WorldWideScience

Sample records for line thermocapillary convection

  1. Some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers of finite extent

    Energy Technology Data Exchange (ETDEWEB)

    Li, K., E-mail: likai@imech.ac.cn [Key Laboratory of Microgravity, Chinese Academy of Sciences, Beijing 100190, China and National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100190 (China); Xun, B.; Hu, W. R. [Key Laboratory of Microgravity, Chinese Academy of Sciences, Beijing 100190, China and National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-05-15

    As a part of the preliminary studies for the future space experiment (Zona-K) in the Russian module of the International Space Station, some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers filled with 10 cSt silicone oil have been numerically studied in this paper. As the laterally applied temperature difference is raised, variations in the spatial structure and temporal evolution of the thermocapillary convection and a complex sequence of transitions are observed. The results show that the finite extent of the liquid layer significantly influences the tempo-spatial evolution of the thermocapillary convection. Moreover, the bifurcation route of the thermocapillary convection changes very sensitively by the aspect ratio of the liquid layer. With the increasing Reynolds number (applied temperature difference), the steady thermocapillary convection experiences two consecutive transitions from periodic oscillatory state to quasi-periodic oscillatory state with frequency-locking before emergence of chaotic convection in a liquid layer of aspect ratio 14.25, and the thermocapillary convection undergoes period-doubling cascades leading to chaotic convection in a liquid layer of aspect ratio 13.0.

  2. Some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers of finite extent

    International Nuclear Information System (INIS)

    Li, K.; Xun, B.; Hu, W. R.

    2016-01-01

    As a part of the preliminary studies for the future space experiment (Zona-K) in the Russian module of the International Space Station, some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers filled with 10 cSt silicone oil have been numerically studied in this paper. As the laterally applied temperature difference is raised, variations in the spatial structure and temporal evolution of the thermocapillary convection and a complex sequence of transitions are observed. The results show that the finite extent of the liquid layer significantly influences the tempo-spatial evolution of the thermocapillary convection. Moreover, the bifurcation route of the thermocapillary convection changes very sensitively by the aspect ratio of the liquid layer. With the increasing Reynolds number (applied temperature difference), the steady thermocapillary convection experiences two consecutive transitions from periodic oscillatory state to quasi-periodic oscillatory state with frequency-locking before emergence of chaotic convection in a liquid layer of aspect ratio 14.25, and the thermocapillary convection undergoes period-doubling cascades leading to chaotic convection in a liquid layer of aspect ratio 13.0.

  3. Free surface deformation and heat transfer by thermocapillary convection

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael; Basting, Steffen; Bänsch, Eberhard

    2016-04-01

    Knowing the location of the free liquid/gas surface and the heat transfer from the wall towards the fluid is of paramount importance in the design and the optimization of cryogenic upper stage tanks for launchers with ballistic phases, where residual accelerations are smaller by up to four orders of magnitude compared to the gravity acceleration on earth. This changes the driving forces drastically: free surfaces become capillary dominated and natural or free convection is replaced by thermocapillary convection if a non-condensable gas is present. In this paper we report on a sounding rocket experiment that provided data of a liquid free surface with a nonisothermal boundary condition, i.e. a preheated test cell was filled with a cold but storable liquid in low gravity. The corresponding thermocapillary convection (driven by the temperature dependence of the surface tension) created a velocity field directed away from the hot wall towards the colder liquid and then in turn back at the bottom towards the wall. A deformation of the free surface resulting in an apparent contact angle rather different from the microscopic one could be observed. The thermocapillary flow convected the heat from the wall to the liquid and increased the heat transfer compared to pure conduction significantly. The paper presents results of the apparent contact angle as a function of the dimensionless numbers (Weber-Marangoni and Reynolds-Marangoni number) as well as heat transfer data in the form of a Nusselt number. Experimental results are complemented by corresponding numerical simulations with the commercial software Flow3D and the inhouse code Navier.

  4. Effects of external environment on thermocapillary convection of high prandtl number fluid

    Directory of Open Access Journals (Sweden)

    Liang Ruquan

    2016-01-01

    Full Text Available Numerical simulations have been carried out to investigate the influence of external environment on thermocapillary convection in high Prandtl number (Pr=68 liquid. The geometric model of physical problem is that the the liquid bridge surrounded by ambient air under zero or ground gravity. The interface velocity, temperature, heat flux and flow pattern in the liquid bridge are presented and discussed under different conditions by changing the external environment. The buoyancy convection produces a symmetrical vortex in the liquid bridge. The ambient air affects the distributions of the temperature velocity and heat flux on the interface by changing the thermocapillary convection.

  5. Thermocapillary convection of melts and its role in laser-plasma synthesis and laser-induced amorphism

    Science.gov (United States)

    Uglov, A. A.; Smurov, I. Iu.; Gus'kov, A. G.; Semakhin, S. A.

    1987-06-01

    The role of thermocapillary convection in mass transfer processes in melts is investigated analytically and experimentally using vacuum-arc melted Ni63-Ta37 and Cu50-Zr50 alloys. It is shown that thermocapillary convection not only leads to the transfer of alloying components to the deeper layers of the melt but also may produce, in certain cases, a significant temperature redistribution in the liquid phase. Convective transfer dominates over conduction when the product of Re and Pr is greater than 1. In the experiments, the structure of the amorphous and crystalline layers in the solidified alloys is found to be in qualitative agreement with the structure of a thermocapillary vortex.

  6. Thermocapillary Convection in Floating Zone with Axial Magnetic Fields

    Science.gov (United States)

    Liang, Ruquan; Yang, Shuo; Li, Jizhao

    2014-02-01

    Numerical simulations on the effects of axial magnetic fields on the thermocapillary convection in a liquid bridge of silicone-oil-based ferrofluid under zero gravity have been conducted. The Navier-Stokes equations coupled with the energy conservation equation are solved on a staggered grid, and the mass conserving level set approach is used to capture the free surface deformation of the liquid bridge. The obvious effects of the magnetic fields on the flow pattern as well as the velocity and temperature distributions in the liquid bridge can be detected. The axial magnetic fields suppress the thermocapillary convection and a stagnant flow zone is formed between the circulating flow and the symmetric axis as the magnetic fields increase. The axial magnetic fields affect not only the velocity level inside the liquid bridge but also the velocity level on the free surface. The temperature contours near the free surface illustrates conduction-type temperature profiles at moderate strength fields.

  7. Forced and thermocapillary convection in silicon Czochralski crystal growth in semispherical crucible

    International Nuclear Information System (INIS)

    Mokhtari, F; Bouabdallah, A; Zizi, M; Hanchi, S; Alemany, A

    2010-01-01

    In order to understand the influence of a semispherical crucible geometry combined with different convection modes as a thermocapillary convection, natural convection and forced convection, induced by crystal rotation, on melt flow pattern in silicon Czochralski crystal growth process, a set of numerical simulations are conducted using Fluent Software. We solve the system of equations of heat and momentum transfer in classical geometry as cylindrical and modified crystal growth process geometry as cylindro-spherical. In addition, we adopt hypothesis adapted to boundary conditions near the interface and calculations are executed to determine temperature, pressure and velocity fields versus Grashof and Reynolds numbers. The analysis of the obtained results led to conclude that there is advantage to modify geometry in comparison with the traditional one. The absence of the stagnation regions of fluid in the hemispherical crucible corner and the possibility to control the melt flow using the crystal rotation enhances the quality of the process comparatively to the cylindrical one. The pressure field is strongly related to the swirl velocity.

  8. Forced and thermocapillary convection in silicon Czochralski crystal growth in semispherical crucible

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, F [Physics Department, Faculty of Science, University of Mouloud Mammeri, Tizi Ouzou (Algeria); Bouabdallah, A; Zizi, M [LTSE Laboratory, University of Science and Technology USTHB. BP 32 Elalia, Babezzouar, Algiers (Algeria); Hanchi, S [UER Mecanique/ E.M.P B.P 17, Bordj El Bahri, Algiers (Algeria); Alemany, A, E-mail: abouab2002@yahoo.f [Laboratoire EPM, CNRS, Grenoble (France)

    2010-03-01

    In order to understand the influence of a semispherical crucible geometry combined with different convection modes as a thermocapillary convection, natural convection and forced convection, induced by crystal rotation, on melt flow pattern in silicon Czochralski crystal growth process, a set of numerical simulations are conducted using Fluent Software. We solve the system of equations of heat and momentum transfer in classical geometry as cylindrical and modified crystal growth process geometry as cylindro-spherical. In addition, we adopt hypothesis adapted to boundary conditions near the interface and calculations are executed to determine temperature, pressure and velocity fields versus Grashof and Reynolds numbers. The analysis of the obtained results led to conclude that there is advantage to modify geometry in comparison with the traditional one. The absence of the stagnation regions of fluid in the hemispherical crucible corner and the possibility to control the melt flow using the crystal rotation enhances the quality of the process comparatively to the cylindrical one. The pressure field is strongly related to the swirl velocity.

  9. Surface Deformation by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael E.

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The scientific aims are to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat transfer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. Correlations for the effective contact angle and the heat transfer coefficient shall be delivered as a function of the relevant dimensionsless parameters. The data will be used for benchmarking of commercial CFD codes and the tank design

  10. Linear-stability theory of thermocapillary convection in a model of float-zone crystal growth

    Science.gov (United States)

    Neitzel, G. P.; Chang, K.-T.; Jankowski, D. F.; Mittelmann, H. D.

    1992-01-01

    Linear-stability theory has been applied to a basic state of thermocapillary convection in a model half-zone to determine values of the Marangoni number above which instability is guaranteed. The basic state must be determined numerically since the half-zone is of finite, O(1) aspect ratio with two-dimensional flow and temperature fields. This, in turn, means that the governing equations for disturbance quantities will remain partial differential equations. The disturbance equations are treated by a staggered-grid discretization scheme. Results are presented for a variety of parameters of interest in the problem, including both terrestrial and microgravity cases.

  11. Heat Transfer by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Dreyer, Michael; Fuhrmann, Eckart

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The topic of this paper is to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat trans-fer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. The paper will deliver correlations for the effective contact angle and the heat transfer coefficient as a function of the relevant dimensionsless parameters as well as physical explanations for the observed behavior. The data will be used

  12. Heat Transfer by Thermo-Capillary Convection. Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael

    2009-08-01

    This paper describes the results of a sounding rocket experiment which was partly dedicated to study the heat transfer from a hot wall to a cold liquid with a free surface. Natural or buoyancy-driven convection does not occur in the compensated gravity environment of a ballistic phase. Thermo-capillary convection driven by a temperature gradient along the free surface always occurs if a non-condensable gas is present. This convection increases the heat transfer compared to a pure conductive case. Heat transfer correlations are needed to predict temperature distributions in the tanks of cryogenic upper stages. Future upper stages of the European Ariane V rocket have mission scenarios with multiple ballistic phases. The aims of this paper and of the COMPERE group (French-German research group on propellant behavior in rocket tanks) in general are to provide basic knowledge, correlations and computer models to predict the thermo-fluid behavior of cryogenic propellants for future mission scenarios. Temperature and surface location data from the flight have been compared with numerical calculations to get the heat flux from the wall to the liquid. Since the heat flux measurements along the walls of the transparent test cell were not possible, the analysis of the heat transfer coefficient relies therefore on the numerical modeling which was validated with the flight data. The coincidence between experiment and simulation is fairly good and allows presenting the data in form of a Nusselt number which depends on a characteristic Reynolds number and the Prandtl number. The results are useful for further benchmarking of Computational Fluid Dynamics (CFD) codes such as FLOW-3D and FLUENT, and for the design of future upper stage propellant tanks.

  13. Coupled thermo-capillary and buoyancy convection in a liquid layer locally heated on its free surface

    International Nuclear Information System (INIS)

    Favre, E.

    1997-01-01

    Coupled buoyancy and thermo-capillary convection lead to a convective motion of the interface liquid/gas, which changes drastically the heat and mass transfer across the liquid layer. Two experiments are considered, depending on the fluid: oil or mercury. The liquid is set in a cooled cylindrical vessel, and heated by a heat flux across the center of the free surface. The basic flow, in the case of oil, is a torus. When the heat parameter increases, a stationary flow looking like petals or rays appears when the aspect ratio length/depth is small, and like concentric rings in the case of large values of the aspect ratio. The lateral confinement selects the azimuthal length wave. In the case of petals-like flow, a sub-critical Hopf bifurcation is underlined. The turbulence is found to be 'weak', even for the largest values of the Marangoni number (Ma ≅ 1.3 * 10 5 ). In the case of mercury, the thermo-capillary effect is reduced to zero, due to impurities at the surface, which have special trajectories we describe and compare to a simpler experiment. The only buoyancy forces induces an un-stationary, weakly turbulent flow as soon as the heating power exceeds 4 W (≅ 4.5 * 10 3 , calculated with h = 1 mm). The last part concerns the analysis of the effect on the flow of the boundary conditions, the geometry, the Prandtl number, the buoyancy force, with the help of the literature. Results concerning heat transfer, especially the exponent of the law Nusselt number vs. heating power, are compared with available data. (author) [fr

  14. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    International Nuclear Information System (INIS)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-01-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  15. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lin, E-mail: lz@njust.edu.cn [School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Zheng, Song [School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310018 (China); Zhai, Qinglan [School of Economics Management and Law, Chaohu University, Chaohu 238000 (China)

    2016-02-05

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  16. On Thermocapillary Mechanism of Spatial Separation of Metal Melts

    Science.gov (United States)

    Demin, V. A.; Mizev, A. I.; Petukhov, M. I.

    2018-02-01

    Theoretical research has been devoted to the study of binary metal melts behavior in a thin capillary. Earlier it has been found experimentally that unusually significant and quick redistribution of melts components takes place along capillary after the cooling. Numerical simulation of concentration-induced convection has been carried out to explain these experimental data. Two-component melt of both liquid metals filling vertical thin capillary with non-uniform temperature distribution on the boundaries is considered. It is assumed that the condition of absolute non-wetting is valid on the sidewalls. Because of this effect there is a free surface on vertical boundaries, where thermocapillary force is appeared due to the external longitudinal temperature gradient. It makes to move liquid elements at a big distance, compared with axial size of capillary. Effects of adsorption-desorption on the surface, thermal and concentration-capillary forces, convective motion in a volume and diffusion generate the large-scale circulation. This process includes the admixture carrying-out on the surface in the more hot higher part of the channel, its following transfer down along the boundary due to the thermocapillary force and its return in the volume over the desorption in the lower part of capillary. Intensity of motion and processes of adsorption-desorption on the free boundary have the decisive influence upon the formation of concentration fields and speed of components redistribution. Thus, one of the possible mechanisms of longitudinal division on components of liquid binary mixtures in thin channels has been demonstrated.

  17. Self-organized metal nanostructures through laser-interference driven thermocapillary convection

    International Nuclear Information System (INIS)

    Favazza, C.; Trice, J.; Kalyanaraman, R.; Sureshkumar, R.

    2007-01-01

    Here the authors investigate self-organization and the ensuing length scales when Co films (1-8 nm thick) on SiO 2 surfaces are repeatedly and rapidly melted by nonuniform (interference) laser irradiation. Pattern evolution produces periodic nanowires, which eventually breakup into nanoparticles exhibiting spatial order in the nearest-neighbor (NN) spacing λ NN2 . For films of thickness h 0 >2 nm, λ NN2 ∝h 0 1/2 while the particle radius varies as r p2 ∝h 0 1/2 . This scaling behavior is consistent with pattern formation by a thermocapillary flow and a Rayleigh-like instability. For h 0 ≤2 nm, a hydrodynamic instability of a spinodally unstable film leads to the formation of nanoparticles

  18. Thermocapillary droplet actuation on structured solid surfaces

    Science.gov (United States)

    Karapetsas, George; Chamakos, Nikolaos T.; Papathanasiou, Athanasios G.

    2017-11-01

    The present work investigates, through 2D and 3D finite element simulations, the thermocapillary-driven flow inside a droplet which resides on a non-uniformly heated patterned surface. We employ a recently proposed sharp-interface scheme capable of efficiently modelling the flow over complicate surfaces and consider a wide range of substrate wettabilities, i.e. from hydrophilic to super-hydrophobic surfaces. Our simulations indicate that due to the presence of the solid structures and the induced effect of contact angle hysteresis, inherently predicted by our model, a critical thermal gradient arises beyond which droplet migration is possible, in line with previous experimental observations. The migration velocity as well as the direction of motion depends on the combined action of the net mechanical force along the contact line and the thermocapillary induced flow at the liquid-air interface. We also show that through a proper control and design of the substrate wettability, the contact angle hysteresis and the induced flow field it is possible to manipulate the droplet dynamics, e.g. controlling its motion along a predefined track or entrapping by a wetting defect a droplet based on its size as well as providing appropriate conditions for enhanced mixing inside the droplet. Funding from the European Research Council under the Europeans Community's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. [240710] is acknowledged.

  19. Model of convection mass transfer in titanium alloy at low energy high current electron beam action

    Science.gov (United States)

    Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.; Gromov, V. E.

    2017-01-01

    The convection mixing model is proposed for low-energy high-current electron beam treatment of titanium alloys, pre-processed by heterogeneous plasma flows generated via explosion of carbon tape and powder TiB2. The model is based on the assumption vortices in the molten layer are formed due to the treatment by concentrated energy flows. These vortices evolve as the result of thermocapillary convection, arising because of the temperature gradient. The calculation of temperature gradient and penetration depth required solution of the heat problem with taking into account the surface evaporation. However, instead of the direct heat source the boundary conditions in phase transitions were changed in the thermal conductivity equation, assuming the evaporated material takes part in the heat exchange. The data on the penetration depth and temperature distribution are used for the thermocapillary model. The thermocapillary model embraces Navier-Stocks and convection heat transfer equations, as well as the boundary conditions with the outflow of evaporated material included. The solution of these equations by finite elements methods pointed at formation of a multi-vortices structure when electron-beam treatment and its expansion over new zones of material. As the result, strengthening particles are found at the depth exceeding manifold their penetration depth in terms of the diffusion mechanism.

  20. Effect of rotating magnetic field on thermocapillary flow stability and the FZ crystal growth on the ground and in space

    Science.gov (United States)

    Feonychev, A. I.

    It is well known that numerous experiments on crystal growth by the Bridgman method in space had met with only limited success. Because of this, only floating zone method is promising at present. However, realization of this method demands solution of some problems, in particular reduction of dopant micro- and macrosegregation. Rotating magnetic field is efficient method for control of flow in electrically conducting fluid and transfer processes. Investigation of rotating magnetic field had initiated in RIAME MAI in 1994 /3/. Results of the last investigations had been presented in /4/. Mathematical model of flow generated by rotating magnetic field and computer program were verified by comparison with experiment in area of developed oscillatory flow. Nonlinear analysis of flow stability under combination of thermocapillary convection and secondary flow generated by rotating magnetic field shows that boundary of transition from laminar to oscillatory flow is nonmonotone function in the plane of Marangoni number (Ma) - combined parameter Reω Ha2 (Ha is Hartman number, Reω is dimensionless velocity of magnetic field rotation). These data give additional knowledge of mechanism of onset of oscillations. In this case, there is reason to believe that the cause is Eckman's viscous stresses in rotating fluid on solid end-walls. It was shown that there is a possibility to increase stability of thermocapillary convection and in doing so to remove the main cause of dopant microsegregation. In doing so, if parameters of rotating magnetic field had been incorrectly chosen the dangerous pulsating oscillations are to develop. Radial macrosegregation of dopant can result from correct choosing of parameters of rotating magnetic field. As example, optimization of rotating magnetic field had been carried out for Ge(Ga) under three values of Marangoni number in weightlessness conditions. In the case when rotating magnetic field is used in terrestrial conditions, under combination of

  1. Impacts of initial convective structure on subsequent squall line evolution

    Science.gov (United States)

    Varble, A.; Morrison, H.; Zipser, E. J.

    2017-12-01

    A Weather Research and Forecasting simulation of the 20 May 2011 MC3E squall line using 750-m horizontal grid spacing produces wide convective regions with strongly upshear tilted convective updrafts and mesoscale bowing segments that are not produced in radar observations. Similar features occur across several different bulk microphysics schemes, despite surface observations exhibiting cold pool equivalent potential temperature drops that are similar to and pressure rises that are greater than those in the simulation. Observed rear inflow remains more elevated than simulated, partly counteracting the cold pool circulation, whereas the simulated rear inflow descends to low levels, maintaining its strength and reinforcing the cold pool circulation that overpowers the pre-squall line low level vertical wind shear. The descent and strength of the simulated rear inflow is fueled by strong latent cooling caused by large ice water contents detrained from upshear tilted convective cores that accumulate at the rear of the stratiform region. This simulated squall evolution is sensitive to model resolution, which is too coarse to resolve individual convective drafts. Nesting a 250-m horizontal grid spacing domain into the 750-m domain substantially alters the initial convective cells with reduced latent cooling, weaker convective downdrafts, and a weaker initial cold pool. As the initial convective cells develop into a squall line, the rear inflow remains more elevated in the 250-m domain with a cold pool that eventually develops to be just as strong and deeper than the one in the 750-m run. Despite this, the convective cores remain more upright in the 250-m run with the rear inflow partly counteracting the cold pool circulation, whereas the 750-m rear inflow near the surface reinforces the shallower cold pool and causes bowing in the squall line. The different structure in the 750-m run produces excessive mid-level front-to-rear detrainment that widens the convective region

  2. Feasibility analysis of large length-scale thermocapillary flow experiment for the International Space Station

    Science.gov (United States)

    Alberts, Samantha J.

    The investigation of microgravity fluid dynamics emerged out of necessity with the advent of space exploration. In particular, capillary research took a leap forward in the 1960s with regards to liquid settling and interfacial dynamics. Due to inherent temperature variations in large spacecraft liquid systems, such as fuel tanks, forces develop on gas-liquid interfaces which induce thermocapillary flows. To date, thermocapillary flows have been studied in small, idealized research geometries usually under terrestrial conditions. The 1 to 3m lengths in current and future large tanks and hardware are designed based on hardware rather than research, which leaves spaceflight systems designers without the technological tools to effectively create safe and efficient designs. This thesis focused on the design and feasibility of a large length-scale thermocapillary flow experiment, which utilizes temperature variations to drive a flow. The design of a helical channel geometry ranging from 1 to 2.5m in length permits a large length-scale thermocapillary flow experiment to fit in a seemingly small International Space Station (ISS) facility such as the Fluids Integrated Rack (FIR). An initial investigation determined the proposed experiment produced measurable data while adhering to the FIR facility limitations. The computational portion of this thesis focused on the investigation of functional geometries of fuel tanks and depots using Surface Evolver. This work outlines the design of a large length-scale thermocapillary flow experiment for the ISS FIR. The results from this work improve the understanding thermocapillary flows and thus improve technological tools for predicting heat and mass transfer in large length-scale thermocapillary flows. Without the tools to understand the thermocapillary flows in these systems, engineers are forced to design larger, heavier vehicles to assure safety and mission success.

  3. Simulation on the Effects of Surfactants and Observed Thermocapillary Motion for Laser Melting Physics

    Science.gov (United States)

    Nourgaliev, Robert; Barney, Rebecca; Weston, Brian; Delplanque, Jean-Pierre; McCallen, Rose

    2017-11-01

    A newly developed, robust, high-order in space and time, Newton-Krylov based reconstructed discontinuous Galerkin (rDG) method is used to model and analyze thermocapillary convection in melt pools. The application of interest is selective laser melting (SLM) which is an Additive Manufacturing (AM, 3D metal laser printing) process. These surface tension driven flows are influenced by temperature gradients and surfactants (impurities), and are known as the Marangoni flow. They have been experimentally observed in melt pools for welding applications, and are thought to influence the microstructure of the re-solidified material. We study the effects of the laser source configuration (power, beam size and scanning speed), as well as surfactant concentrations. Results indicate that the surfactant concentration influences the critical temperature, which governs the direction of the surface thermocapillary traction. When the surface tension traction changes sign, very complex flow patterns emerge, inducing hydrodynamic instability under certain conditions. These in turn would affect the melt pool size (depth) and shape, influencing the resulting microstructure, properties, and performance of a finished product part produced using 3D metal laser printing technologies. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Information management release number LLNL-ABS-735908.

  4. Numerical Investigation of the Liquid Film Flows with Evaporation at Thermocapillary Interface

    Directory of Open Access Journals (Sweden)

    Rezanova Ekaterina

    2016-01-01

    Full Text Available Flows of the thin liquid layers on an inclined non-uniformly heated substrate are investigated numerically. The evaporation at the thermocapillary interface is taking into account. The Oberbeck-Boussinesq equations and the generalized kinematic, dynamic and energy conditions on a thermocapillary boundary are used for governing equations. The evolution equation, which determines the position of the interface, is obtained on the basis of the long-wave approximation of the equations for moderate Reynolds numbers. The numerical algorithm for solving of this evolution equation is presented. Comparison of the numerical results of flows of various liquids is presented.

  5. Flow Visualization in Evaporating Liquid Drops and Measurement of Dynamic Contact Angles and Spreading Rate

    Science.gov (United States)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.

  6. Thermo capillary and buoyancy convection in a fluid locally heated on its free surface; Convection thermocapillaire et thermogravitaire dans un fluide chauffe localement sur sa surface libre

    Energy Technology Data Exchange (ETDEWEB)

    Favre, E.

    1997-09-26

    coupled buoyancy and thermo-capillary convection lead to a convective motion of the interface liquid/gas which drastically changes the heat and mass transfer across the liquid layer. Two experiments were considered, depending on the fluid: oil or mercury. The liquid is set in a cooled cylindrical vessel, and heated by a heat flux across the center of the free surface. The basic flow, in the case of oil, is a torus. When the heat parameter increases, a stationary flow appears as petals or rays when the aspect ratio. The lateral confinement selects the azimuthal wavelength. In the case of petals-like flow, a sub-critical Hopf bifurcation is underlined. The turbulence is found to be `weak`, even for the largest values of the Marangoni number (Ma = 1.3 10{sup 5}). In the case of mercury, the thermo-capillary effect is reduced to zero to impurities at the surface which have special trajectories we describe and compare to a simpler experiment. Only the buoyancy forces induce a unstationary, weakly turbulent flow as soon as the heating power exceeds 4W (Ra = 4.5 10{sup 3}, calculated with h = 1 mm). The past part concerns the analysis of the effect on the flow of the boundary conditions, the geometry, the Prandtl number and the buoyancy force with the help of the literature. Results concerning heat transfer, in particular the exponent of the law Nusselt number vs. heating power, were compared with available data. (author) 115 refs.

  7. Thermocapillary and shear driven flows in gas/liquid system in annular duct

    International Nuclear Information System (INIS)

    Gaponenko, Yu; Shevtsova, V; Nepomnyashchy, A

    2011-01-01

    We report the results of numerical study of two-phase flows in annulus for different aspect ratios obtained in the frame of the JEREMI experiment preparation. The geometry of the physical problem is a cylindrical and non-deformable liquid bridge concentrically surrounded by an annular gas channel under conditions of zero gravity. Thermocapillary (Marangoni) convection in liquid bridge of Pr = 68 is analyzed in the case when the interface is subjected to an axial gas stream. The gas flow is counter-directed with respect to the Marangoni flow. The inlet gas velocity U 0 g , temperature difference ΔT between end rods of the liquid bridge and aspect ratio are the control parameters of the system. In the case when the gas stream comes from the cold side, it cools down the interface to a temperature lower than that of the liquid beneath, and in a certain region of the parameter space that cooling causes instability due to a temperature difference in the direction, perpendicular to the interface. The present study is focused on the influence of the aspect ratio on the existence and characteristic features of the oscillatory regime.

  8. High-latitude convection on open and closed field lines for large IMF B(y)

    Science.gov (United States)

    Moses, J. J.; Crooker, N. U.; Gorney, D. J.; Siscoe, G. L.

    1985-01-01

    S3-3 electric field observations for August 23, 1976, show a single convection cell engulfing the northern polar cap. The flow direction is that for a positive IMF B(y) component. The particle data indicate that nearly half the duskside sunward flow occurs on closed field lines whereas the dawnside flow is entirely on open field lines. This is interpreted in terms of an IMF B(y)-induced deformation in the polar cap boundary, where the deformation moves with the convective flow. Thus, convection streamlines cross the deformed polar cap boundary, but no flow crosses the boundary because it is carried by the flow. Since southern hemisphere convection is expected to occur with the opposite sense of rotation, closed field lines that will be forced to tilt azimuthally are predicted. On the nightside the tilt produces a y component of the magnetic field in the same direction as the IMF for either sign of IMF B(y). This interpretation is consistent with observations of a greater y component in the plasma sheet than the tail lobes, which are difficult to understand in terms of the common explanation of IMF penetration. Alternatives to this interpretation are also discussed.

  9. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation

    NARCIS (Netherlands)

    Chen, J.-Z.; Darhuber, A.A.; Troian, S.M.; Wagner, S.

    2004-01-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is

  10. Thermocapillary migration of liquids on patterned surfaces : design concept for microfluidic

    NARCIS (Netherlands)

    Darhuber, A.A.; Davis, J.M.; Reisner, W.W.; Troian, S.M.

    2001-01-01

    We present a novel method of fluidic transport on the open surface of a chemically patterned substrate using thermocapillary actuation. Our experimental and numerical studies provide the desired correlations between the microstream flow rate and tunable parameters like the liquid sample volume,

  11. Marangoni-buoyancy convection in binary fluids under varying noncondensable concentrations

    Science.gov (United States)

    Li, Yaofa; Yoda, Minami

    2014-11-01

    Marangoni-buoyancy convection in binary fluids in the presence of phase change is a complex and poorly understood problem. Nevertheless, this flow is of interest in evaporative cooling because solutocapillary stresses could reduce film dryout. Convection was therefore studied in methanol-water (MeOH-H2O) layers of depth h ~ 1 - 3 mm confined in a sealed rectangular cell driven by horizontal temperature differences of ~6° C applied over ~ 5 cm. Particle-image velocimetry (PIV) was used to study how varying the fraction of noncondensables (i.e., air) ca from ~ 7 mol% to ambient conditions in the vapor space affects soluto- and thermocapillary stresses in this flow. Although solutocapillary stresses can be used to drive the flow towards hot regions, solutocapillarity appears to have the greatest effect on the flow at small ca, because noncondensables suppress phase change and hence the gradient in the liquid-phase composition at the interface. Surprisingly, convection at ca ~ 50 % leads to a very weak flow and significant condensation in the central portion of the layer i.e., away from the heated and cooled walls). Supported by ONR.

  12. Towards and FVE-FAC Method for Determining Thermocapillary Effects on Weld Pool Shape

    Science.gov (United States)

    Canright, David; Henson, Van Emden

    1996-01-01

    Several practical materials processes, e.g., welding, float-zone purification, and Czochralski crystal growth, involve a pool of molten metal with a free surface, with strong temperature gradients along the surface. In some cases, the resulting thermocapillary flow is vigorous enough to convect heat toward the edges of the pool, increasing the driving force in a sort of positive feedback. In this work we examine this mechanism and its effect on the solid-liquid interface through a model problem: a half space of pure substance with concentrated axisymmetric surface heating, where surface tension is strong enough to keep the liquid free surface flat. The numerical method proposed for this problem utilizes a finite volume element (FVE) discretization in cylindrical coordinates. Because of the axisymmetric nature of the model problem, the control volumes used are torroidal prisms, formed by taking a polygonal cross-section in the (r, z) plane and sweeping it completely around the z-axis. Conservation of energy (in the solid), and conservation of energy, momentum, and mass (in the liquid) are enforced globally by integrating these quantities and enforcing conservation over each control volume. Judicious application of the Divergence Theorem and Stokes' Theorem, combined with a Crank-Nicolson time-stepping scheme leads to an implicit algebraic system to be solved at each time step. It is known that near the boundary of the pool, that is, near the solid-liquid interface, the full conduction-convection solution will require extremely fine length scales to resolve the physical behavior of the system. Furthermore, this boundary moves as a function of time. Accordingly, we develop the foundation of an adaptive refinement scheme based on the principles of Fast Adaptive Composite Grid methods (FAC). Implementation of the method and numerical results will appear in a later report.

  13. Objective function choice for control of a thermocapillary flow using an adjoint-based control strategy

    International Nuclear Information System (INIS)

    Muldoon, Frank H.; Kuhlmann, Hendrik C.

    2015-01-01

    Highlights: • Suppression of oscillations in a thermocapillary flow is addressed by optimization. • The gradient of the objective function is obtained by solving the adjoint equations. • The issue of choosing an objective function is investigated. - Abstract: The problem of suppressing flow oscillations in a thermocapillary flow is addressed using a gradient-based control strategy. The physical problem addressed is the “open boat” process of crystal growth, the flow in which is driven by thermocapillary and buoyancy effects. The problem is modeled by the two-dimensional unsteady incompressible Navier–Stokes and energy equations under the Boussinesq approximation. The goal of the control is to suppress flow oscillations which arise when the driving forces are such that the flow becomes unsteady. The control is a spatially and temporally varying temperature gradient boundary condition at the free surface. The control which minimizes the flow oscillations is found using a conjugate gradient method, where the gradient of the objective function with respect to the control variables is obtained from solving a set of adjoint equations. The issue of choosing an objective function that can be both optimized in a computationally efficient manner and optimization of which provides control that damps the flow oscillations is investigated. Almost complete suppression of the flow oscillations is obtained for certain choices of the objective function.

  14. Thermocapillary and arc phenomena in stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Stanley W. [Colorado School of Mines, Golden, CO (United States)

    1993-01-01

    Goal was to study effect of power level and distribution on thermocapiilary-induced weld shape and of arc factors on weld shape. Thermocapillarity was apparent in both conduction mode EB welds and GTA welds, particularly in the former. A non-Gaussian arc distribution is suggested for accounting for the differences between the twoss processes. At higher current levels (200--300 A), plasma shear force also contributes to weld shape development. Evidence suggests that thermocapillary flow reversal is not a factor in normal GTA welds; EDB flow reversal occurs only at high power density levels where the keyhole mode is present.

  15. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation

    OpenAIRE

    Chen, Jian Z.; Darhuber, Anton A.; Troian, Sandra M.; Wagner, Sigurd

    2004-01-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable wi...

  16. Optimized convective transport with automated pressure control in on-line postdilution hemodiafiltration.

    Science.gov (United States)

    Joyeux, V; Sijpkens, Y; Haddj-Elmrabet, A; Bijvoet, A J; Nilsson, L-G

    2008-11-01

    In a stable patient population we evaluated on-line postdilution hemodiafiltration (HDF) on the incremental improvement in blood purification versus high-flux HD, using the same dialyzer and blood flow rate. For HDF we used a new way of controlling HDF treatments based on the concept of constant pressure control where the trans-membrane pressure is automatically set by the machine using a feedback loop on the achieved filtration (HDF UC). We enrolled 20 patients on on-line HDF treatment and during a 4-week study period recorded key treatment parameters in HDF UC. For one mid-week study treatment performed in HD and one midweek HDF UC treatment we sampled blood and spent dialysate to evaluate the removal of small- and middle-sized solutes. We achieved 18+/-3 liters of ultrafiltration in four-hour HDF UC treatments, corresponding to 27+/-3% of the treated blood volume. That percentage varied by patient hematocrit level. The ultrafiltration amounted to 49+/-4% of the estimated plasma water volume treated. We noted few machine alarms. For beta2m and factor D the effective reduction in plasma level by HDF (76+/-6% and 43+/-9%, respectively) was significantly greater than in HD, and a similar relation was seen in mass recovered in spent dialysate. Small solute removal was similar in HDF and HD. Albumin loss was low. The additional convective transport provided by on-line HDF significantly improved the removal of middle molecules when all other treatment settings were equal. Using the automated pressure control mode in HDF, the convective volume depended on the blood volume processed and the patient hematocrit level.

  17. Structure and dynamics of particle-accumulation in thermocapillary liquid bridges

    International Nuclear Information System (INIS)

    Kuhlmann, Hendrik C; Mukin, Roman V; Sano, Tomoaki; Ueno, Ichiro

    2014-01-01

    The accumulation of small mono-disperse heavy particles in thermocapillary liquid bridges is investigated experimentally and numerically. We consider particle accumulation near the center of the toroidal vortex, the so-called toroidal core of particles (COP), and the particle-depletion zone near the axis of the liquid bridge. Based on the acceleration and deceleration of the tangential flow along the thermocapillary free surface it is argued that the interaction of the particles with the free surface is of key importance for the fast particle accumulation within a few characteristic momentum diffusion times. The experimentally determined particle-accumulation times are compared with time-scale estimates for accumulation due to either particle free-surface interaction or due to inertia of particles which are heavier than the liquid. We show that the experimental accumulation times are compatible with the accumulation times predicted by the particle–free-surface interaction (PSI) while the time-scale estimates based on the inertia of the particles are too large to explain the fast de-mixing observed in experiments. The shape of the COP resembles certain KAM tori of the incompressible flow of a hydrothermal wave. Two scenarios are proposed to explain the structure and the dynamics of the COP depending on the existence or non-existence of suitable KAM structures. The shape of the experimental particle-depletion zone agrees well with the release surface which is defined by the particle–free-surface interaction process. The favorable comparison of the dynamics and structure of experimental and numerical accumulation patterns provides strong evidence for the existence and relevance of the PSI as the most rapid physical accumulation mechanism. (paper)

  18. Simultaneous fingering, double-diffusive convection, and thermal plumes derived from autocatalytic exothermic reaction fronts

    Science.gov (United States)

    Eskew, Matthew W.; Harrison, Jason; Simoyi, Reuben H.

    2016-11-01

    Oxidation reactions of thiourea by chlorite in a Hele-Shaw cell are excitable, autocatalytic, exothermic, and generate a lateral instability upon being triggered by the autocatalyst. Reagent concentrations used to develop convective instabilities delivered a temperature jump at the wave front of 2.1 K. The reaction zone was 2 mm and due to normal cooling after the wave front, this generated a spike rather than the standard well-studied front propagation. The reaction front has solutal and thermal contributions to density changes that act in opposite directions due to the existence of a positive isothermal density change in the reaction. The competition between these effects generates thermal plumes. The fascinating feature of this system is the coexistence of plumes and fingering in the same solution which alternate in frequency as the front propagates, generating hot and cold spots within the Hele-Shaw cell, and subsequently spatiotemporal inhomogeneities. The small ΔT at the wave front generated thermocapillary convection which competed effectively with thermogravitational forces at low Eötvös Numbers. A simplified reaction-diffusion-convection model was derived for the system. Plume formation is heavily dependent on boundary effects from the cell dimensions. This work was supported by Grant No. CHE-1056366 from the NSF and a Research Professor Grant from the University of KwaZulu-Natal.

  19. Thermocapillary reorientation of Janus drops

    Science.gov (United States)

    Rosales, Rodolfo; Saenz, Pedro

    2017-11-01

    Janus drops, named after the Ancient Roman two-faced god, are liquid drops formed from two immiscible fluids. Experimental observations indicate that a Janus drop may re-orientate in response to an applied external thermal gradient due to the Marangoni effect. Depending on the angle between the interior interface and the direction of the temperature gradient, disparities in the physical properties of the constituent liquids may lead to asymmetries in the thermocapillary flow. As a result, the drop will move along a curved path until a torque-free configuration is achieved, point after which it will continue on a straight trajectory. Here, we present the results of a theoretical investigation of this realignment phenomenon in the Stokes regime and in the limit of non-deformable interfaces. A 3D semi-analytical method in terms of polar spherical harmonics is developed to characterize and rationalize the hydrodynamic response (forces and torques), flow (velocity and temperature distribution) and trajectory of a Janus drop moving during the temperature-driven reorientation process. Furthermore, we discuss how this phenomenon may be exploited to develop dynamically reconfigurable micro-lenses. This work was partially supported by the US National Science Foundation through Grants DMS-1614043 and DMS-1719637.

