as ionospheric regions of high and low Doppler spectral width. High spectral widths tend to occur at higher latitude, mostly on open field lines but also on closed field lines just equatorward of the open-closed boundary, whereas low spectral widths are concentrated on closed field lines deeper inside the magnetosphere. The vLOS fluctuations were most self-affine (i.e. like the solar wind ε parameter on the high spectral width field lines in the noon sector ionosphere (i.e. the greater cusp, but suggested multi-fractal behaviour on closed field lines in the midnight sector (i.e. the central plasma sheet. Long tails in the PDFs imply that "microbursts" in ionospheric convection occur far more frequently, especially on open field lines, than can be

  11. The relationship between VHF radar auroral backscatter amplitude and Doppler velocity: a statistical study

    Directory of Open Access Journals (Sweden)

    B. A. Shand

    Full Text Available A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE. The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s–1, the backscatter intensity (measured in decibels remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels and Doppler velocity for velocities between 200 m s–1 and 700 m s–1. At velocities greater than 700 m s–1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.

  12. The relationship between VHF radar auroral backscatter amplitude and Doppler velocity: a statistical study

    Directory of Open Access Journals (Sweden)

    B. A. Shand

    1996-08-01

    Full Text Available A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE. The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s–1, the backscatter intensity (measured in decibels remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels and Doppler velocity for velocities between 200 m s–1 and 700 m s–1. At velocities greater than 700 m s–1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.

  13. Multipoint photonic doppler velocimetry using optical lens elements

    Science.gov (United States)

    Frogget, Brent Copely; Romero, Vincent Todd

    2014-04-29

    A probe including a fisheye lens is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface and then reflected back from the surface, is Doppler shifted by the moving surface, collected into fisheye lens, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to an index-matching lens and eventually to a fisheye lens. The fiber array flat polished and coupled to the index-matching lens using index-matching gel. Numerous fibers in a fiber array project numerous rays through the fisheye lens which in turn project many measurement points at numerous different locations to establish surface coverage over a hemispherical shape with very little crosstalk.

  14. Effect of suprathermal electrons on the intensity and Doppler frequency of electron plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    Full Text Available In an incoherent scattering radar experiment, the spectral measurement of the so-called up- and downshifted electron plasma lines provides information about their intensity and their Doppler frequency. These two spectral lines correspond, in the backscatter geometry, to two Langmuir waves travelling towards and away from the radar. In the daytime ionosphere, the presence of a small percentage of photoelectrons produced by the solar EUV of the total electron population can excite or damp these Langmuir waves above the thermal equilibrium, resulting in an enhancement of the intensity of the lines above the thermal level. The presence of photo-electrons also modifies the dielectric response function of the plasma from the Maxwellian and thus influences the Doppler frequency of the plasma lines. In this paper, we present a high time-resolution plasma-line data set collected on the Eiscat VHF radar. The analysed data are compared with a model that includes the effect of a suprathermal electron population calculated by a transport code. By comparing the intensity of the analysed plasma lines data to our model, we show that two sharp peaks in the electron suprathermal distribution in the energy range 20-30 eV causes an increased Landau damping around 24.25 eV and 26.25 eV. We have identified these two sharp peaks as the effect of the photoionisation of N2 and O by the intense flux of monochromatic HeII radiation of wavelength 30.378 nm (40.812 eV created in the chromospheric network and coronal holes. Furthermore, we see that what would have been interpreted as a mean Doppler drift velocity for a Maxwellian plasma is actually a shift of the Doppler frequency of the plasma lines due to suprathermal electrons.

    Key words. Ionosphere (electric fields and currents; solar radiation and cosmic ray effects

  15. Effect of suprathermal electrons on the intensity and Doppler frequency of electron plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    1999-07-01

    Full Text Available In an incoherent scattering radar experiment, the spectral measurement of the so-called up- and downshifted electron plasma lines provides information about their intensity and their Doppler frequency. These two spectral lines correspond, in the backscatter geometry, to two Langmuir waves travelling towards and away from the radar. In the daytime ionosphere, the presence of a small percentage of photoelectrons produced by the solar EUV of the total electron population can excite or damp these Langmuir waves above the thermal equilibrium, resulting in an enhancement of the intensity of the lines above the thermal level. The presence of photo-electrons also modifies the dielectric response function of the plasma from the Maxwellian and thus influences the Doppler frequency of the plasma lines. In this paper, we present a high time-resolution plasma-line data set collected on the Eiscat VHF radar. The analysed data are compared with a model that includes the effect of a suprathermal electron population calculated by a transport code. By comparing the intensity of the analysed plasma lines data to our model, we show that two sharp peaks in the electron suprathermal distribution in the energy range 20-30 eV causes an increased Landau damping around 24.25 eV and 26.25 eV. We have identified these two sharp peaks as the effect of the photoionisation of N2 and O by the intense flux of monochromatic HeII radiation of wavelength 30.378 nm (40.812 eV created in the chromospheric network and coronal holes. Furthermore, we see that what would have been interpreted as a mean Doppler drift velocity for a Maxwellian plasma is actually a shift of the Doppler frequency of the plasma lines due to suprathermal electrons.Key words. Ionosphere (electric fields and currents; solar radiation and cosmic ray effects

  16. Coherent optical transients observed in rubidium atomic line filtered Doppler velocimetry experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Mario E., E-mail: mario.fajardo@eglin.af.mil; Molek, Christopher D.; Vesely, Annamaria L. [Air Force Research Laboratory, Munitions Directorate, Ordnance Division, Energetic Materials Branch, AFRL/RWME, 2306 Perimeter Road, Eglin AFB, Florida 32542-5910 (United States)

    2015-10-14

    We report the first successful results from our novel Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus, along with unanticipated oscillatory signals due to coherent optical transients generated within pure Rb vapor cells. RALF is a high-velocity and high-acceleration extension of the well-known Doppler Global Velocimetry (DGV) technique for constructing multi-dimensional flow velocity vector maps in aerodynamics experiments [H. Komine, U.S. Patent No. 4,919,536 (24 April 1990)]. RALF exploits the frequency dependence of pressure-broadened Rb atom optical absorptions in a heated Rb/N{sub 2} gas cell to encode the Doppler shift of reflected near-resonant (λ{sub 0} ≈ 780.24 nm) laser light onto the intensity transmitted by the cell. The present RALF apparatus combines fiber optic and free-space components and was built to determine suitable operating conditions and performance parameters for the Rb/N{sub 2} gas cells. It yields single-spot velocities of thin laser-driven-flyer test surfaces and incorporates a simultaneous Photonic Doppler Velocimetry (PDV) channel [Strand et al., Rev. Sci. Instrum. 77, 083108 (2006)] for validation of the RALF results, which we demonstrate here over the v = 0 to 1 km/s range. Both RALF and DGV presume the vapor cells to be simple Beer's Law optical absorbers, so we were quite surprised to observe oscillatory signals in experiments employing low pressure pure Rb vapor cells. We interpret these oscillations as interference between the Doppler shifted reflected light and the Free Induction Decay (FID) coherent optical transient produced within the pure Rb cells at the original laser frequency; this is confirmed by direct comparison of the PDV and FID signals. We attribute the different behaviors of the Rb/N{sub 2} vs. Rb gas cells to efficient dephasing of the atomic/optical coherences by Rb-N{sub 2} collisions. The minimum necessary N{sub 2} buffer gas density ≈0.3 amagat translates into a

  17. RADIAL VELOCITIES OF GALACTIC O-TYPE STARS. II. SINGLE-LINED SPECTROSCOPIC BINARIES

    International Nuclear Information System (INIS)

    Williams, S. J.; Gies, D. R.; Hillwig, T. C.; McSwain, M. V.; Huang, W.

    2013-01-01

    We report on new radial velocity measurements of massive stars that are either suspected binaries or lacking prior observations. This is part of a survey to identify and characterize spectroscopic binaries among O-type stars with the goal of comparing the binary fraction of field and runaway stars with those in clusters and associations. We present orbits for HDE 308813, HD 152147, HD 164536, BD–16°4826, and HDE 229232, Galactic O-type stars exhibiting single-lined spectroscopic variation. By fitting model spectra to our observed spectra, we obtain estimates for effective temperature, surface gravity, and rotational velocity. We compute orbital periods and velocity semiamplitudes for each system and note the lack of photometric variation for any system. These binaries probably appear single-lined because the companions are faint and because their orbital Doppler shifts are small compared to the width of the rotationally broadened lines of the primary.

  18. X-ray doppler velocimetry for diagnosis of fluid motion in ICF implosions

    Science.gov (United States)

    Koch, J. A.; King, J. A.; Huffman, E.; Freeman, R. R.; Dutra, E. C.; Field, J. E.; Kilkenny, J. D.; Hall, G. N.; Harding, E.; Rochau, G. A.; Porter, J. L.; Covington, A. M.; Beg, F. N.

    2017-08-01

    We are developing a novel diagnostic for measurement of bulk fluid motion in materials, that is particularly applicable to very hot, x-ray emitting plasmas in the High Energy Density Physics (HEDP) regime. The X-ray Doppler Velocimetry (XDV) technique relies on monochromatic imaging in multiple x-ray energy bands near the center of an x-ray emission line in a plasma, and utilizes bent imaging crystals. Higher energy bands are preferentially sensitive to plasma moving towards the viewer, while lower energy bands are preferentially sensitive to plasma moving away from the viewer. Combining multiple images in different energy bands allows for a reconstruction of the fluid velocity field integrated along the line of sight. We review the technique, and we discuss progress towards benchmarking the technique with proof-of-principle HEDP experiments.

  19. Analysis of placenta vascularization in patients with uterine altered artery Doppler flow velocity exams.

    Science.gov (United States)

    Gilio, Daniel Bruno; Miranda Corrêa, Rosana Rosa; Souza de Oliveira Guimarães, Camila; Peres, Luiz Cesar; Marques Salge, Ana Karina; Cavellani, Camila Lourencini; de Paula Antunes Teixeira, Vicente; Costa da Cunha Castro, Eumenia

    2009-08-01

    One of the frequent questions in obstetric practice is to determine placental vascular changes that may account for abnormal Doppler flow velocity alterations in maternal uterine vessels from women and fetuses without pregnancy pathology. A retrospective morphometric study was realized using 27 placentas from patients submitted for Doppler flow velocity exam during pregnancy. The placentas were morphologically examined using hematoxylin-eosin staining. Measurements of villi were made with the use of a video camera coupled to a common light microscope and a computer with automatic image analyzing software. Of the 27 placentas, 13 (48%) were of patients showing unaltered Doppler and 14 (52%) showing altered Doppler. The number of stem villi vessels was significantly larger in the placentas of patients with Doppler exam alterations (P = 0.003). This group also presented greater stem villi vessel thickness, although without significant difference. The number of intermediary and terminal villi vessels was greater in the placentas of patients with altered Doppler exams (P < 0.001), and a greater terminal villi area was observed in these cases (P < 0.001). The morphological proof that uterine artery Doppler flow velocity exam alterations are associated with placental vascular alterations demonstrates the importance of this exam during prenatal care, even in the absence of maternal-fetal alterations.

  20. On protecting the planet against cosmic attack: Ultrafast real-time estimate of the asteroid's radial velocity

    Science.gov (United States)

    Zakharchenko, V. D.; Kovalenko, I. G.

    2014-05-01

    A new method for the line-of-sight velocity estimation of a high-speed near-Earth object (asteroid, meteorite) is suggested. The method is based on the use of fractional, one-half order derivative of a Doppler signal. The algorithm suggested is much simpler and more economical than the classical one, and it appears preferable for use in orbital weapon systems of threat response. Application of fractional differentiation to quick evaluation of mean frequency location of the reflected Doppler signal is justified. The method allows an assessment of the mean frequency in the time domain without spectral analysis. An algorithm structure for the real-time estimation is presented. The velocity resolution estimates are made for typical asteroids in the X-band. It is shown that the wait time can be shortened by orders of magnitude compared with similar value in the case of a standard spectral processing.

  1. HYDROGEN CHLORIDE IN DIFFUSE INTERSTELLAR CLOUDS ALONG THE LINE OF SIGHT TO W31C (G10.6-0.4)

    Energy Technology Data Exchange (ETDEWEB)

    Monje, R. R.; Lis, D. C.; Phillips, T. G. [California Institute of Technology, MC 301-17, 1200 E. California Blvd., Pasadena, CA 91125-4700 (United States); Roueff, E. [Observatoire de Paris-Meudon, LUTH UMR 8102, 5 Pl. Jules Janssen, F-92195 Meudon Cedex (France); Gerin, M.; De Luca, M. [LERMA, CNRS, Observatoire de Paris and ENS, F-75231 Paris Cedex (France); Neufeld, D. A. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Godard, B., E-mail: raquel@caltech.edu [Departamento de Astrofisica, Centro de Astrobiologia (CAB), INTA-CSIC, Crta. Torrejon km 4, E-28850 Torrejon de Ardoz, Madrid (Spain)

    2013-04-10

    We report the detection of hydrogen chloride, HCl, in diffuse molecular clouds on the line of sight toward the star-forming region W31C (G10.6-0.4). The J = 1-0 lines of the two stable HCl isotopologues, H{sup 35}Cl and H{sup 37}Cl, are observed using the 1b receiver of the Heterodyne Instrument for the Far-Infrared (HIFI) on board the Herschel Space Observatory. The HCl line is detected in absorption, over a wide range of velocities associated with diffuse clouds along the line of sight to W31C. The analysis of the absorption strength yields a total HCl column density of a few 10{sup 13} cm{sup -2}, implying that HCl accounts for {approx}0.6% of the total gas-phase chlorine, which exceeds the theoretical model predictions by a factor of {approx}6. This result is comparable to those obtained from the chemically related species H{sub 2}Cl{sup +} and HCl{sup +}, for which large column densities have also been reported on the same line of sight. The source of discrepancy between models and observations is still unknown; however, the detection of these Cl-bearing molecules provides key constraints for the chlorine chemistry in the diffuse gas.

  2. Carotid near-occlusion frequently has high peak systolic velocity on Doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Khangure, Simon R.; Machnowska, Matylda; Fox, Allan J.; Hojjat, Seyed-Parsa; Aviv, Richard I. [Sunnybrook Health Sciences Centre, Department of Medical Imaging, Neuroradiology Division, Toronto, ON (Canada); University of Toronto, Department of Medical Imaging, Division of Neuroimaging, Toronto (Canada); Benhabib, Hadas [Sunnybrook Health Sciences Centre, Department of Medical Imaging, Neuroradiology Division, Toronto, ON (Canada); Groenlund, Christer [Umeaa University, Department of Radiation Sciences, Biomedical Engineering, Umeaa (Sweden); Herod, Wendy [Department of Surgery, Sunnybrook Health Sciences Centre, Toronto (Canada); Maggisano, Robert [Department of Surgery, Sunnybrook Health Sciences Centre, Toronto (Canada); University of Toronto, Division of Vascular Surgery, Department of Surgery, Toronto (Canada); Sjoeberg, Anders [Umeaa University, Department of Radiation Sciences, Biomedical Engineering, Umeaa (Sweden); Umeaa University, Department of Pharmacology and Clinical Neuroscience, Umeaa (Sweden); Wester, Per [Umeaa University, Department of Public Health and Clinical Medicine, Umeaa (Sweden); Karolinska Institutet Danderyds Hospital, Department of Clinical Sciences, Stockholm (Sweden); Hopyan, Julia [University of Toronto, Division of Neurology, Department of Medicine, Toronto (Canada); Johansson, Elias [Umeaa University, Department of Pharmacology and Clinical Neuroscience, Umeaa (Sweden); Umeaa University, Department of Public Health and Clinical Medicine, Umeaa (Sweden)

    2018-01-15

    Carotid near-occlusion is a tight atherosclerotic stenosis of the internal carotid artery (ICA) resulting in decrease in diameter of the vessel lumen distal to the stenosis. Near-occlusions can be classified as with or without full collapse, and may have high peak systolic velocity (PSV) across the stenosis, mimicking conventional > 50% carotid artery stenosis. We aimed to determine how frequently near-occlusions have high PSV in the stenosis and determine how accurately carotid Doppler ultrasound can distinguish high-velocity near-occlusion from conventional stenosis. Included patients had near-occlusion or conventional stenosis with carotid ultrasound and CT angiogram (CTA) performed within 30 days of each other. CTA examinations were analyzed by two blinded expert readers. Velocities in the internal and common carotid arteries were recorded. Mean velocity, pulsatility index, and ratios were calculated, giving 12 Doppler parameters for analysis. Of 136 patients, 82 had conventional stenosis and 54 had near-occlusion on CTA. Of near-occlusions, 40 (74%) had high PSV (≥ 125 cm/s) across the stenosis. Ten Doppler parameters significantly differed between conventional stenosis and high-velocity near-occlusion groups. However, no parameter was highly sensitive and specific to separate the groups. Near-occlusions frequently have high PSV across the stenosis, particularly those without full collapse. Carotid Doppler ultrasound does not seem able to distinguish conventional stenosis from high-velocity near-occlusion. These findings question the use of ultrasound alone for preoperative imaging evaluation. (orig.)

  3. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.

    Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  4. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    1998-10-01

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  5. Development of a new lines of sight analyzer while playing sport

    Directory of Open Access Journals (Sweden)

    Shinya Mochiduki

    2017-01-01

    Full Text Available The Olympics will be held in Tokyo in 2020, and the training of the athlete using technology has been gaining attention. In an effort to refine the competitive ability of top athletes by evaluating their performance objectively, we have focused on eye movement and head movement. Since the field of view moves according to the athlete’s head movement, which is a problem for the conventional method of measuring eye movement, we proposed a new method of analysis of lines of sight which can record head movement during a competition and make it easier to analyze by superimposing the lines of sight on an externally recorded fixed image. With the goal of measuring the lines of sight of an athlete during an actual competition, we made a video during a competition and had an athlete observe the video in a laboratory. First we compared the video in which only the eye movement was measured and the field-of-view image moved according to the head movement with another video in which the head movement and eye movement were measured and the image did not move in spite of the occurrence of head movement. The results of the experiment, which involved baseball as the competitive sport, showed the effectiveness of our proposed system. Furthermore, we showed the difference between the lines of sight of an experienced and an inexperienced catcher.

  6. Dynamical critical scaling of electric field fluctuations in the greater cusp and magnetotail implied by HF radar observations of F-region Doppler velocity

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2006-03-01

    Full Text Available Akasofu's solar wind ε parameter describes the coupling of solar wind energy to the magnetosphere and ionosphere. Analysis of fluctuations in ε using model independent scaling techniques including the peaks of probability density functions (PDFs and generalised structure function (GSF analysis show the fluctuations were self-affine (mono-fractal, single exponent scaling over 9 octaves of time scale from ~46 s to ~9.1 h. However, the peak scaling exponent α0 was a function of the fluctuation bin size, so caution is required when comparing the exponents for different data sets sampled in different ways. The same generic scaling techniques revealed the organisation and functional form of concurrent fluctuations in azimuthal magnetospheric electric fields implied by SuperDARN HF radar measurements of line-of-sight Doppler velocity, vLOS, made in the high-latitude austral ionosphere. The PDFs of vLOS fluctuation were calculated for time scales between 1 min and 256 min, and were sorted into noon sector results obtained with the Halley radar, and midnight sector results obtained with the TIGER radar. The PDFs were further sorted according to the orientation of the interplanetary magnetic field, as well as ionospheric regions of high and low Doppler spectral width. High spectral widths tend to occur at higher latitude, mostly on open field lines but also on closed field lines just equatorward of the open-closed boundary, whereas low spectral widths are concentrated on closed field lines deeper inside the magnetosphere. The vLOS fluctuations were most self-affine (i.e. like the solar wind ε parameter on the high spectral width field lines in the noon sector ionosphere (i.e. the greater cusp, but suggested multi-fractal behaviour on closed field lines in the midnight sector (i.e. the central plasma sheet. Long tails in the PDFs imply that "microbursts" in ionospheric convection

  7. Demonstration of coherent Doppler lidar for navigation in GPS-denied environments

    Science.gov (United States)

    Amzajerdian, Farzin; Hines, Glenn D.; Pierrottet, Diego F.; Barnes, Bruce W.; Petway, Larry B.; Carson, John M.

    2017-05-01

    A coherent Doppler lidar has been developed to address NASA's need for a high-performance, compact, and cost-effective velocity and altitude sensor onboard its landing vehicles. Future robotic and manned missions to solar system bodies require precise ground-relative velocity vector and altitude data to execute complex descent maneuvers and safe, soft landing at a pre-designated site. This lidar sensor, referred to as a Navigation Doppler Lidar (NDL), meets the required performance of the landing missions while complying with vehicle size, mass, and power constraints. Operating from up to four kilometers altitude, the NDL obtains velocity and range precision measurements reaching 2 cm/sec and 2 meters, respectively, dominated by the vehicle motion. Terrestrial aerial vehicles will also benefit from NDL data products as enhancement or replacement to GPS systems when GPS is unavailable or redundancy is needed. The NDL offers a viable option to aircraft navigation in areas where the GPS signal can be blocked or jammed by intentional or unintentional interference. The NDL transmits three laser beams at different pointing angles toward the ground to measure range and velocity along each beam using a frequency modulated continuous wave (FMCW) technique. The three line-of-sight measurements are then combined in order to determine the three components of the vehicle velocity vector and its altitude relative to the ground. This paper describes the performance and capabilities that the NDL demonstrated through extensive ground tests, helicopter flight tests, and onboard an autonomous rocket-powered test vehicle while operating in closedloop with a guidance, navigation, and control (GN and C) system.

  8. Simultaneous measurements with 3D PIV and Acoustic Doppler Velocity Profiler

    NARCIS (Netherlands)

    Blanckaert, K.J.F.; McLelland, S.J.

    2009-01-01

    Simultaneous velocity measurements were taken using Particle Image Velocimetry (PIV) and an Acoustic Doppler Velocity Profiler (ADVP) in a sharp open-channel bend with an immobile gravel bed. The PIV measures 3D velocity vectors in a vertical plane (~40cm x 20cm) at a frequency of 7.5 Hz, whereas

  9. A model for the Lin-Shu type density-wave structure of our Galaxy: Line-of-sight and transverse-longitudinal velocities of 242 optically visible open clusters

    Science.gov (United States)

    Griv, E.; Jiang, I.-G.

    2015-02-01

    In this paper, the fourth in a series, we examine again one of the implications of the Lin-Shu density-wave theory, specifically, the noncircular systematic motion of the Galactic objects. Our previous investigation is extended by analyzing simultaneously both the line-of-sight and transversal velocities of a sample of open clusters for which velocities, distances and ages are available. The ordinary equations of the Oort-Lindblad theory of galactic differential rotation are used. The minor effects caused by the two-dimensional tightly-wound density waves are also taken into account. The published data of 242 currently known optically visible clusters having distances rsight and transversal along the Galactic longitude velocities are nearly equal. We argue that the resemblance of these Galactic wave structures is so remarkable that no doubt is felt as to the theory's truth with respect to these data. The results obtained allow us to conclude that several low-m trailing density-wave patterns with different number of spiral arms m (say, m=1, 2, 3, and 4), pitch angles (about 5o, 8o, 11o, and 14o, respectively) and amplitudes of the perturbed gravitational potential may coexist in the Galaxy. The latter suggests the asymmetric multiarm, not well-organized (``flocculent'') spiral structure of the system. In memory of Professors Alexei M. Fridman (1940-2010) and Chi Yuan (1937-2008)

  10. Power spectral density of velocity fluctuations estimated from phase Doppler data

    Science.gov (United States)

    Jedelsky, Jan; Lizal, Frantisek; Jicha, Miroslav

    2012-04-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain - calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA) data in the frequency domain. Slot correlation (SC) method implemented in software program Kern by Nobach (2006) is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  11. Power spectral density of velocity fluctuations estimated from phase Doppler data

    Directory of Open Access Journals (Sweden)

    Jicha Miroslav

    2012-04-01

    Full Text Available Laser Doppler Anemometry (LDA and its modifications such as PhaseDoppler Particle Anemometry (P/DPA is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain – calculation of power spectral density (PSD of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA data in the frequency domain. Slot correlation (SC method implemented in software program Kern by Nobach (2006 is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  12. Line-of-sight extrapolation noise in dust polarization

    Energy Technology Data Exchange (ETDEWEB)

    Poh, Jason; Dodelson, Scott

    2017-05-19

    The B-modes of polarization at frequencies ranging from 50-1000 GHz are produced by Galactic dust, lensing of primordial E-modes in the cosmic microwave background (CMB) by intervening large scale structure, and possibly by primordial B-modes in the CMB imprinted by gravitational waves produced during inflation. The conventional method used to separate the dust component of the signal is to assume that the signal at high frequencies (e.g., 350 GHz) is due solely to dust and then extrapolate the signal down to lower frequency (e.g., 150 GHz) using the measured scaling of the polarized dust signal amplitude with frequency. For typical Galactic thermal dust temperatures of about 20K, these frequencies are not fully in the Rayleigh-Jeans limit. Therefore, deviations in the dust cloud temperatures from cloud to cloud will lead to different scaling factors for clouds of different temperatures. Hence, when multiple clouds of different temperatures and polarization angles contribute to the integrated line-of-sight polarization signal, the relative contribution of individual clouds to the integrated signal can change between frequencies. This can cause the integrated signal to be decorrelated in both amplitude and direction when extrapolating in frequency. Here we carry out a Monte Carlo analysis on the impact of this line-of-sight extrapolation noise, enabling us to quantify its effect. Using results from the Planck experiment, we find that this effect is small, more than an order of magnitude smaller than the current uncertainties. However, line-of-sight extrapolation noise may be a significant source of uncertainty in future low-noise primordial B-mode experiments. Scaling from Planck results, we find that accounting for this uncertainty becomes potentially important when experiments are sensitive to primordial B-mode signals with amplitude r < 0.0015 .

  13. Doppler Spectrum from Moving Scatterers in a Random Environment

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    2009-01-01

    A random non-line-of-sight environment with stationary transmitter and receiver is considered. In such an environment movement of a scatterer will lead to perturbations of the otherwise static channel with a resulting Doppler spectrum. This is quite a general situation in outdoor environments wit...

  14. TESTING THE POSSIBLE INTRINSIC ORIGIN OF THE EXCESS VERY STRONG Mg II ABSORBERS ALONG GAMMA-RAY BURST LINES-OF-SIGHT

    International Nuclear Information System (INIS)

    Cucchiara, A.; Jones, T.; Charlton, J. C.; Fox, D. B.; Einsig, D.; Narayanan, A.

    2009-01-01

    The startling discovery by Prochter et al. that the frequency of very strong (W r (2796)>1 A) Mg II absorbers along gamma-ray burst (GRB) lines of sight ([dN/dz] GRB = 0.90) is more than three times the frequency along quasar lines of sight ([dN/dz] QSO = 0.24), over similar redshift ranges, has yet to be understood. In particular, explanations appealing to dust antibias in quasar samples, partial covering of the quasar sources, and gravitational-lensing amplification of the GRBs have all been carefully examined and found wanting. We therefore reconsider the possibility that the excess of very strong Mg II absorbers toward GRBs is intrinsic either to the GRBs themselves or to their immediate environment, and associated with bulk outflows with velocities as large as v max ∼ 0.3c. In order to examine this hypothesis, we accumulate a sample of 27 W r (2796)>1 A absorption systems found toward 81 quasars, and compare their properties to those of 8 W r (2796) > 1 A absorption systems found toward six GRBs; all systems have been observed at high spectral resolution (R = 45, 000) using the Ultraviolet and Visual Echelle Spectrograph on the Very Large Telescope. We make multiple comparisons of the absorber properties across the two populations, testing for differences in metallicity, ionization state, abundance patterns, dust abundance, kinematics, and phase structure. We find no significant differences between the two absorber populations using any of these metrics, implying that, if the excess of absorbers along GRB lines of sight are indeed intrinsic, they must be produced by a process which has strong similarities to the processes yielding strong Mg II systems associated with intervening galaxies. Although this may seem a priori unlikely, given the high outflow velocities required for any intrinsic model, we note that the same conclusion was reached, recently, with respect to the narrow absorption line systems seen in some quasars.

  15. Explanation of the Inverse Doppler Effect Observed in Nonlinear Transmission Lines

    International Nuclear Information System (INIS)

    Kozyrev, Alexander B.; Weide, Daniel W. van der

    2005-01-01

    The theory of the inverse Doppler effect recently observed in magnetic nonlinear transmission lines is developed. We explain the crucial role of the backward spatial harmonic in the occurrence of an inverse Doppler effect and draw analogies of the magnetic nonlinear transmission line to the backward wave oscillator

  16. Effects of respiratory manoeuvres on hepatic vein Doppler waveform and flow velocities in a healthy population

    International Nuclear Information System (INIS)

    Altinkaya, Naime; Koc, Zafer; Ulusan, Serife; Demir, Senay; Gurel, Kamil

    2011-01-01

    Objective: This study was performed to determine the variations in Doppler waveforms and flow velocity during respiratory manoeuvres in healthy individuals with no liver disease. Materials and methods: In total, 100 individuals (75 women and 25 men) without known cardiac or liver disease were examined prospectively with duplex Doppler ultrasonography (US). We recorded the Doppler waveforms and peak systolic velocities (V max ) of the middle hepatic vein during normal respiration, during breath-holding after quiet expiration and also during deep inspiration. Doppler waveforms are categorised as triphasic, biphasic or monophasic. Results: During normal respiration, hepatic venous waveforms were triphasic in 93% of subjects, monophasic in 6% and biphasic in 1%. During breath-holding after quiet expiration, the percentages were 91%, 6% and 3%, respectively. During deep inspiration, they were 80%, 18% and 2%, respectively. Although significant differences were noted between rates during deep inspiration and normal respiration, they were quite similar during normal respiration and breath-holding after quiet expiration (P max were significantly higher during normal respiration compared to quiet expiration and during quiet expiration compared to deep inspiration (P < 0.05). Conclusion: The velocities and waveforms of hepatic veins varied during respiratory manoeuvres. The status of respiration must be taken into consideration whilst examining the hepatic vein waveforms and velocities with duplex Doppler US.

  17. Doppler tomography in fusion plasmas and astrophysics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Heidbrink, W. W.

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma......, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright...... and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications....

  18. Determining hot spot motion using a multi line-of-sight nToF analysis

    Science.gov (United States)

    Hatarik, Robert; Nora, Ryan; Spears, Brian; Eckart, Mark; Hartouni, Edward; Grim, Gary; Moore, Alastair; Schlossberg, David

    2017-10-01

    An important diagnostic value of a shot at the National Ignition Facility (NIF) is the resultant center-of mass motion of the imploding capsule as it contributes to the efficiency of converting LASER energy into plasma temperature. In the past the projection of this velocity onto a line-of-sight (LOS) for a given detector was determined by using a temperature model to determine the mean nergy of the emitted neutrons. With the addition of a fourth neutron time-of-flight LOS at the NIF, it is possible to determine a hot spot vector and mean velocity of the emitted neutron distribution. This entails analyzing all four LOS simultaneously and has the advantage of not relying on a temperature model. Results from recent NIF shots comparing this method with the traditional method will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Observational constraints on interstellar depletion mechanisms in lines of sight exhibiting peculiar extinction curves

    International Nuclear Information System (INIS)

    Joseph, C.L.

    1985-01-01

    The nature of dust-gas interactions, which are capable of modifying the size distribution of the grains and thus causing changes in the selective extinction curve, are investigated through depletion studies. The gaseous abundances of 16 elements were determined for several lines of sight toward moderately reddened stars, each having a so called anomalous extinction curve. Four lines of sight in the rho Ophiuchi dark cloud complexes as well as several lines of sight through the diffuse interstellar medium were also analyzed for comparison. Two approaches are used to assess the strength of density dependent depletion processes. First, the depletion pattern from element-to-element for each integrated line of sight is studied with particular emphasis being given to those species that are potential discriminators between the two major competing models of grain formation and growth. In the second approach, the relative abundancies of neutral atoms, which are thought to form primarily in the densest portions of interstellar clouds, are studied. Both of these constraints are then compared to a theoretical extinction curve derived from a simple model for the size distribution of the grains based on the degree of mantling

  20. Nearly simultaneous measurements of radar auroral heights and Doppler velocities at 398 MHz

    International Nuclear Information System (INIS)

    Moorcroft, D.; Ruohoniemi, J.M.

    1987-01-01

    Nearly simultaneous measurements of radar auroral heights and Doppler velocities were obtained using the Homer, Alaska, 398-MHz phased-array radar over a total of 16 hours on four different days. The heights show a consistent variation with time, being highest near the time of electrojet current reversal, and lowest late in the morning. A variety of east-west height asymmetries were observed, different from those previously reported, which can be explained in terms of favorable flow angles preferentially favoring high-altitude primary two-stream waves to one side of the field of view. Low-velocity echoes, presumably due to secondary irregularities, are found to be more restricted in height range than echoes with ion acoustic velocities, which presumably come from primary two-stream instabilities. Echo power was examined as a function of velocity and height. For the westward electrojet it was found that echoes with ion acoustic velocities are relatively constant in strength over most of their height range, but for low-velocity echoes the power is a maximum between 100 and 105 km and falls off steadily at greater heights. Doppler speeds show a noticeable decrease at heights below 105 km, in agreement with the expected variation in ion acoustic velocity

  1. Agent-based station for on-line diagnostics by self-adaptive laser Doppler vibrometry

    Science.gov (United States)

    Serafini, S.; Paone, N.; Castellini, P.

    2013-12-01

    A self-adaptive diagnostic system based on laser vibrometry is proposed for quality control of mechanical defects by vibration testing; it is developed for appliances at the end of an assembly line, but its characteristics are generally suited for testing most types of electromechanical products. It consists of a laser Doppler vibrometer, equipped with scanning mirrors and a camera, which implements self-adaptive bahaviour for optimizing the measurement. The system is conceived as a Quality Control Agent (QCA) and it is part of a Multi Agent System that supervises all the production line. The QCA behaviour is defined so to minimize measurement uncertainty during the on-line tests and to compensate target mis-positioning under guidance of a vision system. Best measurement conditions are reached by maximizing the amplitude of the optical Doppler beat signal (signal quality) and consequently minimize uncertainty. In this paper, the optimization strategy for measurement enhancement achieved by the down-hill algorithm (Nelder-Mead algorithm) and its effect on signal quality improvement is discussed. Tests on a washing machine in controlled operating conditions allow to evaluate the efficacy of the method; significant reduction of noise on vibration velocity spectra is observed. Results from on-line tests are presented, which demonstrate the potential of the system for industrial quality control.

  2. Agent-based station for on-line diagnostics by self-adaptive laser Doppler vibrometry.

    Science.gov (United States)

    Serafini, S; Paone, N; Castellini, P

    2013-12-01

    A self-adaptive diagnostic system based on laser vibrometry is proposed for quality control of mechanical defects by vibration testing; it is developed for appliances at the end of an assembly line, but its characteristics are generally suited for testing most types of electromechanical products. It consists of a laser Doppler vibrometer, equipped with scanning mirrors and a camera, which implements self-adaptive bahaviour for optimizing the measurement. The system is conceived as a Quality Control Agent (QCA) and it is part of a Multi Agent System that supervises all the production line. The QCA behaviour is defined so to minimize measurement uncertainty during the on-line tests and to compensate target mis-positioning under guidance of a vision system. Best measurement conditions are reached by maximizing the amplitude of the optical Doppler beat signal (signal quality) and consequently minimize uncertainty. In this paper, the optimization strategy for measurement enhancement achieved by the down-hill algorithm (Nelder-Mead algorithm) and its effect on signal quality improvement is discussed. Tests on a washing machine in controlled operating conditions allow to evaluate the efficacy of the method; significant reduction of noise on vibration velocity spectra is observed. Results from on-line tests are presented, which demonstrate the potential of the system for industrial quality control.

  3. Doppler lidar sensor for precision navigation in GPS-deprived environment

    Science.gov (United States)

    Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Petway, L. B.; Barnes, B. W.

    2013-05-01

    Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.

  4. 375-nm ultraviolet-laser based non-line-of-sight underwater optical communication

    KAUST Repository

    Sun, Xiaobin

    2018-05-04

    For circumventing the alignment requirement of line-of-sight (LOS) underwater wireless optical communication (UWOC), we demonstrated a non-line-of-sight (NLOS) UWOC link adequately enhanced using ultraviolet (UV) 375-nm laser. Path loss was chosen as a figure-of-merit for link performance in this investigation, which considers the effects of geometries, water turbidity, and transmission wavelength. The experiments suggest that path loss decreases with smaller azimuth angles, higher water turbidity, and shorter wavelength due in part to enhanced scattering utilizing 375-nm radiation. We highlighted that it is feasible to extend the current findings for long distance NLOS UWOC link in turbid water, such as harbor water.

  5. Velocity gradient induced line splitting in x-ray emission accompanying plasma-wall interaction

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Michal; Renner, Oldřich; Liska, R.

    2013-01-01

    Roč. 125, Aug (2013), s. 38-44 ISSN 0022-4073 R&D Projects: GA ČR GAP205/10/0814; GA ČR GAP205/11/0571 Institutional support: RVO:68378271 Keywords : laser-produced plasmas * x-ray spectroscopy * plasma-wall interaction * spectral line profiles * Doppler shift * ion velocity gradients Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.288, year: 2013

  6. Depression of molecular emission in the line of sight of Sgr A West

    International Nuclear Information System (INIS)

    Fukui, Y.; Ogawa, H.; Deguchi, S.; Suzuki, H.

    1982-01-01

    The galatic center region has been mapped in the 4-mm emission lines of HCCCN (J = 8-7) and H 2 CO (JK-K+ = 1 01 -0 00 ) with a 1.5 arc min beam. The molecular lines are found to show depression in intensity in the line of sight of Sgr A West. Comparison with other molecular data indicates that NH 3 also shows a significant depression while HCN and HCO + show little sign of similar depression. Based on some density estimates we suggest that the depression means abnormally reduced abundance in HCCCN, NH 3 , and H 2 CO in the line of sight of Sgr A West. The difference in the degree of depression could be interpreted in terms of a time-dependent ion-molecule reaction scheme because HCO + and HCN are formed much more rapidly than the other molecules in the scheme

  7. Influence of non-line of sight luminescent emitters in visible light communication systems

    Science.gov (United States)

    Ghorai, Anaranya; Walvekar, Pratik; Nayak, Shreyas; Narayan, K. S.

    2018-01-01

    We introduce and demonstrate concepts which utilize the non-line of sight fraction of light incident on a detector assembly in a visible-light communication (VLC) system. In addition to ambient light, realistic enclosures where VLC is implemented consist of a sizable fraction of scattered and reflected light. We present results of VLC systems with detectors responding to contributions from the light source scattered off a surface embedded with fluorescent and phosphorescent emitters besides the direct line of sight signal. Contribution from the emitters takes a form of discernible fluctuations in the detector signal. The implication of our results from noise analysis of these fluctuations indicates the possibility of utilizing smart coatings to further tailor VLC capabilities.

  8. Estimating discharge using multi-level velocity data from acoustic doppler instruments

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang; Rasmussen, Keld Rømer; Ovesen, Niels Bering

    In the majority of Danish streams, weed growth affects the effective stream width and bed roughness thus imposes temporal variations on the stage-discharge relationship. Small stream-gradients and firm ecology based restrictions prevent that hydraulic structures are made at the discharge stations...... increases to more than 3 m. The Doppler instruments (Nortek) are placed on a vertical pole about 2 m off the right bank at three fixed elevations above the streambed (0.3, 0.6, and 1.3 m); the beams point horizontally towards the left bank perpendicularly to the average flow direction. At each depth......, the Doppler sensor records 10 minute average stream velocities in the central 10 m section of the stream. During summer periods with low flow, stream velocity has only been recorded at two depths since the water table drops below the uppermost sensor. A pressure transducer is also placed at the pole where...

  9. High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography

    NARCIS (Netherlands)

    van Leeuwen, T. G.; Kulkarni, M. D.; Yazdanfar, S.; Rollins, A. M.; Izatt, J. A.

    1999-01-01

    Color Doppler optical coherence tomography (CDOCT) is capable of precise velocity mapping in turbid media. Previous CDOCT systems based on the short-time Fourier transform have been limited to maximum flow velocities of the order of tens of millimeters per second. We describe a technique, based on

  10. A Comprehensive Radial Velocity Error Budget for Next Generation Doppler Spectrometers

    Science.gov (United States)

    Halverson, Samuel; Ryan, Terrien; Mahadevan, Suvrath; Roy, Arpita; Bender, Chad; Stefansson, Guomundur Kari; Monson, Andrew; Levi, Eric; Hearty, Fred; Blake, Cullen; hide

    2016-01-01

    We describe a detailed radial velocity error budget for the NASA-NSF Extreme Precision Doppler Spectrometer instrument concept NEID (NN-explore Exoplanet Investigations with Doppler spectroscopy). Such an instrument performance budget is a necessity for both identifying the variety of noise sources currently limiting Doppler measurements, and estimating the achievable performance of next generation exoplanet hunting Doppler spectrometers. For these instruments, no single source of instrumental error is expected to set the overall measurement floor. Rather, the overall instrumental measurement precision is set by the contribution of many individual error sources. We use a combination of numerical simulations, educated estimates based on published materials, extrapolations of physical models, results from laboratory measurements of spectroscopic subsystems, and informed upper limits for a variety of error sources to identify likely sources of systematic error and construct our global instrument performance error budget. While natively focused on the performance of the NEID instrument, this modular performance budget is immediately adaptable to a number of current and future instruments. Such an approach is an important step in charting a path towards improving Doppler measurement precisions to the levels necessary for discovering Earth-like planets.

  11. Evaluation of Portal Venous Velocity with Doppler Ultrasound in Patients with Nonalcoholic Fatty Liver Disease

    Energy Technology Data Exchange (ETDEWEB)

    Ulusan, Serife; Yakar, Tolga; Koc, Zafer [Baskent University Faculty of Medicine, Adana (Turkmenistan)

    2011-08-15

    We examined the relationship between portal venous velocity and hepatic-abdominal fat in patients with nonalcoholic fatty liver disease (NAFLD), using spectral Doppler ultrasonography (US) and magnetic resonance imaging (MRI). In this prospective study, 35 patients with NAFLD and 29 normal healthy adults (control group) underwent portal Doppler US. The severity of hepatic steatosis in patients with NAFLD was assessed by MRI through chemical shift imaging, using a modification of the Dixon method. Abdominal (intra-abdominal and subcutaneous) fat was measured by MRI. The difference in portal venous velocity between the patients with NAFLD and the control group was significant (p < 0.0001). There was no correlation between the degree of abdominal or hepatic fat and portal venous velocity (p > 0.05). There were strong correlations between the hepatic fat fraction and subcutaneous adiposity (p < 0.0001), intraperitoneal fat accumulation (p 0.017), and retroperitoneal fat accumulation (p < 0.0001). Our findings suggest that patients with NAFLD have lower portal venous velocities than normal healthy subjects.

  12. Enormous periodic doppler shifts in SS 433

    International Nuclear Information System (INIS)

    Margon, B.; Ford, H.C.; Grandi, S.A.; Stone, R.P.S.

    1979-01-01

    We have previously reported prominent ''moving' emission lines in the visible spectrum of Stephenson-Sanduleak 433, the optical counterpart of a variable radio and X-ray source. Further observations show that despite the implausible velocities and changes in velocities implied if the moving features are interpreted as Doppler-shifted Balmer lines, this explanation is indeed correct. Spectroscopy of SS 433 on 51 mights in 1978--1979 reveals that the unidentified features are two sets of Balmer and He I lines, one with large and changing redshift, and the other with large and changing blueshift. Combining our data with published earlier observations, we obtain Doppler shifts on 80 nights in the period 1978 June to 1979 June. These data indicate that the velocity variations are cyclical, repeating in both the blueshift and redshift systems with a period of 164 +- 3 days. The two systems have thus far been observed to reach maximum positive and negative radial velocities of +50,000 and -35,000 km s -1 , respectively, are always symmetric about redshift z=0.04, and follow roughly sinusoidal velocity curves. We discuss in addition a variety of interesting short-term spectroscopic details, including minor but highly significant deviations of the radial velocity from the sinusoid, and nightly line profile changes, sometimes appearing as mirror-image events in the redshift and blueshift systems. The behavior of SS 433 is unprecedented

  13. A Novel Guidance Law with Line-of-Sight Acceleration Feedback for Missiles against Maneuvering Targets

    Directory of Open Access Journals (Sweden)

    Kemao Ma

    2014-01-01

    Full Text Available Terminal guidance law design and its implementation are considered for homing missiles against maneuvering targets. The lateral acceleration dynamics are taken into account in the design. In the guidance law design, the line-of-sight acceleration signals are incorporated into the acceleration reference signals to compensate for the targets’ maneuvers. Then the commanded accelerations are designed and the convergent tracking of the lateral accelerations to these signals is proven theoretically. In the guidance implementation, a linear high-gain differentiator is used to estimate the line-of-sight rates and the line-of-sight acceleration signals. To avoid the magnifying effects of higher order differentiation, a practical design of commanded accelerations is given to realize approximate tracking of the lateral accelerations to the given reference signals. Simulation is conducted for both cases with and without measurement noises. The simulation results justify the feasibility of the design and the implementation.

  14. Western Aphrodite Terra, tectonics, geology, and line-of-sight gravity

    Science.gov (United States)

    Hays, John E.; Morgan, Paul

    1992-01-01

    Aphrodite Terra is the largest area of high-standing topography on Venus, and isostatic considerations strongly suggest that this high topography is supported at least in part by thickened crust. Previous studies of line-of-sight gravity data from the Pioneer Venus Orbiter indicate rapidly changing apparent depths of compensation across Aphrodite Terra. Magellan imaging data provide the first detailed images of this region, and we are mapping the region along Pioneer Venus orbit 440 to investigate whether the changing apparent depths of compensation correlate with changes in surficial tectonics. Preliminary mapping of geological features on Magellan images along the path of Pioneer Venus orbit 440 do not indicate a first-order correlation among surface features and changes in the apparent depth of compensation of line-of-sight gravity data. The apparent depth of compensation appears to be most variable in regions dominated by tessera, but not all areas of tessera have distinct gravity signatures. There is a weak correlation among areas in which impact craters are relatively common and areas in which the observed and predicted gravity anomalies are poorly correlated.

  15. Ratio of left ventricular peak E-wave velocity to flow propagation velocity assessed by color M-mode Doppler echocardiography in first myocardial infarction

    DEFF Research Database (Denmark)

    Møller, J E; Søndergaard, E; Seward, J B

    2000-01-01

    OBJECTIVES: To determine the ability of the ratio of peak E-wave velocity to flow propagation velocity (E/Vp) measured with color M-mode Doppler echocardiography to predict in-hospital heart failure and cardiac mortality in an unselected consecutive population with first myocardial infarction (MI...

  16. Measurement of fast-changing low velocities by photonic Doppler velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Song Hongwei; Wu Xianqian; Huang Chenguang; Wei Yangpeng; Wang Xi [Key Laboratory for Hydrodynamics and Ocean Engineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-07-15

    Despite the increasing popularity of photonic Doppler velocimetry (PDV) in shock wave experiments, its capability of capturing low particle velocities while changing rapidly is still questionable. The paper discusses the performance of short time Fourier transform (STFT) and continuous wavelet transform (CWT) in processing fringe signals of fast-changing low velocities measured by PDV. Two typical experiments are carried out to evaluate the performance. In the laser shock peening test, the CWT gives a better interpretation to the free surface velocity history, where the elastic precursor, main plastic wave, and elastic release wave can be clearly identified. The velocities of stress waves, Hugoniot elastic limit, and the amplitude of shock pressure induced by laser can be obtained from the measurement. In the Kolsky-bar based tests, both methods show validity of processing the longitudinal velocity signal of incident bar, whereas CWT improperly interprets the radial velocity of the shocked sample at the beginning period, indicating the sensitiveness of the CWT to the background noise. STFT is relatively robust in extracting waveforms of low signal-to-noise ratio. Data processing method greatly affects the temporal resolution and velocity resolution of a given fringe signal, usually CWT demonstrates a better local temporal resolution and velocity resolution, due to its adaptability to the local frequency, also due to the finer time-frequency product according to the uncertainty principle.

  17. Blood flow velocity in migraine attacks - a transcranial Doppler study

    International Nuclear Information System (INIS)

    Zwetsloot, C.P.; Caekebeke, J.F.V.; Jansen, J.C.; Odink, J.; Ferrari, M.D.

    1991-01-01

    A pulsed Doppler device was used to measure blood flow velocities in the common carotid artery, the extracranial part of the internal carotid artery, the external carotid artery, the middle cerebral artery, and the anterior cerebral artery in 31 migraneurs without aura (n=27) and with aura (n=4), both during and ouside an attack. The aims were to compare blood flow velocity during and between migraine attacks and to study asymmetries of the blood flow velocity. Compared with blood flow velocity values obtained in the attack-free interval, blood flow velocity was lower during attacks without aura in both common carotid arteries, but not in the other extra- and intracranial vessels which were examined. However, during attacks of migraine with aura, blood flow velocity tended to be lower in all examined vessels. There were no asymmetries of the blood flow velocity. It is suggested that during migraine attacks without aura there is a dissociation in blood flow regulation in the common carotid and middle cerebral arteries. 20 refs., 2 tabs

  18. Blood flow velocity in migraine attacks - a transcranial Doppler study

    Energy Technology Data Exchange (ETDEWEB)

    Zwetsloot, C.P.; Caekebeke, J.F.V.; Jansen, J.C.; Odink, J.; Ferrari, M.D. (Rijksuniversiteit Leiden (Netherlands))

    1991-05-01

    A pulsed Doppler device was used to measure blood flow velocities in the common carotid artery, the extracranial part of the internal carotid artery, the external carotid artery, the middle cerebral artery, and the anterior cerebral artery in 31 migraneurs without aura (n=27) and with aura (n=4), both during and ouside an attack. The aims were to compare blood flow velocity during and between migraine attacks and to study asymmetries of the blood flow velocity. Compared with blood flow velocity values obtained in the attack-free interval, blood flow velocity was lower during attacks without aura in both common carotid arteries, but not in the other extra- and intracranial vessels which were examined. However, during attacks of migraine with aura, blood flow velocity tended to be lower in all examined vessels. There were no asymmetries of the blood flow velocity. It is suggested that during migraine attacks without aura there is a dissociation in blood flow regulation in the common carotid and middle cerebral arteries. 20 refs., 2 tabs.

  19. VizieR Online Data Catalog: Velocity and proper motion of OB associations (Melnik+, 2009)

    Science.gov (United States)

    Melnik, A. M.; Dambis, A. K.

    2009-11-01

    For every OB-association from the list by Blaha and Humphreys (1989AJ.....98.1598B) we give the mean galactic coordinates l and b, the mean heliocentric distance r, median line-of-sight velocity Vr, the dispersion of line-of-sight velocities dvr, and number of stars with known line-of-sight velocity nvr. The line-of-sight velocities were taken from the catalog by Barbier-Brossat and Figon (1999, Cat. ). We used only the velocities measured with errors of less than 10km/s which corresponds to the quality estimations A, B, and C. We also present median proper motions of OB-associations along l- and b- coordinates, mul and mub. The data obtained for the old reduction (1997, Cat. ) are denoted by the subscript 1, whereas those based on the reduction by van Leewen (2008, Cat. ) are marked by the subscript 2. For each OB association we represent the dispersions of proper motions, dml and dmb, as well as a number of stars nmu with known proper motion. The last column shows the total number of stars with known photometric measurements, Nt, used for determination of the distances for OB-associations. The distances r correspond to the short distance scale for classical Cepheids. They are equal to the distances from the catalog by Blaha and Humphreys (1989AJ.....98.1598B), rBH, multiplied by a factor of 0.8, r=0.8*rBH. (1 data file).

  20. Doppler shift measurement of Balmer-alpha line spectrum emission from a plasma in a negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Wada, M., E-mail: mwada@mail.doshisha.ac.jp; Doi, K. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 Japan (Japan); Kisaki, M.; Nakano, H.; Tsumori, K. [National Institute for Fusion Science, Toki, Gifu (Japan); Nishiura, M. [Graduate School of Frontier Sciences, The Universtiy of Tokyo, Chiba 277-8561 (Japan)

    2015-04-08

    Balmer-α light emission from the extraction region of the LHD one-third ion source has shown a characteristic Doppler broadening in the wavelength spectrum detected by a high resolution spectrometer. The spectrum resembles Gaussian distribution near the wavelength of the intensity peak, while it has an additional component of a broader foot. The measured broadening near the wavelength of the intensity peak corresponds to 0.6 eV hydrogen atom temperature. The spectrum exhibits a larger expansion in the blue wing which becomes smaller when the line of sight is tilted toward the driver region from the original observation axis parallel to the plasma grid. A surface collision simulation model predicts the possibility of hydrogen reflection at the plasma grid surface to form a broad Balmer-α light emission spectrum.

  1. Doppler shift measurement of Balmer-alpha line spectrum emission from a plasma in a negative hydrogen ion source

    International Nuclear Information System (INIS)

    Wada, M.; Doi, K.; Kisaki, M.; Nakano, H.; Tsumori, K.; Nishiura, M.

    2015-01-01

    Balmer-α light emission from the extraction region of the LHD one-third ion source has shown a characteristic Doppler broadening in the wavelength spectrum detected by a high resolution spectrometer. The spectrum resembles Gaussian distribution near the wavelength of the intensity peak, while it has an additional component of a broader foot. The measured broadening near the wavelength of the intensity peak corresponds to 0.6 eV hydrogen atom temperature. The spectrum exhibits a larger expansion in the blue wing which becomes smaller when the line of sight is tilted toward the driver region from the original observation axis parallel to the plasma grid. A surface collision simulation model predicts the possibility of hydrogen reflection at the plasma grid surface to form a broad Balmer-α light emission spectrum

  2. Absolute orbit determination using line-of-sight vector measurements between formation flying spacecraft

    Science.gov (United States)

    Ou, Yangwei; Zhang, Hongbo; Li, Bin

    2018-04-01

    The purpose of this paper is to show that absolute orbit determination can be achieved based on spacecraft formation. The relative position vectors expressed in the inertial frame are used as measurements. In this scheme, the optical camera is applied to measure the relative line-of-sight (LOS) angles, i.e., the azimuth and elevation. The LIDAR (Light radio Detecting And Ranging) or radar is used to measure the range and we assume that high-accuracy inertial attitude is available. When more deputies are included in the formation, the formation configuration is optimized from the perspective of the Fisher information theory. Considering the limitation on the field of view (FOV) of cameras, the visibility of spacecraft and the installation of cameras are investigated. In simulations, an extended Kalman filter (EKF) is used to estimate the position and velocity. The results show that the navigation accuracy can be enhanced by using more deputies and the installation of cameras significantly affects the navigation performance.

  3. Design of rapid prototype of UAV line-of-sight stabilized control system

    Science.gov (United States)

    Huang, Gang; Zhao, Liting; Li, Yinlong; Yu, Fei; Lin, Zhe

    2018-01-01

    The line-of-sight (LOS) stable platform is the most important technology of UAV (unmanned aerial vehicle), which can reduce the effect to imaging quality from vibration and maneuvering of the aircraft. According to the requirement of LOS stability system (inertial and optical-mechanical combined method) and UAV's structure, a rapid prototype is designed using based on industrial computer using Peripheral Component Interconnect (PCI) and Windows RTX to exchange information. The paper shows the control structure, and circuit system including the inertial stability control circuit with gyro and voice coil motor driven circuit, the optical-mechanical stability control circuit with fast-steering-mirror (FSM) driven circuit and image-deviation-obtained system, outer frame rotary follower, and information-exchange system on PC. Test results show the stability accuracy reaches 5μrad, and prove the effectiveness of the combined line-of-sight stabilization control system, and the real-time rapid prototype runs stable.

  4. Transesophageal Doppler measurement of renal arterial blood flow velocities and indices in children.

    Science.gov (United States)

    Zabala, Luis; Ullah, Sana; Pierce, Carol D'Ann; Gautam, Nischal K; Schmitz, Michael L; Sachdeva, Ritu; Craychee, Judith A; Harrison, Dale; Killebrew, Pamela; Bornemeier, Renee A; Prodhan, Parthak

    2012-06-01

    Doppler-derived renal blood flow indices have been used to assess renal pathologies. However, transesophageal ultrasonography (TEE) has not been previously used to assess these renal variables in pediatric patients. In this study, we (a) assessed whether TEE allows adequate visualization of the renal parenchyma and renal artery, and (b) evaluated the concordance of TEE Doppler-derived renal blood flow measurements/indices compared with a standard transabdominal renal ultrasound (TAU) in children. This prospective cohort study enrolled 28 healthy children between the ages of 1 and 17 years without known renal dysfunction who were undergoing atrial septal defect device closure in the cardiac catheterization laboratory. TEE was used to obtain Doppler renal artery blood velocities (peak systolic velocity, end-diastolic velocity, mean diastolic velocity, resistive index, and pulsatility index), and these values were compared with measurements obtained by TAU. Concordance correlation coefficient (CCC) was used to determine clinically significant agreement between the 2 methods. The Bland-Altman plots were used to determine whether these 2 methods agree sufficiently to be used interchangeably. Statistical significance was accepted at P ≤ 0.05. Obtaining 2-dimensional images of kidney parenchyma and Doppler-derived measurements using TEE in children is feasible. There was statistically significant agreement between the 2 methods for all measurements. The CCC between the 2 imaging techniques was 0.91 for the pulsatility index and 0.66 for the resistive index. These coefficients were sensitive to outliers. When the highest and lowest data points were removed from the analysis, the CCC between the 2 imaging techniques was 0.62 for the pulsatility index and 0.50 for the resistive index. The 95% confidence interval (CI) for pulsatility index was 0.35 to 0.98 and for resistive index was 0.21 to 0.89. The Bland-Altman plots indicate good agreement between the 2 methods; for the

  5. On acceleration dependence of Doppler effect in light

    Indian Academy of Sciences (India)

    being the speed of light (in vacuum). Now, at the aforementioned initial instant of time, let the observer at O move with uniform velocity v making an angle θ with the line SO, the initial line-of-sight with the source, as shown in figure 1a. Furthermore, let the wave at M reach the observer at point. P after a lapse T of time.

  6. Prediction of delayed neurological deficit after subarachnoid haemorrhage: a CT blood load and Doppler velocity approach

    International Nuclear Information System (INIS)

    Grosset, D.G.; McDonald, I.; Cockburn, M.; Straiton, J.; Bullock, R.R.

    1994-01-01

    The predictive value of cranial computed tomography (CT) blood load and serial transcranial Doppler sonography for the development of delayed ischaemic neurological deficit was assessed in 121 patients following subarachnoid haemorrhage. Of the 121 patients, 81 (67 %) had thick layers of blood or haematoma, including intraventricular bleeding. The proportion of patients who developed delayed deficit was higher with increasing amounts of subarachnoid blood on the admission CT (51 % of 53 cases in Fisher grade 3; 35 % of 33 cases in grade 2; 28 % of 7 cases in grade 1, P < 0.01). Doppler velocities obtained from readings at least every 2 days following admission were higher in patients with delayed neurological deficit (peak velocity for grade 3 patients 176 ± 6 cm/s (mean ± SE), versus grade 2: 164 ± 7 cm/s; grade 4 149 ± 9, both P = 0.04, Mann-Whitney). Peak velocity and maximal 24-h rise tended to be higher within different CT grades in patients with a deficit than in those without; this difference was significant for grade 3 patients (P < 0.01). We conclude that a combined approach with CT and Doppler sonography provides greater predictive value for the development of delayed ischaemic neurological deficit than either test considered independently. The value of Doppler sonography may be greatest for patients with Fisher grade 3 blood, in whom the risk of delayed ischaemia is greatest. (orig.)

  7. Using a Quadtree Algorithm To Assess Line of Sight

    Science.gov (United States)

    Gonzalez, Joseph; Chamberlain, Robert; Tailor, Eric; Gutt, Gary

    2006-01-01

    A matched pair of computer algorithms determines whether line of sight (LOS) is obstructed by terrain. These algorithms were originally designed for use in conjunction with combat-simulation software in military training exercises, but could also be used for such commercial purposes as evaluating lines of sight for antennas or determining what can be seen from a "room with a view." The quadtree preparation algorithm operates on an array of digital elevation data and only needs to be run once for a terrain region, which can be quite large. Relatively little computation time is needed, as each elevation value is considered only one and one-third times. The LOS assessment algorithm uses that quadtree to answer LOS queries. To determine whether LOS is obstructed, a piecewise-planar (or higher-order) terrain skin is computationally draped over the digital elevation data. Adjustments are made to compensate for curvature of the Earth and for refraction of the LOS by the atmosphere. Average computing time appears to be proportional to the number of queries times the logarithm of the number of elevation data points. Accuracy is as high as is possible for the available elevation data, and symmetric results are assured. In the simulation, the LOS query program runs as a separate process, thereby making more random-access memory available for other computations.

  8. Assessment of different models for computing the probability of a clear line of sight

    Science.gov (United States)

    Bojin, Sorin; Paulescu, Marius; Badescu, Viorel

    2017-12-01

    This paper is focused on modeling the morphological properties of the cloud fields in terms of the probability of a clear line of sight (PCLOS). PCLOS is defined as the probability that a line of sight between observer and a given point of the celestial vault goes freely without intersecting a cloud. A variety of PCLOS models assuming the cloud shape hemisphere, semi-ellipsoid and ellipsoid are tested. The effective parameters (cloud aspect ratio and absolute cloud fraction) are extracted from high-resolution series of sunshine number measurements. The performance of the PCLOS models is evaluated from the perspective of their ability in retrieving the point cloudiness. The advantages and disadvantages of the tested models are discussed, aiming to a simplified parameterization of PCLOS models.

  9. Coastal Ocean Ecosystem Dynamics Imager Pointing Line-of-Sight Solution Development and Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — A stable pointing line of sight solution is developed and tested in support of the Coastal Ocean Ecosystem Dynamics Imager for the GEOstationary Coastal and Air...

  10. Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows

    Science.gov (United States)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Sonnenfroh, D. M.

    1992-01-01

    The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties.

  11. Assessment of the Influence Factors on Nasal Spray Droplet Velocity Using Phase-Doppler Anemometry (PDA)

    OpenAIRE

    Liu, Xiaofei; Doub, William H.; Guo, Changning

    2011-01-01

    Droplet velocity is an important parameter that can be used to characterize nasal spray products. In this study, a phase-Doppler anemometry (PDA) system was used to measure the droplet velocities of nasal sprays. A survey of seven commercial nasal spray products showed a range of droplet velocities from 6.7 to 19.2 m/s, all significantly different from each other. A three-level, four-factor Box–Behnken design of experiments (DOE) methodology were applied to investigate the influences of actua...

  12. Family of Advanced Beyond Line-of-Sight Terminals (FAB-T)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-199 Family of Advanced Beyond Line-of-Sight Terminals ( FAB -T) As of FY 2017 President’s...Budget Defense Acquisition Management Information Retrieval (DAMIR) March 21, 2016 15:24:15 UNCLASSIFIED FAB -T December 2015 SAR March 21, 2016 15:24...Operational Requirements Document OSD - Office of the Secretary of Defense O&S - Operating and Support PAUC - Program Acquisition Unit Cost FAB -T December 2015

  13. Bayesian Ranging for Radio Localization with and without Line-of-Sight Detection

    DEFF Research Database (Denmark)

    Jing, Lishuai; Pedersen, Troels; Fleury, Bernard Henri

    2015-01-01

    We consider Bayesian ranging methods for local- ization in wireless communication systems. Based on a channel model and given priors for the range and the line-of-sight (LOS) condition, we propose range estimators with and without LOS detection. Since the pdf of the received frequency...

  14. PROBING THE ROLE OF CARBON IN ULTRAVIOLET EXTINCTION ALONG GALACTIC SIGHT LINES

    Energy Technology Data Exchange (ETDEWEB)

    Parvathi, V. S.; Babu, B. R. S. [Department of Physics, University of Calicut, Kerala 673635 (India); Sofia, U. J. [Department of Physics, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016 (United States); Murthy, J., E-mail: veena.makesh@gmail.com, E-mail: brsbabu@gmail.com, E-mail: sofia@american.edu, E-mail: jmurthy@yahoo.com [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560034 (India)

    2012-11-20

    We report previously undetermined interstellar gas and dust-phase carbon abundances along 15 Galactic sight lines based on archival data of the strong 1334.5323 A transition observed with the Space Telescope Imaging Spectrograph. These are combined with previously reported carbon measurements along six sight lines to produce a complete sample of interstellar C II measurements determined with the 1334 A transition. Our data set includes a variety of Galactic disk environments characterized by different extinctions and samples paths ranging over three orders of magnitude in average density of hydrogen ((n(H))). Our data support the idea that dust, specifically carbon-based grains, are processed in the neutral interstellar medium. We, however, do not find that the abundance of carbon in dust or the grain-size distribution is related to the strength of the 2175 A bump. This is surprising, given that many current models have polycyclic aromatic hydrocarbons as the bump-producing dust.

  15. GASP. II. A MUSE View of Extreme Ram-Pressure Stripping along the Line of Sight: Kinematics of the Jellyfish Galaxy JO201

    Science.gov (United States)

    Bellhouse, C.; Jaffé, Y. L.; Hau, G. K. T.; McGee, S. L.; Poggianti, B. M.; Moretti, A.; Gullieuszik, M.; Bettoni, D.; Fasano, G.; D'Onofrio, M.; Fritz, J.; Omizzolo, A.; Sheen, Y.-K.; Vulcani, B.

    2017-07-01

    This paper presents a spatially resolved kinematic study of the jellyfish galaxy JO201, one of the most spectacular cases of ram-pressure stripping (RPS) in the GAs Stripping Phenomena in galaxies with MUSE (GASP) survey. By studying the environment of JO201, we find that it is moving through the dense intracluster medium of Abell 85 at supersonic speeds along our line of sight, and that it is likely accompanied by a small group of galaxies. Given the density of the intracluster medium and the galaxy’s mass, projected position, and velocity within the cluster, we estimate that JO201 must so far have lost ˜50% of its gas during infall via RPS. The MUSE data indeed reveal a smooth stellar disk accompanied by large projected tails of ionized ({{H}}α ) gas, composed of kinematically cold (velocity dispersion 100 km s-1) diffuse emission, that extend out to at least ˜ 50 {kpc} from the galaxy center. The ionized {{H}}α -emitting gas in the disk rotates with the stars out to ˜6 kpc but, in the disk outskirts, it becomes increasingly redshifted with respect to the (undisturbed) stellar disk. The observed disturbances are consistent with the presence of gas trailing behind the stellar component resulting from intense face-on RPS along the line of sight. Our kinematic analysis is consistent with the estimated fraction of lost gas and reveals that stripping of the disk happens outside-in, causing shock heating and gas compression in the stripped tails.

  16. THE NATURE OF A GALAXY ALONG THE SIGHT LINE TO PKS 0454+039

    International Nuclear Information System (INIS)

    Takamiya, Marianne; Chun, Mark; Kulkarni, Varsha P.; Gharanfoli, Soheila

    2012-01-01

    We report on the properties of a faint blue galaxy (G1) along the line of sight to the QSO PKS 0454+039 from spectroscopic and imaging data. We measured emission lines of Hα, [S II] λλ6716, 6732, and [N II] λ6584 in the spectrum of G1 obtained with the Gemini/GMOS instrument. The spectroscopic redshift of G1 is z = 0.0715 ± 0.0002. From the extinction-corrected Hα flux, we determine a modest star formation rate of SFR = 0.07 M ☉ yr –1 and a specific SFR of log (sSFR) –8.4. Using three different abundance indicators, we determine a nebular abundance 12 + log (O/H) ranging from 7.6 to 8.2. Based on the velocity dispersion inferred from the emission line widths and the observed surface brightness profile, we estimate the virial mass of G1 to be M vir ∼ 6.7 × 10 9 M ☉ with an effective radius of 2.0 kpc. We estimate the stellar mass of G1 using spectral energy distribution fitting to be M * ≈ 1.2 × 10 7 M ☉ and an r'-luminosity of L r' = 1.5x10 8 L ☉ . Overall, G1 is a faint, low-mass, low-metallicity Im/H II galaxy. We also report on the line flux limits of another source (G3) which is the most likely candidate for the absorber system at z = 0.8596. From the spectrum of the QSO itself, we report a previously undetected Mg II λλ2796, 2803 absorption line system at z = 1.245.

  17. Clear and Measurable Signature of Modified Gravity in the Galaxy Velocity Field

    Science.gov (United States)

    Hellwing, Wojciech A.; Barreira, Alexandre; Frenk, Carlos S.; Li, Baojiu; Cole, Shaun

    2014-06-01

    The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v12 are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ12(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.

  18. Velocity slip of gas mixtures in free jet expansions

    International Nuclear Information System (INIS)

    Cattolica, R.J.; Talbot, L.; Coe, D.

    1976-11-01

    Velocity slip in gas mixtures of argon and helium in axisymmetric free jet expansions has been measured using a grating monochromator together with a computer-controlled Fabry-Perot interferometer to observe the fluorescence excited by an electron beam. The Doppler shift between the fluorescence observed parallel and perpendicular to the centerline of the free jet was used to measure the mean velocity of a particular species along the jet centerline, employing the 4880 A line for argon and the 5016 A line for helium. By alternately tracking the parallel and perpendicular fluorescence, the Doppler shift due to the mean velocity was measured directly with an accuracy of 1 percent. Flow field surveys have been made in the initial acceleration region where the flow becomes hypersonic and in the far field region. The differences between argon and helium mean velocities (velocity slip) are in good agreement with molecular beam data and show a correlation with an inverse Knudsen number

  19. ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space

    Science.gov (United States)

    Krawczyk, R.; Ghibaudo, JB.; Labandibar, JY.; Willetts, D.; Vaughan, M.; Pearson, G.; Harris, M.; Flamant, P. H.; Salamitou, P.; Dabas, A.; Charasse, R.; Midavaine, T.; Royer, M.; Heimel, H.

    2018-04-01

    This paper, "ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  20. Complex regression Doppler optical coherence tomography

    Science.gov (United States)

    Elahi, Sahar; Gu, Shi; Thrane, Lars; Rollins, Andrew M.; Jenkins, Michael W.

    2018-04-01

    We introduce a new method to measure Doppler shifts more accurately and extend the dynamic range of Doppler optical coherence tomography (OCT). The two-point estimate of the conventional Doppler method is replaced with a regression that is applied to high-density B-scans in polar coordinates. We built a high-speed OCT system using a 1.68-MHz Fourier domain mode locked laser to acquire high-density B-scans (16,000 A-lines) at high enough frame rates (˜100 fps) to accurately capture the dynamics of the beating embryonic heart. Flow phantom experiments confirm that the complex regression lowers the minimum detectable velocity from 12.25 mm / s to 374 μm / s, whereas the maximum velocity of 400 mm / s is measured without phase wrapping. Complex regression Doppler OCT also demonstrates higher accuracy and precision compared with the conventional method, particularly when signal-to-noise ratio is low. The extended dynamic range allows monitoring of blood flow over several stages of development in embryos without adjusting the imaging parameters. In addition, applying complex averaging recovers hidden features in structural images.

  1. Non-line-of-sight ultraviolet communication based on DHT ACO-OFDM

    Science.gov (United States)

    Gao, Qian; Chen, Gang

    2012-10-01

    Free space optical (FSO) communication has attracted tremendous research interest in the recent year. Most existing works focus only on the line-of-sight (LOS) transmission by infrared (IR) or visible light lasers/LEDs, while this article suggested a framework of non-line-of-sight (NLOS) FSO, motivated by our recent experimental results on the successful transmission of NLOS ultraviolet (UV) beams for up to kilometers, which is comparable to the typical distance a LOS FSO transmission. The NLOS provides an alternate path when the LOS path is shadowed or is highly attenuated. In order to mitigate the multipath dispersion of the NLOS FSO, a baseband orthogonal frequency division multiplexing (OFDM) modulation scheme was proposed, based on Discrete Hartley Transform (DHT) and asymmetric clipping to guarantee the positive-realness of the transmitted optical intensity. The proposed system could reduce the hardware complexity of transmitter and receiver. Minimum mean square error (MMSE) precoder was applied before the DHT to remove the crosstalk between subcarriers, i.e. the frequency domain orthogonality of OFDM was preserved. Performance of the BPSK modulated communication system was given under lognormal atmospheric turbulence for demonstration of the feasibility of the proposed method.

  2. Model of the lines of sight for an off-axis optical instrument Pleiades

    Science.gov (United States)

    Sauvage, Dominique; Gaudin-Delrieu, Catherine; Tournier, Thierry

    2017-11-01

    The future Earth observation missions aim at delivering images with a high resolution and a large field of view. These images have to be processed to get a very accurate localisation. In that goal, the individual lines of sight of each photosensitive element must be evaluated according to the localisation of the pixels in the focal plane. But, with off-axis Korsch telescope (like PLEIADES), the classical model has to be adapted. This is possible by using optical ground measurements made after the integration of the instrument. The processing of these results leads to several parameters, which are function of the offsets of the focal plane and the real focal length. All this study which has been proposed for the PLEIADES mission leads to a more elaborated model which provides the relation between the lines of sight and the location of the pixels, with a very good accuracy, close to the pixel size.

  3. Dual-Doppler Feasibility Study

    Science.gov (United States)

    Huddleston, Lisa L.

    2012-01-01

    When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any

  4. Intraoperative changes of transcranial Doppler velocity: relation to arterial oxygen content and whole-blood viscosity

    NARCIS (Netherlands)

    Schuurman, P. R.; Albrecht, K. W.

    1999-01-01

    The association of arterial oxygen content (CaO2) and viscosity with transcranial Doppler (TCD) blood flow velocity in the middle cerebral artery was studied in 20 adults without cerebrovascular disease undergoing abdominal surgery associated with significant fluctuations in hematology. TCD

  5. Spectroscopic Doppler analysis for visible-light optical coherence tomography

    Science.gov (United States)

    Shu, Xiao; Liu, Wenzhong; Duan, Lian; Zhang, Hao F.

    2017-12-01

    Retinal oxygen metabolic rate can be effectively measured by visible-light optical coherence tomography (vis-OCT), which simultaneously quantifies oxygen saturation and blood flow rate in retinal vessels through spectroscopic analysis and Doppler measurement, respectively. Doppler OCT relates phase variation between sequential A-lines to the axial flow velocity of the scattering medium. The detectable phase shift is between -π and π due to its periodicity, which limits the maximum measurable unambiguous velocity without phase unwrapping. Using shorter wavelengths, vis-OCT is more vulnerable to phase ambiguity since flow induced phase variation is linearly related to the center wavenumber of the probing light. We eliminated the need for phase unwrapping using spectroscopic Doppler analysis. We split the whole vis-OCT spectrum into a series of narrow subbands and reconstructed vis-OCT images to extract corresponding Doppler phase shifts in all the subbands. Then, we quantified flow velocity by analyzing subband-dependent phase shift using linear regression. In the phantom experiment, we showed that spectroscopic Doppler analysis extended the measurable absolute phase shift range without conducting phase unwrapping. We also tested this method to quantify retinal blood flow in rodents in vivo.

  6. THE NATURE OF A GALAXY ALONG THE SIGHT LINE TO PKS 0454+039

    Energy Technology Data Exchange (ETDEWEB)

    Takamiya, Marianne [Physics and Astronomy Department, University of Hawaii Hilo, Hilo, HI 96720 (United States); Chun, Mark [Institute for Astronomy, University of Hawaii Manoa, HI 96822 (United States); Kulkarni, Varsha P.; Gharanfoli, Soheila, E-mail: takamiya@hawaii.edu [Department of Physics and Astronomy, University of South Carolina, SC 29208 (United States)

    2012-10-01

    We report on the properties of a faint blue galaxy (G1) along the line of sight to the QSO PKS 0454+039 from spectroscopic and imaging data. We measured emission lines of H{alpha}, [S II] {lambda}{lambda}6716, 6732, and [N II] {lambda}6584 in the spectrum of G1 obtained with the Gemini/GMOS instrument. The spectroscopic redshift of G1 is z = 0.0715 {+-} 0.0002. From the extinction-corrected H{alpha} flux, we determine a modest star formation rate of SFR = 0.07 M{sub Sun} yr{sup -1} and a specific SFR of log (sSFR) -8.4. Using three different abundance indicators, we determine a nebular abundance 12 + log (O/H) ranging from 7.6 to 8.2. Based on the velocity dispersion inferred from the emission line widths and the observed surface brightness profile, we estimate the virial mass of G1 to be M{sub vir} {approx} 6.7 Multiplication-Sign 10{sup 9} M{sub Sun} with an effective radius of 2.0 kpc. We estimate the stellar mass of G1 using spectral energy distribution fitting to be M{sub *} Almost-Equal-To 1.2 Multiplication-Sign 10{sup 7} M{sub Sun} and an r'-luminosity of L{sub r'} = 1.5x10{sup 8} L{sub Sun }. Overall, G1 is a faint, low-mass, low-metallicity Im/H II galaxy. We also report on the line flux limits of another source (G3) which is the most likely candidate for the absorber system at z = 0.8596. From the spectrum of the QSO itself, we report a previously undetected Mg II {lambda}{lambda}2796, 2803 absorption line system at z = 1.245.

  7. Evaluation of performance of Son Tek Argonaut acoustic doppler velocity log in tow tank and sea

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A; Madhan, R.; Mascarenhas, A.A; Desai, R.G.P.; VijayKumar, K.; Dias, M.; Tengali, S.; Methar, A

    Performance of a 500-kHz, 3-beam downward-looking Sontex Argonaut acoustic Doppler velocity log (DVL) based on measurements at tow-tank and sea is addressed. Its accuracy and linearity under tow-tank measurements were largely scattered...

  8. Signature of open magnetic field lines in the extended solar corona and of solar wind acceleration

    Science.gov (United States)

    Antonucci, E.; Giordano, S.; Benna, C.; Kohl, J. L.; Noci, G.; Michels, J.; Fineschi, S.

    1997-01-01

    The observations carried out with the ultraviolet coronagraph spectrometer onboard the Solar and Heliospheric Observatory (SOHO) are discussed. The purpose of the observations was to determine the line of sight and radial velocity fields in coronal regions with different magnetic topology. The results showed that the regions where the high speed solar wind flows along open field lines are characterized by O VI 1032 and HI Lyman alpha 1216 lines. The global coronal maps of the line of sight velocity were reconstructed. The corona height, where the solar wind reaches 100 km/s, was determined.

  9. On The Ion Drift Contribution To The Phase Velocity of Electrojet Irregularities

    Science.gov (United States)

    Uspensky, M.; Koustov, A.; Janhunen, P.; Pellinen, R.; Danskin, D.; Nozawa, S.

    The ion drift effect is often ignored in the interpretation of VHF Doppler measure- ments. For example, in the STARE experiment it is assumed that the line-of-sight velocity measured at large flow angles is simply a cosine component of the true elec- tron drift. Previous studies seem to support this assumption, though only to a certain degree. In this study we consider a 3.5-hour morning event of joint STARE-EISCAT observa- tions for which the STARE-Finland radar velocity was mainly larger than the EISCAT convection component. A moderate 5-20 deg offset between the EISCAT convection azimuth and its STARE estimate was also observed. We show that both the STARE- Finland radar velocity "over-speed" and the azimuthal offset between the EISCAT and STARE convection vectors can be explained by fluid plasma theory arguments if the ion drift contribution to the irregularity phase velocity under the condition of moder- ate backscatter off-orthogonality is taken into account. The ion effects were enhanced because of a lifting up of the entire E-region seen by the EISCAT. It perhaps resulted in an increase of the STARE echo heights and aspect angles. The latter are of the order of 1 deg at the top of the electrojet layer. We also compare STARE convection magni- tudes and true velocities measured by the EISCAT to study the potential impact of the ion motions on the STARE velocity estimates.

  10. On an illusion of superluminal velocities produced by gravitational lenses

    International Nuclear Information System (INIS)

    Ingel, L.Kh.

    1981-01-01

    It is noted that gravitational lenses, by focusing the radiation of an object, increase the angle which it subtends. This in turn produces the illusion of an increase in velocities at right angles to the line of sight. Preliminary estimates are made which indicate a rather high probability of strong distortion of the observed velocities

  11. Pursit-evasion game analysis in a line of sight coordinate system

    Science.gov (United States)

    Shinar, J.; Davidovitz, A.

    1985-01-01

    The paper proposes to use line of sight coordinates for the analysis of pursuit-evasion games. The advantage of this method for two-target games is shown to be evident. As a demonstrative example the game of two identical cars is formulated and solved in such coordinate systems. A new type of singular surface, overlooked in a previous study of the same problem, is discovered as a consequence of the simplicity of the solution.

  12. Gravity field of Venus - A preliminary analysis

    Science.gov (United States)

    Phillips, R. J.; Sjogren, W. L.; Abbott, E. A.; Smith, J. C.; Wimberly, R. N.; Wagner, C. A.

    1979-01-01

    The gravitational field of Venus obtained by tracking the Pioneer Venus Orbiter is examined. For each spacecraft orbit, two hours of Doppler data centered around periapsis were used to estimate spacecraft position and velocity and the velocity residuals obtained were spline fit and differentiated to produce line of sight gravitational accelerations. Consistent variations in line of sight accelerations from orbit to orbit reveal the presence of gravitational anomalies. A simulation of isostatic compensation for an elevated region on the surface of Venus indicates that the mean depth of compensation is no greater than about 100 km. Gravitational spectra obtained from a Fourier analysis of line of sight accelerations from selected Venus orbits are compared to the earth's gravitational spectrum and spherical harmonic gravitational potential power spectra of the earth, the moon and Mars. The Venus power spectrum is found to be remarkably similar to that of the earth, however systematic variations in the harmonics suggest differences in dynamic processes or lithospheric behavior.

  13. Doppler-shifted neutral beam line shape and beam transmission

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Grisham, L.R.; Kokatnur, N.; Lagin, L.J.; Newman, R.A.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.

    1994-04-01

    Analysis of Doppler-shifted Balmer-α line emission from the TFTR neutral beam injection systems has revealed that the line shape is well approximated by the sum of two Gaussians, or, alternatively, by a Lorentzian. For the sum of two Gaussians, the broad portion of the distribution contains 40% of the beam power and has a divergence five times that of the narrow part. Assuming a narrow 1/e- divergence of 1.3 degrees (based on fits to the beam shape on the calorimeter), the broad part has a divergence of 6.9 degrees. The entire line shape is also well approximated by a Lorentzian with a half-maximum divergence of 0.9 degrees. Up to now, fusion neutral beam modelers have assumed a single Gaussian velocity distribution, at the extraction plane, in each direction perpendicular to beam propagation. This predicts a beam transmission efficiency from the ion source to the calorimeter of 97%. Waterflow calorimetry data, however, yield a transmission efficiency of ∼75%, a value in rough agreement with predictions of the Gaussian or Lorentzian models presented here. The broad wing of the two Gaussian distribution also accurately predicts the loss in the neutralizer. An average angle of incidence for beam loss at the exit of the neutralizer is 2.2 degrees, rather than the 4.95 degrees subtended by the center of the ion source. This average angle of incidence, which is used in computing power densities on collimators, is shown to be a function of beam divergence

  14. Theoretical study of electromagnetically induced transparency in a five-level atom and application to Doppler-broadened and Doppler-free Rb atoms

    International Nuclear Information System (INIS)

    Bhattacharyya, Dipankar; Ray, Biswajit; Ghosh, Pradip N

    2007-01-01

    We report theoretical studies of a Λ-type five-level atomic system. The density matrix equations are set up and solved numerically to obtain the probe absorption line shape of Rb D 2 transitions for cold (Doppler-free) and room temperature (Doppler-broadened) atoms. Simulated spectra for Doppler-broadened systems lead to four velocity-selective dips along with an electromagnetic induced transparency (EIT) peak as observed earlier from the co-propagating pump-probe spectroscopy of Rb D 2 transitions. Effects of pump power and spontaneous decay rate from the upper levels on the simulated spectra are also studied. For cold atoms a very pronounced EIT peak is observed when the pump frequency is on resonance with one allowed transition. We find that lower pump power leads to a much sharper EIT signal in this case. A simulated dispersion curve shows a rapid variation of the refractive index that may lead to a sharp reduction of the group velocity of photons

  15. Sub-Doppler spectroscopy

    International Nuclear Information System (INIS)

    Hansch, T.W.

    1983-01-01

    This chapter examines Doppler-free saturation spectroscopy, tunable cw sources, and Doppler-free two-photon spectroscopy. Discusses saturation spectroscopy; continuous wave saturation spectroscopy in the ultraviolet; and two-photon spectroscopy of atomic hydrogen 1S-2S. Focuses on Doppler-free laser spectroscopy of gaseous samples. Explains that in saturation spectroscopy, a monochromatic laser beam ''labels'' a group of atoms within a narrow range of axial velocities through excitation or optical pumping, and a Doppler-free spectrum of these selected atoms is observed with a second, counterpropagating beam. Notes that in two-photon spectroscopy it is possible to record Doppler-free spectra without any need for velocity selection by excitation with two counterpropagating laser beams whose first order Doppler shifts cancel

  16. RELATIVISTIC DOPPLER BEAMING AND MISALIGNMENTS IN AGN JETS

    International Nuclear Information System (INIS)

    Singal, Ashok K.

    2016-01-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  17. Relativistic Doppler Beaming and Misalignments in AGN Jets

    Science.gov (United States)

    Singal, Ashok K.

    2016-08-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  18. Short distance line of sight laser communication

    International Nuclear Information System (INIS)

    Mudassar, A.A.; Hussain, H.; Jamil-ur-Rehman

    1998-01-01

    Communication methods based on lasers as carrier are well known. In our work we have made a two way laser based communication system for short range (<2 Km) line of sight communication. A small piece of plane mirror (100% reflector) was mounted on the centre of a speaker cone. The speaker was positioned close to the opening of laser such that He-Ne laser beam (10 mW) after reflection from the mirror is directed towards the receiver. There is a pre-amplifier and an amplifier between a microphone and the speaker. When the diagram of the speaker vibrates, it positionally modulates the laser beam. On the receiving end, there is a photo diode, a pre-amplifier, an amplifier and a head phone. So the man on the receiving end can decode the sound signal. On each stage there is a transmitter and a receiver assembled close to each other. So the two way communication is possible in the range 20 to 20 Khz. (author)

  19. Real-time three-dimensional color Doppler echocardiography for characterizing the spatial velocity distribution and quantifying the peak flow rate in the left ventricular outflow tract

    Science.gov (United States)

    Tsujino, H.; Jones, M.; Shiota, T.; Qin, J. X.; Greenberg, N. L.; Cardon, L. A.; Morehead, A. J.; Zetts, A. D.; Travaglini, A.; Bauer, F.; hide

    2001-01-01

    Quantification of flow with pulsed-wave Doppler assumes a "flat" velocity profile in the left ventricular outflow tract (LVOT), which observation refutes. Recent development of real-time, three-dimensional (3-D) color Doppler allows one to obtain an entire cross-sectional velocity distribution of the LVOT, which is not possible using conventional 2-D echo. In an animal experiment, the cross-sectional color Doppler images of the LVOT at peak systole were derived and digitally transferred to a computer to visualize and quantify spatial velocity distributions and peak flow rates. Markedly skewed profiles, with higher velocities toward the septum, were consistently observed. Reference peak flow rates by electromagnetic flow meter correlated well with 3-D peak flow rates (r = 0.94), but with an anticipated underestimation. Real-time 3-D color Doppler echocardiography was capable of determining cross-sectional velocity distributions and peak flow rates, demonstrating the utility of this new method for better understanding and quantifying blood flow phenomena.

  20. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...... vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new...

  1. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    International Nuclear Information System (INIS)

    Chapman, J.T.

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8--20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation

  2. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, James Tharp [Univ. of Wisconsin, Madison, WI (United States)

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8-20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation.

  3. An improvement of wind velocity estimation from radar Doppler spectra in the upper mesosphere

    Directory of Open Access Journals (Sweden)

    S. Takeda

    2001-08-01

    Full Text Available We have developed a new parameter estimation method for Doppler wind spectra in the mesosphere observed with an MST radar such as the MU radar in the DBS (Doppler Beam Swinging mode. Off-line incoherent integration of the Doppler spectra is carried out with a new algorithm excluding contamination by strong meteor echoes. At the same time, initial values on a least square fitting of the Gaussian function are derived using a larger number of integration of the spectra for a longer time and for multiple heights. As a result, a significant improvement has been achieved with the probability of a successful fitting and parameter estimation above 80 km. The top height for the wind estimation has been improved to around 95 km. A comparison between the MU radar and the High Resolution Doppler Imager (HRDI on the UARS satellite is shown and the capability of the new method for a validation of a future satellite mission is suggested.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics – Radio science (remote sensing; signal processing

  4. Evaluation of metered dose inhaler spray velocities using phase Doppler anemometry (PDA).

    Science.gov (United States)

    Liu, Xiaofei; Doub, William H; Guo, Changning

    2012-02-28

    Droplet velocity is an important parameter which can significantly influence inhalation drug delivery performance. Together with the droplet size, this parameter determines the efficiency of the deposition of MDI products at different sites within the lungs. In this study, phase Doppler anemometry (PDA) was used to investigate the instantaneous droplet velocity emitted from MDIs as well as the corresponding droplet size distribution. The nine commercial MDI products surveyed showed significantly different droplet velocities, indicating that droplet velocity could be used as a discriminating parameter for in vitro testing of MDI products. The droplet velocity for all tested MDI products decreased when the testing distance was increased from 3 cm to 6 cm from the front of mouthpiece, with CFC formulations showing a larger decrease than HFA formulations. The mean droplet diameters of the nine MDIs were also significantly different from one-another. Droplet size measurements made using PDA (a number-based technique) could not be directly compared to results obtained using laser light scattering measurements (a volume-based technique). This work demonstrates that PDA can provide unique information useful for characterizing MDI aerosol plumes and evaluating MDI drug delivery efficiency. PDA could also aid the evaluation of in vitro equivalence in support of formulation or manufacturing changes and in evaluation of abbreviated new drug applications (ANDAs) for MDIs. Published by Elsevier B.V.

  5. Turbulence estimation from a continuous-wave scanning lidar (SpinnerLidar)

    DEFF Research Database (Denmark)

    Barnhoorn, J.G.; Sjöholm, Mikael; Mikkelsen, Torben Krogh

    2017-01-01

    out, and 2) the mixing of velocity covariances from other components into the line-of-sight variance measurements. However, turbulence measurements based on upwind horizontal rotor plane scanning of the line-of-sight variance measurements combined with ensemble-averaged Doppler spectra width...... deviations averaged over 10-min sampling periods are compared. Lidar variances are inherently more prone to noise which always yields a positive bias. The 5.3 % higher turbulence level measured by the SpinnerLidar relative to the cup anemometer may equally well be attributed to truncation of turbulent...

  6. Dynamic Behavior of Spicules Inferred from Perpendicular Velocity Components

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rahul; Verth, Gary; Erdélyi, Robertus [Solar Physics and Space Plasma Research Centre, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2017-05-10

    Understanding the dynamic behavior of spicules, e.g., in terms of magnetohydrodynamic (MHD) wave mode(s), is key to unveiling their role in energy and mass transfer from the photosphere to corona. The transverse, torsional, and field-aligned motions of spicules have previously been observed in imaging spectroscopy and analyzed separately for embedded wave-mode identification. Similarities in the Doppler signatures of spicular structures for both kink and torsional Alfvén wave modes have led to the misinterpretation of the dominant wave mode in these structures and is a subject of debate. Here, we aim to combine line- of-sight (LOS) and plane-of-sky (POS) velocity components using the high spatial/temporal resolution H α imaging-spectroscopy data from the CRisp Imaging SpectroPolarimeter based at the Swedish Solar Telescope to achieve better insight into the underlying nature of these motions as a whole. The resultant three-dimensional velocity vectors and the other derived quantities (e.g., magnetic pressure perturbations) are used to identify the MHD wave mode(s) responsible for the observed spicule motion. We find a number of independent examples where the bulk transverse motion of the spicule is dominant either in the POS or along the LOS. It is shown that the counterstreaming action of the displaced external plasma due to spicular bulk transverse motion has a similar Doppler profile to that of the m = 0 torsional Alfvén wave when this motion is predominantly perpendicular to the LOS. Furthermore, the inferred magnetic pressure perturbations support the kink wave interpretation of observed spicular bulk transverse motion rather than any purely incompressible MHD wave mode, e.g., the m = 0 torsional Alfvén wave.

  7. Pointing Knowledge for SPARCLE and Space-Based Doppler Wind Lidars in General

    Science.gov (United States)

    Emmitt, G. D.; Miller, T.; Spiers, G.

    1999-01-01

    The SPAce Readiness Coherent Lidar Experiment (SPARCLE) will fly on a space shuttle to demonstrate the use of a coherent Doppler wind lidar to accurately measure global tropospheric winds. To achieve the LOS (Line of Sight) accuracy goal of approx. m/s, the lidar system must be able to account for the orbiter's velocity (approx. 7750 m/s) and the rotational component of the earth's surface motion (approx. 450 m/s). For SPARCLE this requires knowledge of the attitude (roll, pitch and yaw) of the laser beam axis within an accuracy of 80 microradians. (approx. 15 arcsec). Since SPARCLE can not use a dedicated star tracker from its earth-viewing orbiter bay location, a dedicated GPS/INS (Global Positioning System/Inertial Navigation System) will be attached to the lidar instrument rack. Since even the GPS/INS has unacceptable drifts in attitude information, the SPARCLE team has developed a way to periodically scan the instrument itself to obtain less than 10 microradian (2 arcsec) attitude knowledge accuracy that can then be used to correct the GPS/INS output on a 30 minute basis.

  8. Non-LTE hydrogen-line formation in moving prominences

    Science.gov (United States)

    Heinzel, P.; Rompolt, B.

    1986-01-01

    The behavior of hydrogen-line brightness variations, depending on the prominence-velocity changes were investigated. By solving the NON-Local thermodynamic equilibrium (LTE) problem for hydrogen researchers determine quantitatively the effect of Doppler brightening and/or Doppler dimming (DBE, DDE) in the lines of Lyman and Balmer series. It is demonstrated that in low-density prominence plasmas, DBE in H alpha and H beta lines can reach a factor of three for velocities around 160 km/sec, while the L alpha line exhibits typical DDE. L beta brightness variations follow from a combined DBE in the H alpha and DDE in L alpha and L beta itself, providing that all relevant multilevel interlocking processes are taken into account.

  9. A positioning system with no line-of-sight restrictions for cluttered environments

    Science.gov (United States)

    Prigge, Eric A.

    Accurate sensing of vehicle location and attitude is a fundamental requirement in many mobile-robot applications, but is a very challenging problem in the cluttered and unstructured environment of the real world. Many existing indoor positioning systems are limited in workspace and robustness because they require clear lines of sight or do not provide absolute, drift-free measurements. Examples include overhead vision systems, where an unobstructed view must be maintained between robot and camera, and inertial systems, where the measurements drift over time. The research presented in this dissertation provides a new location- and attitude-sensing system designed specifically to meet the challenges of operation in a realistic, cluttered indoor environment, such as that of an office building or warehouse. The system is not limited by line-of-sight restrictions and produces drift-free measurements throughout a three-dimensional operating volume that can span a large building. Accuracy of several centimeters and a few degrees is delivered at 10 Hz, and any number of the small sensor units can be in operation, all providing estimates in a common reference frame. This positioning system is based on extremely-low-frequency magnetic fields, which have excellent characteristics for penetrating line-of-sight obstructions. Beacons located throughout the workspace create the low-level fields. A sensor unit on the mobile robot samples the local magnetic field and processes the measurements to determine its location and attitude. This research overcomes limitations in existing magnetic-based systems. The design of the signal structure, based on pseudorandom codes, enables the use of multiple, distributed L-beacons and greatly expands coverage volume. The development of real-time identification and correction methods mitigates the impact of distortions caused by materials in the environment. A novel solution algorithm combats both challenges, providing increased coverage volume

  10. GALAXY CLUSTERS IN THE LINE OF SIGHT TO BACKGROUND QUASARS. III. MULTI-OBJECT SPECTROSCOPY

    International Nuclear Information System (INIS)

    Andrews, H.; Barrientos, L. F.; Padilla, N.; Lacerna, I.; López, S.; Lira, P.; Maureira, M. J.; Gilbank, D. G.; Ellingson, E.; Gladders, M. D.; Yee, H. K. C.

    2013-01-01

    We present Gemini/GMOS-S multi-object spectroscopy of 31 galaxy cluster candidates at redshifts between 0.2 and 1.0 and centered on QSO sight lines taken from López et al. The targets were selected based on the presence of an intervening Mg II absorption system at a similar redshift to that of a galaxy cluster candidate lying at a projected distance 71 -1 Mpc from the QSO sight line (a p hotometric hit ) . The absorption systems span rest-frame equivalent widths between 0.015 and 2.028 Å. Our aim was three-fold: (1) to identify the absorbing galaxies and determine their impact parameters, (2) to confirm the galaxy cluster candidates in the vicinity of each quasar sightline, and (3) to determine whether the absorbing galaxies reside in galaxy clusters. In this way, we are able to characterize the absorption systems associated with cluster members. Our main findings are as follows. (1) We identified 10 out of 24 absorbing galaxies with redshifts between 0.2509 ≤ z gal ≤ 1.0955, up to an impact parameter of 142 h 71 -1 kpc and a maximum velocity difference of 280 km s –1 . (2) We spectroscopically confirmed 20 out of 31 cluster/group candidates, with most of the confirmed clusters/groups at z –1 from galaxy clusters/groups, in addition to two new ones related to galaxy group environments. These numbers imply efficiencies of 71% in finding such systems with MOS spectroscopy. This is a remarkable result since we defined a photometric hit as those cluster-absorber pairs having a redshift difference Δz = 0.1. The general population of our confirmed absorbing galaxies have luminosities L B ∼L B * and mean rest-frame colors (R c – z') typical of S cd galaxies. From this sample, absorbing cluster galaxies hosting weak absorbers are consistent with lower star formation activity than the rest, which produce strong absorption and agree with typical Mg II absorbing galaxies found in the literature. Our spectroscopic confirmations lend support to the selection of

  11. Assessment of the influence factors on nasal spray droplet velocity using phase-Doppler anemometry (PDA).

    Science.gov (United States)

    Liu, Xiaofei; Doub, William H; Guo, Changning

    2011-03-01

    Droplet velocity is an important parameter that can be used to characterize nasal spray products. In this study, a phase-Doppler anemometry (PDA) system was used to measure the droplet velocities of nasal sprays. A survey of seven commercial nasal spray products showed a range of droplet velocities from 6.7 to 19.2 m/s, all significantly different from each other. A three-level, four-factor Box-Behnken design of experiments (DOE) methodology were applied to investigate the influences of actuation parameters and formulation properties on nasal spray droplet velocity using a set of placebo formulations. The DOE study shows that all four input factors (stroke length, actuation velocity, concentration of the gelling agent, and concentration of the surfactant) have significant influence on droplet velocity. An optimized quadratic model generated from the DOE results describes the inherent relationships between the input factors and droplet velocity thus providing a better understanding of the input factor influences. Overall, PDA provides a new in vitro characterization method for the evaluation of inhalation drugs through assessment of spray velocity and may assist in product development to meet drug delivery equivalency requirements. © 2011 American Association of Pharmaceutical Scientists

  12. System Architecture of Small Unmanned Aerial System for Flight Beyond Visual Line-of-Sight

    Science.gov (United States)

    2015-09-17

    International Conference on Mechatronic and Embedded Systems and Applications (MESA 2011), 28-31 (August 2011) Maddalon Jeffrey M., Kelly J... SYSTEM ARCHITECTURE OF SMALL UNMANNED AERIAL SYSTEM FOR FLIGHT BEYOND VISUAL LINE-OF-SIGHT THESIS...is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENV-MS-15-S-047 SYSTEM

  13. Design and development of radiation absorber for sighting beam line

    International Nuclear Information System (INIS)

    Sridhar, R.; Shukla, S.K.

    2005-01-01

    During the commissioning of Indus-2 , it is necessary to view the synchrotron radiation that will be emanating from the dipole exit ports. The 10 0 beam line from dipole 11 was earmarked for sighting beam line. The synchrotron radiation power density would be around 340 watts on the photon absorber inside the radiation absorber module, at the specified beam power of Indus-2. The beam striking on this photon absorber produces x-rays and Bremsstrahlung radiation. These are to be stopped and absorbed by radiation absorber. The photon absorber and the radiation absorber are integrated in a single vacuum chamber and actuated by a pneumatic cylinder connected using a bellow. Radiation absorber was needed to isolate the diagnostic components and to protect them from radiation a well as heat when they were not in use. The paper describes the design, calculation and development of the dynamic photon cum radiation absorber. The ultimate vacuum performance is also described. (author)

  14. Analysis of 3D Doppler Tomography of the X-ray Binary System Cygnus X-1 from Spectral Observations in 2007 in the HeII λ 4686 Å Line

    Science.gov (United States)

    Agafonov, M. I.; Karitskaya, E. A.; Sharova, O. I.; Bochkarev, N. G.; Zharikov, S. V.; Butenko, G. Z.; Bondar', A. V.; Bubukin, I. T.

    2018-03-01

    This is the second paper in a series dedicated to studies of the X-ray binary Cyg X-1 in the HeII λ 4686 Å line using 3D Doppler tomography. A detailed analysis of the tomogram constructed has made it possible for the first time to obtain information about the motions of gaseous flows including all three velocity components. The observations were obtained in June 2007 at the Terskol Branch of the Institute of Astronomy (Russia) and the National Astronomical Observatory of Mexico. The correctness of the tomographic results and their discussion is analyzed. The results are compared with a 2D Doppler tomogram reconstruction. Model-atmosphere computations of HeII λ 4686 Å line profiles are used to estimate the influence of absorption features of the Osupergiant on the emission structure in the tomogram. The correctness of the 3D solutions is confirmed by the good agreement between the original sequence of spectral data and a control data set computed using the constructed 3D Doppler tomogram. Tomograms constructed using the data of each of the two observatories are compared. The results of the reconstruction for inclinations of the system of 40° and 45° essentially coincide. The maximum absorption (corresponding to the O supergiant) and emission structural features in the 3D tomogram are located in its central ( V x , V y ) section, where the velocity component perpendicular to the orbital plane V z is zero. The emission is generated mainly in the outer part of the accretion structure, close to the supergiant. A gaseous stream from the Lagrangian point L1 with its motion close to the orbital plane can be distinguished. Its maximum velocity reaches 800 km/s. The identification of an emission structure with V z 300 km/s and with V x , V y in the velocity interval corresponding to the donor star was unexpected. Its presence may indicate, for example, an outflow of matter from a magnetic pole of the supergiant.

  15. Ion temperature measurements of turbulently heated TRIAM-1 plasmas by the Doppler-broadening of visible lines

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Nakamura, K; Toi, K; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-07-01

    The ion temperature of the turbulently heated TRIAM-1 plasma is obtained from the Doppler-broadening of visible lines. The radial profiles of the volume emission of visible lines are measured beforehand to examine whether the volume emissions are localized at a specified position of the minor cross-section of the plasma or not. The ion temperature of the specified position is determined from these profiles. The time behaviour of thus obtained Doppler ion temperature shows a good agreement with that of the one derived from the Neutral Energy Analyzer.

  16. The Assessment of Left Ventricular Time-Varying Radius Using Tissue Doppler Imaging

    Directory of Open Access Journals (Sweden)

    Fardin Mirbolouk

    2012-03-01

    Full Text Available Background: Left ventricular twist/torsion is believed to be a sensitive indicator of systolic and diastolic performance. To obtain circumferential rotation using tissue Doppler imaging, we need to estimate the time-varying radius of the left ventricle throughout the cardiac cycle to convert the tangential velocity into angular velocity. Objectives: The aim of this study was to investigate accuracy of measured LV radius using tissue Doppler imaging throughout the cardiac cycle compared to two-dimensional (2D imaging. Methods: A total of 35 subjects (47±12 years old underwent transthoracic echocardiographic standard examinations. Left ventricular radius during complete cardiac cycle measured using tissue Doppler and 2D-imaging at basal and apical short axis levels. For this reason, the 2D-images and velocity-time data derived and transferred to a personal computer for off-line analysis. 2D image frames analyzed via a program written in the MATLAB software. Velocity-time data from anteroseptal at basal level (or anterior wall at apical level and posterior walls transferred to a spreadsheet Excel program for the radius calculations. Linear correlation and Bland-Altman analysis were calculated to assess the relationships and agreements between the tissue Doppler and 2D-measured radii throughout the cardiac cycle. Results: There was significant correlation between tissue Doppler and 2D-measured radii and the Pearson correlation coefficients were 0.84 to 0.97 (P<0.05. Bland-Altman analysis by constructing the 95% limits of agreement showed that the good agreements existed between the two methods. Conclusion: It can be concluded from our experience that the tissue Doppler imaging can reasonably estimate radius of the left ventricle throughout the cardiac cycle.

  17. Visualizing flow fields using acoustic Doppler current profilers and the Velocity Mapping Toolbox

    Science.gov (United States)

    Jackson, P. Ryan

    2013-01-01

    The purpose of this fact sheet is to provide examples of how the U.S. Geological Survey is using acoustic Doppler current profilers for much more than routine discharge measurements. These instruments are capable of mapping complex three-dimensional flow fields within rivers, lakes, and estuaries. Using the Velocity Mapping Toolbox to process the ADCP data allows detailed visualization of the data, providing valuable information for a range of studies and applications.

  18. Velocity profile measurement of lead-lithium flows by high-temperature ultrasonic doppler velocimetry

    International Nuclear Information System (INIS)

    Ueki, Y.; Kunugi, T.; Hirabayashi, Masaru; Nagai, Keiichi; Saito, Junichi; Ara, Kuniaki; Morley, N.B.

    2014-01-01

    This paper describes a high-temperature ultrasonic Doppler Velocimetry (HT-UDV) technique that has been successfully applied to measure velocity profiles of the lead-lithium eutectic alloy (PbLi) flows. The impact of tracer particles is investigated to determine requirements for HT-UDV measurement of PbLi flows. The HT-UDV system is tested on a PbLi flow driven by a rotating-disk in an inert atmosphere. We find that a sufficient amount of particles contained in the molten PbLi are required to successfully measure PbLi velocity profiles by HT-UDV. An X-ray diffraction analysis is performed to identify those particles in PbLi, and indicates that those particles were made of the lead mono-oxide (PbO). Since the specific densities of PbLi and PbO are close to each other, the PbO particles are expected to be well-dispersed in the bulk of molten PbLi. We conclude that the excellent dispersion of PbO particles enables in HT-UDV to obtain reliable velocity profiles for operation times of around 12 hours. (author)

  19. Evaluation of droplet velocity and size from nasal spray devices using phase Doppler anemometry (PDA).

    Science.gov (United States)

    Liu, Xiaofei; Doub, William H; Guo, Changning

    2010-03-30

    To determine aerosol deposition during the inhalation drug delivery, it is important to understand the combination of velocity and droplet size together. In this study, phase Doppler anemometry (PDA) was used to simultaneously characterize the aerosol velocity and droplet size distribution (DSD) of three nasal spray pumps filled with water. Thirteen sampling positions were located in the horizontal cross-sectional area of the nasal spray plumes at a distance of 3cm from the pump orifice. The results showed droplet velocities near the center of the spray plume were higher and more consistent than those near the edge. The pumps examined showed significant differences in their aerosol velocity at the center of the spray plume, which suggest that this metric might be used as a discriminating parameter for in vitro testing of nasal sprays. Droplet size measurements performed using PDA were compared with results from laser light scattering measurements. The ability of PDA to provide simultaneous measurements of aerosol velocity and size makes it a powerful tool for the detailed investigation of nasal spray plume characteristics. Published by Elsevier B.V.

  20. Performance evaluation of a thermal Doppler Michelson interferometer system.

    Science.gov (United States)

    Mani, Reza; Dobbie, Steven; Scott, Alan; Shepherd, Gordon; Gault, William; Brown, Stephen

    2005-11-20

    The thermal Doppler Michelson interferometer is the primary element of a proposed limb-viewing satellite instrument called SWIFT (Stratospheric Wind Interferometer for Transport studies). SWIFT is intended to measure stratospheric wind velocities in the altitude range of 15-45 km. SWIFT also uses narrowband tandem etalon filters made of germanium to select a line out of the thermal spectrum. The instrument uses the same technique of phase-stepping interferometry employed by the Wind Imaging Interferometer onboard the Upper Atmosphere Research Satellite. A thermal emission line of ozone near 9 microm is used to detect the Doppler shift due to winds. A test bed was set up for this instrument that included the Michelson interferometer and the etalon filters. For the test bed work, we investigate the behavior of individual components and their combination and report the results.

  1. Study of the Myocardial Contraction and Relaxation Velocities through Doppler Tissue Imaging Echocardiography: A New Alternative in the Assessment of the Segmental Ventricular Function

    Directory of Open Access Journals (Sweden)

    Silva Carlos Eduardo Suaide

    2002-01-01

    Full Text Available OBJECTIVE: Doppler tissue imaging (DTI enables the study of the velocity of contraction and relaxation of myocardial segments. We established standards for the peak velocity of the different myocardial segments of the left ventricle in systole and diastole, and correlated them with the electrocardiogram. METHODS: We studied 35 healthy individuals (27 were male with ages ranging from 12 to 59 years (32.9 ± 10.6. Systolic and diastolic peak velocities were assessed by Doppler tissue imaging in 12 segments of the left ventricle, establishing their mean values and the temporal correlation with the cardiac cycle. RESULTS: The means (and standard deviation of the peak velocities in the basal, medial, and apical regions (of the septal, anterior, lateral, and posterior left ventricle walls were respectively, in cm/s, 7.35(1.64, 5.26(1.88, and 3.33(1.58 in systole and 10.56(2.34, 7.92(2.37, and 3.98(1.64 in diastole. The mean time in which systolic peak velocity was recorded was 131.59ms (±19.12ms, and diastolic was 459.18ms (±18.13ms based on the peak of the R wave of the electrocardiogram. CONCLUSION: In healthy individuals, maximum left ventricle segment velocities decreased from the bases to the ventricular apex, with certain proportionality between contraction and relaxation (P<0.05. The use of Doppler tissue imaging may be very helpful in detecting early alterations in ventricular contraction and relaxation.

  2. Color M-mode Doppler flow propagation velocity is a preload insensitive index of left ventricular relaxation: animal and human validation.

    Science.gov (United States)

    Garcia, M J; Smedira, N G; Greenberg, N L; Main, M; Firstenberg, M S; Odabashian, J; Thomas, J D

    2000-01-01

    To determine the effect of preload in color M-mode Doppler flow propagation velocity (v(p)). The interpretation of Doppler filling patterns is limited by confounding effects of left ventricular (LV) relaxation and preload. Color M-mode v(p) has been proposed as a new index of LV relaxation. We studied four dogs before and during inferior caval (IVC) occlusion at five different inotropic stages and 14 patients before and during partial cardiopulmonary bypass. Left ventricular (LV) end-diastolic volumes (LV-EDV), the time constant of isovolumic relaxation (tau), left atrial (LA) pre-A and LV end-diastolic pressures (LV-EDP) were measured. Peak velocity during early filling (E) and v(p) were extracted by digital analysis of color M-mode Doppler images. In both animals and humans, LV-EDV and LV-EDP decreased significantly from baseline to IVC occlusion (both p < 0.001). Peak early filling (E) velocity decreased in animals from 56 +/- 21 to 42 +/- 17 cm/s (p < 0.001) without change in v(p) (from 35 +/- 15 to 35 +/- 16, p = 0.99). Results were similar in humans (from 69 +/- 15 to 53 +/- 22 cm/s, p < 0.001, and 37 +/- 12 to 34 +/- 16, p = 0.30). In both species, there was a strong correlation between LV relaxation (tau) and v(p) (r = 0.78, p < 0.001, r = 0.86, p < 0.001). Our results indicate that color M-mode Doppler v(p) is not affected by preload alterations and confirms that LV relaxation is its main physiologic determinant in both animals during varying lusitropic conditions and in humans with heart disease.

  3. A Novel Geometrical Height Gain Model for Line-of-Sight Urban Micro Cells Below 6 GHz

    DEFF Research Database (Denmark)

    Rodriguez, Ignacio; Nguyen, Huan Cong; Sørensen, Troels Bundgaard

    2016-01-01

    This paper presents a novel height gain model applicable to line-of-sight urban micro cell scenarios and frequencies below 6 GHz. The model is knife-edge diffraction-based, and it is founded on simple geometrical and physical relationships. Typical system level simulator scenario parameters...

  4. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...

  5. Improvement of vertical velocity statistics measured by a Doppler lidar through comparison with sonic anemometer observations

    Science.gov (United States)

    Bonin, Timothy A.; Newman, Jennifer F.; Klein, Petra M.; Chilson, Phillip B.; Wharton, Sonia

    2016-12-01

    Since turbulence measurements from Doppler lidars are being increasingly used within wind energy and boundary-layer meteorology, it is important to assess and improve the accuracy of these observations. While turbulent quantities are measured by Doppler lidars in several different ways, the simplest and most frequently used statistic is vertical velocity variance (w'2) from zenith stares. However, the competing effects of signal noise and resolution volume limitations, which respectively increase and decrease w'2, reduce the accuracy of these measurements. Herein, an established method that utilises the autocovariance of the signal to remove noise is evaluated and its skill in correcting for volume-averaging effects in the calculation of w'2 is also assessed. Additionally, this autocovariance technique is further refined by defining the amount of lag time to use for the most accurate estimates of w'2. Through comparison of observations from two Doppler lidars and sonic anemometers on a 300 m tower, the autocovariance technique is shown to generally improve estimates of w'2. After the autocovariance technique is applied, values of w'2 from the Doppler lidars are generally in close agreement (R2 ≈ 0.95 - 0.98) with those calculated from sonic anemometer measurements.

  6. Evaluation of hepatic venous pulsatility and portal venous velocity with doppler ultrasonography during the puerperium

    Energy Technology Data Exchange (ETDEWEB)

    Pekindil, Goekhan [Department of Radiology, Trakya University School of Medicine, 22030 Edirne (Turkey); Varol, Fuesun G. [Department of Obstetrics and Gynecology, Trakya University School of Medicine, 22030 Edirne (Turkey); Ali Yuece, M. [Department of Obstetrics and Gynecology, Trakya University School of Medicine, 22030 Edirne (Turkey); Yardim, Turgut [Department of Obstetrics and Gynecology, Trakya University School of Medicine, 22030 Edirne (Turkey)

    1999-03-01

    Objective: The aim of this study is to evaluate pregnancy-induced changes of hepatic venous pulsatility and portal venous velocity in the puerperium and to determine if these changes disappeared by the end of the puerperium. Methods and material: Healthy normal volunteers (90) were examined on the 2nd and 7th days of puerperium and between the 6th and 8th weeks postpartum. Doppler waveform patterns were obtained in the middle hepatic vein and main portal vein. The hepatic venous pulsatility was named as normal, damped or flat. Results: On the 2nd day postpartum, the hepatic vein pulsatility was shown as normal in 8 (26%), damped in 11 (37%) and flat in 11 (37%) cases. On the 7th day postpartum, 15 (50%) cases had normal, 9 (30%) cases had dampened, and 6 (20%) cases had still flat pattern. The majority of the cases (60%) displayed normal hepatic venous pulsatility in the 6th and 8th weeks of puerperium, whereas 23% had still dampened and 17% had flat patterns. There was a trend toward normal pulsatility with increasing puerperal age. The mean portal venous velocity was still higher than the non-pregnant levels and did not showed significant alterations during puerperium. Conclusion: This study emphasised that, since pregnancy-induced alterations in hepatic venous pulsatility and portal venous velocity had not completely returned to normal in most cases until the end of the puerperium, these physiological changes should be considered whenever hepatic and portal systems are interpreted with Doppler sonography during the puerperal period.

  7. Evaluation of hepatic venous pulsatility and portal venous velocity with doppler ultrasonography during the puerperium

    International Nuclear Information System (INIS)

    Pekindil, Goekhan; Varol, Fuesun G.; Ali Yuece, M.; Yardim, Turgut

    1999-01-01

    Objective: The aim of this study is to evaluate pregnancy-induced changes of hepatic venous pulsatility and portal venous velocity in the puerperium and to determine if these changes disappeared by the end of the puerperium. Methods and material: Healthy normal volunteers (90) were examined on the 2nd and 7th days of puerperium and between the 6th and 8th weeks postpartum. Doppler waveform patterns were obtained in the middle hepatic vein and main portal vein. The hepatic venous pulsatility was named as normal, damped or flat. Results: On the 2nd day postpartum, the hepatic vein pulsatility was shown as normal in 8 (26%), damped in 11 (37%) and flat in 11 (37%) cases. On the 7th day postpartum, 15 (50%) cases had normal, 9 (30%) cases had dampened, and 6 (20%) cases had still flat pattern. The majority of the cases (60%) displayed normal hepatic venous pulsatility in the 6th and 8th weeks of puerperium, whereas 23% had still dampened and 17% had flat patterns. There was a trend toward normal pulsatility with increasing puerperal age. The mean portal venous velocity was still higher than the non-pregnant levels and did not showed significant alterations during puerperium. Conclusion: This study emphasised that, since pregnancy-induced alterations in hepatic venous pulsatility and portal venous velocity had not completely returned to normal in most cases until the end of the puerperium, these physiological changes should be considered whenever hepatic and portal systems are interpreted with Doppler sonography during the puerperal period

  8. Experimental Investigation of Some Effects of Multipath Propagation on a Line-of-Sight Path at 14 GHz

    DEFF Research Database (Denmark)

    Stephansen, E.; Mogensen, G.

    1979-01-01

    A microwave line-of-sight propagation experiment is carried out in Denmark at frequencies around 14 GHz. Results from long term measurements of multipath propagation are presented. The multipath fade durations are shown to be log-normally distributed. The level dependence of the probability of fa...

  9. A quantitative analysis of the impact of wind turbines on operational Doppler weather radar data

    Science.gov (United States)

    Norin, L.

    2015-02-01

    In many countries wind turbines are rapidly growing in numbers as the demand for energy from renewable sources increases. The continued deployment of wind turbines can, however, be problematic for many radar systems, which are easily disturbed by turbines located in the radar line of sight. Wind turbines situated in the vicinity of Doppler weather radars can lead to erroneous precipitation estimates as well as to inaccurate wind and turbulence measurements. This paper presents a quantitative analysis of the impact of a wind farm, located in southeastern Sweden, on measurements from a nearby Doppler weather radar. The analysis is based on 6 years of operational radar data. In order to evaluate the impact of the wind farm, average values of all three spectral moments (the radar reflectivity factor, absolute radial velocity, and spectrum width) of the nearby Doppler weather radar were calculated, using data before and after the construction of the wind farm. It is shown that all spectral moments, from a large area at and downrange from the wind farm, were impacted by the wind turbines. It was also found that data from radar cells far above the wind farm (near 3 km altitude) were affected by the wind farm. It is shown that this in part can be explained by detection by the radar sidelobes and by scattering off increased levels of dust and turbulence. In a detailed analysis, using data from a single radar cell, frequency distributions of all spectral moments were used to study the competition between the weather signal and wind turbine clutter. It is shown that, when weather echoes give rise to higher reflectivity values than those of the wind farm, the negative impact of the wind turbines is greatly reduced for all spectral moments.

  10. Doppler evaluation of valvular stenosis

    International Nuclear Information System (INIS)

    Kisslo, J.; Krafchek, J.; Adams, D.; Mark, D.B.

    1986-01-01

    One of the reasons why use of Doppler echocardiography is growing rapidly is because of its utility in detecting the presence of valvular stenosis and in estimating its severity. Detection of the presence of stenotic valvular heart disease using Doppler echocardiography was originally described over 10 years ago. It has been demonstrated that Doppler blood velocity data could be used to estimate the severity of a stenotic lesion. This chapter discusses the evaluation of valvular stenois using Doppler

  11. New Insights from Inside-Out Doppler Tomography

    Directory of Open Access Journals (Sweden)

    E. J. Kotze

    2015-02-01

    Full Text Available We present preliminary results from our investigation into using an “inside-out” velocity space for creating a Doppler tomogram. The aim is to transpose the inverted appearance of the Cartesian velocity space used in normal Doppler tomography. In a comparison between normal and inside-out Doppler tomograms of cataclysmic variables, we show that the inside-out velocity space has the potential to produce new insights into the accretion dynamics in these systems.

  12. Transcranial Doppler velocities in a large, healthy population.

    Science.gov (United States)

    Tegeler, Charles H; Crutchfield, Kevin; Katsnelson, Michael; Kim, Jongyeol; Tang, Rong; Passmore Griffin, Leah; Rundek, Tanja; Evans, Greg

    2013-07-01

    Transcranial Doppler (TCD) ultrasonography has been extensively used in the evaluation and management of patients with cerebrovascular disease since the clinical application was first described in 1982 by Aaslid and colleagues TCD is a painless, safe, and noninvasive diagnostic technique that measures blood flow velocity in various cerebral arteries. Numerous commercially available TCD devices are currently approved for use worldwide, and TCD is recognized to have an established clinical value for a variety of clinical indications and settings. Although many studies have reported normal values, there have been few recently, and none to include a large cohort of healthy subjects across age, race, and gender. As more objective, automated processes are being developed to assist with the performance and interpretation of TCD studies, and with the potential to easily compare results against a reference population, it is important to define stable normal values and variances across age, race, and gender, with clear understanding of variability of the measurements, as well as the yield from various anatomic segments. To define normal TCD values in a healthy population, we enrolled 364 healthy subjects, ages 18-80 years, to have a complete, nonimaging TCD examination. Subjects with known or suspected cerebrovascular disorders, systemic disorders with cerebrovascular effects, as well as those with known hypertension, diabetes, stroke, coronary artery disease, or myocardial infarction, were excluded. Self-reported ethnicity, handedness, BP, and BMI were recorded. A complete TCD examination was performed by a single experienced sonographer, using a single gate nonimaging TCD device, and a standardized protocol to interrogate up to 23 arterial segments. Individual Doppler spectra were saved for each segment, with velocity and pulsatility index (PI) values calculated using the instrument's automated waveform tracking function. Descriptive analysis was done to determine the mean

  13. MP3 compression of Doppler ultrasound signals.

    Science.gov (United States)

    Poepping, Tamie L; Gill, Jeremy; Fenster, Aaron; Holdsworth, David W

    2003-01-01

    The effect of lossy, MP3 compression on spectral parameters derived from Doppler ultrasound (US) signals was investigated. Compression was tested on signals acquired from two sources: 1. phase quadrature and 2. stereo audio directional output. A total of 11, 10-s acquisitions of Doppler US signal were collected from each source at three sites in a flow phantom. Doppler signals were digitized at 44.1 kHz and compressed using four grades of MP3 compression (in kilobits per second, kbps; compression ratios in brackets): 1400 kbps (uncompressed), 128 kbps (11:1), 64 kbps (22:1) and 32 kbps (44:1). Doppler spectra were characterized by peak velocity, mean velocity, spectral width, integrated power and ratio of spectral power between negative and positive velocities. The results suggest that MP3 compression on digital Doppler US signals is feasible at 128 kbps, with a resulting 11:1 compression ratio, without compromising clinically relevant information. Higher compression ratios led to significant differences for both signal sources when compared with the uncompressed signals. Copyright 2003 World Federation for Ultrasound in Medicine & Biology

  14. Spatially-resolved velocities of thermally-produced spray droplets using a velocity-divided Abel inversion of photographed streaks

    Science.gov (United States)

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Muraoka, K.

    2017-10-01

    Droplet velocities of thermal spray are known to have profound effects on important coating qualities, such as adhesive strength, porosity, and hardness, for various applications. For obtaining the droplet velocities, therefore, the TOF (time-of-flight) technique has been widely used, which relies on observations of emitted radiation from the droplets, where all droplets along the line-of-sight contribute to signals. Because droplets at and near the flow axis mostly contribute coating layers, it has been hoped to get spatially resolved velocities. For this purpose, a velocity-divided Abel inversion was devised from CMOS photographic data. From this result, it has turned out that the central velocity is about 25% higher than that obtained from the TOF technique for the case studied (at the position 150 mm downstream of the plasma spray gun, where substrates for spray coatings are usually placed). Further implications of the obtained results are discussed.

  15. Inertial Navigation System/Doppler Velocity Log (INS/DVL Fusion with Partial DVL Measurements

    Directory of Open Access Journals (Sweden)

    Asaf Tal

    2017-02-01

    Full Text Available The Technion autonomous underwater vehicle (TAUV is an ongoing project aiming to develop and produce a small AUV to carry on research missions, including payload dropping, and to demonstrate acoustic communication. Its navigation system is based on an inertial navigation system (INS aided by a Doppler velocity log (DVL, magnetometer, and pressure sensor (PS. In many INSs, such as the one used in TAUV, only the velocity vector (provided by the DVL can be used for aiding the INS, i.e., enabling only a loosely coupled integration approach. In cases of partial DVL measurements, such as failure to maintain bottom lock, the DVL cannot estimate the vehicle velocity. Thus, in partial DVL situations no velocity data can be integrated into the TAUV INS, and as a result its navigation solution will drift in time. To circumvent that problem, we propose a DVL-based vehicle velocity solution using the measured partial raw data of the DVL and additional information, thereby deriving an extended loosely coupled (ELC approach. The implementation of the ELC approach requires only software modification. In addition, we present the TAUV six degrees of freedom (6DOF simulation that includes all functional subsystems. Using this simulation, the proposed approach is evaluated and the benefit of using it is shown.

  16. Transesophageal color Doppler evaluation of obstructive lesions using the new "Quasar" technology.

    Science.gov (United States)

    Fan, P; Nanda, N C; Gatewood, R P; Cape, E G; Yoganathan, A P

    1995-01-01

    Due to the unavoidable problem of aliasing, color flow signals from high blood flow velocities cannot be measured directly by conventional color Doppler. A new technology termed Quantitative Un-Aliased Speed Algorithm Recognition (Quasar) has been developed to overcome this limitation. Employing this technology, we used transesophageal color Doppler echocardiography to investigate whether the velocities detected by the Quasar would correlate with those obtained by continuous-wave Doppler both in vitro and in vivo. In the in vitro study, a 5.0 MHz transesophageal transducer of a Kontron Sigma 44 color Doppler flow system was used. Fourteen different peak velocities calculated and recorded by color Doppler-guided continuous-wave Doppler were randomly selected. In the clinical study, intraoperative transesophageal echocardiography was performed using the same transducer 18 adults (13 aortic valve stenosis, 2 aortic and 2 mitral stenosis, 2 hypertrophic obstructive cardiomyopathy and 1 mitral valve stenosis). Following each continuous-wave Doppler measurement, the Quasar was activated, and a small Quasar marker was placed in the brightest area of the color flow jet to obtain the maximum mean velocity readout. The maximum mean velocities measured by Quasar closely correlated with maximum peak velocities obtained by color flow guided continuous-wave Doppler in both in vitro (0.53 to 1.65 m/s, r = 0.99) and in vivo studies (1.50 to 6.01 m/s, r = 0.97). We conclude that the new Quasar technology can accurately measure high blood flow velocities during transesophageal color Doppler echocardiography. This technique has the potential of obviating the need for continuous-wave Doppler.

  17. Application of two-component phase doppler interferometry to the measurement of particle size, mass flux, and velocities in two-phase flows

    OpenAIRE

    McDonell, VG; Samuelsen, GS

    1989-01-01

    The application of two-component interferometry is described for the spatially-resolved measurement of particle size, velocity and mass flux as well as continuous phase velocity. Such a capability is important to develop an understanding of the physical processes attendant to two-phase flow systems, especially those involving liquid atomization typical of a wide class of combustion systems. Adapted from laser anemometry, the technique (phase Doppler interferometry) measures single particle ev...