  20. Cloud-Resolving Modeling Intercomparison Study of a Squall Line Case from MC3E - Properties of Convective Core

    Science.gov (United States)

    Fan, J.; Han, B.; Varble, A.; Morrison, H.; North, K.; Kollias, P.; Chen, B.; Dong, X.; Giangrande, S. E.; Khain, A.; Lin, Y.; Mansell, E.; Milbrandt, J.; Stenz, R.; Thompson, G.; Wang, Y.

    2016-12-01

    The large spread in CRM model simulations of deep convection and aerosol effects on deep convective clouds (DCCs) makes it difficult to (1) further our understanding of deep convection and (2) define "benchmarks" and then limit their use in parameterization developments. A constrained model intercomparsion study on a mid-latitude mesoscale squall line is performed using the Weather Research & Forecasting (WRF) model at 1-km horizontal grid spacing with eight cloud microphysics schemes to understand specific processes that lead to the large spreads of simulated convection and precipitation. Various observational data are employed to evaluate the baseline simulations. All simulations tend to produce a wider convective area but a much narrower stratiform area. The magnitudes of virtual potential temperature drop, pressure rise, and wind speed peak associated with the passage of the gust front are significantly smaller compared with the observations, suggesting simulated cool pools are weaker. Simulations generally overestimate the vertical velocity and radar reflectivity in convective cores compared with the retrievals. The modeled updraft velocity and precipitation have a significant spread across eight schemes. The spread of updraft velocity is the combination of both low-level pressure perturbation gradient (PPG) and buoyancy. Both PPG and thermal buoyancy are small for simulations of weak convection but both are large for those of strong convection. Ice-related parameterizations contribute majorly to the spread of updraft velocity, while they are not the reason for the large spread of precipitation. The understandings gained in this study can help to focus future observations and parameterization development.

  1. Quantifying near-wall coherent structures in turbulent convection

    Science.gov (United States)

    Gunasegarane, G. S.; A Puthenveettil, Baburaj; K Agrawal, Yogesh; Schmeling, Daniel; Bosbach, Johannes; Arakeri, Jaywant; IIT Madras-DLR-IISc Collaboration

    2011-11-01

    We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of near- wall line plumes measured from these planforms, in a six decade range of Rayleigh numbers (105 < Ra <1011) and at three Prandtl numbers (Pr = 0 . 7 , 6 , 602). Using geometric constraints on the relations for the mean plume spacings, we obtain expressions for the total length of these near-wall plumes in turbulent convection. The plume length per unit area (Lp / A), made dimensionless by the near-wall length scale in turbulent convection (Zw) remains a constant for a given fluid. The Nusselt number is shown to be directly proportional to Lp H / A for a given fluid layer of height H. Increase in Pr has a weak influence in decreasing Lp / A . These expressions match the measurements, thereby showing that the assumption of laminar natural convection boundary layers in turbulent convection is consistent with the observed total length of line plumes. We then show that similar relationships are obtained based on the assumption that the line plumes are the outcome of the instability of laminar natural convection boundary layers on the horizontal surfaces.

  2. Microgravity Science Experiment of Marangoni Convection occurred in Larger Liquid Bridge on KIBO

    Science.gov (United States)

    Matsumoto, Satoshi; Yoda, Shinichi; Tanaka, Tetsuo

    Marangoni convection is a fluid motion induced by local variations of surface tension along a free surface which is caused by temperature and/or concentration differences. Marangoni convection plays important roll in such applications as crystal growth from melt, welding, con-tainerless material processing, and so on. One of the promising techniques to grow a high quality crystal is a floating-zone method which exists cylindrical melting part at heated region. This liquid part like a column is sustained between solid rods and it has free surface on the side. For investigation of Marangoni convection, a liquid bridge configuration with heated top and cooled bottom is often employed to simplify phenomena. Much work has been performed on Marangoni convection in the past, both experimentally and theoretically. Most of the ex-perimental investigations were conducted in normal gravity but some results from microgravity experiments are now available. However, problems to be solved are still remained in scientific view point. The effect of liquid bridge size on critical Marangoni number to determine the onset of oscillatory flow is one of important subjects. To investigate size effect, the experiment with changing wide range of diameter is needed. Under terrestrial conditions, large size of liquid bridge enhances to induce buoyancy convection. Much larger liquid bridge is deformed its shape or finally liquid bridge could not keep between disks because of its self-weight. So, microgravity experiment is required to make clear the size effect and to obtain precise data. We carried out Marangoni experiment under microgravity condition in Japanese Experiment Module "KIBO". A 50 mm diameter liquid bridge was formed and temperature difference between supporting rods was imposed to induce thermocapillary flow. Convective motion was observed in detail using several cameras, infrared camera and temperature sensors. Silicone oil of 5cSt was employed as a working fluid, which Prandtl

  3. Micro-scale thermocapillary convection with solidification

    International Nuclear Information System (INIS)

    Yang, W.J.; Liu, J.C.; Chai, A.T.

    1991-01-01

    This paper reports on an experimental study performed on heat transfer in sessile drops of lysozyme solutions with solidification. Solidification inside the sessile drop is initiated by means of the center cooling method. The internal flow behavior and solidification front movement are observed using a microscope-video monitor system. Results are obtained for lysozyme, and buffer solutions, and water, representing media possessing surface tension coefficients. It is disclosed that the time history of the solidification front movement can be divided into two stages; initial and stable. In the stable stage, the front movement x follows the power-law behavior x = Ct n . C is an empirical constant, and t denotes time. The exponent n takes on a value close to unity in the stable stage

  4. Stability and instability of axisymmetric droplets in thermocapillary-driven thin films

    Science.gov (United States)

    Nicolaou, Zachary G.

    2018-03-01

    The stability of compactly supported, axisymmetric droplet states is considered for driven thin viscous films evolving on two-dimensional surfaces. Stability is assessed using Lyapunov energy methods afforded by the Cahn-Hilliard variational form of the governing equation. For general driving forces, a criterion on the gradient of profiles at the boundary of their support (their contact slope) is shown to be a necessary condition for stability. Additional necessary and sufficient conditions for stability are established for a specific driving force corresponding to a thermocapillary-driven film. It is found that only droplets of sufficiently short height that satisfy the contact slope criterion are stable. This destabilization of droplets with increasing height is characterized as a saddle-node bifurcation between a branch of tall, unstable droplets and a branch of short, stable droplets.

  5. Cloud-resolving model intercomparison of an MC3E squall line case: Part I-Convective updrafts: CRM Intercomparison of a Squall Line

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jiwen [Pacific Northwest National Laboratory, Richland Washington USA; Han, Bin [Pacific Northwest National Laboratory, Richland Washington USA; School of Atmospheric Sciences, Nanjing University, Nanjing China; Varble, Adam [Department of Atmospheric Sciences, University of Utah, Salt Lake City Utah USA; Morrison, Hugh [National Center for Atmospheric Research, Boulder Colorado USA; North, Kirk [Department of Atmospheric and Oceanic Sciences, McGill University, Montreal Quebec USA; Kollias, Pavlos [Department of Atmospheric and Oceanic Sciences, McGill University, Montreal Quebec USA; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook New York USA; Chen, Baojun [School of Atmospheric Sciences, Nanjing University, Nanjing China; Dong, Xiquan [Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson Arizona USA; Giangrande, Scott E. [Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; Khain, Alexander [The Institute of the Earth Science, The Hebrew University of Jerusalem, Jerusalem Israel; Lin, Yun [Department of Atmospheric Sciences, Texas A& M University, College Station Texas USA; Mansell, Edward [NOAA/OAR/National Severe Storms Laboratory, Norman Oklahoma USA; Milbrandt, Jason A. [Meteorological Research Division, Environment and Climate Change Canada, Dorval Canada; Stenz, Ronald [Department of Atmospheric Sciences, University of North Dakota, Grand Forks North Dakota USA; Thompson, Gregory [National Center for Atmospheric Research, Boulder Colorado USA; Wang, Yuan [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena California USA

    2017-09-06

    A constrained model intercomparison study of a mid-latitude mesoscale squall line is performed using the Weather Research & Forecasting (WRF) model at 1-km horizontal grid spacing with eight cloud microphysics schemes, to understand specific processes that lead to the large spread of simulated cloud and precipitation at cloud-resolving scales, with a focus of this paper on convective cores. Various observational data are employed to evaluate the baseline simulations. All simulations tend to produce a wider convective area than observed, but a much narrower stratiform area, with most bulk schemes overpredicting radar reflectivity. The magnitudes of the virtual potential temperature drop, pressure rise, and the peak wind speed associated with the passage of the gust front are significantly smaller compared with the observations, suggesting simulated cool pools are weaker. Simulations also overestimate the vertical velocity and Ze in convective cores as compared with observational retrievals. The modeled updraft velocity and precipitation have a significant spread across the eight schemes even in this strongly dynamically-driven system. The spread of updraft velocity is attributed to the combined effects of the low-level perturbation pressure gradient determined by cold pool intensity and buoyancy that is not necessarily well correlated to differences in latent heating among the simulations. Variability of updraft velocity between schemes is also related to differences in ice-related parameterizations, whereas precipitation variability increases in no-ice simulations because of scheme differences in collision-coalescence parameterizations.

  6. Thermocapillary actuation by optimized resistor pattern: bubbles and droplets displacing, switching and trapping.

    Science.gov (United States)

    Selva, Bertrand; Miralles, Vincent; Cantat, Isabelle; Jullien, Marie-Caroline

    2010-07-21

    We report a novel method for bubble or droplet displacement, capture and switching within a bifurcation channel for applications in digital microfluidics based on the Marangoni effect, i.e. the appearance of thermocapillary tangential interface stresses stemming from local surface tension variations. The specificity of the reported actuation is that heating is provided by an optimized resistor pattern (B. Selva, J. Marchalot and M.-C. Jullien, An optimized resistor pattern for temperature gradient control in microfluidics, J. Micromech. Microeng., 2009, 19, 065002) leading to a constant temperature gradient along a microfluidic cavity. In this context, bubbles or droplets to be actuated entail a surface force originating from the thermal Marangoni effect. This actuator has been characterized (B. Selva, I. Cantat, and M.-C. Jullien, Migration of a bubble towards a higher surface tension under the effect of thermocapillary stress, preprint, 2009) and it was found that the bubble/droplet (called further element) is driven toward a high surface tension region, i.e. toward cold region, and the element velocity increases while decreasing the cavity thickness. Taking advantage of these properties three applications are presented: (1) element displacement, (2) element switching, detailed in a given range of working, in which elements are redirected towards a specific evacuation, (3) a system able to trap, and consequently stop on demand, the elements on an alveolus structure while the continuous phase is still flowing. The strength of this method lies in its simplicity: single layer system, in situ heating leading to a high level of integration, low power consumption (P < 0.4 W), low applied voltage (about 10 V), and finally this system is able to manipulate elements within a flow velocity up to 1 cm s(-1).

  7. Effects of surface shape on the geometry and surface topography of the melt pool in low-power density laser melting

    KAUST Repository

    Kim, Youngdeuk; Kim, Wooseung

    2011-01-01

    The quantitative correlations between workpiece volume and melt pool geometry, as well as the flow and thermal features of the melt pool are established. Thermocapillary convections in melt pool with a deformable free surface are investigated

  8. Experimental study of a water thermo-capillary loop; Etude experimentale d`une boucle thermocapillaire a eau

    Energy Technology Data Exchange (ETDEWEB)

    Lefriec, C; Alexandre, A [Ecole Nationale Superieure de Mecanique et d` Aerotechnique (ENSMA), 86 - Poitiers (France)

    1997-12-31

    This paper presents a bench scale experiment of a water thermo-capillary loop which allows to improve the understanding of its functioning mechanisms thanks to the internal visualisation of each component using transparent walls. The advantages of water are its non-toxicity, its high chemical compatibility with several materials and its low functioning pressure. The experimental device is presented and the functioning regimes of each component is analyzed: condenser (flow visualization, influence of tilt), evaporator (quality of heat exchange between teeth and porous medium, bubbles, heat exchange coefficient). (J.S.)

  9. Experimental study of a water thermo-capillary loop; Etude experimentale d`une boucle thermocapillaire a eau

    Energy Technology Data Exchange (ETDEWEB)

    Lefriec, C.; Alexandre, A. [Ecole Nationale Superieure de Mecanique et d`Aerotechnique (ENSMA), 86 - Poitiers (France)

    1996-12-31

    This paper presents a bench scale experiment of a water thermo-capillary loop which allows to improve the understanding of its functioning mechanisms thanks to the internal visualisation of each component using transparent walls. The advantages of water are its non-toxicity, its high chemical compatibility with several materials and its low functioning pressure. The experimental device is presented and the functioning regimes of each component is analyzed: condenser (flow visualization, influence of tilt), evaporator (quality of heat exchange between teeth and porous medium, bubbles, heat exchange coefficient). (J.S.)

  10. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation.

    Science.gov (United States)

    Chen, Jian Z; Darhuber, Anton A; Troian, Sandra M; Wagner, Sigurd

    2004-10-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable width design, allowing for wider central electrodes, increases the capacitive signal for liquid structures with non-uniform height profiles. The capacitive resolution and time response of the current design is approximately 0.03 pF and 10 ms, respectively, which makes possible a number of sensing functions for nanoliter droplets. These include detection of droplet position, size, composition or percentage water uptake for hygroscopic liquids. Its rapid response time allows measurements of the rate of mass loss in evaporating droplets.

  11. Buoyancy and thermocapillary driven convection flow of electrically conducting fluid in an enclosure with heat generation

    International Nuclear Information System (INIS)

    Hossain, Md. Anwar; Rees, D.A.S.

    2002-05-01

    The effect of surface tension on unsteady laminar natural convection flow of a viscous incompressible fluid in a rectangle enclosure with internal heat generation and in presence of a uniform transverse magnetic field acting in the direction normal to the gravity has been investigated. The top horizontal surface of the rectangular cavity is assumed to be free and the bottom ones insulated; whereas the left vertical wall is cold and the right one is uniformly hot. The equations are non-dimensionalized and solved numerically by an upwind finite difference method together with a successive over-relaxation (SOR) technique. The effects of heat generation together with the combined effects of the magnetic field and the surface tension are presented graphically in terms of isotherms, streamlines and velocity vector plots. The effects of varying the physical parameters on the rate of heat transfer from the heated surface of the enclosure are also depicted. The fluid here has Prandtl number Pr=0.054 while the value of the Grashof number is 2x10 4 . (author)

  12. On the Reconstruction of the Convection Pattern Below an Active Region of Solar Corona

    International Nuclear Information System (INIS)

    Pirot, Dorian; Gaudet, Jonathan; Vincent, Alain

    2012-01-01

    In order to better understand magneto-convective patterns and flux emergence, we use the Nudging Back and Forth, a data assimilation method with an anelastic convection model to reconstruct the convection zone below a solar active region from observed solar surface magnetograms. To mimic photosphere, vector magnetograms are computed using force free hypothesis. We find that the observed arcade system of AR9077-20000714 ( t he slinky ) of magnetic lines is actually formed by Ω and U loops generated in the convection zone. We generate temperature maps at top of the convective zone and find that high magnetic fields on either sides of the neutral line produce a local cooling by impeding the overturning motions.

  13. Vorticity imbalance and stability in relation to convection

    Science.gov (United States)

    Read, W. L.; Scoggins, J. R.

    1977-01-01

    A complete synoptic-scale vorticity budget was related to convection storm development in the eastern two-thirds of the United States. The 3-h sounding interval permitted a study of time changes of the vorticity budget in areas of convective storms. Results of analyses revealed significant changes in values of terms in the vorticity equation at different stages of squall line development. Average budgets for all areas of convection indicate systematic imbalance in the terms in the vorticity equation. This imbalance resulted primarily from sub-grid scale processes. Potential instability in the lower troposphere was analyzed in relation to the development of convective activity. Instability was related to areas of convection; however, instability alone was inadequate for forecast purposes. Combinations of stability and terms in the vorticity equation in the form of indices succeeded in depicting areas of convection better than any one item separately.

  14. IMF By associated interhemispheric asymmetries in ionospheric convection and field-aligned currents

    Science.gov (United States)

    Kunduri, B.; Baker, J.; Ruohoniemi, J. M.; Clausen, L.; Ribeiro, A.

    2012-12-01

    The solar wind-magnetosphere interaction plays an important role in controlling the dynamics of ionospheric convection. It is widely known that the By component of IMF generates asymmetries in ionospheric convection between the northern and southern polar caps. Some studies show that IMF By-generated electric field penetrates into the closed magnetosphere producing differences in the high latitude ionospheric convection between hemispheres. The differences in convection were attributed to field-aligned potential drop between hemispheres resulting in flow of interhemispheric field aligned currents. In the current paper we present interhemispheric observations of high latitude ionospheric convection on closed field lines in the noon-dusk sector. The observations reveal that the convection is stronger in the northern (southern) hemisphere when IMF By is positive (negative) irrespective of season. The inter-hemispheric differences can be attributed to the flow of interhemispheric field aligned currents which support the existence of oppositely-directed zonal plasma flows in the closed field line regions, suppressing the convection in one hemisphere and aiding it in the other. We estimate the strength of these currents, analyze their characteristics and identify the various factors such as magnetic local time, magnetic latitude and ionospheric conductivity that impact them.

  15. Ground-based PIV and numerical flow visualization results from the Surface Tension Driven Convection Experiment

    Science.gov (United States)

    Pline, Alexander D.; Werner, Mark P.; Hsieh, Kwang-Chung

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the United States Microgravity Laboratory-1 (USML-1) Spacelab mission planned for June, 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electric, two dimensional Particle Image Velocimetry (PIV) technique called Particle Displacement Tracking (PDT), which uses a simple space domain particle tracking algorithm. Results using the ground based STDCE hardware, with a radiant flux heating mode, and the PDT system are compared to numerical solutions obtained by solving the axisymmetric Navier Stokes equations with a deformable free surface. The PDT technique is successful in producing a velocity vector field and corresponding stream function from the raw video data which satisfactorily represents the physical flow. A numerical program is used to compute the velocity field and corresponding stream function under identical conditions. Both the PDT system and numerical results were compared to a streak photograph, used as a benchmark, with good correlation.

  16. Modeling of plasma-sheet convection: implications for substorms

    International Nuclear Information System (INIS)

    Erickson, G.M.

    1985-01-01

    An answer is suggested to the question of why plasma and magnetic energy accumulate in the Earth's magnetotail to be released in sporadic events, namely substorms. It is shown that the idea of steady convection is inconsistent with the idea of slow, approximately lossless, plasma convection in a long, closed-field-line region that extends into a long magnetotail, such as occurs during Earthward convection in the Earth's plasma sheet. This inconsistency is argued generally and demonstrated specifically using several quantitative models of the Earth's magnetospheric magnetic field. These results suggest that plasma-sheet convection is necessarily time dependent. If flux tubes are to convect adiabatically earthward, the confining magnetic pressure in the tail lobes must increase with time, and the magnetotail must evolve into a more stretched configuration. Eventually, the magnetosphere must find some way to release plasma from inner-plasma-sheet flux tubes. This suggests an obvious role for the magnetospheric substorm in the convection process. To probe this process further, a two-dimensional, self-consistent, quasi-static convection model was developed. This model self consistently includes a dipole field and can reasonably account for the effects of inner-magnetospheric shielding

  17. Photochemical ozone production in tropical squall line convection during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A

    Science.gov (United States)

    Pickering, Kenneth E.; Thompson, Anne M.; Tao, Wei-Kuo; Simpson, Joanne; Scala, John R.

    1991-01-01

    The role of convection was examined in trace gas transport and ozone production in a tropical dry season squall line sampled on August 3, 1985, during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A (NASA GTE/ABLE 2A) in Amazonia, Brazil. Two types of analyses were performed. Transient effects within the cloud are examined with a combination of two-dimensional cloud and one-dimensional photochemical modeling. Tracer analyses using the cloud model wind fields yield a series of cross sections of NO(x), CO, and O3 distribution during the lifetime of the cloud; these fields are used in the photochemical model to compute the net rate of O3 production. At noon, when the cloud was mature, the instantaneous ozone production potential in the cloud is between 50 and 60 percent less than in no-cloud conditions due to reduced photolysis and cloud scavenging of radicals. Analysis of cloud inflows and outflows is used to differentiate between air that is undisturbed and air that has been modified by the storm. These profiles are used in the photochemical model to examine the aftereffects of convective redistribution in the 24-hour period following the storm. Total tropospheric column O3 production changed little due to convection because so little NO(x) was available in the lower troposphere. However, the integrated O3 production potential in the 5- to 13-km layer changed from net destruction to net production as a result of the convection. The conditions of the August 3, 1985, event may be typical of the early part of the dry season in Amazonia, when only minimal amounts of pollution from biomass burning have been transported into the region.

  18. Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection

    Directory of Open Access Journals (Sweden)

    D. A. Belikov

    2013-02-01

    Full Text Available A modified cumulus convection parametrisation scheme is presented. This scheme computes the mass of air transported upward in a cumulus cell using conservation of moisture and a detailed distribution of convective precipitation provided by a reanalysis dataset. The representation of vertical transport within the scheme includes entrainment and detrainment processes in convective updrafts and downdrafts. Output from the proposed parametrisation scheme is employed in the National Institute for Environmental Studies (NIES global chemical transport model driven by JRA-25/JCDAS reanalysis. The simulated convective precipitation rate and mass fluxes are compared with observations and reanalysis data. A simulation of the short-lived tracer 222Rn is used to further evaluate the performance of the cumulus convection scheme. Simulated distributions of 222Rn are evaluated against observations at the surface and in the free troposphere, and compared with output from models that participated in the TransCom-CH4 Transport Model Intercomparison. From this comparison, we demonstrate that the proposed convective scheme in general is consistent with observed and modeled results.

  19. Thermocapillary instabilities in a laterally heated liquid bridge with end wall rotation

    Science.gov (United States)

    Kahouadji, L.; Houchens, B. C.; Witkowski, L. Martin

    2011-10-01

    The effect of rotation on the stability of thermocapillary driven flow in a laterally heated liquid bridge is studied numerically using the full-zone model of the floating-zone crystal growth technique. A small Prandtl number (0.02) fluid, relevant for semiconductor melts, is studied with an aspect ratio (height to diameter of the melt) equal to one. Buoyancy is neglected. A linear stability analysis of three-dimensional perturbations is performed and shows that for any ratio of angular velocities, a weak rotation rate has the surprising effect of destabilizing the base flow. By systematically varying the rotation rate and ratio of angular velocities, the critical threshold and azimuthal wave number of the most unstable mode is found over a wide range of this two parameter space. Depending on these parameters, the leading eigenmode is a wave propagating either in the positive or negative azimuthal direction, with kinetic energy typically localized close to one of the end walls. These results are of practical interest for industrial crystal growth applications, where rotation is often used to obtain higher quality crystals.

  20. Lattice Boltzmann simulations of droplet formation in confined channels with thermocapillary flows

    Science.gov (United States)

    Gupta, A.; Sbragaglia, M.; Belardinelli, D.; Sugiyama, K.

    2016-12-01

    Based on mesoscale lattice Boltzmann simulations with the "Shan-Chen" model, we explore the influence of thermocapillarity on the breakup properties of fluid threads in a microfluidic T-junction, where a dispersed phase is injected perpendicularly into a main channel containing a continuous phase, and the latter induces periodic breakup of droplets due to the cross-flowing. Temperature effects are investigated by switching on-off both positive-negative temperature gradients along the main channel direction, thus promoting a different thread dynamics with anticipated-delayed breakup. Numerical simulations are performed at changing the flow rates of both the continuous and dispersed phases, as well as the relative importance of viscous forces, surface tension forces, and thermocapillary stresses. The range of parameters is broad enough to characterize the effects of thermocapillarity on different mechanisms of breakup in the confined T-junction, including the so-called "squeezing" and "dripping" regimes, previously identified in the literature. Some simple scaling arguments are proposed to rationalize the observed behavior, and to provide quantitative guidelines on how to predict the droplet size after breakup.

  1. Simulating deep convection with a shallow convection scheme

    Directory of Open Access Journals (Sweden)

    C. Hohenegger

    2011-10-01

    Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.

    Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.

  2. Coupled interactions of organized deep convection over the tropical western pacific

    Energy Technology Data Exchange (ETDEWEB)

    Hong, X.; Raman, S. [North Carolina State Univ., Raleigh, NC (United States)

    1996-04-01

    The relationship between sea surface temperature (SST) and deep convection is complex. In general, deep convection occurs more frequently and with more intensity as SSTs become higher. This theory assumes that the atmospheric stability is sufficiently reduced to allow the onset of moist convection. However, the amount and intensity of convection observed tends to decrease with increasing SST because very warm SSTs. A reason for such decrease is the enhancements to surface fluxes of heat and moisture out of the ocean surface because of the vertical overturning associated with deep convection. Early studies used the radiative-convective models of the atmosphere to examine the role of the convective exchange of heat and moisture in maintaining the vertical temperature profile. In this paper we use a Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) to simulate a squall line over a tropical ocean global atmosphere/coupled ocean atmosphere response experiment (TOGA/COARE) area and to investigate how the ocean cooling mechanisms associated with organized deep convection act to limit tropical SSTs.

  3. Convective aggregation in realistic convective-scale simulations

    OpenAIRE

    Holloway, Christopher E.

    2017-01-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15-day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibriu...

  4. Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection

    NARCIS (Netherlands)

    Belikov, D.A.; Maksyutov, S.; Krol, M.C.; Fraser, A.; Rigby, M.; Bian, H.; Agusti-Panareda, A.; Bergmann, D.; Bousquet, P.; Cameron-Smith, P.; Chipperfield, M.P.; Fortems-Cheiney, A.; Gloor, E.; Haynes, K.; Hess, P.; Houweling, S.; Kawa, S.R.; Law, R.M.; Loh, Z.; Meng, L.; Palmer, P.I.; Patra, P.K.; Prinn, R.G.; Saito, R.; Wilson, C.

    2013-01-01

    A modified cumulus convection parametrisation scheme is presented. This scheme computes the mass of air transported upward in a cumulus cell using conservation of moisture and a detailed distribution of convective precipitation provided by a reanalysis dataset. The representation of vertical

  5. Planform structure and heat transfer in turbulent free convection over horizontal surfaces

    Science.gov (United States)

    Theerthan, S. Ananda; Arakeri, Jaywant H.

    2000-04-01

    This paper deals with turbulent free convection in a horizontal fluid layer above a heated surface. Experiments have been carried out on a heated surface to obtain and analyze the planform structure and the heat transfer under different conditions. Water is the working fluid and the range of flux Rayleigh numbers (Ra) covered is 3×107-2×1010. The different conditions correspond to Rayleigh-Bénard convection, convection with either the top water surface open to atmosphere or covered with an insulating plate, and with an imposed external flow on the heated boundary. Without the external flow the planform is one of randomly oriented line plumes. At large Rayleigh number Ra and small aspect ratio (AR), these line plumes seem to align along the diagonal, presumably due to a large scale flow. The side views show inclined dyelines, again indicating a large scale flow. When the external flow is imposed, the line plumes clearly align in the direction of external flow. The nondimensional average plume spacing, Raλ1/3, varies between 40 and 90. The heat transfer rate, for all the experiments conducted, represented as RaδT-1/3, where δT is the conduction layer thickness, varies only between 0.1-0.2, showing that in turbulent convection the heat transfer rates are similar under the different conditions.

  6. Convective Propagation Characteristics Using a Simple Representation of Convective Organization

    Science.gov (United States)

    Neale, R. B.; Mapes, B. E.

    2016-12-01

    Observed equatorial wave propagation is intimately linked to convective organization and it's coupling to features of the larger-scale flow. In this talk we a use simple 4 level model to accommodate vertical modes of a mass flux convection scheme (shallow, mid-level and deep). Two paradigms of convection are used to represent convective processes. One that has only both random (unorganized) diagnosed fluctuations of convective properties and one with organized fluctuations of convective properties that are amplified by previously existing convection and has an explicit moistening impact on the local convecting environment We show a series of model simulations in single-column, 2D and 3D configurations, where the role of convective organization in wave propagation is shown to be fundamental. For the optimal choice of parameters linking organization to local atmospheric state, a broad array of convective wave propagation emerges. Interestingly the key characteristics of propagating modes are the low-level moistening followed by deep convection followed by mature 'large-scale' heating. This organization structure appears to hold firm across timescales from 5-day wave disturbances to MJO-like wave propagation.

  7. On the mapping of ionospheric convection into the magnetosphere

    International Nuclear Information System (INIS)

    Hesse, M.; Birn, J.; Hoffman, R.A.

    1997-01-01

    Under steady state conditions and in the absence of parallel electric fields, ionospheric convection is a direct map of plasma and magnetic flux convection in the magnetosphere, and quantitative estimates can be obtained from the mapping along magnetic field lines of electrostatic ionospheric electric fields. The resulting magnetospheric electrostatic potential distribution then provides the convection electric field in various magnetospheric regions. We present a quantitative framework for the investigation of the applicability and limitations of this approach based on an analytical theory derived from first principles. Particular emphasis is on the role of parallel electric field regions and on inductive effects, such as expected during the growth and expansive phases of magnetospheric substorms. We derive quantitative estimates for the limits in which either effect leads to a significant decoupling between ionospheric and magnetospheric convection and provide an interpretation of ionospheric convection which is independent of the presence of inductive electric fields elsewhere in the magnetosphere. Finally, we present a study of the relation between average and instantaneous convection, using two periodic dynamical models. The models demonstrate and quantify the potential mismatch between the average electric fields in the ionosphere and the magnetosphere in strongly time-dependent cases that may exist even when they are governed entirely by ideal MHD

  8. Study of mixed convection in sodium pool

    International Nuclear Information System (INIS)

    Wang Zhou; Chen Yan

    1995-01-01

    The mixed convection phenomena in the sodium pool of fast reactor have been studied systematically by the two dimensional modeling method. A generalized concept of circumferential line in the cylindrical coordinates was proposed to overcome the three dimensional effect induced by the pool geometry in an analysis of two dimensional modeling. A method of sub-step in time was developed for solving the turbulent equations. The treatments on the boundary condition for the auxiliary velocity field have been proposed, and the explanation of allowing the flow function method to be used in the flow field in presence of a mass source term was given. As examples of verification, the experiments were conducted with water flow in a rectangular cavity. The results from theoretical analysis were applied to the numerical computation for the mixed convection in the cavity. The mechanism of stratified flow in the cavity was studied. A numerical calculation was carried out for the mixed convection in hot plenum of a typical fast reactor

  9. Spontaneous Formation of Nanopillar Arrays in Ultrathin Viscous Films: Critical Role of Thermocapillary Stresses

    Science.gov (United States)

    Troian, Sandra; Dietzel, Mathias

    2010-03-01

    Nanoscale structures manifest exceedingly large surface to volume ratios and are therefore highly susceptible to control by surface stresses. Actuation techniques which can exploit this feature provide a key strategy for construction and self-organization of large area arrays. During the past decade, several groups have reported that molten polymer nanofilms subject to an ultra-large transverse thermal gradient undergo spontaneous formation of nanopillar arrays. The prevailing explanation is that coherent interfacial reflection of acoustic phonons causes periodic modulation of the radiation pressure leading to instability and pillar growth. We demonstrate instead that thermocapillary forces play a crucial if not dominant role in the formation process due to the strong modulation of surface tension with temperature. Any nanoscale viscous film is prone to such formations, not just polymeric films. Analysis of the governing interface equation reveals the mechanism controlling the growth, spacing and symmetry of these self-assembling arrays. We discuss how these findings are being used in our laboratory to construct nanoscale components for optical and photonic applications.

  10. Slow convection of a magnetized plasma and the earth plasma sheet

    International Nuclear Information System (INIS)

    Hruska, A.

    1980-01-01

    Stationary convection of an isotropic, infinitely conducting plasma in a magnetic field with non-trivial geometry is discussed under the assumption that the inertial term in the equation of motion may be ignored. The energy gained or lost by a volume element of plasma per unit time does not vary along the field-lines. Simple relations between the components of the current density, depending on the field-line geometry, exist. Similar relations hold for the components of the plasma velocity. The theoretical analysis is applied to the geomagnetically-quiet plasma sheet and a qualitative physical picture of the sheet is suggested. The observed structure of the sheet is compatible with Axford-Hines type of convection perhaps combined with a low-speed flow from a distant neutral point. The magnetic-field-aligned currents are driven by the deformations of the closed field-lines which are enforced by the solar wind. (orig.)

  11. Deriving Global Convection Maps From SuperDARN Measurements

    Science.gov (United States)

    Gjerloev, J. W.; Waters, C. L.; Barnes, R. J.

    2018-04-01

    A new statistical modeling technique for determining the global ionospheric convection is described. The principal component regression (PCR)-based technique is based on Super Dual Auroral Radar Network (SuperDARN) observations and is an advanced version of the PCR technique that Waters et al. (https//:doi.org.10.1002/2015JA021596) used for the SuperMAG data. While SuperMAG ground magnetic field perturbations are vector measurements, SuperDARN provides line-of-sight measurements of the ionospheric convection flow. Each line-of-sight flow has a known azimuth (or direction), which must be converted into the actual vector flow. However, the component perpendicular to the azimuth direction is unknown. Our method uses historical data from the SuperDARN database and PCR to determine a fill-in model convection distribution for any given universal time. The fill-in data process is driven by a list of state descriptors (magnetic indices and the solar zenith angle). The final solution is then derived from a spherical cap harmonic fit to the SuperDARN measurements and the fill-in model. When compared with the standard SuperDARN fill-in model, we find that our fill-in model provides improved solutions, and the final solutions are in better agreement with the SuperDARN measurements. Our solutions are far less dynamic than the standard SuperDARN solutions, which we interpret as being due to a lack of magnetosphere-ionosphere inertia and communication delays in the standard SuperDARN technique while it is inherently included in our approach. Rather, we argue that the magnetosphere-ionosphere system has inertia that prevents the global convection from changing abruptly in response to an interplanetary magnetic field change.

  12. Evaluation of cloud convection and tracer transport in a three-dimensional chemical transport model

    Directory of Open Access Journals (Sweden)

    W. Feng

    2011-06-01

    Full Text Available We investigate the performance of cloud convection and tracer transport in a global off-line 3-D chemical transport model. Various model simulations are performed using different meteorological (reanalyses (ERA-40, ECMWF operational and ECMWF Interim to diagnose the updraft mass flux, convective precipitation and cloud top height.

    The diagnosed upward mass flux distribution from TOMCAT agrees quite well with the ECMWF reanalysis data (ERA-40 and ERA-Interim below 200 hPa. Inclusion of midlevel convection improves the agreement at mid-high latitudes. However, the reanalyses show strong convective transport up to 100 hPa, well into the tropical tropopause layer (TTL, which is not captured by TOMCAT. Similarly, the model captures the spatial and seasonal variation of convective cloud top height although the mean modelled value is about 2 km lower than observed.

    The ERA-Interim reanalyses have smaller archived upward convective mass fluxes than ERA-40, and smaller convective precipitation, which is in better agreement with satellite-based data. TOMCAT captures these relative differences when diagnosing convection from the large-scale fields. The model also shows differences in diagnosed convection with the version of the operational analyses used, which cautions against using results of the model from one specific time period as a general evaluation.

    We have tested the effect of resolution on the diagnosed modelled convection with simulations ranging from 5.6° × 5.6° to 1° × 1°. Overall, in the off-line model, the higher model resolution gives stronger vertical tracer transport, however, it does not make a large change to the diagnosed convective updraft mass flux (i.e., the model results using the convection scheme fail to capture the strong convection transport up to 100 hPa as seen in the archived convective mass fluxes. Similarly, the resolution of the forcing winds in the higher resolution CTM does not make a

  13. Temperature and flow fields in samples heated in monoellipsoidal mirror furnaces

    Science.gov (United States)

    Rivas, D.; Haya, R.

    The temperature field in samples heated in monoellipsoidal mirror furnaces will be analyzed. The radiation heat exchange between the sample and the mirror is formulated analytically, taking into account multiple reflections at the mirror. It will be shown that the effect of these multiple reflections in the heating process is quite important, and, as a consequence, the effect of the mirror reflectance in the temperature field is quite strong. The conduction-radiation model will be used to simulate the heating process in the floating-zone technique in microgravity conditions; important parameters like the Marangoni number (that drives the thermocapillary flow in the melt), and the temperature gradient at the melt-crystal interface will be estimated. The model will be validated comparing with experimental data. The case of samples mounted in a wall-free configuration (as in the MAXUS-4 programme) will be also considered. Application to the case of compound samples (graphite-silicon-graphite) will be made; the melting of the silicon part and the surface temperature distribution in the melt will be analyzed. Of special interest is the temperature difference between the two graphite rods that hold the silicon part, since it drives the thermocapillary flow in the melt. This thermocapillary flow will be studied, after coupling the previous model with the convective effects. The possibility of counterbalancing this flow by the controlled vibration of the graphite rods will be studied as well. Numerical results show that suppressing the thermocapillary flow can be accomplished quite effectively.

  14. Plasma convection in the magnetotail lobes: statistical results from Cluster EDI measurements

    Directory of Open Access Journals (Sweden)

    S. Haaland

    2008-08-01

    Full Text Available A major part of the plasma in the Earth's magnetotail is populated through transport of plasma from the solar wind via the magnetotail lobes. In this paper, we present a statistical study of plasma convection in the lobes for different directions of the interplanetary magnetic field and for different geomagnetic disturbance levels. The data set used in this study consists of roughly 340 000 one-minute vector measurements of the plasma convection from the Cluster Electron Drift Instrument (EDI obtained during the period February 2001 to June 2007. The results show that both convection magnitude and direction are largely controlled by the interplanetary magnetic field (IMF. For a southward IMF, there is a strong convection towards the central plasma sheet with convection velocities around 10 km s−1. During periods of northward IMF, the lobe convection is almost stagnant. A By dominated IMF causes a rotation of the convection patterns in the tail with an oppositely directed dawn-dusk component of the convection for the northern and southern lobe. Our results also show that there is an overall persistent duskward component, which is most likely a result of conductivity gradients in the footpoints of the magnetic field lines in the ionosphere.

  15. Simple model for polar cap convection patterns and generation of theta auroras

    International Nuclear Information System (INIS)

    Lyons, L.R.

    1985-01-01

    The simple addition of a uniform interplanetary magnetic field and the Earth's dipole magnetic field is used to evaluate electric field convection patterns over the polar caps that result from solar wind flow across open geomagnetic field lines. This model is found to account for observed polar-cap convection patterns as a function of the interplanetary magnetic field components B/sub y/ and B/sub z/. In particular, the model offers an explanation for sunward and antisunward convection over the polar caps for B/sub z/>0. Observed field-aligned current patterns within the polar cap and observed auroral arcs across the polar cap are also explained by the model. In addition, the model gives several predictions concerning the polar cap that should be testable. Effects of solar wind pressure and magnetospheric currents on magnetospheric electric and magnetic fields are neglected. That observed polar cap features are reproduced suggests that the neglected effects do not modify the large-scale topology of magnetospheric electric and magnetic fields along open polar cap field lines. Of course, the neglected effects significantly modify the magnetic geometry, so that the results of this paper are not quantitatively realistic and many details may be incorrect. Nevertheless, the model provides a simple explanation for many qualitative features of polar cap convection

  16. Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system

    Science.gov (United States)

    Rashidnia, N.; Balasubramaniam, R.

    1991-01-01

    An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).

  17. ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow

    Science.gov (United States)

    Leonard, B. P.; Mokhtari, Simin

    1990-01-01

    For convection-dominated flows, classical second-order methods are notoriously oscillatory and often unstable. For this reason, many computational fluid dynamicists have adopted various forms of (inherently stable) first-order upwinding over the past few decades. Although it is now well known that first-order convection schemes suffer from serious inaccuracies attributable to artificial viscosity or numerical diffusion under high convection conditions, these methods continue to enjoy widespread popularity for numerical heat transfer calculations, apparently due to a perceived lack of viable high accuracy alternatives. But alternatives are available. For example, nonoscillatory methods used in gasdynamics, including currently popular TVD schemes, can be easily adapted to multidimensional incompressible flow and convective transport. This, in itself, would be a major advance for numerical convective heat transfer, for example. But, as is shown, second-order TVD schemes form only a small, overly restrictive, subclass of a much more universal, and extremely simple, nonoscillatory flux-limiting strategy which can be applied to convection schemes of arbitrarily high order accuracy, while requiring only a simple tridiagonal ADI line-solver, as used in the majority of general purpose iterative codes for incompressible flow and numerical heat transfer. The new universal limiter and associated solution procedures form the so-called ULTRA-SHARP alternative for high resolution nonoscillatory multidimensional steady state high speed convective modelling.

  18. THE ACHIEVABILITY OF TARGET CONVECTION VOLUMES IN ON-LINE HEMODIAFILTRATION

    Directory of Open Access Journals (Sweden)

    A. B. Sabodash

    2015-01-01

    Full Text Available Aim. To evaluate the achievability of recommended convection volumes in hemodiafiltration (HDF and impeding factors. Materials and methods. In short interventional one-center study among 67 stable prevalent dialysis patients we succeeded in achieving convection volume of more than 24 l/session in 60 patients (90%. Results. Substitution volume rose in the whole group from 21.1 ± 1.6 to 23.8 ± 1.2 l/session (p < 0.01. 12 patients, who didn`t achieve target volume had similar age, duration of renal replacement therapy and ultrafiltration rate as those who did. They differed from 55 patients who achieved target volume by substitution volume at first session in evaluation period (22.2 ± 1.7 vs. 23.6 ± 1.5 liters, р = 0.004, by transmembrane pressure (170 ± 40 vs. 146 ± 24 mmHg, р = 0.009 and by session duration (248 ± 15 vs. 262 ± 17 min, р = 0.0017. Blood flow rate also differed at the start of the study between the achievers and non-achievers: 353 ± 21 vs. 339 ± 19 ml/min, р = 0.035. The pressure in venous segment was lower in the achievers (154 ± 25 vs. 176 ± 36, р = 0.02 as well as transmembrane pressure (144 ± 24 vs. 164 ± 36, р = 0.014 which has been rising session by session in nonachievers. In non-achievers the membrane surface area was lower: 1.75 ± 0.2 vs. 1.91 ± 0.2 m2 (p = 0.02. In the multiple binary logistic regression model the session duration and membrane surface area were positive factors while the transmembrane pressure was negative one. Session prolonged by 15 min was associated with increase in relative chance to achieve target volume by 39% (95% CI 5–82%; р = 0.02. The membrane surface area enlarged by 0.1 m2 was linked with increase of chance by 4.2% (95% CI 0.2–8.4%; р = 0.04. The transmembrane pressure increased by 10 mmHg was associated with decreased chance to achieve target volume by 17% (95% CI 0–70%; р = 0.05. Conclusion. To achieve convection volume of 24 l/session one needs to afford

  19. Natural convection in a porous medium: External flows

    International Nuclear Information System (INIS)

    Cheng, P.

    1985-01-01

    Early theoretical work on heat transfer in porous media focussed its attention on the onset of natural convection and cellular convection in rectangular enclosures with heating from below. Recently, increased attention has been directed to the study of natural convection in a porous medium external to heated surfaces and bodies. Boundary layer approximations were introduced, and similarly solutions have been obtained for steady natural convection boundary layers adjacent to a heated flat plate, a horizontal cylinder and a sphere as well as other two-dimensional and axisymmetric bodies of arbitrary shape. Higher order boundary layer theories have been carried out to assess the accuracy of the boundary layer approximation. The effects of entrainments at the edge of the boundary layer, the inclination angle of the heated inclined plate, and the upstream geometry on the heat transfer characteristics have been investigated based on the method of matched asymptotic expansions. The conditions for the onset of vortex instability in porous layers heated from below were determined based on linear stability analyses. The effects of no-slip boundary conditions, non-Darcy and thermal dispersion, which were neglected in all of the previous theoretical investigations, have recently been re-examined. Experimental investigations on natural convection about a vertical and inclined heated plate, a horizontal cylinder, as well as plume rise from a horizontal line source of heat have been conducted. All of this work is reviewed in this paper

  20. Organizational Modes of Severe Wind-producing Convective Systems over North China

    Science.gov (United States)

    Yang, Xinlin; Sun, Jianhua

    2018-05-01

    Severe weather reports and composite radar reflectivity data from 2010-14 over North China were used to analyze the distribution of severe convective wind (SCW) events and their organizational modes of radar reflectivity. The six organizational modes for SCW events (and their proportions) were cluster cells (35.4%), squall lines (18.4%), nonlinear-shaped systems (17.8%), broken lines (11.6%), individual cells (1.2%), and bow echoes (0.5%). The peak month for both squall lines and broken lines was June, whereas it was July for the other four modes. The highest numbers of SCW events were over the mountains, which were generally associated with disorganized systems of cluster cells. In contrast, SCW associated with linear systems occurred mainly over the plains, where stations recorded an average of less than one SCW event per year. Regions with a high frequency of SCW associated with nonlinear-shaped systems also experienced many SCW events associated with squall lines. Values of convective available potential energy, precipitable water, 0-3-km shear, and 0-6-km shear, were demonstrably larger over the plains than over the mountains, which had an evident effect on the organizational modes of SCW events. Therefore, topography may be an important factor in the organizational modes for SCW events over North China.

  1. Application of fast Fourier transform in thermo-magnetic convection analysis

    International Nuclear Information System (INIS)

    Pyrda, L

    2014-01-01

    Application of Fast Fourier Transform in thermo-magnetic convection is reported. Cubical enclosure filled with paramagnetic fluid heated from below and placed in the strong magnetic field gradients was investigated. The main aim of study was connected with identification of flow types, especially transition to turbulence. For this purpose the Fast Fourier Transform (FFT) analysis was applied. It was followed by the heat transfer characteristic for various values of magnetic induction gradient. The analysis was done at two Rayleigh numbers 7.89·10 5 and 1.86·10 6 with thermo-magnetic Rayleigh numbers up to 1.8·10 8 and 4.5·10 8 respectively. The presented results clearly indicate flow types and also demonstrate augmented heat transfer in dependence on magnetic induction gradient. Detailed analysis of flow transition to turbulent state was compared with transition line for natural convection reported in literature. The transition to turbulence in the case of thermo-magnetic convection of paramagnetic fluid was in very good agreement with transition in the case of natural convection.

  2. Drop Size Distribution - Based Separation of Stratiform and Convective Rain

    Science.gov (United States)

    Thurai, Merhala; Gatlin, Patrick; Williams, Christopher

    2014-01-01

    For applications in hydrology and meteorology, it is often desirable to separate regions of stratiform and convective rain from meteorological radar observations, both from ground-based polarimetric radars and from space-based dual frequency radars. In a previous study by Bringi et al. (2009), dual frequency profiler and dual polarization radar (C-POL) observations in Darwin, Australia, had shown that stratiform and convective rain could be separated in the log10(Nw) versus Do domain, where Do is the mean volume diameter and Nw is the scaling parameter which is proportional to the ratio of water content to the mass weighted mean diameter. Note, Nw and Do are two of the main drop size distribution (DSD) parameters. In a later study, Thurai et al (2010) confirmed that both the dual-frequency profiler based stratiform-convective rain separation and the C-POL radar based separation were consistent with each other. In this paper, we test this separation method using DSD measurements from a ground based 2D video disdrometer (2DVD), along with simultaneous observations from a collocated, vertically-pointing, X-band profiling radar (XPR). The measurements were made in Huntsville, Alabama. One-minute DSDs from 2DVD are used as input to an appropriate gamma fitting procedure to determine Nw and Do. The fitted parameters - after averaging over 3-minutes - are plotted against each other and compared with a predefined separation line. An index is used to determine how far the points lie from the separation line (as described in Thurai et al. 2010). Negative index values indicate stratiform rain and positive index indicate convective rain, and, moreover, points which lie somewhat close to the separation line are considered 'mixed' or 'transition' type precipitation. The XPR observations are used to evaluate/test the 2DVD data-based classification. A 'bright-band' detection algorithm was used to classify each vertical reflectivity profile as either stratiform or convective

  3. Strategy of experimental studies in PNC on natural convection decay heat removal

    International Nuclear Information System (INIS)

    Ieda, Y.; Kamide, H.; Ohshima, H.; Sugawara, S.; Ninokata, H.

    1993-01-01

    Experimental studies have been and are being carried out in PNC to establish the design and safety evaluation methods and the design and safety evaluation guide lines for decay heat removal by natural convection. A strategy of the experimental studies in PNC is described in this paper. The sphere of studies in PNC is to develop the evaluation methods to be available to DRACS as well as PRACS and IRACS for the plant where decay heat is removed by natural convection in some cases of loss of station service power. Similarity parameters related to natural convection are derived from the governing equations. The roles of both sodium and water experiments are defined in consideration of the importance of the similarity parameters and characteristics of scale model experiments. The experimental studies in PNC are reviewed. On the basis of the experimental results, recommended evaluation methods are shown for decay heat removal feature by natural convection. Future experimental works are also proposed. (author)

  4. Evaluation of the sensitivity of the Amazonian diurnal cycle to convective intensity in reanalyses

    Science.gov (United States)

    Itterly, Kyle F.; Taylor, Patrick C.

    2017-02-01

    Model parameterizations of tropical deep convection are unable to reproduce the observed diurnal and spatial variability of convection in the Amazon, which contributes to climatological biases in the water cycle and energy budget. Convective intensity regimes are defined using percentiles of daily minimum 3-hourly averaged outgoing longwave radiation (OLR) from Clouds and the Earth's Radiant Energy System (CERES). This study compares the observed spatial variability of convective diurnal cycle statistics for each regime to MERRA-2 and ERA-Interim (ERA) reanalysis data sets. Composite diurnal cycle statistics are computed for daytime hours (06:00-21:00 local time) in the wet season (December-January-February). MERRA-2 matches observations more closely than ERA for domain averaged composite diurnal statistics—specifically precipitation. However, ERA reproduces mesoscale features of OLR and precipitation phase associated with topography and the propagation of the coastal squall line. Both reanalysis models are shown to underestimate extreme convection.

  5. Mapping high-latitude plasma convection with coherent HF radars

    International Nuclear Information System (INIS)

    Ruohoniemi, J.M.; Greenwald, R.A.; Baker, K.B.; Villain, J.-P.; Hanuise, C.; Kelly, J.

    1989-01-01

    In this decade, a new technique for the study of ionosphere electrodynamics has been implemented in an evolving generation of high-latitude HF radars. Coherent backscatter from electron density irregularities at F region altitudes is utilized to observe convective plasma motion. The electronic beam forming and scanning capabilities of the radars afford an excellent combination of spatial (∼50 km) and temporal (∼1 min) resolution of the large-scale (∼10 6 km 2 ) convection pattern. In this paper, we outline the methods developed to synthesize the HF radar data into two-dimensional maps of convection velocity. Although any single radar can directly measure only the line-of-sight, or radial, component of the plasma motion, the convection pattern is sometimes so uniform and stable that scanning in azimuth serves to determine the transverse component as well. Under more variable conditions, data from a second radar are necessary to unambiguously resolve velocity vectors. In either case, a limited region of vector solution can be expanded into contiguous areas of single-radar radial velocity data by noting that the convection must everywhere be divergence-free, i.e., ∇·v=0. It is thus often possible to map velocity vectors without extensive second-radar coverage. We present several examples of two-dimensional velocity maps. These show instances of L shell-aligned flow in the dusk sector, the reversal of convection near magnetic midnight, and counterstreaming in the dayside cleft. We include a study of merged coherent and incoherent radar data that illustrates the applicability of these methods to other ionospheric radar systems. copyright American Geophysical Union 1989

  6. Convection in a nematic liquid crystal with homeotropic alignment and heated from below

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, G. [Univ. of California, Santa Barbara, CA (United States)

    1995-12-31

    Experimental results for convection in a thin horizontal layer of a homeotropically aligned nematic liquid crystal heated from below and in a vertical magnetic field are presented. A subcritical Hopf bifurcation leads to the convecting state. There is quantitative agreement between the measured and the predicted bifurcation line as a function of magnetic field. The nonlinear state near the bifurcation is one of spatio-temporal chaos which seems to be the result of a zig-zag instability of the straight-roll state.

  7. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  8. Two-dimensional behavior of solitons in a low-β plasma with convective motion

    International Nuclear Information System (INIS)

    Makino, Mitsuhiro; Kamimura, Tetsuo; Sato, Tetsuya.

    1981-01-01

    The initial value problem of the Hasegawa-Mima (HM) equation, which describes the propagation of drift waves in a low beta magnetized plasma, is numerically studied. Solitons are formed from an initial sinusoidal wave. For a wide range of initial conditions, the number of solitons and the recurrence time agree well with those obtained from the KdV eq. reduced from the HM eq. by Nozaki et al. As a result of nonlinear interactions among different solitons, their peak positions shift in the direction normal to the zeroth order convective motion in a regular but different fashion. When we start from a sinusoidal wave, the peaks of the generated soliton train line up on a line at an angle with respect to the convective direction. Two-deimensional collisions of different solitons are examined. (author)

  9. Review of Mixed Convection Flow Regime Map of a Vertical pipe

    International Nuclear Information System (INIS)

    Chae, Myeong-Seon; Chung, Bum-Jin; Kang, Gyeong-Uk

    2015-01-01

    In a vertical pipe, the natural convective force due to buoyancy acts upward only, but forced convective force can be either upward or downward. This determines buoyancy-aided and buoyancy-opposed flows depending on the direction of forced flow with respect to the buoyancy forces. Furthermore, depending on the exchange mechanism, the flow condition is classified into laminar and turbulent. In laminar mixed convection, buoyancy-aided flow presents enhanced heat transfer compared to the pure forced convection and buoyancy-opposed flow shows impaired heat transfer as the flow velocity affected by the buoyancy forces. However, in turbulent mixed convection, buoyancy-aided flow shows an impairment of the heat transfer rate for small buoyancy, and a gradational enhancement for large buoyancy. In this study, the existing flow regime map on mixed convection in a vertical pipe was reviewed through an analysis of literatures. Using the investigated data and heat transfer correlations, the flow regime map was reconstructed independently, and compared with the existing one. This study reviewed the limitations of the classical mixed convection flow regime map. Using the existing data and heat transfer correlations by Martinelli and Boelter and Watzinger and Johnson, the flow regime map was reconstructed independently. The results revealed that the existing map used the data selectively among the experimental and theoretical results, and a detailed description for lines forming mixed convection and transition regime were not given. And the information about uncertainty analysis and the evidentiary data were given insufficiently. The flow regime map and investigator commonly used the diameter as the characteristic length for both Re and Gr in place of the height of the heated wall, though the buoyancy forces are proportional to the third power of the height of heated wall

  10. Atmosphere-ionosphere coupling from convectively generated gravity waves

    Science.gov (United States)

    Azeem, Irfan; Barlage, Michael

    2018-04-01

    Ionospheric variability impacts operational performances of a variety of technological systems, such as HF communication, Global Positioning System (GPS) navigation, and radar surveillance. The ionosphere is not only perturbed by geomagnetic inputs but is also influenced by atmospheric tides and other wave disturbances propagating from the troposphere to high altitudes. Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the largest sources of mesoscale variability in the ionosphere. In this paper, Total Electron Content (TEC) data from networks of GPS receivers in the United States are analyzed to investigate AGWs in the ionosphere generated by convective thunderstorms. Two case studies of convectively generated gravity waves are presented. On April 4, 2014 two distinct large convective systems in Texas and Arkansas generated two sets of concentric AGWs that were observed in the ionosphere as Traveling Ionospheric Disturbances (TIDs). The period of the observed TIDs was 20.8 min, the horizontal wavelength was 182.4 km, and the horizontal phase speed was 146.4 m/s. The second case study shows TIDs generated from an extended squall line on December 23, 2015 stretching from the Gulf of Mexico to the Great Lakes in North America. Unlike the concentric wave features seen in the first case study, the extended squall line generated TIDs, which exhibited almost plane-parallel phase fronts. The TID period was 20.1 min, its horizontal wavelength was 209.6 km, and the horizontal phase speed was 180.1 m/s. The AGWs generated by both of these meteorological events have large vertical wavelength (>100 km), which are larger than the F2 layer thickness, thus allowing them to be discernible in the TEC dataset.

  11. Observations of Convectively Coupled Kelvin Waves forced by Extratropical Wave Activity

    Science.gov (United States)

    Kiladis, G. N.; Biello, J. A.; Straub, K. H.

    2012-12-01

    It is well established by observations that deep tropical convection can in certain situations be forced by extratropical Rossby wave activity. Such interactions are a well-known feature of regions of upper level westerly flow, and in particular where westerlies and equatorward wave guiding by the basic state occur at low enough latitudes to interact with tropical and subtropical moisture sources. In these regions convection is commonly initiated ahead of upper level troughs, characteristic of forcing by quasi-geostrophic dynamics. However, recent observational evidence indicates that extratropical wave activity is also associated with equatorial convection even in regions where there is a "critical line" to Rossby wave propagation at upper levels, that is, where the zonal phase speed of the wave is equal to the zonal flow speed. A common manifestation of this type of interaction involves the initiation of convectively coupled Kelvin waves, as well as mixed Rossby-gravity (MRG) waves. These waves are responsible for a large portion of the convective variability within the ITCZ over the Indian, Pacific, and Atlantic sectors, as well as within the Amazon Basin of South America. For example, Kelvin waves originating within the western Pacific ITCZ are often triggered by Rossby wave activity propagating into the Australasian region from the South Indian Ocean extratropics. At other times, Kelvin waves are seen to originate along the eastern slope of the Andes. In the latter case the initial forcing is sometimes linked to a low-level "pressure surge," initiated by wave activity propagating equatorward from the South Pacific storm track. In yet other cases, such as over Africa, the forcing appears to be related to wave activity in the extratropics which is not necessarily propagating into low latitudes, but appears to "project" onto the Kelvin structure, in line with past theoretical and modeling studies. Observational evidence for extratropical forcing of Kelvin and MRG

  12. On the Role of Convection and Turbulence for Tropospheric Ozone and its Precursors

    International Nuclear Information System (INIS)

    Olivie, D.J.L.

    2005-01-01

    The aim of the work in this thesis is to investigate the convective and diffusive transport in the TM chemistry transport model, and to investigate some aspects of the consequences for NOx. The large inaccuracy and uncertainty in the description of processes like convection and turbulent diffusion, the strong dependence of the radiative forcing of ozone on its vertical distribution, and the strong dependence of the ozone production on the distribution of NOx, are the main motivation. The availability of the ERA-40 data, where convective data and vertical diffusion coefficients are archived, allows a study of the effect of different convective mass flux sets, and different vertical diffusion coefficients on the model-simulated distribution of tracers. In this thesis the following questions are addressed : (1) How large is the sensitivity of the (model simulated) distribution of ozone and nitrogen oxides on (the) convection (parameterisation)?; (2) What requirements should be fulfilled by diffusive transport parameterisations in order to simulate the diurnal cycle in trace gas concentrations?; (3) How large are the differences in concentrations between simulations with archived and off-line diagnosed physical parameterisations?; (4) How do the results of different parameterisations of nitrogen oxide production by lightning compare?; (5) What is the effect of an explicit description of the effect of convective redistribution on the vertical distribution of lightning produced NOx? In Chapter 2, the first question and part of the third question are addressed. Because convection can bring reactive trace gases to the upper troposphere where they can live longer, and possibly are transported to remote regions, it is important to well describe the convective transport. The archival of convective mass fluxes in the ERA-40 data set allows us to drive the convective transport in the TM model. We compare these archived fluxes with the standard off-line diagnosed fluxes used in

  13. Cryogenic helium gas convection research

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1994-10-01

    This is a report prepared by a group interested in doing research in thermal convection using the large scale refrigeration facilities available at the SSC Laboratories (SSCL). The group preparing this report consists of Michael McAshan at SSCL, Robert Behringer at Duke University, Katepalli Sreenivasan at Yale University, Xiao-Zhong Wu at Northern Illinois University and Russell Donnelly at the University of Oregon, who served as Editor for this report. This study reports the research and development opportunities in such a project, the technical requirements and feasibility of its construction and operation, and the costs associated with the needed facilities and support activities. The facility will be a unique national resource for studies of high-Reynolds-number and high-Rayleigh-number and high Rayleigh number turbulence phenomena, and is one of the six items determined as suitable for potential funding through a screening of Expressions of Interest. The proposed facility is possible only because of the advanced cryogenic technology available at the SSCL. Typical scientific issues to be addressed in the facility will be discussed. It devolved during our study, that while the main experiment is still considered to be the thermal convection experiment discussed in our original Expression of Interest, there are now a very substantial set of other, important and fundamental experiments which can be done with the large cryostat proposed for the convection experiment. We believe the facility could provide several decades of front-line research in turbulence, and shall describe why this is so

  14. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  15. The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models

    Directory of Open Access Journals (Sweden)

    M. Keller

    2018-04-01

    Full Text Available Climate models project an increase in heavy precipitation events in response to greenhouse gas forcing. Important elements of such events are rain showers and thunderstorms, which are poorly represented in models with parameterized convection. In this study, simulations with 12 km horizontal grid spacing (convection-parameterizing model, CPM and 2 km grid spacing (convection-resolving model, CRM are employed to investigate the change in the diurnal cycle of convection with warmer climate. For this purpose, simulations of 11 days in June 2007 with a pronounced diurnal cycle of convection are compared with surrogate simulations from the same period. The surrogate climate simulations mimic a future climate with increased temperatures but unchanged relative humidity and similar synoptic-scale circulation. Two temperature scenarios are compared: one with homogeneous warming (HW using a vertically uniform warming and the other with vertically dependent warming (VW that enables changes in lapse rate.The two sets of simulations with parameterized and explicit convection exhibit substantial differences, some of which are well known from the literature. These include differences in the timing and amplitude of the diurnal cycle of convection, and the frequency of precipitation with low intensities. The response to climate change is much less studied. We can show that stratification changes have a strong influence on the changes in convection. Precipitation is strongly increasing for HW but decreasing for the VW simulations. For cloud type frequencies, virtually no changes are found for HW, but a substantial reduction in high clouds is found for VW. Further, we can show that the climate change signal strongly depends upon the horizontal resolution. In particular, significant differences between CPM and CRM are found in terms of the radiative feedbacks, with CRM exhibiting a stronger negative feedback in the top-of-the-atmosphere energy budget.

  16. The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models

    Science.gov (United States)

    Keller, Michael; Kröner, Nico; Fuhrer, Oliver; Lüthi, Daniel; Schmidli, Juerg; Stengel, Martin; Stöckli, Reto; Schär, Christoph

    2018-04-01

    Climate models project an increase in heavy precipitation events in response to greenhouse gas forcing. Important elements of such events are rain showers and thunderstorms, which are poorly represented in models with parameterized convection. In this study, simulations with 12 km horizontal grid spacing (convection-parameterizing model, CPM) and 2 km grid spacing (convection-resolving model, CRM) are employed to investigate the change in the diurnal cycle of convection with warmer climate. For this purpose, simulations of 11 days in June 2007 with a pronounced diurnal cycle of convection are compared with surrogate simulations from the same period. The surrogate climate simulations mimic a future climate with increased temperatures but unchanged relative humidity and similar synoptic-scale circulation. Two temperature scenarios are compared: one with homogeneous warming (HW) using a vertically uniform warming and the other with vertically dependent warming (VW) that enables changes in lapse rate. The two sets of simulations with parameterized and explicit convection exhibit substantial differences, some of which are well known from the literature. These include differences in the timing and amplitude of the diurnal cycle of convection, and the frequency of precipitation with low intensities. The response to climate change is much less studied. We can show that stratification changes have a strong influence on the changes in convection. Precipitation is strongly increasing for HW but decreasing for the VW simulations. For cloud type frequencies, virtually no changes are found for HW, but a substantial reduction in high clouds is found for VW. Further, we can show that the climate change signal strongly depends upon the horizontal resolution. In particular, significant differences between CPM and CRM are found in terms of the radiative feedbacks, with CRM exhibiting a stronger negative feedback in the top-of-the-atmosphere energy budget.

  17. A stochastic parameterization for deep convection using cellular automata

    Science.gov (United States)

    Bengtsson, L.; Steinheimer, M.; Bechtold, P.; Geleyn, J.

    2012-12-01

    Cumulus parameterizations used in most operational weather and climate models today are based on the mass-flux concept which took form in the early 1970's. In such schemes it is assumed that a unique relationship exists between the ensemble-average of the sub-grid convection, and the instantaneous state of the atmosphere in a vertical grid box column. However, such a relationship is unlikely to be described by a simple deterministic function (Palmer, 2011). Thus, because of the statistical nature of the parameterization challenge, it has been recognized by the community that it is important to introduce stochastic elements to the parameterizations (for instance: Plant and Craig, 2008, Khouider et al. 2010, Frenkel et al. 2011, Bentsson et al. 2011, but the list is far from exhaustive). There are undoubtedly many ways in which stochastisity can enter new developments. In this study we use a two-way interacting cellular automata (CA), as its intrinsic nature possesses many qualities interesting for deep convection parameterization. In the one-dimensional entraining plume approach, there is no parameterization of horizontal transport of heat, moisture or momentum due to cumulus convection. In reality, mass transport due to gravity waves that propagate in the horizontal can trigger new convection, important for the organization of deep convection (Huang, 1988). The self-organizational characteristics of the CA allows for lateral communication between adjacent NWP model grid-boxes, and temporal memory. Thus the CA scheme used in this study contain three interesting components for representation of cumulus convection, which are not present in the traditional one-dimensional bulk entraining plume method: horizontal communication, memory and stochastisity. The scheme is implemented in the high resolution regional NWP model ALARO, and simulations show enhanced organization of convective activity along squall-lines. Probabilistic evaluation demonstrate an enhanced spread in

  18. Universality in quasiperiodic Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Ecke, R.E.; Mainieri, R.; Sullivan, T.S.

    1991-01-01

    We study universal scaling properties of quasiperiodic Rayleigh-Benard convection in a 3 He--superfluid- 4 He mixture. The critical line is located in a parameter space of Rayleigh and Prandtl numbers using a transient-Poincare-section technique to identify transitions from nodal periodic points to spiral periodic points within resonance horns. We measure the radial and angular contraction rates and extract the linear-stability eigenvalues (Flouquet multipliers) of the periodic point. At the crossings of the critical line with the lines of fixed golden-mean-tail winding number we determine the universality class of our experimental dynamics using f(α) and trajectory-scaling-function analyses. A technique is used to obtain a robust five-scale approximation to the universal trajectory scaling function. Different methods of multifractal analysis are employed and an understanding of statistical and systematic errors in these procedures is developed. The power law of the inflection point of the map, determined for three golden-mean-tail winding numbers, is 2.9±0.3, corresponding to the universality class of the sine map

  19. Parameterizing convective organization

    Directory of Open Access Journals (Sweden)

    Brian Earle Mapes

    2011-06-01

    Full Text Available Lateral mixing parameters in buoyancy-driven deep convection schemes are among the most sensitive and important unknowns in atmosphere models. Unfortunately, there is not a true optimum value for plume mixing rate, but rather a dilemma or tradeoff: Excessive dilution of updrafts leads to unstable stratification bias in the mean state, while inadequate dilution allows deep convection to occur too easily, causing poor space and time distributions and variability. In this too-small parameter space, compromises are made based on competing metrics of model performance. We attempt to escape this “entrainment dilemma” by making bulk plume parameters (chiefly entrainment rate depend on a new prognostic variable (“organization,” org meant to reflect the rectified effects of subgrid-scale structure in meteorological fields. We test an org scheme in the Community Atmosphere Model (CAM5 with a new unified shallow-deep convection scheme (UW-ens, a 2-plume version of the University of Washington scheme. Since buoyant ascent involves natural selection, subgrid structure makes convection systematically deeper and stronger than the pure unorganized case: plumes of average (or randomly sampled air rising in the average environment. To reflect this, org is nonnegative, but we leave it dimensionless. A time scale characterizes its behavior (here ∼3 h for a 2o model. Currently its source is rain evaporation, but other sources can be added easily. We also let org be horizontally transported by advection, as a mass-weighted mean over the convecting layer. Linear coefficients link org to a plume ensemble, which it assists via: 1 plume base warmth above the mean temperature 2 plume radius enhancement (reduced mixing, and 3 increased probability of overlap in a multi-plume scheme, where interactions benefit later generations (this part has only been implemented in an offline toy column model. Since rain evaporation is a source for org, it functions as a time

  20. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  1. Modes of convection in the magnetotail

    International Nuclear Information System (INIS)

    Baumjohann, Wolfgang

    2002-01-01

    The flow of plasma in the Earth's magnetotail cannot reach a steady state, since adiabatic convection would lead to exceedingly high pressure of the associated magnetic flux tubes closer to the Earth, the so-called pressure catastrophe. The natural way to avoid the pressure catastrophe is to significantly reduce the flux tube volume by reconnection, and observations show a near-Earth reconnection line typically around 20-25 Earth radii down tail. Earthward flows from this reconnection line are rather bursty and typically seen outside of 10 Earth radii. At this point they are strongly braked by the here dominant dipolar magnetic field. The pressure gradients piled up by the flow lead to the substorm current wedge, and possibly other substorm phenomena observed in the Earth's ionosphere. When more and more flux tubes are piled up, the dipolarization front moves tailward and finally shuts off near-Earth reconnection

  2. Convection in complex shaped vessel; Convection dans des enceintes de forme complexe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The 8 november 2000, the SFT (Societe Francaise de Thermique) organized a technical day on the convection in complex shaped vessels. Nine papers have been presented in the domains of the heat transfers, the natural convection, the fluid distribution, the thermosyphon effect, the steam flow in a sterilization cycle and the transformers cooling. Eight papers are analyzed in ETDE and one paper dealing with the natural convection in spent fuels depository is analyzed in INIS. (A.L.B.)

  3. Leading and Trailing Anvil Clouds of West African Squall Lines

    Science.gov (United States)

    Centrone, Jasmine; Houze, Robert A.

    2011-01-01

    The anvil clouds of tropical squall-line systems over West Africa have been examined using cloud radar data and divided into those that appear ahead of the leading convective line and those on the trailing side of the system. The leading anvils are generally higher in altitude than the trailing anvil, likely because the hydrometeors in the leading anvil are directly connected to the convective updraft, while the trailing anvil generally extends out of the lower-topped stratiform precipitation region. When the anvils are subdivided into thick, medium, and thin portions, the thick leading anvil is seen to have systematically higher reflectivity than the thick trailing anvil, suggesting that the leading anvil contains numerous larger ice particles owing to its direct connection to the convective region. As the leading anvil ages and thins, it retains its top. The leading anvil appears to add hydrometeors at the highest altitudes, while the trailing anvil is able to moisten a deep layer of the atmosphere.

  4. Numerical simulation of double-diffusive mixed convective flow in rectangular enclosure with insulated moving lid

    Energy Technology Data Exchange (ETDEWEB)

    Teamah, M.A. [Faculty of Engineering, Alexandria University, Mech. Eng. Dept, Alexandria (Egypt); El-Maghlany, W.M. [Faculty of Engineering, Suez Canal University, Ismailia (Egypt)

    2010-09-15

    The present study is concerned with the mixed convection in a rectangular lid-driven cavity under the combined buoyancy effects of thermal and mass diffusion. Double-diffusive convective flow in a rectangular enclosure with moving upper surface is studied numerically. Both upper and lower surfaces are being insulated and impermeable. Constant different temperatures and concentration are imposed along the vertical walls of the enclosure, steady state laminar regime is considered. The transport equations for continuity, momentum, energy and spices transfer are solved. The numerical results are reported for the effect of Richardson number, Lewis number, and buoyancy ratio on the iso-contours of stream line, temperature, and concentration. In addition, the predicted results for both local and average Nusselt and Sherwood numbers are presented and discussed for various parametric conditions. This study was done for 0.1 <= Le <= 50 and Prandtl number Pr = 0.7. Through out the study the Grashof number and aspect ratio are kept constant at 10{sup 4} and 2 respectively and -10 <= N <= 10, while Richardson number has been varied from 0.01 to 10 to simulate forced convection dominated flow, mixed convection and natural convection dominated flow. (authors)

  5. Southern Ocean Convection and tropical telleconnections

    Science.gov (United States)

    Marinov, I.; Cabre, A.; Gnanadesikan, A.

    2014-12-01

    We show that Southern Ocean (SO) temperatures in the latest generation of Earth System Models exhibit two major modes of variation, one driven by deep convection, the other by tropical variability. We perform a CMIP5 model intercomparison to understand why different climate models represent SO variability so differently in long, control simulations. We show that multiyear variability in Southern Ocean sea surface temperatures (SSTs) can in turn influence oceanic and atmospheric conditions in the tropics on short (atmospheric) time-scales. We argue that the strength and pattern of SO-tropical teleconnections depends on the intensity of SO deep convection. Periodic convection in the SO is a feature of most CMIP5 models under preindustrial forcing (deLavergne et al., 2014). Models show a wide distribution in the spatial extent, periodicity and intensity of their SO convection, with some models convecting most of the time, and some showing very little convection. In a highly convective coupled model, we find that multidecadal variability in SO and global SSTs, as well as SO heat storage are driven by Weddell Sea convective variability, with convective decades relatively warm due to the heat released from the deep southern ocean and non-convective decades cold due to the subsurface storage of heat. Furthermore, pulses of SO convection drive SST and sea ice variations, influencing absorbed shortwave and emitted longwave radiation, wind, cloud and precipitation patterns, with climatic implications for the low latitudes via fast atmospheric teleconnections. We suggest that these high-low latitude teleconnection mechanisms are relevant for understanding hiatus decades. Additionally, Southern Ocean deep convection varied significantly during past, natural climate changes such as during the last deglaciation. Weddell Sea open convection was recently weakened, likely as a consequence of anthropogenic forcing and the resulting surface freshening. Our study opens up the

  6. Comparing convective heat fluxes derived from thermodynamics to a radiative-convective model and GCMs

    Science.gov (United States)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2015-04-01

    The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.

  7. Magnetospheric convection and current system in the dayside polar cap

    International Nuclear Information System (INIS)

    Nishida, A.; Mukai, T.; Tsuruda, K.; Hayakawa, H.

    1992-01-01

    Field and particle observations on EXOS-D (Akebono) have yielded new information on convection and current system in the dayside polar cap. Convection patterns are distinctly different depending upon whether IMF B z is northward or southward. The number of convection cells is two when B z is southward but four when B z is northward. Lobe cells in which plasma flows sunward in the region of open field lines are observed as a pair (of which one is in the dawn and the other in the dusk sector) for any polarity of IMF B y and B z . Ions in the keV range precipitate not only in the dayside cusp region but also along the sunward directed streamlines of the dawn and dusk lobe cells. These observations require reconsideration on the position and the extent of the reconnection region on the magnetopause. They also suggest that the magnetotail plays a vital role in some phenomena which have been ascribed to dayside magnetopause processes. We have not been able to find evidence to prove the presence of the viscous cell under southward IMF

  8. Auroral streamers: characteristics of associated precipitation,convection and field-aligned currents

    Directory of Open Access Journals (Sweden)

    V. A. Sergeev

    2004-01-01

    Full Text Available During the long-duration steady convection activity on 11 December 1998, the development of a few dozen auroral streamers was monitored by Polar UVI instrument in the dark northern nightside ionosphere. On many occasions the DMSP spacecraft crossed the streamer-conjugate regions over the sunlit southern auroral oval, permitting the investigation of the characteristics of ion and electron precipitation, ionospheric convection and field-aligned currents associated with the streamers. We confirm the conjugacy of streamer-associated precipitation, as well as their association with ionospheric plasma streams having a substantial equatorward convection component. The observations display two basic types of streamer-associated precipitation. In its polewardmost half, the streamer-associated (field-aligned accelerated electron precipitation coincides with the strong (≥2–7μA/m2 upward field-aligned currents on the westward flank of the convection stream, sometimes accompanied by enhanced proton precipitation in the adjacent region. In the equatorward portion of the streamer, the enhanced precipitation includes both electrons and protons, often without indication of field-aligned acceleration. Most of these characteristics are consistent with the model describing the generation of the streamer by the narrow plasma bubbles (bursty bulk flows which are contained on dipolarized field lines in the plasma sheet, although the mapping is strongly distorted which makes it difficult to quantitatively interprete the ionospheric image. The convective streams in the ionosphere, when well-resolved, had the maximal convection speeds ∼0.5–1km/s, total field-aligned currents of a few tenths of MA, thicknesses of a few hundreds km and a potential drop of a few kV across the stream. However, this might represent only a small part of the associated flux transport in the equatorial plasma sheet.

    Key words. Ionosphere (electric fiels and

  9. The Role of Rotation in Convective Heat Transport: an Application to Low-Mass Stars

    Science.gov (United States)

    Matilsky, Loren; Hindman, Bradley W.; Toomre, Juri; Featherstone, Nicholas

    2018-06-01

    It is often supposed that the convection zones (CZs) of low-mass stars are purely adiabatically stratified. This is thought to be because convective motions are extremely efficient at homogenizing entropy within the CZ. For a purely adiabatic fluid layer, only very small temperature variations are required to drive convection, making the amplitude and overall character of the convection highly sensitive to the degree of adiabaticity established in the CZ. The presence of rotation, however, fundamentally changes the dynamics of the CZ; the strong downflow plumes that are required to homogenize entropy are unable to penetrate through the entire fluid layer if they are deflected too soon by the Coriolis force. This talk discusses 3D global models of spherical-shell convection subject to different rotation rates. The simulation results emphasize the possibility that for stars with a high enough rotation rate, large fractions of their CZs are not in fact adiabatically stratified; rather, there is a finite superadiabatic gradient that varies in magnitude with radius, being at a minimum in the CZ’s middle layers. Two consequences of the varying superadiabatic gradient are that the convective amplitudes at the largest length scales are effectively suppressed and that there is a strong latitudinal temperature gradient from a cold equator to a hot pole, which self-consistently drives a thermal wind. A connection is naturally drawn to the Sun’s CZ, which has supergranulation as an upper limit to its convective length scales and isorotational contours along radial lines, which can be explained by the presence of a thermal wind.

  10. Moisture Vertical Structure, Deep Convective Organization, and Convective Transition in the Amazon

    Science.gov (United States)

    Schiro, K. A.; Neelin, J. D.

    2017-12-01

    Constraining precipitation processes in climate models with observations is crucial to accurately simulating current climate and reducing uncertainties in future projections. Results from the Green Ocean Amazon (GOAmazon) field campaign (2014-2015) provide evidence that deep convection is strongly controlled by the availability of moisture in the free troposphere over the Amazon, much like over tropical oceans. Entraining plume buoyancy calculations confirm that CWV is a good proxy for the conditional instability of the environment, yet differences in convective onset as a function of CWV exist over land and ocean, as well as seasonally and diurnally over land. This is largely due to variability in the contribution of lower tropospheric humidity to the total column moisture. Boundary layer moisture shows a strong relationship to the onset during the day, which largely disappears during nighttime. Using S-Band radar, these transition statistics are examined separately for unorganized and mesoscale-organized convection, which exhibit sharp increases in probability of occurrence with increasing moisture throughout the column, particularly in the lower free troposphere. Retrievals of vertical velocity from a radar wind profiler indicate updraft velocity and mass flux increasing with height through the lower troposphere. A deep-inflow mixing scheme motivated by this — corresponding to deep inflow of environmental air into a plume that grows with height — provides a weighting of boundary layer and free tropospheric air that yields buoyancies consistent with the observed onset of deep convection across seasons and times of day, across land and ocean sites, and for all convection types. This provides a substantial improvement relative to more traditional constant mixing assumptions, and a dramatic improvement relative to no mixing. Furthermore, it provides relationships that are as strong or stronger for mesoscale-organized convection as for unorganized convection.