  18. Preload dependence of color M-mode Doppler flow propagation velocity in controls and in patients with left ventricular dysfunction

    DEFF Research Database (Denmark)

    Møller, J E; Poulsen, S H; Søndergaard, E

    2000-01-01

    The purpose of this study was to assess the effects of preload alterations on color M-mode flow propagation velocity (Vp) in volunteers with normal left ventricular (LV) function and in patients with depressed LV function. Color M-mode Doppler echocardiography was performed during Valsalva maneuv...

  19. Tissue Doppler echocardiography – A case of right tool, wrong use

    Directory of Open Access Journals (Sweden)

    Thomas George

    2004-08-01

    Full Text Available Abstract Background The developments in echocardiography or ultrasound cardiography (UCG have improved our clinical capabilities. However, advanced hardware and software capabilities have resulted in UCG facilities of dubious clinical benefits. Is tissue Doppler echocardiography (TDE is one such example? Presentation of the hypothesis TDE has been touted as advancement in the field of echocardiography. The striking play of colors, impressive waveforms and the seemingly accurate velocity values could be deceptive. TDE is a clear case of inappropriate use of technology. Testing the hypothesis To understand this, a comparison between flow Doppler and tissue Doppler is made. To make clinically meaningful velocity measurements with Doppler, we need prior knowledge of the line of motion. This is possible in blood flow but impossible in the complex myocardial motion. The qualitative comparison makes it evident that Doppler is best suited for flow studies. Implications of the hypothesis As of now TDE is going backwards using an indirect method when direct methods are better. The work on TDE at present is only debatable 'research and publication' material and do not translate into tangible clinical benefits. There are several advances like curved M-mode, strain rate imaging and tissue tracking in TDE. However these have been disappointing. This is due to the basic flaw in the application of the principles of Doppler. Doppler is best suited for flow studies and applying it to tissue motion is illogical. All data obtained by TDE is scientifically incorrect. This makes all the published papers on the subject flawed. Making diagnostic decisions based on this faulty application of technology would be unacceptable to the scientific cardiologist.

  20. Automated measurement of bolometer line of sight alignment and characteristics for application in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Penzel, Florian Olivier

    2015-07-01

    The line of sight (LOS) alignment and characteristic of a bolometer camera used in a fusion experiment is a crucial parameter for the measurement accuracy of the diagnostic. A robot based LOS measurement device has been developed which allows the fully automatic measurement of the two dimensional transmission function of a bolometer camera. It has been used to optimize camera prototypes for ITER and has been successfully operated in the fusion experiment ASDEX Upgrade in order to measure the LOS alignment.

  1. Design for coordinated measurements of Faraday rotation and line-of-sight electron density using heterodyne techniques

    International Nuclear Information System (INIS)

    Jacobson, A.R.

    1977-07-01

    This report proposes a device which can overcome certain of the compromises of conventional Faraday rotation methods and at the same time measure the optical phase as well as the polarization. This would be useful for unfolding the Faraday rotation signal using the line-of-sight density along exactly the same path. Preliminary design parameters using a CO 2 laser are presented

  2. Measurements of ion temperature and flow of pulsed plasmas produced by a magnetized coaxial plasma gun device using an ion Doppler spectrometer

    Science.gov (United States)

    Kitagawa, Y.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is important to know surface damage characteristics of plasma-facing component materials during transient heat and particle loads such as type I ELMs. A magnetized coaxial plasma gun (MCPG) device has been used as transient heat and particle source in ELM simulation experiments. Characteristics of pulsed plasmas produced by the MCPG device play an important role for the plasma material interaction. In this study, ion temperature and flow velocity of pulsed He plasmas were measured by an ion Doppler spectrometer (IDS). The IDS system consists of a light collection system including optical fibers, 1m-spectrometer and a 16 channel photomultiplier tube (PMT) detector. The IDS system measures the width and Doppler shift of HeII (468.58 nm) emission line with the time resolution of 1 μs. The Doppler broadened and shifted spectra were measured with 45 and 135 degree angles with respect to the plasmoid traveling direction. The observed emission line profile was represented by sum of two Gaussian components to determine the temperature and flow velocity. The minor component at around the wavelength of zero-velocity was produced by the stationary plasma. As the results, the ion velocity and temperature were 68 km/s and 19 eV, respectively. Thus, the He ion flow energy is 97 eV. The observed flow velocity agrees with that measured by a time of flight technique.

  3. Ultrasound propagation in steel piping at electric power plant using clamp-on ultrasonic pulse doppler velocity-profile flowmeter

    International Nuclear Information System (INIS)

    Tezuka, Kenichi; Mori, Michitsugu; Wada, Sanehiro; Aritomi, Masanori; Kikura, Hiroshige

    2008-01-01

    Venturi nozzles are widely used to measure the flow rates of reactor feedwater. This flow rate of nuclear reactor feedwater is an important factor in the operation of nuclear power reactors. Some other types of flowmeters have been proposed to improve measurement accuracy. The ultrasonic pulse Doppler velocity-profile flowmeter is expected to be a candidate method because it can measure the flow profiles across the pipe cross sections. For the accurate estimation of the flow velocity, the incidence angle of ultrasonic entering the fluid should be carefully estimated by the theoretical approach. However, the evaluation of the ultrasound propagation is not straightforward for the several reasons such as temperature gradient in the wedge or mode conversion at the interface between the wedge and pipe. In recent years, the simulation code for ultrasound propagation has come into use in the nuclear field for nondestructive testing. This article analyzes and discusses ultrasound propagation in steel piping and water, using the 3D-FEM simulation code and the Kirchhoff method, as it relates to the flow profile measurements in power plants with the ultrasonic pulse Doppler velocity-profile flowmeter. (author)

  4. The 9.7 and 18 µm silicate absorption profiles towards diffuse and molecular cloud lines-of-sight

    NARCIS (Netherlands)

    van Breemen, J.M.; Min, M.; Chiar, J.E.; Waters, L.B.F.M.; Kemper, F.; Boogert, A.C.A.; Cami, J.; Decin, L.; Knez, C.; Sloan, G.C.; Tielens, A.G.G.M.

    2011-01-01

    Context. Studying the composition of dust in the interstellar medium (ISM) is crucial for understanding the cycle of dust in our galaxy. Aims. The mid-infrared spectral signature of amorphous silicates, the most abundant dust species in the ISM, is studied in different lines-of-sight through the

  5. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, R., E-mail: raspberry@lanl.gov; Danly, C.; Fatherley, V. E.; Merrill, F. E.; Volegov, P.; Wilde, C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Christensen, K.; Fittinghoff, D.; Grim, G. P.; Izumi, N.; Jedlovec, D.; Skulina, K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-12-15

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.

  6. Outlier Detection in GNSS Pseudo-Range/Doppler Measurements for Robust Localization

    Directory of Open Access Journals (Sweden)

    Salim Zair

    2016-04-01

    Full Text Available In urban areas or space-constrained environments with obstacles, vehicle localization using Global Navigation Satellite System (GNSS data is hindered by Non-Line Of Sight (NLOS and multipath receptions. These phenomena induce faulty data that disrupt the precise localization of the GNSS receiver. In this study, we detect the outliers among the observations, Pseudo-Range (PR and/or Doppler measurements, and we evaluate how discarding them improves the localization. We specify a contrario modeling for GNSS raw data to derive an algorithm that partitions the dataset between inliers and outliers. Then, only the inlier data are considered in the localization process performed either through a classical Particle Filter (PF or a Rao-Blackwellization (RB approach. Both localization algorithms exclusively use GNSS data, but they differ by the way Doppler measurements are processed. An experiment has been performed with a GPS receiver aboard a vehicle. Results show that the proposed algorithms are able to detect the ‘outliers’ in the raw data while being robust to non-Gaussian noise and to intermittent satellite blockage. We compare the performance results achieved either estimating only PR outliers or estimating both PR and Doppler outliers. The best localization is achieved using the RB approach coupled with PR-Doppler outlier estimation.

  7. VizieR Online Data Catalog: l Car radial velocity curves (Anderson, 2016)

    Science.gov (United States)

    Anderson, R. I.

    2018-02-01

    Line-of-sight (radial) velocities of the long-period classical Cepheid l Carinae were measured from 925 high-quality optical spectra recorded using the fiber-fed high-resolution (R~60,000) Coralie spectrograph located at the Euler telescope at La Silla Observatory, Chile. The data were taken between 2014 and 2016. This is the full version of Tab. 2 presented partially in the paper. Line shape parameters (depth, width, asymmetry) are listed for the computed cross-correlation profiles (CCFs). Radial velocities were determined using different techniques (Gaussian, bi-Gaussian) and measured on CCFs computed using three different numerical masks (G2, weak lines, strong lines). (1 data file).

  8. Measurement of the radial electric field in the ASDEX tokamak

    International Nuclear Information System (INIS)

    Field, A.R.; Fussmann, G.; Hofmann, J.V.

    1990-12-01

    The radial electric field (E Τ ) at the plasma periphery is determined by measuring the drift velocities of low-Z impurities ions (BIV, CIII and HeII). The measurements are performed with a scannable mirror system which allows the determination of the poloidal, perpendicular (to B vector) and toroidal components of the drift velocities from the differential Doppler shift of visible line emission observed along opposing viewing directions. The principle of the measurement is investigated in detail. In particular, it is shown that for radially localised emission shells there exits a line of sight oriented perpendicular to B vector along which E Τ may be inferred directly from the observed Doppler shift of the line emission. Along such a line of sight the net contribution to the shift from the diamagnetic drift and the radial gradient of the excitation probability is negligible. During the Ohmic- and L-phases the perpendicular drift velocity of the BIV ions measured approximately 2 cm inside the separatrix is small (≤ 2 kms -1 ) and in the ion diamagnetic drift direction. However, at the L → H-Mode transition it changes sign and begins to increase on the time-scale of the edge pressure gradients reaching the highest values at the end of the H * -phase. From these high perpendicular drift velocities it is infered that, in the H-mode, there exists a strong negative radial electric field (vertical strokeE τ vertical stroke ≤ kVm -1 ) just inside the separatrix. The dependence of the drift velocity of the BIV ions and E Τ on the NBI-heating power and the magnitude and direction of the plasma current and the magnetic field is investigated. (orig.)

  9. Deconstructing Disk Velocity Distribution Functions in the Disk-Mass Survey

    NARCIS (Netherlands)

    Westfall, K. B.; Bershady, M. A.; Verheijen, M. A. W.; Andersen, D. R.; Swaters, R. A.

    2008-01-01

    We analyze integral-field ionized gas and stellar line-of-sight kinematics in the context of determining the stellar velocity ellipsoid for spiral galaxies observed by the Disk-Mass Survey. Our new methodology enables us to measure, for the first time, a radial gradient in the ellipsoid ratio

  10. Stellar Velocity Dispersion: Linking Quiescent Galaxies to Their Dark Matter Halos

    Science.gov (United States)

    Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.

    2018-06-01

    We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This proportionality holds even when a line-of-sight aperture dispersion is calculated in analogy to observations. In contrast, at a given stellar velocity dispersion, the dark matter halo mass of satellite galaxies is smaller than virial equilibrium expectations. This deviation from virial equilibrium probably results from tidal stripping of the outer dark matter halo. Stellar velocity dispersion appears insensitive to tidal effects and thus reflects the correlation between stellar velocity dispersion and dark matter halo mass prior to infall. There is a tight relation (≲0.2 dex scatter) between line-of-sight aperture stellar velocity dispersion and dark matter halo mass suggesting that the dark matter halo mass may be estimated from the measured stellar velocity dispersion for both central and satellite galaxies. We evaluate the impact of treating all objects as central galaxies if the relation we derive is applied to a statistical ensemble. A large fraction (≳2/3) of massive quiescent galaxies are central galaxies and systematic uncertainty in the inferred dark matter halo mass is ≲0.1 dex thus simplifying application of the simulation results to currently available observations.

  11. Developing a reproducible non-line-of-sight experimental setup for testing wireless medical device coexistence utilizing ZigBee.

    Science.gov (United States)

    LaSorte, Nickolas J; Rajab, Samer A; Refai, Hazem H

    2012-11-01

    The integration of heterogeneous wireless technologies is believed to aid revolutionary healthcare delivery in hospitals and residential care. Wireless medical device coexistence is a growing concern given the ubiquity of wireless technology. In spite of this, a consensus standard that addresses risks associated with wireless heterogeneous networks has not been adopted. This paper serves as a starting point by recommending a practice for assessing the coexistence of a wireless medical device in a non-line-of-sight environment utilizing 802.15.4 in a practical, versatile, and reproducible test setup. This paper provides an extensive survey of other coexistence studies concerning 802.15.4 and 802.11 and reports on the authors' coexistence testing inside and outside an anechoic chamber. Results are compared against a non-line-of-sight test setup. Findings relative to co-channel and adjacent channel interference were consistent with results reported in the literature.

  12. Dynamics in the Modern Upper Atmosphere of Venus: Zonal Wind Transition to Subsolar-to-Antisolar Flow

    Science.gov (United States)

    Livengood, T. A.; Kostiuk, T.; Hewagama, T.; Fast, K. E.

    2017-12-01

    We observed Venus on 19-23 Aug 2010 (UT) to investigate equatorial wind velocities from above the cloud tops through the lower thermosphere. Measurements were made from the NASA Infrared Telescope Facility using the NASA Goddard Space Flight Center Heterodyne Instrument for Planetary Winds and Composition. High-resolution spectra were acquired on a CO2 pressure-broadened absorption feature that probes the lower mesosphere ( 70 km altitude) with a non-LTE core emission of the same transition that probes the lower thermosphere ( 110 km). The resolving power of λ/Δλ≈3×107 determines line-of-sight velocity from Doppler shifts to high precision. The altitude differential between the features enables investigating the transition from zonal wind flow near the cloud tops to subsolar-to-antisolar flow in the thermosphere. The fully-resolved carbon dioxide transition was measured near 952.8808 cm-1 (10.494 µm) rest frequency at the equator with 1 arcsec field-of-view on Venus (24 arcsec diameter) distributed about the central meridian and across the terminator at ±15° intervals in longitude. The non-LTE emission is solar-pumped and appears only on the daylight side, probing subsolar-to-antisolar wind velocity vector flowing radially from the subsolar point through the terminator, which was near the central meridian in these observations and had zero line-of-sight wind projection at the terminator. The velocity of the zonal flow is approximately uniform, with maximum line-of-sight projection at the limb, and can be measured by the frequency of the absorption line on both the daylight and dark side. Variations in Doppler shift between the observable features and the differing angular dependence of the contributing wind phenomena thus provide independent mechanisms to distinguish the dynamical processes at the altitude of each observed spectral feature. Winds up to >100 m/s were determined in previous investigations with uncertainties of order 10 m/s or less.

  13. [NEII] Line Velocity Structure of Ultracompact HII Regions

    Science.gov (United States)

    Okamoto, Yoshiko K.; Kataza, Hirokazu; Yamashita, Takuya; Miyata, Takashi; Sako, Shigeyuki; Honda, Mitsuhiko; Onaka, Takashi; Fujiyoshi, Takuya

    Newly formed massive stars are embedded in their natal molecular clouds and are observed as ultracompact HII regions. They emit strong ionic lines such as [NeII] 12.8 micron. Since Ne is ionized by UV photons of E>21.6eV which is higher than the ionization energy of hydrogen atoms the line probes the ionized gas near the ionizing stars. This enables to probe gas motion in the vicinity of recently-formed massive stars. High angular and spectral resolution observations of the [NeII] line will thus provide siginificant information on structures (e.g. disks and outflows) generated through massive star formation. We made [NeII] spectroscopy of ultracompact HII regions using the Cooled Mid-Infrared Camera and Spectrometer (COMICS) on the 8.2m Subaru Telescope in July 2002. Spatial and spectral resolutions were 0.5"" and 10000 respectively. Among the targets G45.12+0.13 shows the largest spatial variation in velocity. The brightest area of G45.12+0.13 has the largest line width in the object. The total velocity deviation amounts to 50km/s (peak to peak value) in the observed area. We report the velocity structure of [NeII] emission of G45.12+0.13 and discuss the gas motion near the ionizing star.

  14. THE EFFECT OF LINE-OF-SIGHT TEMPERATURE VARIATION AND NOISE ON DUST CONTINUUM OBSERVATIONS

    International Nuclear Information System (INIS)

    Shetty, Rahul; Kauffmann, Jens; Goodman, Alyssa A.; Ercolano, Barbara; Schnee, Scott

    2009-01-01

    We investigate the effect of line-of-sight temperature variations and noise on two commonly used methods to determine dust properties from dust-continuum observations of dense cores. One method employs a direct fit to a modified blackbody spectral energy distribution (SED); the other involves a comparison of flux ratios to an analytical prediction. Fitting fluxes near the SED peak produces inaccurate temperature and dust spectral index estimates due to the line-of-sight temperature (and density) variations. Longer wavelength fluxes in the Rayleigh-Jeans part of the spectrum (∼> 600 μm for typical cores) may more accurately recover the spectral index, but both methods are very sensitive to noise. The temperature estimate approaches the density-weighted temperature, or 'column temperature', of the source as short wavelength fluxes are excluded. An inverse temperature-spectral index correlation naturally results from SED fitting, due to the inaccurate isothermal assumption, as well as noise uncertainties. We show that above some 'threshold' temperature, the temperatures estimated through the flux ratio method can be highly inaccurate. In general, observations with widely separated wavelengths, and including shorter wavelengths, result in higher threshold temperatures; such observations thus allow for more accurate temperature estimates of sources with temperatures less than the threshold temperature. When only three fluxes are available, a constrained fit, where the spectral index is fixed, produces less scatter in the temperature estimate when compared to the estimate from the flux ratio method.

  15. Differential doppler heterodyning technique

    DEFF Research Database (Denmark)

    Lading, Lars

    1971-01-01

    Measuring velocity without disturbing the moving object is possible by use of the laser doppler heterodyning technique. Theoretical considerations on the doppler shift show that the antenna property of the photodetector can solve an apparent conflict between two different ways of calculating...

  16. Deep Learning Based Solar Flare Forecasting Model. I. Results for Line-of-sight Magnetograms

    Science.gov (United States)

    Huang, Xin; Wang, Huaning; Xu, Long; Liu, Jinfu; Li, Rong; Dai, Xinghua

    2018-03-01

    Solar flares originate from the release of the energy stored in the magnetic field of solar active regions, the triggering mechanism for these flares, however, remains unknown. For this reason, the conventional solar flare forecast is essentially based on the statistic relationship between solar flares and measures extracted from observational data. In the current work, the deep learning method is applied to set up the solar flare forecasting model, in which forecasting patterns can be learned from line-of-sight magnetograms of solar active regions. In order to obtain a large amount of observational data to train the forecasting model and test its performance, a data set is created from line-of-sight magnetogarms of active regions observed by SOHO/MDI and SDO/HMI from 1996 April to 2015 October and corresponding soft X-ray solar flares observed by GOES. The testing results of the forecasting model indicate that (1) the forecasting patterns can be automatically reached with the MDI data and they can also be applied to the HMI data; furthermore, these forecasting patterns are robust to the noise in the observational data; (2) the performance of the deep learning forecasting model is not sensitive to the given forecasting periods (6, 12, 24, or 48 hr); (3) the performance of the proposed forecasting model is comparable to that of the state-of-the-art flare forecasting models, even if the duration of the total magnetograms continuously spans 19.5 years. Case analyses demonstrate that the deep learning based solar flare forecasting model pays attention to areas with the magnetic polarity-inversion line or the strong magnetic field in magnetograms of active regions.

  17. Laser Doppler measurements in two-phase flows

    International Nuclear Information System (INIS)

    Durst, F.; Zare, M.

    1976-01-01

    Basic theory for laser-Doppler velocity measurements of large reflecting or refracting surfaces is provided. It is shown that the Doppler-signals contain information of the velocity and size of the large bodies, and relationships for transforming velocity and radius of curvature of moving spheres are presented. Preliminary experiments verified the analytical findings and demonstrated the applicability of the method to some two-phase flows

  18. Communication with diode laser: short distance line of sight communication using fiber optics

    International Nuclear Information System (INIS)

    Mirza, A.H.

    1999-01-01

    The objective of this project is to carry audio signal from transmitting station to a short distance receiving station along line of sight and also communication through fiber optics is performed, using diode laser light as carrier. In this project optical communication system, modulation techniques, basics of laser and causes of using diode laser are discussed briefly. Transmitter circuit and receiver circuit are fully described. Communication was performed using pulse width modulation technique. Optical fiber communication have many advantages over other type of conventional communication techniques. This report contains the description of optical fiber communication and compared with other communication systems. (author)

  19. B-mode and Doppler ultrasonography of adrenal glands of healthy dogs

    Directory of Open Access Journals (Sweden)

    S. Fernandez

    2016-08-01

    Full Text Available ABSTRACT The aim of this study was to determine the vascular indices of adrenal blood flow in healthy dogs (systolic velocity - SV; diastolic velocity - DV; resistance index - RI. Eighteen dogs (thirty six adrenal were studied. Physical examination, biochemical profile and dexamethasone suppression test were performed to determine general health status. Echotexture, size, contours and margins, and overall shape of the adrenal gland (right and left were assessed via ultrasound. By spectral Doppler of the phrenic-abdominal artery, the SV, DV, and RI were acquired. Animals did not show alterations in clinical and laboratory examination and suppression of cortisol. Normal homogeneous and echotexture, regular contours and margins and normal shape and size were verified via B mode. Spectral Doppler of the phrenic-abdominal artery showed monophasic-patterned waves and low vascular resistance and systolic peak evident with means values: left adrenal - SV = 31.34cm/s, DV = 9.54cm/s and RI = 0.69; and right adrenal - SV = 27.83cm/s, DV = 7.71cm/s and RI = 0.68. Doppler evaluation of adrenal was easily implemented and may provide base line data in the study, allowing for the use of this technique as a diagnostic tool for diseases of the dog's adrenal.

  20. Measurement of thermal plasma jet temperature and velocity by laser light lineshape analysis

    International Nuclear Information System (INIS)

    Snyder, S.C.; Reynolds, L.D.

    1991-01-01

    Two important parameters of thermal plasma jets are kinetic or gas temperatures and flow velocity. Gas temperatures have been traditionally measured using emission spectroscopy, but this method depends on either the generally unrealistic assumption of the existence of local thermodynamic equilibrium (LTE) within the plasma, or the use of various non-LTE or partial LTE models to relate the intensity of the emission lines to the gas temperature. Plasma jet velocities have been measured using laser Doppler velocimetry on particles injected into the plasma. However, this method is intrusive and it is not known how well the particle velocities represent the gas velocity. Recently, plasma jet velocities have been measured from the Doppler shift of laser light scattered by the plasma. In this case, the Doppler shift was determined from the difference in the transmission profile of a high resolution monochromator between red shifted and blue shifted scattered light. A direct approach to measuring localized temperatures and velocities is afforded by high resolution scattered light lineshape measurements. The linewidth of laser light scattered by atoms and ions can be related to the kinetic temperature without LTE assumptions, while a shift in the peak position relative to the incident laser lineshape yields the gas velocity. We report in this paper work underway to measure gas temperatures and velocities in an argon thermal plasma jet using high resolution lineshape analysis of scattered laser light

  1. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    Science.gov (United States)

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.

    2015-02-01

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s-1) and errors in the vertical velocity measurement exceed the actual vertical velocity

  2. High Throughput Line-of-Sight MIMO Systems for Next Generation Backhaul Applications

    Science.gov (United States)

    Song, Xiaohang; Cvetkovski, Darko; Hälsig, Tim; Rave, Wolfgang; Fettweis, Gerhard; Grass, Eckhard; Lankl, Berthold

    2017-09-01

    The evolution to ultra-dense next generation networks requires a massive increase in throughput and deployment flexibility. Therefore, novel wireless backhaul solutions that can support these demands are needed. In this work we present an approach for a millimeter wave line-of-sight MIMO backhaul design, targeting transmission rates in the order of 100 Gbit/s. We provide theoretical foundations for the concept showcasing its potential, which are confirmed through channel measurements. Furthermore, we provide insights into the system design with respect to antenna array setup, baseband processing, synchronization, and channel equalization. Implementation in a 60 GHz demonstrator setup proves the feasibility of the system concept for high throughput backhauling in next generation networks.

  3. The 9.7 and 18 μm silicate absorption profiles towards diffuse and molecular cloud lines-of-sight

    NARCIS (Netherlands)

    van Breemen, J.M.; Min, M.; Chiar, J.E.; Waters, L.B.F.M.; Kemper, F.; Boogert, A. C. A.; Cami, J.; Decin, L.; Knez, C.; Sloan, G.C.; Tielens, A. G. G. M.

    2011-01-01

    Context. Studying the composition of dust in the interstellar medium (ISM) is crucial for understanding the cycle of dust in our galaxy. Aims. The mid-infrared spectral signature of amorphous silicates, the most abundant dust species in the ISM, is studied in different lines-of-sight through the

  4. Natural Head Posture in the Setting of Sagittal Spinal Deformity: Validation of Chin-Brow Vertical Angle, Slope of Line of Sight, and McGregor's Slope With Health-Related Quality of Life.

    Science.gov (United States)

    Lafage, Renaud; Challier, Vincent; Liabaud, Barthelemy; Vira, Shaleen; Ferrero, Emmanuelle; Diebo, Bassel G; Liu, Shian; Vital, Jean-Marc; Mazda, Keyvan; Protopsaltis, Themistocles S; Errico, Thomas J; Schwab, Frank J; Lafage, Virginie

    2016-07-01

    The maintenance of horizontal gaze is an essential function of upright posture and global sagittal spinal alignment. Horizontal gaze is classically measured by the chin-brow vertical angle (CBVA), which is not readily measured on most lateral spine radiographs. To evaluate relations between CBVA and the slope of the line of sight, the slope of McGregor's line (McGS), and Oswestry Disability Index. Patients were identified from a single center database of 531 spine patients who underwent full-body EOS x-rays. Correlations between CBVA, the slope of the line of sight, and McGS were assessed. Using a quadratic regression with Oswestry Disability Index and CBVA, windows of low disability were identified. Comparison of sagittal spinopelvic parameters was carried out between patients with "ascending gaze" and "neutral position." Three hundred three patients were included (74% female, mean age 54.8 years, body mass index 26.6 ± 6.0 kg/m). CBVA strongly correlated with the slope of the line of sight (r = 0.996) and McGS (r = 0.862). Regression studies between Oswestry Disability Index and CBVA yielded a range of values corresponding to low disability (-4.7 degrees to 17.7 degrees). Similarly, a low disability range for the slope of the line of sight (-5.1 degrees to 18.5 degrees) and McGS (-5.7 degrees to 14.3 degrees) was computed. Patients with "ascending gaze" had a worse spinopelvic alignment than "neutral position" patients. The slope of the line of sight and McGS correlated strongly with CBVA and can be used as surrogate measures. The range of values for these measures corresponding to low disability was identified. These values can be used as a general guideline to assess alignment for diagnostic purposes. Cervical compensatory mechanism may modify the natural head position in sagittally misaligned patients. CBVA, chin-brow vertical angleHRQoL, health-related quality of lifeMcGS, slope of McGregor's lineODI, Oswestry Disability IndexSLs, slope of the line of sight.

  5. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    2015-09-01

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in such scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.

  6. Secondary benefit of maintaining normal transcranial Doppler velocities when using hydroxyurea for prevention of severe sickle cell anemia.

    Science.gov (United States)

    Ghafuri, Djamila Labib; Chaturvedi, Shruti; Rodeghier, Mark; Stimpson, Sarah-Jo; McClain, Brandi; Byrd, Jeannie; DeBaun, Michael R

    2017-07-01

    In a retrospective cohort study, we tested the hypothesis that when prescribing hydroxyurea (HU) to children with sickle cell anemia (SCA) to prevent vaso-occlusive events, there will be a secondary benefit of maintaining low transcranial Doppler (TCD) velocity, measured by imaging technique (TCDi). HU was prescribed for 90.9% (110 of 120) of children with SCA ≥5 years of age and followed for a median of 4.4 years, with 70% (n = 77) receiving at least one TCDi evaluation after starting HU. No child prescribed HU had a conditional or abnormal TCDi measurement. HU initiation for disease severity prevention decreases the prevalence of abnormal TCDi velocities. © 2016 Wiley Periodicals, Inc.

  7. Validation of Transverse Oscillation Vector Velocity Estimation In-Vivo

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Thomsen, Carsten

    2007-01-01

    Conventional Doppler methods for blood velocity estimation only estimate the velocity component along the ultrasound (US) beam direction. This implies that a Doppler angle under examination close to 90deg results in unreliable information about the true blood direction and blood velocity. The novel...... the presented angle independent 2-D vector velocity method. The results give reason to believe that the TO method can be a useful alternative to conventional Doppler systems bringing forth new information to the US examination of blood flow....

  8. Doppler sonographic evaluation of ophthalmic arterial flow pattern in hypertensive patients

    International Nuclear Information System (INIS)

    Ryu, Dae Sik; Kim, Young Goo

    1994-01-01

    To compare the Doppler velocity waveform pattern of ophthalmic artery of hypertensive patients with that of normotensive subjects. Doppler velocity waveform was obtained from ophthalmic artery in 45 hypertensive patients and 60 normotensive subjects. Both hypertensives and normotensive subjects were classified according to age into those younger than and those older than 45 years. Doppler indices(pulsatility index(PI), resistance index(RI), the first systolic peak/the second systolic peak(S1/S2), the first systolic peak/diastolic peak(S1/D)) measured in hypertensive patients were compared with normotensive subjects. Among the various doppler indices, only S1/S2 showed significant difference(P < 0.05) between the hypertensive patients and normotensive subjects younger than 45 years. Doppler velocity waveform of hypertensive patients older than 45 years showed no significant difference from that of normotensive subjects with corresponding age. Doppler velocity waveform of ophthalmic artery in hypertensive patients younger than 45 years shows pattern with S2 higher than that of normotensive subjects. High S2 component(reflective-wave) may represent increased vascular impedance due to vasococonstriction of retinal arterioles in hypertensive patients

  9. Statistical simulation of information transfer through non-line-of-sight atmospheric optical communication channels

    Science.gov (United States)

    Tarasenkov, M. V.; Belov, V. V.; Poznakharev, E. S.

    2017-11-01

    Impulse response of non-line-of-sight atmospheric communication channels at wavelengths of 0.3, 0.5, and 0.9 μm are compared for the case in which the optical axes of the receiver and laser radiation lie in the plane perpendicular to the Earth's surface. The most efficient communication channel depending on the base distance is determined. For a wavelength of 0.5 μm and a concrete variant of the transceiving part of the communication system, the limiting communication range and the limiting repetition frequency of pulses that can be transmitted through the communication channel are estimated.

  10. Cross-correlation Doppler global velocimetry (CC-DGV)

    Science.gov (United States)

    Cadel, Daniel R.; Lowe, K. Todd

    2015-08-01

    A flow velocimetry method, cross-correlation Doppler global velocimetry (CC-DGV), is presented as a robust, simplified, and high dynamic range implementation of the Doppler global/planar Doppler velocimetry technique. A sweep of several gigahertz of the vapor absorption spectrum is used for each velocity sample, with signals acquired from both Doppler-shifted scattered light within the flow and a non-Doppler shifted reference beam. Cross-correlation of these signals yields the Doppler shift between them, averaged over the duration of the scan. With presently available equipment, velocities from 0 ms-1 to over 3000 ms-1 can notionally be measured simultaneously, making the technique ideal for high speed flows. The processing routine is shown to be robust against large changes in the vapor pressure of the iodine cell, benefiting performance of the system in facilities where ambient conditions cannot be easily regulated. Validation of the system was performed with measurements of a model wind turbine blade boundary layer made in a 1.83 m by 1.83 m subsonic wind tunnel for which laser Doppler velocimetry (LDV) measurements were acquired alongside the CC-DGV results. CC-DGV uncertainties of ±1.30 ms-1, ±0.64 ms-1, and ±1.11 ms-1 were determined for the orthogonal stream-wise, transverse-horizontal, and transverse-vertical velocity components, and root-mean-square deviations of 2.77 ms-1 and 1.34 ms-1 from the LDV validation results were observed for Reynolds numbers of 1.5 million and 2 million, respectively. Volumetric mean velocity measurements are also presented for a supersonic jet, with velocity uncertainties of ±4.48 ms-1, ±16.93 ms-1, and ±0.50 ms-1 for the orthogonal components, and self-validation done by collapsing the data with a physical scaling.

  11. Reconfigurable Wave Velocity Transmission Lines for Phased Arrays

    Science.gov (United States)

    Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix

    2013-01-01

    Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.

  12. Vega-1 and Vega-2: vertical profiles of wind velocity according to Doppler measurements data at landing spacecrafts

    International Nuclear Information System (INIS)

    Kerzhanovich, V.V.; Antsibor, N.M.; Bakit'ko, R.V.

    1987-01-01

    Results of the measurements of the Venus atmosphere vertical motion using the ''Vega'' landing spacecrafts are presented. Signal emitted by the landing spacecraft transmitter was received by flying apparatus and retranslated to the Earth. The difference between the measured frequency of the retranslated signal and reference one (Doppler's shift) permitted to determine the velocity of the landing spacecraft with the accuracy of 2 cm/s with the pitch of 1 s

  13. Comparisons between PW Doppler system and enhanced FM Doppler system

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pedersen, P. C.

    1995-01-01

    This paper presents a new implementation of an echo-ranging FM Doppler system with improved performance, relative to the FM Doppler system reported previously. The use of long sweeps provides a significant reduction in peak to average power ratio compared to pulsed wave (PW) emission. A PW Doppler...... system exploits the direct relationship between arrival time of the received signal and range from the transducer. In the FM Doppler systems, a similar relationship exists in the spectral domain of the demodulated received signals, so that range is represented by frequency. Thus, a shift in location...... of moving scatterers between consecutive emissions corresponds to a frequency shift in the spectral signature. The improvement relative to the earlier version of the FM Doppler system is attained by utilizing cross-correlation of real spectra rather than of magnitude spectra for assessing flow velocity...

  14. Color Doppler flow mapping of stenotic and regurgitant natural heart valves

    International Nuclear Information System (INIS)

    Nanda, N.C.

    1986-01-01

    Color Doppler echocardiography has found widest application in reliable detection and assessment of severity of both atrio-ventricular and semi-lunar valve incompetence. The authors believe both the sensitivity and specificity of color Doppler for the detection of mitral and aortic regurgitation is very high in patients with adequate acoustic windows. In 82 patients with proven mitral regurgitation studied, the best correlations with angiography were noted when the maximum or average regurgitant jet are obtained by color Doppler from three standard 2-D echo planes (parasternal long and short axis and apical four chamber view) and expressed as a percentage of the left atrial area were considered. The criteria the authors used for assessment of tricuspid and pulmonary valve incompetence are similar to those used for mitral and aortic valve incompetence, but the lack of a good ''gold'' standard has hampered validation. The color Doppler technique also supplements conventional Doppler in the assessment of severity of stenotic lesions by facilitating parallel alignment of the continuous wave Doppler cursor line with the stenotic jet for accurate recording of maximal velocities and pressure gradients. The authors have found this method especially useful in the assessment of aortic stenosis. In conclusion, color Doppler flow mapping combined with conventional echocardiography provides, for the first time, a comprehensive noninvasive assessement of the severity of regurgitant and stenotic lesions

  15. Measuring the Alfvénic nature of the interstellar medium: Velocity anisotropy revisited

    International Nuclear Information System (INIS)

    Burkhart, Blakesley; Lazarian, A.; Leão, I. C.; De Medeiros, J. R.; Esquivel, A.

    2014-01-01

    The dynamics of the interstellar medium (ISM) are strongly affected by turbulence, which shows increased anisotropy in the presence of a magnetic field. We expand upon the Esquivel and Lazarian method to estimate the Alfvén Mach number using the structure function anisotropy in velocity centroid data from Position-Position-Velocity maps. We utilize three-dimensional magnetohydrodynamic simulations of fully developed turbulence, with a large range of sonic and Alfvénic Mach numbers, to produce synthetic observations of velocity centroids with observational characteristics such as thermal broadening, cloud boundaries, noise, and radiative transfer effects of carbon monoxide. In addition, we investigate how the resulting anisotropy-Alfvén Mach number dependency found in Esquivel and Lazarian might change when taking the second moment of the Position-Position-Velocity cube or when using different expressions to calculate the velocity centroids. We find that the degree of anisotropy is related primarily to the magnetic field strength (i.e., Alfvén Mach number) and the line-of-sight orientation, with a secondary effect on sonic Mach number. If the line of sight is parallel to up to ≈45 deg off of the mean field direction, the velocity centroid anisotropy is not prominent enough to distinguish different Alfvénic regimes. The observed anisotropy is not strongly affected by including radiative transfer, although future studies should include additional tests for opacity effects. These results open up the possibility of studying the magnetic nature of the ISM using statistical methods in addition to existing observational techniques.

  16. POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bengaluru 560034 (India)

    2016-12-10

    For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-component supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.

  17. Demonstration of a Vector Velocity Technique

    DEFF Research Database (Denmark)

    Hansen, Peter Møller; Pedersen, Mads M.; Hansen, Kristoffer L.

    2011-01-01

    With conventional Doppler ultrasound it is not possible to estimate direction and velocity of blood flow, when the angle of insonation exceeds 60–70°. Transverse oscillation is an angle independent vector velocity technique which is now implemented on a conventional ultrasound scanner. In this pa......With conventional Doppler ultrasound it is not possible to estimate direction and velocity of blood flow, when the angle of insonation exceeds 60–70°. Transverse oscillation is an angle independent vector velocity technique which is now implemented on a conventional ultrasound scanner...

  18. Heart rate and flow velocity variability as determined from umbilical Doppler velocimetry at 10-20 weeks of gestation.

    Science.gov (United States)

    Ursem, N T; Struijk, P C; Hop, W C; Clark, E B; Keller, B B; Wladimiroff, J W

    1998-11-01

    1. The aim of this study was to define from umbilical artery flow velocity waveforms absolute peak systolic and time-averaged velocity, fetal heart rate, fetal heart rate variability and flow velocity variability, and the relation between fetal heart rate and velocity variables in early pregnancy.2.A total of 108 women presenting with a normal pregnancy from 10 to 20 weeks of gestation consented to participate in a cross-sectional study design. Doppler ultrasound recordings were made from the free-floating loop of the umbilical cord.3. Umbilical artery peak systolic and time-averaged velocity increased at 10-20 weeks, whereas fetal heart rate decreased at 10-15 weeks of gestation and plateaued thereafter. Umbilical artery peak systolic velocity variability and fetal heart rate variability increased at 10-20 and 15-20 weeks respectively.4. The inverse relationship between umbilical artery flow velocity and fetal heart rate at 10-15 weeks of gestation suggests that the Frank-Starling mechanism regulates cardiovascular control as early as the late first and early second trimesters of pregnancy. A different underlying mechanism is suggested for the observed variability profiles in heart rate and umbilical artery peak systolic velocity. It is speculated that heart rate variability is mediated by maturation of the parasympathetic nervous system, whereas peak systolic velocity variability reflects the activation of a haemodynamic feedback mechanism.

  19. Ion temperature measurements of turbulently heated tokamak plasma by Doppler-broadening of visible lines in TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Nakamura, K; Toi, K; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-01-01

    In the turbulent heating experiment of the high-field tokamak TRIAM-1, the bulk ion heating shown by the neutral energy analyzer measurement is confirmed by the Doppler broadening measurement of visible lines. The increasing rate and decay time of the Doppler ion temperature are almost the same as those derived from the neutral energy analyzer measurement. From both methods of ion temperature measurements, it is shown that the ion temperature has a parabolic profile within 50 ..mu..s after the application of the heating pulse.

  20. A GIS-based Computational Tool for Multidimensional Flow Velocity by Acoustic Doppler Current Profilers

    International Nuclear Information System (INIS)

    Kim, D; Winkler, M; Muste, M

    2015-01-01

    Acoustic Doppler Current Profilers (ADCPs) provide efficient and reliable flow measurements compared to other tools for characteristics of the riverine environments. In addition to originally targeted discharge measurements, ADCPs are increasingly utilized to assess river flow characteristics. The newly developed VMS (Velocity Mapping Software) aims at providing an efficient process for quality assurance, mapping velocity vectors for visualization and facilitating comparison with physical and numerical model results. VMS was designed to provide efficient and smooth work flows for processing groups of transects. The software allows the user to select group of files and subsequently to conduct statistical and graphical quality assurance on the files as a group or individually as appropriate. VMS also enables spatial averaging in horizontal and vertical plane for ADCP data in a single or multiple transects over the same or consecutive cross sections. The analysis results are displayed in numerical and graphical formats. (paper)

  1. A local-velocity meter for hypersonic plasma jet

    International Nuclear Information System (INIS)

    Nyazev, A.A.; Lerner, N.B.; Svinolupov, K.I.

    1985-01-01

    This paper describes a system for a resonant laser Doppler meter for the local velocity in a hypersonic plasma flow. Preliminary test results on the prototype are reported for a jet of air containing sodium at 1100 degrees K, air pressure in the working region 20-200 Pa, and jet speed 6-8 km/sec. Measured speeds agree with theoretical predictions. The prototype and the method do not impose constraints on the working conditions but can be extended to wide ranges in temperature and pressure, such as ones in which the line width does not exceed the Doppler shift

  2. DETECTION OF CA II ABSORPTION BY A HIGH-VELOCITY CLOUD IN THE DIRECTION OF THE QUASAR PKS 0837-120

    NARCIS (Netherlands)

    ROBERTSON, JG; SCHWARZ, UJ; VANWOERDEN, H; MURRAY, JD; MORTON, DC; HULSBOSCH, ANM

    1991-01-01

    We present optical absorption spectroscopy of the Ca II K and H lines along the sight line to the quasar PKS 0837-120, which lies in the direction of a high-velocity cloud (HVC) detected in H I 21-cm emission at V(LSR) = + 105 km s-1. Our data show Ca II absorption due to the HVC as well as a lower

  3. Comparison between the ionospheric plasma drift and the motion of artificially induced irregularities as observed by HF backscatter radars

    International Nuclear Information System (INIS)

    Hanuise, C.; Hedberg, A.; Oksman, J.; Nielsen, E.; Stubbe, P.; Kopka, H.

    1986-01-01

    Theories of striation generation by powerful HF waves state that the irregularities should convect with the plasma, without propagating through the medium. This prediction has been checked by observing, with the two SAFARI radars, the backscatter from striations generated in the F-region by the HEATING facility at Tromso. The magnitude and direction of the Doppler velocity of the fluctuations is derived from the line-of-sight velocities measured by the two HF radar stations. The comparison between the electric field, derived from SAFARI, and the E-region current deduced from magnetometer data show that the magnitudes are well correlated. The directions of the velocity and this current are, however, not exactly antiparallel. Another comparison between the SAFARI F-region Doppler velocity and the E-region drift measured by STARE shows, on the average, a good agreement between the estimates. The experimental evidence therefore agrees with the theoretical suggestion that the irregularity motion should be the ExB drift

  4. Characteristics of laser-induced plasma under reduced background pressure with Doppler spectroscopy of excited atomic species near the shockwave front

    Science.gov (United States)

    Dojić, Dejan; Skočić, Miloš; Bukvić, Srdjan

    2018-03-01

    We present measurements of Laser Induced Plasma expansion relying on classical, laterally resolved spectroscopy. Easy observable Doppler splitting of Cu I 324.75 nm spectral line provides measurement of radial expansion velocity in a straightforward way. The measurements are conducted in atmosphere of air, argon and hydrogen at low pressure in the range 20-200 Pa. We found that expansion velocity is linearly decreasing if pressure of surrounding gas increases, with velocity/pressure slope nearly the same for all three gases. Copper atoms have the highest expansion speed in argon ( ∼ 50 km/s) and the smallest speed in air ( ∼ 42 km/s). It is found that expansion velocity increases linearly with irradiance, while intensity of the spectral line is quite insensitive to the laser irradiance.

  5. Measuring Velocities in the Early Stage of an Eruption: Using “Overlappogram” Data from Hinode EIS

    Energy Technology Data Exchange (ETDEWEB)

    Harra, Louise K.; Matthews, Sarah; Culhane, J. Leonard; Woods, Magnus M. [UCL-Mullard Space Science Laboratory Holmbury St Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Hara, Hirohisa [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Doschek, George A.; Warren, Harry, E-mail: l.harra@ucl.ac.uk [Space Science Division, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States)

    2017-06-10

    In order to understand the onset phase of a solar eruption, plasma parameter measurements in the early phases are key to constraining models. There are two current instrument types that allow us to make such measurements: narrow-band imagers and spectrometers. In the former case, even narrow-band filters contain multiple emission lines, creating some temperature confusion. With imagers, however, rapid cadences are achievable and the field of view can be large. Velocities of the erupting structures can be measured by feature tracking. In the spectrometer case, slit spectrometers can provide spectrally pure images by “rastering” the slit to build up an image. This method provides limited temporal resolution, but the plasma parameters can be accurately measured, including velocities along the line of sight. Both methods have benefits and are often used in tandem. In this paper we demonstrate for the first time that data from the wide slot on the Hinode EUV Imaging Spectrometer, along with imaging data from AIA, can be used to deconvolve velocity information at the start of an eruption, providing line-of-sight velocities across an extended field of view. Using He ii 256 Å slot data at flare onset, we observe broadening or shift(s) of the emission line of up to ±280 km s{sup −1}. These are seen at different locations—the redshifted plasma is seen where the hard X-ray source is later seen (energy deposition site). In addition, blueshifted plasma shows the very early onset of the fast rise of the filament.

  6. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    Energy Technology Data Exchange (ETDEWEB)

    Danly, C. R.; Day, T. H.; Herrmann, H.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; Volegov, P. L.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N.; Izumi, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-04-15

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  7. Is the measurement of inferior thyroid artery blood flow velocity by color-flow Doppler ultrasonography useful for differential diagnosis between gestational transient thyrotoxicosis and Graves' disease? A prospective study.

    Science.gov (United States)

    Zuhur, Sayid Shafi; Ozel, Alper; Velet, Selvinaz; Buğdacı, Mehmet Sait; Cil, Esra; Altuntas, Yüksel

    2012-01-01

    To determine the role of peak systolic velocity, end-diastolic velocity and resistance indices of both the right and left inferior thyroid arteries measured by color-flow Doppler ultrasonography for a differential diagnosis between gestational transient thyrotoxicosis and Graves' disease during pregnancy. The right and left inferior thyroid artery-peak systolic velocity, end-diastolic velocity and resistance indices of 96 patients with thyrotoxicosis (41 with gestational transient thyrotoxicosis, 31 age-matched pregnant patients with Graves' disease and 24 age- and sex-matched non-pregnant patients with Graves' disease) and 25 age and sex-matched healthy euthyroid subjects were assessed with color-flow Doppler ultrasonography. The right and left inferior thyroid artery-peak systolic and end-diastolic velocities in patients with gestational transient thyrotoxicosis were found to be significantly lower than those of pregnant patients with Graves' disease and higher than those of healthy euthyroid subjects. However, the right and left inferior thyroid artery peak systolic and end-diastolic velocities in pregnant patients with Graves' disease were significantly lower than those of non-pregnant patients with Graves' disease. The right and left inferior thyroid artery peak systolic and end-diastolic velocities were positively correlated with TSH-receptor antibody levels. We found an overlap between the inferior thyroid artery-blood flow velocities in a considerable number of patients with gestational transient thyrotoxicosis and pregnant patients with Graves' disease. This study suggests that the measurement of inferior thyroid artery-blood flow velocities with color-flow Doppler ultrasonography does not have sufficient sensitivity and specificity to be recommended as an initial diagnostic test for a differential diagnosis between gestational transient thyrotoxicosis and Graves' disease during pregnancy.

  8. Three-dimensional imaging of absolute blood flow velocity and blood vessel position under low blood flow velocity based on Doppler signal information included in scattered light from red blood cells

    Science.gov (United States)

    Kyoden, Tomoaki; Akiguchi, Shunsuke; Tajiri, Tomoki; Andoh, Tsugunobu; Hachiga, Tadashi

    2017-11-01

    The development of a system for in vivo visualization of occluded distal blood vessels for diabetic patients is the main target of our research. We herein describe two-beam multipoint laser Doppler velocimetry (MLDV), which measures the instantaneous multipoint flow velocity and can be used to observe the blood flow velocity in peripheral blood vessels. By including a motorized stage to shift the measurement points horizontally and in the depth direction while measuring the velocity, the path of the blood vessel in the skin could be observed using blood flow velocity in three-dimensional space. The relationship of the signal power density between the blood vessel and the surrounding tissues was shown and helped us identify the position of the blood vessel. Two-beam MLDV can be used to simultaneously determine the absolute blood flow velocity distribution and identify the blood vessel position in skin.

  9. Particle Filter Based Fault-tolerant ROV Navigation using Hydro-acoustic Position and Doppler Velocity Measurements

    DEFF Research Database (Denmark)

    Zhao, Bo; Blanke, Mogens; Skjetne, Roger

    2012-01-01

    This paper presents a fault tolerant navigation system for a remotely operated vehicle (ROV). The navigation system uses hydro-acoustic position reference (HPR) and Doppler velocity log (DVL) measurements to achieve an integrated navigation. The fault tolerant functionality is based on a modied...... particle lter. This particle lter is able to run in an asynchronous manner to accommodate the measurement drop out problem, and it overcomes the measurement outliers by switching observation models. Simulations with experimental data show that this fault tolerant navigation system can accurately estimate...

  10. Marked Increase in Flow Velocities During Deep Expiration: A Duplex Doppler Sign of Celiac Artery Compression Syndrome

    International Nuclear Information System (INIS)

    Erden, Ayse; Yurdakul, Mehmet; Cumhur, Turhan

    1999-01-01

    Symptoms of chronic mesenteric ischemia develop when the celiac artery is constricted by the median arcuate ligament of the diaphragm. Lateral aortography is the primary modality for diagnosing ligamentous compression of the celiac artery. However, duplex Doppler sonography performed during deep expiration can cause a marked increase in flow velocities at the compressed region of the celiac artery and suggest the diagnosis of celiac arterial constriction due to the diaphragmatic ligament. RID='''' ID='''' Correspondence to: A. Erden, M.D., Hafta sokak. 23/6, Gaziosmanpasa, 06700 Ankara, Turkey

  11. Use of Doppler ultrasound for non-invasive urodynamic diagnosis

    Directory of Open Access Journals (Sweden)

    Hideo Ozawa

    2009-01-01

    Full Text Available Objectives: A totally non-invasive transperineal urodynamic technique using Doppler ultrasonography has been developed. Methods: Since normal urine does not have blood cells, urine was thought not to produce the Doppler effects. However, basic studies confirmed that the decrease of pressure at high velocity (Bernouilli effect caused dissolved gas to form microbubbles, which are detected by Doppler ultrasonography. Subjects sat and the probe was advanced via remote control to achieve gentle contact with the perineal skin. The digital uroflow data signals and the color Doppler ultrasound video images were processed on a personal computer. The flow-velocity curves from two sites; the distal prostatic urethra just above the external sphincter (V1 and the sphincteric urethra (V2 were plotted against time. The parameters of both the pressure-flow studies and the Doppler ultrasound urodynamic studies were compared in men who had various degrees of obstruction. Results: Functional cross-sectional area at prostatic urethra (A1, calculated by Q max /V1, was lower in the group of bladder outlet obstruction (BOO vs. control group. Velocity ratio (VR, which was calculated by V1/V2, was the parameter having the best correlation with BOO index, though A1 had a similar correlation. This method is viable to diagnose the degree of BOO. Conclusions: The development of non-invasive Doppler ultrasound videourodynamics (Doppler UDS will dramatically expand the information on voiding function.

  12. Editorial special issue on "Laser Doppler vibrometry"

    Science.gov (United States)

    Vanlanduit, Steve; Dirckx, Joris

    2017-12-01

    The invention of the laser in 1960 has opened up many opportunities in the field of measurement science and technology. Just a few years after the invention of the laser, a novel fluid flow measurement technique based on the Doppler effect was introduced: at that moment the laser Doppler anemometer or shortly LDA [1] was born. The technique enabled fluid velocity measurement by using the light of a He-Ne beam which was scattered by very small polystyrene spheres entrained in the fluid. Later on, in the late nineteen seventees it was recognized that the detection of the Doppler frequency shift that occurs when light is scattered by a moving surface can also be used to measure the vibration velocity of an object. The instrument to perform these vibration measurements was called the laser Doppler vibrometer or LDV [2]. In the last decades several technological advances were made in the field of laser Doppler vibrometry. The result is that nowadays, velocity measurements of fluids (using LDA) and vibrating objects (using LDV) are performed in many challenging applications in different fields (microelectronics, civil structures, biomedical engineering, material science, etc.).

  13. Eliminating line of sight in elliptic guides using gravitational curving

    International Nuclear Information System (INIS)

    Kleno, Kaspar H.; Willendrup, Peter K.; Knudsen, Erik; Lefmann, Kim

    2011-01-01

    Eliminating fast neutrons (λ<0.5A) by removing direct line of sight between the source and the target sample is a well established technique. This can be done with little loss of transmission for a straight neutron guide by horizontal curving. With an elliptic guide shape, however, curving the guide would result in a breakdown of the geometrical focusing mechanism inherent to the elliptical shape, resulting in unwanted reflections and loss of transmission. We present a new and yet untried idea by curving a guide in such a way as to follow the ballistic curve of a neutron in the gravitational field, while still retaining the elliptic shape seen from the accelerated reference frame of the neutron. Analytical calculations and ray-tracing simulations show that this method is useful for cold neutrons at guide lengths in excess of 100 m. We will present some of the latest results for guide optimization relevant for instrument design at the ESS, in particular an off-backscattering spectrometer which utilizes the gravitational curving, for 6.66 A neutrons over a guide length of 300 m.

  14. NEW UPPER AND LOWER BOUNDS LINE OF SIGHT PATH LOSS MODELS FOR MOBILE PROPAGATION IN BUILDINGS

    Directory of Open Access Journals (Sweden)

    Supachai Phaiboon

    2017-11-01

    Full Text Available This paper proposes a method to predict line-of-sight (LOS path loss in buildings. We performed measurements in two different type of buildings at a frequency of 1.8 GHz and propose new upper and lower bounds path loss models which depend on max and min values of sample path loss data. This makes our models limit path loss within the boundary lines. The models include time-variant effects such as people moving and cars in parking areas with their influence on wave propagation that is very high.  The results have shown that the proposed models will be useful for the system and cell design of indoor wireless communication systems.

  15. Analysis of multiple scattering effects in optical Doppler tomography

    DEFF Research Database (Denmark)

    Yura, H.T.; Thrane, L.; Andersen, Peter E.

    2005-01-01

    Optical Doppler tomography (ODT) combines Doppler velocimetry and optical coherence tomography (OCT) to obtain high-resolution cross-sectional imaging of particle flow velocity in scattering media such as the human retina and skin. Here, we present the results of a theoretical analysis of ODT where...... multiple scattering effects are included. The purpose of this analysis is to determine how multiple scattering affects the estimation of the depth-resolved localized flow velocity. Depth-resolved velocity estimates are obtained directly from the corresponding mean or standard deviation of the observed...

  16. Correction of Doppler broadening of {gamma}-ray lines induced by particle emission in heavy-ion induced fusion-evaporation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, J; Seweryniak, D; Fahlander, C; Insua-Cao, P [Uppsala Univ. (Sweden). Dept. of Radiation Sciences; Johnson, A; Cederwall, B [Manne Siegbahn Inst. of Physics, Stockholm (Sweden); [Royal Inst. of Tech., Stockholm (Sweden); Adamides, E; Piiparinen, M [National Centre for Scientific Research, Ag. Paraskevi, Attiki (Greece); Atac, A; Norlin, L O [Niels Bohr Inst., Copenhagen (Denmark); Ideguchi, E; Mitarai, S [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Julin, R; Juutinen, S; Tormanen, S; Virtanen, A [Jyvaeskylae Univ. (Finland). Dept. of Physics; Karczmarczyk, W; Kownacki, J [Warsaw Univ. (Poland); Schubart, R [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1992-08-01

    The effect of particle emission on the peak shape of {gamma}-ray lines have been investigated using the NORDBALL detector system. By detecting neutrons, protons and {alpha} particles emitted in the {sup 32}S (95 MeV) + {sup 27}Al reaction, the energy and direction of emission of the residual nuclei could be determined and subsequently used for an event-by -event Doppler correction of the detected {gamma} rays. Extensive Monte Carlo simulations were performed to study how the different Doppler phenomena influence the peak shape and in particular which particle detector properties are important for the Doppler correction. (author). 2 refs., 1 tab., 4 figs.

  17. Magnetic fields, velocity fields and brightness in the central region of the Solar disk

    Energy Technology Data Exchange (ETDEWEB)

    Tsap, T T

    1978-01-01

    The longitudinal magnetic fields, velocity fields and brightness at the center of the Solar disk are studied. Observations of the magnetic field, line-of-sight velocities and brightness have been made with the doublemagnetograph of the Crimean astrophysical observatory. It is found that the average magnetic field strength recorded in the iron line lambda 5233 A is 18 Gs for the elements of N-polarity and 23 Gs for the elements of S-polarity. The magnetic elements with the field strength more than 200 Gs are observed in some of the cases. There is a close correlation between the magnetic field distribution in the lambda 5250 A FeI and D/sub 1/ Na I lines and between the magnetic field in the lambda 5250 A and brightness in the K/sub 3/CaII line. The dimensions of the magnetic elements in the lambda and D/sub 1/NaI lines are equal. The comparison of the magnetic field with the radial velocity recorded in the lambda 5250 and 5233 A lines has shown that radial velocities are close to zero in the regions of maximum longitudinal magnetic field. The chromospheric network-like pattern is observed in the brightness distribution of ten different spectral lines.

  18. Reconstruction of Typhoon Structure Using 3-Dimensional Doppler Radar Radial Velocity Data with the Multigrid Analysis: A Case Study in an Idealized Simulation Context

    Directory of Open Access Journals (Sweden)

    Hongli Fu

    2016-01-01

    Full Text Available Extracting multiple-scale observational information is critical for accurately reconstructing the structure of mesoscale circulation systems such as typhoon. The Space and Time Mesoscale Analysis System (STMAS with multigrid data assimilation developed in Earth System Research Laboratory (ESRL in National Oceanic and Atmospheric Administration (NOAA has addressed this issue. Previous studies have shown the capability of STMAS to retrieve multiscale information in 2-dimensional Doppler radar radial velocity observations. This study explores the application of 3-dimensional (3D Doppler radar radial velocities with STMAS for reconstructing a 3D typhoon structure. As for the first step, here, we use an idealized simulation framework. A two-scale simulated “typhoon” field is constructed and referred to as “truth,” from which randomly distributed conventional wind data and 3D Doppler radar radial wind data are generated. These data are used to reconstruct the synthetic 3D “typhoon” structure by the STMAS and the traditional 3D variational (3D-Var analysis. The degree by which the “truth” 3D typhoon structure is recovered is an assessment of the impact of the data type or analysis scheme being evaluated. We also examine the effects of weak constraint and strong constraint on STMAS analyses. Results show that while the STMAS is superior to the traditional 3D-Var for reconstructing the 3D typhoon structure, the strong constraint STMAS can produce better analyses on both horizontal and vertical velocities.

  19. AN INDEPENDENT MEASUREMENT OF THE INCIDENCE OF Mg II ABSORBERS ALONG GAMMA-RAY BURST SIGHT LINES: THE END OF THE MYSTERY?

    International Nuclear Information System (INIS)

    Cucchiara, A.; Prochaska, J. X.; Zhu, G.; Ménard, B.; Fynbo, J. P. U.; Fox, D. B.; Chen, H.-W.; Cooksey, K. L.; Cenko, S. B.; Bloom, J. S.; Perley, D.; Berger, E.; Chornock, R.; Tanvir, N. R.; D'Elia, V.; Lopez, S.; De Jaeger, T.

    2013-01-01

    In 2006, Prochter et al. reported a statistically significant enhancement of very strong Mg II absorption systems intervening the sight lines to gamma-ray bursts (GRBs) relative to the incidence of such absorption along quasar sight lines. This counterintuitive result has inspired a diverse set of astrophysical explanations (e.g., dust, gravitational lensing) but none of these has obviously resolved the puzzle. Using the largest set of GRB afterglow spectra available, we reexamine the purported enhancement. In an independent sample of GRB spectra with a survey path three times larger than Prochter et al., we measure the incidence per unit redshift of ≥1 Å rest-frame equivalent width Mg II absorbers at z ≈ 1 to be l(z) = 0.18 ± 0.06. This is fully consistent with current estimates for the incidence of such absorbers along quasar sight lines. Therefore, we do not confirm the original enhancement and suggest those results suffered from a statistical fluke. Signatures of the original result do remain in our full sample (l(z) shows an ≈1.5 enhancement over l(z) QSO ), but the statistical significance now lies at ≈90% c.l. Restricting our analysis to the subset of high-resolution spectra of GRB afterglows (which overlaps substantially with Prochter et al.), we still reproduce a statistically significant enhancement of Mg II absorption. The reason for this excess, if real, is still unclear since there is no connection between the rapid afterglow follow-up process with echelle (or echellette) spectrographs and the detectability of strong Mg II doublets. Only a larger sample of such high-resolution data will shed some light on this matter

  20. High-velocity winds from a dwarf nova during outburst

    Science.gov (United States)

    Cordova, F. A.; Mason, K. O.

    1982-01-01

    An ultraviolet spectrum of the dwarf nova TW Vir during an optical outburst shows shortward-shifted absorption features with edge velocities as high as 4800 km/s, about the escape velocity of a white dwarf. A comparison of this spectrum with the UV spectra of other cataclysmic variables suggests that mass loss is evident only for systems with relatively high luminosities (more than about 10 solar luminosities) and low inclination angles with respect to the observer's line of sight. The mass loss rate for cataclysmic variables is of order 10 to the -11th solar mass per yr; this is from 0.01 to 0.001 of the mass accretion rate onto the compact star in the binary. The mass loss may occur by a mechanism similar to that invoked for early-type stars, i.e., radiation absorbed in the lines accelerates the accreting gas to the high velocities observed.

  1. Radar speed gun true velocity measurements of sports-balls in flight: application to tennis

    International Nuclear Information System (INIS)

    Robinson, Garry; Robinson, Ian

    2016-01-01

    Spectators of ball-games often seem to be fascinated by the speed of delivery of the ball. They appear to be less interested in or even oblivious to the mechanism and accuracy of the measurement or where in the flight path of the ball the measurement is actually made. Radar speed guns using the Doppler effect are often employed for such speed measurements. It is well known that such guns virtually always measure the line-of-sight or radial velocity of the ball and as such will return a reading less than or equal to the true speed of the ball. In this paper, using only basic physics principles we investigate such measurements, in particular those associated with the service stroke in tennis. For the service trajectories employed here, a single radar gun located in line with the centre-line of the court in fact under-estimates the speed of a wide serve by about 3.4% at the point of delivery, and by about 14.3% on impact with the court. However, we demonstrate that both the magnitude and direction of the true velocity of the ball throughout its entire flight path may be obtained, at least in principle, by the use of four suitably placed radar speed guns. These four guns must be able to measure the ‘range’ to the ball, enabling its position in flight to be determined, and three of them must be able to measure the radial velocity of the ball. Restrictions on the locations of the speed guns are discussed. Such restrictions are quite liberal, although there are certain configurations of the radar gun positions which cannot be used. Importantly, with the one proviso that no speed gun can be directly in the path of the ball (not only for the obvious reasons), we find that if the speed of the ball can be determined for one point in the trajectory, it can also be determined for all points. The accuracy of the range and radial velocity measurements required to give meaningful results for the true velocity are also briefly discussed. It is found that the accuracy required

  2. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    Science.gov (United States)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  3. Doppler ultrasound study of penis in men with systemic sclerosis: a correlation with Doppler indices of renal and digital arteries.