  11. A model for near-wall dynamics in turbulent Rayleigh Bénard convection

    Science.gov (United States)

    Theerthan, S. Ananda; Arakeri, Jaywant H.

    1998-10-01

    Experiments indicate that turbulent free convection over a horizontal surface (e.g. Rayleigh Bénard convection) consists of essentially line plumes near the walls, at least for moderately high Rayleigh numbers. Based on this evidence, we propose here a two-dimensional model for near-wall dynamics in Rayleigh Bénard convection and in general for convection over heated horizontal surfaces. The model proposes a periodic array of steady laminar two-dimensional plumes. A plume is fed on either side by boundary layers on the wall. The results from the model are obtained in two ways. One of the methods uses the similarity solution of Rotem & Classen (1969) for the boundary layer and the similarity solution of Fuji (1963) for the plume. We have derived expressions for mean temperature and temperature and velocity fluctuations near the wall. In the second approach, we compute the two-dimensional flow field in a two-dimensional rectangular open cavity. The number of plumes in the cavity depends on the length of the cavity. The plume spacing is determined from the critical length at which the number of plumes increases by one. The results for average plume spacing and the distribution of r.m.s. temperature and velocity fluctuations are shown to be in acceptable agreement with experimental results.

  12. Vertical natural convection: application of the unifying theory of thermal convection

    NARCIS (Netherlands)

    Ng, C.S.; Ooi, A.; Lohse, Detlef; Chung, D.

    2015-01-01

    Results from direct numerical simulations of vertical natural convection at Rayleigh numbers 1.0×10 5 –1.0×10 9 and Prandtl number 0.709 support a generalised applicability of the Grossmann–Lohse (GL) theory, which was originally developed for horizontal natural (Rayleigh–Bénard) convection. In

  13. Constancy of spectral-line bisectors

    International Nuclear Information System (INIS)

    Gray, D.F.

    1983-01-01

    Bisectors of spectral line profiles in cool stars indicate the strength of convection in the photospheres of these objects. The present investigation is concerned with the feasibility of studying time variations in line bisectors, the reality of apparent line-to-line differences within the same stellar spectrum, and bisector differences between stars of identical spectral types. The differences considered pertain to the shape of the bisector. The material used in the investigation was acquired at the McDonald Observatory using a 1728 diode Reticon array at the coudefocus of the 2.1-m telescope. Observed bisector errors are discussed. It is established that different lines in the same star show significantly different bisectors. The observed error bands are shown by the shaded regions. The slope and curvature are unique for each case

  14. National Convective Weather Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCWF is an automatically generated depiction of: (1) current convection and (2) extrapolated signficant current convection. It is a supplement to, but does NOT...

  15. Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States

    Science.gov (United States)

    Rasmussen, K. L.; Prein, A. F.; Rasmussen, R. M.; Ikeda, K.; Liu, C.

    2017-11-01

    Novel high-resolution convection-permitting regional climate simulations over the US employing the pseudo-global warming approach are used to investigate changes in the convective population and thermodynamic environments in a future climate. Two continuous 13-year simulations were conducted using (1) ERA-Interim reanalysis and (2) ERA-Interim reanalysis plus a climate perturbation for the RCP8.5 scenario. The simulations adequately reproduce the observed precipitation diurnal cycle, indicating that they capture organized and propagating convection that most climate models cannot adequately represent. This study shows that weak to moderate convection will decrease and strong convection will increase in frequency in a future climate. Analysis of the thermodynamic environments supporting convection shows that both convective available potential energy (CAPE) and convective inhibition (CIN) increase downstream of the Rockies in a future climate. Previous studies suggest that CAPE will increase in a warming climate, however a corresponding increase in CIN acts as a balancing force to shift the convective population by suppressing weak to moderate convection and provides an environment where CAPE can build to extreme levels that may result in more frequent severe convection. An idealized investigation of fundamental changes in the thermodynamic environment was conducted by shifting a standard atmospheric profile by ± 5 °C. When temperature is increased, both CAPE and CIN increase in magnitude, while the opposite is true for decreased temperatures. Thus, even in the absence of synoptic and mesoscale variations, a warmer climate will provide more CAPE and CIN that will shift the convective population, likely impacting water and energy budgets on Earth.

  16. Presentation on Tropical Mesoscale convective Systems and ...

    Indian Academy of Sciences (India)

    IAS Admin

    Shallow convection- 70% of the storm heights are below 6 km. ♢ Deep convection ... Decay convection, the convective top is found at a higher altitude than deep .... Stratospheric Fountain – Two step process. Warm tropopause- preferable for.

  17. A transilient matrix for moist convection

    Energy Technology Data Exchange (ETDEWEB)

    Romps, D.; Kuang, Z.

    2011-08-15

    A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.

  18. Dendrite Array Disruption by Bubbles during Re-melting in a Microgravity Environment

    Science.gov (United States)

    Grugel, Richard N.

    2012-01-01

    As part of the Pore Formation and Mobility Investigation (PFMI), Succinonitrile Water alloys consisting of aligned dendritic arrays were re-melted prior to conducting directional solidification experiments in the microgravity environment aboard the International Space Station. Thermocapillary convection initiated by bubbles at the solid-liquid interface during controlled melt back of the alloy was observed to disrupt the initial dendritic alignment. Disruption ranged from detaching large arrays to the transport of small dendrite fragments at the interface. The role of bubble size and origin is discussed along with subsequent consequences upon reinitiating controlled solidification.

  19. Convective aggregation in realistic convective-scale simulations

    Science.gov (United States)

    Holloway, Christopher E.

    2017-06-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.Plain Language SummaryUnderstanding the processes that lead to the organization of tropical rainstorms is an important challenge for weather

  20. Heat Convection

    Science.gov (United States)

    Jiji, Latif M.

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.

  1. Latest information about development of gas-fueled steam convection ovens; Ou en est la mise au point du four a gaz a convection de vapeur au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, T. [Tokyo-gas co., Ltd. (Japan)

    2000-07-01

    In Japan, gas has been the main source of heat for heating-type culinary equipment in the food service industry, however, this situation has been recently changing. One reason for this is the introduction of electric steam convection ovens. To promote the use of gas steam convection ovens that can compete with electric appliances, Tokyo Gas has conducted the following development projects. Firstly, we set development targets for gas appliances to out-perform the best electric appliances, and were able to develop appliance products that met the targets. Secondly, in order to develop new markets for gas appliances, we worked on the development of compact appliances with a comparatively low initial cost, launching the world's smallest product in this category in October 1998. Thirdly, in order to make gas appliances as widely used here as they are in Europe and America, we developed appliances with costs cut by 30%, and in October 1999 we launched the cheapest gas steam convection oven in the domestic market. We plan to continue providing technological expertise to domestic manufacturers, enhancing our line-up with top performance gas appliances at even lower cost. (author)

  2. Biomass Smoke Influences on Deep Convection during the 2011 Midlatitude Continental Convective Clouds Experiment (MC3E)

    Science.gov (United States)

    Dong, X.; Logan, T.; Xi, B.

    2015-12-01

    Three deep convective cloud cases were selected during the 2011 Mid-Latitude Continental Convective Clouds Experiment (MC3E). Although biomass burning smoke advected from Mexico and Central America was the dominant source of cloud condensation nuclei (CCN) for deep convective cloud formation, the 11 May, 20 May, and 23 May cases exhibited different convective characteristics. The convection in the 11 May and 23 May cases formed in smoke laden environments in the presence of convective available potential energy (CAPE) values exceeding 1000 m2 s-2 and 3000 m2 s-2 along with low-level (0-1 km) shear of 10.3 m s-1 and 5.1 m s-1, respectively. The 11 May case had linear convection while the 23 May case featured discrete supercells. The 20 May case featured elevated linear convection that formed in a more moist environment with cleaner aerosol conditions, weak CAPE (9 km) suggesting a warm rain suppression mechanism caused by a combination of strong aerosol loading, large CAPE, and weak low-level wind shear. The observed results for the 20 May and 23 May cases agree well with recent modeling studies that simulated the convection and precipitation in these cases. Furthermore, the modeling of the 11 May case is suggested since the abundant amount of smoke CCN did not greatly enhance the overall precipitation amount and could be a possible aerosol-induced precipitation suppression case.

  3. Stellar convection and dynamo theory

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R L

    1989-10-01

    In considering the large scale stellar convection problem the outer layers of a star are modelled as two co-rotating plane layers coupled at a fluid/fluid interface. Heating from below causes only the upper fluid to convect, although this convection can penetrate into the lower fluid. Stability analysis is then used to find the most unstable mode of convection. With parameters appropriate to the Sun the most unstable mode is steady convection in thin cells (aspect ratio {approx equal} 0.2) filling the convection zone. There is negligible vertical motion in the lower fluid, but considerable thermal penetration, and a large jump in helicity at the interface, which has implications for dynamo theory. An {alpha}{omega} dynamo is investigated in isolation from the convection problem. Complexity is included by allowing both latitudinal and time dependence in the magnetic fields. The nonlinear dynamics of the resulting partial differential equations are analysed in considerable detail. On varying the main control parameter D (the dynamo number), many transitions of behaviour are found involving many forms of time dependence, but not chaos. Further, solutions which break equatorial symmetry are common and provide a theoretical explanation of solar observations which have this symmetry. Overall the behaviour was more complicated than expected. In particular, there were multiple stable solutions at fixed D, meaning that similar stars can have very different magnetic patterns, depending upon their history. (author).

  4. The effect of convection and semi-convection on the C/O yield of massive stars

    International Nuclear Information System (INIS)

    Dearborn, D.S.

    1979-01-01

    The C/O ratio produced during core helium burning affects the future evolution and nucleosynthetic yield of massive stars. This ratio is shown to be sensitive to the treatment of convection as well as uncertainties in nuclear rates. By minimizing the effect of semi-convection and reducing the size of the convective core, mass loss in OB stars increases the C/O ratio. (Author)

  5. Investigation of tropical diurnal convection biases in a climate model using TWP-ICE observations and convection-permitting simulations

    Science.gov (United States)

    Lin, W.; Xie, S.; Jackson, R. C.; Endo, S.; Vogelmann, A. M.; Collis, S. M.; Golaz, J. C.

    2017-12-01

    Climate models are known to have difficulty in simulating tropical diurnal convections that exhibit distinct characteristics over land and open ocean. While the causes are rooted in deficiencies in convective parameterization in general, lack of representations of mesoscale dynamics in terms of land-sea breeze, convective organization, and propagation of convection-induced gravity waves also play critical roles. In this study, the problem is investigated at the process-level with the U.S. Department of Energy Accelerated Climate Modeling for Energy (ACME) model in short-term hindcast mode using the Cloud Associated Parameterization Testbed (CAPT) framework. Convective-scale radar retrievals and observation-driven convection-permitting simulations for the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) cases are used to guide the analysis of the underlying processes. The emphasis will be on linking deficiencies in representation of detailed process elements to the model biases in diurnal convective properties and their contrast among inland, coastal and open ocean conditions.

  6. CONVECTION IN CONDENSIBLE-RICH ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Ding, F. [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Pierrehumbert, R. T., E-mail: fding@uchicago.edu [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom)

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO{sub 2} is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

  7. Convective overshoot at the solar tachocline

    Science.gov (United States)

    Brown, Benjamin; Oishi, Jeffrey S.; Anders, Evan H.; Lecoanet, Daniel; Burns, Keaton; Vasil, Geoffrey M.

    2017-08-01

    At the base of the solar convection zone lies the solar tachocline. This internal interface is where motions from the unstable convection zone above overshoot and penetrate downward into the stiffly stable radiative zone below, driving gravity waves, mixing, and possibly pumping and storing magnetic fields. Here we study the dynamics of convective overshoot across very stiff interfaces with some properties similar to the internal boundary layer within the Sun. We use the Dedalus pseudospectral framework and study fully compressible dynamics at moderate to high Peclet number and low Mach number, probing a regime where turbulent transport is important, and where the compressible dynamics are similar to those of convective motions in the deep solar interior. We find that the depth of convective overshoot is well described by a simple buoyancy equilibration model, and we consider implications for dynamics at the solar tachocline and for the storage of magnetic fields there by overshooting convection.

  8. Dynamics of acoustic-convective drying of sunflower cake

    Science.gov (United States)

    Zhilin, A. A.

    2017-10-01

    The dynamics of drying sunflower cake by a new acoustic-convective method has been studied. Unlike the conventional (thermal-convective) method, the proposed method allows moisture to be extracted from porous materials without applying heat to the sample to be dried. Kinetic curves of drying by the thermal-convective and acoustic-convective methods were obtained and analyzed. The advantages of the acoustic-convective extraction of moisture over the thermal-convective method are discussed. The relaxation times of drying were determined for both drying methods. An intermittent drying mode which improves the efficiency of acoustic-convective extraction of moisture is considered.

  9. A Numerical Study of Nonlinear Nonhydrostatic Conditional Symmetric Instability in a Convectively Unstable Atmosphere.

    Science.gov (United States)

    Seman, Charles J.

    1994-06-01

    Nonlinear nonhydrostatic conditional symmetric instability (CSI) is studied as an initial value problem using a two-dimensional (y, z)nonlinear, nonhydrostatic numerical mesoscale/cloud model. The initial atmosphere for the rotating, baroclinic (BCF) simulation contains large convective available potential energy (CAPE). Analytical theory, various model output diagnostics, and a companion nonrotating barotropic (BTNF) simulation are used to interpret the results from the BCF simulation. A single warm moist thermal initiates convection for the two 8-h simulations.The BCF simulation exhibited a very intricate life cycle. Following the initial convection, a series of discrete convective cells developed within a growing mesoscale circulation. Between hours 4 and 8, the circulation grew upscale into a structure resembling that of a squall-line mesoscale convective system (MCS). The mesoscale updrafts were nearly vertical and the circulation was strongest on the baroclinically cool side of the initial convection, as predicted by a two-dimensional Lagrangian parcel model of CSI with CAPE. The cool-side mesoscale circulation grew nearly exponentially over the last 5 h as it slowly propagated toward the warm air. Significant vertical transport of zonal momentum occurred in the (multicellular) convection that developed, resulting in local subgeostrophic zonal wind anomalies aloft. Over time, geostrophic adjustment acted to balance these anomalies. The system became warm core, with mesohigh pressure aloft and mesolow pressure at the surface. A positive zonal wind anomaly also formed downstream from the mesohigh.Analysis of the BCF simulation showed that convective momentum transport played a key role in the evolution of the simulated MCS, in that it fostered the development of the nonlinear CSI on mesoscale time scales. The vertical momentum transport in the initial deep convection generated a subgeostrophic zonal momentum anomaly aloft; the resulting imbalance in pressure

  10. Upscale Impact of Mesoscale Disturbances of Tropical Convection on Convectively Coupled Kelvin Waves

    Science.gov (United States)

    Yang, Q.; Majda, A.

    2017-12-01

    Tropical convection associated with convectively coupled Kelvin waves (CCKWs) is typically organized by an eastward-moving synoptic-scale convective envelope with numerous embedded westward-moving mesoscale disturbances. It is of central importance to assess upscale impact of mesoscale disturbances on CCKWs as mesoscale disturbances propagate at various tilt angles and speeds. Here a simple multi-scale model is used to capture this multi-scale structure, where mesoscale fluctuations are directly driven by mesoscale heating and synoptic-scale circulation is forced by mean heating and eddy transfer of momentum and temperature. The two-dimensional version of the multi-scale model drives the synoptic-scale circulation, successfully reproduces key features of flow fields with a front-to-rear tilt and compares well with results from a cloud resolving model. In the scenario with an elevated upright mean heating, the tilted vertical structure of synoptic-scale circulation is still induced by the upscale impact of mesoscale disturbances. In a faster propagation scenario, the upscale impact becomes less important, while the synoptic-scale circulation response to mean heating dominates. In the unrealistic scenario with upward/westward tilted mesoscale heating, positive potential temperature anomalies are induced in the leading edge, which will suppress shallow convection in a moist environment. In its three-dimensional version, results show that upscale impact of mesoscale disturbances that propagate at tilt angles (110o 250o) induces negative lower-tropospheric potential temperature anomalies in the leading edge, providing favorable conditions for shallow convection in a moist environment, while the remaining tilt angle cases have opposite effects. Even in the presence of upright mean heating, the front-to-rear tilted synoptic-scale circulation can still be induced by eddy terms at tilt angles (120o 240o). In the case with fast propagating mesoscale heating, positive

  11. VHF signal power suppression in stratiform and convective precipitation

    Directory of Open Access Journals (Sweden)

    A. J. McDonald

    2006-03-01

    Full Text Available Previous studies have indicated that VHF clear-air radar return strengths are reduced during periods of precipitation. This study aims to examine whether the type of precipitation, stratiform and convective precipitation types are identified, has any impact on the relationships previously observed and to examine the possible mechanisms which produce this phenomenon. This study uses a combination of UHF and VHF wind-profiler data to define periods associated with stratiform and convective precipitation. This identification is achieved using an algorithm which examines the range squared corrected signal to noise ratio of the UHF returns for a bright band signature for stratiform precipitation. Regions associated with convective rainfall have been defined by identifying regions of enhanced range corrected signal to noise ratio that do not display a bright band structure and that are relatively uniform until a region above the melting layer.

    line-height: 20px;"> This study uses a total of 68 days, which incorporated significant periods of surface rainfall, between 31 August 2000 and 28 February 2002 inclusive from Aberystwyth (52.4° N, 4.1° W. Examination suggests that both precipitation types produce similar magnitude reductions in VHF signal power on average. However, the frequency of occurrence of statistically significant reductions in VHF signal power are very different. In the altitude range 2-4 km stratiform precipitation is related to VHF signal suppression approximately 50% of the time while in convective precipitation suppression is observed only 27% of the time. This statistical result suggests that evaporation, which occurs more often in stratiform precipitation, is important in reducing the small-scale irregularities in humidity and thereby the radio refractive index. A detailed case study presented also suggests that evaporation reducing small-scale irregularities in humidity may contribute to the observed VHF signal

  12. Coupling of convection and circulation at various resolutions

    Directory of Open Access Journals (Sweden)

    Cathy Hohenegger

    2015-03-01

    Full Text Available A correct representation of the coupling between convection and circulation constitutes a prerequisite for a correct representation of precipitation at all scales. In this study, the coupling between convection and a sea breeze is investigated across three main resolutions: large-eddy resolution where convection is fully explicit, convection-permitting resolution where convection is partly explicit and coarse resolution where convection is parameterised. The considered models are the UCLA-LES, COSMO and ICON. Despite the use of prescribed surface fluxes, comparison of the simulations reveals that typical biases associated with a misrepresentation of convection at convection-permitting and coarser resolutions significantly alter the characteristics of the sea breeze. The coarse-resolution simulations integrated without convective parameterisation and the convection-permitting simulations simulate a too slow propagation of the breeze front as compared to the large-eddy simulations. From the various factors affecting the propagation, a delayed onset and intensification of cold pools primarily explains the differences. This is a direct consequence of a delayed development of convection when the grid spacing is coarsened. Scaling the time the sea breeze reaches the centre of the land patch by the time precipitation exceeds 2 mm day−1, used as a measure for significant evaporation, yields a collapse of the simulations onto a simple linear relationship although subtle differences remain due to the use of different turbulence and microphysical schemes. Turning on the convection scheme significantly disrupts the propagation of the sea breeze due to a misrepresented timing (too early triggering and magnitude (too strong precipitation evaporation in one of the tested convection schemes of the convective processes.

  13. The pattern of convection in the Sun

    International Nuclear Information System (INIS)

    Weiss, N.O.

    1976-01-01

    The structure of solar magnetic fields is dominated by the effects of convection, which should be incorporated in any model of the solar cycle. Although mixing length theory is adequate for calculating the structure of main sequence stars, a better description of convection is needed for any detailed dynamo model. Recent work on nonlinear convection at low Prandt numbers is reviewed. There has been some progress towards a theory of compressible convection, though there is still no firm theoretical evidence for cells with scales less than the depth of the convecting layer. However, it remains likely that the pattern of solar convection is dominated by granules, supergranules and giant cells. The effects of rotation on these cells are briefly considered. (Auth.)

  14. Topology Optimisation for Coupled Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    This thesis deals with topology optimisation for coupled convection problems. The aim is to extend and apply topology optimisation to steady-state conjugate heat transfer problems, where the heat conduction equation governs the heat transfer in a solid and is coupled to thermal transport...... in a surrounding uid, governed by a convection-diffusion equation, where the convective velocity field is found from solving the isothermal incompressible steady-state Navier-Stokes equations. Topology optimisation is also applied to steady-state natural convection problems. The modelling is done using stabilised...... finite elements, the formulation and implementation of which was done partly during a special course as prepatory work for this thesis. The formulation is extended with a Brinkman friction term in order to facilitate the topology optimisation of fluid flow and convective cooling problems. The derived...

  15. Convective penetration in a young sun

    Science.gov (United States)

    Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; MUSIC developers group

    2018-01-01

    To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. This model provides a scenario that can explain the observed lithium abundance in the sun and in solar-like stars at a range of ages.

  16. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  17. Measuring Convective Mass Fluxes Over Tropical Oceans

    Science.gov (United States)

    Raymond, David

    2017-04-01

    Deep convection forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical convective mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong convection in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist convective instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) convective instability produces more precipitation as well as more bottom-heavy convective mass flux profiles. Furthermore, the column humidity and the convective instability are anti-correlated, at least in the presence of strong convection. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than convection, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average convective properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and

  18. Convection due to an unstable density difference across a permeable membrane

    Science.gov (United States)

    Puthenveettil, Baburaj A.; Arakeri, Jaywant H.

    We study natural convection driven by unstable concentration differences of sodium chloride (NaCl) across a horizontal permeable membrane at Rayleigh numbers (Ra) of 1010 to 1011 and Schmidt number (Sc)=600. A layer of brine lies over a layer of distilled water, separated by the membrane, in square-cross-section tanks. The membrane is permeable enough to allow a small flow across it at higher driving potentials. Based on the predominant mode of transport across the membrane, three regimes of convection, namely an advection regime, a diffusion regime and a combined regime, are identified. The near-membrane flow in all the regimes consists of sheet plumes formed from the unstable layers of fluid near the membrane. In the advection regime observed at higher concentration differences (Bb) show a common log-normal probability density function at all Ra. We propose a phenomenology which predicts /line{lambda}_b sqrt{Z_w Z_{V_i}}, where Zw and Z_{V_i} are, respectively, the near-wall length scales in Rayleighnard convection (RBC) and due to the advection velocity. In the combined regime, which occurs at intermediate values of C/2)4/3. At lower driving potentials, in the diffusion regime, the flux scaling is similar to that in turbulent RBC.

  19. Impact of Aerosols on Convective Clouds and Precipitation

    Science.gov (United States)

    Tao, Wei-Kuo; Chen, Jen-Ping; Li, Zhanqing; Wang, Chien; Zhang, Chidong; Li, Xiaowen

    2012-01-01

    Aerosols are a critical.factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosols have a major impact on the dynamics, microphysics, and electrification properties of continental mixed-phase convective clouds. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing a significant source of cloud condensation nuclei (CCN). Such pollution . effects on precipitation potentially have enormous climatic consequences both in terms of feedbacks involving the land surface via rainfall as well as the surface energy budget and changes in latent heat input to the atmosphere. Basically, aerosol concentrations can influence cloud droplet size distributions, the warm-rain process, the cold-rain process, cloud-top heights, the depth of the mixed-phase region, and the occurrence of lightning. Recently, many cloud resolution models (CRMs) have been used to examine the role of aerosols on mixed-phase convective clouds. These modeling studies have many differences in terms of model configuration (two- or three-dimensional), domain size, grid spacing (150-3000 m), microphysics (two-moment bulk, simple or sophisticated spectral-bin), turbulence (1st or 1.5 order turbulent kinetic energy (TKE)), radiation, lateral boundary conditions (i.e., closed, radiative open or cyclic), cases (isolated convection, tropical or midlatitude squall lines) and model integration time (e.g., 2.5 to 48 hours). Among these modeling studies, the most striking difference is that cumulative precipitation can either increase or decrease in response to higher concentrations of CCN. In this presentation, we review past efforts and summarize our current understanding of the effect of aerosols on convective precipitation processes. Specifically, this paper addresses the following topics

  20. Sunspots and the physics of magnetic flux tubes. VI - Convective propulsion. VII - Heat flow in a convective downdraft

    Science.gov (United States)

    Parker, E. N.

    1979-01-01

    The effect of negative aerodynamic drag in an ideal fluid subject to convective instability is considered. It is shown that a cylinder moving in such a fluid is propelled forward in its motion by the convective forces and that the characteristic acceleration time is comparable to the onset time of convective motions in the fluid. It is suggested that convective propulsion plays an important role in the dynamics of flux tubes extending through the surface of the sun. The suppression of the upward heat flow in a Boussinesq convective cell with free upper and lower boundaries by a downdraft is then analyzed. Application to the solar convection zone indicates that downdrafts of 1 to 2 km/s at depths of 1000 to 4000 km beneath the visible surface of the sun are sufficient to reduce the upward heat flux to a small fraction of the ambient value.

  1. Transitional free convection flows induced by thermal line sources

    NARCIS (Netherlands)

    Bastiaans, R.J.M.

    1993-01-01

    In the present study the usefullness of a large eddy simulation for transition is examined. Numerical results of such simulations are presented from a study to determine the characteristics of a flow induced by a thermal line source. The first bifurcation to time dependent motion and the route to

  2. Convective Heat Transfer Coefficients of the Human Body under Forced Convection from Ceiling

    DEFF Research Database (Denmark)

    Kurazumi, Yoshihito; Rezgals, Lauris; Melikov, Arsen Krikor

    2014-01-01

    The average convective heat transfer coefficient for a seated human body exposed to downward flow from above was determined. Thermal manikin with complex body shape and size of an average Scandinavian female was used. The surface temperature distribution of the manikin’s body was as the skin...... of the convective heat transfer coefficient of the whole body (hc [W/(m2•K)]) was proposed: hc=4.088+6.592V1.715 for a seated naked body at 20ºC and hc=2.874+7.427V1.345 for a seated naked body at 26ºC. Differences in the convective heat transfer coefficient of the whole body in low air velocity range, V

  3. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... this database enabled us to compile a model of the ionospheric convection electric field. The characteristics of the premidnight convection reversal show a pronounced local time dependency. Far west of the surge it is a fairly well defined point reversal or convection shear. Approaching the surge and within...... the surge it is a region of weak electric fields increasing in width toward midnight that separates regions of equatorward and poleward electric fields. Therefore we adopt the term Harang region rather than the Harang discontinuity for the premidnight convection reversal. A relatively narrow convection...

  4. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: The mechanism of the drilling of holes in vertical metallic plates by cw CO2 laser radiation

    Science.gov (United States)

    Likhanskii, V. V.; Loboiko, A. I.; Antonova, G. F.; Krasyukov, A. G.; Sayapin, V. P.

    1999-02-01

    The possibility of making a hole in a vertical plate with the aid of laser radiation at a surface temperature not exceeding the boiling point is analysed neglecting the vapour pressure. The mechanism of the degradation of the liquid layer involving a reduction of its thickness, as a result of the redistribution of the molten mass owing to the operation of the force of gravity and of thermocapillary convection, is examined. The theoretical dependence of the critical size of the molten zone on the plate thickness is obtained and a comparison is made with experimental data.

  5. An infinite-dimensional model of free convection

    Energy Technology Data Exchange (ETDEWEB)

    Iudovich, V.I. (Rostovskii Gosudarstvennyi Universitet, Rostov-on-Don (USSR))

    1990-12-01

    An infinite-dimensional model is derived from the equations of free convection in the Boussinesq-Oberbeck approximation. The velocity field is approximated by a single mode, while the heat-conduction equation is conserved fully. It is shown that, for all supercritical Rayleigh numbers, there exist exactly two secondary convective regimes. The case of ideal convection with zero viscosity and thermal conductivity is examined. The averaging method is used to study convection regimes at high Reynolds numbers. 10 refs.

  6. Convergence behavior of idealized convection-resolving simulations of summertime deep moist convection over land

    Science.gov (United States)

    Panosetti, Davide; Schlemmer, Linda; Schär, Christoph

    2018-05-01

    Convection-resolving models (CRMs) can explicitly simulate deep convection and resolve interactions between convective updrafts. They are thus increasingly used in numerous weather and climate applications. However, the truncation of the continuous energy cascade at scales of O (1 km) poses a serious challenge, as in kilometer-scale simulations the size and properties of the simulated convective cells are often determined by the horizontal grid spacing (Δ x ).In this study, idealized simulations of deep moist convection over land are performed to assess the convergence behavior of a CRM at Δ x = 8, 4, 2, 1 km and 500 m. Two types of convergence estimates are investigated: bulk convergence addressing domain-averaged and integrated variables related to the water and energy budgets, and structural convergence addressing the statistics and scales of individual clouds and updrafts. Results show that bulk convergence generally begins at Δ x =4 km, while structural convergence is not yet fully achieved at the kilometer scale, despite some evidence that the resolution sensitivity of updraft velocities and convective mass fluxes decreases at finer resolution. In particular, at finer grid spacings the maximum updraft velocity generally increases, and the size of the smallest clouds is mostly determined by Δ x . A number of different experiments are conducted, and it is found that the presence of orography and environmental vertical wind shear yields more energetic structures at scales much larger than Δ x , sometimes reducing the resolution sensitivity. Overall the results lend support to the use of kilometer-scale resolutions in CRMs, despite the inability of these models to fully resolve the associated cloud field.

  7. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  8. Natural convection in superposed fluid-porous layers

    CERN Document Server

    Bagchi, Aniruddha

    2013-01-01

    Natural Convection in Composite Fluid-Porous Domains provides a timely overview of the current state of understanding on the phenomenon of convection in composite fluid-porous layers. Natural convection in horizontal fluid-porous layers has received renewed attention because of engineering problems such as post-accident cooling of nuclear reactors, contaminant transport in groundwater, and convection in fibrous insulation systems. Because applications of the problem span many scientific domains, the book serves as a valuable resource for a wide audience.

  9. Primary Issues of Mixed Convection Heat Transfer Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong-Seon; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    The computer code analyzing the system operating and transient behavior must distinguish flow conditions involved with convective heat transfer flow regimes. And the proper correlations must be supplied to those flow regimes. However the existing safety analysis codes are focused on the Light Water Reactor and they are skeptical to be applied to the GCRs (Gas Cooled Reactors). One of the technical issues raise by the development of the VHTR is the mixed convection, which occur when the driving forces of both forced and natural convection are of comparable magnitudes. It can be encountered as in channel of the stacked with fuel elements and a decay heat removal system and in VHTR. The mixed convection is not intermediate phenomena with natural convection and forced convection but independent complicated phenomena. Therefore, many researchers have been studied and some primary issues were propounded for phenomena mixed convection. This paper is to discuss some problems identified through reviewing the papers for mixed convection phenomena. And primary issues of mixed convection heat transfer were proposed respect to thermal hydraulic problems for VHTR. The VHTR thermal hydraulic study requires an indepth study of the mixed convection phenomena. In this study we reviewed the classical flow regime map of Metais and Eckert and derived further issues to be considered. The following issues were raised: (1) Buoyancy aided an opposed flows were not differentiated and plotted in a map. (2) Experimental results for UWT and UHF condition were also plotted in the same map without differentiation. (3) The buoyancy coefficient was not generalized for correlating with buoyancy coefficient. (4) The phenomenon analysis for laminarization and returbulization as buoyancy effects in turbulent mixed convection was not established. (5) The defining to transition in mixed convection regime was difficult.

  10. The convection patterns in microemulsions

    International Nuclear Information System (INIS)

    Korneta, W.; Lopez Quintela, M.A.; Fernandez Novoa, A.

    1991-07-01

    The Rayleigh-Benard convection in the microemulsion consisting of water (7.5%), cyclohexan (oil-61.7%) and diethylenglycolmonobutylether (surfactant-30.8%) is studied from the onset of convection to the phase separation. The five classes of convection patterns are observed and recorded on the video: localized travelling waves, travelling waves, travelling waves and localized steady rolls, steady rolls and steady polygons. The Fourier transforms and histograms of these patterns are presented. The origin of any pattern is discussed. The intermittent behaviour close to the phase separation was observed. Possible applications of the obtained results are suggested. (author). 6 refs, 4 figs

  11. An application of the unifying theory of thermal convection in vertical natural convection

    Science.gov (United States)

    Ng, Chong Shen; Ooi, Andrew; Lohse, Detlef; Chung, Daniel

    2014-11-01

    Using direct numerical simulations of vertical natural convection (VNC) at Rayleigh numbers 1 . 0 ×105 - 1 . 0 ×109 and Prandtl number 0 . 709 , we provide support for a generalised applicability of the Grossmann-Lohse (GL) theory, originally developed for horizontal natural (Rayleigh-Bénard) convection. In accordance with the theory, the boundary-layer thicknesses of the velocity and temperature fields in VNC obey laminar-like scaling, whereas away from the walls, the dissipation of the turbulent fluctuations obey the scaling for fully developed turbulence. In contrast to Rayleigh-Bénard convection, the direction of gravity in VNC is parallel to the mean flow. Thus, there no longer exists an exact relation linking the normalised global dissipations to the Nusselt, Rayleigh and Prandtl numbers. Nevertheless, we show that the unclosed term, namely the global-averaged buoyancy flux, also exhibits laminar and turbulent scaling, consistent with the GL theory. The findings suggest that, similar to Rayleigh-Bénard convection, a pure power-law relationship between the Nusselt, Rayleigh and Prandtl numbers is not the best description for VNC and existing empirical power-law relationships should be recalibrated to better reflect the underlying physics.

  12. Comparison of numerical results with experimental data for single-phase natural convection in an experimental sodium loop

    International Nuclear Information System (INIS)

    Ribando, R.J.

    1979-01-01

    A comparison is made between computed results and experimental data for single-phase natural convection in an experimental sodium loop. The tests were conducted in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) Facility, an engineering-scale high temperature sodium facility at the Oak Ridge National Laboratory used for thermal-hydraulic testing of simulated LMFBR subassemblies at normal and off-normal operating conditions. Heat generation in the 19 pin assembly during these tests was typical of decay heat levels. Tests were conducted both with zero initial forced flow and with a small initial forced flow. The bypass line was closed in most tests, but open in one. The computer code used to analyze these tests [LONAC (LOw flow and NAtural Convection)] is an ORNL-developed, fast running, one-dimensional, single-phase finite difference model for simulating forced and free convection transients in the THORS loop

  13. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...... atmospheres to replace the outer layers of stellar models. The additional turbulent pressure and asymmetrical opacity effects in the atmosphere model, compared to convection in stellar evolution models, serve to expand the atmosphere. The enlarged acoustic cavity lowers the pulsation frequencies bringing them...

  14. Influence of convective conditions on three dimensional mixed convective hydromagnetic boundary layer flow of Casson nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M.K. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Meraj, M.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Ashraf, M. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-10-15

    The present work deals with the steady laminar three-dimensional mixed convective magnetohydrodynamic (MHD) boundary layer flow of Casson nanofluid over a bidirectional stretching surface. A uniform magnetic field is applied normal to the flow direction. Similarity variables are implemented to convert the non-linear partial differential equations into ordinary ones. Convective boundary conditions are utilized at surface of the sheet. A numerical technique of Runge–Kutta–Fehlberg (RFK45) is used to obtain the results of velocity, temperature and concentration fields. The physical dimensionless parameters are discussed through tables and graphs. - Highlights: • Mixed convective boundary layer flow of Casson nanofluid is taken into account. • Impact of magnetic field is examined. • Convective heat and mass conditions are imposed. • Numerical solutions are presented and discussed.

  15. Boundary Layer Control of Rotating Convection Systems

    Science.gov (United States)

    King, E. M.; Stellmach, S.; Noir, J.; Hansen, U.; Aurnou, J. M.

    2008-12-01

    Rotating convection is ubiquitous in the natural universe, and is likely responsible for planetary processes such magnetic field generation. Rapidly rotating convection is typically organized by the Coriolis force into tall, thin, coherent convection columns which are aligned with the axis of rotation. This organizational effect of rotation is thought to be responsible for the strength and structure of magnetic fields generated by convecting planetary interiors. As thermal forcing is increased, the relative influence of rotation weakens, and fully three-dimensional convection can exist. It has long been assumed that rotational effects will dominate convection dynamics when the ratio of buoyancy to the Coriolis force, the convective Rossby number, Roc, is less than unity. We investigate the influence of rotation on turbulent Rayleigh-Benard convection via a suite of coupled laboratory and numerical experiments over a broad parameter range: Rayleigh number, 10310; Ekman number, 10-6≤ E ≤ ∞; and Prandtl number, 1≤ Pr ≤ 100. In particular, we measure heat transfer (as characterized by the Nusselt number, Nu) as a function of the Rayleigh number for several different Ekman and Prandtl numbers. Two distinct heat transfer scaling regimes are identified: non-rotating style heat transfer, Nu ~ Ra2/7, and quasigeostrophic style heat transfer, Nu~ Ra6/5. The transition between the non-rotating regime and the rotationally dominant regime is described as a function of the Ekman number, E. We show that the regime transition depends not on the global force balance Roc, but on the relative thicknesses of the thermal and Ekman boundary layers. The transition scaling provides a predictive criterion for the applicability of convection models to natural systems such as Earth's core.

  16. Radial convection of finite ion temperature, high amplitude plasma blobs

    DEFF Research Database (Denmark)

    Wiesenberger, M.; Madsen, Jens; Kendl, Alexander

    2014-01-01

    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line......-field transport compared to blobs simulated with the local model. The maximal blob amplitude is significantly higher in the global simulations than in the local ones. When the ion temperature is comparable to the electron temperature, global blob simulations show a reduced blob coherence and a decreased cross...

  17. Natural convection of nanofluids over a convectively heated vertical plate embedded in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Ghalambaz, M.; Noghrehabadi, A.; Ghanbarzadeh, A., E-mail: m.ghalambaz@gmail.com, E-mail: ghanbarzadeh.a@scu.ac.ir [Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of)

    2014-04-15

    In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb), thermophoresis parameter (Nt) and the convective heating parameter (Nc) on the boundary layer profiles are investigated. Furthermore, the variation of the reduced Nusselt number and reduced Sherwood number, as important parameters of heat and mass transfer, as a function of the Brownian motion, thermophoresis and convective heating parameters is discussed in detail. The results show that the thickness of the concentration profiles is much lower than the temperature and velocity profiles. For low values of the convective heating parameter (Nc), as the Brownian motion parameter increases, the non-dimensional wall temperature increases. However, for high values of Nc, the effect of the Brownian motion parameter on the non-dimensional wall temperature is not significant. As the Brownian motion parameter increases, the reduced Sherwood number increases and the reduced Nusselt number decreases. (author)

  18. Comparative numerical study of kaolin clay with three drying methods: Convective, convective–microwave and convective infrared modes

    International Nuclear Information System (INIS)

    Hammouda, I.; Mihoubi, D.

    2014-01-01

    Highlights: • Modelling of drying of deformable media. • Theoretical study of kaolin clay with three drying methods: convective, convective–microwave and convective infrared mode. • The stresses generated during convective, microwave/convective drying and infrared/convective drying. • The combined drying decrease the intensity of stresses developed during drying. - Abstract: A mathematical model is developed to simulate the response of a kaolin clay sample when subjected to convective, convective–microwave and convective–infrared mode. This model is proposed to describe heat, mass, and momentum transfers applied to a viscoelastic medium described by a Maxwell model with two branches. The combined drying methods were investigated to examine whether these types of drying may minimize cracking that can be generated in the product and to know whether the best enhancement is developed by the use of infra-red or microwave radiation. The numerical code allowed us to determine, and thus, compare the effect of the drying mode on drying rate, temperature, moisture content and mechanical stress evolutions during drying. The numerical results show that the combined drying decrease the intensity of stresses developed during drying and that convective–microwave drying is the best method that gives a good quality of dried product

  19. Experimental study of convective heat transfer during cooling with low air velocity in a stack of objects

    Energy Technology Data Exchange (ETDEWEB)

    Ben Amara, Sami; Laguerre, Onrawee [Cemagref - Refrigeration Processes Engineering Research Unit, parc de Tourvoie, BP 44, 92163 cedex, Antony (France); Flick, Denis [National Agronomic Institute - INAPG, 16 rue Claude Bernard, 75231 cedex 05, Paris (France)

    2004-12-01

    During cooling with low air velocity (u{<=}0.2 m.s{sup -1}) of a stack of foodstuffs (a few centimeters dimension), the radiation and conduction between products can be of the same order of magnitude as convection. A method was developed to quantify these various transfer modes. The experiment was carried out using an in-line spherical arrangement; however, the same methodology can be applied to other product shapes. The results confirm that the heat transfers by radiation and conduction cannot be neglected. In addition, the convective heat transfer coefficient varies not only with air velocity but also with the product position in the stack. (authors)

  20. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1976-01-01

    Extensive numerical studies of the dynamo equations due to the global convection are presented to simulate the solar cycle and to open the way to study general stellar magnetic cycles. The dynamo equations which represent the longitudinally-averaged magnetohydrodynamical action (mean magnetohydrodynamics) of the global convection under the influence of the rotation in the solar convection zone are considered here as an initial boundary-value problem. The latitudinal and radial structure of the dynamo action consisting of a generation action due to the differential rotation and a regeneration action due to the global convection is parameterized in accordance with the structure of the rotation and of the global convection. This is done especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. The effects of the dynamics of the global convection (e.g., the effects of the stratification of the physical conditions in the solar convection zone) are presumed to be all included in those parameters used in the model and they are presumed not to alter the results drastically since these effects are only to change the structure of the regeneration action topologically. (Auth.)

  1. A thermodynamically general theory for convective vortices

    Science.gov (United States)

    Renno, Nilton O.

    2008-08-01

    Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.

  2. Comparison of numerical results with experimental data for single-phase natural convection in an experimental sodium loop

    International Nuclear Information System (INIS)

    Ribando, R.J.

    1979-01-01

    A comparison is made between computed results and experimental data for a single-phase natural convection test in an experimental sodium loop. The test was conducted in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility, an engineering-scale high temperature sodium loop at the Oak Ridge National Laboratory (ORNL) used for thermal-hydraulic testing of simulated Liquid Metal Fast Breeder Reactor (LMFBR) subassemblies at normal and off-normal operating conditions. Heat generation in the 19 pin assembly during the test was typical of decay heat levels. The test chosen for analysis in this paper was one of seven natural convection runs conducted in the facility using a variety of initial conditions and testing parameters. Specifically, in this test the bypass line was open to simulate a parallel heated assembly and the test was begun with a pump coastdown from a small initial forced flow. The computer program used to analyze the test, LONAC (LOw flow and NAtural Convection) is an ORNL-developed, fast-running, one-dimensional, single-phase, finite-difference model used for simulating forced and free convection transients in the THORS loop

  3. Numerical simulations of convectively excited gravity waves

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.

    1983-01-01

    Magneto-convection and gravity waves are numerically simulated with a nonlinear, three-dimensional, time-dependent model of a stratified, rotating, spherical fluid shell heated from below. A Solar-like reference state is specified while global velocity, magnetic field, and thermodynamic perturbations are computed from the anelastic magnetohydrodynamic equations. Convective overshooting from the upper (superadiabatic) part of the shell excites gravity waves in the lower (subadiabatic) part. Due to differential rotation and Coriolis forces, convective cell patterns propagate eastward with a latitudinally dependent phase velocity. The structure of the excited wave motions in the stable region is more time-dependent than that of the convective motions above. The magnetic field tends to be concentrated over giant-cell downdrafts in the convective zone but is affected very little by the wave motion in the stable region

  4. Magnetic inhibition of convection and the fundamental properties of low-mass stars. II. Fully convective main-sequence stars

    Energy Technology Data Exchange (ETDEWEB)

    Feiden, Gregory A. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Chaboyer, Brian, E-mail: gregory.a.feiden@gmail.com, E-mail: brian.chaboyer@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)

    2014-07-01

    We examine the hypothesis that magnetic fields are inflating the radii of fully convective main-sequence stars in detached eclipsing binaries (DEBs). The magnetic Dartmouth stellar evolution code is used to analyze two systems in particular: Kepler-16 and CM Draconis. Magneto-convection is treated assuming stabilization of convection and also by assuming reductions in convective efficiency due to a turbulent dynamo. We find that magnetic stellar models are unable to reproduce the properties of inflated fully convective main-sequence stars, unless strong interior magnetic fields in excess of 10 MG are present. Validation of the magnetic field hypothesis given the current generation of magnetic stellar evolution models therefore depends critically on whether the generation and maintenance of strong interior magnetic fields is physically possible. An examination of this requirement is provided. Additionally, an analysis of previous studies invoking the influence of star spots is presented to assess the suggestion that star spots are inflating stars and biasing light curve analyses toward larger radii. From our analysis, we find that there is not yet sufficient evidence to definitively support the hypothesis that magnetic fields are responsible for the observed inflation among fully convective main-sequence stars in DEBs.

  5. Boundary-modulated Thermal Convection Model in the Mantle

    Science.gov (United States)

    Kurita, K.; Kumagai, I.

    2008-12-01

    Analog experiments have played an important role in the constructing ideas of mantle dynamics. The series of experiments by H. Ramberg is one of the successful examples. Recently, however the realm of the analog experiments seems to be overwhelmed by steady progress of computer simulations. Is there still room for the analog experiments? This might be a main and hidden subject of this session. Here we propose a working hypothesis how the convecting mantle behaves based on the analog experiments in the system of viscous fluid and particles. The essential part is the interaction of convecting flow with heterogeneities existing in the boundaries. It is proposed the preexisting topographical heterogeneity in the boundary could control the flow pattern of convecting fluid. If this kind of heterogeneity can be formed as a consequence of convective motion and mobilized by the flow, the convection also can control the heterogeneity. We can expect interactions in two ways, by which the system behaves in a self-organize fashion. To explore the mutual interactions between convection flow and heterogeneity the system of viscous fluid and particles with slightly higher density is selected as 2D Rayleigh-Benard type convection. The basic structure consists of a basal particulate layer where permeable convection transports heat and an upper viscous fluid layer. By reducing the magnitude of the density difference the convective flow can mobilize the particles and can erode the basal layer. The condition of this erosion can be identified in the phase diagram of the particle Shields"f and the Rayleigh numbers. At Ra greater than 107 the convection style drastically changed before and after the erosion. Before the erosion where the flat interface of the boundary is maintained small scaled turbulent convection pattern is dominant. After the erosion where the interface becomes bumpy the large scale convective motion is observed. The structure is coherent to that of the boundary. This

  6. Mantle Convection on Modern Supercomputers

    Science.gov (United States)

    Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.

    2015-12-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.

  7. The Role of Viscosity Contrast on the Plume Structure and Dynamics in High Rayleigh Number Convection

    Science.gov (United States)

    Kr, Sreenivas; Prakash, Vivek N.; Arakeri, Jaywant H.

    2010-11-01

    We study the plume structure in high Rayleigh number convection in the limit of large Prandtl numbers. This regime is relevant in Mantle convection, where the plume dynamics is not well understood due to complex rheology and chemical composition. We use analogue laboratory experiments to mimic mantle convection. Our focus in this paper is to understand the role of viscosity ratio, U, between the plume fluid and the ambient fluid on the structure and dynamics of the plumes. The PLIF technique has been used to visualize the structures of plumes rising from a planar source of compositional buoyancy at different regimes of U (1/300 to 2500). In the near-wall planform when U is one, a well-known dendritic line plume structure is observed. As U increases (U > 1; mantle hot spots), there is a morphological transition from line plumes to discrete spherical blobs, accompanied by an increase in the plume spacing and thickness. In vertical sections, as U increases (U > 1), the plume head shape changes from a mushroom-like structure to a "spherical-blob." When the U is decreased below one, (U<1; subduction regime), the formation of cellular patterns is favoured with sheet plumes. Both velocity and mixing efficiency are maximum when U is one, and decreases for extreme values of U. We quantify the morphological changes, dynamics and mixing variations of the plumes from experiments at different regimes.

  8. Thermo-electro-hydrodynamic convection under microgravity: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mutabazi, Innocent; Yoshikawa, Harunori N; Fogaing, Mireille Tadie; Travnikov, Vadim; Crumeyrolle, Olivier [Laboratoire Ondes et Milieux Complexes, UMR 6294, CNRS-Université du Havre, CS 80450, F-76058 Le Havre Cedex (France); Futterer, Birgit; Egbers, Christoph, E-mail: Innocent.Mutabazi@univ-lehavre.fr [Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus (Germany)

    2016-12-15

    Recent studies on thermo-electro-hydrodynamic (TEHD) convection are reviewed with focus on investigations motivated by the analogy with natural convection. TEHD convection originates in the action of the dielectrophoretic force generated by an alternating electric voltage applied to a dielectric fluid with a temperature gradient. This electrohydrodynamic force is analogous to Archimedean thermal buoyancy and can be regarded as a thermal buoyancy force in electric effective gravity. The review is concerned with TEHD convection in plane, cylindrical, and spherical capacitors under microgravity conditions, where the electric gravity can induce convection without any complexities arising from geometry or the buoyancy force due to the Earth’s gravity. We will highlight the convection in spherical geometry, comparing developed theories and numerical simulations with the GEOFLOW experiments performed on board the International Space Station (ISS). (paper)

  9. Transient Mixed Convection Validation for NGNP

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton [Utah State Univ., Logan, UT (United States); Schultz, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-19

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  10. Transient Mixed Convection Validation for NGNP

    International Nuclear Information System (INIS)

    Smith, Barton; Schultz, Richard

    2015-01-01

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  11. Segregation and convection in dendritic alloys

    Science.gov (United States)

    Poirier, D. R.

    1990-01-01

    Microsegregation in dentritic alloys is discussed, including solidification with and without thermal gradient, the convection of interdendritic liquid. The conservation of momentum, energy, and solute is considered. Directional solidification and thermosolutal convection are discussed.

  12. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years.

    Science.gov (United States)

    Thornalley, David J R; Oppo, Delia W; Ortega, Pablo; Robson, Jon I; Brierley, Chris M; Davis, Renee; Hall, Ian R; Moffa-Sanchez, Paola; Rose, Neil L; Spooner, Peter T; Yashayaev, Igor; Keigwin, Lloyd D

    2018-04-01

    The Atlantic meridional overturning circulation (AMOC) is a system of ocean currents that has an essential role in Earth's climate, redistributing heat and influencing the carbon cycle 1, 2 . The AMOC has been shown to be weakening in recent years 1 ; this decline may reflect decadal-scale variability in convection in the Labrador Sea, but short observational datasets preclude a longer-term perspective on the modern state and variability of Labrador Sea convection and the AMOC 1, 3-5 . Here we provide several lines of palaeo-oceanographic evidence that Labrador Sea deep convection and the AMOC have been anomalously weak over the past 150 years or so (since the end of the Little Ice Age, LIA, approximately AD 1850) compared with the preceding 1,500 years. Our palaeoclimate reconstructions indicate that the transition occurred either as a predominantly abrupt shift towards the end of the LIA, or as a more gradual, continued decline over the past 150 years; this ambiguity probably arises from non-AMOC influences on the various proxies or from the different sensitivities of these proxies to individual components of the AMOC. We suggest that enhanced freshwater fluxes from the Arctic and Nordic seas towards the end of the LIA-sourced from melting glaciers and thickened sea ice that developed earlier in the LIA-weakened Labrador Sea convection and the AMOC. The lack of a subsequent recovery may have resulted from hysteresis or from twentieth-century melting of the Greenland Ice Sheet 6 . Our results suggest that recent decadal variability in Labrador Sea convection and the AMOC has occurred during an atypical, weak background state. Future work should aim to constrain the roles of internal climate variability and early anthropogenic forcing in the AMOC weakening described here.

  13. Convective plasma stability consistent with MHD equilibrium in magnetic confinement systems with a decreasing field

    International Nuclear Information System (INIS)

    Tsventoukh, M. M.

    2010-01-01

    A study is made of the convective (interchange, or flute) plasma stability consistent with equilibrium in magnetic confinement systems with a magnetic field decreasing outward and large curvature of magnetic field lines. Algorithms are developed which calculate convective plasma stability from the Kruskal-Oberman kinetic criterion and in which the convective stability is iteratively consistent with MHD equilibrium for a given pressure and a given type of anisotropy in actual magnetic geometry. Vacuum and equilibrium convectively stable configurations in systems with a decreasing, highly curved magnetic field are calculated. It is shown that, in convectively stable equilibrium, the possibility of achieving high plasma pressures in the central region is restricted either by the expansion of the separatrix (when there are large regions of a weak magnetic field) or by the filamentation of the gradient plasma current (when there are small regions of a weak magnetic field, in which case the pressure drops mainly near the separatrix). It is found that, from the standpoint of equilibrium and of the onset of nonpotential ballooning modes, a kinetic description of convective stability yields better plasma confinement parameters in systems with a decreasing, highly curved magnetic field than a simpler MHD model and makes it possible to substantially improve the confinement parameters for a given type of anisotropy. For the Magnetor experimental compact device, the maximum central pressure consistent with equilibrium and stability is calculated to be as high as β ∼ 30%. It is shown that, for the anisotropy of the distribution function that is typical of a background ECR plasma, the limiting pressure gradient is about two times steeper than that for an isotropic plasma. From a practical point of view, the possibility is demonstrated of achieving better confinement parameters of a hot collisionless plasma in systems with a decreasing, highly curved magnetic field than those

  14. REVERSALS IN THE 6-CELLS CONVECTION DRIVEN

    Directory of Open Access Journals (Sweden)

    G.M. Vodinchar

    2015-12-01

    Full Text Available We describe the large-scale model geodynamo, which based on indirect data of inhomogeneities in the density of the Earth’s core. Convection structure is associated with spherical harmonic Y24 , which defines the basic poloidal component of velocity. Coriolis drift of this mode determines the toroidal component of velocity. Thus, 6 convective cells are formed. The model takes into account the feedback effect of the magnetic field on convection. It was ascertained that the model contains stable regimes of field generation. The velocity of convection and the dipole component of the magnetic field are close to the observed ones.

  15. Convection flow structure in the central polar cap

    Science.gov (United States)

    Bristow, W. A.

    2017-12-01

    A previous study of spatially averaged flow velocity in the central polar cap [Bristow et al., 2015] observed under steady IMF conditions found that it was extremely rare for the average to exceed 850 m/s (less than 0.2 % of the time). Anecdotally, however it is not uncommon to observe line-of-sight velocities in excess of 100 m/s in the McMurdo radar field of view directly over the magnetic pole. This discrepancy motivated this study, which examines the conditions under which high-velocity flows are observed at latitudes greater than 80° magnetic latitude. It was found that highly structured flows are common in the central polar cap, which leads to the flow within regions to have significant deviation from the average. In addition, the high-speed flow regions are usually directed away from the earth-sun line. No specific set of driving conditions was identified to be associated with high-speed flows. The study did conclude that 1)Polar cap velocities are generally highly structured. 2)Flow patterns typically illustrate narrow channels, vortical flow regions, and propagating features. 3) Persistent waves are a regular occurrence. 3)Features are observed to propagate from day side to night side, and from night side to day side.. 4)Convection often exhibits significant difference between the two hemispheres. And 5)About 10% of the time the velocity somewhere in the cap exceeds 1 Km/s The presentation will conclude with a discussion of the physical reasons for the flow structure. Bristow, W. A., E. Amata, J. Spaleta, and M. F. Marcucci (2015), Observations of the relationship between ionospheric central polar cap and dayside throat convection velocities, and solar wind/IMF driving, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021199.

  16. Convection-enhanced water evaporation

    OpenAIRE

    B. M. Weon; J. H. Je; C. Poulard

    2011-01-01

    Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplet...

  17. Numerical investigation of magnetic field effect on pressure in cylindrical and hemispherical silicon CZ crystal growth

    International Nuclear Information System (INIS)

    Mokhtari, F.; Bouabdallah, A.; Merah, A.; Oualli, H.

    2012-01-01

    The effect of axial magnetic field of different intensities on pressure in silicon Czochralski crystal growth is investigated in cylindrical and hemispherical geometries with rotating crystal and crucible and thermocapillary convection. As one important thermodynamic variable, the pressure is found to be more sensitive than temperature to magnetic field with strong dependence upon the vorticity field. The pressure at the triple point is proposed as a convenient parameter to control the homogeneity of the grown crystal. With a gradual increase of the magnetic field intensity the convection effect can be reduced without thermal fluctuations in the silicon melt. An evaluation of the magnetic interaction parameter critical value corresponding to flow, pressure and temperature homogenization leads to the important result that a relatively low axial magnetic field is required for the spherical system comparatively to the cylindrical one. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Numerical investigation of magnetic field effect on pressure in cylindrical and hemispherical silicon CZ crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, F. [Universite Mouloud Mammeri de Tizi Ouzou (Algeria); LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); Bouabdallah, A. [LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); Merah, A. [LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); M' hamed Bougara University, Boumerdes (Algeria); Oualli, H. [EMP, Bordj ElBahri, Algiers (Algeria)

    2012-12-15

    The effect of axial magnetic field of different intensities on pressure in silicon Czochralski crystal growth is investigated in cylindrical and hemispherical geometries with rotating crystal and crucible and thermocapillary convection. As one important thermodynamic variable, the pressure is found to be more sensitive than temperature to magnetic field with strong dependence upon the vorticity field. The pressure at the triple point is proposed as a convenient parameter to control the homogeneity of the grown crystal. With a gradual increase of the magnetic field intensity the convection effect can be reduced without thermal fluctuations in the silicon melt. An evaluation of the magnetic interaction parameter critical value corresponding to flow, pressure and temperature homogenization leads to the important result that a relatively low axial magnetic field is required for the spherical system comparatively to the cylindrical one. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Active control of convection

    Energy Technology Data Exchange (ETDEWEB)

    Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  20. Convectively coupled Kelvin waves in aquachannel simulations: 2. Life cycle and dynamical-convective coupling

    Science.gov (United States)

    Blanco, Joaquín. E.; Nolan, David S.; Mapes, Brian E.

    2016-10-01

    This second part of a two-part study uses Weather Research and Forecasting simulations with aquachannel and aquapatch domains to investigate the time evolution of convectively coupled Kelvin waves (CCKWs). Power spectra, filtering, and compositing are combined with object-tracking methods to assess the structure and phase speed propagation of CCKWs during their strengthening, mature, and decaying phases. In this regard, we introduce an innovative approach to more closely investigate the wave (Kelvin) versus entity (super cloud cluster or "SCC") dualism. In general, the composite CCKW structures represent a dynamical response to the organized convective activity. However, pressure and thermodynamic fields in the boundary layer behave differently. Further analysis of the time evolution of pressure and low-level moist static energy finds that these fields propagate eastward as a "moist" Kelvin wave (MKW), faster than the envelope of organized convection or SCC. When the separation is sufficiently large the SCC dissipates, and a new SCC generates to the east, in the region of strongest negative pressure perturbations. We revisit the concept itself of the "coupling" between convection and dynamics, and we also propose a conceptual model for CCKWs, with a clear distinction between the SCC and the MKW components.

  1. THE EFFECT OF SOLAR RADIATION ON AUTOMOBILE ENVIRONMENT THROUGH NATURAL CONVECTION AND MIXED CONVECTION

    Directory of Open Access Journals (Sweden)

    MD. FAISAL KADER

    2012-10-01

    Full Text Available In the present paper, the effect of solar radiation on automobiles has been studied by both experimentally and numerically. The numerical solution is done by an operation friendly and fast CFD code – SC/Tetra with a full scale model of a SM3 car and turbulence is modeled by the standard k-ε equation. Numerical analysis of the three-dimensional model predicts a detailed description of fluid flow and temperature distribution in the passenger compartment during both the natural convection due to the incoming solar radiation and mixed convection due to the flow from defrost nozzle and radiation. It can be seen that solar radiation is an important parameter to raise the compartment temperature above the ambient temperature during summer. During natural convection, the rate of heat transfer is fast at the initial period. In the mixed convection analyses, it is found that the temperature drops down to a comfortable range almost linearly at the initial stage. Experimental investigations are performed to determine the temperature contour on the windshield and the local temperature at a particular point for further validation of the numerical results.

  2. Monsoon Convective During the South China Sea Monsoon Experiment: Observations from Ground-Based Radar and the TRMM Satellite

    Science.gov (United States)

    Cifelli, Rob; Rickenbach, Tom; Halverson, Jeff; Keenan, Tom; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina

    1999-01-01

    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed following the onset of the active monsoon in the northern South China Sea region. The vertical structure of the convection during periods of strong westerly flow and relatively moist environmental conditions in the lower to mid-troposphere contrasted sharply with convection observed during periods of low level easterlies, weak shear, and relatively dry conditions in the mid to upper troposphere. Several examples of mesoscale convection will be shown from the ground (ship)-based and spaceborne radar data during times of TRMM satellite overpasses. Examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will also be discussed.

  3. What Determines Upscale Growth of Oceanic Convection into MCSs?

    Science.gov (United States)

    Zipser, E. J.

    2017-12-01

    Over tropical oceans, widely scattered convection of various depths may or may not grow upscale into mesoscale convective systems (MCSs). But what distinguishes the large-scale environment that favors such upscale growth from that favoring "unorganized", scattered convection? Is it some combination of large-scale low-level convergence and ascending motion, combined with sufficient instability? We recently put this to a test with ERA-I reanalysis data, with disappointing results. The "usual suspects" of total column water vapor, large-scale ascent, and CAPE may all be required to some extent, but their differences between large MCSs and scattered convection are small. The main positive results from this work (already published) demonstrate that the strength of convection is well correlated with the size and perhaps "organization" of convective features over tropical oceans, in contrast to tropical land, where strong convection is common for large or small convective features. So, important questions remain: Over tropical oceans, how should we define "organized" convection? By size of the precipitation area? And what environmental conditions lead to larger and better organized MCSs? Some recent attempts to answer these questions will be described, but good answers may require more data, and more insights.

  4. Simulating the convective precipitation diurnal cycle in a North American scale convection-permitting model

    Science.gov (United States)

    Scaff, L.; Li, Y.; Prein, A. F.; Liu, C.; Rasmussen, R.; Ikeda, K.

    2017-12-01

    A better representation of the diurnal cycle of convective precipitation is essential for the analysis of the energy balance and the water budget components such as runoff, evaporation and infiltration. Convection-permitting regional climate modeling (CPM) has been shown to improve the models' performance of summer precipitation, allowing to: (1) simulate the mesoscale processes in more detail and (2) to provide more insights in future changes in convective precipitation under climate change. In this work we investigate the skill of the Weather Research and Forecast model (WRF) in simulating the summer precipitation diurnal cycle over most of North America. We use 4 km horizontal grid spacing in a 13-years long current and future period. The future scenario is assuming no significant changes in large-scale weather patterns and aims to answer how the weather of the current climate would change if it would reoccur at the end of the century under a high-end emission scenario (Pseudo Global Warming). We emphasize on a region centered on the lee side of the Canadian Rocky Mountains, where the summer precipitation amount shows a regional maximum. The historical simulations are capable to correctly represent the diurnal cycle. At the lee-side of the Canadian Rockies the increase in the convective available potential energy as well as pronounced low-level moisture flux from the southeast Prairies explains the local maximum in summer precipitation. The PGW scenario shows an increase in summer precipitation amount and intensity in this region, consistently with a stronger source of moisture and convective energy.

  5. Numerical simulation of severe convective phenomena over Croatian and Hungarian territory

    Science.gov (United States)

    Mahović, Nataša Strelec; Horvath, Akos; Csirmaz, Kalman

    2007-02-01

    Squall lines and supercells cause severe weather and huge damages in the territory of Croatia and Hungary. These long living events can be recognised by radar very well, but the problem of early warning, especially successful numerical forecast of these phenomena, has not yet been solved in this region. Two case studies are presented here in which dynamical modelling approach gives promising results: a squall line preceding a cold front and a single supercell generated because of a prefrontal instability. The numerical simulation is performed using the PSU/NCAR meso-scale model MM5, with horizontal resolution of 3 km. Lateral boundary conditions are taken from the ECMWF model. The moist processes are resolved by Reisner mixed-phase explicit moisture scheme and for the radiation scheme a rapid radiative transfer model is applied. The analysis nudging technique is applied for the first two hours of the model run. The results of the simulation are very promising. The MM5 model reconstructed the appearance of the convective phenomena and showed the development of thunderstorm into the supercell phase. The model results give very detailed insight into wind changes showing the rotation of supercells, clearly distinguish warm core of the cell and give rather good precipitation estimate. The successful simulation of convective phenomena by a high-resolution MM5 model showed that even smaller scale conditions are contained in synoptic scale patterns, represented in this case by the ECMWF model.

  6. Observations of an enhanced convection channel in the cusp ionosphere

    International Nuclear Information System (INIS)

    Pinnock, M.; Rodger, A.S.; Dudeney, J.R.; Baker, K.B.; Neweli, P.T.; Greenwald, R.A.; Greenspan, M.E.

    1993-01-01

    Transient or patchy magnetic field line merging on the dayside magnetopause, giving rise to flux transfer events (FTEs), is thought to play a significant role in energizing high-latitude ionospheric convection during periods of southward interplanetary magnetic field. Several transient velocity patterns in the cusp ionosphere have been presented as candidate FTE signatures. Instrument limitations, combined with uncertainties about ionospheric signature of FTEs have yet to be presented. This paper describes combined observations by the PACE HF backscatter radar and the DMSP F9 polar-orbiting satellite of a transient velocity signature in the southern hemispheric cusp. The prevailing solar wind conditions suggest that it is the result of enhanced magnetic merging at the magnetopause. The satellite particle precipitation data associated with the transient are typically cusplike in nature. The presence of spatially discrete patches of accelerated ions at the equatorward edge of the cusp is consistent with the ion acceleration that could occur with merging. The combined radar line-of-sight velocity data and the satellite transverse plasma drift data are consistent with a channel of enhanced convection superposed on the ambient cusp plasma flow. This channel is at least 900 km in longitudinal extent but only 100 km wide. It is zonally aligned for most of its extent, except at the western limit where it rotates sharply poleward. Weak return flow is observed outside the channel. These observations are compared with and contrasted to similar events seen by the EISCAT radar and by optical instruments. 30 refs., 2 figs

  7. Convective Radio Occultations Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Biondi, R. [Atmospheric Radiation Measurement, Washington, DC (United States)

    2016-03-01

    Deep convective systems are destructive weather phenomena that annually cause many deaths and injuries as well as much damage, thereby accounting for major economic losses in several countries. The number and intensity of such phenomena have increased over the last decades in some areas of the globe. Damage is mostly caused by strong winds and heavy rain parameters that are strongly connected to the structure of the particular storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes that remain mostly unclear. The intensity forecast and monitoring of convective systems is one of the major challenges for meteorology because in situ measurements during extreme events are too sparse or unreliable and most ongoing satellite missions do not provide suitable time/space coverage.

  8. Comparison of numerical results with experimental data for single-phase natural convection in an experimental sodium loop. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Ribando, R.J.

    1979-01-01

    A comparison is made between computed results and experimental data for a single-phase natural convection test in an experimental sodium loop. The test was conducted in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility, an engineering-scale high temperature sodium loop at the Oak Ridge National Laboratory (ORNL) used for thermal-hydraulic testing of simulated Liquid Metal Fast Breeder Reactor (LMFBR) subassemblies at normal and off-normal operating conditions. Heat generation in the 19 pin assembly during the test was typical of decay heat levels. The test chosen for analysis in this paper was one of seven natural convection runs conducted in the facility using a variety of initial conditions and testing parameters. Specifically, in this test the bypass line was open to simulate a parallel heated assembly and the test was begun with a pump coastdown from a small initial forced flow. The computer program used to analyze the test, LONAC (LOw flow and NAtural Convection) is an ORNL-developed, fast-running, one-dimensional, single-phase, finite-difference model used for simulating forced and free convection transients in the THORS loop.

  9. A continuous and prognostic convection scheme based on buoyancy, PCMT

    Science.gov (United States)

    Guérémy, Jean-François; Piriou, Jean-Marcel

    2016-04-01

    A new and consistent convection scheme (PCMT: Prognostic Condensates Microphysics and Transport), providing a continuous and prognostic treatment of this atmospheric process, is described. The main concept ensuring the consistency of the whole system is the buoyancy, key element of any vertical motion. The buoyancy constitutes the forcing term of the convective vertical velocity, which is then used to define the triggering condition, the mass flux, and the rates of entrainment-detrainment. The buoyancy is also used in its vertically integrated form (CAPE) to determine the closure condition. The continuous treatment of convection, from dry thermals to deep precipitating convection, is achieved with the help of a continuous formulation of the entrainment-detrainment rates (depending on the convective vertical velocity) and of the CAPE relaxation time (depending on the convective over-turning time). The convective tendencies are directly expressed in terms of condensation and transport. Finally, the convective vertical velocity and condensates are fully prognostic, the latter being treated using the same microphysics scheme as for the resolved condensates but considering the convective environment. A Single Column Model (SCM) validation of this scheme is shown, allowing detailed comparisons with observed and explicitly simulated data. Four cases covering the convective spectrum are considered: over ocean, sensitivity to environmental moisture (S. Derbyshire) non precipitating shallow convection to deep precipitating convection, trade wind shallow convection (BOMEX) and strato-cumulus (FIRE), together with an entire continental diurnal cycle of convection (ARM). The emphasis is put on the characteristics of the scheme which enable a continuous treatment of convection. Then, a 3D LAM validation is presented considering an AMMA case with both observations and a CRM simulation using the same initial and lateral conditions as for the parameterized one. Finally, global

  10. Concepts of magnetospheric convection

    International Nuclear Information System (INIS)

    Vasyliunas, V.M.

    1975-01-01

    Magnetospheric physics, which grew out of attempts to understand the space environment of the Earth, is becoming increasingly applicable to other systems in the Universe. Among the planets, in addition to the Earth, Jupiter, Mercury, Mars and (in a somewhat different way) Venus are now known to have magnetospheres. The magnetospheres of pulsars have been regarded as an essential part of the pulsar phenomenon. Other astrophysical systems, such as supernova remnant shells or magnetic stars and binary star systems, may be describable as magnetospheres. The major concepts of magnetospheric physics thus need to be formulated in a general way not restricted to the geophysical context in which they may have originated. Magnetospheric convection has been one of the most important and fruitful concepts in the study of the Earth's magnetosphere. This paper describes the basic theoretical notions of convection in a manner applicable to magnetospheres generally and discusses the relative importance of convective corotational motions, with particular reference to the comparison of the Earth and Jupiter. (Auth.)

  11. Convective equilibrium and mixing-length theory for stellarator reactors

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Kulsrud, R.M.

    1985-09-01

    In high β stellarator and tokamak reactors, the plasma pressure gradient in some regions of the plasma may exceed the critical pressure gradient set by ballooning instabilities. In these regions, convective cells break out to enhance the transport. As a result, the pressure gradient can rise only slightly above the critical gradient and the plasma is in another state of equilibrium - ''convective equilibrium'' - in these regions. Although the convective transport cannot be calculated precisely, it is shown that the density and temperature profiles in the convective region can still be estimated. A simple mixing-length theory, similar to that used for convection in stellar interiors, is introduced in this paper to provide a qualitative description of the convective cells and to show that the convective transport is highly efficient. A numerical example for obtaining the density and temperature profiles in a stellarator reactor is given

  12. Understanding and controlling plasmon-induced convection

    Science.gov (United States)

    Roxworthy, Brian J.; Bhuiya, Abdul M.; Vanka, Surya P.; Toussaint, Kimani C.

    2014-01-01

    The heat generation and fluid convection induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid convection. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in convection velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of convection in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale.

  13. Phenomenology of convection-parameterization closure

    Directory of Open Access Journals (Sweden)

    J.-I. Yano

    2013-04-01

    Full Text Available Closure is a problem of defining the convective intensity in a given parameterization. In spite of many years of efforts and progress, it is still considered an overall unresolved problem. The present article reviews this problem from phenomenological perspectives. The physical variables that may contribute in defining the convective intensity are listed, and their statistical significances identified by observational data analyses are reviewed. A possibility is discussed for identifying a correct closure hypothesis by performing a linear stability analysis of tropical convectively coupled waves with various different closure hypotheses. Various individual theoretical issues are considered from various different perspectives. The review also emphasizes that the dominant physical factors controlling convection differ between the tropics and extra-tropics, as well as between oceanic and land areas. Both observational as well as theoretical analyses, often focused on the tropics, do not necessarily lead to conclusions consistent with our operational experiences focused on midlatitudes. Though we emphasize the importance of the interplays between these observational, theoretical and operational perspectives, we also face challenges for establishing a solid research framework that is universally applicable. An energy cycle framework is suggested as such a candidate.

  14. A Case Study of a Quasi-Stationary Tropical Convective Line

    Science.gov (United States)

    1989-08-01

    G Scialom, and J. Testud , 1987: A tropical squall line observed during the COPT 81 experiment in West Africa. Part 1: Kinematic structure inferred...mesosynoptic analysis of the thunderstorms on 28 August 1958. Brit. Meteor. Office, Geophys. Memo., No. 106, 74 pp. Rcux, F., J. Testud , M. Payen and B. Pinty

  15. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Murphy, Jeremiah W.; Dolence, Joshua C.; Burrows, Adam

    2013-01-01

    Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., K r ∼ K θ + K φ ). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.

  16. Behaviors and transitions along the path to magnetostrophic convection

    Science.gov (United States)

    Grannan, A. M.; Vogt, T.; Horn, S.; Hawkins, E. K.; Aggarwal, A.; Aurnou, J. M.

    2017-12-01

    The generation of magnetic fields in planetary and stellar interiors are believed to be controlled primarily by turbulent convection constrained by Coriolis and Lorentz forces in their electrically conducting fluid layers. Yet relatively few laboratory experiments are capable of investigating the different regimes of turbulent magnetohydrodynamic convection. In this work, we perform one laboratory experiment in a cylinder at a fixed heat flux using the liquid metal gallium in order to investigate, sequentially: Rayleigh-Bènard convection without any imposed constraints, magnetoconvection with a Lorentz constraint imposed by vertical magnetic field, rotating convection with a Coriolis constraint imposed by rotation, and finally the magnetostrophic convective regime where both Coriolis and Lorentz are imposed and equal. Using an array of internal and external temperature probes, we show that each regime along the path to magnetostrophic convection is unique. The behaviors and transitions in the dominant modes of convection as well as their fundamental frequencies and wavenumbers are investigated.

  17. Heating-insensitive scale increase caused by convective precipitation

    Science.gov (United States)

    Haerter, Jan; Moseley, Christopher; Berg, Peter

    2017-04-01

    The origin of intense convective extremes and their unusual temperature dependence has recently challenged traditional thermodynamic arguments, based on the Clausius-Clapeyron relation. In a sequence of studies (Lenderink and v. Mejgaard, Nat Geosc, 2008; Berg, Haerter, Moseley, Nat Geosc, 2013; and Moseley, Hohenegger, Berg, Haerter, Nat Geosc, 2016) the argument of convective-type precipitation overcoming the 7%/K increase in extremes by dynamical, rather than thermodynamic, processes has been promoted. How can the role of dynamical processes be approached for precipitating convective cloud? One-phase, non-precipitating Rayleigh-Bénard convection is a classical problem in complex systems science. When a fluid between two horizontal plates is sufficiently heated from below, convective rolls spontaneously form. In shallow, non-precipitating atmospheric convection, rolls are also known to form under specific conditions, with horizontal scales roughly proportional to the boundary layer height. Here we explore within idealized large-eddy simulations, how the scale of convection is modified, when precipitation sets in and intensifies in the course of diurnal solar heating. Before onset of precipitation, Bénard cells with relatively constant diameter form, roughly on the scale of the atmospheric boundary layer. We find that the onset of precipitation then signals an approximately linear (in time) increase in horizontal scale. This scale increase progresses at a speed which is rather insensitive to changes in surface temperature or changes in the rate at which boundary conditions change, hinting at spatial characteristics, rather than temperature, as a possible control on spatial scales of convection. When exploring the depth of spatial correlations, we find that precipitation onset causes a sudden disruption of order and a subsequent complete disintegration of organization —until precipitation eventually ceases. Returning to the initial question of convective

  18. Benard convection in gaps and cavities

    International Nuclear Information System (INIS)

    Mueller, U.

    1981-04-01

    The article contains two parts. In the first part a condensed review of the most striking phenomena in Benard convection in laterally confined fluid layers is given. In the second part recent experimental and theoretical work on Benard convection in gaps is presented an analysed. (orig.) [de

  19. Convective transport in tokamaks

    International Nuclear Information System (INIS)

    D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.; Krasheninnikov, S.I.; Pigarov, A.Yu.; Yu, G.Q.; Xu, X.Q.; Nevins, W.M.

    2005-01-01

    Scrape-off-layer (SOL) convection in fusion experiments appears to be a universal phenomenon that can 'short-circuit' the divertor in some cases. The theory of 'blob' transport provides a simple and robust physical paradigm for studying convective transport. This paper summarizes recent advances in the theory of blob transport and its comparison with 2D and 3D computer simulations. We also discuss the common physical basis relating radial transport of blobs, pellets, and ELMs and a new blob regime that may lead to a connection between blob transport and the density limit. (author)

  20. Mathematical models of convection

    CERN Document Server

    Andreev, Victor K; Goncharova, Olga N; Pukhnachev, Vladislav V

    2012-01-01

    Phenomena of convection are abundant in nature as well as in industry. This volume addresses the subject of convection from the point of view of both, theory and application. While the first three chapters provide a refresher on fluid dynamics and heat transfer theory, the rest of the book describes the modern developments in theory. Thus it brings the reader to the ""front"" of the modern research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fiel

  1. Convective behaviour in severe accidents

    International Nuclear Information System (INIS)

    Clement, C.F.

    1988-01-01

    The nature and magnitude of the hazard from radioactivity posed by a possible nuclear accident depend strongly on convective behaviour within and immediately adjacent to the plant in question. This behaviour depends upon the nature of the vapour-gas-aerosol mixture concerned, and can show unusual properties such as 'upside-down' convection in which hot mixtures fall and cold mixtures rise. Predictions and criteria as to the types of behaviour which could possibly occur are summarised. Possible applications to present reactors are considered, and ways in which presently expected convection could be drastically modified are described. In some circumstances these could be used to suppress the radioactive source term or to switch its effect between distant dilute contamination and severe local contamination. (author). 8 refs, 2 figs, 2 tabs

  2. Steady, three-dimensional, internally heated convection

    International Nuclear Information System (INIS)

    Schubert, G.; Glatzmaier, G.A.; Travis, B.