    Science.gov (United States)

    Rosato, E; Barbano, B; Gigante, A; Cianci, R; Molinaro, I; Quarta, S; Digiulio, M A; Messineo, D; Pisarri, S; Salsano, F

    2013-01-01

    Erectile dysfunction (ED) prevalence in male systemic sclerosis (SSc) is high and its pathogenesis is unclear. The aim of the study is to assess correlation between Doppler ultrasound indices of penis and kidneys or digital arteries in male systemic sclerosis. Fourteen men with systemic sclerosis were enrolled in this study. Erectile function was investigated by the International Index of Erectile Function-5. Peak systolic velocity, end diastolic velocity, resistive index, pulsative index, and systolic/diastolic ratio were measured on the cavernous arteries at the peno-scrotal junction in the flaccid state, on the interlobar artery of both kidneys and all ten proper palmar digital arteries. Ten (71 percent) patients have an International Index of Erectile Function-5 less than 21. Reduction of penis peak systolic velocity was observed in all SSc subjects. Doppler indices of cavernous arteries correlate with the International Index of Erectile Function-5. The renal and digital arteries resistive index demonstrated a good correlation (p less than 0.0001) with International Index of Erectile Function-5. A positive correlation exists between penis and kidney arteries Doppler indices: end diastolic velocity (p less than 0.05, r=0.54), resistive index (p less than 0.0001, r=0.90), systolic/diastolic ratio (p less than 0.01, r=0.69). A positive correlation was observed between penis and digital arteries Doppler indices: peak systolic velocity (p less than 0.01, r=0.68), end diastolic velocity (p less than 0.01, r=0.75), resistive index (p less than 0.001, r=0.79), systolic/diastolic ratio (p less than 0.05, r=0.59). A correlation exists between arterial impairment of penis and renal or digital arteries.

  4. In Vivo Validation of a Blood Vector Velocity Estimator with MR Angiography

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Thomsen, Carsten

    2009-01-01

    Conventional Doppler methods for blood velocity estimation only estimate the velocity component along the ultrasound beam direction. This implies that a Doppler angle under examination close to 90° results in unreliable information about the true blood direction and blood velocity. The novel method...... indicate that reliable vector velocity estimates can be obtained in vivo using the presented angle-independent 2-D vector velocity method. The TO method can be a useful alternative to conventional Doppler systems by avoiding the angle artifact, thus giving quantitative velocity information....

  5. Magnetic fields in proton solar flare of X17.2/4B class according to data of simultaneous measurements in a few spectral lines

    Science.gov (United States)

    Lozitsky, V.; Lozitska, N.

    2017-06-01

    Spectral-polarized magnetic field measurements in solar flare of 28 October 2003 of X17.2/4B class are compared in six FeI lines and in Hα line. Observations were carried out on Echelle spectrograph of horizontal solar telescope of Astronomical Observatory of Taras Shevchenko National University of Kyiv. Presented data relate to peak phase of flare and a place of photosphere outside sunspots where effective (average) magnetic field in FeI 6302.5 line was about 100 G and had S polarity. Measured splitting of emissive peaks in cores of strong FeI lines of 15th multiplet correspond to stronger fields, in range 550-700 G and S polarity too. Noticeablre splitting of emissive peaks (11-20 mÅ) were found also in Fe I 5434.527 line with effective Lande factor geff = -0.014. Value of this splitting and its sign indicate the existence of extremely strong fields of 25-50 kG of opposite (N) polarity which had negative Doppler velocities (lifting of plasma) on level of 1.7-2.2 km/sec. Magnetic field according to Hα line was 300 G and N polarity. Presented results indicate the essential inhomogeneity of magnetic field in flare volume which include the opposite polarities along the line of sight and wide range of effective magnetic fields.

  6. Comparison of index velocity measurements made with a horizontal acoustic Doppler current profiler

    Science.gov (United States)

    Jackson, P. Ryan; Johnson, Kevin K.; Duncker, James J.

    2012-01-01

    The State of Illinois' annual withdrawal from Lake Michigan is limited by a U.S. Supreme Court decree, and the U.S. Geological Survey (USGS) is responsible for monitoring flows in the Chicago Sanitary and Ship Canal (CSSC) near Lemont, Illinois as a part of the Lake Michigan Diversion Accounting overseen by the U.S. Army Corps of Engineers, Chicago District. Every 5 years, a technical review committee consisting of practicing engineers and academics is convened to review the U.S. Geological Survey's streamgage practices in the CSSC near Lemont, Illinois. The sixth technical review committee raised a number of questions concerning the flows and streamgage practices in the CSSC near Lemont and this report provides answers to many of those questions. In addition, it is the purpose of this report to examine the index velocity meters in use at Lemont and determine whether the acoustic velocity meter (AVM), which is now the primary index velocity meter, can be replaced by the horizontal acoustic Doppler current profiler (H-ADCP), which is currently the backup meter. Application of the AVM and H-ADCP to index velocity measurements in the CSSC near Lemont, Illinois, has produced good ratings to date. The site is well suited to index velocity measurements in spite of the large range of velocities and highly unsteady flows at the site. Flow variability arises from a range of sources: operation of the waterway through control structures, lockage-generated disturbances, commercial and recreational traffic, industrial withdrawals and discharges, natural inflows, seiches, and storm events. The influences of these factors on the index velocity measurements at Lemont is examined in detail in this report. Results of detailed data comparisons and flow analyses show that use of bank-mounted instrumentation such as the AVM and H-ADCP appears to be the best option for index velocity measurement in the CSSC near Lemont. Comparison of the rating curves for the AVM and H-ADCP demonstrates

  7. Influence of the Doppler effect on radiative transfer in a spherical plasma under macroscopic motion of substance

    Science.gov (United States)

    Kosarev, N. I.

    2018-03-01

    The non-LTE radiative transfer in spherical plasma containing resonantly absorbing light ions has been studied numerically under conditions of macroscopic motion of substance. Two types of macroscopic motion were simulated: radial expansion and compression (pulsation) of spherical plasma; rotation of plasma relative to an axis of symmetry. The calculations of absorption line profile of transmitted broadband radiation and the emission line profile were performed for the optically dense plasma of calcium ions on the resonance transition with wavelength 397 nm. Numerical results predict frequency shifts in the emission line profile to red wing of the spectrum for radial expansion of the plasma and to blue wing of the spectrum for the plasma compression at an average velocity of ions along the ray of sight equal to zero. The width of the emission line profile of a rotating plasma considerably exceeds the width of the profile of the static plasma, and the shift of the central frequency of resonance transition from the resonance frequency of the static plasma gives a linear velocity of ion motion along a given ray trajectory in units of thermal velocity. Knowledge of the linear radial velocity of ions can be useful for diagnostic purposes in determining the frequency and period of rotation of optically dense plasmas.

  8. Feedback control of tearing modes through ECRH with launcher mirror steering and power modulation using a line-of-sight ECE diagnostic

    NARCIS (Netherlands)

    Hennen, B.A.; Westerhof, E.; Nuij, P.W.J.M.; Ayten, B.; Baar, de M.R.; Bongers, W.A.; Bürger, A.; Lazzari, De D.; Oosterbeek, J.W.; Thoen, D.J.; Steinbuch, M.

    2010-01-01

    A demonstration of real-time feedback control for autonomous tracking and stabilization of m/n = 2/1 tearing modes in a tokamak using Electron Cyclotron Resonance Heating and Current Drive (ECRH/ECCD) is reported. The prototype system on TEXTOR combines in the same sight-line an Electron Cyclotron

  9. Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling

    Science.gov (United States)

    Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.

    2011-01-01

    Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.

  10. Transcranial Doppler ultrasonography in children with sickle cell anemia: Clinical and laboratory correlates for elevated blood flow velocities.

    Science.gov (United States)

    Lagunju, IkeOluwa; Sodeinde, Olugbemiro; Brown, Biobele; Akinbami, Felix; Adedokun, Babatunde

    2014-02-01

    Transcranial Doppler (TCD) sonography of major cerebral arteries is now recommended for routine screening for stroke risk in children with sickle cell disease (SCD). We performed TCD studies on children with sickle cell anemia (SCA) seen at the pediatric hematology clinic over a period of 2 years. TCD scans were repeated yearly in children with normal flow velocities and every 3 months in children with elevated velocities. Findings were correlated with clinical variables, hematologic indices, and arterial oxygen saturation. Predictors of elevated velocities were identified by multiple linear regressions. We enrolled 237 children and performed a total of 526 TCD examinations. Highest time-averaged maximum flow velocities were ≥170 cm/s in 72 (30.3%) cases and ≥200 cm/s in 20 (8.4%). Young age, low hematocrit, low hemoglobin, and arterial oxygen desaturation <95% showed significant correlations with presence of increased cerebral flow velocities. Low hematocrit, low hemoglobin concentration, young age, and low arterial oxygen desaturation predicted elevated cerebral blood flow velocities and, invariably, increased stroke risk, in children with SCA. Children who exhibit these features should be given high priority for TCD examination in the setting of limited resources. Copyright © 2013 Wiley Periodicals, Inc.

  11. Local velocity measurements in lead-bismuth and sodium flows using the ultrasound doppler velocimetry

    International Nuclear Information System (INIS)

    Eckert, S.; Gerbeth, G.

    2003-01-01

    We will present measurements of the velocity profiles in liquid sodium and eutectic lead-bismuth by means of the Ultrasonic Doppler Velocimetry (UDV). A sodium flow in a rectangular duct exposed to an external, transverse magnetic field has been examined. To demonstrate the capability of UDV the transformation of the well-known turbulent, piston-like profile to an M-shaped velocity profile for growing magnetic field strength was observed. The significance of artifacts such as caused by the existence of reflecting interfaces in the measuring domain will be discussed. In the sodium case, the measurements were performed through the channel wall. An integrated ultrasonic sensor with acoustic wave-guide has been developed to overcome the limitation of ultrasonic transducers to temperatures lower than 200 .deg. C. This sensor can presently be applied at maximum temperatures up to 800 .deg. C. Stable and robust measurements have been performed in various PbBi flows in our laboratory at FZR as well as at the THESYS loop of the KALLA laboratory of the ForschungsZentrum Karlsruhe (FZK). We will also present experimental results obtained in a PbBi bubbly flow at 250...300 .deg. C. Argon bubbles were injected through a single orifice in a cylindrical container filled with stagnant PbBi. Velocity profiles were measured in the bubble plume. Mean values of the liquid as well as the bubble velocity were extracted from the data and will be presented as function of the gas flow rate

  12. Hydroxyurea lowers transcranial Doppler flow velocities in children with sickle cell anaemia in a Nigerian cohort.

    Science.gov (United States)

    Lagunju, IkeOluwa; Brown, Biobele J; Sodeinde, Olugbemiro

    2015-09-01

    Sickle cell anaemia (SCA) is the leading genetic disorder in Nigeria. Elevated velocities ≥170 cm/sec occur in about a third of Nigerian children with SCA. Chronic blood transfusion for stroke prevention is faced with a myriad of challenges in our practice. To evaluate the effectiveness of hydroxyurea (HU) in reducing flow velocities in a cohort of Nigerian children with SCA and elevated velocities treated with HU. An observational study was carried out on a cohort of Nigerian children with SCA and elevated velocities identified on routine transcranial Doppler (TCD) screening. HU was recommended in those with TCD velocities ≥ 170cm/sec as stipulated in our hospital protocol. Outcomes were compared after ≥12 months of observation. Fifty children with elevated TCD velocities were studied; 31 consented to HU therapy and 19 declined. Children on HU showed a statistically significant decline in mean velocities from 199.7 [17.1] cm/sec to 165.8 [20.7] cm/sec (P < 0.001) with a significant increase in mean packed cell volume from 21.1 [3.4] to 25.0 [2.8]%. Children without treatment had a significant rise in mean velocities from 190.2 [10.8] cm/sec to 199.7 [14.9] cm/sec (P = 0.003). Children with conditional risk velocities on HU were less likely to convert to abnormal risk (P < 0.001). Two stroke events occurred, one in each group. No adverse effects of HU were recorded in the cohort. HU appears to significantly reduce TCD velocities in Nigerian children with SCA and elevated velocities ≥170 cm/sec with beneficial effect on the haematological profile. HU may provide an effective approach to primary stroke prevention, particularly in Africa. © 2015 Wiley Periodicals, Inc.

  13. Preliminary simulation study of doppler reflectometry

    International Nuclear Information System (INIS)

    Ishii, Yuta; Hojo, Hitoshi; Yoshikawa, Masashi; Ichimura, Makoto; Haraguchi, Yusuke; Imai, Tsuyoshi; Mase, Atsushi

    2010-01-01

    A preliminary simulation study of Doppler reflectometry is performed. The simulations solve Maxwell's equations by a finite difference time domain (FDTD) code method in two dimensions. A moving corrugated metal target is used as a plasma cutoff layer to study the basic features of Doppler reflectometry. We examined the effects of the full width at half maximum (FWHM) of the electromagnetic waves and the corrugation depth of the metal target. Furthermore, the effect of a nonuniform plasma is studied using this FDTD analysis. The Doppler shift and velocity are compared with those obtained from FDTD analysis of a uniform plasma. (author)

  14. Influence of immune-mediated hemolytic anemia on flow velocities in the portal vein and caudal vena cava measured by use of pulsed-wave Doppler ultrasonography in dogs.

    Science.gov (United States)

    Smith, Rachel Policelli; Koenigshof, Amy M; Smith, Daniel J; Strom, Phillip R; Nelson, Nathan C

    2018-05-01

    OBJECTIVE To compare blood flow velocities of the portal vein (PV) and caudal vena cava (CVC) measured by use of pulsed-wave Doppler ultrasonography in clinically normal dogs and dogs with primary immune-mediated hemolytic anemia (IMHA). ANIMALS 11 client-owned dogs admitted to a veterinary teaching hospital for management of primary IMHA and 21 staff- or student-owned clinically normal dogs. PROCEDURES Flow velocities in the PV and CVC at the porta hepatis were evaluated in conscious unsedated dogs with concurrent ECG monitoring; evaluations were performed before dogs with IMHA received heparin or blood transfusions. Three measurements of peak velocity at end expiration were obtained for each vessel, and the mean was calculated. Results were compared between IMHA and control groups. RESULTS Mean ± SD blood flow velocity in the CVC differed between control (63.0 ± 18.6 cm/s) and IMHA (104 ± 36.9 cm/s) groups. Variance in dogs with IMHA was significantly greater than that for the clinically normal dogs. No significant difference in blood flow velocity in the PV was detected between IMHA and control dogs. CONCLUSIONS AND CLINICAL RELEVANCE Higher blood flow velocities were detected by use of pulsed-wave Doppler ultrasonography in the CVC of dogs with naturally occurring IMHA and may be used to predict anemia in patients suspected of having IMHA.

  15. Quantitation of stress echocardiography by tissue Doppler and strain rate imaging: a dream come true?

    Science.gov (United States)

    Galderisi, Maurizio; Mele, Donato; Marino, Paolo Nicola

    2005-01-01

    Tissue Doppler (TD) is an ultrasound tool providing a quantitative agreement of left ventricular regional myocardial function in different modalities. Spectral pulsed wave (PW) TD, performed online during the examination, measures instantaneous myocardial velocities. By means of color TD, velocity images are digitally stored for subsequent off-line analysis and mean myocardial velocities are measured. An implementation of color TD includes strain rate imaging (SRI), based on post-processing conversion of regional velocities in local myocardial deformation rate (strain rate) and percent deformation (strain). These three modalities have been applied to stress echocardiography for quantitative evaluation of regional left ventricular function and detection of ischemia and viability. They present advantages and limitations. PWTD does not permit the simultaneous assessment of multiple walls and therefore is not compatible with clinical stress echocardiography while it could be used in a laboratory setting. Color TD provides a spatial map of velocity throughout the myocardium but its results are strongly affected by the frame rate. Both color TD and PWTD are also influenced by overall cardiac motion and tethering from adjacent segments and require reference velocity values for interpretation of regional left ventricular function. High frame rate (i.e. > 150 ms) post-processing-derived SRI can potentially overcome these limitations, since measurements of myocardial deformation have not any significant apex-to-base gradient. Preliminary studies have shown encouraging results about the ability of SRI to detect ischemia and viability, in terms of both strain rate changes and/or evidence of post-systolic thickening. SRI is, however, Doppler-dependent and time-consuming. Further technical refinements are needed to improve its application and introduce new ultrasound modalities to overcome the limitations of the Doppler-derived deformation analysis.

  16. AN INDEPENDENT MEASUREMENT OF THE INCIDENCE OF Mg II ABSORBERS ALONG GAMMA-RAY BURST SIGHT LINES: THE END OF THE MYSTERY?

    Energy Technology Data Exchange (ETDEWEB)

    Cucchiara, A.; Prochaska, J. X. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Zhu, G.; Menard, B. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Fynbo, J. P. U. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Fox, D. B. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Chen, H.-W. [Department of Astronomy and Astrophysics, Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Cooksey, K. L. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-685, Cambridge, MA 02139 (United States); Cenko, S. B.; Bloom, J. S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Perley, D. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Berger, E.; Chornock, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); D' Elia, V. [Istituto Nazionale di Astrofisica-Osservatorio Astronomico di Roma, Via di Frascati 33, I-00040 Monte Porzio Catone (RM) (Italy); Lopez, S.; De Jaeger, T., E-mail: acucchia@ucolick.org [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile)

    2013-08-20

    In 2006, Prochter et al. reported a statistically significant enhancement of very strong Mg II absorption systems intervening the sight lines to gamma-ray bursts (GRBs) relative to the incidence of such absorption along quasar sight lines. This counterintuitive result has inspired a diverse set of astrophysical explanations (e.g., dust, gravitational lensing) but none of these has obviously resolved the puzzle. Using the largest set of GRB afterglow spectra available, we reexamine the purported enhancement. In an independent sample of GRB spectra with a survey path three times larger than Prochter et al., we measure the incidence per unit redshift of {>=}1 A rest-frame equivalent width Mg II absorbers at z Almost-Equal-To 1 to be l(z) = 0.18 {+-} 0.06. This is fully consistent with current estimates for the incidence of such absorbers along quasar sight lines. Therefore, we do not confirm the original enhancement and suggest those results suffered from a statistical fluke. Signatures of the original result do remain in our full sample (l(z) shows an Almost-Equal-To 1.5 enhancement over l(z){sub QSO}), but the statistical significance now lies at Almost-Equal-To 90% c.l. Restricting our analysis to the subset of high-resolution spectra of GRB afterglows (which overlaps substantially with Prochter et al.), we still reproduce a statistically significant enhancement of Mg II absorption. The reason for this excess, if real, is still unclear since there is no connection between the rapid afterglow follow-up process with echelle (or echellette) spectrographs and the detectability of strong Mg II doublets. Only a larger sample of such high-resolution data will shed some light on this matter.

  17. Multimodal quantitation of the effects of endovascular therapy for vasospasm on cerebral blood flow, transcranial doppler ultrasonographic velocities, and cerebral artery diameters.

    Science.gov (United States)

    Oskouian, Rod J; Martin, Neil A; Lee, Jae Hong; Glenn, Thomas C; Guthrie, Donald; Gonzalez, Nestor R; Afari, Arash; Viñuela, Fernando

    2002-07-01

    The goal of this study was to quantify the effects of endovascular therapy on vasospastic cerebral vessels. We reviewed the medical records for 387 patients with ruptured intracranial aneurysms who were treated at a single institution (University of California, Los Angeles) between May 1, 1993, and March 31, 2001. Patients who developed cerebral vasospasm and underwent cerebral arteriographic, transcranial Doppler ultrasonographic, and cerebral blood flow (CBF) studies before and after endovascular therapy for cerebral arterial spasm (vasospasm) were included in this study. Forty-five patients fulfilled the aforementioned criteria and were treated with either papaverine infusion, papaverine infusion with angioplasty, or angioplasty alone. After balloon angioplasty (12 patients), CBF increased from 27.8 +/- 2.8 ml/100 g/min to 28.4 +/- 3.0 ml/100 g/min (P = 0.87); the middle cerebral artery blood flow velocity was 1 57.6 +/- 9.4 cm/s and decreased to 76.3 +/- 9.3 cm/s (P < 0.05), with a mean increase in cerebral artery diameters of 24.4%. Papaverine infusion (20 patients) transiently increased the CBF from 27.5 +/- 2.1 ml/100 g/min to 38.7 +/- 2.8 ml/100 g/min (P < 0.05) and decreased the middle cerebral artery blood flow velocity from 109.9 +/- 9.1 cm/s to 82.8 +/- 8.6 cm/s (P < 0.05). There was a mean increase in vessel diameters of 30.1% after papaverine infusion. Combined treatment (13 patients) significantly increased the CBF from 33.3 +/- 3.2 ml/100 g/min to 41.7 +/- 2.8 ml/100 g/min (P< 0.05) and decreased the transcranial Doppler velocities from 148.9 +/- 12.7 cm/s to 111.4 +/- 10.6 cm/s (P < 0.05), with a mean increase in vessel diameters of 42.2%. Balloon angioplasty increased proximal vessel diameters, whereas papaverine treatment effectively dilated distal cerebral vessels. In our small series, we observed no correlation between early clinical improvement or clinical outcomes and any of our quantitative or physiological data (CBF, transcranial Doppler

  18. 3D Doppler Tomography of the X-Ray Binary System Cygnus X-1 from Spectral Observations in 2007 in the HeII λ 4686 Å Line

    Science.gov (United States)

    Agafonov, M. I.; Karitskaya, E. A.; Sharova, O. I.; Bochkarev, N. G.; Zharikov, S. V.; Butenko, G. Z.; Bondar', A. V.; Sidorov, M. Yu.

    2018-02-01

    The results of a 3D Doppler tomography analysis for the X-ray binary system Cyg X-1 in the HeII λ 4686 Å line are presented. Information about the motions of gaseous flows outside the orbital plane has been obtained for the first time. Line profiles obtained in June 2007 on the 2-m telescope of the Terskol Branch of the Institute of Astronomy (Russia) and on the 2.1-m telescope of the National Astronomical Observatory of Mexico were used. A detailed analysis of these spectral data is presented: the distribution of the data in time, distribution of orbital phases for the projections, comparison of the line profile shapes for the data from two observatories. The geometry of the total transfer function obtained in the reconstruction is considered. The possibility of applying the profiles obtained to realize 3D tomography is justified. The resolution of the constructed 3D tomogram in velocity space is 60 × 60 × 40 km/s for V x , V y , V z . Fifteen cross sections for 15 different V z values perpendicular to the orbital plane are presented. The intensity distributions corresponding to the velocities of gaseous structures in the binary system are obtained. The reconstruction was realized using the radio-astronomical approach, developed for solving problems in tomography with a limited number of projections.

  19. Measurements of the toroidal plasma rotation velocity in TFTR major-radius compression experiments with auxiliary neutral beam heating

    International Nuclear Information System (INIS)

    Bitter, M.; Wong, K.L.; Scott, S.; Hsuan, H.; Grek, B.; Johnson, D.; Tait, G.

    1990-01-01

    The time history of the central toroidal plasma rotation velocity in Tokamak Fusion Test Reactor (TFTR) experiments [Phys. Rev. Lett. 55, 2587 (1985)] with auxiliary heating by neutral deuterium beam injection and major-radius compression has been measured from the Doppler shift of the emitted Ti XXI Kα line radiation. The experiments were conducted for neutral beam powers in the range 2.1--3.8 MW and line-averaged densities in the range 1.8--3.0x10 19 m -2 . The observed rotation velocity increase during compression is consistent with theoretical estimates

  20. New constraints on Lyman-α opacity using 92 quasar lines of sight

    Science.gov (United States)

    Bosman, Sarah E. I.; Fan, Xiaohui; Jiang, Linhua; Reed, Sophie; Matsuoka, Yoshiki; Becker, George; Rorai, Albert

    2018-05-01

    The large scatter in Lyman-α opacity at z > 5.3 has been an ongoing mystery, prompting a flurry of numerical models. A uniform ultra-violet background has been ruled out at those redshifts, but it is unclear whether any proposed models produce sufficient inhomogeneities. In this paper we provide an update on the measurement which first highlighted the issue: Lyman-α effective optical depth along high-z quasar lines of sight. We nearly triple on the previous sample size in such a study thanks to the cooperation of the DES-VHS, SHELLQs, and SDSS collaborations as well as new reductions and spectra. We find that a uniform UVB model is ruled out at 5.1 < z < 5.3, as well as higher redshifts, which is perplexing. We provide the first such measurements at z ~ 6. None of the numerical models we confronted to this data could reproduce the observed scatter.

  1. Braille in the Sighted: Teaching Tactile Reading to Sighted Adults.

    Science.gov (United States)

    Bola, Łukasz; Siuda-Krzywicka, Katarzyna; Paplińska, Małgorzata; Sumera, Ewa; Hańczur, Paweł; Szwed, Marcin

    2016-01-01

    Blind people are known to have superior perceptual abilities in their remaining senses. Several studies suggest that these enhancements are dependent on the specific experience of blind individuals, who use those remaining senses more than sighted subjects. In line with this view, sighted subjects, when trained, are able to significantly progress in relatively simple tactile tasks. However, the case of complex tactile tasks is less obvious, as some studies suggest that visual deprivation itself could confer large advantages in learning them. It remains unclear to what extent those complex skills, such as braille reading, can be learnt by sighted subjects. Here we enrolled twenty-nine sighted adults, mostly braille teachers and educators, in a 9-month braille reading course. At the beginning of the course, all subjects were naive in tactile braille reading. After the course, almost all were able to read whole braille words at a mean speed of 6 words-per-minute. Subjects with low tactile acuity did not differ significantly in braille reading speed from the rest of the group, indicating that low tactile acuity is not a limiting factor for learning braille, at least at this early stage of learning. Our study shows that most sighted adults can learn whole-word braille reading, given the right method and a considerable amount of motivation. The adult sensorimotor system can thus adapt, to some level, to very complex tactile tasks without visual deprivation. The pace of learning in our group was comparable to congenitally and early blind children learning braille in primary school, which suggests that the blind's mastery of complex tactile tasks can, to a large extent, be explained by experience-dependent mechanisms.

  2. On the Importance of the Nonequilibrium Ionization of Si IV and O IV and the Line of Sight in Solar Surges

    Science.gov (United States)

    Nóbrega-Siverio, D.; Moreno-Insertis, F.; Martínez-Sykora, J.

    2018-05-01

    Surges are ubiquitous cool ejections in the solar atmosphere that often appear associated with transient phenomena like UV bursts or coronal jets. Recent observations from the Interface Region Imaging Spectrograph show that surges, although traditionally related to chromospheric lines, can exhibit enhanced emission in Si IV with brighter spectral profiles than for the average transition region (TR). In this paper, we explain why surges are natural sites to show enhanced emissivity in TR lines. We performed 2.5D radiative-MHD numerical experiments using the Bifrost code including the nonequilibrium (NEQ) ionization of silicon and oxygen. A surge is obtained as a by-product of magnetic flux emergence; the TR enveloping the emerged domain is strongly affected by NEQ effects: assuming statistical equilibrium would produce an absence of Si IV and O IV ions in most of the region. Studying the properties of the surge plasma emitting in the Si IV λ1402.77 and O IV λ1401.16 lines, we find that (a) the timescales for the optically thin losses and heat conduction are very short, leading to departures from statistical equilibrium, and (b) the surge emits in Si IV more and has an emissivity ratio of Si IV to O IV larger than a standard TR. Using synthetic spectra, we conclude the importance of line-of-sight effects: given the involved geometry of the surge, the line of sight can cut the emitting layer at small angles and/or cross it multiple times, causing prominent, spatially intermittent brightenings in both Si IV and O IV.

  3. Hybrid catadioptric system for advanced optical cavity velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Frayer, Daniel K.

    2018-02-06

    A probe including reflector is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface by the probe and then reflected back from the surface, is Doppler shifted by the moving surface, collected into probe, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to one or more lens groups and a reflector, such as a parabolic reflector having a mirrored interior surface.

  4. THE NATURE OF ACTIVE GALACTIC NUCLEI WITH VELOCITY OFFSET EMISSION LINES

    Energy Technology Data Exchange (ETDEWEB)

    Müller-Sánchez, F.; Comerford, J. [Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Harrison, F. A. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2016-10-10

    We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field spectroscopy to probe the morphology and kinematics of the ionized gas in four velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. These objects possess optical emission lines that are offset in velocity from systemic as measured from stellar absorption features. At a resolution of ∼0.″18, OSIRIS allows us to distinguish which velocity offset emission lines are produced by the motion of an AGN in a dual supermassive black hole system, and which are produced by outflows or other kinematic structures. In three galaxies, J1018+2941, J1055+1520, and J1346+5228, the spectral offset of the emission lines is caused by AGN-driven outflows. In the remaining galaxy, J1117+6140, a counterrotating nuclear disk is observed that contains the peak of Pa α emission 0.″2 from the center of the galaxy. The most plausible explanation for the origin of this spatially and kinematically offset peak is that it is a region of enhanced Pa α emission located at the intersection zone between the nuclear disk and the bar of the galaxy. In all four objects, the peak of ionized gas emission is not spatially coincident with the center of the galaxy as traced by the peak of the near-IR continuum emission. The peaks of ionized gas emission are spatially offset from the galaxy centers by 0.″1–0.″4 (0.1–0.7 kpc). We find that the velocity offset originates at the location of this peak of emission, and the value of the offset can be directly measured in the velocity maps. The emission-line ratios of these four velocity-offset AGNs can be reproduced only with a mixture of shocks and AGN photoionization. Shocks provide a natural explanation for the origin of the spatially and spectrally offset peaks of ionized gas emission in these galaxies.

  5. TAURUS observations of the emission-line velocity field of Centaurus A (NGC 5128)

    International Nuclear Information System (INIS)

    Taylor, K.; Atherton, P.D.

    1983-01-01

    Using TAURUS - an Imaging Fabry Perot system in conjunction with the IPCS on the AAT, the authors have studied the velocity field of the Hα emission line at a spatial resolution of 1.7'' over the dark lane structure of Centaurus A. The derived velocity field is quite symmetrical and strongly suggests that the emission line material is orbiting the elliptical component, as a warped disc. (orig.)

  6. Experimental study on line-of-sight (LOS) attitude control using control moment gyros under micro-gravity environment

    Science.gov (United States)

    Kojima, Hirohisa; Hiraiwa, Kana; Yoshimura, Yasuhiro

    2018-02-01

    This paper presents the results of line-of-sight (LOS) attitude control using control moment gyros under a micro-gravity environment generated by parabolic flight. The W-Z parameters are used to describe the spacecraft attitude. In order to stabilize the current LOS to the target LOS, backstepping-based feedback control is considered using the W-Z parameters. Numerical simulations and experiments under a micro-gravity environment are carried out, and their results are compared in order to validate the proposed control methods.

  7. Will nonlinear peculiar velocity and inhomogeneous reionization spoil 21 cm cosmology from the epoch of reionization?

    Science.gov (United States)

    Shapiro, Paul R; Mao, Yi; Iliev, Ilian T; Mellema, Garrelt; Datta, Kanan K; Ahn, Kyungjin; Koda, Jun

    2013-04-12

    The 21 cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density, and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization (≲40% ionized), but not late (≳80% ionized).

  8. Technical Note: A new phantom design for routine testing of Doppler ultrasound.

    Science.gov (United States)

    Grice, J V; Pickens, D R; Price, R R

    2016-07-01

    The objective of this project is to demonstrate the principle and operation for a simple, inexpensive, and highly portable Doppler ultrasound quality assurance (QA) phantom intended for routine QA testing. A prototype phantom has been designed, fabricated, and evaluated. The phantom described here is powered by gravity alone, requires no external equipment for operation, and produces a stable fluid velocity useful for quality assurance. Many commercially available Doppler ultrasound testing systems can suffer from issues such as a lengthy setup, prohibitive cost, nonportable size, or difficulty in use. This new phantom design aims to address some of these problems and create a phantom appropriate for assessing Doppler ultrasound stability. The phantom was fabricated using a 3D printer. The basic design of the phantom is to provide gravity-powered flow of a Doppler fluid between two reservoirs. The printed components were connected with latex tubing and then seated in a tissue mimicking gel. Spectral Doppler waveforms were sampled to evaluate variations in the data, and the phantom was evaluated using high frame rate video to find an alternate measure of mean fluid velocity flowing in the phantom. The current system design maintains stable flow from one reservoir to the other for approximately 7 s. Color Doppler imaging of the phantom was found to be qualitatively consistent with laminar flow. Using pulsed spectral Doppler, the average fluid velocity from a sample volume approximately centered in the synthetic vessel was measured to be 56 cm/s with a standard deviation of 3.2 cm/s across 118 measurements. An independent measure of the average fluid velocity was measured to be 51.9 cm/s with a standard deviation of 0.7 cm/s over 4 measurements. The developed phantom provides stable fluid flow useful for frequent clinical Doppler ultrasound testing and attempts to address several obstacles facing Doppler phantom testing. Such an ultrasound phantom can make routine

  9. COMPARISON OF SOLAR SURFACE FLOWS INFERRED FROM TIME-DISTANCE HELIOSEISMOLOGY AND COHERENT STRUCTURE TRACKING USING HMI/SDO OBSERVATIONS

    International Nuclear Information System (INIS)

    Švanda, Michal; Roudier, Thierry; Rieutord, Michel; Burston, Raymond; Gizon, Laurent

    2013-01-01

    We compare measurements of horizontal flows on the surface of the Sun using helioseismic time-distance inversions and coherent structure tracking of solar granules. Tracking provides two-dimensional horizontal flows on the solar surface, whereas the time-distance inversions estimate the full three-dimensional velocity flows in the shallow near-surface layers. Both techniques use Helioseismic and Magnetic Imager observations as input. We find good correlations between the various measurements resulting from the two techniques. Further, we find a good agreement between these measurements and the time-averaged Doppler line-of-sight velocity, and also perform sanity checks on the vertical flow that resulted from the three-dimensional time-distance inversion.

  10. On-line velocity measurements using phase probes at the SuperHILAC

    International Nuclear Information System (INIS)

    Feinberg, B.; Meaney, D.; Thatcher, R.; Timossi, C.

    1987-12-01

    Phase probes have been placed in several external beam lines at the LBL heavy ion linear accelerator (SuperHILAC) to provide non- destructive velocity measurements independent of the ion being accelerated. The system uses three probes in each line to obtain accurate velocity measurements at all beam energies. Automatic gain control and signal analysis are performed so that the energy/nucleon along with up to three probe signals are displayed on a vector graphics display with a refresh rate better than twice per second. The system uses a sensitive pseudo-correlation technique to pick out the signal from the noise, features simultaneous measurements of up to four ion velocities when more than one beam is being accelerated, and is controlled by a touch-screen operator interface. It is accurate to within /+-/0.25% and has provisions for on-line calibration tests. The phase probes thus provide a velocity measurement independent of the mass defect associated with the use of crystal detectors, which can become significant for heavy elements. They are now used as a routine tuning aid to ensure proper bunch structure, and as a beam velocity monitor. 3 refs., 5 figs

  11. Noise Studies of Externally Dispersed Interferometry for Doppler Velocimetry

    International Nuclear Information System (INIS)

    Erskine, D J; Edelstein, J; Lloyd, J; Muirhead, P

    2006-01-01

    Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. Both regular and high-frequency spectral components can be recovered from the data--the moire component carries additional information that increases the signal to noise for velocimetry and spectroscopy. Here we present simulations and theoretical studies of the photon limited Doppler velocity noise in an EDI. We used a model spectrum of a 1600K temperature star. For several rotational blurring velocities 0, 7.5, 15 and 25 km/s we calculated the dimensionless Doppler quality index (Q) versus wavenumber v. This is the normalized RMS of the derivative of the spectrum and is proportional to the photon-limited Doppler signal to noise ratio

  12. Characterization of Medication Velocity and Size Distribution from Pressurized Metered-Dose Inhalers by Phase Doppler Anemometry.

    Science.gov (United States)

    Alatrash, Abubaker; Matida, Edgar

    2016-12-01

    Particle size and velocity are two of the most significant factors that impact the deposition of pressurized metered-dose inhaler (pMDI) sprays in the mouth cavity. pMDIs are prominently used around the world in the treatment of patients suffering from a variety of lung diseases such as asthma and chronic obstructive pulmonary disease. Since their introduction in the field, and as a result of their effectiveness and simplicity of usage, pMDIs are considered to be the most widely prescribed medical aerosol delivery system. In the current study, particle velocity and size distribution were measured at three different locations along the centerline of a pMDI spray using Phase Doppler Anemometry. pMDIs from four different pharmaceutical companies were tested, each using salbutamol sulfate as the medication. Measurements along at the pMDI centerline (at 0, 75, and 100 mm downstream of the inhaler mouthpiece) showed that the spray velocities were bimodal in time for all four pMDI brands. The first peak occurred as the spray was leaving the mouthpiece, while the second peak (at the same location, 0 mm) occurred at around 60, 95, 95, and 115 milliseconds later, respectively, for the four tested inhalers, with a drop in the velocity between the two peaks. Three probability density functions (PDFs) were tested, and the Rosin-Rammler PDF best fit the empirical data, as determined using a chi-squared test. These results suggest that there is a difference in the mean particle velocities at the centerline for the tested pMDIs and the diameter of released particles varied statistically for each brand.

  13. Robust Estimator for Non-Line-of-Sight Error Mitigation in Indoor Localization

    Directory of Open Access Journals (Sweden)

    Marco A

    2006-01-01

    Full Text Available Indoor localization systems are undoubtedly of interest in many application fields. Like outdoor systems, they suffer from non-line-of-sight (NLOS errors which hinder their robustness and accuracy. Though many ad hoc techniques have been developed to deal with this problem, unfortunately most of them are not applicable indoors due to the high variability of the environment (movement of furniture and of people, etc.. In this paper, we describe the use of robust regression techniques to detect and reject NLOS measures in a location estimation using multilateration. We show how the least-median-of-squares technique can be used to overcome the effects of NLOS errors, even in environments with little infrastructure, and validate its suitability by comparing it to other methods described in the bibliography. We obtained remarkable results when using it in a real indoor positioning system that works with Bluetooth and ultrasound (BLUPS, even when nearly half the measures suffered from NLOS or other coarse errors.

  14. Robust Estimator for Non-Line-of-Sight Error Mitigation in Indoor Localization

    Science.gov (United States)

    Casas, R.; Marco, A.; Guerrero, J. J.; Falcó, J.

    2006-12-01

    Indoor localization systems are undoubtedly of interest in many application fields. Like outdoor systems, they suffer from non-line-of-sight (NLOS) errors which hinder their robustness and accuracy. Though many ad hoc techniques have been developed to deal with this problem, unfortunately most of them are not applicable indoors due to the high variability of the environment (movement of furniture and of people, etc.). In this paper, we describe the use of robust regression techniques to detect and reject NLOS measures in a location estimation using multilateration. We show how the least-median-of-squares technique can be used to overcome the effects of NLOS errors, even in environments with little infrastructure, and validate its suitability by comparing it to other methods described in the bibliography. We obtained remarkable results when using it in a real indoor positioning system that works with Bluetooth and ultrasound (BLUPS), even when nearly half the measures suffered from NLOS or other coarse errors.

  15. Abundances of Neutral and Ionized PAH Along The Lines-of-Sight of Diffuse and Translucent Interstellar Clouds

    Science.gov (United States)

    Salama, Farid; Galazutdinov, Gazinur; Krewloski, Jacek; Biennier, Ludovic; Beletsky, Yuri; Song, In-Ok

    2013-01-01

    The spectra of neutral and ionized PAHs isolated in the gas phase at low temperature have been measured in the laboratory under conditions that mimic interstellar conditions and are compared with a set of astronomical spectra of reddened, early type stars. The comparisons of astronomical and laboratory data provide upper limits for the abundances of neutral PAH molecules and ions along specific lines-of-sight. Something that is not attainable from infrared observations. We present the characteristics of the laboratory facility (COSmIC) that was developed for this study and discuss the findings resulting from the comparison of the laboratory data with high resolution, high S/N ratio astronomical observations. COSmIC combines a supersonic jet expansion with discharge plasma and cavity ringdown spectroscopy and provides experimental conditions that closely mimic the interstellar conditions. The column densities of the individual PAH molecules and ions probed in these surveys are derived from the comparison of the laboratory data with high resolution, high S/N ratio astronomical observations. The comparisons of astronomical and laboratory data lead to clear conclusions regarding the expected abundances for PAHs in the interstellar environments probed in the surveys. Band profile comparisons between laboratory and astronomical spectra lead to information regarding the molecular structures and characteristics associated with the DIB carriers in the corresponding lines-of-sight. These quantitative surveys of neutral and ionized PAHs in the optical range open the way for quantitative searches of PAHs and complex organics in a variety of interstellar and circumstellar environments.

  16. Effects of Wind Velocity Driven by Alfven Waves on the Line Profiles for 32 CYG

    Directory of Open Access Journals (Sweden)

    Kyung-Mee Kim

    1996-06-01

    Full Text Available We calculate the theoretical line profiles for 32 Cyg in order to investigate the influence of various velocity fields. Line profiles are calculated with wind accelerations driven by Alfven waves and described by velocity parameters. The results for Alfvenic wave model show weakened line profiles. For the orbital phases ¥÷=0.78 and ¥÷=0.06 the Alfvenic models show strong absorption part due to very low densities at the surface of the supergiant. Hence, we conclude the velocity gradient of the wind near the supergiant could influence on the theoretical line formation.

  17. On the measurements of large scale solar velocity fields

    International Nuclear Information System (INIS)

    Andersen, B.N.

    1985-01-01

    A general mathematical formulation for the correction of the scattered light influence on solar Doppler shift measurements has been developed. This method has been applied to the straylight correction of measurements of solar rotation, limb effect, large scale flows and oscillations. It is shown that neglecting the straylight errors may cause spurious large scale velocity fields, oscillations and erronous values for the solar rotation and limb effect. The influence of active regions on full disc velocity measurements has been studied. It is shown that a 13 day periodicity in the global velocity signal will be introduced by the passage of sunspots over the solar disc. With different types of low resolution apertures, other periodicities may be introduced. Accurate measurements of the center-to-limb velocity shift are presented for a set of magnetic insensitive lines well suited for solar velocity measurements. The absolute wavelenght shifts are briefly discussed. The stronger lines have a ''supergravitational'' shift of 300-400 m/s at the solar limb. The results may be explained by the presence of a 20-25 m/s poleward meridional flow and a latitudinal dependence of the granular parameters. Using a simple model it is shown that the main properites of the observations are explained by a 5% increase in the granular size with latitude. Data presented indicate that the resonance line K I, 769.9 nm has a small but significant limb effect of 125 m/s from center to limb

  18. TCSP ER-2 DOPPLER RADAR (EDOP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The EDOP provides vertically profiled reflectivity and Doppler velocity at aircraft nadir along the flight track. The ER-2 Doppler radar (EDOP) is an X-band (9.6...

  19. A concept to collect neutron and x-ray images on the same line of sight at NIF

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, F. E., E-mail: fmerrill@lanl.gov; Danly, C. R.; Grim, G. P.; Volegov, P. L.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Izumi, N.; Jedlovec, D.; Fittinghoff, D. N.; Pak, A.; Park, H.-S. [Livermore National Laboratory, Livermore, California 94551 (United States)

    2014-11-15

    Neutron and x-ray images are collected at the National Ignition Facility (NIF) to measure the size and shape of inertial confinement fusion implosions. The x-ray images provide a measure of the size and shape of the hot region of the deuterium-tritium fuel while the neutron images provide a measure of the size and shape of the burning plasma. Although these two types of images are collected simultaneously, they are not collected along the same line of sight (LOS). One 14 MeV neutron image is collected on the NIF equator, and two x-ray images are collected along the polar axis and nearly perpendicular to the neutron imaging line of sight on the equator. Both measurements use pinhole apertures to form the images, but existing x-ray imaging provides time-resolved measurements while the neutron images are time-integrated. Detailed comparisons of the x-ray and neutron images can provide information on the fuel assembly, but these studies have been limited because the implosions are not azimuthally symmetric and the images are collected along different LOS. We have developed a conceptual design of a time-integrated x-ray imaging system that could be added to the existing neutron imaging LOS. This new system would allow these detailed studies, providing important information on the fuel assembly of future implosions. Here we present this conceptual design and the expected performance characteristics.

  20. A concept to collect neutron and x-ray images on the same line of sight at NIF.

    Science.gov (United States)

    Merrill, F E; Danly, C R; Izumi, N; Jedlovec, D; Fittinghoff, D N; Grim, G P; Pak, A; Park, H-S; Volegov, P L; Wilde, C H

    2014-11-01

    Neutron and x-ray images are collected at the National Ignition Facility (NIF) to measure the size and shape of inertial confinement fusion implosions. The x-ray images provide a measure of the size and shape of the hot region of the deuterium-tritium fuel while the neutron images provide a measure of the size and shape of the burning plasma. Although these two types of images are collected simultaneously, they are not collected along the same line of sight (LOS). One 14 MeV neutron image is collected on the NIF equator, and two x-ray images are collected along the polar axis and nearly perpendicular to the neutron imaging line of sight on the equator. Both measurements use pinhole apertures to form the images, but existing x-ray imaging provides time-resolved measurements while the neutron images are time-integrated. Detailed comparisons of the x-ray and neutron images can provide information on the fuel assembly, but these studies have been limited because the implosions are not azimuthally symmetric and the images are collected along different LOS. We have developed a conceptual design of a time-integrated x-ray imaging system that could be added to the existing neutron imaging LOS. This new system would allow these detailed studies, providing important information on the fuel assembly of future implosions. Here we present this conceptual design and the expected performance characteristics.

  1. Color doppler imaging of subclavian steal phenomenon

    International Nuclear Information System (INIS)

    Cho, Nari Ya; Chung, Tae Sub; Kim, Jai Keun

    1997-01-01

    To evaluate the characteristic color doppler imaging of vertebral artery flow in the subclavian steal phenomenon. The study group consisted of eight patients with reversed vertebral artery flow proved by color Doppler imaging. We classified this flow into two groups:(1) complete reversal;(2) partial reversal, as shown by Doppler velocity waveform. Vertebral angiography was performed in six of eight patients;color Doppler imaging and angiographic findings were compared. On color Doppler imaging, all eight cases with reversed vertebral artery flow showed no signal at the proximal subclavian or brachiocephalic artery. We confirmed shunting of six cases by performing angiography from the contralateral vertebral and basilar artery to the ipsilateral vertebral artery. On the Doppler spectrum, six cases showed complete reversal and two partial reversal. On angiography, one partial reversal case showed complete occlusion of the subclavian artery with abundant collateral circulation of muscular branches of the vertebral artery. On color Doppler imaging, a reversed vertebral artery suggests the subclavian steal phenomenon. In particular, partial reversal waveform may reflect collateral circulation

  2. A study of doppler waveform using pulsatile flow model

    International Nuclear Information System (INIS)

    Chung, Hye Won; Chung, Myung Jin; Park, Jae Hyung; Chung, Jin Wook; Lee, Dong Hyuk; Min, Byoung Goo

    1997-01-01

    Through the construction of a pulsatile flow model using an artificial heart pump and stenosis to demonstrate triphasic Doppler waveform, which simulates in vivo conditions, and to evaluate the relationship between Doppler waveform and vascular compliance. The flow model was constructed using a flowmeter, rubber tube, glass tube with stenosis, and artificial heart pump. Doppler study was carried out at the prestenotic, poststenotic, and distal segments;compliance was changed by changing the length of the rubber tube. With increasing proximal compliance, Doppler waveforms show decreasing peak velocity of the first phase and slightly delayed acceleration time, but the waveform itself did not change significantly. Distal compliance influenced the second phase, and was important for the formation of pulsus tardus and parvus, which without poststenotic vascular compliance, did not develop. The peak velocity of the first phase was inversely proportional to proximal compliance, and those of the second and third phases were directly proportional to distal compliance. After constructing this pulsatile flow model, we were able to explain the relationship between vascular compliance and Doppler waveform, and also better understand the formation of pulsus tardus and parvus

  3. Effects of Velocity Parameters of the Wind on the Line Formation for 32 CYG

    Directory of Open Access Journals (Sweden)

    Kyung-Mee Kim

    1999-12-01

    Full Text Available We calculate the theoretical line profiles in order to investigate the influence of various velocity parameters. Line profiles are calculated by using the exponential velocoty law with two acceleration regions for orbital phases 0.70 and 0.06. From this compttation we find that the influence of the wind velocity gradient on a giant star is more important in the region near the star than in the region away from the star. The observed lines show stronger emission than the calculated line profiles and we interpret the difference is caused by the inhomogeniety in the atmosphere of 32 Cyg.

  4. Doppler Tomography

    Science.gov (United States)

    Marsh, T. R.

    I review the method of Doppler tomography which translates binary-star line profiles taken at a series of orbital phases into a distribution of emission over the binary. I begin with a discussion of the basic principles behind Doppler tomography, including a comparison of the relative merits of maximum entropy regularisation versus filtered back-projection for implementing the inversion. Following this I discuss the issue of noise in Doppler images and possible methods for coping with it. Then I move on to look at the results of Doppler Tomography applied to cataclysmic variable stars. Outstanding successes to date are the discovery of two-arm spiral shocks in cataclysmic variable accretion discs and the probing of the stream/magnetospheric interaction in magnetic cataclysmic variable stars. Doppler tomography has also told us much about the stream/disc interaction in non-magnetic systems and the irradiation of the secondary star in all systems. The latter indirectly reveals such effects as shadowing by the accretion disc or stream. I discuss all of these and finish with some musings on possible future directions for the method. At the end I include a tabulation of Doppler maps published in refereed journals.

  5. Ultrasonic Doppler Velocity Profiler for Fluid Flow

    CERN Document Server

    2012-01-01

    The ultrasonic velocity profile (UVP) method, first developed in medical engineering, is now widely used in clinical settings. The fluid mechanical basis of UVP was established in investigations by the author and his colleagues with work demonstrating that UVP is a powerful new tool in experimental fluid mechanics. There are diverse examples, ranging from problems in fundamental fluid dynamics to applied problems in mechanical, chemical, nuclear, and environmental engineering. In all these problems, the methodological principle in fluid mechanics was converted from point measurements to spatio-temporal measurements along a line. This book is the first monograph on UVP that offers comprehensive information about the method, its principles, its practice, and applied examples, and which serves both current and new users. Current users can confirm that their application configurations are correct, which will help them to improve the configurations so as to make them more efficient and effective. New users will be...

  6. Path Loss, Shadow Fading, and Line-Of-Sight Probability Models for 5G Urban Macro-Cellular Scenarios

    DEFF Research Database (Denmark)

    Sun, Shu; Thomas, Timothy; Rappaport, Theodore S.

    2015-01-01

    This paper presents key parameters including the line-of-sight (LOS) probability, large-scale path loss, and shadow fading models for the design of future fifth generation (5G) wireless communication systems in urban macro-cellular (UMa) scenarios, using the data obtained from propagation...... measurements in Austin, US, and Aalborg, Denmark, at 2, 10, 18, and 38 GHz. A comparison of different LOS probability models is performed for the Aalborg environment. Both single-slope and dual-slope omnidirectional path loss models are investigated to analyze and contrast their root-mean-square (RMS) errors...

  7. The Formation of IRIS Diagnostics. IX. The Formation of the C i 135.58 NM Line in the Solar Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hsiao-Hsuan; Carlsson, Mats; Leenaarts, Jorrit, E-mail: mats.carlsson@astro.uio.no, E-mail: jorrit.leenaarts@astro.su.se [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)

    2017-09-01

    The C i 135.58 nm line is located in the wavelength range of NASA’s Interface Region Imaging Spectrograph ( IRIS ) small explorer mission. We study the formation and diagnostic potential of this line by means of non local-thermodynamic-equilibrium modeling, employing both 1D and 3D radiation-magnetohydrodynamic models. The C i/C ii ionization balance is strongly influenced by photoionization by Ly α emission. The emission in the C i 135.58 nm line is dominated by a recombination cascade and the line forming region is optically thick. The Doppler shift of the line correlates strongly with the vertical velocity in its line forming region, which is typically located at 1.5 Mm height. With IRIS , the C i 135.58 nm line is usually observed together with the O i 135.56 nm line, and from the Doppler shift of both lines, we obtain the velocity difference between the line forming regions of the two lines. From the ratio of the C i/O i line core intensity, we can determine the distance between the C i and the O i forming layers. Combined with the velocity difference, the velocity gradient at mid-chromospheric heights can be derived. The C i/O i total intensity line ratio is correlated with the inverse of the electron density in the mid-chromosphere. We conclude that the C i 135.58 nm line is an excellent probe of the middle chromosphere by itself, and together with the O i 135.56 nm line the two lines provide even more information, which complements other powerful chromospheric diagnostics of IRIS such as the Mg ii h and k lines and the C ii lines around 133.5 nm.

  8. High-frequency Doppler ultrasound transducer for the peripheral circulatory system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Yang, Jeongwon; Kang, Uk; Kim, Guanghoon [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of)

    2011-12-15

    A Doppler ultrasound transducer was designed and implemented to measure the blood flow velocity in tiny vessels near the skin of hands or feet. The geometric parameters of the transducer for defining the observation volume were derived and implemented with an acoustic window made of polystyrene. The observation volume designed in this study was located 6.5 mm from the transducer, which was comparable to the value predicted geometrically. The two-way insertion loss of the transducer was -11.3 dB on ultrasound frequency of 20 MHz, and the 3-dB bandwidth was approximately 2 MHz. In addition, the Doppler shift in the frequency measured by using a Doppler device composed of the transducer and a Doppler signal processing unit was proportional to the flow velocity generated by a homemade flowing system. Finally, we concluded that the transducer could be applied to measure the blood flow velocity in hands or feet.

  9. High-frequency Doppler ultrasound transducer for the peripheral circulatory system

    International Nuclear Information System (INIS)

    Bae, Youngmin; Yang, Jeongwon; Kang, Uk; Kim, Guanghoon

    2011-01-01

    A Doppler ultrasound transducer was designed and implemented to measure the blood flow velocity in tiny vessels near the skin of hands or feet. The geometric parameters of the transducer for defining the observation volume were derived and implemented with an acoustic window made of polystyrene. The observation volume designed in this study was located 6.5 mm from the transducer, which was comparable to the value predicted geometrically. The two-way insertion loss of the transducer was -11.3 dB on ultrasound frequency of 20 MHz, and the 3-dB bandwidth was approximately 2 MHz. In addition, the Doppler shift in the frequency measured by using a Doppler device composed of the transducer and a Doppler signal processing unit was proportional to the flow velocity generated by a homemade flowing system. Finally, we concluded that the transducer could be applied to measure the blood flow velocity in hands or feet.

  10. The z=0.0912 and z=0.2212 damped Ly alpha galaxies along the sight line toward the quasar OI 363

    NARCIS (Netherlands)

    Turnshek, DA; Rao, S; Nestor, D; Lane, W; Monier, E; Bergeron, J; Smette, A

    2001-01-01

    New optical and infrared observations along the sight line toward the quasar OI 363 (0738+313) are presented and discussed. Excluding quasars selectively observed because they were known to be located behind gas-rich galaxies and systems which lack confirming UV spectroscopic observations of the

  11. Operational Bright-Band Snow Level Detection Using Doppler Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method to detect the bright-band snow level from radar reflectivity and Doppler vertical velocity data collection with an atmospheric profiling Doppler radar. The...

  12. Assessment of ureterovesical jet dynamics in obstructed ureter by urinary stone with color Doppler and duplex Doppler examinations.

    Science.gov (United States)

    Jandaghi, Ali Babaei; Falahatkar, Siavash; Alizadeh, Ahmad; Kanafi, Alireza Rajabzadeh; Pourghorban, Ramin; Shekarchi, Babak; Zirak, Amin Keshavarz; Esmaeili, Samaneh

    2013-04-01

    This study was designed to evaluate ureterovesical jet dynamics in obstructed ureter and to compare it with those of contralateral unobstructed side. Forty-six patients with diagnosis of ureteral stone, based on imaging findings in computed tomography were enrolled in this study. The gray-scale ultrasound exam from both kidneys and urinary bladder was performed. Then, ureterovesical jet characteristics including ureteral jet frequency, duration and peak velocity were assessed by color Doppler and duplex Doppler studies in both obstructed and unobstructed ureters by a radiologist, 15-30 min after oral hydration with 750-1,000 mL of water. When compared with contralateral normal side, the ureterovesical jet in obstructed ureter showed less frequency (0.59 vs. 3.04 jets/min; P < 0.05), shorter duration (1.24 vs. 5.26 s; P < 0.05) and lower peak velocity (5.41 vs. 32.09 cm/s; P < 0.05). The cut-off points of 1.5 jets/min, 2.5 s and 19.5 cm/s for difference of ureteral jet frequency, duration and peak velocity between obstructed and contralateral normal ureters yielded sensitivities of 97.8, 95.6 and 100 % and specificities of 87, 87.9 and 97.8 %, respectively for diagnosis of ureteral obstruction. Given the safety of Doppler study and significant differences in flow dynamics of obstructed versus unobstructed ureters, our findings demonstrated the utility of Doppler ultrasound examination as a useful adjunct to gray-scale ultrasound by improving the accuracy of ultrasound exam in diagnosis of ureteral obstruction.

  13. Extending the range and performance of non-line-of-sight ultraviolet communication links

    Science.gov (United States)

    Shaw, Gary A.; Siegel, Andrew M.; Model, Joshua

    2006-05-01

    This paper describes recent advances in the technology for, and implementation of, short-range non-line-of-sight (NLOS) optical communication links. The approach relies on molecular scattering of ultraviolet wavelengths by the atmosphere to achieve NLOS, omni-directional communication Links. The implementation employs commercially produced semiconductor sources emitting in the solar-blind region of the UV spectrum, around 275nm. This paper extends previously reported field measurements to longer ranges (100+m) and to a wider variety of application scenarios, including an outdoor demonstration of real-time speech at 2.4kbps in full sunlight. The paper also addresses the design trades associated with replacing photomultiplier detectors with semiconductor detectors for reasons of cost and ruggedness. Even with improvements in semiconductor materials and commensurate reduction in dark currents, the use of semiconductor detectors will require the introduction of imaging arrays. Incorporation of imaging arrays opens the possibility of adaptive links in which bandwidth and transmit power are adapted to best exploit the channel constraints.

  14. IN-SYNC. III. THE DYNAMICAL STATE OF IC 348—A SUPER-VIRIAL VELOCITY DISPERSION AND A PUZZLING SIGN OF CONVERGENCE

    International Nuclear Information System (INIS)

    Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.; Foster, Jonathan B.; Tan, Jonathan C.; Rio, Nicola da; Nidever, David L.; Chojnowski, S. Drew; Majewski, Steve; Skrutskie, Michael F.; Wilson, John C.; Zasowski, Gail; Flaherty, Kevin M.; Frinchaboy, Peter M.

    2015-01-01

    Most field stars will have encountered the highest stellar density and hence the largest number of interactions in their birth environment. Yet the stellar dynamics during this crucial phase are poorly understood. Here we analyze the radial velocities measured for 152 out of 380 observed stars in the 2–6 Myr old star cluster IC 348 as part of the SDSS-III APOGEE. The radial velocity distribution of these stars is fitted with one or two Gaussians, convolved with the measurement uncertainties including binary orbital motions. Including a second Gaussian improves the fit; the high-velocity outliers that are best fit by this second component may either (1) be contaminants from the nearby Perseus OB2 association, (2) be a halo of ejected or dispersing stars from IC 348, or (3) reflect that IC 348 has not relaxed to a Gaussian velocity distribution. We measure a velocity dispersion for IC 348 of 0.72 ± 0.07 km s −1 (or 0.64 ± 0.08 km s −1 if two Gaussians are fitted), which implies a supervirial state, unless the gas contributes more to the gravitational potential than expected. No evidence is found for a dependence of this velocity dispersion on distance from the cluster center or stellar mass. We also find that stars with lower extinction (in the front of the cloud) tend to be redshifted compared with stars with somewhat higher extinction (toward the back of the cloud). This data suggest that the stars in IC 348 are converging along the line of sight. We show that this correlation between radial velocity and extinction is unlikely to be spuriously caused by the small cluster rotation of 0.024 ± 0.013 km s −1 arcmin −1 or by correlations between the radial velocities of neighboring stars. This signature, if confirmed, will be the first detection of line of sight convergence in a star cluster. Possible scenarios for reconciling this convergence with IC 348's observed supervirial state include: (a) the cluster is fluctuating around a new virial

  15. Doppler and time-travel broadening in ICR plasma isotope separation

    International Nuclear Information System (INIS)

    Karchevskii, A.I.; Potanin, E.P.

    1994-01-01

    Isotopically-selective ion-cyclotron resonance (ICR) heating is one of the most promising plasma isotope separation methods. The separation degree of ICR separation in a plasma depends on the resonance heating selectivity. The selectivity is due to the isotopically-adjacent accelerated ions resonance curve overlapping and therefore, is determined by the width of the resonance curves. In the case of a collisionless plasma in an ideal homogeneous longitudinal magnetic field, the line broadening is mainly determined by Doppler and time-travel effects. These effects differ in nature, and one has some difficulties in distinguishing them when interpreting the resonance curves because both broadenings depend on ion axial velocities. We consider the simplest case: the extrenal heating alternating electric field does not depend on the axial coordinate (the wave number γ = 0). Hence, in this case the Doppler effect does not occur

  16. Wind turbine wake characterization using long-range Doppler lidar

    Science.gov (United States)

    Aitken, M.; Lundquist, J. K.; Hestmark, K.; Banta, R. M.; Pichugina, Y.; Brewer, A.

    2012-12-01

    Wind turbines extract energy from the freestream flow, resulting in a waked region behind the rotor which is characterized by reduced wind speed and increased turbulence. The velocity deficit in the wake diminishes with distance, as faster-moving air outside is gradually entrained. In a concentrated group of turbines, then, downwind machines experience very different inflow conditions compared to those in the front row. As utility-scale turbines rarely exist in isolation, detailed knowledge of the mean flow and turbulence structure inside wakes is needed to correctly model both power production and turbine loading at modern wind farms. To this end, the Turbine Wake and Inflow Characterization Study (TWICS) was conducted in the spring of 2011 to determine the reduction in wind speeds downstream from a multi-MW turbine located at the National Renewable Energy Laboratory's National Wind Technology Center (NWTC) near Boulder, Colorado. Full-scale measurements of wake dynamics are hardly practical or even possible with conventional sensors, such as cup anemometers mounted on meteorological (met) masts. Accordingly, the High Resolution Doppler Lidar (HRDL) developed by the National Oceanic and Atmospheric Administration's Earth System Research Laboratory was employed to investigate the formation and propagation of wakes under varying levels of ambient wind speed, shear, atmospheric stability, and turbulence. HRDL remotely senses line-of-sight wind velocities and has been used in several previous studies of boundary layer aerodynamics. With a fully steerable beam and a maximum range up to about 5 km, depending on atmospheric conditions, HRDL performed a comprehensive survey of the wind flow in front of and behind the turbine to study the shape, meandering, and attenuation of wakes. Due in large part to limited experimental data availability, wind farm wake modeling is still subject to an unacceptable amount of uncertainty, particularly in complex terrain. Here, analytical

  17. Spin-Orbit Misalignments of Three Jovian Planets via Doppler Tomography

    Science.gov (United States)

    Johnson, Marshall C.; Cochran, William D.; Addison, Brett C.; Tinney, Chris G.; Wright, Duncan J.