    1993-01-01

    Numerical calculations have been carried out of steady, symmetric, three-dimensional modes of convection in internally heated, infinite Prandtl number, Boussinesq fluids at a Rayleigh number of 1.4x10 4 in a spherical shell with inner/outer radius of 0.55 and in a 3x3x1 rectangular box. Multiple patterns of convection occur in both geometries. In the Cartesian geometry the patterns are dominated by cylindrical cold downflows and a broad hot upwelling. In the spherical geometry the patterns consist of cylindrical cold downwellings centered either at the vertices of a tetrahedron or the centers of the faces of a cube. The cold downflow cylinders are immersed in a background of upwelling within which there are cylindrical hot concentrations (plumes) and hot halos around the downflows. The forced hot upflow return plumes of internally heated spherical convection are fundamentally different from the buoyancy-driven plumes of heated from below convection

  3. What favors convective aggregation and why?

    Science.gov (United States)

    Muller, Caroline; Bony, Sandrine

    2015-07-01

    The organization of convection is ubiquitous, but its physical understanding remains limited. One particular type of organization is the spatial self-aggregation of convection, taking the form of cloud clusters, or tropical cyclones in the presence of rotation. We show that several physical processes can give rise to self-aggregation and highlight the key features responsible for it, using idealized simulations. Longwave radiative feedbacks yield a "radiative aggregation." In that case, sufficient spatial variability of radiative cooling rates yields a low-level circulation, which induces the upgradient energy transport and radiative-convective instability. Not only do vertically integrated radiative budgets matter but the vertical profile of cooling is also crucial. Convective aggregation is facilitated when downdrafts below clouds are weak ("moisture-memory aggregation"), and this is sufficient to trigger aggregation in the absence of longwave radiative feedbacks. These results shed some light on the sensitivity of self-aggregation to various parameters, including resolution or domain size.

  4. Spherical-shell boundaries for two-dimensional compressible convection in a star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.

    2016-10-01

    Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so

  5. Laminar Mixed Convection Heat Transfer Correlation for Horizontal Pipes

    International Nuclear Information System (INIS)

    Chae, Myeong Seon; Chung, Bum Jin

    2013-01-01

    This study aimed at producing experimental results and developing a new heat transfer correlation based upon a semi-empirical buoyancy coefficient. Mixed convection mass transfers inside horizontal pipe were investigated for the pipe of various length-to-diameters with varying Re. Forced convection correlation was developed using a very short cathode. With the length of cathode increase and Re decrease, the heat transfer rates were enhanced and becomes higher than that of forced convection. An empirical buoyancy coefficient was derived from correlation of natural convection and forced convection with the addition of L/D. And the heat transfer correlation for laminar mixed convection was developed using the buoyancy coefficient, it describes not only current results, but also results of other studies. Mixed convection occurs when the driving forces of both forced and natural convections are of comparable magnitude (Gr/Re 2 ∼1). It is classical problem but is still an active area of research for various thermal applications such as flat plate solar collectors, nuclear reactors and heat exchangers. The effect of buoyancy on heat transfer in a forced flow is varied by the direction of the buoyancy force. In a horizontal pipe the direction of the forced and buoyancy forces are perpendicular. The studies on the mixed convections of the horizontal pipes were not investigated very much due to the lack of practical uses compared to those of vertical pipes. Even the definitions on the buoyancy coefficient that presents the relative influence of the forced and the natural convections, are different by scholars. And the proposed heat transfer correlations do not agree

  6. Boiling Suppression in Convective Flow

    International Nuclear Information System (INIS)

    Aounallah, Y.

    2004-01-01

    The development of convective boiling heat transfer correlations and analytical models has almost exclusively been based on measurements of the total heat flux, and therefore on the overall two-phase heat transfer coefficient, when the well-known heat transfer correlations have often assumed additive mechanisms, one for each mode of heat transfer, convection and boiling. While the global performance of such correlations can readily be assessed, the predictive capability of the individual components of the correlation has usually remained elusive. This becomes important when, for example, developing mechanistic models for subcooled void formation based on the partitioning of the wall heat flux into a boiling and a convective component, or when extending a correlation beyond its original range of applications where the preponderance of the heat transfer mechanisms involved can be significantly different. A new examination of existing experimental heat transfer data obtained under fixed hydrodynamic conditions, whereby the local flow conditions are decoupled from the local heat flux, has allowed the unequivocal isolation of the boiling contribution over a broad range of thermodynamic qualities (0 to 0.8) for water at 7 MPa. Boiling suppression, as the quality increases, has consequently been quantified, thus providing valuable new insights on the functionality and contribution of boiling in convective flows. (author)

  7. Project "Convective Wind Gusts" (ConWinG)

    Science.gov (United States)

    Mohr, Susanna; Richter, Alexandra; Kunz, Michael; Ruck, Bodo

    2017-04-01

    Convectively-driven strong winds usually associated with thunderstorms frequently cause substantial damage to buildings and other structures in many parts of the world. Decisive for the high damage potential are the short-term wind speed maxima with duration of a few seconds, termed as gusts. Several studies have shown that convectively-driven gusts can reach even higher wind speeds compared to turbulent gusts associated with synoptic-scale weather systems. Due to the small-scale and non-stationary nature of convective wind gusts, there is a considerable lack of knowledge regarding their characteristics and statistics. Furthermore, their interaction with urban structures and their influence on buildings is not yet fully understood. For these two reasons, convective wind events are not included in the present wind load standards of buildings and structures, which so far have been based solely on the characteristics of synoptically-driven wind gusts in the near-surface boundary layer (e. g., DIN EN 1991-1-4:2010-12; ASCE7). However, convective and turbulent gusts differ considerably, e.g. concerning vertical wind-speed profiles, gust factors (i.e., maximum to mean wind speed), or exceedance probability curves. In an effort to remedy this situation, the overarching objective of the DFG-project "Convective Wind Gusts" (ConWinG) is to investigate the characteristics and statistics of convective gusts as well as their interaction with urban structures. Based on a set of 110 climate stations of the German Weather Service (DWD) between 1992 and 2014, we analyzed the temporal and spatial distribution, intensity, and occurrence probability of convective gusts. Similar to thunderstorm activity, the frequency of convective gusts decreases gradually from South to North Germany. A relation between gust intensity/probability to orography or climate conditions cannot be identified. Rather, high wind speeds, e.g., above 30 m/s, can be expected everywhere in Germany with almost

  8. MHD natural convection in open inclined square cavity with a heated circular cylinder

    Science.gov (United States)

    Hosain, Sheikh Anwar; Alim, M. A.; Saha, Satrajit Kumar

    2017-06-01

    MHD natural convection in open cavity becomes very important in many scientific and engineering problems, because of it's application in the design of electronic devices, solar thermal receivers, uncovered flat plate solar collectors having rows of vertical strips, geothermal reservoirs, etc. Several experiments and numerical investigations have been presented for describing the phenomenon of natural convection in open cavity for two decades. MHD natural convection and fluid flow in a two-dimensional open inclined square cavity with a heated circular cylinder was considered. The opposite wall to the opening side of the cavity was first kept to constant heat flux q, at the same time the surrounding fluid interacting with the aperture was maintained to an ambient temperature T∞. The top and bottom wall was kept to low and high temperature respectively. The fluid with different Prandtl numbers. The properties of the fluid are assumed to be constant. As a result a buoyancy force is created inside the cavity due to temperature difference and natural convection is formed inside the cavity. The Computational Fluid Dynamics (CFD) code are used to discretize the solution domain and represent the numerical result to graphical form.. Triangular meshes are used to obtain the solution of the problem. The streamlines and isotherms are produced, heat transfer parameter Nu are obtained. The results are presented in graphical as well as tabular form. The results show that heat flux decreases for increasing inclination of the cavity and the heat flux is a increasing function of Prandtl number Pr and decreasing function of Hartmann number Ha. It is observed that fluid moves counterclockwise around the cylinder in the cavity. Various recirculations are formed around the cylinder. The almost all isotherm lines are concentrated at the right lower corner of the cavity. The object of this work is to develop a Mathematical model regarding the effect of MHD natural convection flow around

  9. Monsoon Convection during the South China Sea Monsoon Experiment Observed from Shipboard Radar and the TRMM Satellite

    Science.gov (United States)

    Rickenbach, Tom; Cifelli, Rob; Halverson, Jeff; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina; Liu, Ching-Hwang; hide

    1999-01-01

    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed during the active monsoon periods in a southwesterly flow regime. Several examples of mesoscale convection will be shown from ship-based and spacebome radar reflectivity data during times of TRMM satellite overpasses. Further examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will be discussed. A strong waterspout was observed very near the ship from an isolated cell in the pre-monsoon period, and was well documented with photography, radar, sounding, and sounding data.

  10. Environmental Characteristics of Convective Systems During TRMM-LBA

    Science.gov (United States)

    Halverson, Jeffrey B.; Rickenbach, Thomas; Roy, Biswadev; Pierce, Harold; Williams, Earle; Einaudi, Franco (Technical Monitor)

    2001-01-01

    In this paper, data collected from 51 days of continual upper atmospheric soundings and TOGA radar at ABRACOS Hill during the TRMM-LBA experiment are used to describe the mean thermodynamic and kinematic airmass properties of wet season convection over Rondonia, Brazil. Distinct multi-day easterly and westerly lower tropospheric wind regimes occurred during the campaign with contrasting airmass characteristics. Westerly wind periods featured modest CAPE (1000 J/kg), moist conditions (>90% RH) extending through 700 mb and shallow (900 mb) speed shear on the order of 10(exp -4)/s. This combination of characteristics promoted convective systems that featured a relatively large fraction of stratiform rainfall and weak convection nearly devoid of lightning. The environment is very similar to the general airmass conditions experienced during the Darwin, Australia monsoon convective regime. In contrast, easterly regime convective systems were more strongly electrified and featured larger convective rain rates and reduced stratiform rainfall fraction. These systems formed in an environment with significantly larger CAPE (1500 J/kg), drier lower and middle level humidities (in the lowest 1-2 km, thus contributing to a more explosive growth of convection. The time series of low- and mid-level averaged humidity exhibited marked variability between westerly and easterly regimes and was characterized by low frequency (i.e., multi-day to weekly) oscillations. The synoptic scale origins of these moisture fluctuations are examined, which include the effects of variable low-level airmass trajectories and upper-level, westward migrating cyclonic vortices. The results reported herein provide an environmental context for ongoing dual Doppler analyses and numerical modeling case studies of individual TRMM-LBA convective systems.

  11. Heat transfer of laminar mixed convection of liquid

    CERN Document Server

    Shang, De-Yi

    2016-01-01

    This book presents a new algorithm to calculate fluid flow and heat transfer of laminar mixed convection. It provides step-by-step tutorial help to learn quickly how to set up the theoretical and numerical models of laminar mixed convection, to consider the variable physical properties of fluids, to obtain the system of numerical solutions, to create a series of formalization equations for the convection heat transfer by using a curve-fitting approach combined with theoretical analysis and derivation. It presents the governing ordinary differential equations of laminar mixed convection, equivalently transformed by an innovative similarity transformation with the description of the related transformation process. A system of numerical calculations of the governing ordinary differential equations is presented for the water laminar mixed convection. A polynomial model is induced for convenient and reliable treatment of variable physical properties of liquids. The developed formalization equations of mixed convec...

  12. Cumulus convection and the terrestrial water-vapor distribution

    Science.gov (United States)

    Donner, Leo J.

    1988-01-01

    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  13. A Gigantic Jet Observed Over an Mesoscale Convective System in Midlatitude Region

    Science.gov (United States)

    Yang, Jing; Sato, Mitsuteru; Liu, Ningyu; Lu, Gaopeng; Wang, Yu; Wang, Zhichao

    2018-01-01

    Gigantic jets (GJs) are mostly observed over summer tropical or tropical-like thunderstorms. This study reports observation of a GJ over a mesoscale convective system (MCS) in the midlatitude region in eastern China. The GJ is observed over a relatively weak radar reflectivity region ahead of the leading line, and the maximum radar echo top along the GJ azimuth was lower than the tropopause in the same region, significantly different from past studies that indicate summer GJs are usually associated with convective surges or overshooting tops. Also different from most of previous observations showing GJ-producing summer thunderstorms only produced GJ type of transient luminous events during their life cycles, two sprites were also captured in a time window of 15 min containing the GJ, indicating that the MCS provides favorable conditions not only for the GJ but also for the sprites. The balloon-borne soundings of the MCS show that there were large wind shears in the middle and upper levels of the thundercloud, which may have played important roles for the GJ production.

  14. Some problems of free convection in a macrocapillary

    Energy Technology Data Exchange (ETDEWEB)

    Luikov, A V; Berkovsky, B M; Kolpashchikov, V L

    1971-01-01

    Solution is given to a number of problems of free convection in incompressible viscous fluid in elementary macrocapillaries with nonuniform temperature distribution at the boundary. The fluid flow structure and effect of a magnetic field on convection in the case of conducting fluid has been studied in detail. The influence of macrocapillary properties on the flow structure, rate of convection, and temperature distribution has been estimated.

  15. Oscillatory magneto-convection under magnetic field modulation

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2018-03-01

    Full Text Available In this paper we investigate an oscillatory mode of nonlinear magneto-convection under time dependant magnetic field. The time dependant magnetic field consists steady and oscillatory parts. The oscillatory part of the imposed magnetic field is assumed to be of third order. An externally imposed vertical magnetic field in an electrically conducting horizontal fluid layer is considered. The finite amplitude analysis is discussed while perturbing the system. The complex Ginzburg-Landau model is used to derive an amplitude of oscillatory convection for weakly nonlinear mode. Heat transfer is quantified in terms of the Nusselt number, which is governed by the Landau equation. The variation of the modulation excitation of the magnetic field alternates heat transfer in the layer. The modulation excitation of the magnetic field is used either to enhance or diminish the heat transfer in the system. Further, it is found that, oscillatory mode of convection enhances the heat transfer and than stationary convection. The results have possible technological applications in magnetic fluid based systems involving energy transmission. Keywords: Weakly nonlinear theory, Oscillatory convection, Complex Ginzburg Landau model, Magnetic modulation

  16. IDENTIFYING POTENTIAL MARKERS OF THE SUN'S GIANT CONVECTIVE SCALE

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W.; Wang, Xin [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Scherrer, Philip H. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-04-01

    Line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO) are analyzed using a diagnostic known as the magnetic range of influence (MRoI). The MRoI is a measure of the length over which a photospheric magnetogram is balanced and so its application gives the user a sense of the connective length scales in the outer solar atmosphere. The MRoI maps and histograms inferred from the SDO/HMI magnetograms primarily exhibit four scales: a scale of a few megameters that can be associated with granulation, a scale of a few tens of megameters that can be associated with super-granulation, a scale of many hundreds to thousands of megameters that can be associated with coronal holes and active regions, and a hitherto unnoticed scale that ranges from 100 to 250 Mm. We infer that this final scale is an imprint of the (rotationally driven) giant convective scale on photospheric magnetism. This scale appears in MRoI maps as well-defined, spatially distributed concentrations that we have dubbed ''g-nodes''. Furthermore, using coronal observations from the Atmospheric Imaging Assembly on SDO, we see that the vicinity of these g-nodes appears to be a preferred location for the formation of extreme-ultraviolet (and likely X-Ray) brightpoints. These observations and straightforward diagnostics offer the potential of a near real-time mapping of the Sun's largest convective scale, a scale that possibly reaches to the very bottom of the convective zone.

  17. Convective behaviour in vapour-gas-aerosol mixtures

    International Nuclear Information System (INIS)

    Clement, C.F.

    1986-01-01

    Unusual convective behaviour can occur in mixtures of gases and heavy vapour, including stabilization of mixtures hot at the base and 'upside-down' convection in mixtures hot at the top. Previous work produced a criterion for this behaviour which ignored the necessary presence of an aerosol. Modification arising from aerosol condensation is derived and is shown to involve the Lewis and condensation numbers of the mixture, as well as a quantity involving the temperature drop across a boundary layer. It becomes negligible at high temperatures, but can crucially affect the temperature for the onset of unusual behaviour. Aerosol formation produces an asymmetry between the convective forces in boundary layers in which the mixture is being heated and cooled, respectively, for example at the base and roof of a cavity. The convective behaviour discussed could occur in situations relevant to nuclear safety. (author)

  18. Regime-dependent forecast uncertainty of convective precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Keil, Christian; Craig, George C. [Muenchen Univ. (Germany). Meteorologisches Inst.

    2011-04-15

    Forecast uncertainty of convective precipitation is influenced by all scales, but in different ways in different meteorological situations. Forecasts of the high resolution ensemble prediction system COSMO-DE-EPS of Deutscher Wetterdienst (DWD) are used to examine the dominant sources of uncertainty of convective precipitation. A validation with radar data using traditional as well as spatial verification measures highlights differences in precipitation forecast performance in differing weather regimes. When the forecast uncertainty can primarily be associated with local, small-scale processes individual members run with the same variation of the physical parameterisation driven by different global models outperform all other ensemble members. In contrast when the precipitation is governed by the large-scale flow all ensemble members perform similarly. Application of the convective adjustment time scale confirms this separation and shows a regime-dependent forecast uncertainty of convective precipitation. (orig.)

  19. Improved nowcasting of precipitation based on convective analysis fields

    Directory of Open Access Journals (Sweden)

    T. Haiden

    2007-04-01

    Full Text Available The high-resolution analysis and nowcasting system INCA (Integrated Nowcasting through Comprehensive Analysis developed at the Austrian national weather service provides three-dimensional fields of temperature, humidity, and wind on an hourly basis, and two-dimensional fields of precipitation rate in 15 min intervals. The system operates on a horizontal resolution of 1 km and a vertical resolution of 100–200 m. It combines surface station data, remote sensing data (radar, satellite, forecast fields of the numerical weather prediction model ALADIN, and high-resolution topographic data. An important application of the INCA system is nowcasting of convective precipitation. Based on fine-scale temperature, humidity, and wind analyses a number of convective analysis fields are routinely generated. These fields include convective boundary layer (CBL flow convergence and specific humidity, lifted condensation level (LCL, convective available potential energy (CAPE, convective inhibition (CIN, and various convective stability indices. Based on the verification of areal precipitation nowcasts it is shown that the pure translational forecast of convective cells can be improved by using a decision algorithm which is based on a subset of the above fields, combined with satellite products.

  20. Convective effects in a regulatory and proposed fire model

    International Nuclear Information System (INIS)

    Wix, S.D.; Hohnstreiter, G.F.

    1995-01-01

    Radiation is the dominant mode of heat transfer in large fires. However, convection can be as much as 10 to 20 percent of the total heat transfer to an object in a large fire. The current radioactive material transportation packaging regulations include convection as a mode of heat transfer in the accident condition scenario. The current International Atomic Energy Agency Safety Series 6 packaging regulation states ''the convection coefficient shall be that value which the designer can justify if the package were exposed to the specified fire''. The current Title 10, Code of Federal Regulations, Part 71 (10CFR71) packaging regulation states ''when significant, convection heat input must be included on the basis of still, ambient air at 800 degrees C (1475 degrees F)''. Two questions that can arise in an analysts mind from an examination of the packaging regulations is whether convection is significant and whether convection should be included in the design analysis of a radioactive materials transportation container. The objective of this study is to examine the convective effects on an actual radioactive materials transportation package using a regulatory and a proposed thermal boundary condition

  1. Evaluation of convection-resolving models using satellite data: The diurnal cycle of summer convection over the Alps

    Directory of Open Access Journals (Sweden)

    Michael Keller

    2016-05-01

    Full Text Available Diurnal moist convection is an important element of summer precipitation over Central Europe and the Alps. It is poorly represented in models using parameterized convection. In this study, we investigate the diurnal cycle of convection during 11 days in June 2007 using the COSMO model. The numerical simulations are compared with satellite measurements of GERB and SEVIRI, AVHRR satellite-based cloud properties and ground-based precipitation and temperature measurements. The simulations use horizontal resolutions of 12 km (convection-parameterizing model, CPM and 2 km (convection-resolving model, CRM and either a one-moment microphysics scheme (1M or a two-moment microphysics scheme (2M.They are conducted for a computational domain that covers an extended Alpine area from Northern Italy to Northern Germany. The CPM with 1M exhibits a significant overestimation of high cloud cover. This results in a compensation effect in the top of the atmosphere energy budget due to an underestimation of outgoing longwave radiation (OLR and an overestimation of reflected solar radiation (RSR. The CRM reduces high cloud cover and improves the OLR bias from a domain mean of −20.1 to −2.6 W/m2. When using 2M with ice sedimentation in the CRM, high cloud cover is further reduced. The stronger diurnal cycle of high cloud cover and associated convection over the Alps, compared to less mountainous regions, is well represented by the CRM but underestimated by the CPM. Despite substantial differences in high cloud cover, the use of a 2M has no significant impact on the diurnal cycle of precipitation. Furthermore, a negative mid-level cloud bias is found for all simulations.

  2. A Thermodynamically General Theory for Convective Circulations and Vortices

    Science.gov (United States)

    Renno, N. O.

    2007-12-01

    Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.

  3. The impact of parametrized convection on cloud feedback

    Science.gov (United States)

    Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming

    2015-01-01

    We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud

  4. From convection rolls to finger convection in double-diffusive turbulence

    NARCIS (Netherlands)

    Yang, Yantao; Verzicco, Roberto; Lohse, Detlef

    2015-01-01

    Double-diffusive convection (DDC), which is the buoyancy-driven flow with fluid density depending on two scalar components, is ubiquitous in many natural and engineering environments. Of great interests are scalars’ transfer rate and flow structures. Here we systematically investigate DDC flow

  5. Lattice Boltzmann model for melting with natural convection

    International Nuclear Information System (INIS)

    Huber, Christian; Parmigiani, Andrea; Chopard, Bastien; Manga, Michael; Bachmann, Olivier

    2008-01-01

    We develop a lattice Boltzmann method to couple thermal convection and pure-substance melting. The transition from conduction-dominated heat transfer to fully-developed convection is analyzed and scaling laws and previous numerical results are reproduced by our numerical method. We also investigate the limit in which thermal inertia (high Stefan number) cannot be neglected. We use our results to extend the scaling relations obtained at low Stefan number and establish the correlation between the melting front propagation and the Stefan number for fully-developed convection. We conclude by showing that the model presented here is particularly well-suited to study convection melting in geometrically complex media with many applications in geosciences

  6. Physics of Stellar Convection

    Science.gov (United States)

    Arnett, W. David

    2009-05-01

    We review recent progress using numerical simulations as a testbed for development of a theory of stellar convection, much as envisaged by John von Newmann. Necessary features of the theory, non-locality and fluctuations, are illustrated by computer movies. It is found that the common approximation of convection as a diffusive process presents the wrong physical picture, and improvements are suggested. New observational results discussed at the conference are gratifying in their validation of some of our theoretical ideas, especially the idea that SNIb and SNIc events are related to the explosion of massive star cores which have been stripped by mass loss and binary interactions [1

  7. Convective mixing in helium white dwarfs

    International Nuclear Information System (INIS)

    Vauclair, G.; Fontaine, G.

    1979-01-01

    The conditions under which convective mixing episodes take place between the helium envelopes and the underlying carbon layers in helium-rich white dwarfs are investigated. It is found that, for essentially any value of the initial helium content less than the maximum mass a helium convection zone can have, mixing does occur, and leads, in the vast majority of cases, to an almost pure carbon superficial composition. Mixing products that show only traces of carbon while retaining helium-dominated envelopes are possible only if the initial helium content is quite close to the maximum possible mass of the helium convection zone. In the presence of turbulence, this restriction could be relaxed, however, and the helium-rich lambda4670 stars may possibly be explained in this fashion

  8. Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO

    Science.gov (United States)

    Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.

    2012-12-01

    One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.

  9. Convective cells and transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Hassam, A.B.; Kulsrud, R.M.

    1978-12-01

    The properties of convective cells and the diffusion resulting from such cells are significantly influenced by an inhomogeneity in the extermal confining magnetic field, such as that in toroidal plasmas. The convective diffusion in the presence of a field inhomogeneity is estimated. For a thermal background, this diffusion is shown to be substantially smaller than classical collisional diffusion. For a model nonthermal background, the diffusion is estimated, for typical parameters, to be at most of the order of collisional diffusion. The model background employed is based on spectra observed in numerical simulations of drift-wave-driven convective cells

  10. High Ra, high Pr convection with viscosity gradients

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. High Ra, high Pr convection with viscosity gradients. Weak upward flow through mesh. Top fluid more viscous. Unstable layer Instability Convection.

  11. Penetrative convection at high Rayleigh numbers

    Science.gov (United States)

    Toppaladoddi, Srikanth; Wettlaufer, John S.

    2018-04-01

    We study penetrative convection of a fluid confined between two horizontal plates, the temperatures of which are such that a temperature of maximum density lies between them. The range of Rayleigh numbers studied is Ra=[0.01 ,4 ]106,108 and the Prandtl numbers are Pr=1 and 11.6. An evolution equation for the growth of the convecting region is obtained through an integral energy balance. We identify a new nondimensional parameter, Λ , which is the ratio of temperature difference between the stable and unstable regions of the flow; larger values of Λ denote increased stability of the upper stable layer. We study the effects of Λ on the flow field using well-resolved lattice Boltzmann simulations and show that the characteristics of the flow depend sensitively upon it. For the range Λ = , we find that for a fixed Ra the Nusselt number, Nu, increases with decreasing Λ . We also investigate the effects of Λ on the vertical variation of convective heat flux and the Brunt-Väisälä frequency. Our results clearly indicate that in the limit Λ →0 the problem reduces to that of the classical Rayleigh-Bénard convection.

  12. Radiative-convective equilibrium model intercomparison project

    Science.gov (United States)

    Wing, Allison A.; Reed, Kevin A.; Satoh, Masaki; Stevens, Bjorn; Bony, Sandrine; Ohno, Tomoki

    2018-03-01

    RCEMIP, an intercomparison of multiple types of models configured in radiative-convective equilibrium (RCE), is proposed. RCE is an idealization of the climate system in which there is a balance between radiative cooling of the atmosphere and heating by convection. The scientific objectives of RCEMIP are three-fold. First, clouds and climate sensitivity will be investigated in the RCE setting. This includes determining how cloud fraction changes with warming and the role of self-aggregation of convection in climate sensitivity. Second, RCEMIP will quantify the dependence of the degree of convective aggregation and tropical circulation regimes on temperature. Finally, by providing a common baseline, RCEMIP will allow the robustness of the RCE state across the spectrum of models to be assessed, which is essential for interpreting the results found regarding clouds, climate sensitivity, and aggregation, and more generally, determining which features of tropical climate a RCE framework is useful for. A novel aspect and major advantage of RCEMIP is the accessibility of the RCE framework to a variety of models, including cloud-resolving models, general circulation models, global cloud-resolving models, single-column models, and large-eddy simulation models.

  13. MODELING OF CONVECTIVE FLOWS IN PNEUMOBASED OBJECTS. Part 1

    Directory of Open Access Journals (Sweden)

    B. M. Khrustalyov

    2014-01-01

    Full Text Available A computer modeling process of three-dimensional forced convection proceeding from computation of thermodynamic parameters of pneumo basic buildings (pneumo supported structures is presented. The mathematical model of numerical computation method of temperature and velocity fields, pressure profile in the object is developed using the package Solid works and is provided by grid methods on specified software. Special Navier–Stokes, Clapeyron–Mendeleev, continuity and thermal-conductivity equations are used to calculate parameters in the building with four supply and exhaust channels. Differential equations are presented by algebraic equation systems, initial-boundary conditions are changed by differential conditions for mesh functions and their solutions are performed by algebraic operations. In this article the following is demonstrated: in pneumo basic buildings convective and heat flows are identical structures near the surfaces in unlimited space, but in single-multiply shells (envelopescirculation lines take place, geometrical sizes of which depend on thermal-physical characteristics of gas(airin envelopes, radiation reaction with heated surfaces of envelopes with  sphere, earth surface, neighboring buildings. Natural surveys of pneumo-basic buildings of different purposes were carried out in Minsk, in different cities of Belarus and Russia, including temperature fields of external and internal surfaces of air envelopes, relative humidity, thermal (heatflows, radiation characteristics and others.The results of research work are illustrated with diagrams of temperature, velocity, density and pressure dependent on coordinates and time.

  14. Convection Weather Detection by General Aviation Pilots with Convectional and Data-Linked Graphical Weather Information Sources

    Science.gov (United States)

    Chamberlain, James P.; Latorella, Kara A.

    2001-01-01

    This study compares how well general aviation (GA) pilots detect convective weather in flight with different weather information sources. A flight test was conducted in which GA pilot test subjects were given different in-flight weather information cues and flown toward convective weather of moderate or greater intensity. The test subjects were not actually flying the aircraft, but were given pilot tasks representative of the workload and position awareness requirements of the en route portion of a cross country GA flight. On each flight, one test subject received weather cues typical of a flight in visual meteorological conditions (VMC), another received cues typical of flight in instrument meteorological conditions (IMC), and a third received cues typical of flight in IMC but augmented with a graphical weather information system (GWIS). The GWIS provided the subject with near real time data-linked weather products, including a weather radar mosaic superimposed on a moving map with a symbol depicting the aircraft's present position and direction of track. At several points during each flight, the test subjects completed short questionnaires which included items addressing their weather situation awareness and flight decisions. In particular, test subjects were asked to identify the location of the nearest convective cells. After the point of nearest approach to convective weather, the test subjects were asked to draw the location of convective weather on an aeronautical chart, along with the aircraft's present position. This paper reports preliminary results on how accurately test subjects provided with these different weather sources could identify the nearest cell of moderate or greater intensity along their route of flight. Additional flight tests are currently being conducted to complete the data set.

  15. Experimental methods in natural convection

    International Nuclear Information System (INIS)

    Koster, J.N.

    1982-11-01

    Some common experimental techniques to determine local velocities and to visualize temperature fields in natural convection research are discussed. First the physics and practice of anemometers are discussed with emphasis put on optical anemometers. In the second and third case the physics and practice of the most developed interferometers are discussed; namely differential interferometry for visualization of temperature gradient fields and holographic interferometry for visualization of temperature fields. At the Institut fuer Reaktorbauelemente these three measuring techniques are applied for convection and pipe flow studies. (orig.) [de

  16. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    Science.gov (United States)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.; Houze, Robert A.; Xiao, Heng

    2018-02-01

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii) the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. In addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.

  17. Induced convection cylindrical probe conductivity measurements on permeable media

    International Nuclear Information System (INIS)

    Fodemesi, S.P.; Beck, A.E.

    1983-01-01

    This chapter presents results from a program of investigation using the transient needle probe thermal conductivity technique on fluid saturated permeable media with a glass bead matrix. Uses eight additional radially located sensors in order to correlate the convection effects on the temperature sensor in the heater probe with convection behavior in the medium; all were scanned frequently with a data acquisition system, from the start of the experiment through a few hours of experimental time. Points out that with typical conditions encountered in oceanic heat flow work, induced convection may commence as early as 60 s from the start of the experiment. Finds that the convection effects are worse when the needle probe is oriented horizontally than when it is oriented vertically (gradients orthogonal to the gravitational field), and a correlation is made between permeability and the time of onset and the extent of convective effects. Indicates errors in conductivity as large as 40%. Suggests empirical techniques for detecting and correcting for thermal convection using probe sensor data alone

  18. Convective Self-Aggregation in Numerical Simulations: A Review

    Science.gov (United States)

    Wing, Allison A.; Emanuel, Kerry; Holloway, Christopher E.; Muller, Caroline

    Organized convection in the tropics occurs across a range of spatial and temporal scales and strongly influences cloud cover and humidity. One mode of organization found is ``self-aggregation,'' in which moist convection spontaneously organizes into one or several isolated clusters despite spatially homogeneous boundary conditions and forcing. Self-aggregation is driven by interactions between clouds, moisture, radiation, surface fluxes, and circulation, and occurs in a wide variety of idealized simulations of radiative-convective equilibrium. Here we provide a review of convective self-aggregation in numerical simulations, including its character, causes, and effects. We describe the evolution of self-aggregation including its time and length scales and the physical mechanisms leading to its triggering and maintenance, and we also discuss possible links to climate and climate change.

  19. Convective losses through an air-filled gap

    Energy Technology Data Exchange (ETDEWEB)

    Baum, V A; Ovezsakhatov, N

    1976-01-01

    Simplified formulas for the heat fluxes with given parameters of the air are used to calculate the specific heat losses by convection in a number of solar-energy systems (water heater, thermal generator, double-glazed window, and still). Heat losses by convection and radiation are compared.

  20. Study of condensation heat transfer following a main steam line break inside containment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J.H.; Elia, F.A. Jr.; Lischer, D.J. [Stone & Webster Engineering Corporation, Boston, MA (United States)

    1995-09-01

    An alternative model for calculating condensation heat transfer following a main stream line break (MSLB) accident is proposed. The proposed model predictions and the current regulatory model predictions are compared to the results of the Carolinas Virginia Tube Reactor (CVTR) test. The very conservative results predicted by the current regulatory model result from: (1) low estimate of the condensation heat transfer coefficient by the Uchida correlation and (2) neglecting the convective contribution to the overall heat transfer. Neglecting the convection overestimates the mass of steam being condensed and does not permit the calculation of additional convective heat transfer resulting from superheated conditions. In this study, the Uchida correlation is used, but correction factors for the effects of convection an superheat are derived. The proposed model uses heat and mass transfer analogy methods to estimate to convective fraction of the total heat transfer and bases the steam removal rate on the condensation heat transfer portion only. The results predicted by the proposed model are shown to be conservative and more accurate than those predicted by the current regulatory model when compared with the results of the CVTR test. Results for typical pressurized water reactors indicate that the proposed model provides a basis for lowering the equipment qualification temperature envelope, particularly at later times following the accident.

  1. A study of the 21 March 2012 tornadic quasi linear convective system in Catalonia

    Science.gov (United States)

    Bech, Joan; Arús, Joan; Castán, Salvador; Pineda, Nicolau; Rigo, Tomeu; Montanyà, Joan; van der Velde, Oscar

    2015-05-01

    This study presents a description of a quasi linear convective system that took place in Catalonia (NE Spain) on 21 March 2012 producing heavy rainfall, moderate lightning activity and a weak tornado in the village of Ivars d'Urgell around 19 UTC after local sunset. A post-event survey indicated EF0 and EF1 damage in houses of the village - roofs and ceilings, broken windows, fences and walls and trees knocked down - along a track approximately 4 km long and about 20 m wide. Doppler radar observations show that the parent thunderstorm that spawned the tornado was one of a series that developed along a convective line that moved from S to N, initiating convective activity in terms of precipitation and lightning in the Mediterranean Sea and moving inland in S Catalonia (Tarragona and Salou coastal areas, producing local flash floods). Convective activity remained several hours with series of thunderstorms developing along the same paths. The synoptic situation was dominated by a high pressure ridge extending from northern Africa to central Europe, with a closed maximum sea level pressure area around 1036 hPa over northern France, southern Germany and Austria. On the other hand a relative low pressure area seen on 850 hPa and upper levels was present over the Iberian Peninsula, favouring a southern maritime flow from the Mediterranean between the forward part of the low pressure area and the high pressure system which blocked the advance of the low to the east. In the study we examine both the synoptic environment and storm scale observations with Doppler radar and total lightning data (cloud to ground and intracloud flashes) that lead to this cool-season severe convective event which is remarkable given the fact that, unlike in this case, most reported tornadoes in the region occur during the warm season (with peaks in August and September) and during daylight hours (6 to 18 UTC).

  2. Prandtl-number Effects in High-Rayleigh-number Spherical Convection

    Science.gov (United States)

    Orvedahl, Ryan J.; Calkins, Michael A.; Featherstone, Nicholas A.; Hindman, Bradley W.

    2018-03-01

    Convection is the predominant mechanism by which energy and angular momentum are transported in the outer portion of the Sun. The resulting overturning motions are also the primary energy source for the solar magnetic field. An accurate solar dynamo model therefore requires a complete description of the convective motions, but these motions remain poorly understood. Studying stellar convection numerically remains challenging; it occurs within a parameter regime that is extreme by computational standards. The fluid properties of the convection zone are characterized in part by the Prandtl number \\Pr = ν/κ, where ν is the kinematic viscosity and κ is the thermal diffusion; in stars, \\Pr is extremely low, \\Pr ≈ 10‑7. The influence of \\Pr on the convective motions at the heart of the dynamo is not well understood since most numerical studies are limited to using \\Pr ≈ 1. We systematically vary \\Pr and the degree of thermal forcing, characterized through a Rayleigh number, to explore its influence on the convective dynamics. For sufficiently large thermal driving, the simulations reach a so-called convective free-fall state where diffusion no longer plays an important role in the interior dynamics. Simulations with a lower \\Pr generate faster convective flows and broader ranges of scales for equivalent levels of thermal forcing. Characteristics of the spectral distribution of the velocity remain largely insensitive to changes in \\Pr . Importantly, we find that \\Pr plays a key role in determining when the free-fall regime is reached by controlling the thickness of the thermal boundary layer.

  3. Analysis and modeling of tropical convection observed by CYGNSS

    Science.gov (United States)

    Lang, T. J.; Li, X.; Roberts, J. B.; Mecikalski, J. R.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is a multi-satellite constellation that utilizes Global Positioning System (GPS) reflectometry to retrieve near-surface wind speeds over the ocean. While CYGNSS is primarily aimed at measuring wind speeds in tropical cyclones, our research has established that the mission may also provide valuable insight into the relationships between wind-driven surface fluxes and general tropical oceanic convection. Currently, we are examining organized tropical convection using a mixture of CYGNSS level 1 through level 3 data, IMERG (Integrated Multi-satellite Retrievals for Global Precipitation Measurement), and other ancillary datasets (including buoys, GPM level 1 and 2 data, as well as ground-based radar). In addition, observing system experiments (OSEs) are being performed using hybrid three-dimensional variational assimilation to ingest CYGNSS observations into a limited-domain, convection-resolving model. Our focus for now is on case studies of convective evolution, but we will also report on progress toward statistical analysis of convection sampled by CYGNSS. Our working hypothesis is that the typical mature phase of organized tropical convection is marked by the development of a sharp gust-front boundary from an originally spatially broader but weaker wind speed change associated with precipitation. This increase in the wind gradient, which we demonstrate is observable by CYGNSS, likely helps to focus enhanced turbulent fluxes of convection-sustaining heat and moisture near the leading edge of the convective system where they are more easily ingested by the updraft. Progress on the testing and refinement of this hypothesis, using a mixture of observations and modeling, will be reported.

  4. Testing particle filters on convective scale dynamics

    Science.gov (United States)

    Haslehner, Mylene; Craig, George. C.; Janjic, Tijana

    2014-05-01

    Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical

  5. Impact of open-ocean convection on particle fluxes and sediment dynamics in the deep margin of the Gulf of Lions

    Directory of Open Access Journals (Sweden)

    M. Stabholz

    2013-02-01

    Full Text Available The deep outer margin of the Gulf of Lions and the adjacent basin, in the western Mediterranean Sea, are regularly impacted by open-ocean convection, a major hydrodynamic event responsible for the ventilation of the deep water in the western Mediterranean Basin. However, the impact of open-ocean convection on the flux and transport of particulate matter remains poorly understood. The variability of water mass properties (i.e., temperature and salinity, currents, and particle fluxes were monitored between September 2007 and April 2009 at five instrumented mooring lines deployed between 2050 and 2350-m depth in the deepest continental margin and adjacent basin. Four of the lines followed a NW–SE transect, while the fifth one was located on a sediment wave field to the west. The results of the main, central line SC2350 ("LION" located at 42°02.5′ N, 4°41′ E, at 2350-m depth, show that open-ocean convection reached mid-water depth (≈ 1000-m depth during winter 2007–2008, and reached the seabed (≈ 2350-m depth during winter 2008–2009. Horizontal currents were unusually strong with speeds up to 39 cm s−1 during winter 2008–2009. The measurements at all 5 different locations indicate that mid-depth and near-bottom currents and particle fluxes gave relatively consistent values of similar magnitude across the study area except during winter 2008–2009, when near-bottom fluxes abruptly increased by one to two orders of magnitude. Particulate organic carbon contents, which generally vary between 3 and 5%, were abnormally low (≤ 1% during winter 2008–2009 and approached those observed in surface sediments (≈ 0.6%. Turbidity profiles made in the region demonstrated the existence of a bottom nepheloid layer, several hundred meters thick, and related to the resuspension of bottom sediments. These observations support the view that open-ocean deep convection events in the Gulf of Lions can cause significant remobilization

  6. Steady parallel flow in an evaporating fluid heated from sidewalls

    International Nuclear Information System (INIS)

    Das, Kausik S.

    2009-01-01

    Evaporation is ubiquitous in nature, but very few attempts have been made in the past to couple the effects of evaporation with fluid flow behavior. In this theoretical paper we have discussed the effects of evaporation on the dynamics of steady state thermocapillary convection in a two-dimensional rectangular container. The liquid is heated by differentially heated sidewalls and mass loss from the interface due to evaporation is compensated by the liquid entering into the container through a lower inlet, thus keeping the thickness of the liquid layer constant. We show that for an evaporating liquid one can obtain a plane parallel base state profile which depends on the evaporative mass flux.

  7. Impact of the Assimilation of Hyperspectral Infrared Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    Science.gov (United States)

    Berndt, Emily B.; Zavodsky, Bradley T; Jedlovec, Gary J.; Elmer, Nicholas J.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), North American Regional Reanalysis (NARR) reanalysis, and Rapid Refresh analyses.

  8. Topology Optimization for Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    2011-01-01

    This report deals with the topology optimization of convection problems.That is, the aim of the project is to develop, implement and examine topology optimization of purely thermal and coupled thermomechanical problems,when the design-dependent eects of convection are taken into consideration.......This is done by the use of a self-programmed FORTRAN-code, which builds on an existing 2D-plane thermomechanical nite element code implementing during the course `41525 FEM-Heavy'. The topology optimizationfeatures have been implemented from scratch, and allows the program to optimize elastostatic mechanical...

  9. Convective mixing and accretion in white dwarfs

    International Nuclear Information System (INIS)

    Koester, D.

    1976-01-01

    The evolution of convection zones in cooling white dwarfs with helium envelopes and outer hydrogen layers is calculated with a complete stellar evolution code. It is shown that white dwarfs of spectral type DB cannot be formed from DA stars by convective mixing. However, for cooler temperatures (Tsub(e) [de

  10. Study of the shallow convection over the Belem region in Brazil

    Science.gov (United States)

    Bassi Marinho Pires, Luciana; Suselj, Kay; Rossato, Luciana; Teixeira, Joao

    2016-04-01

    The largest forest of the world, the Amazon, presents an interesting and very complex system mixing forests, various topographies, sites of deforestation, cities, and regions close and far from the coast, which influence the climatology of the region. This study was focused in the region of Belem which is considered the rainiest region in the eastern Amazon with precipitation around 2000 mm/year. Belem is the capital of Para state, which is located in northern Brazil, 2,146 kilometers from Brasilia with an area of about 1,059,458 km² and a population of 1,432,844 inhabitants with 26% of the area of the Brazilian Amazon and having 49% of its natural attractions, according to the Organization of American States. Shallow convection and deep convection are among the main components of the local energy balance. An analysis of the performance of the Jet Propulsion Laboratory /NASA model of shallow convection parameterization in a framework of the single column model (SCM) in relation to the cluster of cumulus clouds formed in the coastal region of the Amazon forest due to squall lines is provided. To achieve this purpose infrared images from the Geostationary Operational Environmental Satellite (GOES), visible images from the GOES-12/METEOSAT satellites, and data obtained by the "Cloud processes of the main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement)" - CHUVA - campaign, during the month of June of 2011, were used. Results demonstrated that the parameterizations performed well in the case where only a core of clouds was observed.

  11. Ash particle erosion on steam boiler convective section

    Energy Technology Data Exchange (ETDEWEB)

    Meuronen, V

    1998-12-31

    In this study, equations for the calculation of erosion wear caused by ash particles on convective heat exchanger tubes of steam boilers are presented. A new, three-dimensional test arrangement was used in the testing of the erosion wear of convective heat exchanger tubes of steam boilers. When using the sleeve-method, three different tube materials and three tube constructions could be tested. New results were obtained from the analyses. The main mechanisms of erosion wear phenomena and erosion wear as a function of collision conditions and material properties have been studied. Properties of fossil fuels have also been presented. When burning solid fuels, such as pulverized coal and peat in steam boilers, most of the ash is entrained by the flue gas in the furnace. In bubbling and circulating fluidized bed boilers, particle concentration in the flue gas is high because of bed material entrained in the flue gas. Hard particles, such as sharp edged quartz crystals, cause erosion wear when colliding on convective heat exchanger tubes and on the rear wall of the steam boiler. The most important ways to reduce erosion wear in steam boilers is to keep the velocity of the flue gas moderate and prevent channelling of the ash flow in a certain part of the cross section of the flue gas channel, especially near the back wall. One can do this by constructing the boiler with the following components. Screen plates can be used to make the velocity and ash flow distributions more even at the cross-section of the channel. Shield plates and plate type constructions in superheaters can also be used. Erosion testing was conducted with three types of tube constructions: a one tube row, an in- line tube bank with six tube rows, and a staggered tube bark with six tube rows. Three flow velocities and two particle concentrations were used in the tests, which were carried out at room temperature. Three particle materials were used: quartz, coal ash and peat ash particles. Mass loss

  12. Performance and optimum design of convective-radiative rectangular fin with convective base heating, wall conduction resistance, and contact resistance between the wall and the fin base

    International Nuclear Information System (INIS)

    Aziz, Abdul; Beers-Green, Arlen B.

    2009-01-01

    This paper investigates the performance and optimum design of a longitudinal rectangular fin attached to a convectively heated wall of finite thickness. The exposed surfaces of the fin lose heat to the environmental sink by simultaneous convection and radiation. The tip of the fin is assumed to lose heat by convection and radiation to the same sink. The analysis and optimization of the fin is conducted numerically using the symbolic algebra package Maple. The temperature distribution, the heat transfer rates, and the fin efficiency data is presented illustrating how the thermal performance of the fin is affected by the convection-conduction number, the radiation-conduction number, the base convection Biot number, the convection and radiation Biot numbers at the tip, and the dimensionless sink temperature. Charts are presented showing the relationship between the optimum convection-conduction number and the optimum radiation-conduction number for different values of the base convection Biot number and dimensionless sink temperature and fixed values of the convection and radiation Biot numbers at the tip. Unlike the few other papers which have applied the Adomian's decomposition and the differential quadrature element method to this problem but give illustrative results for specific fin geometry and thermal variables, the present graphical data are generally applicable and can be used by fin designers without delving into the mathematical details of the computational techniques.

  13. International symposium on transient convective heat transfer: book of abstracts

    International Nuclear Information System (INIS)

    1996-01-01

    The international symposium on convective heat transfer was held on 19-23 August 1996, in Cesme, Izmir, Turkey. The spesialists discussed forced convection, heat exchangers, free convection and multiphase media and phase change at the meeting. Almost 53 papers were presented in the meeting

  14. Natural Convection Analysis with Various Turbulent Models Using FLUENT

    International Nuclear Information System (INIS)

    Park, Yu Sun

    2007-01-01

    The buoyancy driven convective flow fields are steady circulatory flows which were made between surfaces maintained at two fixed temperatures. They are ubiquitous in nature and play an important role in many engineering applications. Especially, in last decades, natural convection in a close loop or cavity becomes the main issue in the molecular biology for the polymerase chain reaction (PCR). Application of a natural convection can reduce the costs and efforts remarkably. This paper focuses on the sensitivity study of turbulence analysis using CFD for a natural convection in a closed rectangular cavity. Using commercial CFD code, FLUENT, various turbulent models were applied to the turbulent flow. Results from each CFD model will be compared each other in the viewpoints of flow characteristics. This work will suggest the best turbulent model of CFD for analyzing turbulent flows of the natural convection in an enclosure system

  15. A hybrid convection scheme for use in non-hydrostatic numerical weather prediction models

    Directory of Open Access Journals (Sweden)

    Volker Kuell

    2008-12-01

    Full Text Available The correct representation of convection in numerical weather prediction (NWP models is essential for quantitative precipitation forecasts. Due to its small horizontal scale convection usually has to be parameterized, e.g. by mass flux convection schemes. Classical schemes originally developed for use in coarse grid NWP models assume zero net convective mass flux, because the whole circulation of a convective cell is confined to the local grid column and all convective mass fluxes cancel out. However, in contemporary NWP models with grid sizes of a few kilometers this assumption becomes questionable, because here convection is partially resolved on the grid. To overcome this conceptual problem we propose a hybrid mass flux convection scheme (HYMACS in which only the convective updrafts and downdrafts are parameterized. The generation of the larger scale environmental subsidence, which may cover several grid columns, is transferred to the grid scale equations. This means that the convection scheme now has to generate a net convective mass flux exerting a direct dynamical forcing to the grid scale model via pressure gradient forces. The hybrid convection scheme implemented into the COSMO model of Deutscher Wetterdienst (DWD is tested in an idealized simulation of a sea breeze circulation initiating convection in a realistic manner. The results are compared with analogous simulations with the classical Tiedtke and Kain-Fritsch convection schemes.

  16. Oscillatory Convection in Rotating Liquid Metals

    Science.gov (United States)

    Bertin, Vincent; Grannan, Alex; Aurnou, Jonathan

    2016-11-01

    We have performed laboratory experiments in a aspect ratio Γ = 2 cylinder using liquid gallium (Pr = 0 . 023) as the working fluid. The Ekman number varies from E = 4 ×10-5 to 4 ×10-6 and the Rayleigh number varies from Ra = 3 ×105 to 2 ×107 . Using heat transfer and temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes develop, coexisting with the inertial oscillatory modes in the bulk. When the strength of the buoyancy increases further, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr = 1 planetary and stellar dynamo models, but in the form of oscillatory motions. Therefore, convection driven dynamo action in low Pr fluids can differ substantively than that occurring in typical Pr = 1 numerical models. Our results also suggest that low wavenumber, wall modes may be dynamically and observationally important in liquid metal dynamo systems. We thank the NSF Geophysics Program for support of this project.

  17. Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes

    Directory of Open Access Journals (Sweden)

    Daniel J. Kirshbaum

    2018-02-01

    Full Text Available This paper reviews the current understanding of moist orographic convection and its regulation by surface-exchange processes. Such convection tends to develop when and where moist instability coincides with sufficient terrain-induced ascent to locally overcome convective inhibition. The terrain-induced ascent can be owing to mechanical (airflow over or around an obstacle and/or thermal (differential heating over sloping terrain forcing. For the former, the location of convective initiation depends on the dynamical flow regime. In “unblocked” flows that ascend the barrier, the convection tends to initiate over the windward slopes, while in “blocked” flows that detour around the barrier, the convection tends to initiate upstream and/or downstream of the high terrain where impinging flows split and rejoin, respectively. Processes that destabilize the upstream flow for mechanically forced moist convection include large-scale moistening and ascent, positive surface sensible and latent heat fluxes, and differential advection in baroclinic zones. For thermally forced flows, convective initiation is driven by thermally direct circulations with sharp updrafts over or downwind of the mountain crest (daytime or foot (nighttime. Along with the larger-scale background flow, local evapotranspiration and transport of moisture, as well as thermodynamic heterogeneities over the complex terrain, regulate moist instability in such events. Longstanding limitations in the quantitative understanding of related processes, including both convective preconditioning and initiation, must be overcome to improve the prediction of this convection, and its collective effects, in weather and climate models.

  18. Thermosolutal convection during dendritic solidification

    Science.gov (United States)

    Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.

    1989-01-01

    This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.

  19. COMPARISON OF ELM PULSE PROPAGATION IN THE DIII-D SOL AND DIVERTORS WITH AN ION CONVECTION MODEL

    International Nuclear Information System (INIS)

    FENSTERMACHER, ME; PORTER, GD; LEONARD, AW; BROOKS, NH; BOEDO, JA; COLCHIN, RJ; GRAY, DS; GROEBNER, RJ; GROTH, M; HOGAN, JT; HOLLMANN, EM; LASNIER, CJ; OSBORNE, TH; PETRIE, TW; RUDAKOV, DL; SNYDER, PB; TAKAHASHI, H; WATKINS, JG; ZENG, L; DIII-D TEAM

    2003-01-01

    OAK-B135 Results from dedicated ELM experiments, performed in DIII-D with fast diagnostics to measure the evolution of Type-I ELM effects in the SOL and divertor, are compared with a simple ion convection model and with initial time-dependent UEDGE simulations. Delays between ELM effects observed in the inner versus the outer divertor regions in the experiments scale, as a function of density, with the difference in ion convection time along field lines from the outer midplane to the divertor targets. The ELM perturbation was modeled as an instantaneous radially uniform increase of diffusion coefficients from the top of the pedestal to the outer SOL. The perturbation was confined to a low field side poloidal zone ± 40 o from the outer midplane. The delays in the simulations are similar to those observed in the experiments

  20. Scaling of Convection and Plate Tectonics in Super-Earths

    Science.gov (United States)

    Valencia, D. C.; O'Connell, R. J.; Sasselov, D. D.

    2006-12-01

    The discovery of three Super-Earths around different stars, possible only in the last year, prompts us to study the characteristics of our planet within a general context. The Earth, being the most massive terrestrial object in the solar system is the only planet that exhibits plate tectonics. We think this might not be a coincidence and explore the role that mass plays in determining the mode of convection. We use the scaling of convective vigor with Rayleigh number commonly used in parameterized convection. We study how the parameters controlling convection: Rayleigh number (Ra), boundary layer thickness (δ), internal temperature (T_i) and convective velocities (u) scale with mass. This is possible from the scaling of heat flux, mantle density, size and gravity with mass which we reported in Valencia, et. al 2006. The extrapolation to massive rocky planets is done from our knowledge of the Earth. Even though uncertainties arise from extrapolation and assumptions are needed we consider this simple scaling to be a first adequate step. As the mass of a planet increases, Ra increases, yielding a decrease in δ and an increase in u, while T_i increases very slightly. This is true for an isoviscous case and is more accentuated in a temperature dependent viscosity scenario. In a planet with vigorous convection (high u), a thin lithosphere (low δ) is easier to subduct and hence, initiate plate tectonics. The lithosphere also has to be dense enough (cold and thick) to have the bouyancy necessary for subduction. We calculate that a convective cycle for an isoviscous planet is τ ~ M^{-0.3} considering whole mantle convection. Meaning that if these planets have continents, the timescale for continental rearrangement is shorter (about half the Earth's for a 5 earth-mass planet). Additionally, we explore the negative feedback cycle between convection and temperature dependent viscosity and estimate a timescale for this effect.

  1. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Catling, David C.

    2012-01-01

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  2. Parametric modulation of thermomagnetic convection in magnetic fluids.

    Science.gov (United States)

    Engler, H; Odenbach, S

    2008-05-21

    Previous theoretical investigations on thermal flow in a horizontal fluid layer have shown that the critical temperature difference, where heat transfer changes from diffusion to convective flow, depends on the frequency of a time-modulated driving force. The driving force of thermal convection is the buoyancy force resulting from the interaction of gravity and the density gradient provided by a temperature difference in the vertical direction of a horizontal fluid layer. An experimental investigation of such phenomena fails because of technical problems arising if buoyancy is to be changed by altering the temperature difference or gravitational acceleration. The possibility of influencing convective flow in a horizontal magnetic fluid layer by magnetic forces might provide us with a means to solve the problem of a time-modulated magnetic driving force. An experimental setup to investigate the dependence of the critical temperature difference on the frequency of the driving force has been designed and implemented. First results show that the time modulation of the driving force has significant influence on the strength of the convective flow. In particular a pronounced minimum in the strength of convection has been found for a particular frequency.

  3. Education: DNA replication using microscale natural convection.

    Science.gov (United States)

    Priye, Aashish; Hassan, Yassin A; Ugaz, Victor M

    2012-12-07

    There is a need for innovative educational experiences that unify and reinforce fundamental principles at the interface between the physical, chemical, and life sciences. These experiences empower and excite students by helping them recognize how interdisciplinary knowledge can be applied to develop new products and technologies that benefit society. Microfluidics offers an incredibly versatile tool to address this need. Here we describe our efforts to create innovative hands-on activities that introduce chemical engineering students to molecular biology by challenging them to harness microscale natural convection phenomena to perform DNA replication via the polymerase chain reaction (PCR). Experimentally, we have constructed convective PCR stations incorporating a simple design for loading and mounting cylindrical microfluidic reactors between independently controlled thermal plates. A portable motion analysis microscope enables flow patterns inside the convective reactors to be directly visualized using fluorescent bead tracers. We have also developed a hands-on computational fluid dynamics (CFD) exercise based on modeling microscale thermal convection to identify optimal geometries for DNA replication. A cognitive assessment reveals that these activities strongly impact student learning in a positive way.

  4. Stretched flow of Carreau nanofluid with convective boundary ...

    Indian Academy of Sciences (India)

    journal of. January 2016 physics pp. 3–17. Stretched flow of Carreau nanofluid with ... fluid over a flat plate subjected to convective surface condition. ... the steady laminar boundary layer flow over a permeable plate with a convective boundary.

  5. Toward a Unified Representation of Atmospheric Convection in Variable-Resolution Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Walko, Robert [Univ. of Miami, Coral Gables, FL (United States)

    2016-11-07

    The purpose of this project was to improve the representation of convection in atmospheric weather and climate models that employ computational grids with spatially-variable resolution. Specifically, our work targeted models whose grids are fine enough over selected regions that convection is resolved explicitly, while over other regions the grid is coarser and convection is represented as a subgrid-scale process. The working criterion for a successful scheme for representing convection over this range of grid resolution was that identical convective environments must produce very similar convective responses (i.e., the same precipitation amount, rate, and timing, and the same modification of the atmospheric profile) regardless of grid scale. The need for such a convective scheme has increased in recent years as more global weather and climate models have adopted variable resolution meshes that are often extended into the range of resolving convection in selected locations.

  6. Convective aggregation in idealised models and realistic equatorial cases

    Science.gov (United States)

    Holloway, Chris

    2015-04-01

    Idealised explicit convection simulations of the Met Office Unified Model are shown to exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen previously in other models in several recent studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapour (CWV) field. To investigate the relevance of this behaviour to the real world, these idealized simulations are compared with five 15-day cases of real organized convection in the tropics, including multiple simulations of each case testing sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. Despite similar large-scale forcing via lateral boundary conditions, systematic differences in mean CWV, CWV distribution shape, and the length scale of CWV features are found between the different sensitivity runs, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations.

  7. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    Science.gov (United States)

    Berndt, E. B.; Zavodsky, B. T.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), 32-km North American Regional Reanalysis (NARR) interpolated to a 12-km grid, and 13-km Rapid Refresh analyses.

  8. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-convective Wind Event

    Science.gov (United States)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.; Molthan, A. L.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  9. Convective parameters in fuel elements for research nuclear reactors

    International Nuclear Information System (INIS)

    Lopez Martinez, C.D.

    1992-01-01

    The study of a prototype for the simulation of fuel elements for research nuclear reactors by natural convection in water is presented in this paper. This project is carry out in the thermofluids laboratory of National Institute of Nuclear Research. The fuel prototype has already been test for natural convection in air, and the first results in water are presented in this work. In chapter I, a general description of Triga Mark III is made, paying special atention to fuel-moderator components. In chapter II and III an approach to convection subject in its global aspects is made, since the intention is to give a general idea of the events occuring around fuel elements in a nuclear reactor. In chapter II, where an emphasis on forced convection is made, some basic concepts for forced convection as well as for natural convection are included. The subject of flow through cylinders is annotated only as a comparative reference with natural convection in vertical cylinders, noting the difference between used correlations and the involved variables. In chapter III a compilation of correlation found in the bibliography about natural convection in vertical cylinders is presented, since its geometry is the more suitable in the analysis of a fuel rod. Finally, in chapter IV performed experiments in the test bench are detailed, and the results are presented in form of tables and graphs, showing the used equations for the calculations and the restrictions used in each case. For the analysis of the prototypes used in the test bench, a constant and uniform flow of heat in the whole length of the fuel rod is considered. At the end of this chapter, the work conclusions and a brief explanation of the results are presented (Author)

  10. Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics

    Science.gov (United States)

    Sreekanth, T. S.

    Large Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics begin{center} begin{center} Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar, Peroorkada, Thiruvananthapuram ABSTRACT Micro-physical parameters of rainfall such as rain drop size & fall speed distribution, mass weighted mean diameter, Total no. of rain drops, Normalisation parameters for rain intensity, maximum & minimum drop diameter from different rain intensity ranges, from both stratiform and convective rain events were analysed. Convective -Stratiform classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill was also used. Events which cannot be included in both types are termed as 'mixed precipitation' and identified separately. For the three years 2011, 2012 & 2013, rain events from both convective & stratiform origin are identified from three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Micro-physical characterisation was done for each rain events and analysed. Ground based and radar observations were made and classification of stratiform and convective rainfall was done by the method followed by Testud et al (2001). Radar bright band and non bright band analysis was done for confimation of stratifom and convective rain respectievely. Atmospheric electric field data from electric field mill is also used for confirmation of convection during convective events. Statistical analyses revealed that the standard deviation of rain drop size in higher rain rates are higher than in lower rain rates. Normalised drop size distribution is ploted for selected events from both forms. Inter relations between various precipitation parameters were analysed in three

  11. Solar wind effects on ionospheric convection: a review

    DEFF Research Database (Denmark)

    Lu, G.; Cowley, S.W.H.; Milan, S.E.

    2002-01-01

    ), and travelling convection vortices (TCVs). Furthermore, the large-scale ionospheric convection configuration has also demonstrated a strong correspondence to variations in the interplanetary medium and substorm activity. This report briefly discusses the progress made over the past decade in studies...

  12. Life Cycle of Tropical Convection and Anvil in Observations and Models

    Science.gov (United States)

    McFarlane, S. A.; Hagos, S. M.; Comstock, J. M.

    2011-12-01

    Tropical convective clouds are important elements of the hydrological cycle and produce extensive cirrus anvils that strongly affect the tropical radiative energy balance. To improve simulations of the global water and energy cycles and accurately predict both precipitation and cloud radiative feedbacks, models need to realistically simulate the lifecycle of tropical convection, including the formation and radiative properties of ice anvil clouds. By combining remote sensing datasets from precipitation and cloud radars at the Atmospheric Radiation Measurement (ARM) Darwin site with geostationary satellite data, we can develop observational understanding of the lifetime of convective systems and the links between the properties of convective systems and their associated anvil clouds. The relationships between convection and anvil in model simulations can then be compared to those seen in the observations to identify areas for improvement in the model simulations. We identify and track tropical convective systems in the Tropical Western Pacific using geostationary satellite observations. We present statistics of the tropical convective systems including size, age, and intensity and classify the lifecycle stage of each system as developing, mature, or dissipating. For systems that cross over the ARM Darwin site, information on convective intensity and anvil properties are obtained from the C-Pol precipitation radar and MMCR cloud radar, respectively, and are examined as a function of the system lifecycle. Initial results from applying the convective identification and tracking algorithm to a tropical simulation from the Weather Research and Forecasting (WRF) model run show that the model produces reasonable overall statistics of convective systems, but details of the life cycle (such as diurnal cycle, system tracks) differ from the observations. Further work will focus on the role of atmospheric temperature and moisture profiles in the model's convective life cycle.

  13. Mixed thermal convection: fundamental issues and analysis of the planar case

    Directory of Open Access Journals (Sweden)

    JACQUES PADET

    2015-09-01

    Full Text Available This paper aims to renew interest on mixed thermal convection research and to emphasize three issues that arise from the present analysis: (i a clear definition of the reference temperature in the Boussinesq approximation; (ii a practical delimitation of the three convective modes, which are the forced convection (FC, mixed convection (MC and natural (or free convection (NC; (iii and, finally, a uniform description of the set FC/MC/NC in the similarity framework. The planar case, for which analytical solutions are available, allows a detailed illustration of the answers here advanced to the above issues.

  14. Convective transport resistance in the vitreous humor

    Science.gov (United States)

    Penkova, Anita; Sadhal, Satwindar; Ratanakijsuntorn, Komsan; Moats, Rex; Tang, Yang; Hughes, Patrick; Robinson, Michael; Lee, Susan

    2012-11-01

    It has been established by MRI visualization experiments that the convection of nanoparticles and large molecules with high rate of water flow in the vitreous humor will experience resistance, depending on the respective permeabilities of the injected solute. A set of experiments conducted with Gd-DTPA (Magnevist, Bayer AG, Leverkusen, Germany) and 30 nm gadolinium-based particles (Gado CELLTrackTM, Biopal, Worcester, MA) as MRI contrast agents showed that the degree of convective transport in this Darcy-type porous medium varies between the two solutes. These experiments consisted of injecting a mixture of the two (a 30 μl solution of 2% Magnevist and 1% nanoparticles) at the middle of the vitreous of an ex vivo whole bovine eye and subjecting the vitreous to water flow rate of 100 μl/min. The water (0.9% saline solution) was injected at the top of the eye, and was allowed to drain through small slits cut at the bottom of the eyeball. After 50 minutes of pumping, MRI images showed that the water flow carried the Gd-DTPA farther than the nanoparticles, even though the two solutes, being mixed, were subjected to the same convective flow conditions. We find that the convected solute lags the water flow, depending on the solute permeability. The usual convection term needs to be adjusted to allow for the filtration effect on the larger particles in the form (1- σ) u . ∇ c with important implications for the modeling of such systems.

  15. Is Convection Sensitive to Model Vertical Resolution and Why?

    Science.gov (United States)

    Xie, S.; Lin, W.; Zhang, G. J.

    2017-12-01

    Model sensitivity to horizontal resolutions has been studied extensively, whereas model sensitivity to vertical resolution is much less explored. In this study, we use the US Department of Energy (DOE)'s Accelerated Climate Modeling for Energy (ACME) atmosphere model to examine the sensitivity of clouds and precipitation to the increase of vertical resolution of the model. We attempt to understand what results in the behavior change (if any) of convective processes represented by the unified shallow and turbulent scheme named CLUBB (Cloud Layers Unified by Binormals) and the Zhang-McFarlane deep convection scheme in ACME. A short-term hindcast approach is used to isolate parameterization issues from the large-scale circulation. The analysis emphasizes on how the change of vertical resolution could affect precipitation partitioning between convective- and grid-scale as well as the vertical profiles of convection-related quantities such as temperature, humidity, clouds, convective heating and drying, and entrainment and detrainment. The goal is to provide physical insight into potential issues with model convective processes associated with the increase of model vertical resolution. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Fusing Multiple Satellite Datasets Toward Defining and Understanding Organized Convection

    Science.gov (United States)

    Elsaesser, G.; Del Genio, A. D.

    2017-12-01

    How do we differentiate unorganized from organized convection? We might think of organized convection as being long lasting (at least longer than the lifetime of any individual cumulus cell), clustered at larger spatial scales (>100 km), and responsible for substantial rainfall accumulation. Organized convection is sustained on such scales due to the arrangement of moist/dry and buoyant/non-buoyant mesoscale circulations. The nature of these circulations is tied to system diabatic heating profiles; in particular, the 2nd baroclinic (top-heavy), stratiform heating mode is thought to be important for organized convection maintenance/propagation. We investigate the extent to which these characteristics are jointly found in propagating convective systems. Lifecycle information comes from hi-res IR data. Diabatic heating profiles, convective fractions and rainfall are provided by GPM retrievals mapped to convective system tracks. Moisture is provided by AIRS/AMSU and passive microwave retrievals. Instead of compositing heating profile information along a system track, where information is smoothed out, we sort system heating profile structures according to their "top heaviness" and then analyze PDFs of system rainfall, system sizes, durations, convective/stratiform ratios, etc. as a function of diabatic heating structure. Perhaps contrary to expectation, we find only small differences in PDFs of rainfall rates, system sizes, and system duration for different heating profile structures. If organization is defined according to heating structures, then one possible interpretation of these results is that organization is independent of system size, duration, and many times, even lifecycle stage. Is it possible that most systems "hobble" along and exhibit varying degrees of organization, dependent on local environment moisture/buoyancy variations, unlike the archetypical MCS paradigm? This presentation will also discuss the questions posed above within the context of

  17. Lagrangian evaluation of convective shower characteristics in a convection-permitting model

    Directory of Open Access Journals (Sweden)

    Erwan Brisson

    2018-01-01

    Full Text Available Convection-permitting models (CPMs have proven their usefulness in representing precipitation on a sub-daily scale. However, investigations on sub-hourly scales are still lacking, even though these are the scales for which showers exhibit the most variability. A Lagrangian approach is implemented here to evaluate the representation of showers in a CPM, using the limited-area climate model COSMO-CLM. This approach consists of tracking 5‑min precipitation fields to retrieve different features of showers (e.g., temporal pattern, horizontal speed, lifetime. In total, 312 cases are simulated at a resolution of 0.01 ° over Central Germany, and among these cases, 78 are evaluated against a radar dataset. The model is able to represent most observed features for different types of convective cells. In addition, the CPM reproduced well the observed relationship between the precipitation characteristics and temperature indicating that the COSMO-CLM model is sophisticated enough to represent the climatological features of showers.

  18. Two-parameter study of the quasiperiodic route to chaos in convecting 3He--superfluid-4He mixtures

    International Nuclear Information System (INIS)

    Mainieri, R.; Sullivan, T.S.; Ecke, R.E.

    1989-01-01

    We study the frequency lockings of two intrinsic hydrodynamic modes of a convecting 3 He-superfluid- 4 He mixture by independently varying the Rayleigh and Prandtl numbers. We establish points on the critical line in this parameter space using a transient technique to locate the spiral-node transition in the interior of three resonance horns. Universal scaling is demonstrated at winding numbers with golden mean tails by computing the f(α) singularity spectrum

  19. Unstable mixed convective transport in groundwater

    International Nuclear Information System (INIS)

    Schincariol, R.A.; Schwartz, F.W.

    1990-01-01

    This study is an experimental investigation of variable density groundwater flow in homogeneous and lenticular porous media. A solution of 500 mg/l Rhodamine WT dye served as the carrier for various concentrations of solute (NaCl) introduced into a two-dimensional flow tank at concentrations ranging from 1000 to 100,000 mg/l. At the scale of the experiments, mass transport depends upon both forced and free convection. In addition, density differences as low as 0.008 g/cm 3 (1000 mg/l NaCl) between a plume of dense water and ambient groundwater in homogeneous medium produces gravitational instabilities at realistic groundwater velocities. These instabilities are manifest by lobe-shaped protuberances that formed first along the bottom edge of the plume and later within the plume. As the density difference increases to 0.0015 g/cm 3 (2000 mg/l NaCl), 0.0037 g/cm 3 (5000 mg/l NaCl) or higher, this unstable mixing due to convective dispersion significantly alters the spreading process, resulting in a large degree of vertical spreading of the plume. In a lenticular medium the combination of convective dispersion and nonuniform flow due to heterogeneities results in relatively large dispersion. Scale considerations indicate that convective dispersion may provide an important component of mixing at the field scale. (Author) (30 refs., 12 figs., 3 tabs.)

  20. Convection in Slab and Spheroidal Geometries

    Science.gov (United States)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  1. Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    U. Lohmann

    2008-04-01

    Full Text Available Aerosols affect the climate system by changing cloud characteristics in many ways. They act as cloud condensation and ice nuclei and may have an influence on the hydrological cycle. Here we investigate aerosol effects on convective clouds by extending the double-moment cloud microphysics scheme developed for stratiform clouds, which is coupled to the HAM double-moment aerosol scheme, to convective clouds in the ECHAM5 general circulation model. This enables us to investigate whether more, and smaller cloud droplets suppress the warm rain formation in the lower parts of convective clouds and thus release more latent heat upon freezing, which would then result in more vigorous convection and more precipitation. In ECHAM5, including aerosol effects in large-scale and convective clouds (simulation ECHAM5-conv reduces the sensitivity of the liquid water path increase with increasing aerosol optical depth in better agreement with observations and large-eddy simulation studies. In simulation ECHAM5-conv with increases in greenhouse gas and aerosol emissions since pre-industrial times, the geographical distribution of the changes in precipitation better matches the observed increase in precipitation than neglecting microphysics in convective clouds. In this simulation the convective precipitation increases the most suggesting that the convection has indeed become more vigorous.

  2. Boundary-layer diabatic processes, the virtual effect, and convective self-aggregation

    Science.gov (United States)

    Yang, D.

    2017-12-01

    The atmosphere can self-organize into long-lasting large-scale overturning circulations over an ocean surface with uniform temperature. This phenomenon is referred to as convective self-aggregation and has been argued to be important for tropical weather and climate systems. Here we use a 1D shallow water model and a 2D cloud-resolving model (CRM) to show that boundary-layer diabatic processes are essential for convective self-aggregation. We will show that boundary-layer radiative cooling, convective heating, and surface buoyancy flux help convection self-aggregate because they generate available potential energy (APE), which sustains the overturning circulation. We will also show that evaporative cooling in the boundary layer (cold pool) inhibits convective self-aggregation by reducing APE. Both the shallow water model and CRM results suggest that the enhanced virtual effect of water vapor can lead to convective self-aggregation, and this effect is mainly in the boundary layer. This study proposes new dynamical feedbacks for convective self-aggregation and complements current studies that focus on thermodynamic feedbacks.

  3. Lattice BGK simulation of natural convection

    International Nuclear Information System (INIS)

    Chen, Yu; Ohashi, Hirotada; Akiyama, Mamoru

    1995-01-01

    Recently a new thermal lattice Bhatnagar-Gross-Krook fluid model was suggested by the authors. In this study, this new model was applied into the numerical simulation of natural convection, namely the Rayleigh Benard flow. The critical number for the onset of convective phenomenon was numerically measured and compared with that of theoretical prediction. A gravity dependent deviation was found in the numerical simulation, which is explained as an unavoidable consequence of the incorporation of gravity force in the lattice BGK system. (author)

  4. Experimental and Numerical Study of the Evaporation of Water at Low Pressures.

    Science.gov (United States)

    Kazemi, Mohammad Amin; Nobes, David S; Elliott, Janet A W

    2017-05-09

    Although evaporation is considered to be a surface phenomenon, the rate of molecular transport across a liquid-vapor boundary is strongly dependent on the coupled fluid dynamics and heat transfer in the bulk fluids. Recent experimental thermocouple measurements of the temperature field near the interface of evaporating water into its vapor have begun to show the role of heat transfer in evaporation. However, the role of fluid dynamics has not been explored sufficiently. Here, we have developed a mathematical model to describe the coupling of the heat, mass, and momentum transfer in the fluids with the transport phenomena at the interface. The model was used to understand the experimentally obtained velocity field in the liquid and temperature profiles in the liquid and vapor, in evaporation from a concave meniscus for various vacuum pressures. By using the model, we have shown that an opposing buoyancy flow suppressed the thermocapillary flow in the liquid during evaporation at low pressures in our experiments. As such, in the absence of thermocapillary convection, the evaporation is controlled by heat transfer to the interface, and the predicted behavior of the system is independent of choosing between the existing theoretical expressions for evaporation flux. Furthermore, we investigated the temperature discontinuity at the interface and confirmed that the discontinuity strongly depends on the heat flux from the vapor side, which depends on the geometrical shape of the interface.

  5. Effects of variable thermal diffusivity on the structure of convection

    Science.gov (United States)

    Shcheritsa, O. V.; Getling, A. V.; Mazhorova, O. S.

    2018-03-01

    The structure of multiscale convection in a thermally stratified plane horizontal fluid layer is investigated by means of numerical simulations. The thermal diffusivity is assumed to produce a thin boundary sublayer convectively much more unstable than the bulk of the layer. The simulated flow is a superposition of cellular structures with three different characteristic scales. In contrast to the largest convection cells, the smaller ones are localised in the upper portion of the layer. The smallest cells are advected by the larger-scale convective flows. The simulated flow pattern qualitatively resembles that observed on the Sun.

  6. Terminal project heat convection in thin cylinders

    International Nuclear Information System (INIS)

    Morales Corona, J.

    1992-01-01

    Heat convection in thin cylinders and analysis about natural convection for straight vertical plates, and straight vertical cylinders submersed in a fluid are presented some works carry out by different authors in the field of heat transfer. In the part of conduction, deduction of the equation of heat conduction in cylindrical coordinates by means of energy balance in a control volume is presented. Enthalpy and internal energy are used for the outlining of the equation and finally the equation in its vectorial form is obtained. In the convection part development to calculate the Nusselt number for a straight vertical plate by a forces analysis, an energy balance and mass conservation over a control volume is outlined. Several empiric correlations to calculate the Nusselt number and its relations with other dimensionless numbers are presented. In the experimental part the way in which a prototype rode is assembled is presented measurements of temperatures attained in steady state and in free convection for working fluids as air and water are showed in tables. Also graphs of Nusselt numbers obtained in the experimental way through some empiric correlations are showed (Author)

  7. Heat transfer by natural convection into an horizontal cavity

    International Nuclear Information System (INIS)

    Arevalo J, P.

    1998-01-01

    At this thesis it is studied the heat transfer by natural convection in an horizontal cavity, it is involved a boiling's part that is described the regimes and correlations differences for boiling's curve. It is designed a horizontal cavity for realize the experimental part and it's mention from equipment or instrumentation to succeed in a experimentation that permits to realize the analysis of heat transfer, handling as water fluid at atmospheric pressure and where it's present process from natural convection involving part boiling's subcooled. The system consists of heater zone submerged in a horizontal cavity with water. Once part finished experimental with information to obtained it's proceeded to obtain a correlation, realized starting from analysis dimensionless such as: Jakob, Bond and Grasoft (Boiling) besides of knows in natural convection: Prandtl and Nusselt. The mathematical model explains the behavior for natural convection continued part boiling's subcooled. It is realize analysis graphics too where it's show comparing with Globe Dropkin and Catton equations by natural convection with bottom heating. (Author)

  8. The influence of convective current generator on the global current

    Directory of Open Access Journals (Sweden)

    V. N. Morozov

    2006-01-01

    Full Text Available The mathematical generalization of classical model of the global circuit with taking into account the convective current generator, working in the planetary boundary layer was considered. Convective current generator may be interpreted as generator, in which the electromotive force is generated by processes, of the turbulent transport of electrical charge. It is shown that the average potential of ionosphere is defined not only by the thunderstorm current generators, working at the present moment, but by the convective current generator also. The influence of the convective processes in the boundary layer on the electrical parameters of the atmosphere is not only local, but has global character as well. The numerical estimations, made for the case of the convective-unstable boundary layer demonstrate that the increase of the average potential of ionosphere may be of the order of 10% to 40%.

  9. Time dependent convection electric fields and plasma injection

    International Nuclear Information System (INIS)

    Kaye, S.M.; Kivelson, M.G.