    2017-10-01

    We present measurements of the spin-orbit misalignments of the hot Jupiters HAT-P-41 b and WASP-79 b, and the aligned warm Jupiter Kepler-448 b. We obtain these measurements with Doppler tomography, where we spectroscopically resolve the line profile perturbation during the transit due to the Rossiter-McLaughlin effect. We analyze time series spectra obtained during portions of five transits of HAT-P-41 b, and find a value of the spin-orbit misalignment of λ =-{22.1}-6.0{+0.8^\\circ }. We reanalyze the radial velocity Rossiter-McLaughlin data on WASP-79 b obtained by Addison et al. using Doppler tomographic methodology. We measure λ =-{99.1}-3.9{+4.1^\\circ }, consistent with but more precise than the value found by Addison et al. For Kepler-448 b we perform a joint fit to the Kepler light curve, Doppler tomographic data, and a radial velocity data set from Lillo-Box et al. We find an approximately aligned orbit (λ =-{7.1}-2.8{+4.2^\\circ }), in agreement with the value found by Bourrier et al. Through analysis of the Kepler light curve we measure a stellar rotation period of {P}{rot}=1.27+/- 0.11 days, and use this to argue that the full three-dimensional spin-orbit misalignment is small, \\psi ˜ 0^\\circ . Based in part on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  18. Pulsed-wave tissue Doppler and color tissue Doppler echocardiography: calibration with M-mode, agreement, and reproducibility in a clinical setting

    DEFF Research Database (Denmark)

    Olsen, Niels Thue; Jons, Christian; Fritz-Hansen, Thomas

    2009-01-01

    BACKGROUND: Myocardial velocities can be measured with both pulsed-wave tissue Doppler (PWTD) and color tissue Doppler (CTD) echocardiography. We aimed to (A) to explore which of the two methods better approximates true tissue motion and (B) to examine the agreement and the reproducibility...... of the two methods in a routine clinical setting. METHODS: For Study A, the displacements of 63 basal myocardial segments from 13 patients were examined with M-mode and compared with the velocity-time integral of PWTD and CTD velocities. For Study B, the basal lateral segments from 58 patients were examined...... with PWTD and CTD, and the peak myocardial velocities during systole (Sm), early diastole (Em), and late diastole (Am) were measured. RESULTS: Study A: CTD-based measurements of displacement were 12% lower than M-mode measurements (95% CI: -18%; -6%). PWTD velocity-time integrals measured at the outer edge...

  19. Spectral color Doppler in the diagnosis and follow-up of Graves' disease

    International Nuclear Information System (INIS)

    Sponza, Massimo; Bertolotto, Michele; Ricci, Claudio; Fabris, Bruno; Armini, Lorenzo

    1997-01-01

    Hyperthyroidism in Graves' disease is caused by the presence of circulating autoantibodies to the THS receptors on the thyroid cells. Thyroid-suppression therapy prevents hormone production directly, without affecting the pathogenetic process. They performed color Doppler US of the thyroid gland and pulsed Doppler analysis of thyroid artery flow in 21 patients with Graves' disease before and during medical treatment. US results were compared with those of a control group of 40 healthy subjects and correlated with the values of thyroid hormones, TSH and thyroid microsomal and thyroglobulin antibodies. The thyroid gland was hypo vascularized in the control group. Pulsed Doppler examination of the thyroid arteries exhibited peak systolic velocity of PSV 20 ± 4 cm/s, diastolic velocity of 8 ± 1 cm/s, and resistive index of 0.60 ± 0.04. The thyroid gland of Graves' disease patients was hyper vascularized. Pulsed Doppler examination of the thyroid arteries exhibited peak systolic velocity (PSV = 51 ± 12 cm/s), end diastolic velocity (VD = 15 ± 4 cm/s) and resistive index (RI = 0.71 ± 0.04) significantly higher than in normal subjects (p < 0.001). Circulating thyroid hormones and flow parameters normalized after 6-8 months of medical therapy (PSV = 20 ± 6 cm/s, VD = 9 ± 3 cm(s, RI = 0.58 ± 0.07). The color Doppler patterns normalized only in a patient with normal TSH and antibodies. Sampling of the thyroid arteries proved more repeatable than sampling of parenchymal vessels

  20. Imaging doppler lidar for wind turbine wake profiling

    Science.gov (United States)

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  1. Comparison between measurements of hyperfine structures of Pr II - lines investigated by collinear laser ion beam spectroscopy (CLIBS) ans saturation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Nadeem; Anjum, Naveed [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria); Optics Labs, Nilore, Islamabad (Pakistan); Huehnermann, Harry [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria); Fachbereich Physik, Univ. Marburg/Lahn (Germany); Windholz, Laurentius [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria)

    2011-07-01

    Investigation of narrow hyperfine structures needs a reduction of the Doppler broadening of the investigated lines. Here we have used two methods: collinear laser spectroscopy (CLIBS) and laser saturation spectroscopy. In the first method, the Doppler width is reduced by accelerating Pr ions to a high velocity and excitation with a collinear laser beam, while in the second method ions with velocity group zero are selected by nonlinear saturation. In this work the hyperfine spectra of several Pr II lines were investigated using CLIBS. A line width of ca. 60 MHz was measured. The same lines were then investigated in a hollow cathode discharge lamp using intermodulated laser-induced fluorescence spectroscopy. Using this technique a spectral line width of about 200 MHz was achieved. In both methods, the excitation source is a ring dye laser operated with R6G. Using a fit program, magnetic dipole interaction constants A and the electric-quadrupole interaction constants B of the involved levels have been determined in both cases. We discuss advantages and disadvantages of both methods.

  2. Doppler-guided retrograde catheterization system

    Science.gov (United States)

    Frazin, Leon J.; Vonesh, Michael J.; Chandran, Krishnan B.; Khasho, Fouad; Lanza, George M.; Talano, James V.; McPherson, David D.

    1991-05-01

    The purpose of this study was to investigate a Doppler guided catheterization system as an adjunctive or alternative methodology to overcome the disadvantages of left heart catheterization and angiography. These disadvantages include the biological effects of radiation and the toxic and volume effects of iodine contrast. Doppler retrograde guidance uses a 20 MHz circular pulsed Doppler crystal incorporated into the tip of a triple lumen multipurpose catheter and is advanced retrogradely using the directional flow information provided by the Doppler waveform. The velocity detection limits are either 1 m/second or 4 m/second depending upon the instrumentation. In a physiologic flow model of the human aortic arch, multiple data points revealed a positive wave form when flow was traveling toward the catheter tip indicating proper alignment for retrograde advancement. There was a negative wave form when flow was traveling away from the catheter tip if the catheter was in a branch or bent upon itself indicating improper catheter tip position for retrograde advancement. In a series of six dogs, the catheter was able to be accurately advanced from the femoral artery to the left ventricular chamber under Doppler signal guidance without the use of x-ray. The potential applications of a Doppler guided retrograde catheterization system include decreasing time requirements and allowing safer catheter guidance in patients with atherosclerotic vascular disease and suspected aortic dissection. The Doppler system may allow left ventricular pressure monitoring in the intensive care unit without the need for x-ray and it may allow left sided contrast echocardiography. With pulse velocity detection limits of 4 m/second, this system may allow catheter direction and passage into the aortic root and left ventricle in patients with aortic stenosis. A modification of the Doppler catheter may include transponder technology which would allow precise catheter tip localization once the

  3. Glare Spot Phase Doppler Anemometry

    OpenAIRE

    Hespel, Camille; Ren, Kuan Fang; Gréhan, Gérard; Onofri, Fabrice

    2006-01-01

    International audience; The Phase Doppler anemometry has been developed to measure simultaneously the velocity and the size of droplets. The measurement of the refractive index is also necessary since it depends on the temperature and the composition of the particle and its measurement permits both to increase the quality of the diameter measurement and to obtain information on the temperature and/or the composition of the droplets. In this paper, we introduce a Glare Spot Phase Doppler Anemo...

  4. A Path Loss Model for Non-Line-of-Sight Ultraviolet Multiple Scattering Channels

    Directory of Open Access Journals (Sweden)

    Sadler BrianM

    2010-01-01

    Full Text Available An ultraviolet (UV signal transmission undergoes rich scattering and strong absorption by atmospheric particulates. We develop a path loss model for a Non-Line-of-Sight (NLOS link. The model is built upon probability theory governing random migration of photons in free space, undergoing scattering, in terms of angular direction and distance. The model analytically captures the contributions of different scattering orders. Thus it relaxes the assumptions of single scattering theory and provides more realistic results. This allows us to assess the importance of high-order scattering, such as in a thick atmosphere environment, where short range NLOS UV communication is enhanced by hazy or foggy weather. By simulation, it is shown that the model coincides with a previously developed Monte Carlo model. Additional numerical examples are presented to demonstrate the effects of link geometry and atmospheric conditions. The results indicate the inherent tradeoffs in beamwidth, pointing angles, range, absorption, and scattering and so are valuable for NLOS communication system design.

  5. DESIGN OF ROBUST COMMAND TO LINE-OF-SIGHT GUIDANCE LAW: A FUZZY ADAPTIVE APPROACH

    Directory of Open Access Journals (Sweden)

    ESMAIL SADEGHINASAB

    2016-11-01

    Full Text Available In this paper, the design of command to line-of-sight (CLOS missile guidance law is addressed. Taking a three dimensional guidance model, the tracking control problem is formulated. To solve the target tracking problem, the feedback linearization controller is first designed. Although such control scheme possesses the simplicity property, but it presents the acceptable performance only in the absence of perturbations. In order to ensure the robustness properties against model uncertainties, a fuzzy adaptive algorithm is proposed with two parts including a fuzzy (Mamdani system, whose rules are constructed based on missile guidance, and a so-called rule modifier to compensate the fuzzy rules, using the negative gradient method. Compared with some previous works, such control strategy provides a faster time response without large control efforts. The performance of feedback linearization controller is also compared with that of fuzzy adaptive strategy via various simulations.

  6. The dependence of C IV broad absorption line properties on accompanying Si IV and Al III absorption: relating quasar-wind ionization levels, kinematics, and column densities

    Energy Technology Data Exchange (ETDEWEB)

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Trump, J. R. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Hall, P. B. [Department of Physics and Astronomy, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3 (Canada); Anderson, S. F. [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Hamann, F. [Department of Astronomy, University of Florida, Gainesville, FL 32611-2055 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Pâris, I. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Petitjean, P. [Institut d' Astrophysique de Paris, Universite Paris 6, F-75014 Paris (France); Ross, Nicholas P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Shen, Yue [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); York, Don, E-mail: nfilizak@astro.psu.edu [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States)

    2014-08-20

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for C IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.

  7. Experimental study of wind tunnel performance by a two-component laserDopplerAnemometer

    Directory of Open Access Journals (Sweden)

    M Pourmahabadian

    2005-10-01

    Full Text Available Background and Aims: This survey studies the wind tunnel performance by a two- componentlaser Doppler Anemometer, so some experiments were carried out to assess the performance of awind tunnel.Method: The tunnel was capable to produce air velocity of up to 40 m/s.. Measurements ofvelocity profiles have been made actors the test section of wind tunnel through the using a twocomponentfiber optic Laser Doppler anemometer. Measurements of velocity profiles andturbulence intensities have been made across the test section of the wind tunnel using a twocomponentfiber optic Laser Doppler anemometer (I.D.A for wind speeds ranging from 1 to3m/s.Results: Performance rests of velocity profiles at a given flow rate and various position of aerosolgenerator showed that although uniformity of flow dependent to the place of an atomizer (asaerosol generator but the variation of wind speed across the test section meets the wind speedrequirements, as specified by US EPAfor 3m/s only.Conclusion:At time which particles velocity reach to less than one micron, the air velocity relateson the similarity of particles and

  8. A High-Speed Optical Diagnostic that uses Interference Filters to Measure Doppler Shifts

    International Nuclear Information System (INIS)

    Paul, S.F.; Cates, C.; Mauel, M.; Maurer, D.; Navratil, G.; Shilov, M.

    2004-01-01

    A high-speed, non-invasive velocity diagnostic has been developed for measuring plasma rotation. The Doppler shift is determined by employing two detectors that view line emission from the identical volume of plasma. Each detector views through an interference filter having a passband that varies linearly with wavelength. One detector views the plasma through a filter whose passband has a negative slope and the second detector views through one with a positive slope. Because each channel views the same volume of plasma, the ratio of the amplitudes is not sensitive to variations in plasma emission. With suitable knowledge of the filter characteristics and the relative gain, the Doppler shift is readily obtained in real time from the ratio of two channels without needing a low throughput spectrometer. The systematic errors--arising from temperature drifts, stability, and frequency response of the detectors and amplifiers, interference filter linearity, and ability to thoroughly homogenize the light from the fiber bundle--can be characterized well enough to obtain velocity data with + or - 1 km/sec with a time resolution of 0.3 msec

  9. THE STRUCTURE OF THE BROAD-LINE REGION IN ACTIVE GALACTIC NUCLEI. I. RECONSTRUCTED VELOCITY-DELAY MAPS

    International Nuclear Information System (INIS)

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; De Rosa, G.; Martini, Paul; Kochanek, C. S.; Zu, Y.; Shappee, B.; Beatty, T. G.; Salvo, C. Araya; Bird, J. C.; Horne, Keith; Bentz, M. C.; Denney, K. D.; Siverd, R.; Sergeev, S. G.; Borman, G. A.; Kaspi, S.; Bord, D. J.; Che, X.

    2013-01-01

    We present velocity-resolved reverberation results for five active galactic nuclei. We recovered velocity-delay maps using the maximum entropy method for four objects: Mrk 335, Mrk 1501, 3C 120, and PG 2130+099. For the fifth, Mrk 6, we were only able to measure mean time delays in different velocity bins of the Hβ emission line. The four velocity-delay maps show unique dynamical signatures for each object. For 3C 120, the Balmer lines show kinematic signatures consistent with both an inclined disk and infalling gas, but the He II λ4686 emission line is suggestive only of inflow. The Balmer lines in Mrk 335, Mrk 1501, and PG 2130+099 show signs of infalling gas, but the He II emission in Mrk 335 is consistent with an inclined disk. We also see tentative evidence of combined virial motion and infalling gas from the velocity-binned analysis of Mrk 6. The maps for 3C 120 and Mrk 335 are two of the most clearly defined velocity-delay maps to date. These maps constitute a large increase in the number of objects for which we have resolved velocity-delay maps and provide evidence supporting the reliability of reverberation-based black hole mass measurements.

  10. THE STRUCTURE OF THE BROAD-LINE REGION IN ACTIVE GALACTIC NUCLEI. I. RECONSTRUCTED VELOCITY-DELAY MAPS

    Energy Technology Data Exchange (ETDEWEB)

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; De Rosa, G.; Martini, Paul; Kochanek, C. S.; Zu, Y.; Shappee, B.; Beatty, T. G.; Salvo, C. Araya; Bird, J. C. [Department of Astronomy, The Ohio State University, 140 W 18th Ave, Columbus, OH 43210 (United States); Horne, Keith [SUPA Physics and Astronomy, University of St. Andrews, Fife, KY16 9SS Scotland (United Kingdom); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States); Denney, K. D. [Marie Curie Fellow at the Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Siverd, R. [Department of Physics and Astronomy, Vanderbilt University, 5301 Stevenson Center, Nashville, TN 37235 (United States); Sergeev, S. G.; Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny Crimea 98409 (Ukraine); Kaspi, S. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Bord, D. J. [Department of Natural Sciences, The University of Michigan - Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128 (United States); Che, X. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 41809 (United States); and others

    2013-02-10

    We present velocity-resolved reverberation results for five active galactic nuclei. We recovered velocity-delay maps using the maximum entropy method for four objects: Mrk 335, Mrk 1501, 3C 120, and PG 2130+099. For the fifth, Mrk 6, we were only able to measure mean time delays in different velocity bins of the H{beta} emission line. The four velocity-delay maps show unique dynamical signatures for each object. For 3C 120, the Balmer lines show kinematic signatures consistent with both an inclined disk and infalling gas, but the He II {lambda}4686 emission line is suggestive only of inflow. The Balmer lines in Mrk 335, Mrk 1501, and PG 2130+099 show signs of infalling gas, but the He II emission in Mrk 335 is consistent with an inclined disk. We also see tentative evidence of combined virial motion and infalling gas from the velocity-binned analysis of Mrk 6. The maps for 3C 120 and Mrk 335 are two of the most clearly defined velocity-delay maps to date. These maps constitute a large increase in the number of objects for which we have resolved velocity-delay maps and provide evidence supporting the reliability of reverberation-based black hole mass measurements.

  11. Wide Angle Michelson Doppler Imaging Interferometer (WAMDII)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The wide angle Michelson Doppler imaging interferometer (WAMDII) is a specialized type of optical Michelson interferometer working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson interferometer followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.

  12. [Doppler ultrasound evaluation of aortic insufficiency using half-pressure time. Absence of arterial rigidity influence].

    Science.gov (United States)

    Kalotka-Bratek, H; Drobinski, G; Klimczak, K; Busquet, P; Fraysse, J B; Bejean-Lebuisson, A; Grosgogeat, Y

    1989-02-01

    In 20 patients with pure aortic regurgitation we studied the relationship between the severity of regurgitation, as assessed haemodynamically by the percentage of leakage (%L), and the half-pressure (T 1/2 P) and half-velocity (T 1/2 V) times, as obtained from doppler aortic blood velocity curves, taking into account the rigidity of the systemic vascular circuit characterized by the pressure wave propagation velocity (PWPV). The systemic arterial circuit was supple in 14 patients (PWPV less than 7.5 m/sec) and rigid in 6 patients (PWPV greater than 7.5 m/sec). The regression slopes between %L and T 1/2 P and between %L and T 1/2 V were calculated with their confidence limits in the 14 patients with supple arteries. The 6 patients with rigid arteries fitted into this nomogram, thus demonstrating that systemic arterial rigidity makes no difference in the relationship between %L and doppler indices. The half-velocity and half-pressure times measured by doppler ultrasound were acquired from a velocity signal directly determined by the aortic regurgitation, without any detectable effect of vascular circuit rigidity. Being equivalent by nature to the signal decrease time constant, they are independent of the absolute protodiastolic value of diastolic pressure gradient or blood flow velocity. For this reason these two doppler parameters are reliable to evaluate the severity of aortic regurgitation.

  13. Prognostic value of systolic mitral annular velocity measured with Doppler tissue imaging in patients with chronic heart failure caused by left ventricular systolic dysfunction

    Science.gov (United States)

    Nikitin, N P; Loh, P H; de Silva, R; Ghosh, J; Khaleva, O Y; Goode, K; Rigby, A S; Alamgir, F; Clark, A L; Cleland, J G F

    2006-01-01

    Objective To assess the prognostic value of various conventional and novel echocardiographic indices in patients with chronic heart failure (CHF) caused by left ventricular (LV) systolic dysfunction. Methods 185 patients with a mean (SD) age of 67 (11) years with CHF and LV ejection fraction < 45% despite optimal pharmacological treatment were prospectively enrolled. The patients underwent two dimensional echocardiography with tissue harmonic imaging to assess global LV systolic function and obtain volumetric data. Transmitral flow was assessed with conventional pulse wave Doppler. Systolic (Sm), early, and late diastolic mitral annular velocities were measured with the use of colour coded Doppler tissue imaging. Results During a median follow up of 32 months (range 24–38 months in survivors), 34 patients died and one underwent heart transplantation. Sm velocity (hazard ratio (HR) 0.648, 95% confidence interval (CI) 0.463 to 0.907, p  =  0.011), diastolic arterial pressure (HR 0.965, 95% CI 0.938 to 0.993, p  =  0.015), serum creatinine (HR 1.006, 95% CI 1.001 to 1.011, p  =  0.023), LV ejection fraction (HR 0.945, 95% CI 0.899 to 0.992, p  =  0.024), age (HR 1.035, 95% CI 1.000 to 1.071, p  =  0.052), LV end systolic volume index (HR 1.009, 95% CI 0.999 to 1.019, p  =  0.067), and restrictive pattern of transmitral flow (HR 0.543, 95% CI 0.278 to 1.061, p  =  0.074) predicted the outcome of death or transplantation on univariate analysis. On multivariate analysis, only Sm velocity (HR 0.648, 95% CI 0.460 to 0.912, p  =  0.013) and diastolic arterial pressure (HR 0.966, 95% CI 0.938 to 0.994, p  =  0.016) emerged as independent predictors of outcome. Conclusions In patients with CHF and LV systolic dysfunction despite optimal pharmacological treatment, the strongest independent echocardiographic predictor of prognosis was Sm velocity measured with quantitative colour coded Doppler tissue

  14. Korea-China Joint R and D on Doppler Lidar Technology

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Kim, D. H.; Kwon, S. O.; Yang, K. H.; Song, I. K.

    2009-03-01

    Doppler lidar technology is to monitor atmospheric wind velocity by measuring the light scattering signals between a laser and aerosol particles or molecules existing in the atmosphere. When the particles (or molecules) in the atmosphere are moving by wind force, the frequency of backscattering light is shifted by doppler effect, so that the wind velocity profile can be obtained by measurement of the shifted frequencies. When the laser radiation is scanned in four different direction, three dimensional wind profiles are obtained. The Anhui Institute of Optics and Fine Mechanics under the China Academy of Sciences has developed and operated the doppler lidar system for long time. In this project we want to developed a new technologies adopted to the chinese doppler system and to test the updated In the process of collaboration between China and Korea research teams, we want to learn the state-of-art technology involved in the doppler lidar system

  15. Laser-induced fluorescence line narrowing in atomic vapors

    International Nuclear Information System (INIS)

    Meier, T.; Schuessler, H.A.

    1983-01-01

    The use of highly monochromatic light allows the selective excitation of atoms in vapors if excitation and detection of the fluorescence is carried out collinearly. The atoms capable of absorbing light then form an atomic beam of well defined velocity along the direction of the laser beam, but no velocity selection occurs perpendicular to it. The potential of the technique for Doppler-free atomic spectroscopy and for the study of excited atom collisions is demonstrated using the Na D 1 line as an example

  16. Tools for spectral data analysis of arbitrary emitters in edge plasma

    International Nuclear Information System (INIS)

    Marandet, Y.; Genesio, P.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R.; Felts, B.; Capes, H.; Guirlet, R.; Lotte, P.; Lowry, C.

    2003-01-01

    A line shape code including Stark, Zeeman and Doppler effects has been upgraded to include atomic fine structure effects and the motional Stark effect (MST). Genetic algorithms provide an efficient and robust tool for automated analysis of edge plasma line shapes. Such an algorithm has been used to fit Doppler-broadened Zeeman D α /H α spectra observed in Tore-Supra. Spectra were analyzed from 2 different machine configurations, corresponding to: 1) recycling from the ergodic divertor (ED), with lines of sight tangential to the magnetic field; 2) recycling at the toroidal pump limiter (TPL) with vertical lines of sight perpendicular to the magnetic field. Preliminary results indicate that the plasma above the TPL contains a larger fraction of warm particles than the ED plasma. (A.C.)

  17. Interstellar abundances in dense, moderately reddened lines of sight. I. Observational evidence for density-dependent depletion

    International Nuclear Information System (INIS)

    Joseph, C.L.; Snow, T.P. Jr.; Seab, C.G.; Crutcher, R.M.; NASA, Ames Research Center, Moffett Field, CA; Illinois Univ., Urbana)

    1986-01-01

    The nature of dust-gas interactions, which are capable of modifying the size distribution of interstellar grains and thus causing changes in the selective extinction curve, are investigated through depletion studies. The gaseous abundances of 15 elements have been determined for several lines of sight toward moderately reddened stars, each having an anomalous extinction curve and a large abundance of cyanogen (CN). The basic result of this study is that certain elements appear to deplete preferentially in interstellar clouds having a large abundance of CN. Since CN is a sensitive indicator of the interstellar spatial density, the data might suggest that the unique pattern of enhanced depletion observed here represents the best observational evidence of accretion. 107 references

  18. Line-of-sight effects in strong lensing: putting theory into practice

    Energy Technology Data Exchange (ETDEWEB)

    Birrer, Simon; Welschen, Cyril; Amara, Adam; Refregier, Alexandre, E-mail: simon.birrer@phys.ethz.ch, E-mail: cyril.welschen@student.ethz.ch, E-mail: adam.amara@phys.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093, Zurich (Switzerland)

    2017-04-01

    We present a simple method to accurately infer line of sight (LOS) integrated lensing effects for galaxy scale strong lens systems through image reconstruction. Our approach enables us to separate weak lensing LOS effects from the main strong lens deflector. We test our method using mock data and show that strong lens systems can be accurate probes of cosmic shear with a precision on the shear terms of ± 0.003 (statistical error) for an HST-like dataset. We apply our formalism to reconstruct the lens COSMOS 0038+4133 and its LOS. In addition, we estimate the LOS properties with a halo-rendering estimate based on the COSMOS field galaxies and a galaxy-halo connection. The two approaches are independent and complementary in their information content. We find that when estimating the convergence at the strong lens system, performing a joint analysis improves the measure by a factor of two compared to a halo model only analysis. Furthermore the constraints of the strong lens reconstruction lead to tighter constraints on the halo masses of the LOS galaxies. Joint constraints of multiple strong lens systems may add valuable information to the galaxy-halo connection and may allow independent weak lensing shear measurement calibrations.

  19. Principles of doppler tomography

    International Nuclear Information System (INIS)

    Juhlin, P.

    1992-08-01

    This paper shows how the radon transform can be used to determine vector fields. A scheme to determine the velocity field of a moving fluid by measurements with a continuous doppler signal is suggested. When the flow is confined to a bounded domain, as is the case in most applications, it can be uniquely decomposed into one gradiental and one rotational part. The former vanishes if the fluid is incompressible and source-free, and the latter can be completely reconstructed by the methods proposed in this paper if the domain is simply connected. Special attention is paid to laminar flow in a long cylindrical vessel with circular cross-section. Under such conditions the flow profile becomes parabolic, which makes the vessel recognizable as a typical 'N-shaped' pattern in an image describing the rotation of the velocity field. The vessel yields the same doppler tomographic pattern, no matter how it is sectioned. The ideas presented should be applicable also when studying the flow in blood vessels, even if the flow profile in these is not quite parabolic. The discrepancies only make the 'N-shape' somewhat distorted

  20. In vivo visualization method by absolute blood flow velocity based on speckle and fringe pattern using two-beam multipoint laser Doppler velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kyoden, Tomoaki, E-mail: kyouden@nc-toyama.ac.jp; Naruki, Shoji; Akiguchi, Shunsuke; Momose, Noboru; Homae, Tomotaka; Hachiga, Tadashi [National Institute of Technology, Toyama College, 1-2 Ebie-Neriya, Imizu, Toyama 933-0293 (Japan); Ishida, Hiroki [Department of Applied Physics, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Andoh, Tsugunobu [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Takada, Yogo [Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan)

    2016-08-28

    Two-beam multipoint laser Doppler velocimetry (two-beam MLDV) is a non-invasive imaging technique able to provide an image of two-dimensional blood flow and has potential for observing cancer as previously demonstrated in a mouse model. In two-beam MLDV, the blood flow velocity can be estimated from red blood cells passing through a fringe pattern generated in the skin. The fringe pattern is created at the intersection of two beams in conventional LDV and two-beam MLDV. Being able to choose the depth position is an advantage of two-beam MLDV, and the position of a blood vessel can be identified in a three-dimensional space using this technique. Initially, we observed the fringe pattern in the skin, and the undeveloped or developed speckle pattern generated in a deeper position of the skin. The validity of the absolute velocity value detected by two-beam MLDV was verified while changing the number of layers of skin around a transparent flow channel. The absolute velocity value independent of direction was detected using the developed speckle pattern, which is created by the skin construct and two beams in the flow channel. Finally, we showed the relationship between the signal intensity and the fringe pattern, undeveloped speckle, or developed speckle pattern based on the skin depth. The Doppler signals were not detected at deeper positions in the skin, which qualitatively indicates the depth limit for two-beam MLDV.

  1. Poststenotic flow disturbance in the dog aorta as measured with pulsed Doppler ultrasound.

    Science.gov (United States)

    Talukder, N; Fulenwider, J T; Mabon, R F; Giddens, D P

    1986-08-01

    Blood flow velocity was measured in the dog aorta distal to mechanically induced constrictions of various degrees of severity employing an 8-MHz pulsed Doppler ultrasound velocimeter and a phase-lock loop frequency tracking method for extracting velocity from the Doppler quadrature signals. The data were analyzed to construct ensemble average velocity waveforms and random velocity disturbances. In any individual animal the effect of increasing the degree of stenosis beyond approximately 25 percent area reduction was to produce increasing levels of random velocity disturbance. However, variability among animals was such that the sensitivity of random behavior to the degree of stenosis was degraded to the point that it appears difficult to employ Doppler ultrasound measurements of random disturbances to discriminate among stenoses with area reductions less than approximately 75 percent. On the other hand, coherent vortex structures in velocity waveforms consistently occurred distal to mild constrictions (25-50 percent area reduction). Comparison of the phase-lock loop Doppler ultrasound data with simultaneous measurements using invasive hot-film anemometry, which possesses excellent frequency response, demonstrates that the ultrasound method can reliably detect those flow phenomena in such cases. Thus, the identification of coherent, rather than random, flow disturbances may offer improved diagnostic capability for noninvasively detecting arteriosclerotic plaques at relatively early stages of development.

  2. Concordance and reproducibility between M-mode, tissue Doppler imaging, and two-dimensional strain imaging in the assessment of mitral annular displacement and velocity in patients with various heart conditions

    DEFF Research Database (Denmark)

    de Knegt, Martina Chantal; Biering-Sorensen, Tor; Sogaard, Peter

    2014-01-01

    AIMS: Mitral annular (MA) displacement reflects longitudinal left ventricular (LV) deformation and systolic velocity measurements reflect the rate of contraction; both are valuable in the diagnosis and prognosis of cardiac disease. The aim of this study was to test the agreement and reproducibility...... between motion mode (M-mode), colour tissue Doppler imaging (TDI), and two-dimensional strain imaging (2DSI) when measuring MA displacement and systolic velocity. METHODS AND RESULTS: Using GE Healthcare Vivid 7 and E9 and Echopac BT11 software, MA displacement and velocity measurements by 2DSI, TDI...

  3. Evaluation of postoperative pulmonary regurgitation after surgical repair of tetralogy of Fallot: comparison between Doppler echocardiography and MR velocity mapping

    Energy Technology Data Exchange (ETDEWEB)

    Grothoff, Matthias; Spors, Birgit; Gutberlet, Matthias [Charite Campus Virchow Klinikum, Department of Radiology and Nuclear Medicine, Berlin (Germany); Abdul-Khaliq, Hasim [Deutsches Herzzentrum, Department of Congenital Heart Disease/Pediatric Cardiology, Berlin (Germany)

    2008-02-15

    Pulmonary regurgitation is a common finding in patients after correction of tetralogy of Fallot (TOF). Right ventricular impairment and even ventricular arrhythmia have been ascribed to pulmonary valve insufficiency (PI), which is therefore an important issue in follow-up examinations. To compare PI measured by echocardiography (ECHO) with data provided by cardiac MRI (CMR). We studied 54 selected patients (18 female; median age 14.0 years, range 3.8-53.4 years) after surgical correction of TOF. To quantify pulmonary regurgitant fraction (PRF) by CMR, flow velocity mapping was performed. On Doppler ECHO, length, width and localization of regurgitant flow was measured. The severity of PI was categorized as mild, moderate or severe and compared to the data obtained by CMR. On CMR the mean PRF was 29.2 {+-} 13.4%. Patients with a transannular patch had a significantly higher PRF (39.9 {+-} 11.6%) than patients with an intact annular ring (23.6 {+-} 11.4%). Differentiation by Doppler ECHO between the categories mild, moderate and severe PI was confirmed by significant differences in PRF measured by CMR (mild vs. moderate P < 0.04; moderate vs. severe P < 0.014; mild vs. severe P < 0.001). Furthermore, PRF correlated with right ventricular end diastolic volume index (r = 0.45, P < 0.01) and right ventricular end systolic volume index (r = 0.39, P < 0.01). Doppler ECHO can estimate the severity of PI after repair of TOF with acceptable results compared to CMR flow measurement. In univariate analysis there is only a weak influence of PRF on right ventricular volume. (orig.)

  4. Estimation of blood velocities using ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    imaging, and, finally, some of the more recent experimental techniques. The authors shows that the Doppler shift, usually considered the way velocity is detected, actually, plays a minor role in pulsed systems. Rather, it is the shift of position of signals between pulses that is used in velocity...

  5. DISCOVERY OF A DAMPED Lyα ABSORBER AT z = 3.3 ALONG A GALAXY SIGHT-LINE IN THE SSA22 FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Mawatari, K.; Inoue, A. K. [College of General Education, Osaka Sangyo University, 3-1-1, Nakagaito, Daito, Osaka, 574-8530 (Japan); Kousai, K.; Hayashino, T. [Research Center for Neutrino Science, General School of Science, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578 (Japan); Cooke, R.; Prochaska, J. X. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Yamada, T. [Astronomical Institute, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578 (Japan); Matsuda, Y., E-mail: mawatari@las.osaka-sandai.ac.jp [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan)

    2016-02-01

    Using galaxies as background light sources to map the Lyα absorption lines is a novel approach to study Damped Lyα Absorbers (DLAs). We report the discovery of an intervening z = 3.335 ± 0.007 DLA along a galaxy sight-line identified among 80 Lyman Break Galaxy (LBG) spectra obtained with our Very Large Telescope/Visible Multi-Object Spectrograph survey in the SSA22 field. The measured DLA neutral hydrogen (H i) column density is log(N{sub H} {sub i}/cm{sup −2}) = 21.68 ± 0.17. The DLA covering fraction over the extended background LBG is >70% (2σ), yielding a conservative constraint on the DLA area of ≳1 kpc{sup 2}. Our search for a counterpart galaxy hosting this DLA concludes that there is no counterpart galaxy with star formation rate larger than a few M{sub ⊙} yr{sup −1}, ruling out an unobscured violent star formation in the DLA gas cloud. We also rule out the possibility that the host galaxy of the DLA is a passive galaxy with M{sub *} ≳ 5 × 10{sup 10}M{sub ⊙} or a heavily dust-obscured galaxy with E(B − V) ≳ 2. The DLA may coincide with a large-scale overdensity of the spectroscopic LBGs. The occurrence rate of the DLA is compatible with that of DLAs found in QSO sight-lines.

  6. Calibration of the charge exchange recombination spectroscopy diagnostic for core poloidal rotation velocity measurements on JET

    International Nuclear Information System (INIS)

    Crombe, K.; Andrew, Y.; Giroud, C.; Hawkes, N.C.; Murari, A.; Valisa, M.; Oost, G. van; Zastrow, K.-D.

    2004-01-01

    This article describes recent improvements in the measurement of C 6+ impurity ion poloidal rotation velocities in the core plasma of JET using charge exchange recombination spectroscopy. Two independent techniques are used to provide an accurate line calibration. The first method uses a Perkin-Elmer type 303-306 samarium hollow cathode discharge lamp, with a Sm I line at 528.291 nm close to the C VI line at 529.1 nm. The second method uses the Be II at 527.06 nm and C III at 530.47 nm in the plasma spectrum as two marker lines on either side of the C VI line. Since the viewing chords have both a toroidal and poloidal component, it is important to determine the contribution of the toroidal rotation velocity component separately. The toroidal rotation velocity in the plasma core is measured with an independent charge exchange recombination spectroscopy diagnostic, looking tangentially at the plasma core. The contribution of this velocity along the lines of sight of the poloidal rotation diagnostic has been determined experimentally in L-mode plasmas keeping the poloidal component constant (K. Crombe et al., Proc. 30th EPS Conference, St. Petersburg, Russia, 7-11 July 2003, p. 1.55). The results from these experiments are compared with calculations of the toroidal contribution that take into account the original design parameters of the diagnostic and magnetic geometry of individual shots

  7. Laser scanning of a recirculation zone on the Bolund escarpment

    DEFF Research Database (Denmark)

    Mann, Jakob; Angelou, Nikolas; Sjöholm, Mikael

    2014-01-01

    Rapid variations in the height of the recirculation zone are measured with a scanning wind lidar over a small escarpment on the Bolund Peninsula. The lidar is essentially a continuous-wave laser Doppler anemometer with the capability of rapidly changing the focus distance and the beam direction....... The instrument measures the line-of-sight velocity 390 times per second and scans ten wind profiles from the ground up to seven meters per second. We observe a sharp interface between slow and fast moving fluid after the escarpment, and the interface is moving rapidly up and down. This implies that the position...

  8. A Fabry-Perot interferometer system for high-speed velocity measurement

    NARCIS (Netherlands)

    Cheng, L.K.; Bruinsma, A.J.A.; Prinse, W.C.; Smorenburg, C.

    1997-01-01

    The Fabry-Perot Velocity Interferometer System (F-PVIS) is designed and built for measuring the Doppler shift of light by recording positional changes in the interferometric pattern behind the Fabry-Perot interferometer. The velocity of a surface can be deduced from the Doppler shift which is caused

  9. Effect of line-of-sight inclinations on the observation of solar activity cycle: Lessons for CoRoT and Kepler

    International Nuclear Information System (INIS)

    Vazquez Ramio, H; Regulo, C; Mathur, S; GarcIa, R A

    2011-01-01

    CoRoT and Kepler missions are collecting data of solar-like oscillating stars of unprecedented quality. Moreover, thanks to the length of the time series, we are able to study their seismic variability. In this work we use numerical simulations based on the last 3 solar cycles to analyze the light curves as a function of the line-of-sight inclination angle. These preliminary results showed that the direct observation of the light curve can induce some bias in the position of the maximum of the cycle.

  10. Measurements of the toroidal plasma rotation velocity in TFTR major-radius compression experiments with auxiliary neutral beam heating

    International Nuclear Information System (INIS)

    Bitter, M.; Scott, S.; Wong, K.L.

    1986-07-01

    The time history of the central toroidal plasma rotation velocity in Tokamak Fusion Test Reactor (TFTR) experiments with auxiliary heating by neutral deuterium beam injection and major-radius compression has been measured from the Doppler shift of the emitted TiXXI-Kα line radiation. The experiments were conducted for neutral beam powers in the range from 2.1 to 3.8 MW and line-averaged densities in the range from 1.8 to 3.0 x 10 19 m -2 . The observed rotation velocity increase during compression is in agreement with results from modeling calculations which assume classical slowing-down of the injected fast deuterium ions and momentum damping at the rate established in the precompression plasma

  11. Excitation and abundance of C-3 in star forming cores : Herschel/HIFI observations of the sight-lines to W31C and W49N

    NARCIS (Netherlands)

    Mookerjea, B.; Giesen, T.; Stutzki, J.; Cernicharo, J.; Goicoechea, J. R.; De Luca, M.; Bell, T. A.; Gupta, H.; Gerin, M.; Persson, C. M.; Sonnentrucker, P.; Makai, Z.; Black, J.; Boulanger, F.; Coutens, A.; Dartois, E.; Encrenaz, P.; Falgarone, E.; Geballe, T.; Godard, B.; Goldsmith, P. F.; Gry, C.; Hennebelle, P.; Herbst, E.; Hily-Blant, P.; Joblin, C.; Kazmierczak, M.; Kolos, R.; Krelowski, J.; Lis, D. C.; Martin-Pintado, J.; Menten, K. M.; Monje, R.; Pearson, J. C.; Perault, M.; Phillips, T. G.; Plume, R.; Salez, M.; Schlemmer, S.; Schmidt, M.; Teyssier, D.; Vastel, C.; Yu, S.; Dieleman, P.; Guesten, R.; Honingh, C. E.; Morris, P.; Roelfsema, P.; Schieder, R.; Tielens, A. G. G. M.; Zmuidzinas, J.

    2010-01-01

    We present spectrally resolved observations of triatomic carbon (C-3) in several ro-vibrational transitions between the vibrational ground state and the low-energy nu(2) bending mode at frequencies between 1654-1897 GHz along the sight-lines to the submillimeter continuum sources W31C and W49N,

  12. Development of Small UAS Beyond-Visual-Line-of-Sight (BVLOS Flight Operations: System Requirements and Procedures

    Directory of Open Access Journals (Sweden)

    Scott Xiang Fang

    2018-04-01

    Full Text Available Due to safety concerns of integrating small unmanned aircraft systems (UAS into non-segregated airspace, aviation authorities have required a set of detect and avoid (DAA systems to be equipped on small UAS for beyond-visual-line-of-sight (BVLOS flight operations in civil airspace. However, the development of small UAS DAA systems also requires BVLOS flights for testing and validation. To mitigate operational risks for small UAS BVLOS flight operations, this paper proposes to initially test small UAS DAA systems in BVLOS flights in a restricted airspace with additional safety features. Later, this paper further discusses the operating procedures and emergency action plans for small UAS BVLOS flight operations. The testing results show that these safety systems developed can help improve operational safety for small UAS BVLOS flight operations.

  13. Macroscopic effects in electromagnetically-induced transparency in a Doppler-broadened system

    International Nuclear Information System (INIS)

    Pei Li-Ya; Qu Yi-Zhi; Niu Jin-Yan; Wang Ru-Quan; Wu Ling-An; Fu Pan-Ming; Zuo Zhan-Chun

    2015-01-01

    We study the electromagnetically-induced transparency (EIT) in a Doppler-broadened cascaded three-level system. We decompose the susceptibility responsible for the EIT resonance into a linear and a nonlinear part, and the EIT resonance reflects mainly the characteristics of the nonlinear susceptibility. It is found that the macroscopic polarization interference effect plays a crucial role in determining the EIT resonance spectrum. To obtain a Doppler-free spectrum there must be polarization interference between atoms of different velocities. A dressed-state model, which analyzes the velocities at which the atoms are in resonance with the dressed states through Doppler frequency shifting, is employed to explain the results. (paper)

  14. Fading Evaluation in the 60 GHz Band in Line-of-Sight Conditions

    Directory of Open Access Journals (Sweden)

    J. Reig

    2014-01-01

    Full Text Available An exhaustive analysis of the small-scale fading amplitude in the 60 GHz band is addressed for line-of-sight conditions (LOS. From a measurement campaign carried out in a laboratory, we have estimated the distribution of the small-scale fading amplitude over a bandwidth of 9 GHz. From the measured data, we have estimated the parameters of the Rayleigh, Rice, Nakagami-m, Weibull, and α-μ distributions for the small-scale amplitudes. The test of Kolmogorov-Smirnov (K-S for each frequency bin is used to evaluate the performance of such statistical distributions. Moreover, the distributions of the main estimated parameters for such distributions are calculated and approximated for lognormal statistics in some cases. The matching of the above distributions to the experimental distribution has also been analyzed for the lower tail of the cumulative distribution function (CDF. These parameters offer information about the narrowband channel behavior that is useful for a better knowledge of the propagation characteristics at 60 GHz.

  15. Transverse and Longitudinal Doppler Effects of the Sunbeam Spectra and Earth-Self Rotation and Orbital Velocities, the Mass of the Sun and Others

    OpenAIRE

    Nam, Sang Boo

    2009-01-01

    The transverse and longitudinal Doppler effects of the sunbeam spectra are shown to result in the earth parameters such as the earth-self rotation and revolution velocities, the earth orbit semi-major axis, the earth orbital angular momentum, the earth axial tilt, the earth orbit eccentricity, the local latitude and the mass of the sun. The sunbeam global positioning scheme is realized, including the earth orbital position. PACS numbers: 91.10.Fc, 95.10.Km, 91.10.Da, 91.10.Jf.

  16. THE FORMATION OF IRIS DIAGNOSTICS. II. THE FORMATION OF THE Mg II h and k LINES IN THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Leenaarts, J.; Pereira, T. M. D.; Carlsson, M.; De Pontieu, B. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Uitenbroek, H., E-mail: jorritl@astro.uio.no, E-mail: tiago.pereira@astro.uio.no, E-mail: mats.carlsson@astro.uio.no, E-mail: bdp@lmsal.com, E-mail: huitenbroek@nso.edu [NSO/Sacramento Peak P.O. Box 62 Sunspot, NM 88349-0062 (United States)

    2013-08-01

    NASA's Interface Region Imaging Spectrograph (IRIS) small explorer mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h and k lines as well as a slit-jaw imager centered at Mg II k. Understanding the observations requires forward modeling of Mg II h and k line formation from three-dimensional (3D) radiation-magnetohydrodynamic (RMHD) models. This paper is the second in a series where we undertake this modeling. We compute the vertically emergent h and k intensity from a snapshot of a dynamic 3D RMHD model of the solar atmosphere, and investigate which diagnostic information about the atmosphere is contained in the synthetic line profiles. We find that the Doppler shift of the central line depression correlates strongly with the vertical velocity at optical depth unity, which is typically located less than 200 km below the transition region (TR). By combining the Doppler shifts of the h and k lines we can retrieve the sign of the velocity gradient just below the TR. The intensity in the central line depression is anti-correlated with the formation height, especially in subfields of a few square Mm. This intensity could thus be used to measure the spatial variation of the height of the TR. The intensity in the line-core emission peaks correlates with the temperature at its formation height, especially for strong emission peaks. The peaks can thus be exploited as a temperature diagnostic. The wavelength difference between the blue and red peaks provides a diagnostic of the velocity gradients in the upper chromosphere. The intensity ratio of the blue and red peaks correlates strongly with the average velocity in the upper chromosphere. We conclude that the Mg II h and k lines are excellent probes of the very upper chromosphere just below the TR, a height regime that is impossible to probe with other spectral lines. They also provide decent temperature and velocity diagnostics of the middle

  17. Spectral color Doppler in the diagnosis and follow-up of Graves` disease; Ruolo dell`eco color Doppler e dell`analisi flussimetrica nella diagnosi e nel follow-up della malattia dei Graves

    Energy Technology Data Exchange (ETDEWEB)

    Sponza, Massimo; Bertolotto, Michele; Ricci, Claudio [Ospedale di Cattinara, Trieste (Italy). Istituto di Medicina Clinica; Fabris, Bruno; Armini, Lorenzo [Ospedale di Cattinara, Trieste (Italy). Istituto di Radiologia

    1997-04-01

    Hyperthyroidism in Graves` disease is caused by the presence of circulating autoantibodies to the THS receptors on the thyroid cells. Thyroid-suppression therapy prevents hormone production directly, without affecting the pathogenetic process. They performed color Doppler US of the thyroid gland and pulsed Doppler analysis of thyroid artery flow in 21 patients with Graves` disease before and during medical treatment. US results were compared with those of a control group of 40 healthy subjects and correlated with the values of thyroid hormones, TSH and thyroid microsomal and thyroglobulin antibodies. The thyroid gland was hypo vascularized in the control group. Pulsed Doppler examination of the thyroid arteries exhibited peak systolic velocity of PSV 20 {+-} 4 cm/s, diastolic velocity of 8 {+-} 1 cm/s, and resistive index of 0.60 {+-} 0.04. The thyroid gland of Graves` disease patients was hyper vascularized. Pulsed Doppler examination of the thyroid arteries exhibited peak systolic velocity (PSV = 51 {+-} 12 cm/s), end diastolic velocity (VD = 15 {+-} 4 cm/s) and resistive index (RI = 0.71 {+-} 0.04) significantly higher than in normal subjects (p < 0.001). Circulating thyroid hormones and flow parameters normalized after 6-8 months of medical therapy (PSV = 20 {+-} 6 cm/s, VD = 9 {+-} 3 cm/s, RI = 0.58 {+-} 0.07). The color Doppler patterns normalized only in a patient with normal TSH and antibodies. Sampling of the thyroid arteries proved more repeatable than sampling of parenchymal vessels.

  18. Study on Water Distribution Imaging in the Sand Using Propagation Velocity of Sound with Scanning Laser Doppler Vibrometer

    Science.gov (United States)

    Sugimoto, Tsuneyoshi; Nakagawa, Yutaka; Shirakawa, Takashi; Sano, Motoaki; Ohaba, Motoyoshi; Shibusawa, Sakae

    2013-07-01

    We propose a method for the monitoring and imaging of the water distribution in the rooting zone of plants using sound vibration. In this study, the water distribution measurement in the horizontal and vertical directions in the soil layer was examined to confirm whether a temporal change in the volume water content of the soil could be estimated from a temporal changes in propagation velocity. A scanning laser Doppler vibrometer (SLDV) is used for measurement of the vibration velocity of the soil surface, because the highly precise vibration velocity measurement of several many points can be carried out automatically. Sand with a uniform particle size distribution is used for the soil, as it has high plasticity; that is, the sand can return to a dry state easily even if it is soaked with water. A giant magnetostriction vibrator or a flat speaker is used as a sound source. Also, a soil moisture sensor, which measures the water content of the soil using the electric permittivity, is installed in the sand. From the experimental results of the vibration measurement and soil moisture sensors, we can confirm that the temporal changes of the water distribution in sand using the negative pressure irrigation system in both the horizontal and vertical directions can be estimated using the propagation velocity of sound. Therefore, in the future, we plan to develop an insertion-type sound source and receiver using the acceleration sensors, and we intend to examine whether our method can be applied even in commercial soil with growing plants.

  19. Numerical stud of glare spot phase Doppler anemometry

    OpenAIRE

    Hespel , Camille; Ren , Kuan Fang; Gréhan , Gérard; Onofri , Fabrice

    2008-01-01

    International audience; The phase Doppler anemometry has (PDA) been developed to measure simultaneously the velocity and the size of droplets. When the concentration of particles is high, tightly focused beams must be used, as in the dual burst PDA. The latter permits an access to the refractive index of the particle, but the effect of wave front curvature of the incident beams becomes evident. In this paper, we introduce a glare spot phase Doppler anemometry which uses two large beams. The i...

  20. A Method of Initial Velocity Measurement for Rocket Projectile

    Directory of Open Access Journals (Sweden)

    Zhang Jiancheng

    2017-01-01

    Full Text Available In this paper, a novel method is proposed to measure the initial velocity of the rocket based on STFT (the short-time Fourier transform and the WT (wavelet transform. The radar echo signal processing procedure involves the following steps: sampling process, overlapping windows, wavelet decomposition and reconstruction, computing FFT (Fast Fourier Transform and spectrum analysis, power spectrum peak detection. Then, according to the peak of the detection power spectrum, the corresponding Doppler frequency is obtained. Finally, on the basis of the relationship between Doppler frequency and instantaneous velocity, the V-T curve is drawn in MATLAB to obtain the initial velocity of the rocket muzzle.

  1. Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Craig, D.; Fiksel, G.; Fontana, P.W.; Prager, S.C.; Sarff, J.S.; Chapman, J.T.

    1998-01-01

    Plasma flow velocity fluctuations have been directly measured in the high temperature magnetically confined plasma in the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP). These measurements show that the flow velocity fluctuations are correlated with magnetic field fluctuations. This initial measurement is subject to limitations of spatial localization and other uncertainties, but is evidence for sustainment of the RFP magnetic field configuration by the magnetohydrodynamic (MHD) dynamo. Both the flow velocity and magnetic field fluctuations are the result of global resistive MHD modes of helicity m = 1, n = 5--10 in the core of MST. Chord-averaged flow velocity fluctuations are measured in the core of MST by recording the Doppler shift of impurity line emission with a specialized high resolution and throughput grating spectrometer. Magnetic field fluctuations are recorded with a large array of small edge pickup coils, which allows spectral decomposition into discrete modes and subsequent correlation with the velocity fluctuation data

  2. Stellar magnetometry and Zeeman-Doppler imaging in exo-planets research using the radial velocity method

    International Nuclear Information System (INIS)

    Hebrard, Elodie

    2015-01-01

    Forthcoming instruments dedicated to exo-planets detection through the radial velocity method are numerous, and increasingly more accurate. However this method is indirect: orbiting planets are detected and characterised from variations on the spectrum of the host star. We are therefore sensitive to all activity phenomena impacting the spectrum and producing a radial velocity signal (pulsation, granulation, spots, magnetic cycle...). The detection of rocky Earth-like planets around main-sequence stars, and of hot Jupiters into young systems, are currently limited by the intrinsic magnetic activity of the host stars. The radial velocity fluctuations caused by activity (activity jitter) can easily mimic and hide signals from such planets, whose amplitude is of a few m/s and hundreds of m/s, respectively. As a result, the detection threshold of exo-planets is largely set by the stellar activity level. Currently, efforts are invested to overcome this intrinsic limitation. During my PhD, I studied how to take advantage of imaging tomographic techniques (Zeeman-Doppler imaging, ZDI) to characterize stellar activity and magnetic field topologies, ultimately allowing us to filter out the activity jitter. My work is based on spectro-polarimetric observations of a sample of weakly-active M-dwarfs, and young active T Tauri stars. Using a modified version of ZDI, we are able to reconstruct the distribution of active regions, and then model the induced stellar signal allowing us to clean RV curves from the activity jitter. First tests demonstrate that this technique can be efficient enough to recover the planet signal, especially for the more active ones. (author)

  3. Doppler ultrasound for detection of renal transplant artery stenosis - Threshold peak systolic velocity needs to be higher in a low-risk or surveillance population

    International Nuclear Information System (INIS)

    Patel, U.; Khaw, K.K.; Hughes, N.C.

    2003-01-01

    AIMS: To establish the ideal threshold arterial velocity for the diagnosis of renal transplant artery stenosis in a surveillance population with a low pre-test probability of stenosis. METHODS: Retrospective review of Doppler ultrasound, angiographic and clinical outcome data of patients transplanted over a 3-year period. Data used to calculate sensitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV) for various threshold peak systolic velocity values. RESULTS: Of 144 patients transplanted, full data were available in 117 cases. Five cases had renal transplant artery stenosis--incidence 4.2% [stenosis identified at a mean of 6.5 months (range 2-10 months)]. All five cases had a significant arterial pressure gradient across the narrowing and underwent angioplasty. Threshold peak systolic velocity of ≥2.5 m/s is not ideal [specificity=79% (CI 65-82%), PPV=18% (CI 6-32%), NPV=100% (CI 94-100%)], subjecting many patients to unnecessary angiography--8/117 (6%) in our population. Comparable values if the threshold is set at ≥3.0 m/s are 93% (CI 77-96%), 33% (CI 7-44%) and 99% (CI 93-100%), respectively. The clinical outcome of all patients was satisfactory, with no unexplained graft failures or loss. CONCLUSIONS: In a surveillance population with a low pre-test probability of stenosis, absolute renal artery velocity ≥2.5 m/s is a limited surrogate marker for significant renal artery stenosis. The false-positive rate is high, and ≥3.0 m/s is a better choice which will halve the number of patients enduring unnecessary angiography. Close clinical follow-up of patients in the 2.5-3.0 m/s range, with repeat Doppler ultrasound if necessary, will identify the test false-negatives

  4. Spectroscopic properties of a two-dimensional time-dependent Cepheid model. I. Description and validation of the model

    Science.gov (United States)

    Vasilyev, V.; Ludwig, H.-G.; Freytag, B.; Lemasle, B.; Marconi, M.

    2017-10-01

    Context. Standard spectroscopic analyses of Cepheid variables are based on hydrostatic one-dimensional model atmospheres, with convection treated using various formulations of mixing-length theory. Aims: This paper aims to carry out an investigation of the validity of the quasi-static approximation in the context of pulsating stars. We check the adequacy of a two-dimensional time-dependent model of a Cepheid-like variable with focus on its spectroscopic properties. Methods: With the radiation-hydrodynamics code CO5BOLD, we construct a two-dimensional time-dependent envelope model of a Cepheid with Teff = 5600 K, log g = 2.0, solar metallicity, and a 2.8-day pulsation period. Subsequently, we perform extensive spectral syntheses of a set of artificial iron lines in local thermodynamic equilibrium. The set of lines allows us to systematically study effects of line strength, ionization stage, and excitation potential. Results: We evaluate the microturbulent velocity, line asymmetry, projection factor, and Doppler shifts. The microturbulent velocity, averaged over all lines, depends on the pulsational phase and varies between 1.5 and 2.7 km s-1. The derived projection factor lies between 1.23 and 1.27, which agrees with observational results. The mean Doppler shift is non-zero and negative, -1 km s-1, after averaging over several full periods and lines. This residual line-of-sight velocity (related to the "K-term") is primarily caused by horizontal inhomogeneities, and consequently we interpret it as the familiar convective blueshift ubiquitously present in non-pulsating late-type stars. Limited statistics prevent firm conclusions on the line asymmetries. Conclusions: Our two-dimensional model provides a reasonably accurate representation of the spectroscopic properties of a short-period Cepheid-like variable star. Some properties are primarily controlled by convective inhomogeneities rather than by the Cepheid-defining pulsations. Extended multi-dimensional modelling

  5. Virtual velocity loop based on MEMS accelerometers for optical stabilization control system

    Science.gov (United States)

    Ren, Wei; Deng, Chao; Mao, Yao; Ren, Ge

    2017-08-01

    In the optical stabilization control system (OSCS) control system based on a charge-coupled device (CCD), stabilization performance of the line-of-sight is severely limited by the mechanical resonance and the low sampling rate of the CCD. An approach to improve the stabilization performance of the OSCS control system with load restriction based on three loops, including an acceleration loop, a virtual velocity loop, and a position loop, by using MEMS accelerometers and a CCD is proposed. The velocity signal is obtained by accelerators instead of gyro sensors. Its advantages are low power, low cost, small size, and wide measuring range. A detailed analysis is provided to show how to design the virtual velocity loop and correct virtual velocity loop drift. Experimental results show that the proposed multiloop feedback control method with virtual velocity loop in which the disturbance suppression performance is better than that of the dual loop control with only an acceleration loop and a position loop at low frequency.

  6. Evaluation of postoperative pulmonary regurgitation after surgical repair of tetralogy of Fallot: comparison between Doppler echocardiography and MR velocity mapping

    International Nuclear Information System (INIS)

    Grothoff, Matthias; Spors, Birgit; Gutberlet, Matthias; Abdul-Khaliq, Hasim

    2008-01-01

    Pulmonary regurgitation is a common finding in patients after correction of tetralogy of Fallot (TOF). Right ventricular impairment and even ventricular arrhythmia have been ascribed to pulmonary valve insufficiency (PI), which is therefore an important issue in follow-up examinations. To compare PI measured by echocardiography (ECHO) with data provided by cardiac MRI (CMR). We studied 54 selected patients (18 female; median age 14.0 years, range 3.8-53.4 years) after surgical correction of TOF. To quantify pulmonary regurgitant fraction (PRF) by CMR, flow velocity mapping was performed. On Doppler ECHO, length, width and localization of regurgitant flow was measured. The severity of PI was categorized as mild, moderate or severe and compared to the data obtained by CMR. On CMR the mean PRF was 29.2 ± 13.4%. Patients with a transannular patch had a significantly higher PRF (39.9 ± 11.6%) than patients with an intact annular ring (23.6 ± 11.4%). Differentiation by Doppler ECHO between the categories mild, moderate and severe PI was confirmed by significant differences in PRF measured by CMR (mild vs. moderate P < 0.04; moderate vs. severe P < 0.014; mild vs. severe P < 0.001). Furthermore, PRF correlated with right ventricular end diastolic volume index (r = 0.45, P < 0.01) and right ventricular end systolic volume index (r = 0.39, P < 0.01). Doppler ECHO can estimate the severity of PI after repair of TOF with acceptable results compared to CMR flow measurement. In univariate analysis there is only a weak influence of PRF on right ventricular volume. (orig.)

  7. About Non-Line-Of-Sight Satellite Detection and Exclusion in a 3D Map-Aided Localization Algorithm

    Directory of Open Access Journals (Sweden)

    François Peyret

    2013-01-01

    Full Text Available Reliable GPS positioning in city environment is a key issue: actually, signals are prone to multipath, with poor satellite geometry in many streets. Using a 3D urban model to forecast satellite visibility in urban contexts in order to improve GPS localization is the main topic of the present article. A virtual image processing that detects and eliminates possible faulty measurements is the core of this method. This image is generated using the position estimated a priori by the navigation process itself, under road constraints. This position is then updated by measurements to line-of-sight satellites only. This closed-loop real-time processing has shown very first promising full-scale test results.

  8. About Non-Line-Of-Sight Satellite Detection and Exclusion in a 3D Map-Aided Localization Algorithm

    Science.gov (United States)

    Peyraud, Sébastien; Bétaille, David; Renault, Stéphane; Ortiz, Miguel; Mougel, Florian; Meizel, Dominique; Peyret, François

    2013-01-01

    Reliable GPS positioning in city environment is a key issue actually, signals are prone to multipath, with poor satellite geometry in many streets. Using a 3D urban model to forecast satellite visibility in urban contexts in order to improve GPS localization is the main topic of the present article. A virtual image processing that detects and eliminates possible faulty measurements is the core of this method. This image is generated using the position estimated a priori by the navigation process itself, under road constraints. This position is then updated by measurements to line-of-sight satellites only. This closed-loop real-time processing has shown very first promising full-scale test results. PMID:23344379

  9. Role of Off-Line-of-Sight Propagation in Geomagnetic EMP Formation

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Hans W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-23

    The author’s synchrotron radiation based 3D geomagnetic EMP code MACSYNC has been used to explore the impact on pulse rise time and air conductivity of EMP propagation paths to the observer that are located off the direct line-of-sight (LOS) between gamma source and observer. This geometry is always present because, for an isotropic source, most the gammas are emitted at an angle with respect to the LOS. Computations for a 1 kt near-surface burst observed from space yield two principal findings: 1. The rise time is generated by the combined actions of a) electron spreading along the LOS due to the Compton electron emission angular distribution folded with electron multiple scattering effects, and b) radiation arrival time spreading due to length differences for different off-LOS propagation paths. The pulse rise time does not depend on the rise time of the conductivity. The conductivity rise time determines the pulse amplitude. 2. One-dimensional legacy EMP codes are inherently incapable of producing the correct pulse shape because they cannot treat the dependence of the conductivity on two dimensions, i.e. the radius from the source and the angle of the propagation path with the LOS. This divergence from one-dimensionality begins at a small fraction of a nanosecond for a sea-level burst. This effect will also be present in high-altitude bursts, however, determination of its onset time and magnitude requires high-altitude computations which have not yet been done.

  10. EISCAT measurements of solar wind velocity and the associated level of interplanetary scintillation

    Directory of Open Access Journals (Sweden)

    R. A. Fallows

    2002-09-01

    Full Text Available A relative scintillation index can be derived from EISCAT observations of Interplanetary Scintillation (IPS usually used to study the solar wind velocity. This provides an ideal opportunity to compare reliable measurements of the solar wind velocity derived for a number of points along the line-of-sight with measurements of the overall level of scintillation. By selecting those occasions where either slow- or fast-stream scattering was dominant, it is shown that at distances from the Sun greater than 30 RS , in both cases the scintillation index fell with increasing distance as a simple power law, typically as R-1.7. The level of scintillation for slow-stream scattering is found to be 2.3 times the level for fast-stream scattering.Key words. Interplanetary physics (solar wind plasma

  11. Relative ion expansion velocity in laser-produced plasmas

    International Nuclear Information System (INIS)

    Goldsmith, S.; Moreno, J.C.; Griem, H.R.; Cohen, L.; Richardson, M.C.

    1988-01-01

    The spectra of highly ionized titanium, TiXIII through TiXXI, and CVI Lyman lines were excited in laser-produced plasmas. The plasma was produced by uniformly irradiating spherical glass microballoons coated with thin layers of titanium and parylene. The 24-beam Omega laser system produced short, 0.6 ns, and high intensity, 4 x 10 14 W/cm, 2 laser pulses at a wavelength of 351 nm. The measured wavelength for the 2p-3s TiXIII resonance lines had an average shift of +0.023 A relative to the CVI and TiXX spectral lines. No shift was found between the CVI, TiXIX, and TiXX lines. The shift is attributed to a Doppler effect, resulting from a difference of (2.6 +- 0.2) x 10 7 cm/s in the expansion velocities of TiXIX and TiXX ions compared to TiXIII ions

  12. Results from transcranial Doppler examination on children and adolescents with sickle cell disease and correlation between the time-averaged maximum mean velocity and hematological characteristics: a cross-sectional analytical study

    Directory of Open Access Journals (Sweden)

    Mary Hokazono

    Full Text Available CONTEXT AND OBJECTIVE: Transcranial Doppler (TCD detects stroke risk among children with sickle cell anemia (SCA. Our aim was to evaluate TCD findings in patients with different sickle cell disease (SCD genotypes and correlate the time-averaged maximum mean (TAMM velocity with hematological characteristics. DESIGN AND SETTING: Cross-sectional analytical study in the Pediatric Hematology sector, Universidade Federal de São Paulo. METHODS: 85 SCD patients of both sexes, aged 2-18 years, were evaluated, divided into: group I (62 patients with SCA/Sß0 thalassemia; and group II (23 patients with SC hemoglobinopathy/Sß+ thalassemia. TCD was performed and reviewed by a single investigator using Doppler ultrasonography with a 2 MHz transducer, in accordance with the Stroke Prevention Trial in Sickle Cell Anemia (STOP protocol. The hematological parameters evaluated were: hematocrit, hemoglobin, reticulocytes, leukocytes, platelets and fetal hemoglobin. Univariate analysis was performed and Pearson's coefficient was calculated for hematological parameters and TAMM velocities (P < 0.05. RESULTS: TAMM velocities were 137 ± 28 and 103 ± 19 cm/s in groups I and II, respectively, and correlated negatively with hematocrit and hemoglobin in group I. There was one abnormal result (1.6% and five conditional results (8.1% in group I. All results were normal in group II. Middle cerebral arteries were the only vessels affected. CONCLUSION: There was a low prevalence of abnormal Doppler results in patients with sickle-cell disease. Time-average maximum mean velocity was significantly different between the genotypes and correlated with hematological characteristics.

  13. Feasibility of UltraFast Doppler in Post-operative Evaluation of Hepatic Artery in Recipients following Liver Transplantation.

    Science.gov (United States)

    Kim, Se-Young; Kim, Kyoung Won; Choi, Sang Hyun; Kwon, Jae Hyun; Song, Gi-Won; Kwon, Heon-Ju; Yun, Young Ju; Lee, Jeongjin; Lee, Sung-Gyu

    2017-11-01

    To determine the feasibility of using UltraFast Doppler in post-operative evaluation of the hepatic artery (HA) after liver transplantation (LT), we evaluated 283 simultaneous conventional and UltraFast Doppler sessions in 126 recipients over a 2-mo period after LT, using an Aixplorer scanner The Doppler indexes of the HA (peak systolic velocity [PSV], end-diastolic velocity [EDV], resistive index [RI] and systolic acceleration time [SAT]) by retrospective analysis of retrieved waves from UltraFast Doppler clips were compared with those obtained by conventional spectral Doppler. Correlation, performance in diagnosing the pathologic wave, examination time and reproducibility were evaluated. The PSV, EDV, RI and SAT of spectral and UltraFast Doppler measurements exhibited excellent correlation with favorable diagnostic performance. During the bedside examination, the mean time spent for UltraFast clip storing was significantly shorter than that for conventional Doppler US measurements. Both conventional and UltraFast Doppler exhibited good to excellent inter-analysis consistency. In conclusion, compared with conventional spectral Doppler, UltraFast Doppler values correlated excellently and yielded acceptable pathologic wave diagnostic performance with reduced examination time at the bedside and excellent reproducibility. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Posture of Twig Figures: Reactions by the Blind and the Sighted. Brief Research Report.

    Science.gov (United States)

    Kennedy, John M.; Domander, Ramona

    1986-01-01

    Eighteen congenitally blind adolescents and adults and 29 sighted children and adults were asked to select one of two identifying labels for six pairs of highly schematic line figures portraying simple events, relationships between people, and expressive emotional states. Blind subjects agreed with sighted interpretations on 77% of the response…

  15. Doppler time-of-flight imaging

    KAUST Repository

    Heidrich, Wolfgang

    2017-02-16

    Systems and methods for imaging object velocity are provided. In an embodiment, at least one Time-of-Flight camera is used to capture a signal representative of an object in motion over an exposure time. Illumination and modulation frequency of the captured motion are coded within the exposure time. A change of illumination frequency is mapped to measured pixel intensities of the captured motion within the exposure time, and information about a Doppler shift in the illumination frequency is extracted to obtain a measurement of instantaneous per pixel velocity of the object in motion. The radial velocity information of the object in motion can be simultaneously captured for each pixel captured within the exposure time. In one or more aspects, the illumination frequency can be coded orthogonal to the modulation frequency of the captured motion. The change of illumination frequency can correspond to radial object velocity.

  16. What Do the Hitomi Observations Tell Us About the Turbulent Velocities in the Perseus Cluster? Probing the Velocity Field with Mock Observations

    Science.gov (United States)

    ZuHone, J. A.; Miller, E. D.; Bulbul, E.; Zhuravleva, I.

    2018-02-01

    Hitomi made the first direct measurements of galaxy cluster gas motions in the Perseus cluster, which implied that its core is fairly “quiescent,” with velocities less than ∼200 km s‑1, despite the presence of an active galactic nucleus and sloshing cold fronts. Building on previous work, we use synthetic Hitomi/X-ray Spectrometer (SXS) observations of the hot plasma of a simulated cluster with sloshing gas motions and varying viscosity to analyze its velocity structure in a similar fashion. We find that sloshing motions can produce line shifts and widths similar to those measured by Hitomi. We find these measurements are unaffected by the value of the gas viscosity, since its effects are only manifested clearly on angular scales smaller than the SXS ∼1‧ PSF. The PSF biases the line shift of regions near the core as much as ∼40–50 km s‑1, so it is crucial to model this effect carefully. We also infer that if sloshing motions dominate the observed velocity gradient, Perseus must be observed from a line of sight that is somewhat inclined from the plane of these motions, but one that still allows the spiral pattern to be visible. Finally, we find that assuming isotropy of motions can underestimate the total velocity and kinetic energy of the core in our simulation by as much as ∼60%. However, the total kinetic energy in our simulated cluster core is still less than 10% of the thermal energy in the core, in agreement with the Hitomi observations.

  17. Anomalous resistivity due to low-frequency turbulence. [of collisionless plasma with limited acceleration of high velocity runaway electrons

    Science.gov (United States)

    Rowland, H. L.; Palmadesso, P. J.

    1983-01-01

    Large amplitude ion cyclotron waves have been observed on auroral field lines. In the presence of an electric field parallel to the ambient magnetic field these waves prevent the acceleration of the bulk of the plasma electrons leading to the formation of a runaway tail. It is shown that low-frequency turbulence can also limit the acceleration of high-velocity runaway electrons via pitch angle scattering at the anomalous Doppler resonance.

  18. Real-time control of tearing modes using a line-of-sight electron cyclotron emission diagnostic

    International Nuclear Information System (INIS)

    Hennen, B A; Westerhof, E; De Baar, M R; Bongers, W A; Thoen, D J; Nuij, P W J M; Steinbuch, M; Oosterbeek, J W; Buerger, A

    2010-01-01

    The stability and performance of tokamak plasmas are limited by instabilities such as neoclassical tearing modes. This paper reports on an experimental proof of principle of a feedback control approach for real-time, autonomous suppression and stabilization of tearing modes in a tokamak. The system combines an electron cyclotron emission diagnostic for sensing of the tearing modes in the same sight line with a steerable electron cyclotron resonance heating and current drive (ECRH/ECCD) antenna. A methodology for fast detection of q = m/n = 2/1 tearing modes and retrieval of their location, rotation frequency and phase is presented. Set-points to establish alignment of the ECRH/ECCD deposition location with the centre of the tearing mode are generated in real time and forwarded in closed loop to the steerable launcher and as a modulation pulse train to the gyrotron. Experimental results demonstrate the capability of the control system to track externally perturbed tearing modes in real time.

  19. Cerebrovascular reactivity in migraineurs as measured by transcranial Doppler

    International Nuclear Information System (INIS)

    Thomas, T.D.; Harpold, G.J.

    1990-01-01

    Transcranial Doppler ultrasound is a relatively new diagnostic modality which allows the non-invasive assessment of intracranial circulation. A total of 10 migraine patients were studied and compared to healthy controls without headaches. Migraineurs during the headache-free interval demonstrated excessive cerebrovascular reactivity to CO 2 , evidenced by an increase in middle cerebral artery blood flow velocity of 47% ± 15% compared to 28% ± 14% in controls. Differences between the two study groups revealed no significant decrease in middle cerebral artery blood flow velocity with hypocapnia. However, the differences between middle cerebral artery blood flow velocity during hyperventilation and CO 2 inhalation were significantly different comparing migraineurs and controls. Instability of the baseline blood flow velocities was also noted in migraineurs during the interictal period. Characteristics which may allow differentiation of migraineurs from other headache populations could possibly be obtained from transcranial Doppler ultrasound flow studies. 24 refs., 2 tabs

  20. Non-line-of-sight optical wireless sensor network operating in multiscattering channel

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-11-01

    Networks of sensors are envisaged to be major participants in future data-gathering systems for civilian and military applications, including medical and environmental monitoring and surveillance, home security, agriculture, and industry. Typically, a very large number of miniature sensing and communicating nodes are distributed ad hoc at the location of interest, where they establish a network and wirelessly communicate sensed data either to one another or to a base station using various network topologies. The optical modality is a potential solution for the links, due to the small and lightweight hardware and low power consumption, as well as other special features. Notably, the backscattering of light by molecules and aerosols in the atmosphere can function as a vehicle of communication in a way similar to the deployment of numerous tiny reflecting mirrors. The scattering of light at solar-blind ultraviolet wavelengths is of particular interest since scattering by atmospheric particles is significant and ambient solar interference is minimal. In this paper we derive a mathematical model of a simple and low-cost non-line-of-sight (NLOS) optical wireless sensor network operating in the solar-blind ultraviolet spectral range. The viability and limitations of the internode link are evaluated and found to facilitate miniature operational sensor networks.

  1. The BRAVE Program. I. Improved Bulge Stellar Velocity Dispersion Estimates for a Sample of Active Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Batiste, Merida; Bentz, Misty C.; Manne-Nicholas, Emily R. [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Atlanta, GA 30303 (United States); Onken, Christopher A. [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Bershady, Matthew A., E-mail: batiste@astro.gsu.edu [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53706 (United States)

    2017-02-01

    We present new bulge stellar velocity dispersion measurements for 10 active galaxies with secure M {sub BH} determinations from reverberation mapping. These new velocity dispersion measurements are based on spatially resolved kinematics from integral-field (IFU) spectroscopy. In all but one case, the field of view of the IFU extends beyond the effective radius of the galaxy, and in the case of Mrk 79 it extends to almost one half the effective radius. This combination of spatial resolution and field of view allows for secure determinations of stellar velocity dispersion within the effective radius for all 10 target galaxies. Spatially resolved maps of the first ( V ) and second ( σ {sub ⋆}) moments of the line of sight velocity distribution indicate the presence of kinematic substructure in most cases. In future projects we plan to explore methods of correcting for the effects of kinematic substructure in the derived bulge stellar velocity dispersion measurements.

  2. Analysis of non-thermal velocities in the solar corona

    Directory of Open Access Journals (Sweden)

    L. Contesse

    2004-09-01

    Full Text Available We describe new ground-based spectroscopic observations made using a 40-cm aperture coronagraph over a whole range of radial distances (up to heights of 12' above the limb and along four different heliocentric directions N, E, S and W. The analysis is limited to the study of the brightest forbidden emission line of Fe XIV at 530.3nm, in order to reach the best possible signal-to-noise ratio. To make the results statistically more significant, the extracted parameters are averaged over the whole length of the slit, and measurements are repeated fives times at each position; the corresponding dispersions in the results obtained along the slit are given. Central line profile intensities and full line widths (FWHM are plotted and compared to measurements published by other authors closer to the limb. We found widths and turbulent (non-thermal velocities of significantly higher values above the polar regions, especially when a coronal hole is present along the line of sight. We do not see a definitely decreasing behaviour of widths and turbulent velocities in equatorial directions for larger radial distances, as reported in the literature, although lower values are measured compared to the values in polar regions. The variation in the high corona is rather flat and a correlation diagram indicates that it is different for different regions and different radial distances. This seems to be the first analysis of the profiles of this coronal line, up to large heights above the limb for both equatorial and polar regions.

  3. On the apparent velocity of integrated sunlight. 2: 1983-1992 and comparisons with magnetograms

    Science.gov (United States)

    Deming, Drake; Plymate, Claude

    1994-01-01

    We report additional results in our program to monitor the wavelength stability of lines in the 2.3 micrometer spectrum of integrated sunlight. We use the McMath Fourier transform spectrometer (FTS) of the National Solar Observatory to monitor 16 delta V = 2 lines of (12)C(16)O, as well as five atomic lines. Wavenumber calibration is achieved using a low-pressure N2O absorption cell and checked against terrestrial atmospheric lines. Imperfect optical integration of the solar disk remains the principal source of error, but this error has been reduced by improved FTS/telescope collimation and observing procedures. The present results include data from an additional 13 quarterly observing runs since 1985. We continue to find that the apparent velocity of integrated sunlight is variable, in the sense of having a greater reshift at solar maximum. This is supported by the temporal dependence of the integrated light velocity, and by the presence of a correlation between velocity and the disk-averaged magnetic flux derived from Kitt Peak magnetograms. The indicated peak-to-peak apparent velocity amplitude over a solar cycle is approximately the same as the velocity amplitude of the Sun's motion about the solar system barycenter. This represents about half the amplitude which we inferred in Paper I (Deming et al. 1987), but the present result has a much greater statistical significance. Our results have implications for those investigations which search for the Doppler signatures of planetary-mass companions to solar-type stars. We contrast our results to the recent finding by McMillan et al. 1993 that solar absorption lines in the violet spectral region are wavelength-stable over the solar cycle.

  4. Two-dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images.

    Science.gov (United States)

    Garcia, Damien; Del Alamo, Juan C; Tanne, David; Yotti, Raquel; Cortina, Cristina; Bertrand, Eric; Antoranz, José Carlos; Perez-David, Esther; Rieu, Régis; Fernandez-Aviles, Francisco; Bermejo, Javier

    2010-10-01

    Doppler echocardiography remains the most extended clinical modality for the evaluation of left ventricular (LV) function. Current Doppler ultrasound methods, however, are limited to the representation of a single flow velocity component. We thus developed a novel technique to construct 2D time-resolved (2D+t) LV velocity fields from conventional transthoracic clinical acquisitions. Combining color-Doppler velocities with LV wall positions, the cross-beam blood velocities were calculated using the continuity equation under a planar flow assumption. To validate the algorithm, 2D Doppler flow mapping and laser particle image velocimetry (PIV) measurements were carried out in an atrio-ventricular duplicator. Phase-contrast magnetic resonance (MR) acquisitions were used to measure in vivo the error due to the 2D flow assumption and to potential scan-plane misalignment. Finally, the applicability of the Doppler technique was tested in the clinical setting. In vitro experiments demonstrated that the new method yields an accurate quantitative description of the main vortex that forms during the cardiac cycle (mean error for vortex radius, position and circulation). MR image analysis evidenced that the error due to the planar flow assumption is close to 15% and does not preclude the characterization of major vortex properties neither in the normal nor in the dilated LV. These results are yet to be confirmed by a head-to-head clinical validation study. Clinical Doppler studies showed that the method is readily applicable and that a single large anterograde vortex develops in the healthy ventricle while supplementary retrograde swirling structures may appear in the diseased heart. The proposed echocardiographic method based on the continuity equation is fast, clinically-compliant and does not require complex training. This technique will potentially enable investigators to study of additional quantitative aspects of intraventricular flow dynamics in the clinical setting by

  5. Acute Effects of Lateral Thigh Foam Rolling on Arterial Tissue Perfusion Determined by Spectral Doppler and Power Doppler Ultrasound.

    Science.gov (United States)

    Hotfiel, Thilo; Swoboda, Bernd; Krinner, Sebastian; Grim, Casper; Engelhardt, Martin; Uder, Michael; Heiss, Rafael U

    2017-04-01

    Hotfiel, T, Swoboda, B, Krinner, S, Grim, C, Engelhardt, M, Uder, M, and Heiss, R. Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral Doppler and power Doppler ultrasound. J Strength Cond Res 31(4): 893-900, 2017-Foam rolling has been developed as a popular intervention in training and rehabilitation. However, evidence on its effects on the cellular and physiological level is lacking. The aim of this study was to assess the effect of foam rolling on arterial blood flow of the lateral thigh. Twenty-one healthy participants (age, 25 ± 2 years; height, 177 ± 9 cm; body weight, 74 ± 9 kg) were recruited from the medical and sports faculty. Arterial tissue perfusion was determined by spectral Doppler and power Doppler ultrasound, represented as peak flow (Vmax), time average velocity maximum (TAMx), time average velocity mean (TAMn), and resistive index (RI), and with semiquantitative grading that was assessed by 4 blindfolded investigators. Measurement values were assessed under resting conditions and twice after foam rolling exercises of the lateral thigh (0 and 30 minutes after intervention). The trochanteric region, mid portion, and distal tibial insertion of the lateral thigh were representative for data analysis. Arterial blood flow of the lateral thigh increased significantly after foam rolling exercises compared with baseline (p ≤ 0.05). We detected a relative increase in Vmax of 73.6% (0 minutes) and 52.7% (30 minutes) (p power Doppler scores at all portions revealed increased average grading of 1.96 after intervention and 2.04 after 30 minutes compared with 0.75 at baseline. Our results may contribute to the understanding of local physiological reactions to self-myofascial release.

  6. Operator auditory perception and spectral quantification of umbilical artery Doppler ultrasound signals.

    Directory of Open Access Journals (Sweden)

    Ann Thuring

    Full Text Available OBJECTIVE: An experienced sonographer can by listening to the Doppler audio signals perceive various timbres that distinguish different types of umbilical artery flow despite an unchanged pulsatility index (PI. Our aim was to develop an objective measure of the Doppler audio signals recorded from fetoplacental circulation in a sheep model. METHODS: Various degrees of pathological flow velocity waveforms in the umbilical artery, similar to those in human complicated pregnancies, were induced by microsphere embolization of the placental bed (embolization model, 7 lamb fetuses, 370 Doppler recordings or by fetal hemodilution (anemia model, 4 lamb fetuses, 184 recordings. A subjective 11-step operator auditory scale (OAS was related to conventional Doppler parameters, PI and time average mean velocity (TAM, and to sound frequency analysis of Doppler signals (sound frequency with the maximum energy content [MAXpeak] and frequency band at maximum level minus 15 dB [MAXpeak-15 dB] over several heart cycles. RESULTS: WE FOUND A NEGATIVE CORRELATION BETWEEN THE OAS AND PI: median Rho -0.73 (range -0.35- -0.94 and -0.68 (range -0.57- -0.78 in the two lamb models, respectively. There was a positive correlation between OAS and TAM in both models: median Rho 0.80 (range 0.58-0.95 and 0.90 (range 0.78-0.95, respectively. A strong correlation was found between TAM and the results of sound spectrum analysis; in the embolization model the median r was 0.91 (range 0.88-0.97 for MAXpeak and 0.91 (range 0.82-0.98 for MAXpeak-15 dB. In the anemia model, the corresponding values were 0.92 (range 0.78-0.96 and 0.96 (range 0.89-0.98, respectively. CONCLUSION: Audio-spectrum analysis reflects the subjective perception of Doppler sound signals in the umbilical artery and has a strong correlation to TAM-velocity. This information might be of importance for clinical management of complicated pregnancies as an addition to conventional Doppler parameters.

  7. Cerebrovascular reactivity in migraineurs as measured by transcranial Doppler

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, T.D.; Harpold, G.J. (Alabama Univ., Birmingham, AL (USA). School of Medicine); Troost, B.T. (Bowman Gray School of Medicine, Winston-Salem, NC (USA))

    1990-04-01

    Transcranial Doppler ultrasound is a relatively new diagnostic modality which allows the non-invasive assessment of intracranial circulation. A total of 10 migraine patients were studied and compared to healthy controls without headaches. Migraineurs during the headache-free interval demonstrated excessive cerebrovascular reactivity to CO{sub 2}, evidenced by an increase in middle cerebral artery blood flow velocity of 47% {plus minus} 15% compared to 28% {plus minus} 14% in controls. Differences between the two study groups revealed no significant decrease in middle cerebral artery blood flow velocity with hypocapnia. However, the differences between middle cerebral artery blood flow velocity during hyperventilation and CO{sub 2} inhalation were significantly different comparing migraineurs and controls. Instability of the baseline blood flow velocities was also noted in migraineurs during the interictal period. Characteristics which may allow differentiation of migraineurs from other headache populations could possibly be obtained from transcranial Doppler ultrasound flow studies. 24 refs., 2 tabs.

  8. Analysis of Radar Doppler Signature from Human Data

    Directory of Open Access Journals (Sweden)

    M. ANDRIĆ

    2014-04-01

    Full Text Available This paper presents the results of time (autocorrelation and time-frequency (spectrogram analyses of radar signals returned from the moving human targets. When a radar signal falls on the human target which is moving toward or away from the radar, the signals reflected from different parts of his body produce a Doppler shift that is proportional to the velocity of those parts. Moving parts of the body causes the characteristic Doppler signature. The main contribution comes from the torso which causes the central Doppler frequency of target. The motion of arms and legs induces modulation on the returned radar signal and generates sidebands around the central Doppler frequency, referred to as micro-Doppler signatures. Through analyses on experimental data it was demonstrated that the human motion signature extraction is better using spectrogram. While the central Doppler frequency can be determined using the autocorrelation and the spectrogram, the extraction of the fundamental cadence frequency using the autocorrelation is unreliable when the target is in the clutter presence. It was shown that the fundamental cadence frequency increases with increasing dynamic movement of people and simultaneously the possibility of its extraction is proportional to the degree of synchronization movements of persons in the group.

  9. Laser sub-Doppler cooling of atoms in an arbitrarily directed magnetic field

    International Nuclear Information System (INIS)

    Chang, Soo; Kwon, Taeg Yong; Lee, Ho Seong; Minogin, V.G.

    2002-01-01

    We analyze the influence of an arbitrarily directed uniform magnetic field on the laser sub-Doppler cooling of atoms. The analysis is done for a (3+5)-level atom excited by a σ + -σ - laser field configuration. Our analysis shows that the effects of the magnetic field depend strongly on the direction of the magnetic field. In an arbitrarily directed magnetic field the laser cooling configuration produces both the main resonance existing already at zero magnetic field and additional sub-Doppler resonances caused by two-photon and higher-order multiphoton processes. These sub-Doppler resonances are, however, well separated on the velocity scale if the Zeeman shift exceeds the widths of the resonances. This allows one to use the main sub-Doppler resonance for an effective laser cooling of atoms even in the presence of the magnetic field. The effective temperature of the atomic ensemble at the velocity of the main resonance is found to be almost the same as in the absence of the magnetic field. The defined structure of the multiphoton resonances may be of importance for the sub-Doppler laser cooling of atoms, atomic extraction from magneto-optical traps, and applications related to the control of atomic motion

  10. Color M-mode and pulsed wave tissue Doppler echocardiography

    DEFF Research Database (Denmark)

    Møller, J E; Søndergaard, E; Poulsen, S H

    2001-01-01

    To assess the association between color M-mode flow propagation velocity and the early diastolic mitral annular velocity (E(m)) obtained with tissue Doppler echocardiography and to assess the prognostic implications of the indexes, echocardiography was performed on days 1 and 5, and 1 and 3 month...

  11. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).

    Science.gov (United States)

    Li, Chih-Hao; Benedick, Andrew J; Fendel, Peter; Glenday, Alexander G; Kärtner, Franz X; Phillips, David F; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald L

    2008-04-03

    Searches for extrasolar planets using the periodic Doppler shift of stellar spectral lines have recently achieved a precision of 60 cm s(-1) (ref. 1), which is sufficient to find a 5-Earth-mass planet in a Mercury-like orbit around a Sun-like star. To find a 1-Earth-mass planet in an Earth-like orbit, a precision of approximately 5 cm s(-1) is necessary. The combination of a laser frequency comb with a Fabry-Pérot filtering cavity has been suggested as a promising approach to achieve such Doppler shift resolution via improved spectrograph wavelength calibration, with recent encouraging results. Here we report the fabrication of such a filtered laser comb with up to 40-GHz (approximately 1-A) line spacing, generated from a 1-GHz repetition-rate source, without compromising long-term stability, reproducibility or spectral resolution. This wide-line-spacing comb, or 'astro-comb', is well matched to the resolving power of high-resolution astrophysical spectrographs. The astro-comb should allow a precision as high as 1 cm s(-1) in astronomical radial velocity measurements.

  12. Assessment of right ventricular systolic function by tissue Doppler echocardiography

    DEFF Research Database (Denmark)

    Kjærgaard, Jesper

    2012-01-01

    This thesis summarizes a series of studies performed in order to assess the clinical usefulness of a novel echocardiographic technology that allows non-invasive assessment of regional right ventricular myocardial velocities and deformation: tissue Doppler echocardiography. While the technology...... is a promising tool for improving our understanding of right ventricular hemodynamics, several aspects of the technology must be evaluated. The accuracy and reproducibility of the technology is evaluated in vitro, and normal values, impact of changes in loading of the right ventricle, response to exercise...... on right ventricular hemodynamics: pulmonary embolism, Arrhythmogenic right ventricular cardiomyopathy and pulmonary regurgitation, the latter in an animal model. The conclusions of the thesis are: Color tissue Doppler echocardiography accurately measures velocities, SR and strain in vitro. No systematic...

  13. Three-dimensional Effects of Turburlent Flow in an In-Line Tube Bundle

    DEFF Research Database (Denmark)

    Meyer, Knud Erik

    1998-01-01

    Velocities have been measured with laser Doppler anemometry between tubes in cross-flow in a small in-line tube bundle with longitudinal to transverse pitches of 1.5Dx1.8D and a Reynolds number based on mean velocity in minimum flow section of Re=30000. At most locations a single recirculation zone...... is found behind each tube. However, the direction of circulation changes sign along the tube with a period of about 2~tube diameters. Three different patterns of such recirculation zones have been observed. Each pattern is very stable and does not change under undisturbed flow conditions....

  14. Radar velocity determination using direction of arrival measurements

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.; Bickel, Douglas L.; Naething, Richard M.; Horndt, Volker

    2017-12-19

    The various technologies presented herein relate to utilizing direction of arrival (DOA) data to determine various flight parameters for an aircraft A plurality of radar images (e.g., SAR images) can be analyzed to identify a plurality of pixels in the radar images relating to one or more ground targets. In an embodiment, the plurality of pixels can be selected based upon the pixels exceeding a SNR threshold. The DOA data in conjunction with a measurable Doppler frequency for each pixel can be obtained. Multi-aperture technology enables derivation of an independent measure of DOA to each pixel based on interferometric analysis. This independent measure of DOA enables decoupling of the aircraft velocity from the DOA in a range-Doppler map, thereby enabling determination of a radar velocity. The determined aircraft velocity can be utilized to update an onboard INS, and to keep it aligned, without the need for additional velocity-measuring instrumentation.

  15. New technology - demonstration of a vector velocity technique

    DEFF Research Database (Denmark)

    Møller Hansen, Peter; Pedersen, Mads M; Hansen, Kristoffer L

    2011-01-01

    With conventional Doppler ultrasound it is not possible to estimate direction and velocity of blood flow, when the angle of insonation exceeds 60-70°. Transverse oscillation is an angle independent vector velocity technique which is now implemented on a conventional ultrasound scanner. In this pa...

  16. Echobiometrics kidney and renal artery triplex doppler of canine fetuses

    Directory of Open Access Journals (Sweden)

    M.A.R. Feliciano

    2014-04-01

    Full Text Available The aim of this study was to assess the sogographic parameters and biometry of canine fetal kidneys using the B mode, and to determinate the vascular index of the fetal renal arteries using the Doppler Triplex. Twenty four Shi-tzu and Pug, weighting between 4 and 10kg, aging between 4 and 6 years old were evaluated. The B mode, the fetal renal echobiometry and regularity of the renal surface, echotexture and cortex:medular ratio were evaluated during the 5th, 6th, 7th and 8th weeks of pregnancy. At the same time point of the B mode evaluation, the Doppler Triplex was carried out to assess the sistolic peak velocity (SPV, end diastolic velocity (EDV, vascular resistive (RI and pulsatility index (PI. B mode revealed no fetal renal abnormalities and echobiometry showed important measurements during fetal development (P0.05. B mode and Doppler Triplex were important tools for the assessment of fetal renal development, using echobiometry and renal arterial index in canie fetuses.

  17. Digital storage and analysis of color Doppler echocardiograms

    Science.gov (United States)

    Chandra, S.; Thomas, J. D.

    1997-01-01

    Color Doppler flow mapping has played an important role in clinical echocardiography. Most of the clinical work, however, has been primarily qualitative. Although qualitative information is very valuable, there is considerable quantitative information stored within the velocity map that has not been extensively exploited so far. Recently, many researchers have shown interest in using the encoded velocities to address the clinical problems such as quantification of valvular regurgitation, calculation of cardiac output, and characterization of ventricular filling. In this article, we review some basic physics and engineering aspects of color Doppler echocardiography, as well as drawbacks of trying to retrieve velocities from video tape data. Digital storage, which plays a critical role in performing quantitative analysis, is discussed in some detail with special attention to velocity encoding in DICOM 3.0 (medical image storage standard) and the use of digital compression. Lossy compression can considerably reduce file size with minimal loss of information (mostly redundant); this is critical for digital storage because of the enormous amount of data generated (a 10 minute study could require 18 Gigabytes of storage capacity). Lossy JPEG compression and its impact on quantitative analysis has been studied, showing that images compressed at 27:1 using the JPEG algorithm compares favorably with directly digitized video images, the current goldstandard. Some potential applications of these velocities in analyzing the proximal convergence zones, mitral inflow, and some areas of future development are also discussed in the article.

  18. The influence of emotional stress on Doppler-derived aortic peak velocity in boxer dogs.

    Science.gov (United States)

    Pradelli, D; Quintavalla, C; Crosta, M C; Mazzoni, L; Oliveira, P; Scotti, L; Brambilla, P; Bussadori, C

    2014-01-01

    Subaortic stenosis (SAS) is a common congenital heart disease in Boxers. Doppler-derived aortic peak velocity (AoPV) is a diagnostic criterion for the disease. To investigate the influence of emotional stress during echocardiographic examination on AoPV in normal and SAS-affected Boxers. To evaluate the effects of aortic root diameters on AoPV in normal Boxers. DOGS: Two hundred and fifteen normal and 19 SAS-affected Boxers. The AoPV was recorded at the beginning of echocardiographic examination (T0), and when the emotional stress of the dog was assumed to decrease based on behavioral parameters and heart rate (T1). AoPV0-AoPV1 was calculated. In normal dogs, stroke volume index was calculated at T0 and T1. Aortic root diameters were measured and their relationship with AoPV and AoPV0-AoPV1 was evaluated. In normal dogs, AoPV was higher at T0 (median, 1.95 m/s; range, 1.60-2.50 m/s) than at T1 (median, 1.76 m/s; range, 1.40-2.20 m/s; P dogs, AoPV0 was higher than AoPV1 (P < .0001; reduction 7.3%). Aortic peak velocity was affected by emotional stress during echocardiographic examination both in SAS-affected and normal Boxers. In normal Boxers, aortic root size weakly affected AoPVs, but did not affect AoPV0-AoPV1. Stroke volume seems to play a major role in stress-related AoPV increases in normal Boxers. Emotional stress should be taken into account when screening for SAS in the Boxer breed. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  19. Transcranial Doppler ultrasound and cerebral angiography - alternative or complementary

    International Nuclear Information System (INIS)

    Bockenheimer, S.; Lorey, N.

    1985-01-01

    Transcranial Doppler ultrasound is a noninvasive method of recording the flow velocity of larger intracranial vessels. The impact on diagnosis of cerebravascular occlusive disease is not yet evaluated. We present 15 patients, age range 39-73 years, who suffered from completed stroke. The findings of transcranial Doppler ultrasound and of cerebral angiography are presented. The value of both methods in treatment strategy is discussed. (orig.) [de

  20. Line Profile Measurements of the Lunar Exospheric Sodium

    Science.gov (United States)

    Oliversen, Ronald J.; Mierkiewicz, Edwin J.; Line, Michael R.; Roesler, Fred L.; Lupie, Olivia L.

    2012-01-01

    We report ongoing results of a program to measure the lunar sodium exospheric line profile from near the lunar limb out to two lunar radii (approx 3500 km). These observations are conducted from the National Solar Observatory McMath-Pierce telescope using a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,600 (1.7 km/s) to measure line widths and velocity shifts of the Na D2 (5889 950 A) emission line in equatorial and polar regions at different lunar phases. The typical field of view (FOV) is 3 arcmin (approx 360 km) with an occasional smaller 1 arcmin FOV used right at the limb edge. The first data were obtained from full Moon to 3 days following full Moon (waning phase) in March 2009 as part of a demonstration run aimed at establishing techniques for a thorough study of temperatures and velocity variations in the lunar sodium exosphere. These data indicate velocity displacements from different locations off the lunar limb range between 150 and 600 m/s from the lunar rest velocity with a precision of +/- 20 to +/- 50 m/s depending on brightness. The measured Doppler line widths for observations within 10.5 arcmin of the east and south lunar limbs for observations between 5 deg and 40 deg lunar phase imply temperatures ranging decreasing from 3250 +/- 260K to 1175 +/- 150K. Additional data is now being collected on a quarterly basis since March 2011 and preliminary results will be reported.

  1. Confocal non-line-of-sight imaging based on the light-cone transform

    Science.gov (United States)

    O’Toole, Matthew; Lindell, David B.; Wetzstein, Gordon

    2018-03-01

    How to image objects that are hidden from a camera’s view is a problem of fundamental importance to many fields of research, with applications in robotic vision, defence, remote sensing, medical imaging and autonomous vehicles. Non-line-of-sight (NLOS) imaging at macroscopic scales has been demonstrated by scanning a visible surface with a pulsed laser and a time-resolved detector. Whereas light detection and ranging (LIDAR) systems use such measurements to recover the shape of visible objects from direct reflections, NLOS imaging reconstructs the shape and albedo of hidden objects from multiply scattered light. Despite recent advances, NLOS imaging has remained impractical owing to the prohibitive memory and processing requirements of existing reconstruction algorithms, and the extremely weak signal of multiply scattered light. Here we show that a confocal scanning procedure can address these challenges by facilitating the derivation of the light-cone transform to solve the NLOS reconstruction problem. This method requires much smaller computational and memory resources than previous reconstruction methods do and images hidden objects at unprecedented resolution. Confocal scanning also provides a sizeable increase in signal and range when imaging retroreflective objects. We quantify the resolution bounds of NLOS imaging, demonstrate its potential for real-time tracking and derive efficient algorithms that incorporate image priors and a physically accurate noise model. Additionally, we describe successful outdoor experiments of NLOS imaging under indirect sunlight.

  2. Interrelationship of Cn2 & Eddy Dissipation rate based on Scintillometer and Doppler Lidar observations in complex terrain during the Perdigao Campaign 2017

    Science.gov (United States)

    Creegan, E. D.; Krishnamurthy, R.; Hocut, C. M.; Pattantyus, A.; Leo, L. S.; Wang, Y.; Fernando, H. J.; Bariteau, L.

    2017-12-01

    The Perdigao campaign is a joint EU/US science project designed to provide information on flow field(s) over complex terrain and through wind turbines at unprecedented high spatial and temporal resolution. The goal is to improve wind energy physics and overcome the current deficiencies of wind resource models. Topographically the Perdigao location is an expansion of the "double hill in crossflow", consisting of two parallel ridges along the NW-SE direction. The site was heavily instrumented with an array of towers (with multiple transects along the valley and across two ridges) and a large suite of ground based and aerial remote sensing platforms. On the outflow side of the NW ridge a scintillometer was emplaced with the line-of-sight (LOS) running adjacent to the towers comprising the NE transect from the ridgetop down to the base. Scanning lidars were placed at both ends of this LOS. Other instruments included a tethered lifting system (TLS), sodar, microwave radiometer, an energy budget flux tower and radiosonde releases. Scintillomoter data provides a quantitative measure of the intensity of optical turbulence, through the refractive index structure parameter, Cn2, where averaged Cn2 is often determined as a function of local differences in temperature, moisture, and wind velocity at discrete points. The refractive index structure parameter is also a function of the inner (dissipation) and outer (energy producing) turbulent scales. The scintillometer directly gives path averaged Cn2 and Eddy Dissipation rate along the LOS. Coplanar scans along the same path were synchronized using two scanning coherent Doppler lidars. Algorithms have been developed to estimate both eddy dissipation rate and Cn2 from Doppler lidar data effectively creating a new lidar data product. Additionally, from TLS measurements, Cn2 and dissipation rate are calculated using the high frequency spectra of the hot-wire sensor. In this work, measurements of Cn2 and Eddy Dissipation rate

  3. Integrated Sight Boresighting

    National Research Council Canada - National Science Library

    Gilstrap, Jeff

    1998-01-01

    ... (IR) pointer into an advanced weapon sight and surveillance system. The Integrated Sight is being developed as a technology demonstrator and potential future upgrade to the Land Warrior and Thermal Weapon Sight Programs...

  4. Laser doppler velocimetry and confined flows

    Directory of Open Access Journals (Sweden)

    Ilić Jelena T.

    2017-01-01

    Full Text Available Finding the mode, in which two component laser Doppler velocimetry can be applied to flows confined in cylindrical tubes or vessels, was the aim of this study. We have identified principle issues that influence the propagation of laser beams in laser Doppler velocimetry system, applied to flow confined in cylindrical tube. Among them, the most important are influences of fluid and wall refractive indices, wall thickness and internal radius ratio and beam intersection angle. In analysis of the degrees of these influences, we have applied mathematical model, based on geometrical optics. The separation of measurement volumes, that measure different velocity components, has been recognized as the main drawback. To overcome this, we propose a lens with dual focal length – primary focal length for the measurement of one velocity component and secondary focal length for the measurement of the other velocity component. We present here the procedure for calculating the optimal value of secondary focal length, depending on experimental set-up parameters. The mathematical simulation of the application of the dual focal length lens, for chosen cases presented here, confirmed the accuracy of the proposed procedure.

  5. A New Model of Stopping Sight Distance of Curve Braking Based on Vehicle Dynamics

    Directory of Open Access Journals (Sweden)

    Rong-xia Xia

    2016-01-01

    Full Text Available Compared with straight-line braking, cornering brake has longer braking distance and poorer stability. Therefore, drivers are more prone to making mistakes. The braking process and the dynamics of vehicles in emergency situations on curves were analyzed. A biaxial four-wheel vehicle was simplified to a single model. Considering the braking process, dynamics, force distribution, and stability, a stopping sight distance of the curve braking calculation model was built. Then a driver-vehicle-road simulation platform was built using multibody dynamic software. The vehicle test of brake-in-turn was realized in this platform. The comparison of experimental and calculated values verified the reliability of the computational model. Eventually, the experimental values and calculated values were compared with the stopping sight distance recommended by the Highway Route Design Specification (JTGD20-2006; the current specification of stopping sight distance does not apply to cornering brake sight distance requirements. In this paper, the general values and limits of the curve stopping sight distance are presented.

  6. SYNTHETIC HYDROGEN SPECTRA OF OSCILLATING PROMINENCE SLABS IMMERSED IN THE SOLAR CORONA

    International Nuclear Information System (INIS)

    Zapiór, M.; Heinzel, P.; Oliver, R.; Ballester, J. L.

    2016-01-01

    We study the behavior of H α and H β spectral lines and their spectral indicators in an oscillating solar prominence slab surrounded by the solar corona, using an MHD model combined with a 1D radiative transfer code taken in the line of sight perpendicular to the slab. We calculate the time variation of the Doppler shift, half-width, and maximum intensity of the H α and H β spectral lines for different modes of oscillation. We find a non-sinusoidal time dependence of some spectral parameters with time. Because H α and H β spectral indicators have different behavior for different modes, caused by differing optical depths of formation and different plasma parameter variations in time and along the slab, they may be used for prominence seismology, especially to derive the internal velocity field in prominences.

  7. SYNTHETIC HYDROGEN SPECTRA OF OSCILLATING PROMINENCE SLABS IMMERSED IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Zapiór, M.; Heinzel, P. [Astronomical Institute, The Czech Academy of Sciences, 25165 Ondřejov, The Czech Republic (Czech Republic); Oliver, R.; Ballester, J. L. [Universitat de les Illes Balears. Cra. de Valldemossa, km 7.5. Palma (Illes Balears), E-07122 (Spain)

    2016-08-20

    We study the behavior of H α and H β spectral lines and their spectral indicators in an oscillating solar prominence slab surrounded by the solar corona, using an MHD model combined with a 1D radiative transfer code taken in the line of sight perpendicular to the slab. We calculate the time variation of the Doppler shift, half-width, and maximum intensity of the H α and H β spectral lines for different modes of oscillation. We find a non-sinusoidal time dependence of some spectral parameters with time. Because H α and H β spectral indicators have different behavior for different modes, caused by differing optical depths of formation and different plasma parameter variations in time and along the slab, they may be used for prominence seismology, especially to derive the internal velocity field in prominences.

  8. Precession feature extraction of ballistic missile warhead with high velocity

    Science.gov (United States)

    Sun, Huixia

    2018-04-01

    This paper establishes the precession model of ballistic missile warhead, and derives the formulas of micro-Doppler frequency induced by the target with precession. In order to obtain micro-Doppler feature of ballistic missile warhead with precession, micro-Doppler bandwidth estimation algorithm, which avoids velocity compensation, is presented based on high-resolution time-frequency transform. The results of computer simulations confirm the effectiveness of the proposed method even with low signal-to-noise ratio.

  9. Fast Doppler as a novel bedside measure of cerebral perfusion in preterm infants.

    Science.gov (United States)

    Peeples, Eric S; Mehic, Edin; Mourad, Pierre D; Juul, Sandra E

    2016-02-01

    Altered cerebral perfusion from impaired autoregulation may contribute to the morbidity and mortality associated with premature birth. We hypothesized that fast Doppler imaging could provide a reproducible bedside estimation of cerebral perfusion and autoregulation in preterm infants. This is a prospective pilot study using fast Doppler ultrasound to assess blood flow velocity in the basal ganglia of 19 subjects born at 26-32 wk gestation. Intraclass correlation provided a measure of test-retest reliability, and linear regression of cerebral blood flow velocity and heart rate or blood pressure allowed for estimations of autoregulatory ability. The intraclass correlation when imaging in the first 48 h of life was 0.634. We found significant and independent correlations between the systolic blood flow velocity and both systolic blood pressure and heart rate (P = 0.015 and 0.012 respectively) only in the 26-28 wk gestational age infants in the first 48 h of life. Our results suggest that fast Doppler provides reliable bedside measurements of cerebral blood flow velocity at the tissue level in premature infants, acting as a proxy for cerebral tissue perfusion. Additionally, autoregulation appears to be impaired in the extremely preterm infants, even within a normal range of blood pressures.

  10. The effect of blood acceleration on the ultrasound power Doppler spectrum

    Science.gov (United States)

    Matchenko, O. S.; Barannik, E. A.

    2017-09-01

    The purpose of the present work was to study the influence of blood acceleration and time window length on the power Doppler spectrum for Gaussian ultrasound beams. The work has been carried out on the basis of continuum model of the ultrasound scattering from inhomogeneities in fluid flow. Correlation function of fluctuations has been considered for uniformly accelerated scatterers, and the resulting power Doppler spectra have been calculated. It is shown that within the initial phase of systole uniformly accelerated slow blood flow in pulmonary artery and aorta tends to make the correlation function about 4.89 and 7.83 times wider, respectively, than the sensitivity function of typical probing system. Given peak flow velocities, the sensitivity function becomes, vice versa, about 4.34 and 3.84 times wider, respectively, then the correlation function. In these limiting cases, the resulting spectra can be considered as Gaussian. The optimal time window duration decreases with increasing acceleration of blood flow and equals to 11.62 and 7.54 ms for pulmonary artery and aorta, respectively. The width of the resulting power Doppler spectrum is shown to be defined mostly by the wave vector of the incident field, the duration of signal and the acceleration of scatterers in the case of low flow velocities. In the opposite case geometrical properties of probing field and the average velocity itself are more essential. In the sense of signal-noise ratio, the optimal duration of time window can be found. Abovementioned results may contribute to the improved techniques of Doppler ultrasound diagnostics of cardiovascular system.

  11. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC

    International Nuclear Information System (INIS)

    Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S.; Bolte, N.; Marsili, P.; Roche, T.; Wessel, F.

    2010-01-01

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

  12. Effect of Doppler flow meter position on discharge measurement in surcharged manholes.

    Science.gov (United States)

    Yang, Haoming; Zhu, David Z; Liu, Yanchen

    2018-02-01

    Determining the proper installation location of flow meters is important for accurate measurement of discharge in sewer systems. In this study, flow field and flow regimes in two types of manholes under surcharged flow were investigated using a commercial computational fluid dynamics (CFD) code. The error in measuring the flow discharge using a Doppler flow meter (based on the velocity in a Doppler beam) was then estimated. The values of the corrective coefficient were obtained for the Doppler flow meter at different locations under various conditions. Suggestions for selecting installation positions are provided.

  13. Diagnosis of brain death by transcranial Doppler sonography.

    Science.gov (United States)

    Bode, H; Sauer, M; Pringsheim, W

    1988-12-01

    The blood flow velocities in the basal cerebral arteries can be recorded at any age by transcranial Doppler sonography. We examined nine children with either initial or developing clinical signs of brain death. Soon after successful resuscitation increased diastolic flow velocities indicated a probable decrease in cerebrovascular resistance; this was of no particular prognostic importance. As soon as there was a clinical deterioration, there was a reduction in flow velocities with retrograde flow during early diastole, probably due to an increase in cerebrovascular resistance; this indicated a doubtful prognosis. In eight of the nine children with clinical signs of brain death a typical reverberating flow pattern was found, which was characterised by a counterbalancing short forward flow in systole and a short retrograde flow in early diastole. This indicated arrest of cerebral blood flow. One newborn showed normal systolic and end diastolic flow velocities in the basal cerebral arteries for two days despite clinical and electroencephalographic signs of brain death. Shunting of blood through the circle of Willis without effective cerebral perfusion may explain this phenomenon. No patient had the typical reverberating flow pattern without being clinically brain dead. Transcranial Doppler sonography is a reliable technique, which can be used at the bedside for the confirmation or the exclusion of brain death in children in addition to the clinical examination.

  14. Velocities of gas and plasmas from real time holographic interferograms

    International Nuclear Information System (INIS)

    Deason, V.A.; Reynolds, L.D.; McIlwain, M.E.

    1985-01-01

    A truly noninvasive measurement technique for plasma velocity has not been demonstrated. Plasma velocities have been inferred using laser Doppler anemometry or photographic analysis of the position of smoke or small particles. This paper describes an alternate method based on the refractive index change created in a plasma by a gaseous probe material injected into the plasma. This disturbance of the refractive index can be monitored using interferometry. A multipass real time holographic interferometry system was used to follow the changes of the interferometric pattern, and the data was recorded using high speed cinematography. A transparent model of an industrial plasma torch was employed in these studies, and a number of different types of trace gas materials were used to track the plasma flow. Using a combination of multipass interferometry and a laser line absorbing gas, sufficient interferometric sensitivity was obtained to determine plasma velocities in the 100 m/s range. Based on these results, a working plasma torch was constructed. Further studies are planned using this torch and actual plasmas

  15. Doppler reflectometry for the investigation of poloidally propagating density perturbations

    International Nuclear Information System (INIS)

    Hirsch, M.; Baldzuhn, J.; Kurzan, B.; Holzhauer, E.

    1999-01-01

    A modification of microwave reflectometry is discussed where the direction of observation is tilted with respect to the normal onto the reflecting surface. The experiment is similar to scattering where a finite resolution in k-space exists but keeps the radial localization of reflectometry. The observed poloidal wavenumber is chosen by Bragg's condition via the tilt angle and the resolution in k-space is determined by the antenna pattern. From the Doppler shift of the reflected wave the poloidal propagation velocity of density perturbations is obtained. The diagnostic capabilities of Doppler reflectometry are investigated using full wave code calculations. The method offers the possibility to observe changes in the poloidal propagation velocity of density perturbations and their radial shear with a temporal resolution of about 10μs. (authors)

  16. Fine structure of charge exchange lines observed in laboratory plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ida, K.; Nishimura, S. [National Inst. for Fusion Science, Nagoya (Japan); Kondo, K.

    1997-01-01

    The influence of the fine structure of charge exchange lines appears only at the plasma edge or in the recombining phase where the ion temperature is low enough. The observed spectra in Li III and C VI are consistent with the sum of fine-structure components populated by statistical weights (assuming complete l-mixing) not by direct charge exchange cross sections. Some discrepancy was observed in the intensity ratio of fine-structure components between the observation and calculation for C VI in the recombining phase. The fine-structure of charge exchange lines gives an apparent Doppler shift in plasma rotation velocity measurement using charge exchange spectroscopy. (author)

  17. Thermal Design for a Diffraction-Limited Doppler Spectrometer

    Data.gov (United States)

    National Aeronautics and Space Administration — The Univ. of Notre Dame is building a new high-resolution spectrometer named “iLocater” to achieve unprecedented radial velocity (RV) precision for stellar Doppler...

  18. First Absolutely Calibrated Localized Measurements of Ion Velocity in the MST in Locked and Rotating Plasmas

    Science.gov (United States)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; Munaretto, S.

    2015-11-01

    An Ion Doppler Spectrometer (IDS) is used on MST for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometer records data within 0.3 nm of the C+5 line of interest, and commercial calibration lamps do not produce lines in this narrow range . A novel optical system was designed to absolutely calibrate the IDS. The device uses an UV LED to produce a broad emission curve in the desired region. A Fabry-Perot etalon filters this light, cutting transmittance peaks into the pattern of the LED emission. An optical train of fused silica lenses focuses the light into the IDS with f/4. A holographic diffuser blurs the light cone to increase homogeneity. Using this light source, the absolute Doppler shift of ion emissions can be measured in MST plasmas. In combination with charge exchange recombination spectroscopy, localized ion velocities can now be measured. Previously, a time-averaged measurement along the chord bisecting the poloidal plane was used to calibrate the IDS; the quality of these central chord calibrations can be characterized with our absolute calibration. Calibration errors may also be quantified and minimized by optimizing the curve-fitting process. Preliminary measurements of toroidal velocity in locked and rotating plasmas will be shown. This work has been supported by the US DOE.

  19. HIGH-VELOCITY LINE FORMING REGIONS IN THE TYPE Ia SUPERNOVA 2009ig

    International Nuclear Information System (INIS)

    Marion, G. H.; Foley, Ryan J.; Challis, Peter; Kirshner, Robert P.; Vinko, Jozsef; Wheeler, J. Craig; Silverman, Jeffrey M.; Hsiao, Eric Y.; Brown, Peter J.; Filippenko, Alexei V.; Garnavich, Peter; Landsman, Wayne B.; Parrent, Jerod T.; Pritchard, Tyler A.; Roming, Peter W. A.; Wang, Xiaofeng

    2013-01-01

    We report measurements and analysis of high-velocity (HVF) (>20,000 km s –1 ) and photospheric absorption features in a series of spectra of the Type Ia supernova (SN) 2009ig obtained between –14 days and +13 days with respect to the time of maximum B-band luminosity (B-max). We identify lines of Si II, Si III, S II, Ca II, and Fe II that produce both HVF and photospheric-velocity (PVF) absorption features. SN 2009ig is unusual for the large number of lines with detectable HVF in the spectra, but the light-curve parameters correspond to a slightly overluminous but unexceptional SN Ia (M B = –19.46 mag and Δm 15 (B) = 0.90 mag). Similarly, the Si II λ6355 velocity at the time of B-max is greater than 'normal' for an SN Ia, but it is not extreme (v Si = 13,400 km s –1 ). The –14 days and –13 days spectra clearly resolve HVF from Si II λ6355 as separate absorptions from a detached line forming region. At these very early phases, detached HVF are prevalent in all lines. From –12 days to –6 days, HVF and PVF are detected simultaneously, and the two line forming regions maintain a constant separation of about 8000 km s –1 . After –6 days all absorption features are PVF. The observations of SN 2009ig provide a complete picture of the transition from HVF to PVF. Most SNe Ia show evidence for HVF from multiple lines in spectra obtained before –10 days, and we compare the spectra of SN 2009ig to observations of other SNe. We show that each of the unusual line profiles for Si II λ6355 found in early-time spectra of SNe Ia correlate to a specific phase in a common development sequence from HVF to PVF

  20. The effects of curvature on haptic judgments of extent in sighted and blind people

    NARCIS (Netherlands)

    Heller, Morton A.; Kappers, Astrid M L; McCarthy, Melissa; Clark, Ashley; Riddle, Tara; Fulkerson, Erin; Wemple, Lindsay; Walk, Anne McClure; Basso, Andreana; Wanek, Crystal; Russler, Kristen

    2008-01-01

    A series of experiments was carried out to examine the effect of curvature on haptic judgments of extent in sighted and blind individuals. Experiment 1 showed that diameters connecting the endpoints of semicircular lines were underestimated with respect to straight lines, but failed to show an

  1. Referencing geostrophic velocities using ADCP data Referencing geostrophic velocities using ADCP data

    Directory of Open Access Journals (Sweden)

    Isis Comas-Rodríguez

    2010-06-01

    Full Text Available Acoustic Doppler Current Profilers (ADCPs have proven to be a useful oceanographic tool in the study of ocean dynamics. Data from D279, a transatlantic hydrographic cruise carried out in spring 2004 along 24.5°N, were processed, and lowered ADCP (LADCP bottom track data were used to assess the choice of reference velocity for geostrophic calculations. The reference velocities from different combinations of ADCP data were compared to one another and a reference velocity was chosen based on the LADCP data. The barotropic tidal component was subtracted to provide a final reference velocity estimated by LADCP data. The results of the velocity fields are also shown. Further studies involving inverse solutions will include the reference velocity calculated here.

  2. Doppler shift simulation of scattered HF signals during the Tromsø HF pumping experiment on 16 February 1996

    Directory of Open Access Journals (Sweden)

    T. D. Borisova

    2002-09-01

    Full Text Available Comparisons between bistatic scatter measurements and simulation results during the Tromsø HF pumping experiment on 16 February 1996 are made. Doppler measurements of an HF diagnostic signal scattered from the field-aligned irregularities (FAIs in the auroral E-region were carried out on the London – Tromsø – St. Petersburg path at 9410 kHz from 21:00 to 22:00 UT. The scattered signals were observed both from natural and artificial ionospheric irregularities located in the vicinity of Tromsø. To simulate the Doppler frequency shifts, fd , of scattered signals, a radio channel model, named CONE, was developed. The model allows for ray tracing, group and phase paths, and Doppler frequency shift calculations. The calculated Doppler shifts were analyzed for dependence on the magnitude and direction of plasma velocities in the scattering volume. It was found that the velocity components in the north-south direction are crucial for explaining the Doppler frequency shifts of the scattered diagnostic signals. To simulate fd , real velocities obtained from the EISCAT UHF radar at an altitude of 278 km and from the digital all-sky imager during the experiment were employed. The simulation results of Doppler frequency shift variations with time are in reasonable agreement with the experimental Doppler shifts of scattered signals on the London – Tromsø – St. Petersburg path.Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  3. Doppler color flow mapping of peripheral vessels: Comparison of angiodynography with conventional duplex US

    International Nuclear Information System (INIS)

    Merritt, C.R.B.; Bluth, E.I.; Sullivan, M.A.

    1986-01-01

    A new Doppler color flow imager was compared to duplex US in the evaluation of carotid and peripheral vessels in 50 patients. A 7.5-MHz transducer permitted simultaneous high-resolution real-time imaging of Doppler flow and tissue. The system was found to have excellent image quality and Doppler sensitivity. Flow characteristics and velocity measurements obtained with this system correlated well with those obtained using the duplex scanner and were obtained more quickly than with the conventional system, allowing more complete assessment of flow characteristics. Color Doppler flow imaging appears to be an extremely promising method for the rapid and effective evaluation of peripheral vascular flow

  4. Development of a flexible Doppler reflectometry system and its application to turbulence characterization in the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Troester, Carolin Helma

    2008-04-15

    An essential challenge in present fusion plasma research is the study of plasma turbulence. The turbulence behavior is investigated experimentally on the ASDEX Upgrade tokamak using Doppler reflectometry, a diagnostic technique sensitive to density fluctuations at a specific wavenumber k {sub perpendicular} {sub to}. This microwave radar diagnostic utilizes localized Bragg backscattering of the launched beam (k{sub 0}) by the density fluctuations at the plasma cutoff layer. The incident angle {theta} selects the probed k {sub perpendicular} {sub to} via the Bragg condition k {sub perpendicular} {sub to} {approx} 2k{sub 0}sin{theta}. The measured Doppler shifted frequency spectrum allows the determination of the perpendicular plasma rotation velocity, u {sub perpendicular} {sub to} =v{sub E} {sub x} {sub B}+v{sub turb}, directly from the Doppler frequency shift(f{sub D} = u {sub perpendicular} {sub to} k {sub perpendicular} {sub to} /2{pi}), and the turbulence amplitude from the backscattered power level. This thesis work presents a survey of u {sub perpendicular} {sub to} radial profiles and k {sub perpendicular} {sub to} spectrum measurements for a variety of plasma conditions obtained by scanning the antenna tilt angle. This was achieved by extending the existing V-band Doppler reflectometry system (50 - 75 GHz) with a new W-band system (75 - 110 GHz), which was especially designed for measuring the k {sub perpendicular} {sub to} spectrum and additionally expands the radial coverage into the plasma core region. It consists of a remote steerable antenna with an adjustable line of sight allowing for dynamic wavenumber selection up to 25 cm {sup -1} and a reflectometer with a 'phase locked loop' stabilized transmitter allowing for the precise determination of the instrument response function. The proper system functionality was demonstrated by laboratory testing and benckmarking against the V-band system. The new profile measurements obtained show a

  5. Design And Analysis Of Doppler Radar-Based Vehicle Speed Detection

    Directory of Open Access Journals (Sweden)

    Su Myat Paing

    2015-08-01

    Full Text Available The most unwanted thing to happen to a road user is road accident. Most of the fatal accidents occur due to over speeding. Faster vehicles are more prone to accident than the slower one. Among the various methods for detecting speed of the vehicle object detection systems based on Radar have been replaced for about a century for various purposes like detection of aircrafts spacecraft ships navigation reading weather formations and terrain mapping. The essential feature in adaptive vehicle activated sign systems is the accurate measurement of a vehicles velocity. The velocities of the vehicles are acquired from a continuous wave Doppler radar. A very low amount of power is consumed in this system and only batteries can use to operate. The system works on the principle of Doppler Effect by detecting the Doppler shift in microwaves reflected from a moving object. Since the output of the sensor is sinusoidal wave with very small amplitude and needs to be amplified with the help of the amplifier before further processing. The purpose to calculate and display the speed on LCD is performed by the microcontroller.

  6. Evaluation of factors influencing arterial Doppler waveforms in an in vitro flow phantom

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyu [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Kyoung Ho [Dept. of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam (Korea, Republic of); Kim, Seung Hyup [Dept. of Radiology and the Institute of Radiation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-01-15

    The aim of this study was to investigate factors that influence arterial Doppler waveforms in an in vitro phantom to provide a more accurate and comprehensive explanation of the Doppler signal. A flow model was created using a pulsatile artificial heart, rubber or polyethylene tubes, a water tank, and a glass tube. Spectral Doppler tracings were obtained in multiple combinations of compliance, resistance, and pulse rate. Peak systolic velocity, minimum diastolic velocity, resistive index (RI), pulsatility index, early systolic acceleration time, and acceleration index were measured. On the basis of these measurements, the influences of the variables on the Doppler waveforms were analyzed. With increasing distal resistance, the RI increased in a relatively linear relationship. With increasing proximal resistance, the RI decreased. The pulsus tardus and parvus phenomenon was observed with a small acceleration index in the model with a higher grade of stenosis. An increase in the distal resistance masked the pulsus tardus and parvus phenomenon by increasing the acceleration index. Although this phenomenon occurred independently of compliance, changes in the compliance of proximal or distal tubes caused significant changes in the Doppler waveform. There was a reverse relationship between the RI and the pulse rate. Resistance and compliance can alter the Doppler waveforms independently. The pulse rate is an extrinsic factor that also influences the RI. The compliance and distal resistance, as well as proximal resistance, influence the pulsus tardus and parvus phenomenon.

  7. Laser Doppler thermometry in flat flames

    NARCIS (Netherlands)

    Maaren, van A.; Goey, de L.P.H.

    1994-01-01

    Laser Doppler Velocimetry measurements are performed in flat flames, stabilized on a newly developed flat-flame burner. It is shown that the velocity component perpendicular to the main flow direction, induced by expansion in the reaction zone and buoyancy in the burnt gas, is significant. A method

  8. Extended Kalman Filter Channel Estimation for Line-of-Sight Detection in WCDMA Mobile Positioning

    Directory of Open Access Journals (Sweden)

    Abdelmonaem Lakhzouri

    2003-12-01

    Full Text Available In mobile positioning, it is very important to estimate correctly the delay between the transmitter and the receiver. When the receiver is in line-of-sight (LOS condition with the transmitter, the computation of the mobile position in two dimensions becomes straightforward. In this paper, the problem of LOS detection in WCDMA for mobile positioning is considered, together with joint estimation of the delays and channel coefficients. These are very challenging topics in multipath fading channels because LOS component is not always present, and when it is present, it might be severely affected by interfering paths spaced at less than one chip distance (closely spaced paths. The extended Kalman filter (EKF is used to estimate jointly the delays and complex channel coefficients. The decision whether the LOS component is present or not is based on statistical tests to determine the distribution of the channel coefficient corresponding to the first path. The statistical test-based techniques are practical, simple, and of low computation complexity, which is suitable for WCDMA receivers. These techniques can provide an accurate decision whether LOS component is present or not.

  9. Future of clip-on weapon sights: pros and cons from an applications perspective

    Science.gov (United States)

    Knight, C. Reed; Greenslade, Ken; Francisco, Glen

    2015-05-01

    US Domestic, International, allied Foreign National Warfighters and Para-Military First Responders (Police, SWAT, Special Operations, Law Enforcement, Government, Security and more) are put in harm's way all the time. To successfully complete their missions and return home safely are the primary goals of these professionals. Tactical product improvements that affect mission effectiveness and solider survivability are pivotal to understanding the past, present and future of Clip-On in-line weapon sights. Clip-On Weapon Sight (WS) technology was deemed an interim solution by the US Government for use until integrated and fused (day/night multi-sensor) Weapon Sights (WSs) were developed/fielded. Clip-On has now become the solution of choice by Users, Warriors, Soldiers and the US Government. SWaP-C (size, weight and power -cost) has been improved through progressive advances in Clip-On Image Intensified (I2), passive thermal, LL-CMOS and fused technology. Clip-On Weapon Sights are now no longer mounting position sensitive. Now they maintain aim point boresight, so they can be used for longer ranges with increased capabilities while utilizing the existing zeroed weapon and daysight optic. Active illuminated low-light level (both analog I2 and digital LL-CMOS) imaging is rightfully a real-world technology, proven to deliver daytime and low-light level identification confidence. Passive thermal imaging is also a real-world technology, proven to deliver daytime, nighttime and all-weather (including dirty battlefield) target detection confidence. Image processing detection algorithms with intelligent analytics provide documented promise to improve confidence by reducing Users, Warriors and Soldiers' work-loads and improving overall system engagement solution outcomes. In order to understand the future of Clip-On in-line weapon sights, addressing pros and cons, this paper starts with an overview of historical weapon sight applications, technologies and stakeholder decisions

  10. Comparison of magnetic resonance imaging and Laser Doppler Anemometry velocity measurements downstream of replacement heart valves: implications for in vivo assessment of prosthetic valve function.

    Science.gov (United States)

    Fontaine, A A; Heinrich, R S; Walker, P G; Pedersen, E M; Scheidegger, M B; Boesiger, P; Walton, S P; Yoganathan, A P

    1996-01-01

    The non-invasive, in-vivo assessment of prosthetic valve function is compromised by the lack of accurate measurements of the transvalvular flow fields or hemodynamics by current techniques. Short echo time magnetic resonance imaging (MRI) may provide a method for the non-invasive, in vivo assessment of prosthetic valve function by accurately measuring changes in the transvalvular flow fields associated with normal and dysfunctional prosthetic valves. The objectives of these in vitro experiments were to investigate the potential for using MRI as a tool to measure the complex flow fields distal to replacement heart valves, and to assess the accuracy of MRI velocity measurements by comparison with Laser Doppler Anemometry (LDA), a gold standard. The velocity fields downstream of tilting disc, bileaflet, ball and cage, and pericardial tissue valves were measured using both three-component LDA and MRI phase velocity encoding under a steady flow rate of 22.8 l/min, simulating peak systolic flow. The valves were tested under normal and stenotic conditions to assess the MRI capabilities under a wide range of local flow conditions, velocities and turbulence levels. A new short echo time MRI technique (FAcE), which allowed velocity measurements in stenotic jets with high turbulence, was tested. Good overall agreement was obtained between the MRI velocity measurements and the LDA data. The MRI velocity measurements adequately reproduced the spatial structure of the flow fields. In most cases peak velocities were accurately measured to within 15%. The results indicate that the FAcE MRI method has the potential to be used as a diagnostic tool to assess prosthetic valve function.

  11. Superimposed noninterfering probes to extend the capabilities of phase Doppler anemometry.

    Science.gov (United States)

    Onofri, Fabrice; Lenoble, Anne; Radev, Stefan

    2002-06-20

    We propose using multiple superimposed noninterfering probes (SNIPs) of the same wavelength but different beam angles to extend the capabilities of phase Doppler anemometry. When a particle is moving in a SNIP the Doppler signals that are produced exhibit multiple Doppler frequencies and phase shifts. The resolution of the measurements of particle size (i.e., by fringe spacing and Doppler frequency) increases with beam angle. Then, with the solution proposed, even with only two detectors several measurements of size can be obtained for the same particle with increasing resolution if we consider higher frequencies in the signal. Several optical solutions to produce SNIPs as well as a signal-processing algorithm to treat the multiple-frequency Doppler signals are proposed. Experimental validations of the sizing of spherical and cylindrical particles demonstrate the applicability of this technique for particle measurement. We believe that this new technique can be of great interest when high resolution of size, velocity, and even refractive index is required.

  12. Investigation of Doppler spectra of laser radiation scattered inside hand skin during occlusion test

    Science.gov (United States)

    Kozlov, I. O.; Zherebtsov, E. A.; Zherebtsova, A. I.; Dremin, V. V.; Dunaev, A. V.

    2017-11-01

    Laser Doppler flowmetry (LDF) is a method widely used in diagnosis of microcirculation diseases. It is well known that information about frequency distribution of Doppler spectrum of the laser radiation scattered by moving red blood cells (RBC) usually disappears after signal processing procedure. Photocurrent’s spectrum distribution contains valuable diagnostic information about velocity distribution of the RBC. In this research it is proposed to compute the indexes of microcirculation in the sub-ranges of the Doppler spectrum as well as investigate the frequency distribution of the computed indexes.

  13. Comparative analysis of pulsed doppler ultrasonography of portal vein vs indirect photography

    International Nuclear Information System (INIS)

    Chang, Jae Chun; Kwon, Huck Po; Hwang, Mi Soo; Kim, Sun Youn; Park, Bok Hwan; Lee, Hyun Ju; Kim, Hong Jin

    1990-01-01

    There are some limitation of interpretation in indirect photography via superior mesenteric artery. In order to supplement and predict indirect photography, we compared indirect photographic findings with pulsed doppler flowmetry in 38 hepatobiliary patients, and the results were as follow: 1. In case of normal main portal vein(MPV) filling, Pulsed Doppler always showed antegrade, continuous parabolic wave form and cases of abnormal MPV filling, showed unusual wave form and flow direction. 2. In normal filling case of proximal right portal vein, Pulsed Doppler almost showed normal continuous parabolic wave form but in normal filling cases of proximal left portal vein, occasionally showed undulating wave form. 3. In each side proximal portal vein abnormal filling case, we could observe abnormal doppler wave form and could obtain additional information using doppler wave form. 4. Mean portal flow velocity was significantly increased in higher photography grade(p=0.01) and congestion index was significantly decreased in higher photography grade(p=0.01). 5. We concluded that doppler ultrasonography could supplement incomplete indirect photography

  14. Flight Test Evaluation of an Unmanned Aircraft System Traffic Management (UTM) Concept for Multiple Beyond-Visual-Line-of-Sight Operations

    Science.gov (United States)

    Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal

    2017-01-01

    This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.

  15. Inline Ultrasonic Rheometry by Pulsed Doppler

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, David M.; Greenwood, Margaret S.; Bamberger, Judith A.; Pappas, Richard A.

    2006-12-22

    This will be a discussion of the non-invasive determination of the viscosity of a non-Newtonian fluid in laminar pipe flow over the range of shear rates present in the pipe. The procedure used requires knowledge of the flow profile in and the pressure drop along a long straight run of pipe. The profile is determined by using a pulsed ultrasonic Doppler velocimeter. This approach is ideal for making non-invasive, real-time measurements for monitoring and control. Rheograms of a shear thinning, thixotropic gel will be presented. The operating parameters and limitations of the Doppler-based instrument will be discussed. The most significant limitation is velocity gradient broadening of the Doppler spectra near the walls of the pipe. This limitation can be significant for strongly shear thinning fluids (depending also on the ratio of beam to pipe diameter and the transducer's insertion angle).

  16. Optic-microwave mixing velocimeter for superhigh velocity measurement

    International Nuclear Information System (INIS)

    Weng Jidong; Wang Xiang; Tao Tianjiong; Liu Cangli; Tan Hua

    2011-01-01

    The phenomenon that a light beam reflected off a moving object experiences a Doppler shift in its frequency underlies practical interferometric techniques for remote velocity measurements, such as velocity interferometer system for any reflector (VISAR), displacement interferometer system for any reflector (DISAR), and photonic Doppler velocimetry (PDV). While VISAR velocimeters are often bewildered by the fringe loss upon high-acceleration dynamic process diagnosis, the optic-fiber velocimeters such as DISAR and PDV, on the other hand, are puzzled by high velocity measurement over 10 km/s, due to the demand for the high bandwidth digitizer. Here, we describe a new optic-microwave mixing velocimeter (OMV) for super-high velocity measurements. By using currently available commercial microwave products, we have constructed a simple, compact, and reliable OMV device, and have successfully obtained, with a digitizer of bandwidth 6 GH only, the precise velocity history of an aluminum flyer plate being accelerated up to 11.2 km/s in a three stage gas-gun experiment.

  17. Doppler shift simulation of scattered HF signals during the Tromsø HF pumping experiment on 16 February 1996

    Directory of Open Access Journals (Sweden)

    T. D. Borisova

    Full Text Available Comparisons between bistatic scatter measurements and simulation results during the Tromsø HF pumping experiment on 16 February 1996 are made. Doppler measurements of an HF diagnostic signal scattered from the field-aligned irregularities (FAIs in the auroral E-region were carried out on the London – Tromsø – St. Petersburg path at 9410 kHz from 21:00 to 22:00 UT. The scattered signals were observed both from natural and artificial ionospheric irregularities located in the vicinity of Tromsø. To simulate the Doppler frequency shifts, fd , of scattered signals, a radio channel model, named CONE, was developed. The model allows for ray tracing, group and phase paths, and Doppler frequency shift calculations. The calculated Doppler shifts were analyzed for dependence on the magnitude and direction of plasma velocities in the scattering volume. It was found that the velocity components in the north-south direction are crucial for explaining the Doppler frequency shifts of the scattered diagnostic signals. To simulate fd , real velocities obtained from the EISCAT UHF radar at an altitude of 278 km and from the digital all-sky imager during the experiment were employed. The simulation results of Doppler frequency shift variations with time are in reasonable agreement with the experimental Doppler shifts of scattered signals on the London – Tromsø – St. Petersburg path.

    Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  18. Parametric Investigation of Laser Doppler Microphones

    Science.gov (United States)

    Daoud, M.; Naguib, A.

    2002-11-01

    The concept of a Laser Doppler Microphone (LDM) is based on utilizing the Doppler frequency shift of a focused laser beam to measure the unsteady velocity of the center point of a flexible polymer diaphragm that is mounted on top of a hole and subjected to the unsteady pressure. Time integration of the velocity signal yields a time series of the diaphragm displacement, which can be converted to pressure from knowledge of the sensor's deflection sensitivity. In our APS/DFD presentation last year, the stringent frequency resolution requirement of these new sensors and methods to meet this requirement were discussed. Here, the dependence of the sensor characteristics (sensitivity, bandwidth, and noise floor) on various significant parameters is investigated in detail by calibrating the sensor in a plane wave tube in the frequency range of 50 - 5000 Hz. Parameters investigated include sensor diaphragm material and thickness, sensor size, damping of the diaphragm motion and laser beam spot size. The results shed light on the operating limits of the new sensor and demonstrate its ability to conduct high-spatial-resolution measurements in typical high-Reynolds-number test facilities. Moreover, calibrated LDM sensors were used to conduct measurements in a separating/reattaching flow and the results are compared to classical electret-type microphones with a similar sensing diameter.

  19. An assimilation test of Doppler radar reflectivity and radial velocity from different height layers in improving the WRF rainfall forecasts

    Science.gov (United States)

    Tian, Jiyang; Liu, Jia; Yan, Denghua; Li, Chuanzhe; Chu, Zhigang; Yu, Fuliang

    2017-12-01

    Hydrological forecasts require high-resolution and accurate rainfall information, which is one of the most difficult variables to be captured by the mesoscale Numerical Weather Prediction (NWP) systems. Radar data assimilation is an effective method for improving rainfall forecasts by correcting the initial and lateral boundary conditions of the NWP system. The aim of this study is to explore an efficient way of utilizing the Doppler radar observations for data assimilation, which is implemented by exploring the effect of assimilating radar data from different height layers on the improvement of the NWP rainfall accuracy. The Weather Research and Forecasting (WRF) model is used for numerical rainfall forecast in the Zijingguan catchment located in the ;Jing-Jin-Ji; (Beijing-Tianjin-Hebei) Region of Northern China, and the three-dimensional variational data assimilation (3-DVar) technique is adopted to assimilate the radar data. Radar reflectivity and radial velocity are assimilated separately and jointly. Each type of radar data is divided into seven data sets according to the height layers: (1) 2000 m, and (7) all layers. The results show that radar reflectivity assimilation leads to better results than radial velocity assimilation. The accuracy of the forecasted rainfall deteriorates with the rise of the height of the assimilated radar reflectivity. The same results can be found when assimilating radar reflectivity and radial velocity at the same time. The conclusions of this study provide a reference for efficient assimilation of the radar data in improving the NWP rainfall products.

  20. Color Doppler measurement of blood flow in the inferior thyroid artery in patients with autoimmune thyroid diseases

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, Giuseppe; Attard, Marco; Caronia, Aurelio; Lagalla, Roberto

    2000-10-01

    Purpose: The aim of the study is to find out whether the measurement of peak systolic velocity in the inferior thyroid artery (ITA) is a valuable parameter to differentiate autoimmune thyroid diseases (hyper-, normo- or hypofunctional) and to evaluate the efficacy of medical treatment. Material and methods: The ITA of 31 patients (eight with Graves' disease, 23 with subclinical hypothyroidism) was examined with color Doppler and pulsed Doppler. The final diagnosis was obtained by citology and by hormonal and antibodies assays. The patients were monitorized by ultrasound for a period of 8 months. Results: In all the patients with Graves' disease the peak systolic velocity was always over 150 cm/s, while in other autoimmune thyroiditis the peak systolic velocity was within the normal range, and never exceeding 65 cm/s. In the first group, the measurement taken in the ITA showed also the efficacy of the pharmacological treatment earlier and more reliably than the color Doppler pattern obtained in the parenchyma. Conclusions: The color Doppler measurement of the ITA seems to be a promising technique with low-cost and easy approach. In our experience, the color Doppler of the ITA could have a clinical role in the differential diagnosis of diffuse thyroid diseases and in the follow-up of the Graves' disease during medical treatment.

  1. Color Doppler measurement of blood flow in the inferior thyroid artery in patients with autoimmune thyroid diseases

    International Nuclear Information System (INIS)

    Caruso, Giuseppe; Attard, Marco; Caronia, Aurelio; Lagalla, Roberto

    2000-01-01

    Purpose: The aim of the study is to find out whether the measurement of peak systolic velocity in the inferior thyroid artery (ITA) is a valuable parameter to differentiate autoimmune thyroid diseases (hyper-, normo- or hypofunctional) and to evaluate the efficacy of medical treatment. Material and methods: The ITA of 31 patients (eight with Graves' disease, 23 with subclinical hypothyroidism) was examined with color Doppler and pulsed Doppler. The final diagnosis was obtained by citology and by hormonal and antibodies assays. The patients were monitorized by ultrasound for a period of 8 months. Results: In all the patients with Graves' disease the peak systolic velocity was always over 150 cm/s, while in other autoimmune thyroiditis the peak systolic velocity was within the normal range, and never exceeding 65 cm/s. In the first group, the measurement taken in the ITA showed also the efficacy of the pharmacological treatment earlier and more reliably than the color Doppler pattern obtained in the parenchyma. Conclusions: The color Doppler measurement of the ITA seems to be a promising technique with low-cost and easy approach. In our experience, the color Doppler of the ITA could have a clinical role in the differential diagnosis of diffuse thyroid diseases and in the follow-up of the Graves' disease during medical treatment

  2. Pulsed and Tissue Doppler Echocardiographic Changes in Patients with Thalassemia Major

    Directory of Open Access Journals (Sweden)

    Taysir S. Garadah

    2010-01-01

    Full Text Available Background Doppler echocardiographic studies of left ventricle (LV systolic and diastolic function in patients with β-Thalassemia Major (β-TM had shown different patterns of systolic and diastolic dysfunction. Aim This cross-sectional study was designed to study the LV systolic and diastolic function in patients with β-TM using Pulsed Doppler (PD and Tissue Doppler (TD echocardiography. Methods All patients were evaluated clinically and by echocardiography, The study included patients with β-TM (n = 38, age 15.7 ± 8.9 years compared with an age-matched control group (n = 38, age 15.9 ± 8.9 years. The pulse Doppler indices were normalized for age and heart rate. Results Compared with control patients, M-Mode showed that patients with β-TM have thicker LV septal wall index (0.659 ± 0.23 vs. 0.446 ± 0.219 cm, P ≤ 0.001, posterior wall index (0.659 ± 0.235 vs. 0.437 ± 0.214 cm, P ≤ 0.01, and larger LVEDD index is (3.99 ± 0.48 vs. 2.170 ± 0.57 mm. P = 0.035. Pulsed Doppler showed high LV trans-mitral E wave velocity (70.818 ± 10.139 vs. 57.532 ± 10.139, p = 0.027 and E/A ratio (1.54 vs. 1.23, P ≤ 0.01. The duration of Deceleration time (DT and isovolumic relaxation time (IVRT were significantly shorter in patients with β-TM (150.234 ± 20.0.23 vs. 167.123 ± 19.143 msec, P ≤ 0.01 and (60.647 ± 6.77 vs. 75.474 ± 5.83 msec, P ≤ 0.001, respectively. The ratio of transmitral E wave velocity to the tissue Doppler E wave at the basal septal mitral annulus E/Em – was significantly higher in β-TM group (14.024 ± 2.29 vs. 12.132 ± 1.82, P ≤ 0.01. The Tissue Doppler systolic velocity (Sm and the early diastolic velocity (Em were significantly lower in β-TM group compared to control (4.31 ± 1.2 cm/s vs. 6.95 ± 2.1, P ≤ 0.01 and 4.31 ± 2.7 cm/s vs. 5.82 ± 2.5, P ≤ 0.01 respectively. The tricuspid valve velocity was significantly higher than controls (2.993 ± 0.569 vs. 1.93 ± 0.471 m/sec, respectively, P ≤ 0

  3. NEW PERSPECTIVE ON GALAXY OUTFLOWS FROM THE FIRST DETECTION OF BOTH INTRINSIC AND TRAVERSE METAL-LINE ABSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    Kacprzak, Glenn G.; Cooke, Jeff [Swinburne University of Technology, Victoria 3122 (Australia); Martin, Crystal L.; Ho, Stephanie H. [Physics Department, University of California, Santa Barbara, CA 93106 (United States); Bouché, Nicolas; LeReun, Audrey; Schroetter, Ilane [CNRS, Institut de Recherche en Astrophysique et Planétologie (IRAP) de Toulouse, 14 Avenue E. Belin, F-31400 Toulouse (France); Churchill, Christopher W.; Klimek, Elizabeth, E-mail: gkacprzak@astro.swin.edu.au [New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-09-01

    We present the first observation of a galaxy (z = 0.2) that exhibits metal-line absorption back-illuminated by the galaxy (down-the-barrel) and transversely by a background quasar at a projected distance of 58 kpc. Both absorption systems, traced by Mg II, are blueshifted relative to the galaxy systemic velocity. The quasar sight line, which resides almost directly along the projected minor axis of the galaxy, probes Mg I and Mg II absorption obtained from the Keck/Low Resolution Imaging Spectrometer as well as Lyα, Si II, and Si III absorption obtained from the Hubble Space Telescope/Cosmic Origins Spectrograph. For the first time, we combine two independent models used to quantify the outflow properties for down-the-barrel and transverse absorption. We find that the modeled down-the-barrel deprojected outflow velocities range between V {sub dtb} = 45-255 km s{sup –1}. The transverse bi-conical outflow model, assuming constant-velocity flows perpendicular to the disk, requires wind velocities V {sub outflow} = 40-80 km s{sup –1} to reproduce the transverse Mg II absorption kinematics, which is consistent with the range of V {sub dtb}. The galaxy has a metallicity, derived from Hα and N II, of [O/H] = –0.21 ± 0.08, whereas the transverse absorption has [X/H] = –1.12 ± 0.02. The galaxy star formation rate is constrained between 4.6-15 M {sub ☉} yr{sup –1} while the estimated outflow rate ranges between 1.6-4.2 M {sub ☉} yr{sup –1} and yields a wind loading factor ranging between 0.1-0.9. The galaxy and gas metallicities, the galaxy-quasar sight-line geometry, and the down-the-barrel and transverse modeled outflow velocities collectively suggest that the transverse gas originates from ongoing outflowing material from the galaxy. The ∼1 dex decrease in metallicity from the base of the outflow to the outer halo suggests metal dilution of the gas by the time it reached 58 kpc.

  4. GPM GROUND VALIDATION DUAL-FREQUENCY DUAL-POLARIZED DOPPLER RADAR (D3R) IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual-frequency Dual-polarized Doppler Radar (D3R) IFloodS data set contain radar reflectivity and doppler velocity measurements. The D3R...

  5. A method to validate quantitative high-frequency power doppler ultrasound with fluorescence in vivo video microscopy.

    Science.gov (United States)

    Pinter, Stephen Z; Kim, Dae-Ro; Hague, M Nicole; Chambers, Ann F; MacDonald, Ian C; Lacefield, James C

    2014-08-01

    Flow quantification with high-frequency (>20 MHz) power Doppler ultrasound can be performed objectively using the wall-filter selection curve (WFSC) method to select the cutoff velocity that yields a best-estimate color pixel density (CPD). An in vivo video microscopy system (IVVM) is combined with high-frequency power Doppler ultrasound to provide a method for validation of CPD measurements based on WFSCs in mouse testicular vessels. The ultrasound and IVVM systems are instrumented so that the mouse remains on the same imaging platform when switching between the two modalities. In vivo video microscopy provides gold-standard measurements of vascular diameter to validate power Doppler CPD estimates. Measurements in four image planes from three mice exhibit wide variation in the optimal cutoff velocity and indicate that a predetermined cutoff velocity setting can introduce significant errors in studies intended to quantify vascularity. Consistent with previously published flow-phantom data, in vivo WFSCs exhibited three characteristic regions and detectable plateaus. Selection of a cutoff velocity at the right end of the plateau yielded a CPD close to the gold-standard vascular volume fraction estimated using IVVM. An investigator can implement the WFSC method to help adapt cutoff velocity to current blood flow conditions and thereby improve the accuracy of power Doppler for quantitative microvascular imaging. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Biometric, B-mode and color Doppler ultrasound assessment of eyes in healthy dogs

    Directory of Open Access Journals (Sweden)

    Elzivânia G. Silva

    Full Text Available ABSTRACT: B-scan ultrasonography is an important diagnostic tool that allows characterization of internal organ anatomy and, when complemented by Doppler ultrasound, allows vascular hemodynamic assessment, increasing the diagnostic accuracy. Thus, the aim of the present study was the B-scan ultrasound characterization and measurement of the eyeball segments and assessment of the external ophthalmic artery by color and pulsed Doppler. Sixty eyeballs were assessed from 30 dogs of different breeds using an 8.5MHz microconvex transductor. First, biometry was performed by B-scan of the following segments: axial length (M1, anterior chamber depth (M2, lens thickness (M3, lens length (M4, vitreous chamber depth (M5, optical disc length (M6 and optic nerve diameter (M7. Colored Doppler identified the external ophthalmic article and pulsed Doppler assessed its flow, and the following were measured: systolic peak velocity (VPS, final diastolic velocity (VDF, resistivity index (IR and pulse index (IP. No statistical difference was observed for the biometric values of the eye segments between the right and left eyes (p>0.05. The vitreous chamber depth (M5 was shown to be the biometric variable with greatest bilateral symmetry, varying from 0.79 to 0.87cm and 0.78 to 0.86cm for the right and left eye, respectively. The ophthalmic artery was visualized over the optic nerve towards the eyeball, with flow stained red. There was no significant statistical difference between the Doppler velocimetric values for the ophthalmic artery between the right and left eye of the animals assessed (p>0.05. The mean resistivity index (RI showed average values equal to 0.63±0.03, bilaterally. The mean base velocity was 17.50cm/s and 18.18cm/s at the systolic peak and 6.21cm/s and 6.68cm/s at the end of the diastole, for the right and left eyes respectively. The anatomic, biometric and hemodynamic characterization using the ultrasound B-scan and the Doppler modalities

  7. Investigation of two-phase bubbly flows using laser doppler anemometry

    OpenAIRE

    Marié , Jean-Louis

    1983-01-01

    International audience; The present work is devoted to the development of an accurate and reliable laser Doppler anemometer technique (L.D.A.) meant for the measurement of the characteristics of twoephase bubbly flows. Most of these characteristics are the various statistical moments of the velocity fluctuations and the Reynolds stress tensor components within the continuous phase but also, under well defined conditions, the mean slip velocity of the dispersed phase. Although this technique w...

  8. Glare Spot Phase Doppler Anemometry

    Science.gov (United States)

    Hespel, Camille; Ren, Kuanfang; Gréhan, Gérard; Onofri, Fabrice

    2007-06-01

    The Phase Doppler anemometry has been developed to measure simultaneously the velocity and the size of droplets. The measurement of the refractive index would be also interesting since it depends on the temperature and the composition of the particle and its measurement permits both to increase the quality of the diameter measurement and to obtain information on the temperature and/or the composition of the droplets. In this paper, we introduce a Glare Spot Phase Doppler Anemometry which uses two large beams. In this case, the images of the particle formed by the reflected and refracted light, known as glare spots, are separated in space. When a particle passes in the probe volume, the two parts in a signal obtained by a detector in forward direction are then separated in time. If two detectors are used the phase differences between two signals, the distance and the intensity ratio of reflected and refracted parts can be obtained and they provide rich information about the particle diameter and its refractive index, as well as its velocity. This paper is devoted to the numerical study of such a configuration with two theoretical models: geometrical optics and rigorous electromagnetism solution.

  9. Thermal Boundary Layer Effects on Line-of-Sight Tunable Diode Laser Absorption Spectroscopy (TDLAS) Gas Concentration Measurements.

    Science.gov (United States)

    Qu, Zhechao; Werhahn, Olav; Ebert, Volker

    2018-06-01

    The effects of thermal boundary layers on tunable diode laser absorption spectroscopy (TDLAS) measurement results must be quantified when using the line-of-sight (LOS) TDLAS under conditions with spatial temperature gradient. In this paper, a new methodology based on spectral simulation is presented quantifying the LOS TDLAS measurement deviation under conditions with thermal boundary layers. The effects of different temperature gradients and thermal boundary layer thickness on spectral collisional widths and gas concentration measurements are quantified. A CO 2 TDLAS spectrometer, which has two gas cells to generate the spatial temperature gradients, was employed to validate the simulation results. The measured deviations and LOS averaged collisional widths are in very good agreement with the simulated results for conditions with different temperature gradients. We demonstrate quantification of thermal boundary layers' thickness with proposed method by exploitation of the LOS averaged the collisional width of the path-integrated spectrum.

  10. Assessing UAS Flight Testing and It's Importance for Beyond-Line-of-Sight UAS Control in Cooperation with Partnering Organizations

    Science.gov (United States)

    de Jong, Daphne

    2015-01-01

    From the 1st of June until the 21st of August, the internship has been conducted at NASA Ames Research Center as part of the Master of Space Studies at the International Space University. The main activities consisted of doing research on UAV flight-­-testing and the assessing of safety with respect to Beyond-­-Line-­-Of-­-Sight operations. Further activities consisted of accommodating international partners and potential partners at the NASA Ames site, in order to identify mutual interest and future collaboration. Besides those activities, the report describes the planning process of the ISU Space Coast Trip to 10 different space related companies on the west-­-coast of California. Key words: UAS, UAV, BLOS, Ames, ISU Trip

  11. Doppler time-of-flight imaging

    KAUST Repository

    Heide, Felix

    2015-07-30

    Over the last few years, depth cameras have become increasingly popular for a range of applications, including human-computer interaction and gaming, augmented reality, machine vision, and medical imaging. Many of the commercially-available devices use the time-of-flight principle, where active illumination is temporally coded and analyzed on the camera to estimate a per-pixel depth map of the scene. In this paper, we propose a fundamentally new imaging modality for all time-of-flight (ToF) cameras: per-pixel velocity measurement. The proposed technique exploits the Doppler effect of objects in motion, which shifts the temporal frequency of the illumination before it reaches the camera. Using carefully coded illumination and modulation frequencies of the ToF camera, object velocities directly map to measured pixel intensities. We show that a slight modification of our imaging system allows for color, depth, and velocity information to be captured simultaneously. Combining the optical flow computed on the RGB frames with the measured metric axial velocity allows us to further estimate the full 3D metric velocity field of the scene. We believe that the proposed technique has applications in many computer graphics and vision problems, for example motion tracking, segmentation, recognition, and motion deblurring.

  12. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K. [Pacific Northwest National Laboratory, Richland, Washington; Newsom, Rob K. [Pacific Northwest National Laboratory, Richland, Washington; Turner, David D. [Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

    2017-09-01

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. The normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.

  13. Perencanaan dan analisis kehandalan sistem komunikasi radio microwave tampak pandang pada pita frekuensi 12750-13250 MHz [Planning and analysis of the reliability of line of sight microwave radio communication system on 12750-13250 MHz band

    Directory of Open Access Journals (Sweden)

    Ahmad Hasyim

    2016-12-01

    Full Text Available Propagasi gelombang radio dapat diartikan sebagai proses perambatan gelombang radio dari pemancar ke penerima. Gelombang ini akan merambat melalui udara bebas menuju antena penerima dan mengalami redaman di sepanjang lintansannya,  redaman perangkat dan saluran transmisi, sehingga ketika sampai di antena penerima, energi sinyal sudah sangat lemah. Line of sight    (LOS merupakan salah satu jenis propagasi di mana diantara stasiun pengirim dan stasiun penerima  tidak terdapat penghalang. Kendala geografis dan kelengkungan bumi menyebabkan adanya keterbatasan untuk transmisi line of sight, namun masalah ini secara umum dapat dikurangi melalui perencanaan, perhitungan dan penggunaan teknologi tambahan. Dalam perencanaan sistem komunikasi radio, kinerja LOS perlu direncanakan cadangan daya akibat fluktuasi sinyal serta analisis kehandalannya. Sistem radio gelombang mikro digital antar titik yang menggunakan  frekuensi 13 GHz dengan modulasi 16 QAM, bit rate 140 MBps,dan  noise figure 0,7 dB memerlukan daya pancar -4,488 dBm, fading margin sebesar 85,51 dB dan kehandalannya sebesar 99,9999999%.*****Radio wave propagation can be defined as the process of propagation of radio waves from the transmitter to the receiver. These waves will propagate through free air towards the receiver antena with experienced curbs along the tracks, so when it arrive at the receiver antena, the signal energy is very slow. Line of sight (LOS is one kind of propagation where no obstacles found between the transmitter and the receiver station. Geographical constraints and the curvature of the earth bring limitations to the line of sight transmission, but this problem can generally be reduced through planning, calculation and use of additional technologies. In a radio communication system planning, LOS performance needs to be planned caused by signal fluctuations and reliability. Digital microwave point to point radio systems using 13 GHz of spectrum, 16 QAM of

  14. Doppler spectroscopy of hydrogen Balmer lines in a hollow cathode glow discharge in ammonia and argon-ammonia mixture

    International Nuclear Information System (INIS)

    Sisovic, N. M.; Konjevic, N.

    2008-01-01

    The results of Doppler spectroscopy of hydrogen Balmer lines from a stainless steel (SS) and copper (Cu) hollow cathode (HC) glow discharge in ammonia and argon-ammonia mixture are reported. The experimental profiles in ammonia discharge are fitted well by superposing three Gaussian profiles. The half widths, in energy units, of narrow and medium Gaussians are in the ranges 0.3-0.4 eV and 3-4 eV, respectively, for both hollow cathodes what is expected on the basis of earlier electron beam→NH 3 experiments. The half widths of the largest Gaussian in ammonia are 46 and 55 eV for SS and Cu HC, respectively. In argon-ammonia discharge, three Gaussians are also required to fit experimental profiles. While half widths of narrow and medium Gaussians are similar to those in ammonia, the half widths of the largest Gaussians are 35 and 42 eV for SS and Cu HC, respectively. The half widths of the largest Gaussians in ammonia and in argon-ammonia mixture indicate the presence of excessive Doppler broadening.

  15. The spatial distribution and velocity field of the molecular hydrogen line emission from the centre of the Galaxy

    International Nuclear Information System (INIS)

    Gatley, I.; Krisciunas, K.; Jones, T.J.; Hyland, A.R.; Geballe, T.R.; Rijksuniversiteit Groningen

    1986-01-01

    In an earlier paper the existence of a ring of molecular hydrogen-line emission surrounding the nucleus of the Galaxy was demonstrated. Here are presented the first detailed maps of the surface brightness and the velocity field, made in the upsilon=1-0 S(1) line of molecular hydrogen with a spatial resolution of 18 arcsec and a velocity resolution of 130 km s -1 . It is found that the molecular ring is tilted approximately 20 0 out of the plane of the Galaxy, has a broken and clumpy appearance, rotates at 100 km s -1 in the sense of galactic rotation, and exhibits radial motion at a velocity of 50 km s -1 . (author)

  16. Homogenization of Doppler broadening in spin-noise spectroscopy

    Science.gov (United States)

    Petrov, M. Yu.; Ryzhov, I. I.; Smirnov, D. S.; Belyaev, L. Yu.; Potekhin, R. A.; Glazov, M. M.; Kulyasov, V. N.; Kozlov, G. G.; Aleksandrov, E. B.; Zapasskii, V. S.

    2018-03-01

    The spin-noise spectroscopy, being a nonperturbative linear optics tool, is still reputed to reveal a number of capabilities specific to nonlinear optics techniques. The effect of the Doppler broadening homogenization discovered in this work essentially widens these unique properties of spin-noise spectroscopy. We investigate spin noise of a classical system—cesium atoms vapor with admixture of buffer gas—by measuring the spin-induced Faraday rotation fluctuations in the region of D 2 line. The line, under our experimental conditions, is strongly inhomogeneously broadened due to the Doppler effect. Despite that, optical spectrum of the spin-noise power has the shape typical for the homogeneously broadened line with a dip at the line center. This fact is in stark contrast with the results of previous studies of inhomogeneous quantum dot ensembles and Doppler broadened atomic systems. In addition, the two-color spin-noise measurements have shown, in a highly spectacular way, that fluctuations of the Faraday rotation within the line are either correlated or anticorrelated depending on whether the two wavelengths lie on the same side or on different sides of the resonance. The experimental data are interpreted in the frame of the developed theoretical model which takes into account both kinetics and spin dynamics of Cs atoms. It is shown that the unexpected behavior of the Faraday rotation noise spectra and effective homogenization of the optical transition in the spin-noise measurements are related to smallness of the momentum relaxation time of the atoms as compared with their spin-relaxation time. Our findings demonstrate abilities of spin-noise spectroscopy for studying dynamic properties of inhomogeneously broadened ensembles of randomly moving spins.

  17. Ultrasonic Doppler color in glaucoma: Concordance study

    International Nuclear Information System (INIS)

    Uriza, Felipe; Useche, Nicolas

    2005-01-01

    Our study demonstrates that US color Doppler is a non invasive, reliable and reproducible method for the evaluation of the orbitary flow in normal and glaucomatous patients. However is suggested that every group evaluates the inter and intraobserver variability because of the lack of universal reference velocity measurements

  18. Characterizing the Effects of Convection on the Afternoon to Evening Boundary Layer Transition During Pecan 2015

    Science.gov (United States)

    2016-12-01

    daytime boundary layer is dominated by thermally buoyant eddies , resulting from sensible and latent heat fluxes. There is a similar transition in the...Atmospheric Mesoscale Prediction System (COAMPS). Currently COAMPS uses a bulk parametrization scheme known as Coupled Ocean Air Response Experiment...commercially manufactured coherent Doppler LIDAR from the UMBC location. The instrument produces line-of-sight wind speeds derived from the Doppler

  19. Oscillations in the wake of a flare blast wave

    Science.gov (United States)

    Tothova, D.; Innes, D. E.; Stenborg, G.

    2011-04-01

    Context. Oscillations of coronal loops in the Sun have been reported in both imaging and spectral observations at the onset of flares. Images reveal transverse oscillations, whereas spectra detect line-of-sight velocity or Doppler-shift oscillations. The Doppler-shift oscillations are commonly interpreted as longitudinal modes. Aims: Our aim is to investigate the relationship between loop dynamics and flows seen in TRACE 195 Å images and Doppler shifts observed by SUMER in Si iii 1113.2 Å and FeXIX 1118.1 Å at the time of a C.8-class limb flare and an associated CME. Methods: We carefully co-aligned the sequence of TRACE 195 Å images to structures seen in the SUMER Si iii, CaX, and FeXIX emission lines. Additionally, Hα observations of a lifting prominence associated with the flare and the coronal mass ejection (CME) are available in three bands around 6563.3 Å. They give constraints on the timing and geometry. Results: Large-scale Doppler-shift oscillations in FeXIX and transverse oscillations in intensity images were observed over a large region of the corona after the passage of a wide bright extreme-ultraviolet (EUV) disturbance, which suggests ionization, heating, and acceleration of hot plasma in the wake of a blast wave. The online movie associated to Fig. 2 is available at http://www.aanda.org and at http://www.mps.mpg.de/data/outgoing/tothova/movie.gif

  20. Bolide Airbursts as a Seismic Source for the 2018 Mars InSight Mission

    Science.gov (United States)

    Stevanović, J.; Teanby, N. A.; Wookey, J.; Selby, N.; Daubar, I. J.; Vaubaillon, J.; Garcia, R.

    2017-10-01

    In 2018, NASA will launch InSight, a single-station suite of geophysical instruments, designed to characterise the martian interior. We investigate the seismo-acoustic signal generated by a bolide entering the martian atmosphere and exploding in a terminal airburst, and assess this phenomenon as a potential observable for the SEIS seismic payload. Terrestrial analogue data from four recent events are used to identify diagnostic airburst characteristics in both the time and frequency domain. In order to estimate a potential number of detectable events for InSight, we first model the impactor source population from observations made on the Earth, scaled for planetary radius, entry velocity and source density. We go on to calculate a range of potential airbursts from the larger incident impactor population. We estimate there to be {˜} 1000 events of this nature per year on Mars. To then derive a detectable number of airbursts for InSight, we scale this number according to atmospheric attenuation, air-to-ground coupling inefficiencies and by instrument capability for SEIS. We predict between 10-200 detectable events per year for InSight.

  1. Spectral Doppler Waveforms for Diagnosis of Appendicitis: Potential Utility of Point Peak Systolic Velocity and Resistive Index Values.

    Science.gov (United States)

    Shin, Lewis K; Jeffrey, R Brooke; Berry, Gerald J; Olcott, Eric W

    2017-12-01

    Purpose To test the hypothesis that appendiceal spectral Doppler waveforms can distinguish patients with and patients without appendicitis. Materials and Methods In this retrospective study, Doppler waveforms were obtained from intramural appendiceal arteries identified with color Doppler imaging in 60% (93 of 155) of consecutive patients whose appendices were visualized at graded compression ultrasonography (US) performed for suspected appendicitis (53 male and 40 female; age, 1-56 years; mean, 14.5 years) over the 5-month period from November 2015 through March 2016. Point, non-angle-corrected peak systolic velocity (PSV) and resistive index (RI) values were compared between patients with and patients without appendicitis by utilizing histopathologically proven appendicitis and 6-week clinical follow-up as diagnostic reference standards. Data were assessed by using the Student t test, exact binomial distribution, two-sample test of proportions, and receiver operating characteristic analysis. Results Among the 93 patients, 36 (38.7%) had proven appendicitis (mean PSV, 19.7 cm/sec; mean RI, 0.69) and 57 patients (61.2%) did not (mean PSV, 7.1 cm/sec, P appendicitis was 0.97 (95% confidence interval [CI]: 0.95, 1.00) for PSV and 0.86 (95% CI: 0.78, 0.95; P = .011) for RI. Chosen discriminatory criteria of PSV greater than 10 cm/sec and RI greater than 0.65 yielded specificity for appendicitis of 94.7% and 96.5% with sensitivity of 88.9% and 63.9% (P = .013) and negative predictive value of 93.1% and 80.9% (P = .045), respectively. Original clinical graded compression US interpretations based on established US findings demonstrated specificity of 96.2% and sensitivity of 100.0%. Considering the subset of 20 patients whose maximum outer diameter measured 6-8 mm, the discriminatory criteria of PSV greater than 10 cm/sec and RI greater than 0.65 yielded specificity for appendicitis of 88.9% each, with sensitivity of 100.0% and 63.6% and negative predictive value of 100

  2. Variações de parâmetros da função diastólica do ventrículo esquerdo de acordo com a idade através da ecocardiografia com Doppler tissular Changes in the parameters of left ventricular diastolic function according to age on tissue Doppler imaging

    Directory of Open Access Journals (Sweden)

    Márcia Duarte Pedone

    2004-12-01

    Full Text Available OBJETIVO: Determinar a correlação entre as velocidades diastólicas do Doppler tissular com a idade em amostra de adultos saudáveis, e correlacionar a idade com as velocidades do fluxo transmitral e de veias pulmonares. MÉTODOS: Estudados, através da ecocardiografia, 51 indivíduos saudáveis, com idades entre 21 e 69 anos e registradas as velocidades miocárdicas diastólicas ao Doppler tissular e determinadas as velocidades dos fluxos transmitral e venoso pulmonar. RESULTADOS: As velocidades miocárdicas diastólicas iniciais septal basal e lateral basal apresentaram correlação inversa com a idade, com r = - 0,40 (p = 0,004 e r = - 0,60 (p = 0,0001 respectivamente. As velocidades atriogênicas do Doppler tissular foram diretamente correlacionadas com a idade, sendo no segmento septal basal r = 0,56 (p = 0,0001 e no segmento lateral basal r = 0,50 (p = 0,0001. As velocidades do fluxo transmitral e do fluxo venoso pulmonar também mostraram correlação com a idade. CONCLUSÃO: Existe correlação entre a idade e as velocidades miocárdicas diastólicas do Doppler tissular e com as velocidades do fluxo transmitral e fluxo venoso pulmonar, demonstrando em indivíduos saudáveis uma variação de parâmetros da função diastólica do ventrículo esquerdo com a evolução natural da idade.OBJECTIVE: To determine the correlation between diastolic velocities on tissue Doppler imaging and age in a sample of healthy adults and to correlate age with the velocities of transmitral and pulmonary vein flows. METHODS: Echocardiographic assessment of 51 healthy individuals, whose ages ranged from 21 to 69 years. The diastolic myocardial velocities were recorded on tissue Doppler imaging. The velocities of the transmitral and pulmonary vein flows were also determined. RESULTS: The initial basal septal and basal lateral diastolic myocardial velocities showed an inverse correlation with age [r = - 0.40 (P = 0.004, and r = - 0.60 (P = 0.0001, respectively

  3. Using the Doppler broadened γ line of the {sup 10}B(n,αγ){sup 7}Li reaction for thermal neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Galim, Y., E-mail: ybgx3@walla.com [Department of Nuclear Engineering, Ben Gurion University (BGU) of the Negev (Israel); Wengrowicz, U. [Department of Nuclear Engineering, Ben Gurion University (BGU) of the Negev (Israel); NRC-Negev, P.O. Box 9001, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben Gurion University (BGU) of the Negev, Beer-Sheva 84105 (Israel); Orion, I. [Department of Nuclear Engineering, Ben Gurion University (BGU) of the Negev (Israel); Raveh, A. [Advanced Coatings Center at Rotem Industries Ltd., MishorYamin D.N. Arava 86800 (Israel)

    2016-02-21

    When a thermal neutron is absorbed by {sup 10}B in the {sup 10}B(n,α){sup 7}Li reaction, there is a chance of 94% that a 478 keV photon be emitted by an excited {sup 7}Li nucleus. This reaction is exothermic with a Q-value of 2.31 MeV and the nuclei are emitted with kinetic energies of E(α)=1.47 MeV and E({sup 7}Li*)=0.84 MeV. This implies that the 478 keV γ line is emitted by a moving {sup 7}Li nucleus and hence is expected to be Doppler broadened. In the present work we suggest to use this broadening of the γ line as a fingerprint for the detection of thermal neutrons using a high resolution gamma spectrometer. We thus developed a Monte Carlo program using a MATLAB code based on a High Purity Germanium (HPGe) detector coupled with a Boron Carbide (B{sub 4}C) sheet to calculate the γ line broadening. Our simulation shows that the FWHM width of the resulting γ line is 12.6 keV, in good agreement with our measurement. Hence the broadened γ line emitted by the {sup 10}B(n,αγ){sup 7}Li reaction and detected by a HPGe detector shows that this method is an effective tool for neutron detection while maintaining good gamma discrimination. - Highlights: • Thermal neutron detection by measuring the Doppler broadened 478 keV γ line from the {sup 10}B(n,αγ){sup 7}Li interaction. • Natural Boron Carbide coupled with a HPGe detector were used in this study. • A mathematical Monte-Carlo model for the suggested detector was introduced. • A calibration tool for the suggested detector is introduced. • Experimental results show that the suggested method can be used for neutron detection.

  4. Adaptive OFDM Radar Waveform Design for Improved Micro-Doppler Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Engineering Science Advanced Research, Computer Science and Mathematics Division

    2014-07-01

    Here we analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a rotating target having multiple scattering centers. The use of a frequency-diverse OFDM signal enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. We characterize the accuracy of micro-Doppler frequency estimation by computing the Cramer-Rao bound (CRB) on the angular-velocity estimate of the target. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations with respect to the signal-to-noise ratios, number of temporal samples, and number of OFDM subcarriers. We also analysed numerically the improvement in estimation accuracy due to the adaptive waveform design. A grid-based maximum likelihood estimation technique is applied to evaluate the corresponding mean-squared error performance.

  5. Flight Test Evaluation of an Unmanned Aircraft System Traffic Management (UTM) Concept for Multiple Beyond-Visual-Line-of-Sight (BVLOS) Operations

    Science.gov (United States)

    Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal

    2017-01-01

    This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.

  6. Black Hole Kicks as New Gravitational Wave Observables.

    Science.gov (United States)

    Gerosa, Davide; Moore, Christopher J

    2016-07-01

    Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as ∼500  km s^{-1}, which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy.

  7. Performance bounds on micro-Doppler estimation and adaptive waveform design using OFDM signals

    Science.gov (United States)

    Sen, Satyabrata; Barhen, Jacob; Glover, Charles W.

    2014-05-01

    We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Craḿer-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.

  8. Performance Bounds on Micro-Doppler Estimation and Adaptive Waveform Design Using OFDM Signals

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL; Barhen, Jacob [ORNL; Glover, Charles Wayne [ORNL

    2014-01-01

    We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Cram er-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.

  9. Silicon Graphics' IRIS InSight: An SGML Success Story.

    Science.gov (United States)

    Glushko, Robert J.; Kershner, Ken

    1993-01-01

    Offers a case history of the development of the Silicon Graphics "IRIS InSight" system, a system for viewing on-line documentation using Standard Generalized Markup Language. Notes that SGML's explicit encoding of structure and separation of structure and presentation make possible structure-based search, alternative structural views of…

  10. Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emulsion of targets at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Malone, Robert M.; Frogget, Brent C.; Kaufman, Morris I.; Tunnell, Thomas W.; Guyton, Robert L.; Reinbachs, Imants P.; Watts, Phillip W.

    2007-01-01

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The Velocity Interferometer System for Any Reflector (VISAR) measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 69 feet. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. The orange alignment laser is introduced at the entrance to the two-level interferometer table and passes forward through the optical systems to the recording streak cameras. The red alignment laser is introduced in front of the recording streak cameras and passes in the reverse direction through all optical elements, out of the interferometer table, eventually reaching the target chamber center. Red laser wavelength is selected to be at the 50 percent reflection point of a special beamsplitter used to separate emission light from the Doppler-shifted interferometer light. Movable aperture cards, placed before and after lens groups, show the spread of alignments spots created by the orange and red alignment lasers. Optical elements include 1- to 15-inch-diameter mirrors, lenses with up to 10.5-inch diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot

  11. Testing the relativistic Doppler boost hypothesis for supermassive black hole binary candidates

    Science.gov (United States)

    Charisi, Maria; Haiman, Zoltán; Schiminovich, David; D'Orazio, Daniel J.

    2018-06-01

    Supermassive black hole binaries (SMBHBs) should be common in galactic nuclei as a result of frequent galaxy mergers. Recently, a large sample of sub-parsec SMBHB candidates was identified as bright periodically variable quasars in optical surveys. If the observed periodicity corresponds to the redshifted binary orbital period, the inferred orbital velocities are relativistic (v/c ≈ 0.1). The optical and ultraviolet (UV) luminosities are expected to arise from gas bound to the individual BHs, and would be modulated by the relativistic Doppler effect. The optical and UV light curves should vary in tandem with relative amplitudes which depend on the respective spectral slopes. We constructed a control sample of 42 quasars with aperiodic variability, to test whether this Doppler colour signature can be distinguished from intrinsic chromatic variability. We found that the Doppler signature can arise by chance in ˜20 per cent (˜37 per cent) of quasars in the nUV (fUV) band. These probabilities reflect the limited quality of the control sample and represent upper limits on how frequently quasars mimic the Doppler brightness+colour variations. We performed separate tests on the periodic quasar candidates, and found that for the majority, the Doppler boost hypothesis requires an unusually steep UV spectrum or an unexpectedly large BH mass and orbital velocity. We conclude that at most approximately one-third of these periodic candidates can harbor Doppler-modulated SMBHBs.

  12. Doppler speedometer for micro-organisms

    International Nuclear Information System (INIS)

    Penkov, F.; Tuleushev, A.; Lisitsyn, V.; Kim, S.; Tuleushev, Yu.

    1996-01-01

    Objective of Investigations: Development and creation of the Doppler speedometer for micro-organisms which allows to evaluate, in a real temporal scale, variations in the state of water suspension of micro-organisms under the effect of chemical, physical and other external actions. Statement of the Problem The main problem is absence of reliable, accessible for users and simple, in view of application, Doppler speedometers for micro-organisms. Nevertheless, correlation Doppler spectrometry in the regime of heterodyning the supporting and cell-scattered laser radiation is welt known. The main idea is that the correlation function of photo-current pulses bears an information on the averages over the assembly of cell velocities. For solving the biological problems, construction of auto-correlation function in the real-time regime with the delay time values comprising, function in the real-time regime with the delay time values comprising, nearly, 100 me (10 khz) or higher is needed. Computers of high class manage this problem using but the program software. Due to this, one can simplify applications of the proposed techniques provided he creates the Doppler speedometer for micro-organism on a base of the P entium . Expected Result Manufactured operable mock-up of the Doppler speedometer for micro-organisms in a form of the auxiliary computer block which allows to receive an information, in the real time scale, on the results of external effects of various nature on the cell assembly in transparent medium with a small volume of the studied cell suspension

  13. Laser Doppler velocimetry based on the optoacoustic effect in a RF-excited CO{sub 2} laser

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Teaghee; Choi, Jong Woon [Department of Information and Communication, Honam University, Seobong-dong 59-1, Gwansan-gu, Gwangju 506-714 (Korea, Republic of); Kim, Yong Pyung [College of Electronics and Information, Kyunghee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2012-09-15

    We present a compact optoacoustic laser Doppler velocimetry method that utilizes the self-mixing effect in a RF-excited CO{sub 2} laser. A portion of a Doppler-shifted laser beam, produced by irradiating a single wavelength laser beam on a moving object, is mixed with an originally existing laser beam inside a laser cavity. The fine change of pressure in the laser cavity modulated by the Doppler-shifted frequency is detected by a condenser microphone in the laser tube. In our studies, the frequency of the Doppler signal due to the optoacoustic effect was detected as high as 50 kHz. Our measurements also confirmed that the signal varied linearly with the velocity of the external scatterer (the moving object) and the cosine of the angle between the laser beam and the velocity vector of the object.

  14. Development of a Duplex Ultrasound Simulator and Preliminary Validation of Velocity Measurements in Carotid Artery Models.

    Science.gov (United States)

    Zierler, R Eugene; Leotta, Daniel F; Sansom, Kurt; Aliseda, Alberto; Anderson, Mark D; Sheehan, Florence H

    2016-07-01

    Duplex ultrasound scanning with B-mode imaging and both color Doppler and Doppler spectral waveforms is relied upon for diagnosis of vascular pathology and selection of patients for further evaluation and treatment. In most duplex ultrasound applications, classification of disease severity is based primarily on alterations in blood flow velocities, particularly the peak systolic velocity (PSV) obtained from Doppler spectral waveforms. We developed a duplex ultrasound simulator for training and assessment of scanning skills. Duplex ultrasound cases were prepared from 2-dimensional (2D) images of normal and stenotic carotid arteries by reconstructing the common carotid, internal carotid, and external carotid arteries in 3 dimensions and computationally simulating blood flow velocity fields within the lumen. The simulator displays a 2D B-mode image corresponding to transducer position on a mannequin, overlaid by color coding of velocity data. A spectral waveform is generated according to examiner-defined settings (depth and size of the Doppler sample volume, beam steering, Doppler beam angle, and pulse repetition frequency or scale). The accuracy of the simulator was assessed by comparing the PSV measured from the spectral waveforms with the true PSV which was derived from the computational flow model based on the size and location of the sample volume within the artery. Three expert examiners made a total of 36 carotid artery PSV measurements based on the simulated cases. The PSV measured by the examiners deviated from true PSV by 8% ± 5% (N = 36). The deviation in PSV did not differ significantly between artery segments, normal and stenotic arteries, or examiners. To our knowledge, this is the first simulation of duplex ultrasound that can create and display real-time color Doppler images and Doppler spectral waveforms. The results demonstrate that an examiner can measure PSV from the spectral waveforms using the settings on the simulator with a mean absolute error

  15. MAGNETIZED GAS IN THE SMITH HIGH VELOCITY CLOUD

    International Nuclear Information System (INIS)

    Hill, Alex S.; McClure-Griffiths, Naomi M.; Mao, S. A.; Benjamin, Robert A.; Lockman, Felix J.

    2013-01-01

    We report the first detection of magnetic fields associated with the Smith High Velocity Cloud. We use a catalog of Faraday rotation measures toward extragalactic radio sources behind the Smith Cloud, new H I observations from the Robert C. Byrd Green Bank Telescope, and a spectroscopic map of Hα from the Wisconsin H-Alpha Mapper Northern Sky Survey. There are enhancements in rotation measure (RM) of ≈100 rad m –2 which are generally well correlated with decelerated Hα emission. We estimate a lower limit on the line-of-sight component of the field of ≈8 μG along a decelerated filament; this is a lower limit due to our assumptions about the geometry. No RM excess is evident in sightlines dominated by H I or Hα at the velocity of the Smith Cloud. The smooth Hα morphology of the emission at the Smith Cloud velocity suggests photoionization by the Galactic ionizing radiation field as the dominant ionization mechanism, while the filamentary morphology and high (≈1 Rayleigh) Hα intensity of the lower-velocity magnetized ionized gas suggests an ionization process associated with shocks due to interaction with the Galactic interstellar medium. The presence of the magnetic field may contribute to the survival of high velocity clouds like the Smith Cloud as they move from the Galactic halo to the disk. We expect these data to provide a test for magnetohydrodynamic simulations of infalling gas

  16. Rayleigh Wave Ellipticity Modeling and Inversion for Shallow Structure at the Proposed InSight Landing Site in Elysium Planitia, Mars

    Science.gov (United States)

    Knapmeyer-Endrun, Brigitte; Golombek, Matthew P.; Ohrnberger, Matthias

    2017-10-01

    The SEIS (Seismic Experiment for Interior Structure) instrument onboard the InSight mission will be the first seismometer directly deployed on the surface of Mars. From studies on the Earth and the Moon, it is well known that site amplification in low-velocity sediments on top of more competent rocks has a strong influence on seismic signals, but can also be used to constrain the subsurface structure. Here we simulate ambient vibration wavefields in a model of the shallow sub-surface at the InSight landing site in Elysium Planitia and demonstrate how the high-frequency Rayleigh wave ellipticity can be extracted from these data and inverted for shallow structure. We find that, depending on model parameters, higher mode ellipticity information can be extracted from single-station data, which significantly reduces uncertainties in inversion. Though the data are most sensitive to properties of the upper-most layer and show a strong trade-off between layer depth and velocity, it is possible to estimate the velocity and thickness of the sub-regolith layer by using reasonable constraints on regolith properties. Model parameters are best constrained if either higher mode data can be used or additional constraints on regolith properties from seismic analysis of the hammer strokes of InSight's heat flow probe HP3 are available. In addition, the Rayleigh wave ellipticity can distinguish between models with a constant regolith velocity and models with a velocity increase in the regolith, information which is difficult to obtain otherwise.

  17. Direct and resonance processes of nucleus disintegration by hadrons at intermediate energies (Doppler effect)

    International Nuclear Information System (INIS)

    Balashov, V.V.; Dolinov, V.K.; Korotkikh, V.L.; Lanskoj, D.E.

    1986-01-01

    The possibilities to use coincidence method of scattered particle and daughter nucleus γ-quantum in A+a → a'+b+B[Jπ) B[Jπ) → B(J'π')+γ reaction with doppler line shape measurement to study nucleus disintegration mechanism are investigated. The main idea of the method resides in the fact that if B* state lifetime is small as compared to nucleus slowing-down time in target substance, all changes in emitted particle distributions are directly manifested in respective changes of Doppler line shape corresponding to γ-transition B[Jπ) → γ+B(J'π') in a daughter nucleus. It is concluded that investigation into Doppler line shape may become sensitive method of studying angular distribution of nucleus disintegration products and in solving problem on correlation between direct and resonance processes of nuclei disinegration

  18. MIRO Observation of Comet C/2002 T7 (LINEAR) Water Line Spectrum

    Science.gov (United States)

    Lee, Seungwon; Frerking, Margaret; Hofstadter, Mark; Gulkis, Samuel; von Allmen, Paul; Crovisier, Jaques; Biver, Nicholas; Bockelee-Morvan, Dominique

    2011-01-01

    Comet C/2002 T7 (LINEAR) was observed with the Microwave Instrument for Rosetta Orbiter (MIRO) on April 30, 2004, between 5 hr and 16 hr UT. The comet was 0.63AU distance from the Sun and 0.68AU distance from the MIRO telescope at the time of the observations. The water line involving the two lowest rotational levels at 556.936 GHz is observed at 557.070 GHz due to a large Doppler frequency shift. The detected water line spectrum is interpreted using a non local thermal equilibrium (Non-LTE) molecular excitation and radiative transfer model. Several synthetic spectra are calculated with various coma profiles that are plausible for the comet at the time of observations. The coma profile is modeled with three characteristic parameters: outgassing rate, a constant expansion velocity, and a constant gas temperature. The model calculation result shows that for the distant line observation where contributions from a large coma space is averaged, the combination of the outgassing rate and the gas expansion velocity determines the line shape while the gas temperature has a negligible effect. The comparison between the calculated spectra and the MIRO measured spectrum suggests that the outgassing rate of the comet is about 2.0x1029 molecules/second and its gas expansion velocity about 1.2 km/s at the time of the observations.

  19. Doppler ultrasonography combined with transient elastography improves the non-invasive assessment of fibrosis in patients with chronic liver diseases.

    Science.gov (United States)

    Alempijevic, Tamara; Zec, Simon; Nikolic, Vladimir; Veljkovic, Aleksandar; Stojanovic, Zoran; Matovic, Vera; Milosavljevic, Tomica

    2017-01-31

    Accurate clinical assessment of liver fibrosis is essential and the aim of our study was to compare and combine hemodynamic Doppler ultrasonography, liver stiffness by transient elastography, and non-invasive serum biomarkers with the degree of fibrosis confirmed by liver biopsy, and thereby to determine the value of combining non-invasive method in the prediction significant liver fibrosis. We included 102 patients with chronic liver disease of various etiology. Each patient was evaluated using Doppler ultrasonography measurements of the velocity and flow pattern at portal trunk, hepatic and splenic artery, serum fibrosis biomarkers, and transient elastography. These parameters were then input into a multilayer perceptron artificial neural network with two hidden layers, and used to create models for predicting significant fibrosis. According to METAVIR score, clinically significant fibrosis (≥F2) was detected in 57.8% of patients. A model based only on Doppler parameters (hepatic artery diameter, hepatic artery systolic and diastolic velocity, splenic artery systolic velocity and splenic artery Resistance Index), predicted significant liver fibrosis with a sensitivity and specificity of75.0% and 60.0%. The addition of unrelated non-invasive tests improved the diagnostic accuracy of Doppler examination. The best model for prediction of significant fibrosis was obtained by combining Doppler parameters, non-invasive markers (APRI, ASPRI, and FIB-4) and transient elastography, with a sensitivity and specificity of 88.9% and 100%. Doppler parameters alone predict the presence of ≥F2 fibrosis with fair accuracy. Better prediction rates are achieved by combining Doppler variables with non-invasive markers and liver stiffness by transient elastography.

  20. Comparing UV/EUV line parameters and magnetic field in a quiescent prominence with tornadoes

    Science.gov (United States)

    Levens, P. J.; Labrosse, N.; Schmieder, B.; López Ariste, A.; Fletcher, L.

    2017-10-01

    Context. Understanding the relationship between plasma and the magnetic field is important for describing and explaining the observed dynamics of solar prominences. Aims: We determine if a close relationship can be found between plasma and magnetic field parameters, measured at high resolution in a well-observed prominence. Methods: A prominence observed on 15 July 2014 by the Interface Region Imaging Spectrograph (IRIS), Hinode, the Solar Dynamics Observatory (SDO), and the Télescope Héliographique pour l'Étude du Magnétisme et des Instabilités Solaires (THEMIS) is selected. We perform a robust co-alignment of data sets using a 2D cross-correlation technique. Magnetic field parameters are derived from spectropolarimetric measurements of the He I D3 line from THEMIS. Line ratios and line-of-sight velocities from the Mg II h and k lines observed by IRIS are compared with magnetic field strength, inclination, and azimuth. Electron densities are calculated using Fe xii line ratios from the Hinode Extreme-ultraviolet Imaging Spectrometer, which are compared to THEMIS and IRIS data. Results: We find Mg II k/h ratios of around 1.4 everywhere, similar to values found previously in prominences. Also, the magnetic field is strongest ( 30 G) and predominantly horizontal in the tornado-like legs of the prominence. The k3 Doppler shift is found to be between ±10 km s-1 everywhere. Electron densities at a temperature of 1.5 × 106 K are found to be around 109 cm-3. No significant correlations are found between the magnetic field parameters and any of the other plasma parameters inferred from spectroscopy, which may be explained by the large differences in the temperatures of the lines used in this study. Conclusions: This is the first time that a detailed statistical study of plasma and magnetic field parameters has been performed at high spatial resolution in a prominence. Our results provide important constraints on future models of the plasma and magnetic field in

  1. Structure of a swirl-stabilized spray flame by imaging, laser Doppler velocimetry, and phase Doppler anemometry

    Science.gov (United States)

    Edwards, C. F.; Rudoff, R. C.

    1991-01-01

    Data are presented which describe the mean structure of a steady, swirl-stabilized, kerosene spray flame in the near-injector region of a research furnace. The data presented include ensemble-averaged results of schlieren, luminosity, and extinction imaging, measurement of the gas phase velocity field by laser Doppler velocimetry, and characterization of the condensed phase velocity by phase Doppler anemometry. The results of these studies define six key regions in the flame: the dense spray region; the rich, two-phase, fuel jet; the main air jet; the internal product recirculation zone; the external product recirculation zone; and the gaseous diffusion flame zone. The first five of these regions form a conical mixing layer which prepares the air and fuel for combustion. The air and fuel jets comprise the central portion of this mixing layer and are bounded on either side by the hot product gases of the internal and external recirculation zones. Entrainment of these product gases into the air/fuel streams provides the energy required to evaporate the fuel spray and initiate combustion. Intermittency of the internal recirculation and spray jet flows accounts for unexpected behavior observed in the aerodynamics of the two phases. The data reported herein are part of the database being accumulated on this spray flame for the purpose of detailed comparison with numerical modeling.

  2. Control of group velocity by phase-changing collisions

    International Nuclear Information System (INIS)

    Goren, C.; Rosenbluh, M.; Wilson-Gordon, A.D.; Friedmann, H.

    2005-01-01

    We discuss the influence of phase-changing collisions on the group velocities in Doppler-broadened, cycling, degenerate two-level systems where F e =F g +1 and F g >0, interacting with pump and probe lasers, that exhibit electromagnetically induced absorption (EIA). Two model systems are considered: the N system where the pump and probe are polarized perpendicularly, and EIA is due to transfer of coherence (TOC), and the double two-level system (TLS) where both lasers have the same polarization, and EIA is due to transfer of population (TOP). For the case of Doppler-broadened EIA TOC, which occurs at low pump intensity, there is a switch from positive to negative dispersion and group velocity, as the rate of phase-changing collisions is increased. For the case of EIA TOP at low pump intensity, the dispersion and group velocity remain negative even when the collision rate is increased. Pressure-induced narrowing, accompanied by an increase in the magnitude of the negative dispersion and a decrease in the magnitude of the negative group velocity, occurs in both EIA TOC and EIA TOP, at low pump intensity. When the pump intensity is increased, a switch from negative to positive dispersion and group velocity, with increasing collision rate, also occurs in the double TLS system. However, the effect is far smaller than in the case of the N system at low pump intensity

  3. DVL Velocity Aiding in the HUGIN 1000 Integrated Inertial Navigation System

    Directory of Open Access Journals (Sweden)

    Bjørn Jalving

    2004-10-01

    Full Text Available The RDI WHN-600 Doppler Velocity Log (DVL is a key navigation sensor for the HUG1N 1000 Autonomous Underwater Vehicle (AUV. HUGIN 1000 is designed for autonomous submerged operation for long periods of time. This is facilitated by a low drift velocity aided Inertial Navigation System (INS. Major factors determining the position error growth are the IMU and DVL error characteristics and the mission plan pattern_ For instance, low frequency DVL errors cause an approximately linear drift in a straight-line trajectory, while these errors tend to be cancelled out by a lawn mower pattern_ The paper focuses on the accuracy offered by the DVL. HUGIN 1000 is a permanent organic mine countermeasure (MCM capacity on the Royal Norwegian Navy MCM vessel KNM Karmoy. HUGIN 1000 will be part of the NATO force MCMFORNORTH in fall 2004.

  4. Numerical study of glare spot phase Doppler anemometry

    Science.gov (United States)

    Hespel, C.; Ren, K. F.; Gréhan, G.; Onofri, F.

    2008-03-01

    The phase Doppler anemometry has (PDA) been developed to measure simultaneously the velocity and the size of droplets. When the concentration of particles is high, tightly focused beams must be used, as in the dual burst PDA. The latter permits an access to the refractive index of the particle, but the effect of wave front curvature of the incident beams becomes evident. In this paper, we introduce a glare spot phase Doppler anemometry which uses two large beams. The images of the particle formed by the reflected and refracted light, known as glare spots, are separated in space. When a particle passes through the probe volume, the two parts in a signal obtained by a detector in forward direction are then separated in time. If two detectors are used the phase differences and the intensity ratios between two signals, the distance between the reflected and refracted spots can be obtained. These measured values provide information about the particle diameter and its refractive index, as well as its two velocity components. This paper is devoted to the numerical study of such a configuration with two theoretical models: geometrical optics and rigorous electromagnetism solution.

  5. Complex C: A Low-Metallicity, High-Velocity Cloud Plunging into the Milky Way

    Science.gov (United States)

    Tripp, Todd M.; Wakker, Bart P.; Jenkins, Edward B.; Bowers, C. W.; Danks, A. C.; Green, R. F.; Heap, S. R.; Joseph, C. L.; Kaiser, M. E.; Linsky, J. L.; Woodgate, B. E.

    2003-06-01

    ratio increases substantially with decreasing latitude, suggesting that the lower latitude portion of the cloud is interacting more vigorously with the Galaxy. The other sight lines through complex C show some dispersion in metallicity, but, with the current uncertainties, the measurements are consistent with a constant metallicity throughout the HVC. However, all of the complex C sight lines require significant nitrogen underabundances. Finally, we compare the 3C 351 data with high-resolution STIS observations of the nearby QSO H1821+643 to search for evidence of outflowing Galactic fountain gas that could be mixing with complex C. We find that the intermediate-velocity gas detected toward 3C 351 and H1821+643 has a higher metallicity and may well be a fountain/chimney outflow from the Perseus spiral arm. However, the results for the higher velocity gas are inconclusive: the HVC detected toward H1821+643 near the velocity of complex C could have a similar metallicity to the 3C 351 gas or it could have a significantly higher Z, depending on the poorly constrained ionization correction. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  6. Remotely measuring the wind using turbine-mounted lidars: Application to power performance testing

    DEFF Research Database (Denmark)

    Borraccino, Antoine

    the so-called whitebox approach. It consists mainly in calibrating the lidar primary measurementsof line-of-sight velocities. The line-of-sight velocity is the projection of the wind vector onto the laser beam propagation path. The calibration is performed in situ, by comparing the lidar velocity...... measurements to a reference quantity itself traceable to the international standards of units. The uncertainty of the line-ofsight velocity measurements was assessed using a normative methodology (GUM) which is based on the law of propagation of uncertainties. The generic calibration procedure was applied...... to two commercially developed nacelle lidars systems, the Avent 5-beam Demonstrator and the ZephIR Dual Mode lidars. Further, the lineof-sight positioning quantities such as inclination angles or beam trajectory werealso calibrated and their uncertainties assessed. Calibration results were of high...

  7. Ti-44 Gamma-Ray Emission Lines from SN1987A Reveal an Asymmetric Explosion

    Science.gov (United States)

    Boggs, S. E.; Harrison, F. A.; Miyasaka, H.; Grefenstette, B. W.; Zoglauer, A.; Fryer, C. L.; Reynolds, S. P.; Alexander, D. M.; An, H.; Barret, D.; hide

    2015-01-01

    In core-collapse supernovae, titanium-44 (Ti-44) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.32-kilo-electron volt emission lines from decay of Ti-44 produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of 700 kilometers per second, direct evidence of large-scale asymmetry in the explosion.

  8. 44Ti gamma-ray emission lines from SN1987A reveal an asymmetric explosion

    DEFF Research Database (Denmark)

    Boggs, S. E.; Harrison, F. A.; Miyasaka, H.

    2015-01-01

    In core-collapse supernovae, titanium-44 (44Ti) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.......32–kilo–electron volt emission lines from decay of 44Ti produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of ~700 kilometers per second, direct evidence of large-scale asymmetry in the explosion....

  9. Galactic Structure in the Outer Disk: The Field in the Line of Sight to the Intermediate-Age open Cluster Tombaugh 1

    Energy Technology Data Exchange (ETDEWEB)

    Carraro, Giovanni [Dipartimento di Fisica e Astronomia, Universitá di Padova Vicolo Osservatorio 3 I-35122, Padova (Italy); Silva, Joao Victor Sales [Observatorio Nacional/MCT Rua Gen. José Cristino 77 20291-400, Rio de Janeiro (Brazil); Bidin, Christian Moni [Instituto de Astronomia, Universidad Catolica del Norte Av. Angamos 0610, Casilla 1280 Antofagasta (Chile); Vazquez, Ruben A., E-mail: giovanni.carraro@unipd.it [Instituto de Astrofisica de La Plata CONICET/ UNLP, Paseo del Bosque s/n La Plata (Argentina)

    2017-03-01

    We employ optical photometry and high-resolution spectroscopy to study a field toward the open cluster Tombaugh 1, where we identify a complex population mixture that we describe in terms of young and old Galactic thin disks. Of particular interest is the spatial distribution of the young population, which consists of dwarfs with spectral types as early as B6 and is distributed in a blue plume feature in the color–magnitude diagram. For the first time, we confirm spectroscopically that most of these stars are early-type stars and not blue stragglers or halo/thick-disk subdwarfs. Moreover, they are not evenly distributed along the line of sight but crowd at heliocentric distances between 6.6 and 8.2 kpc. We compare these results with present-day understanding of the spiral structure of the Galaxy and suggest that they trace the outer arm. This range of distances challenges current Galactic models adopting a disk cutoff at 14 kpc from the Galactic center. The young dwarfs overlap in space with an older component, which is identified as an old Galactic thin disk. Both young and old populations are confined in space since the disk is warped at the latitude and longitude of Tombaugh 1. The main effects of the warp are that the line of sight intersects the disk and entirely crosses it at the outer arm distance and that there are no traces of the closer Perseus arm, which would then be either unimportant in this sector or located much closer to the formal Galactic plane. Finally, we analyze a group of giant stars, which turn out to be located at very different distances and to possess very different chemical properties, with no obvious relation to the other populations.

  10. Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium

    International Nuclear Information System (INIS)

    Javan, Ali; Kocharovskaya, Olga; Lee Hwang; Scully, Marlan O.

    2002-01-01

    We derive an analytic expression for the linewidth of electromagnetically induced transparency (EIT) resonance in a Doppler-broadened system. It is shown here that for relatively low intensity of the driving field the EIT linewidth is proportional to the square root of intensity and is independent of the Doppler width, similar to the laser-induced line narrowing effect described by Feld and Javan. In the limit of high intensity we recover the usual power-broadening case where the EIT linewidth is proportional to the intensity and inversely proportional to the Doppler width

  11. ASPIICS: a giant, white light and emission line coronagraph for the ESA proba-3 formation flight mission

    Science.gov (United States)

    Lamy, P. L.; Vivès, S.; Curdt, W.; Damé, L.; Davila, J.; Defise, J.-M.; Fineschi, S.; Heinzel, P.; Howard, Russel; Kuzin, S.; Schmutz, W.; Tsinganos, K.; Zhukov, A.

    2017-11-01

    Classical externally-occulted coronagraphs are presently limited in their performances by the distance between the external occulter and the front objective. The diffraction fringe from the occulter and the vignetted pupil which degrades the spatial resolution prevent useful observations of the white light corona inside typically 2-2.5 solar radii (Rsun). Formation flying offers and elegant solution to these limitations and allows conceiving giant, externally-occulted coronagraphs using a two-component space system with the external occulter on one spacecraft and the optical instrument on the other spacecraft at a distance of hundred meters [1, 2]. Such an instrument ASPIICS (Association de Satellites Pour l'Imagerie et l'Interférométrie de la Couronne Solaire) has been selected by the European Space Agency (ESA) to fly on its PROBA-3 mission of formation flying demonstration which is presently in phase B (Fig. 1). The classical design of an externally-occulted coronagraph is adapted to the formation flying configuration allowing the detection of the very inner corona as close as 0.04 solar radii from the solar limb. By tuning the position of the occulter spacecraft, it may even be possible to reach the chromosphere and the upper part of the spicules [3]. ASPIICS will perform (i) high spatial resolution imaging of the continuum K+F corona in photometric and polarimetric modes, (ii) high spatial resolution imaging of the E-corona in two coronal emission lines (CEL): Fe XIV and He I D3, and (iii) two-dimensional spectrophotometry of the Fe XIV emission line. ASPIICS will address the question of the coronal heating and the role of waves by characterizing propagating fluctuations (waves and turbulence) in the solar wind acceleration region and by looking for oscillations in the intensity and Doppler shift of spectral lines. The combined imaging and spectral diagnostics capabilities available with ASPIICS will allow mapping the velocity field of the corona both in the

  12. Changes in Doppler flow velocity waveforms and fetal size at 20 weeks gestation among cigarette smokers.

    Science.gov (United States)

    Kho, E M; North, R A; Chan, E; Stone, P R; Dekker, G A; McCowan, L M E

    2009-09-01

    To compare umbilical and uterine artery Doppler waveforms and fetal size at 20 weeks between smokers and nonsmokers. Prospective cohort study. Auckland, New Zealand and Adelaide, Australia. Nulliparous participants in the Screening for Pregnancy Endpoints (SCOPE) study. Self-reported smoking status was determined at 15 +/- 1 weeks' gestation. At the 20 +/- 1 week anatomy scan, uterine and umbilical Doppler resistance indices (RI) and fetal measurements were compared between smokers and nonsmokers. Umbilical and mean uterine artery Doppler RI values, abnormal umbilical and uterine Doppler (RI > 90th centile) and fetal biometry. Among the 2459 women, 248 (10%) were smokers. Smokers had higher umbilical RI [0.75 (SD 0.06) versus 0.73 (0.06), P gestation, women who smoke have higher umbilical artery RI, a surrogate measure for an abnormal placental villous vascular tree. This may contribute to later fetal growth restriction among smokers. Further research is needed to explore the clinical significance of these findings.

  13. Anomalies in resonant absorption line profiles of atoms with large hyperfine splitting

    International Nuclear Information System (INIS)

    Parkhomenko, A.I.; Pod'yachev, S.P.; Privalov, T.I.; Shalagin, A.M.

    1997-01-01

    We examine a monochromatic absorption line in the velocity-nonselective excitation of atoms when the components of the hyperfine stricture of the electronic ground states are optically pumped. We show that the absorption lines possess unusual substructures for some values of the hyperfine splitting of the ground state (which exceed the Doppler absorption linewidth severalfold). These substructures in the absorption spectrum are most apparent if the hyperfine structure of the excited electronic state is taken into account. We calculate the absorption spectra of monochromatic light near the D 1 and D 2 lines of atomic rubidium 85,87 Rb. With real hyperfine splitting taken into account, the D 1 and D 2 lines are modeled by 4- and 6-level diagrams, respectively. Finally, we show that atomic rubidium vapor can be successfully used to observe the spectral features experimentally

  14. Experimental and biological variation of three-dimensional transcranial Doppler measurements

    DEFF Research Database (Denmark)

    Thomsen, L L; Iversen, Helle Klingenberg

    1993-01-01

    A new transcranial Doppler system (3-D Transscan, Eden Medizinische Elektronik) was evaluated in relation to sex, age, intersubject, interobserver, side-to-side, and day-to-day variation. Fifty-eight healthy volunteers participated (aged 18-80 yr). Mean velocity was higher in females than in male...

  15. Three-dimensional power Doppler sonography: imaging and quantifying blood flow and vascularization.

    Science.gov (United States)

    Pairleitner, H; Steiner, H; Hasenoehrl, G; Staudach, A

    1999-08-01

    To assess the feasibility of imaging low-velocity blood flow in adnexal masses by transvaginal three-dimensional power Doppler sonography, to analyze three-dimensional power Doppler sonography data sets with a new computer-assisted method and to test the reproducibility of the technique. A commercially available 5-MHz Combison 530 ultrasound system was used to perform three-dimensional power Doppler sonography transvaginally. A cube (= volume of interest) was defined enclosing the vessels of the cyst and the Cartesian characteristics were stored on a hard disk. This cube was analyzed using specially designed software. Five indices representing vascularization (the vascularization index (VI) or blood flow (the flow index (FI)) or both (the vascularization-flow index (VFI)) were calculated. The intraobserver repeatability of cube definition and scan repetition was assessed using Hartley's test for homogeneous variances. Interobserver agreement was assessed by the Pearson correlation coefficient. Imaging of vessels with low-velocity blood flow by three-dimensional power Doppler sonography and cube definition was possible in all adnexal massed studied. In some cases even induced non-vascular flow related to endometriosis was detected. The calculated F value with intraobserver repeated Cartesian file-saving ranged from 0 to 18.8, with intraobserver scan repetition from 4.74 to 24.8 for VI, FI 1, FI 2 and VFI 1; for VFI 2 the calculated F value was 64. The interobserver correlation coefficient ranged between 0.83 and 0.92 for VI, FI 1, FI 2 and VFI 1; for VFI 2 the correlation coefficient was less than 0.75. Vessels with low-velocity blood flow can be imaged using three-dimensional power Doppler sonography. Induced non-vascular flow was detected in endometriotic cyst fluid. Three-dimensional power Doppler sonography combined with the cube method gave reproducible information for all indices except VFI 2. These indices might prove to be a new predictor in all fields of

  16. VizieR Online Data Catalog: Velocities and proper motions of Galactic Cepheids (Mel'nik+, 2015)

    Science.gov (United States)

    Mel'Nik, A. M.; Rautiainen, P.; Berdnikov, L. N.; Dambis, A. K.; Rastorguev, A. S.

    2015-01-01

    For every classical Cepheid we give its designation in the General Catalog of Variable Stars (GCVS) (Samus at al., 2007, Cat. B/gcvs) or in the All Sky Automated Survey (ASAS) (Pojmanski 2002, II/264), its type (see GCVS description), fundamental period PF, intensity-mean V-band magnitude , J2000 equatorial coordinates, Galactic coordinates l and b, and heliocentric distance r. Table 1 also gives the Cepheid line-of-sight velocities Vr (the so-called γ-velocities), their uncertainties e_Vr and the references (1-6) to the sources from which they are taken. The proper motions of Cepheids were adopted from the new reduction of Hipparcos data (ESA 1997, Cat. I/239) by van Leeuwen (2007, Cat. I/311). Table 1 presents proper motions pml and pmb, their uncertainties e_pml and e_pmb and the corresponding Hipparcos catalog number HIP. (1 data file).

  17. The Doppler paradigm and the APEX-EPOS-ORANGE quandary

    International Nuclear Information System (INIS)

    Griffin, J.J.

    1995-01-01

    The experimental detection of the sharp lines of the (e + e - ) Puzzle is viewed as a struggle against Doppler broadening. Gedanken experiments which are realistic in zeroth order of detail are analyzed to show that the ORANGE and EPOS/I geometries select narrower slices of a Doppler broadened line than spherically inclusive (APEX and EPOS/II -like) apparati. Roughly speaking, the latter require event-by-event Doppler reconstruction simply to regain an even footing with the former. This suggests that APEX' or EPOS/II's coincident pair distributions must be statistically superior to those of EPOS/I or ORANGE in order to support a comparable inference about sharp structure. Under such circumstances, independent alternative data is invaluable. Therefore, a corroboration of Sakai's 330.1 keV ( + or e - bombardments of U and Th targets could prove crucial

  18. Flow measurement by Laser Doppler Anemometry in a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Kehoe, A.

    1984-12-01

    Development of a Laser Doppler Anemometer measurement system and its operation are examined in this research. The system is designed for flow measurement in laboratory models of nuclear fuel assemblies. Use of the system is demonstrated by measuring turbulent velocity profiles in the laboratory model at full scale reactor flow rates. The reactors at the Savanah River Plant (SRP) are heavy water moderated and operate at low temperatures and pressures. Reactor power is currently limited by the temperature of the water in the nuclear fuel assembly. These temperature limits are conservatively calculated without allowing for any turbulent mixing. This research incorporates the design, fabriction and operation of a plexiglas model fuel assembly for the purpose of making turbulent velocity measurement via a Laser Doppler Anemometer System

  19. Moving Target Detection With Compact Laser Doppler Radar

    Science.gov (United States)

    Sepp, G.; Breining, A.; Eisfeld, W.; Knopp, R.; Lill, E.; Wagner, D.

    1989-12-01

    This paper describes an experimental integrated optronic system for detection and tracking of moving objects. The system is based on a CO2 waveguide laser Doppler ra-dar with homodyne receiver and galvanometer mirror beam scanner. A "hot spot" seeker consisting of a thermal imager with image processor transmits the coordinates of IR-emitting, i.e. potentially powered, objects to the laser radar scanner. The scanner addresses these "hot" locations operating in a large field-of-view (FOV) random ac-cess mode. Hot spots exhibiting a Doppler shifted laser signal are indicated in the thermal image by velocity-to-colour encoded markers. After switching to a small FOV scanning mode, the laser Doppler radar is used to track fast moving objects. Labora-tory and field experiments with moving objects including rotating discs, automobiles and missiles are described.

  20. Size and velocity measurements in combustion systems

    International Nuclear Information System (INIS)

    Levy, Y.; Timnat, Y.M.

    1986-01-01

    Two-phase flow measurements for size and velocity determination in combustion systems are discussed: the pedestal technique and phase Doppler anemometry (PDA) are described in detail. The experimental apparatus for the pedestal method includes the optical laser-Doppler anemometry (LDA) package and the electronic data acquisition system. The latter comprises three channels for recording the Doppler frequency, and the pedestal amplitude as well as the validation pulse. Results of measurements performed in a dump combustor, into which kerosene droplets were injected, are presented. The principle of the PDA technique is explained and validation experiments, using latex particles, are reported. Finally the two methods are compared

  1. KINETIC TOMOGRAPHY. I. A METHOD FOR MAPPING THE MILKY WAY’S INTERSTELLAR MEDIUM IN FOUR DIMENSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Tchernyshyov, Kirill [The Johns Hopkins University (United States); Peek, J. E. G. [Space Telescope Science Institute (United States)

    2017-01-01

    We have developed a method for deriving the distribution of the Milky Way’s interstellar medium as a function of longitude, latitude, distance, and line-of-sight velocity. This method takes as input maps of reddening as a function of longitude, latitude, distance, and maps of line emission as a function of longitude, latitude, and line-of-sight velocity. We have applied this method to data sets covering much of the Galactic plane. The output of this method correctly reproduces the line-of-sight velocities of high-mass star-forming regions with known distances from Reid et al. and qualitatively agrees with results from the Milky Way kinematics literature. These maps will be useful for measuring flows of gas around the Milky Way’s spiral arms and into and out of giant molecular clouds.

  2. Dynamic exercise enhances regional cerebral artery mean flow velocity

    DEFF Research Database (Denmark)

    Linkis, P; Jørgensen, L G; Olesen, H L

    1995-01-01

    Dynamic exercise enhances regional cerebral artery mean flow velocity. J. Appl. Physiol. 78(1): 12-16, 1995.--Anterior (ACA) and middle (MCA) cerebral artery mean flow velocities (Vmean) and pulsatility indexes were determined using transcranial Doppler in 14 subjects during dynamic exercise afte...

  3. Laser Doppler vibrometry experiment on a piezo-driven slot synthetic jet in water

    Directory of Open Access Journals (Sweden)

    Broučková Zuzana

    2015-01-01

    Full Text Available The present study deals with a slot synthetic jet (SJ issuing from an actuator into quiescent surroundings and driven by a piezoceramic transducer. The actuator slot width was 0.36 mm, with a drive frequency proposed near the theoretical natural frequency of the actuator. The working fluid was water at room temperature. The present experiments used flow visualization (a laser-induced fluorescence technique and laser Doppler vibrometry methods. Flow visualization was used to identify SJ formation, to demonstrate its function, and to estimate SJ velocity. Laser Doppler vibrometry was used to quantify diaphragm displacement and refine operating parameters. Phase averaging yielded a spatial and temporal diaphragm deflection during the actuation period. Taking incompressibility and continuity into consideration, the velocity in the actuator slot and the Reynolds number of the SJ were evaluated as 0.21 m/s and 157, respectively. The present results confirmed a SJ actuator function at the resonance frequency of approximately 46 Hz, which corresponds closely with the theoretical evaluation. The laser Doppler vibrometry results corresponded closely with an estimation of SJ velocity by the present flow visualization.

  4. CONSTRAINING THE NFW POTENTIAL WITH OBSERVATIONS AND MODELING OF LOW SURFACE BRIGHTNESS GALAXY VELOCITY FIELDS

    International Nuclear Information System (INIS)

    Kuzio de Naray, Rachel; McGaugh, Stacy S.; Mihos, J. Christopher

    2009-01-01

    We model the Navarro-Frenk-White (NFW) potential to determine if, and under what conditions, the NFW halo appears consistent with the observed velocity fields of low surface brightness (LSB) galaxies. We present mock DensePak Integral Field Unit (IFU) velocity fields and rotation curves of axisymmetric and nonaxisymmetric potentials that are well matched to the spatial resolution and velocity range of our sample galaxies. We find that the DensePak IFU can accurately reconstruct the velocity field produced by an axisymmetric NFW potential and that a tilted-ring fitting program can successfully recover the corresponding NFW rotation curve. We also find that nonaxisymmetric potentials with fixed axis ratios change only the normalization of the mock velocity fields and rotation curves and not their shape. The shape of the modeled NFW rotation curves does not reproduce the data: these potentials are unable to simultaneously bring the mock data at both small and large radii into agreement with observations. Indeed, to match the slow rise of LSB galaxy rotation curves, a specific viewing angle of the nonaxisymmetric potential is required. For each of the simulated LSB galaxies, the observer's line of sight must be along the minor axis of the potential, an arrangement that is inconsistent with a random distribution of halo orientations on the sky.

  5. Color Doppler Echocardiographic Assessment of Valvular Regurgitation in Normal Infants

    Directory of Open Access Journals (Sweden)

    Shu-Ting Lee

    2010-01-01

    Conclusion: The prevalence of inaudible valvular regurgitation is high in infants with structurally normal hearts. Multiple-valve involvement with regurgitation is not uncommon. Mild severity and low velocity on color Doppler, and the structural information provided by 2D imaging strongly suggest that these regurgitant flows are physiologically normal in infancy.

  6. Reduced Arteriovenous Shunting Capacity After Local Heating and Redistribution of Baseline Skin Blood Flow in Type 2 Diabetes Assessed With Velocity-Resolved Quantitative Laser Doppler Flowmetry

    Science.gov (United States)

    Fredriksson, Ingemar; Larsson, Marcus; Nyström, Fredrik H.; Länne, Toste; Östgren, Carl J.; Strömberg, Tomas

    2010-01-01

    OBJECTIVE To compare the microcirculatory velocity distribution in type 2 diabetic patients and nondiabetic control subjects at baseline and after local heating. RESEARCH DESIGN AND METHODS The skin blood flow response to local heating (44°C for 20 min) was assessed in 28 diabetic patients and 29 control subjects using a new velocity-resolved quantitative laser Doppler flowmetry technique (qLDF). The qLDF estimates erythrocyte (RBC) perfusion (velocity × concentration), in a physiologically relevant unit (grams RBC per 100 g tissue × millimeters per second) in a fixed output volume, separated into three velocity regions: v 10 mm/s. RESULTS The increased blood flow occurs in vessels with a velocity >1 mm/s. A significantly lower response in qLDF total perfusion was found in diabetic patients than in control subjects after heat provocation because of less high-velocity blood flow (v >10 mm/s). The RBC concentration in diabetic patients increased sevenfold for v between 1 and 10 mm/s, and 15-fold for v >10 mm/s, whereas no significant increase was found for v <1 mm/s. The mean velocity increased from 0.94 to 7.3 mm/s in diabetic patients and from 0.83 to 9.7 mm/s in control subjects. CONCLUSIONS The perfusion increase occurs in larger shunting vessels and not as an increase in capillary flow. Baseline diabetic patient data indicated a redistribution of flow to higher velocity regions, associated with longer duration of diabetes. A lower perfusion was associated with a higher BMI and a lower toe-to-brachial systolic blood pressure ratio. PMID:20393143

  7. Radial velocity asymmetries from jets with variable velocity profiles

    International Nuclear Information System (INIS)

    Cerqueira, A. H.; Vasconcelos, M. J.; Velazquez, P. F.; Raga, A. C.; De Colle, F.

    2006-01-01

    We have computed a set of 3-D numerical simulations of radiatively cooling jets including variabilities in both the ejection direction (precession) and the jet velocity (intermittence), using the Yguazu-a code. In order to investigate the effects of jet rotation on the shape of the line profiles, we also introduce an initial toroidal rotation velocity profile. Since the Yguazu-a code includes an atomic/ionic network, we are able to compute the emission coefficients for several emission lines, and we generate line profiles for the Hα, [O I]λ6300, [S II]λ6716 and [N II]λ6548 lines. Using initial parameters that are suitable for the DG Tau microjet, we show that the computed radial velocity shift for the medium-velocity component of the line profile as a function of distance from the jet axis is strikingly similar for rotating and non-rotating jet models

  8. Doppler ultrasound scan during normal gestation: umbilical circulation; Ecografia Doppler en la gestacion normal: circulacion umbilical

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, T.; Sabate, J.; Martinez-Benavides, M. M.; Sanchez-Ramos, J. [Hospital Virgen Macarena. Sevilla (Spain)

    2002-07-01

    To determine normal umbilical circulation patterns by means of Doppler ultrasound scan in a healthy gestating population without risk factors and with normal perinatal results, and to evaluate any occurring modifications relative to gestational age by obtaining records kept during pregnancy. One hundred and sixteen pregnant women carrying a single fetus have been studied. These women had no risk factors, with both clinical and analytical controls, as well as ultrasound scans, all being normal. There were performed a total of 193 Doppler ultrasound scans between weeks 15 and 41 of gestation, with blood-flow analysis in the arteries and vein of the umbilical cord. The obtained information was correlated with parameters that evaluate fetal well-being (fetal monitoring and/or oxytocin test) and perinatal result (delivery type, birth weight, Apgar score). Statistical analysis was performed with the programs SPSS 6.0.1 for Windows and EPIINFO 6.0.4. With pulsed Doppler, the umbilical artery in all cases demonstrated a biphasic morphology with systolic and diastolic components and without retrograde blood flow. As the gestation period increased, there was observed a progressive decrease in resistance along with an increase in blood-flow velocity during the diastolic phase. The Doppler ultrasound scan is a non-invasive method that permits the hemodynamic study of umbilical blood circulation. A knowledge of normal blood-flow signal morphology, as well as of the normal values for Doppler indices in relation to gestational age would permit us to utilize this method in high-risk pregnancies. (Author) 30 refs.

  9. 3D atom microscopy in the presence of Doppler shift

    Science.gov (United States)

    Rahmatullah; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid

    2018-03-01

    The interaction of hot atoms with laser fields produces a Doppler shift, which can severely affect the precise spatial measurement of an atom. We suggest an experimentally realizable scheme to address this issue in the three-dimensional position measurement of a single atom in vapors of rubidium atoms. A three-level Λ-type atom-field configuration is considered where a moving atom interacts with three orthogonal standing-wave laser fields and spatial information of the atom in 3D space is obtained via an upper-level population using a weak probe laser field. The atom moves with velocity v along the probe laser field, and due to the Doppler broadening the precision of the spatial information deteriorates significantly. It is found that via a microwave field, precision in the position measurement of a single hot rubidium atom can be attained, overcoming the limitation posed by the Doppler shift.

  10. Velocity Statistics and Spectra in Three-Stream Jets

    Science.gov (United States)

    Ecker, Tobias; Lowe, K. Todd; Ng, Wing F.; Henderson, Brenda; Leib, Stewart

    2016-01-01

    Velocimetry measurements were obtained in three-stream jets at the NASA Glenn Research Center Nozzle Acoustics Test Rig using the time-resolved Doppler global velocimetry technique. These measurements afford exceptional frequency response, to 125 kHz bandwidth, in order to study the detailed dynamics of turbulence in developing shear flows. Mean stream-wise velocity is compared to measurements acquired using particle image velocimetry for validation. Detailed results for convective velocity distributions throughout an axisymmetric plume and the thick side of a plume with an offset third-stream duct are provided. The convective velocity results exhibit that, as expected, the eddy speeds are reduced on the thick side of the plume compared to the axisymmetric case. The results indicate that the time-resolved Doppler global velocimetry method holds promise for obtaining results valuable to the implementation and refinement of jet noise prediction methods being developed for three-stream jets.

  11. Global Properties of M31’s Stellar Halo from the SPLASH Survey. III. Measuring the Stellar Velocity Dispersion Profile

    Science.gov (United States)

    Gilbert, Karoline M.; Tollerud, Erik; Beaton, Rachael L.; Guhathakurta, Puragra; Bullock, James S.; Chiba, Masashi; Kalirai, Jason S.; Kirby, Evan N.; Majewski, Steven R.; Tanaka, Mikito

    2018-01-01

    We present the velocity dispersion of red giant branch stars in M31’s halo, derived by modeling the line-of-sight velocity distribution of over 5000 stars in 50 fields spread throughout M31’s stellar halo. The data set was obtained as part of the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo (SPLASH) Survey, and covers projected radii of 9 to 175 kpc from M31’s center. All major structural components along the line of sight in both the Milky Way (MW) and M31 are incorporated in a Gaussian Mixture Model, including all previously identified M31 tidal debris features in the observed fields. The probability that an individual star is a constituent of M31 or the MW, based on a set of empirical photometric and spectroscopic diagnostics, is included as a prior probability in the mixture model. The velocity dispersion of stars in M31’s halo is found to decrease only mildly with projected radius, from 108 km s‑1 in the innermost radial bin (8.2 to 14.1 kpc) to ∼80 to 90 km s‑1 at projected radii of ∼40–130 kpc, and can be parameterized with a power law of slope ‑0.12 ± 0.05. The quoted uncertainty on the power-law slope reflects only the precision of the method, although other sources of uncertainty we consider contribute negligibly to the overall error budget. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  12. Relativistic jets in SS 433

    International Nuclear Information System (INIS)

    Margon, B.

    1982-01-01

    The most unusual characteristic of the star SS 433 emerged in the late 1970's when a series of optical spectra showed intense, broad optical emission lines whose profiles and wavelengths changed drastically from night to night. These features are interpreted as strong Doppler-shifted Balmer and HeI lines. The modulation of the Doppler shifts are observed as being cyclic with a period of about 164 days. It was hypothesized that these phenomena were caused by two collimated, colinear, jets which were ejecting in opposite directions from SS 433. Most authors believe that velocity variations of the emission lines are caused by a cyclic rotation of jet axis inclined to line of sight. This rotation being the result of precession, which leads one to suspect SS 433 as a member of a close binary system. This hypothesis has been confirmed from recent optical, radio, and x-ray observations which are discussed in the article. The combination of optical and radio observations of SS 433, described in the article, gives an accurate measure of the Kinematics of the system and some confidence that the Kinematic equations are understood. However, the specific physical processes of this ejection are poorly understood. Some theoretical difficulties regarding this are given

  13. C IV BROAD ABSORPTION LINE ACCELERATION IN SLOAN DIGITAL SKY SURVEY QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Grier, C. J.; Brandt, W. N.; Trump, J. R.; Schneider, D. P.; Sun, M.; Beatty, T. G. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Hall, P. B. [Department of Physics and Astronomy, York University, Toronto, ON M3J 1P3 (Canada); Filiz Ak, N. [Faculty of Sciences, Department of Astronomy and Space Sciences, Erciyes University, 38039 Kayseri (Turkey); Anderson, S. F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Green, Paul J. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Vivek, M.; Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, 115 S. 1400 E., Salt Lake City, UT 84112 (United States); Roman-Lopes, Alexandre, E-mail: grier@psu.edu [Departamento de Fisica, Facultad de Ciencias, Universidad de La Serena, Cisternas 1200, La Serena (Chile)

    2016-06-20

    We present results from the largest systematic investigation of broad absorption line (BAL) acceleration to date. We use spectra of 140 quasars from three Sloan Digital Sky Survey programs to search for global velocity offsets in BALs over timescales of ≈2.5–5.5 years in the quasar rest frame. We carefully select acceleration candidates by requiring monolithic velocity shifts over the entire BAL trough, avoiding BALs with velocity shifts that might be caused by profile variability. The C iv BALs of two quasars show velocity shifts consistent with the expected signatures of BAL acceleration, and the BAL of one quasar shows a velocity-shift signature of deceleration. In our two acceleration candidates, we see evidence that the magnitude of the acceleration is not constant over time; the magnitudes of the change in acceleration for both acceleration candidates are difficult to produce with a standard disk-wind model or via geometric projection effects. We measure upper limits to acceleration and deceleration for 76 additional BAL troughs and find that the majority of BALs are stable to within about 3% of their mean velocities. The lack of widespread acceleration/deceleration could indicate that the gas producing most BALs is located at large radii from the central black hole and/or is not currently strongly interacting with ambient material within the host galaxy along our line of sight.

  14. Velocity dispersions in galaxies. V. The nuclei of M31 and M32

    International Nuclear Information System (INIS)

    Morton, D.C.; Elmergreen, B.G.

    1976-01-01

    Stigmatic spectra between 4160 and 4385 A with 0.7 A resolution have been obtained of the central regions of M31 and M32, including their starlike nuclei, and the KO III star 51 Ori using an SEC TV sensor and the coude spectrograph of the Hale telescope. Line-of-sight velocity dispersions of sigma=130 +- 20 and 55(+10, -15) km s -1 have been determined for the nuclei of M31 and M32, respectively, by direct comparision with the star spectrum broadened by various Gaussian widths. This KO III star is a poor match in the nucleus of M31, but represents rather well the spectrum of the nucleus of M32 and the bulge of M31 at 10'' from the center

  15. Applications of Doppler-free saturation spectroscopy for edge physics studies (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, E. H., E-mail: martineh@ornl.gov; Caughman, J. B. O.; Isler, R. C.; Bell, G. L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Zafar, A. [Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-11-15

    Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H{sub δ} spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  16. Calibrating Doppler imaging of preterm intracerebral circulation using a microvessel flow phantom

    Directory of Open Access Journals (Sweden)

    Fleur A. Camfferman

    2015-01-01

    Full Text Available Introduction. Preterm infants are born during critical stages of brain development, in which the adaptive capacity of the fetus to extra-uterine environment is limited. Inadequate brain perfusion has been directly linked to preterm brain damage. Advanced high-frequency ultrasound probes and processing algorithms allow visualization of microvessels and depiction of regional variation. To assess whether visualization and flow velocity estimates of preterm cerebral perfusion using Doppler techniques is accurate, we conducted an in vitro experiment using a microvessel flow phantom.Materials and Methods. An in-house developed flow phantom containing two microvessels (inner diameter 200 and 700 microns with attached syringe pumps, filled with blood-mimicking fluid, was used to generate non-pulsatile perfusion of variable flow. Measurements were performed using an Esaote MyLab70 scanner.Results. Microvessel mimicking catheters with velocities as low as 1cm/sec were adequately visualized with a linear ultrasound probe. With a convex probe velocities <2 cm/sec could not be depicted. Within settings, velocity and diameter measurements were highly reproducible (intra class correlation 0.997 (95% CI 0.996-0.998 and 0.914 (0.864-0.946. Overall, mean velocity was overestimated up to 3-fold, especially in high velocity ranges. Significant differences were seen in velocity measurements when using steer angle correction and in vessel diameter estimation (p<0.05.Conclusion. Visualization of microvessel size catheters mimicking small brain vessels is feasible. Reproducible velocity and diameter results can be obtained, although important overestimation of the values is observed. Before velocity estimates of microcirculation can find its use in clinical practice, calibration of the ultrasound machine for any specific Doppler purpose is essential. The ultimate goal is to develop a sonographic tool that can be used for objective study of regional perfusion in routine

  17. Screening for stroke in sickle cell anemia: comparison of transcranial Doppler imaging and nonimaging US techniques.

    Science.gov (United States)

    Neish, Ariane S; Blews, David E; Simms, Catherine A; Merritt, Robert K; Spinks, Alice J

    2002-03-01

    To determine whether criteria for screening patients with sickle cell anemia for stroke established with a nonimaging transcranial Doppler ultrasonographic (US) technique are applicable to studies performed with a transcranial Doppler US imaging technique. One hundred sixty-eight examinations in 66 children were performed for sickle cell stroke screening. Children were examined with nonimaging and imaging transcranial Doppler US techniques on the same day, for a total of 84 paired examinations. The time-averaged maximum mean velocity (V(mean)) and resistive index (RI) were calculated in the middle cerebral arteries, bifurcations of the distal internal carotid arteries, distal internal carotid arteries, anterior cerebral arteries, posterior cerebral arteries, and basilar arteries. The maximum systolic velocity (V(max)) was evaluated in the distal internal carotid arteries and middle cerebral arteries. V(mean), V(max), and RI measurements were subjected to repeated-measures multivariate analysis of covariance, and the Pearson product moment correlation was used for middle cerebral artery velocity, age, and hemoglobin. V(mean) measurements obtained with nonimaging and imaging techniques varied substantially for the bifurcation of the distal internal carotid artery, the posterior cerebral artery, and the basilar artery. Substantial differences were found in RIs for every vessel. Examination time was shorter with the nonimaging technique. V(mean) measurements in the middle cerebral artery, distal internal carotid artery, and anterior cerebral artery did not vary substantially between nonimaging and imaging transcranial Doppler US. RI data did not yield comparable measurements.

  18. EXTREMELY BROAD RADIO RECOMBINATION MASER LINES TOWARD THE HIGH-VELOCITY IONIZED JET IN CEPHEUS A HW2

    International Nuclear Information System (INIS)

    Jimenez-Serra, I.; Patel, N.; Martin-Pintado, J.; Baez-Rubio, A.; Thum, C.

    2011-01-01

    We present the first detection of the H40α, H34α, and H31α radio recombination lines (RRLs) at millimeter wavelengths toward the high-velocity ionized jet in the Cepheus A HW2 star-forming region. From our single-dish and interferometric observations, we find that the measured RRLs show extremely broad asymmetric line profiles with zero-intensity line widths of ∼1100 km s -1 . From the line widths, we estimate a terminal velocity for the ionized gas in the jet of ≥500 km s -1 , consistent with that obtained from the proper motions of the HW2 radio jet. The total integrated line-to-continuum flux ratios of the H40α, H34α, and H31α lines are 43, 229, and 280 km s -1 , clearly deviating from LTE predictions. These ratios are very similar to those observed for the RRL masers toward MWC349A, suggesting that the intensities of the RRLs toward HW2 are affected by maser emission. Our radiative transfer modeling of the RRLs shows that their asymmetric profiles could be explained by maser emission arising from a bi-conical radio jet with a semi-opening angle of 18 deg., electron density distribution varying as r -2.11 , and turbulent and expanding wind velocities of 60 and 500 km s -1 .

  19. Gimbal system configurations and line-of-sight control techniques for small UAV applications

    Science.gov (United States)

    Miller, Rick; Mooty, Greg; Hilkert, J. M.

    2013-05-01

    The proliferation of small Unmanned Air Vehicles (UAVs) in the past decade has been driven, in part, by the diverse applications that various industries have found for these platforms. Originally, these applications were predominately military in nature but now include law enforcement/security, environmental monitoring/remote sensing, agricultural surveying, movie making and others. Many of these require sensors/payloads such as cameras, laser pointers/ illuminators/rangefinders and other systems that must be pointed and/or stabilized and therefore require a precision miniature gimbal or other means to control their line-of-sight (LOS). Until now, these markets have been served by traditional/larger gimbals; however, the latest class of small UAVs demands much smaller gimbals while maintaining high-performance. The limited size and weight of these gimbaled devices result in design challenges unique to the small-gimbal design field. In the past five years, Ascendant Engineering Solutions has engaged in designing, analyzing and building several small-gimbal systems to meet these challenges and has undertaken a number of trade studies to investigate techniques to achieve optimal performance within the inherent limitations mentioned above. These have included investigating various gimbal configurations, feedback sensors such as gyros, IMUs and encoders, drive train configurations, control system techniques, packaging and interconnect, as well as technology such as fast-steering mirrors and image-stabilization algorithms. This paper summarizes the results of these trade studies, attempts to identify inherent trends and limitations in the various design approaches and techniques, and discusses some practical issues such as test and verification.

  20. Constraining Line-of-sight Confusion in the Corona Using Linearly Polarized Observations of the Infrared FeXIII 1075nm and SiX 1430nm Emission Lines

    Science.gov (United States)

    Dima, G. I.; Kuhn, J. R.; Berdyugina, S.

    2017-12-01

    Measurements of the coronal magnetic field are difficult because of the intrinsically faint emission of coronal plasma and the large spurious background due to the bright solar disk. This work addresses the problem of resolving the confusion of the line-of-sight (LOS) integration through the optically-thin corona being observed. Work on developing new measuring techniques based on single-point inversions using the Hanle effect has already been described (Dima et al. 2016). It is important to develop a technique to assess when the LOS confusion makes comparing models and observations problematic. Using forward integration of synthetic emission through magnetohydrodynamic (MHD) models together with simultaneous linearly polarized observations of the FeXIII 1075nm and SiX 1430nm emission lines allows us to assess LOS confusion. Since the lines are both in the Hanle saturated regime their polarization angles are expected to be aligned as long as the gas is sampling the same magnetic field. If significant contributions to the emission is taking place from different regions along the LOS due to the additive nature of the polarized brightness the measured linear polarization between the two lines will be offset. The size of the resolution element is important for this determination since observing larger coronal regions will confuse the variation along the LOS with that in the plane-of-sky. We also present comparisons between synthetic linearly polarized emission through a global MHD model and observations of the same regions obtained using the 0.5m Scatter-free Observatory for Limb Active Regions and Coronae (SOLARC) telescope located on Haleakala, Maui. This work is being done in preparation for the type of observations that will become possible when the next generation 4m DKIST telescope comes online in 2020.

  1. Line formation in microturbulent magnetic fields

    International Nuclear Information System (INIS)

    Domke, H.; Pavlov, G.G.

    1979-01-01

    The formation of Zeeman lines in Gaussian microturbulent magnetic fields is considered assuming LTE. General formulae are derived for the local mean values of the transfer matrix elements. The cases of one-dimensional (longitudinal), isotropic, and two-dimensional (transversal) magnetic microturbulence are studied in some detail. Asymptotic formulae are given for small mean as well as for small microturbulent magnetic fields. Characteristic effects of magnetic microturbulence on the transfer coefficients are: (i) the broadening of the frequency contours, although only for the case of longitudinal Zeeman effect and longitudinal magnetic microturbulence this effect can be described analogous to Doppler broadening, (ii) the appearance of a pseudo-Zeeman structure for nonlongitudinal magnetic microturbulence, (iii) the reduction of maximal values of circular polarization, and (iv) the appearance of characteristic linear polarization effects due to the anisotropy of the magnetic microturbulence. Line contours and polarization of Zeeman triplets are computed for Milne-Eddington atmospheres. It is shown that magnetic intensification due to microturbulent magnetic fields may be much more efficient than that due to regular fields. The gravity center of a Zeeman line observed in circularly polarized light remains a reasonable measure of the line of sight component of the mean magnetic field for a line strength eta 0 < approx. 2. For saturated lines, the gravity center distance depends significantly on the magnetic microturbulence and its anisotropy. The influence of magnetic microturbulence on the ratio of longitudinal field magnetographic signals shows that unique conclusions about the magnetic microstructure can be drawn from the line ratio measurements only in combination with further spectroscopic data or physical reasoning. (orig.)

  2. An inexpensive instrument for measuring wave exposure and water velocity

    Science.gov (United States)

    Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.

    2011-01-01

    Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.

  3. Balance Mass Flux and Velocity Across the Equilibrium Line in Ice Drainage Systems of Greenland

    Science.gov (United States)

    Zwally, H. Jay; Giovinetto, Mario B.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Estimates of balance mass flux and the depth-averaged ice velocity through the cross-section aligned with the equilibrium line are produced for each of six drainage systems in Greenland. (The equilibrium line, which lies at approximately 1200 m elevation on the ice sheet, is the boundary between the area of net snow accumulation at higher elevations and the areas of net melting at lower elevations around the ice sheet.) Ice drainage divides and six major drainage systems are delineated using surface topography from ERS (European Remote Sensing) radar altimeter data. The net accumulation rate in the accumulation zone bounded by the equilibrium line is 399 Gt/yr and net ablation rate in the remaining area is 231 Gt/yr. (1 GigaTon of ice is 1090 kM(exp 3). The mean balance mass flux and depth-averaged ice velocity at the cross-section aligned with the modeled equilibrium line are 0.1011 Gt kM(exp -2)/yr and 0.111 km/yr, respectively, with little variation in these values from system to system. The ratio of the ice mass above the equilibrium line to the rate of mass output implies an effective exchange time of approximately 6000 years for total mass exchange. The range of exchange times, from a low of 3 ka in the SE drainage system to 14 ka in the NE, suggests a rank as to which regions of the ice sheet may respond more rapidly to climate fluctuations.

  4. In-vivo imaging of blood flow in human retinal vessels using color Doppler optical coherence tomography

    Science.gov (United States)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    1999-04-01

    Quantification of retinal blood flow may lead to a better understanding of the progression and treatment of several ocular disorders, including diabetic retinopathy, age- related macular degeneration, and glaucoma. Current techniques, such as fluorescein angiography and laser Doppler velocimetry are limited, failing to provide sufficient information to the clinician. Color Doppler optical coherence tomography (CDOCT) is a novel technique using coherent heterodyne detection for simultaneous cross- sectional imaging of tissue microstructure and blood flow. This technique is capable of high spatial and velocity resolution imaging in highly scattering media. We implemented CDOCT for retinal blood flow mapping in human subjects. No dilation of the pupil was necessary. CDOCT is demonstrated for determining bidirectional flow in sub- 100micrometers diameter vessels in the retina. Additionally, we calculated Doppler broadening using the variance of depth- resolved spectra to identify regions with large velocity gradients within the Xenopus heart. This technique may be useful in quantifying local tissue perfusion in highly vascular retinal tissue.

  5. Sub-Doppler cooling in reduced-period optical lattice geometries

    International Nuclear Information System (INIS)

    Berman, P.R.; Raithel, G.; Zhang, R.; Malinovsky, V.S.

    2005-01-01

    It is shown that sub-Doppler cooling occurs in an atom-field geometry that can lead to reduced-period optical lattices. Four optical fields are combined to produce a 'standing wave' Raman field that drives transitions between two ground state sublevels. In contrast to conventional Sisyphus cooling, sub-Doppler cooling to zero velocity occurs when all fields are polarized in the same direction. Solutions are obtained using both semiclassical and quantum Monte Carlo methods in the case of exact two-photon resonance. The connection of the results with conventional Sisyphus cooling is established using a dressed state basis

  6. Static balance control and lower limb strength in blind and sighted women.

    Science.gov (United States)

    Giagazoglou, Paraskevi; Amiridis, Ioannis G; Zafeiridis, Andreas; Thimara, Maria; Kouvelioti, Vassiliki; Kellis, Elefthrerios

    2009-11-01

    The aim of the present study was to examine isokinetic and isometric strength of the knee and ankle muscles and to compare center of pressure (CoP) sway between blind and sighted women. A total of 20 women volunteered to participate in this study. Ten severe blind women (age 33.5 +/- 7.9 years; height 163 +/- 5 cm; mass 64.5 +/- 12.2 kg) and 10 women with normal vision (age 33.5 +/- 8.3 years; height 164 +/- 6 cm; mass 61.9 +/- 14.5 kg) performed 3 different tasks of increasing difficulty: Normal Quiet Stance (1 min), Tandem Stance (20 s), and One-Leg Stance (10 s). Participants stood barefoot on two adjacent force platforms and the CoP variations [peak-to-peak amplitude (CoPmax) and SD of the CoP displacement (CoPsd)] were analyzed. Sighted participants performed the tests in eyes open and eyes closed conditions. Torque/angular velocity and torque/angular position relationships were also established using a Cybex dynamometer for knee extensors and flexors as well as for ankle plantar and dorsiflexors. The main finding of this study was that the ability to control balance in both anterior/posterior and medio/lateral directions was inferior in blind than in sighted women. However, when sighted participants performed the tests blindfolded, their CoP sway increased significantly in both directions. There were no differences in most isometric and concentric strength measurements of the lower limb muscles between the blind and sighted individuals. Our results demonstrate that vision is a more prominent indicator of performance during the postural tasks compared to strength of the lower limbs. Despite similar level of strength, blind individuals performed significantly worse in all balance tests compared to sighted individuals.

  7. The Role of Color Doppler Ultrasonography in Characterization of Thyroid Tumors

    International Nuclear Information System (INIS)

    Kim, Hee Soo; Jeon, Pyong; Won, Jong Yoon; Na, Jae Beom; Lee, Hyang Mee; Yoo, Hyung Sik; Lee, Jong Tae; Park, Jeong Soo; Cho, Nam Hoon

    1995-01-01

    To assess the usefulness of color Doppler ultrasonography in the characterization of thyroid tumors, surgically proven 88 nodules in 85 patients were evaluated. Using 10 MHz linear array transducer, gray scale images were initially evaluated. Then, distribution pattern of color signals (marginal, intra-tumoral, mixed) and graded internal vascularity according to morphology of color signal (0:absence of internal signal, 1: spotty, 2: linear,3: branching) were observed on color doppler imaging. Pulsed doppler waves were analyzed with parameters including peak systolic velocity(PSV), resistive index(RI), and pulsatile index(PI). Significantly larger numbers of intra-tumoral type, 20 cases(62.5%), were observed in malignant nodules, whereas mixed forms were predominant in benign group, 37 cases (66%) In graded internal vascularity, malignant nodules tended to have grade 2 or 3 signals, whereas benign nodules tended to have grade 0 or 1 signals. Spectral wave analysis show no significant difference in the value of PSV, RI, and PI between malignancy and benignity group. In conclusion, color Doppler imaging has a potential role in the characterization of thyroid nodules as a supportive method for gray scale diagnosis

  8. Doppler-ultrasonographic finding of air in the portal vein: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ki Soon; Lee, Kwan Sup; Lee, Yul; Chung, Soo Young; Bae, Sang Hoon [College of Medicine, Hallym University, Seoul (Korea, Republic of)

    1994-03-15

    Classically air in the portal vein has been detected on plain radiography, but computed tomography and ultrasonography have been shown to be more sensitive. We report a case of air in the PV in a 10-day-old infant with pneumatosis intestinalis with its ultrasonographic and Doppler findings. The patient was a 10-day-old infant born by cesarean section at 41 weeks. Simple abdomen film revealed branching pattern of radiolucent air shadows within in contour of liver, gas distention of bowel loops and thickenod bowel walls with lincar intraluminal air shadows in abdomen, suggesting necrotizing enterocolitis. So we performed Doppler ultrasonography. Ultrasonography showed branching pattern of hyperechogenic dots and along the lumen of left portal vein. The color Doppler study revealed an aliasing duo to increased velocity and whirling pattern of blood flow, and the Duplex Doppler spectral display showed sharp, vertical bidirectional spikes by air in portal vein. Air in the portal vein can be easily diagnosed by the following signs: hyperechogenic dots in the portal vein on ultrasonography and vertical, sharp bidirectional spikes superimposed on the usual Doppler tracing of the portal vein on Duplex ultrasonography.

  9. Doppler-ultrasonographic finding of air in the portal vein: a case report

    International Nuclear Information System (INIS)

    Park, Ki Soon; Lee, Kwan Sup; Lee, Yul; Chung, Soo Young; Bae, Sang Hoon

    1994-01-01

    Classically air in the portal vein has been detected on plain radiography, but computed tomography and ultrasonography have been shown to be more sensitive. We report a case of air in the PV in a 10-day-old infant with pneumatosis intestinalis with its ultrasonographic and Doppler findings. The patient was a 10-day-old infant born by cesarean section at 41 weeks. Simple abdomen film revealed branching pattern of radiolucent air shadows within in contour of liver, gas distention of bowel loops and thickenod bowel walls with lincar intraluminal air shadows in abdomen, suggesting necrotizing enterocolitis. So we performed Doppler ultrasonography. Ultrasonography showed branching pattern of hyperechogenic dots and along the lumen of left portal vein. The color Doppler study revealed an aliasing duo to increased velocity and whirling pattern of blood flow, and the Duplex Doppler spectral display showed sharp, vertical bidirectional spikes by air in portal vein. Air in the portal vein can be easily diagnosed by the following signs: hyperechogenic dots in the portal vein on ultrasonography and vertical, sharp bidirectional spikes superimposed on the usual Doppler tracing of the portal vein on Duplex ultrasonography

  10. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  11. Fast steering and quick positioning of large field-of-regard, two-axis, four-gimbaled sight

    Science.gov (United States)

    Ansari, Zahir Ahmed; Nigam, Madhav Ji; Kumar, Avnish

    2017-07-01

    Fast steering and quick positioning are prime requirements of the current electro-optical tracking system to achieve quick target acquisition. A scheme has been proposed for realizing these features using two-axis, four-gimbaled sight. For steering the line of sight in the stabilization mode, outer gimbal is slaved to the gyro stabilized inner gimbal. Typically, the inner gimbals have direct drives and outer gimbals have geared drives, which result in a mismatch in the acceleration capability of their servo loops. This limits the allowable control bandwidth for the inner gimbal. However, to achieve high stabilization accuracy, high bandwidth control loops are essential. This contradictory requirement has been addressed by designing a suitable command conditioning module for the inner gimbals. Also, large line-of-sight freedom in pitch axis is required to provide a wide area surveillance capacity for airborne application. This leads to a loss of freedom along the yaw axis as the pitch angle goes beyond 70 deg or so. This is addressed by making the outer gimbal master after certain pitch angle. Moreover, a mounting scheme for gyro has been proposed to accomplish yaw axis stabilization for 110-deg pitch angle movement with a single two-axis gyro.

  12. Alignments of the galaxies in and around the Virgo cluster with the local velocity shear

    International Nuclear Information System (INIS)

    Lee, Jounghun; Rey, Soo Chang; Kim, Suk

    2014-01-01

    Observational evidence is presented for the alignment between the cosmic sheet and the principal axis of the velocity shear field at the position of the Virgo cluster. The galaxies in and around the Virgo cluster from the Extended Virgo Cluster Catalog that was recently constructed by Kim et al. are used to determine the direction of the local sheet. The peculiar velocity field reconstructed from the Sloan Digital Sky Survey Data Release 7 is analyzed to estimate the local velocity shear tensor at the Virgo center. Showing first that the minor principal axis of the local velocity shear tensor is almost parallel to the direction of the line of sight, we detect a clear signal of alignment between the positions of the Virgo satellites and the intermediate principal axis of the local velocity shear projected onto the plane of the sky. Furthermore, the dwarf satellites are found to appear more strongly aligned than their normal counterparts, which is interpreted as an indication of the following. (1) The normal satellites and the dwarf satellites fall in the Virgo cluster preferentially along the local filament and the local sheet, respectively. (2) The local filament is aligned with the minor principal axis of the local velocity shear while the local sheet is parallel to the plane spanned by the minor and intermediate principal axes. Our result is consistent with the recent numerical claim that the velocity shear is a good tracer of the cosmic web.

  13. Quasars Probing Galaxies. I. Signatures of Gas Accretion at Redshift z ≈ 0.2

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Stephanie H.; Martin, Crystal L. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Kacprzak, Glenn G. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Churchill, Christopher W., E-mail: shho@physics.ucsb.edu, E-mail: cmartin@physics.ucsb.edu [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States)

    2017-02-01

    We describe the kinematics of circumgalactic gas near the galactic plane, combining new measurements of galaxy rotation curves and spectroscopy of background quasars. The sightlines pass within 19–93 kpc of the target galaxy and generally detect Mg ii absorption. The Mg ii Doppler shifts have the same sign as the galactic rotation, so the cold gas co-rotates with the galaxy. Because the absorption spans a broader velocity range than disk rotation can explain, we explore simple models for the circumgalactic kinematics. Gas spiraling inwards (near the disk plane) offers a successful description of the observations. An appendix describes the addition of tangential and radial gas flows and illustrates how the sign of the disk inclination produces testable differences in the projected line-of-sight velocity range. This inflow interpretation implies that cold flow disks remain common down to redshift z ≈ 0.2 and prolong star formation by supplying gas to the disk.

  14. Doppler Ultrasonographic Parameters for Predicting Cerebral Vascular Reserve in Patients with Acute Ischemic Stroke

    International Nuclear Information System (INIS)

    Jung, Han Young; Lee, Hui Joong; Kim, Hye Jung; Kim, Yong Sun; Kang, Duk Sik

    2006-01-01

    We investigated Doppler ultrasonographic (US) parameters of patients with acute stroke to predict the cerebral vascular reserve (CVR) measured by SPECT. We reviewed the flow velocity and cross-sectional area of the circular vessel at the common, external, and internal carotid arteries (ICA) and the vertebral arteries (VA) in 109 acute stroke patients who underwent SPECT. Flow volume (FV) of each artery was calculated as the product of the angle-corrected time averaged flow velocity and cross-sectional area of the circular vessel. Total cerebral FV (TCBFV) was determined as the sum of the FVs of the right and left ICA and VA. We compared the Doppler US parameters between 44 cases of preserved and 65 cases of impaired CVR. In the preserved CVR group, ICA FV, anterior circulating FV (ACFV) and TCBFV were higher than in the impaired CVR group (p < 0.05, independent t-test). In the impaired CVR group, the ROC curves showed ACFV and TCBFV were suitable parameters to predict CVR (p < 0.05). Doppler US was helpful for understanding the hemodynamic state of acute stroke. FV measurement by Doppler US was useful for predicting CVR

  15. Cognitive aspects of haptic form recognition by blind and sighted subjects.

    Science.gov (United States)

    Bailes, S M; Lambert, R M

    1986-11-01

    Studies using haptic form recognition tasks have generally concluded that the adventitiously blind perform better than the congenitally blind, implicating the importance of early visual experience in improved spatial functioning. The hypothesis was tested that the adventitiously blind have retained some ability to encode successive information obtained haptically in terms of a global visual representation, while the congenitally blind use a coding system based on successive inputs. Eighteen blind (adventitiously and congenitally) and 18 sighted (blindfolded and performing with vision) subjects were tested on their recognition of raised line patterns when the standard was presented in segments: in immediate succession, or with unfilled intersegmental delays of 5, 10, or 15 seconds. The results did not support the above hypothesis. Three main findings were obtained: normally sighted subjects were both faster and more accurate than the other groups; all groups improved in accuracy of recognition as a function of length of interstimulus interval; sighted subjects tended to report using strategies with a strong verbal component while the blind tended to rely on imagery coding. These results are explained in terms of information-processing theory consistent with dual encoding systems in working memory.

  16. Application of DSA and ultrasonic blood rheography (Doppler) to benign paroxysmal positional vertigo

    International Nuclear Information System (INIS)

    Fujita, Nobuya; Wada, Yoshiro; Suzumura, Shigeo; Matsunaga, Takashi

    1990-01-01

    Fourteen cases of benign paroxysmal positional vertigo (BPPV) were studied with cervical circulation using DSA and Doppler. DSA study showed 7 abnormal cases out of 10 cases of BPPV. The abnormal findings included 5 cases of stenosis and 5 cases of coiling and kinking in cervical vertebral arteries. Doppler study showed that vertebral a. and also carotid a. had low volume and high laterality of cervical blood circulation in parameter of flow and velocity. These findings suggest the cervical circulation disorder was one of background factors in pathogenesis of BPPV. (author)

  17. Application of DSA and ultrasonic blood rheography (Doppler) to benign paroxysmal positional vertigo

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Nobuya; Wada, Yoshiro; Suzumura, Shigeo; Matsunaga, Takashi (Nara Medical Univ., Kashihara (Japan))

    1990-03-01

    Fourteen cases of benign paroxysmal positional vertigo (BPPV) were studied with cervical circulation using DSA and Doppler. DSA study showed 7 abnormal cases out of 10 cases of BPPV. The abnormal findings included 5 cases of stenosis and 5 cases of coiling and kinking in cervical vertebral arteries. Doppler study showed that vertebral a. and also carotid a. had low volume and high laterality of cervical blood circulation in parameter of flow and velocity. These findings suggest the cervical circulation disorder was one of background factors in pathogenesis of BPPV. (author).

  18. Time-of-flight laser spectrometer

    International Nuclear Information System (INIS)

    Izosimov, I.N.; Naumov, Yu.V.; Shishunov, N.A.

    1982-01-01

    A new method of laser spectroscopy with a multichannel way of recording is proposed. In the above method the beam of laser carrying out resonance excitation of studied atoms at the first stage, is directed along the atom beam. It the generation line width of this laser is much less than doppler broadening of spectral line caused by the atom velocities scattering in the beam, the selection of atoms according to velocities will take place, i. e. only atoms, having a definite projection of velocity on laser beam direction, will be excited. If laser line has several components, concealed in doppler circuit, the spectrum of velocities of excited atoms will also include several components. Spectrum of ion velocities obtained as a result of photoionization of excited atoms, reproduces within the limits of doppler circuit the structure of spectral line, corresponding to atom transition into the given excited state, as laser frequency at the dye is fixed in the process, of measurement. The method, proposed, is characterized not only by the property of multichannel but by a new way of atomic beam collimation. Analysis of ion velocities permits to carry out the regime of non-doppler spectroscopy at weakly collima-- ted atomic beams with collimation degree of 1:3. It gives a gain in sensitivity of about one order in comparison with one-channel methods while operating with high resolution (of 30 MHz order) [ru

  19. Linearized spectrum correlation analysis for line emission measurements.

    Science.gov (United States)

    Nishizawa, T; Nornberg, M D; Den Hartog, D J; Sarff, J S

    2017-08-01

    A new spectral analysis method, Linearized Spectrum Correlation Analysis (LSCA), for charge exchange and passive ion Doppler spectroscopy is introduced to provide a means of measuring fast spectral line shape changes associated with ion-scale micro-instabilities. This analysis method is designed to resolve the fluctuations in the emission line shape from a stationary ion-scale wave. The method linearizes the fluctuations around a time-averaged line shape (e.g., Gaussian) and subdivides the spectral output channels into two sets to reduce contributions from uncorrelated fluctuations without averaging over the fast time dynamics. In principle, small fluctuations in the parameters used for a line shape model can be measured by evaluating the cross spectrum between different channel groupings to isolate a particular fluctuating quantity. High-frequency ion velocity measurements (100-200 kHz) were made by using this method. We also conducted simulations to compare LSCA with a moment analysis technique under a low photon count condition. Both experimental and synthetic measurements demonstrate the effectiveness of LSCA.

  20. Doppler spectroscopy as a path to the detection of Earth-like planets.

    Science.gov (United States)

    Mayor, Michel; Lovis, Christophe; Santos, Nuno C

    2014-09-18

    Doppler spectroscopy was the first technique used to reveal the existence of extrasolar planetary systems hosted by solar-type stars. Radial-velocity surveys led to the detection of a rich population of super-Earths and Neptune-type planets. The numerous detected systems revealed a remarkable diversity. Combining Doppler measurements with photometric observations of planets transiting their host stars further provides access to the planet bulk density, a first step towards comparative exoplanetology. The development of new high-precision spectrographs and space-based facilities will ultimately lead us to characterize rocky planets in the habitable zone of our close stellar neighbours.