    1979-01-01

    Large-scale electric fields associated with storms or substorms are responsible for inward convection and energization of plasma sheet plasma. Calculations based on steady state convection theory show that the response to such electric fields qualitatively accounts for many features of the injected particle distribution, but quantitative agreement with the theory has not yet been obtained. It is known that the predictions can be improved by introducing the concept of convection in response to a time dependent electric field. On the other hand, time dependent calculations are sensitive to the choice of initial conditions, and most models have failed to incorporate these conditions in a realistic and self-consistent manner. In this paper we present a more complete model consisting of realisic initial conditions and time dependent convection to explain a typical substorm-associated electron injection event. We find very good agreement between the observed electron flux changes and those predicted by our model

  10. Large Eddy Simulations of Severe Convection Induced Turbulence

    Science.gov (United States)

    Ahmad, Nash'at; Proctor, Fred

    2011-01-01

    Convective storms can pose a serious risk to aviation operations since they are often accompanied by turbulence, heavy rain, hail, icing, lightning, strong winds, and poor visibility. They can cause major delays in air traffic due to the re-routing of flights, and by disrupting operations at the airports in the vicinity of the storm system. In this study, the Terminal Area Simulation System is used to simulate five different convective events ranging from a mesoscale convective complex to isolated storms. The occurrence of convection induced turbulence is analyzed from these simulations. The validation of model results with the radar data and other observations is reported and an aircraft-centric turbulence hazard metric calculated for each case is discussed. The turbulence analysis showed that large pockets of significant turbulence hazard can be found in regions of low radar reflectivity. Moderate and severe turbulence was often found in building cumulus turrets and overshooting tops.

  11. The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    Science.gov (United States)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  12. Examining Chaotic Convection with Super-Parameterization Ensembles

    Science.gov (United States)

    Jones, Todd R.

    This study investigates a variety of features present in a new configuration of the Community Atmosphere Model (CAM) variant, SP-CAM 2.0. The new configuration (multiple-parameterization-CAM, MP-CAM) changes the manner in which the super-parameterization (SP) concept represents physical tendency feedbacks to the large-scale by using the mean of 10 independent two-dimensional cloud-permitting model (CPM) curtains in each global model column instead of the conventional single CPM curtain. The climates of the SP and MP configurations are examined to investigate any significant differences caused by the application of convective physical tendencies that are more deterministic in nature, paying particular attention to extreme precipitation events and large-scale weather systems, such as the Madden-Julian Oscillation (MJO). A number of small but significant changes in the mean state climate are uncovered, and it is found that the new formulation degrades MJO performance. Despite these deficiencies, the ensemble of possible realizations of convective states in the MP configuration allows for analysis of uncertainty in the small-scale solution, lending to examination of those weather regimes and physical mechanisms associated with strong, chaotic convection. Methods of quantifying precipitation predictability are explored, and use of the most reliable of these leads to the conclusion that poor precipitation predictability is most directly related to the proximity of the global climate model column state to atmospheric critical points. Secondarily, the predictability is tied to the availability of potential convective energy, the presence of mesoscale convective organization on the CPM grid, and the directive power of the large-scale.

  13. Thermal radiation and mass transfer effects on unsteady MHD free convection flow past a vertical oscillating plate

    Science.gov (United States)

    Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.

    2017-06-01

    Unsteady MHD free convection flow past a vertical porous plate in porous medium with radiation, diffusion thermo, thermal diffusion and heat source are analyzed. The governing non-linear, partial differential equations are transformed into dimensionless by using non-dimensional quantities. Then the resultant dimensionless equations are solved numerically by applying an efficient, accurate and conditionally stable finite difference scheme of explicit type with the help of a computer programming language Compaq Visual Fortran. The stability and convergence analysis has been carried out to establish the effect of velocity, temperature, concentration, skin friction, Nusselt number, Sherwood number, stream lines and isotherms line. Finally, the effects of various parameters are presented graphically and discussed qualitatively.

  14. Concentration field in traveling-wave and stationary convection in fluid mixtures

    International Nuclear Information System (INIS)

    Eaton, K.D.; Ohlsen, D.R.; Yamamoto, S.Y.; Surko, C.M.; Barten, W.; Luecke, M.; Kamps, M.; Kolodner, P.

    1991-01-01

    By comparison of measurements of shadowgraph images of convection in ethanol-water mixtures with the results of recent numerical calculations, we study the role of the concentration field in traveling-wave and stationary convection. The results confirm the existence of a large concentration contrast between adjacent traveling-wave convection rolls. This concentration modulation, which decreases as the Rayleigh number is increased and the transition to stationary convection is approached, is fundamental to the translation of the pattern

  15. Novel Natural Convection Heat Sink Design Concepts From First Principles

    Science.gov (United States)

    2016-06-01

    CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES by Derek E. Fletcher June 2016 Thesis Advisor: Garth Hobson Second Reader...COVERED Master’s Thesis 4. TITLE AND SUBTITLE NOVEL NATURAL CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES 5. FUNDING NUMBERS 6...CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES Derek E. Fletcher Lieutenant Commander, United States Navy B.S., Southwestern

  16. Introductory analysis of Benard-Marangoni convection

    International Nuclear Information System (INIS)

    Maroto, J A; Perez-Munuzuri, V; Romero-Cano, M S

    2007-01-01

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics

  17. Introductory analysis of Benard-Marangoni convection

    Energy Technology Data Exchange (ETDEWEB)

    Maroto, J A [Group of Physics and Chemistry of Linares, Escuela Politecnica Superior, St Alfonso X El Sabio, 28, University of Jaen, E-23700 Linares, Jaen (Spain); Perez-Munuzuri, V [Group of Nonlinear Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Romero-Cano, M S [Group of Complex Fluids Physics, Department of Applied Physics, University of Almeria, E-04120 Almeria (Spain)

    2007-03-15

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics.

  18. The diurnal interaction between convection and peninsular-scale forcing over South Florida

    Science.gov (United States)

    Cooper, H. J.; Simpson, J.; Garstang, M.

    1982-01-01

    One of the outstanding problems in modern meterology is that of describing in detail the manner in which larger scales of motion interact with, influence and are influenced by successively smaller scales of motion. The present investigation is concerned with a study of the diurnal evolution of convection, the interaction between the peninsular-scale convergence and convection, and the role of the feedback produced by the cloud-scale downdrafts in the maintenance of the convection. Attention is given to the analysis, the diurnal cycle of the network area-averaged divergence, convective-scale divergence, convective mass transports, and the peninsular scale divergence. The links established in the investigation between the large scale (peninsular), the mesoscale (network), and the convective scale (cloud) are found to be of fundamental importance to the understanding of the initiation, maintenance, and decay of deep precipitating convection and to its theoretical parameterization.

  19. Double Diffusive Natural Convection in a Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Y. Hao; J. Nitao; T.A. Buscheck; Y. Sun

    2006-01-01

    In this study, we conduct a two-dimensional numerical analysis of double diffusive natural convection in an emplacement drift for a nuclear waste repository. In-drift heat and moisture transport is driven by combined thermal- and compositional-induced buoyancy forces. Numerical results demonstrate buoyancy-driven convective flow patterns and configurations during both repository heat-up and cool-down phases. It is also shown that boundary conditions, particularly on the drip-shield surface, have strong impacts on the in-drift convective flow and transport

  20. Strategic Repositioning for Convection Business Case Study: AR Vendor

    OpenAIRE

    Anindita, Pratisara Satwika; Toha, Mohamad

    2013-01-01

    The study aims to determine suitable position and strategy in order to reach superiority in convection business based on the company strengths and weaknesses. A study conducted in late 2012 at AR Vendor, a home-based convection company which focus on the t-shirt screen printing service. In response to the issue of the below average profit margin, the company has to rethink their position and strategy in handling the convection business environment. While AR Vendor business may growth in accor...

  1. Time-Distance Analysis of Deep Solar Convection

    Science.gov (United States)

    Duvall, T. L., Jr.; Hanasoge, S. M.

    2011-01-01

    Recently it was shown by Hanasoge, Duvall, and DeRosa (2010) that the upper limit to convective flows for spherical harmonic degrees ldeep-focusing Lime-distance technique used to develop the upper limit was applied to linear acoustic simulations of a solar interior perturbed by convective flows in order to calibrate the technique. This technique has been applied to other depths in the convection zone and the results will be presented. The deep-focusing technique has considerable sensitivity to the flow ' signals at the desired subsurface location ' However, as shown by Birch {ref}, there is remaining much sensitivity to near-surface signals. Modifications to the technique using multiple bounce signals have been examined in a search for a more refined sensitivity, or kernel function. Initial results are encouraging and results will be presented'

  2. Convective heat transfer around vertical jet fires: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kozanoglu, Bulent, E-mail: bulentu.kozanoglu@udlap.mx [Universidad de las Americas, Puebla (Mexico); Zarate, Luis [Universidad Popular Autonoma del Estado de Puebla (Mexico); Gomez-Mares, Mercedes [Universita di Bologna (Italy); Casal, Joaquim [Universitat Politecnica de Catalunya (Spain)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Experiments were carried out to analyze convection around a vertical jet fire. Black-Right-Pointing-Pointer Convection heat transfer is enhanced increasing the flame length. Black-Right-Pointing-Pointer Nusselt number grows with higher values of Rayleigh and Reynolds numbers. Black-Right-Pointing-Pointer In subsonic flames, Nusselt number increases with Froude number. Black-Right-Pointing-Pointer Convection and radiation are equally important in causing a domino effect. - Abstract: The convection heat transfer phenomenon in vertical jet fires was experimentally analyzed. In these experiments, turbulent propane flames were generated in subsonic as well as sonic regimes. The experimental data demonstrated that the rate of convection heat transfer increases by increasing the length of the flame. Assuming the solid flame model, the convection heat transfer coefficient was calculated. Two equations in terms of adimensional numbers were developed. It was found out that the Nusselt number attains greater values for higher values of the Rayleigh and Reynolds numbers. On the other hand, the Froude number was analyzed only for the subsonic flames where the Nusselt number grows by this number and the diameter of the orifice.

  3. Midlatitude Continental Convective Clouds Experiment (MC3E)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-01

    Convective processes play a critical role in the Earth’s energy balance through the redistribution of heat and moisture in the atmosphere and subsequent impacts on the hydrologic cycle. Global observation and accurate representation of these processes in numerical models is vital to improving our current understanding and future simulations of Earth’s climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales that are associated with convective and stratiform precipitation processes; therefore, they must turn to parameterization schemes to represent these processes. In turn, the physical basis for these parameterization schemes needs to be evaluated for general application under a variety of atmospheric conditions. Analogously, space-based remote sensing algorithms designed to retrieve related cloud and precipitation information for use in hydrological, climate, and numerical weather prediction applications often rely on physical “parameterizations” that reliably translate indirectly related instrument measurements to the physical quantity of interest (e.g., precipitation rate). Importantly, both spaceborne retrieval algorithms and model convective parameterization schemes traditionally rely on field campaign data sets as a basis for evaluating and improving the physics of their respective approaches. The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the April–May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States

  4. Do tropical wetland plants possess a convective gas flow mechanism?

    DEFF Research Database (Denmark)

    Jensen, Dennis Konnerup; Sorrell, Brian Keith; Brix, Hans

    2011-01-01

    Internal pressurization and convective gas flow, which can aerate wetland plants more efficiently than diffusion, are common in temperate species. Here, we present the first survey of convective flow in a range of tropical plants. The occurrence of pressurization and convective flow was determined...... in 20 common wetland plants from the Mekong Delta in Vietnam. The diel variation in pressurization in culms and the convective flow and gas composition from stubbles were examined for Eleocharis dulcis, Phragmites vallatoria and Hymenachne acutigluma, and related to light, humidity and air temperature....... Nine of the 20 species studied were able to build up a static pressure of >50Pa, and eight species had convective flow rates higher than 1mlmin-1. There was a clear diel variation, with higher pressures and flows during the day than during the night, when pressures and flows were close to zero...

  5. Neutral beam injection and plasma convection in a magnetic field

    International Nuclear Information System (INIS)

    Okuda, H.; Hiroe, S.

    1988-06-01

    Injection of a neutral beam into a plasma in a magnetic field has been studied by means of numerical plasma simulations. It is found that, in the absence of a rotational transform, the convection electric field arising from the polarization charges at the edges of the beam is dissipated by turbulent plasma convection, leading to anomalous plasma diffusion across the magnetic field. The convection electric field increases with the beam density and beam energy. In the presence of a rotational transform, polarization charges can be neutralized by the electron motion along the magnetic field. Even in the presence of a rotational transform, a steady-state convection electric field and, hence, anomalous plasma diffusion can develop when a neutral beam is constantly injected into a plasma. Theoretical investigations on the convection electric field are described for a plasma in the presence of rotational transform. 11 refs., 19 figs

  6. SOUND-SPEED INVERSION OF THE SUN USING A NONLOCAL STATISTICAL CONVECTION THEORY

    International Nuclear Information System (INIS)

    Zhang Chunguang; Deng Licai; Xiong Darun; Christensen-Dalsgaard, Jørgen

    2012-01-01

    Helioseismic inversions reveal a major discrepancy in sound speed between the Sun and the standard solar model just below the base of the solar convection zone. We demonstrate that this discrepancy is caused by the inherent shortcomings of the local mixing-length theory adopted in the standard solar model. Using a self-consistent nonlocal convection theory, we construct an envelope model of the Sun for sound-speed inversion. Our solar model has a very smooth transition from the convective envelope to the radiative interior, and the convective energy flux changes sign crossing the boundaries of the convection zone. It shows evident improvement over the standard solar model, with a significant reduction in the discrepancy in sound speed between the Sun and local convection models.

  7. Topology Optimisation for Coupled Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Andreasen, Casper Schousboe; Aage, Niels

    stabilised finite elements implemented in a parallel multiphysics analysis and optimisation framework DFEM [1], developed and maintained in house. Focus is put on control of the temperature field within the solid structure and the problems can therefore be seen as conjugate heat transfer problems, where heat...... conduction governs in the solid parts of the design domain and couples to convection-dominated heat transfer to a surrounding fluid. Both loosely coupled and tightly coupled problems are considered. The loosely coupled problems are convection-diffusion problems, based on an advective velocity field from...

  8. Compressible Analysis of Bénard Convection of Magneto Rotatory Couple-Stress Fluid

    Directory of Open Access Journals (Sweden)

    Mehta C.B.

    2018-02-01

    Full Text Available Thermal Instability (Benard’s Convection in the presence of uniform rotation and uniform magnetic field (separately is studied. Using the linearized stability theory and normal mode analyses the dispersion relation is obtained in each case. In the case of rotatory Benard’s stationary convection compressibility and rotation postpone the onset of convection whereas the couple-stress have duel character onset of convection depending on rotation parameter. While in the absence of rotation couple-stress always postpones the onset of convection. On the other hand, magnetic field on thermal instability problem on couple-stress fluid for stationary convection couple-stress parameter and magnetic field postpones the onset of convection. The effect of compressibility also postpones the onset of convection in both cases as rotation and magnetic field. Graphs have been plotted by giving numerical values to the parameters to depict the stationary characteristics. Further, the magnetic field and rotation are found to introduce oscillatory modes which were non-existent in their absence and then the principle of exchange of stability is valid. The sufficient conditions for non-existence of overstability are also obtained.

  9. Acoustic power balance in lined ducts

    Science.gov (United States)

    Eversman, W.

    1979-01-01

    It is shown that the two common definitions of acoustic energy density and intensity in uniform unlined ducts carrying uniform flow are compatible to the extent that both energy densities can be used in an appropriate variational principle to derive the convected wave equation. When the duct walls are lined both energy densities must be modified to account for the wall energy density. This results in a new energy conservation equation which utilizes a modified definition of axial power and accounts for wall dissipation. Computations in specific cases demonstrate the validity of the modified acoustic energy relation.

  10. Theoretical study of the high-latitude ionosphere's response to multicell convection patterns

    International Nuclear Information System (INIS)

    Sojka, J.J.; Schunk, R.W.

    1987-01-01

    It is well known that the convection electric fields have an important effect on the ionosphere at high latitudes and that a quantitative understanding of their effect requires a knowledge of the plasma convection pattern. When the interplanetary magnetic field (IMF) is southward, plasma convection at F region altitudes displays a two-cell pattern with antisunward flow over the polar cap and return flow at lower latitudes. However, when the IMF is northward, multiple convection cells can exist, with both sunward flow and auroral precipitation (theta aurora) in the polar cap. The characteristic ionospheric signatures associated with multicell convection patterns were studied with the aid of a three-dimensional time-dependent ionospheric model. Two-, three-, and four-cell patterns were considered and the ionosphere's response was calculated for the same cross-tail potential and for solar maximum and winter conditions in the northern hemisphere. As expected, there are major distinguishing ionospheric features associated with the different convection patterns, particularly in the polar cap. For two-cell convection the antisunward flow the plasma from the dayside into the polar cap. For two-cell convection the antisunward flow of plasma from the dayside into the polar cap acts to maintain the densities in this region in winter. For four-cell convection, on the other hand, the two aditional convection cells in the polar cap are in darkness most of the time, and the resulting O + decay acts to produce twin polar holes that are separated by a sun-aligned ridge of enhanced ionization due to theta aurora precipitation

  11. Improving microphysics in a convective parameterization: possibilities and limitations

    Science.gov (United States)

    Labbouz, Laurent; Heikenfeld, Max; Stier, Philip; Morrison, Hugh; Milbrandt, Jason; Protat, Alain; Kipling, Zak

    2017-04-01

    The convective cloud field model (CCFM) is a convective parameterization implemented in the climate model ECHAM6.1-HAM2.2. It represents a population of clouds within each ECHAM-HAM model column, simulating up to 10 different convective cloud types with individual radius, vertical velocities and microphysical properties. Comparisons between CCFM and radar data at Darwin, Australia, show that in order to reproduce both the convective cloud top height distribution and the vertical velocity profile, the effect of aerodynamic drag on the rising parcel has to be considered, along with a reduced entrainment parameter. A new double-moment microphysics (the Predicted Particle Properties scheme, P3) has been implemented in the latest version of CCFM and is compared to the standard single-moment microphysics and the radar retrievals at Darwin. The microphysical process rates (autoconversion, accretion, deposition, freezing, …) and their response to changes in CDNC are investigated and compared to high resolution CRM WRF simulations over the Amazon region. The results shed light on the possibilities and limitations of microphysics improvements in the framework of CCFM and in convective parameterizations in general.

  12. Plume structure in high-Rayleigh-number convection

    Science.gov (United States)

    Puthenveettil, Baburaj A.; Arakeri, Jaywant H.

    2005-10-01

    Near-wall structures in turbulent natural convection at Rayleigh numbers of 10^{10} to 10^{11} at A Schmidt number of 602 are visualized by a new method of driving the convection across a fine membrane using concentration differences of sodium chloride. The visualizations show the near-wall flow to consist of sheet plumes. A wide variety of large-scale flow cells, scaling with the cross-section dimension, are observed. Multiple large-scale flow cells are seen at aspect ratio (AR)= 0.65, while only a single circulation cell is detected at AR= 0.435. The cells (or the mean wind) are driven by plumes coming together to form columns of rising lighter fluid. The wind in turn aligns the sheet plumes along the direction of shear. the mean wind direction is seen to change with time. The near-wall dynamics show plumes initiated at points, which elongate to form sheets and then merge. Increase in rayleigh number results in a larger number of closely and regularly spaced plumes. The plume spacings show a common log normal probability distribution function, independent of the rayleigh number and the aspect ratio. We propose that the near-wall structure is made of laminar natural-convection boundary layers, which become unstable to give rise to sheet plumes, and show that the predictions of a model constructed on this hypothesis match the experiments. Based on these findings, we conclude that in the presence of a mean wind, the local near-wall boundary layers associated with each sheet plume in high-rayleigh-number turbulent natural convection are likely to be laminar mixed convection type.

  13. The ‘churning mode’ of plasma convection in the tokamak divertor region

    International Nuclear Information System (INIS)

    Ryutov, D D; Cohen, R H; Farmer, W A; Rognlien, T D; Umansky, M V

    2014-01-01

    The churning mode can arise in a toroidally-symmetric plasma where it causes convection in the vicinity of the poloidal magnetic field null. The mode is driven by the toroidal curvature of magnetic field lines coupled with a pressure gradient. The toroidal equilibrium conditions cannot be satisfied easily in the virtual absence of the poloidal field (PF)—hence the onset of this mode, which ‘churns’ the plasma around the PF null without perturbing the strong toroidal field. We find the conditions under which this mode can be excited in magnetic configurations with first-, second-, and third-order PF nulls (i.e., in the geometry of standard, snowflake and cloverleaf divertors). The size of the affected zone in second- and third-order-null divertors is much larger than in a standard first-order-null divertor. The proposed phenomenological theory allows one to evaluate observable characteristics of the mode, in particular the frequency and amplitude of the PF perturbations. The mode spreads the tokamak heat exhaust between multiple divertor legs and may lead to a broadening of the plasma width in each leg. The mode causes much more intense plasma convection in the poloidal plane than the classical plasma drifts. (invited comment)

  14. Direct simulation of turbulent Rayleigh-Benard convection in liquid sodium

    International Nuclear Information System (INIS)

    Woerner, M.

    1994-11-01

    The numerical results are analysed to investigate both the structures and mechanisms of convection and the statistical features of turbulence in natural convection of liquid metals. The simulations are performed with the finite volume code TURBIT which is extended by a semi-implicit time integration scheme for the energy equation. Due to the implicit treatment of thermal diffusion the computational time for simulation of natural convection in liquid metals is reduced by about one order of magnitude, as compared to the original fully explicit code version. Results for Rayleigh-Benard convection in liquid sodium with Prandtl number Pr=0.006 are given for four different Rayleigh numbers: Ra=3 000, Ra=6 000, Ra=12 000, and Ra=24 000. At the Rayleigh number Ra=3 000 the inertial convection is identified. It is characterized by large two-dimensional vortices, which rotate like a solid body. These vortices are also observed in the simulations for Ra=6 000, Ra=12 000 and Ra=24 000, but, they only exist in certain regions and for short time intervals. The appearance of these two-dimensional structures in three-dimensional, time-dependent and turbulent convection is explained by the relative importance of the non-linear terms in the momentum and energy equation, which is totally different in both equations, and by the coupling of these equations by the buoyancy and the convective term. In order to improve and validate statistical turbulence model for application to natural convection in liquid metals, budgets of turbulence kinetic energy, turbulent heat flux and temperature variance are calculated from the numerical results. For several unknown correlations closure assumptions used in standard turbulence models are analyzed and model coefficients are determined. (orig./HP) [de

  15. Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics

    Science.gov (United States)

    S, Sreekanth T.

    begin{center} Large Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar Peroorkada, Thiruvananthapuram ABSTRACT This study investigates the variabilities of convective and stratiform rainfall from 2011 to 2013 at a tropical coastal station in three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Understanding the climatological variability of these two dominant forms of precipitation and their implications in the total rainfall were the main objectives of this investigation. Variabilities in the frequency & duration of events, rain rate & total number of rain drops distribution in different events and the accumulated amount of rain water were analysed. Based on the ground & radar observations from optical & impact disdrometers, Micro Rain Radar and Atmospheric Electric Field Mill, precipitation events were classified into convective and stratiform in three seasons. Classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill is also used. Events which could not be included in both types were termed as 'mixed precipitation' and were included separately. Diurnal variability of the total rainfall in each seasons were also examined. For both convective and stratiform rainfall there exist distinct day-night differences. During nocturnal hours convective rain draged more attention. In all seasons almost 70% of rain duration and 60% of rain events of convective origin were confined to nocturnal hours. But stratiform rain was not affected by diurnal variations greatly because night time occurrences of stratiform duration and events were less than 50%. Also in Monsoon above 35% of

  16. Confinement and dynamical regulation in two-dimensional convective turbulence

    DEFF Research Database (Denmark)

    Bian, N.H.; Garcia, O.E.

    2003-01-01

    In this work the nature of confinement improvement implied by the self-consistent generation of mean flows in two-dimensional convective turbulence is studied. The confinement variations are linked to two distinct regulation mechanisms which are also shown to be at the origin of low......-frequency bursting in the fluctuation level and the convective heat flux integral, both resulting in a state of large-scale intermittency. The first one involves the control of convective transport by sheared mean flows. This regulation relies on the conservative transfer of kinetic energy from tilted fluctuations...

  17. Impairment of Heat Transfer in the Passive Cooling System due to Mixed Convection

    Energy Technology Data Exchange (ETDEWEB)

    Chae Myeong Seon; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of); Kim, Jong Hwan [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In the passive cooling devices, the buoyant flows are induced. However the local Nusselt number of natural convective flow can be partly impaired due to the development of the mixed convective flows. This paper discusses impairment of heat transfer in the passive cooling system in relation to the development of mixed convection. The present work describes the preliminary plan to explore the phenomena experimentally. This paper is to discuss and make the plan to experiment the impairment of heat transfer in the passive cooling system due to mixed convection. In the sufficiently high passive cooling devices, the natural convection flow behavior can be mixed convection. The local Nusselt number distribution exhibits the non-monotonic behavior as axial position, since the buoyancy-aided with mixed convection was appeared. This is the part of the experimental work.

  18. Modeling the Solar Convective Dynamo and Emerging Flux

    Science.gov (United States)

    Fan, Y.

    2017-12-01

    Significant advances have been made in recent years in global-scale fully dynamic three-dimensional convective dynamo simulations of the solar/stellar convective envelopes to reproduce some of the basic features of the Sun's large-scale cyclic magnetic field. It is found that the presence of the dynamo-generated magnetic fields plays an important role for the maintenance of the solar differential rotation, without which the differential rotation tends to become anti-solar (with a faster rotating pole instead of the observed faster rotation at the equator). Convective dynamo simulations are also found to produce emergence of coherent super-equipartition toroidal flux bundles with a statistically significant mean tilt angle that is consistent with the mean tilt of solar active regions. The emerging flux bundles are sheared by the giant cell convection into a forward leaning loop shape with its leading side (in the direction of rotation) pushed closer to the strong downflow lanes. Such asymmetric emerging flux pattern may lead to the observed asymmetric properties of solar active regions.

  19. Natural convection and wall radiation in tall cavities

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, C [Regional Engineering College, Tiruchirapalli (India). Dept. of Mechanical Engineering; Venkateshan, S P [Indian Inst. of Tech., Madras (India). Dept. of Mechanical Engineering

    1996-12-01

    The problem of combined natural convection and wall radiation in tall cavities has been taken up for a detailed numerical investigation. The governing equations for fluid flow have been solved by a finite volume method and the radiation has been treated by the radiosity-irradiation method. The analysis has been specifically made for the case where the emissivity of the hot left wall is different from that of the cold right wall. For this case it was found that decoupling radiation from free convection can lead to considerable error. Correlations have been suggested for predicting both the convective as well as the radiative heat transfer rates across the cavity. (author). 7 refs., 3 figs., 3 tabs.

  20. Natural convection and wall radiation in tall cavities

    International Nuclear Information System (INIS)

    Balaji, C.; Venkateshan, S.P.

    1996-01-01

    The problem of combined natural convection and wall radiation in tall cavities has been taken up for a detailed numerical investigation. The governing equations for fluid flow have been solved by a finite volume method and the radiation has been treated by the radiosity-irradiation method. The analysis has been specifically made for the case where the emissivity of the hot left wall is different from that of the cold right wall. For this case it was found that decoupling radiation from free convection can lead to considerable error. Correlations have been suggested for predicting both the convective as well as the radiative heat transfer rates across the cavity. (author). 7 refs., 3 figs., 3 tabs

  1. Unravelling convective heat transfer in the Rotated Arc Mixer

    NARCIS (Netherlands)

    Speetjens, M.F.M.; Baskan, O.; Metcalfe, G.; Clercx, H.J.H.

    2014-01-01

    Thermal homogenization is essentially a transient problem and convective heat transfer by (chaotic) advection is known to accelerate this process. Convective heat transfer traditionally is examined in terms of heat-transfer coefficients at domain walls and characterised by Nusselt relations.

  2. Transition from natural-convection-controlled freezing to conduction-controlled freezing

    International Nuclear Information System (INIS)

    Sparrow, E.M.; Ramsey, J.W.; Harris, J.S.

    1981-01-01

    Experiments were performed to study the transition between freezing controlled by natural convection in the liquid adjacent to a freezing interface and freezing controlled by heat conduction in the solidified material. The freezing took place on a cooled vertical tube immersed in an initially superheated liquid contained in an adiabatic-walled vessel. At early and intermediate times, temperature differences throughout the liquid induce a vigorous natural convection motion which retards freezing, but the temperature differences diminish with time and natural convection ebbs. At large times, the freezing rate is fully controlled by heat conduction in the solidified material. The frozen specimens for short and intermediate freezing times are smooth-surfaced and tapered, while those for large times are straight-sided and have surfaces that are overlaid with a thicket of large discrete crystals. These characteristics correspond respectively to those of natural-convection- controlled freezing and conduction-controlled freezing. At early times, the measured mass of the frozen material is identical to that for natural-convection-controlled freezing and conduction-controlled freezing. At early times, the measured mass of the frozen material is identical to that for natural-convection-controlled freezing. At later times, the frozen mass tends to approach that for conduction-controlled freezing, but a residual deficit remains

  3. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array

  4. A convection-allowing ensemble forecast based on the breeding growth mode and associated optimization of precipitation forecast

    Science.gov (United States)

    Li, Xiang; He, Hongrang; Chen, Chaohui; Miao, Ziqing; Bai, Shigang

    2017-10-01

    A convection-allowing ensemble forecast experiment on a squall line was conducted based on the breeding growth mode (BGM). Meanwhile, the probability matched mean (PMM) and neighborhood ensemble probability (NEP) methods were used to optimize the associated precipitation forecast. The ensemble forecast predicted the precipitation tendency accurately, which was closer to the observation than in the control forecast. For heavy rainfall, the precipitation center produced by the ensemble forecast was also better. The Fractions Skill Score (FSS) results indicated that the ensemble mean was skillful in light rainfall, while the PMM produced better probability distribution of precipitation for heavy rainfall. Preliminary results demonstrated that convection-allowing ensemble forecast could improve precipitation forecast skill through providing valuable probability forecasts. It is necessary to employ new methods, such as the PMM and NEP, to generate precipitation probability forecasts. Nonetheless, the lack of spread and the overprediction of precipitation by the ensemble members are still problems that need to be solved.

  5. VHF/UHF radar observations of tropical mesoscale convective systems over southern India

    Directory of Open Access Journals (Sweden)

    K. Kishore Kumar

    2005-07-01

    Full Text Available Several campaigns have been carried out to study the convective systems over Gadanki (13.5° N, 79.2° E, a tropical station in India, using VHF and UHF radars. The height-time sections of several convective systems are investigated in detail to study reflectivity, turbulence and vertical velocity structure. Structure and dynamics of the convective systems are the main objectives of these campaigns. The observed systems are classified into single- and multi-cell systems. It has been observed that most of the convective systems at this latitude are multi-cellular in nature. Simultaneous VHF and UHF radar observations are used to classify the observed precipitating systems as convective, intermediary and stratiform regions. Composite height profiles of vertical velocities in these regions were obtained and the same were compared with the profiles obtained at other geographical locations. These composite profiles of vertical velocity in the convective regions have shown their peaks in the mid troposphere, indicating that the maximum latent heat is being released at those heights. These profiles are very important for numerical simulations of the convective systems, which vary significantly from one geographical location to the other.

    Keywords. Meteorology and atmospheric dynamics (Mesoscale meteorology; Convective processes – Radio science (Remote sensing

  6. VHF/UHF radar observations of tropical mesoscale convective systems over southern India

    Directory of Open Access Journals (Sweden)

    K. Kishore Kumar

    2005-07-01

    Full Text Available Several campaigns have been carried out to study the convective systems over Gadanki (13.5° N, 79.2° E, a tropical station in India, using VHF and UHF radars. The height-time sections of several convective systems are investigated in detail to study reflectivity, turbulence and vertical velocity structure. Structure and dynamics of the convective systems are the main objectives of these campaigns. The observed systems are classified into single- and multi-cell systems. It has been observed that most of the convective systems at this latitude are multi-cellular in nature. Simultaneous VHF and UHF radar observations are used to classify the observed precipitating systems as convective, intermediary and stratiform regions. Composite height profiles of vertical velocities in these regions were obtained and the same were compared with the profiles obtained at other geographical locations. These composite profiles of vertical velocity in the convective regions have shown their peaks in the mid troposphere, indicating that the maximum latent heat is being released at those heights. These profiles are very important for numerical simulations of the convective systems, which vary significantly from one geographical location to the other. Keywords. Meteorology and atmospheric dynamics (Mesoscale meteorology; Convective processes – Radio science (Remote sensing

  7. Modelling deep convection and its impacts on the tropical tropopause layer

    Directory of Open Access Journals (Sweden)

    J. S. Hosking

    2010-11-01

    Full Text Available The UK Met Office's Unified Model is used at a climate resolution (N216, ~0.83°×~0.56°, ~60 km to assess the impact of deep tropical convection on the structure of the tropical tropopause layer (TTL. We focus on the potential for rapid transport of short-lived ozone depleting species to the stratosphere by rapid convective uplift. The modelled horizontal structure of organised convection is shown to match closely with signatures found in the OLR satellite data. In the model, deep convective elevators rapidly lift air from 4–5 km up to 12–14 km. The influx of tropospheric air entering the TTL (11–12 km is similar for all tropical regions with most convection stopping below ~14 km. The tropical tropopause is coldest and driest between November and February, coinciding with the greatest upwelling over the tropical warm pool. As this deep convection is co-located with bromine-rich biogenic coastal emissions, this period and location could potentially be the preferential gateway for stratospheric bromine.

  8. Anvil Productivities of Tropical Deep Convective Clusters and Their Regional Differences

    Directory of Open Access Journals (Sweden)

    Deng Min

    2016-01-01

    The total anvil clouds detrained from convection counts for 0.4 to 0.8 of the cluster horizontal scale, 0.2 to 0.6 of the cluster cross section volume, and 0.05 to 0.20 of the cluster ice mass, depending on the cluster scales and height. There are two main detrainment layers. When the convective clusters is less than about 100 km, the anvil clouds are mainly detrained at about 6-8 km with a spreading ratio (ratio of maximum cluster width to convection rainy core width less than 1.5. When convective clusters becomes 100 km or wider, it reaches the dominate detrainment layer at about 12 km, the detrainment index increase from 2 to more 6. Among 8 regions, convection clusters in MA produce the most anvil volume fraction. The more the ice mass is pumped upward in the anvil clouds till clusters are about 500 km wider. Nevertheless, the anvil ice mass pumped above 15 km is less than 0.1% of the total ice mass in the convective cluster.

  9. Natural convection in horizontal fluid layers

    International Nuclear Information System (INIS)

    Suo-Antilla, A.J.

    1977-02-01

    The experimental work includes developing and using a thermal convection cell to obtain measurements of the heat flux and turbulent core temperature of a horizontal layer of fluid heated internally and subject to both stabilizing and destabilizing temperature differences. The ranges of Rayleigh numbers tested were 10 7 equal to or less than R/sub I/ equal to or less than 10 13 and -10 10 equal to or less than R/sub E/ equal to or less than 10 10 . Power integral methods were found to be adequate for interpolating and extrapolating the data. The theoretical work consists of the derivation, solution and use of the mean field equations for study of thermally driven convection in horizontal layers of infinite extent. The equations were derived by a separation of variables technique where the horizontal directions were described by periodic structures and the vertical being some function of z. The derivation resulted in a coupled set of momentum and energy equations. The equations were simplified by using the infinite Prandtl number limit and neglecting direct intermodal interaction. Solutions to these equations are used to predict the existence of multi-wavenumber flows at all supercritical Rayleigh numbers. Subsequent inspection of existing experimental photographs of convecting fluids confirms their existence. The onset of time dependence is found to coincide with the onset of the second convective mode. Each mode is found to consist of two wavenumbers and typically the velocity and temperature fields of the right modal branch are found to be out of phase

  10. Extended Subadiabatic Layer in Simulations of Overshooting Convection

    Energy Technology Data Exchange (ETDEWEB)

    Käpylä, Petri J.; Arlt, Rainer [Leibniz-Institut für Astrophysik, An der Sternwarte 16, D-14482 Potsdam (Germany); Rheinhardt, Matthias; Käpylä, Maarit J.; Olspert, Nigul [ReSoLVE Centre of Excellence, Department of Computer Science, P.O. Box 15400, FI-00076 Aalto (Finland); Brandenburg, Axel [NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Lagg, Andreas; Warnecke, Jörn [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-08-20

    We present numerical simulations of hydrodynamic overshooting convection in local Cartesian domains. We find that a substantial fraction of the lower part of the convection zone (CZ) is stably stratified according to the Schwarzschild criterion while the enthalpy flux is outward directed. This occurs when the heat conduction profile at the bottom of the CZ is smoothly varying, based either on a Kramers-like opacity prescription as a function of temperature and density or a static profile of a similar shape. We show that the subadiabatic layer arises due to nonlocal energy transport by buoyantly driven downflows in the upper parts of the CZ. Analysis of the force balance of the upflows and downflows confirms that convection is driven by cooling at the surface. We find that the commonly used prescription for the convective enthalpy flux being proportional to the negative entropy gradient does not hold in the stably stratified layers where the flux is positive. We demonstrate the existence of a non-gradient contribution to the enthalpy flux, which is estimated to be important throughout the convective layer. A quantitative analysis of downflows indicates a transition from a tree-like structure where smaller downdrafts merge into larger ones in the upper parts to a structure in the deeper parts where a height-independent number of strong downdrafts persist. This change of flow topology occurs when a substantial subadiabatic layer is present in the lower part of the CZ.

  11. VARIATION OF STELLAR ENVELOPE CONVECTION AND OVERSHOOT WITH METALLICITY

    International Nuclear Information System (INIS)

    Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre

    2013-01-01

    We examine how metallicity affects convection and overshoot in the superadiabatic layer of main sequence stars. We present results from a grid of three-dimensional radiation hydrodynamic simulations with four metallicities (Z = 0.040, 0.020, 0.010, 0.001), and spanning a range in effective temperature (4950 eff < 6230). We show that changing the metallicity alters properties of the convective gas dynamics, and the structure of the superadiabatic layer and atmosphere. Our grid of simulations shows that the amount of superadiabaticity, which tracks the transition from efficient to inefficient convection, is sensitive to changes in metallicity. We find that increasing the metallicity forces the location of the transition region to lower densities and pressures, and results in larger mean and turbulent velocities throughout the superadiabatic region. We also quantify the degree of convective overshoot in the atmosphere, and show that it increases with metallicity as well.

  12. Boundary layers and scaling relations in natural thermal convection

    Science.gov (United States)

    Shishkina, Olga; Lohse, Detlef; Grossmann, Siegfried

    2017-11-01

    We analyse the boundary layer (BL) equations in natural thermal convection, which includes vertical convection (VC), where the fluid is confined between two differently heated vertical walls, horizontal convection (HC), where the fluid is heated at one part of the bottom plate and cooled at some other part, and Rayleigh-Benard convection (RBC). For BL dominated regimes we derive the scaling relations of the Nusselt and Reynolds numbers (Nu, Re) with the Rayleigh and Prandtl numbers (Ra, Pr). For VC the scaling relations are obtained directly from the BL equations, while for HC they are derived by applying the Grossmann-Lohse theory to the case of VC. In particular, for RBC with large Pr we derive Nu Pr0Ra1/3 and Re Pr-1Ra2/3. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.

  13. Turbulent convection in liquid metal with and without rotation.

    Science.gov (United States)

    King, Eric M; Aurnou, Jonathan M

    2013-04-23

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, Pr rotating Rayleigh-Bénard convection experiments in the liquid metal gallium (Pr = 0.025) over a range of nondimensional buoyancy forcing (Ra) and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer (Nu). In general, we find that the convective behavior of liquid metal differs substantially from that of moderate Pr fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate Pr fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of Pr 1 fluids, respectively.

  14. Forced and free convection hydromagnetic flow past a vertical flat plate

    International Nuclear Information System (INIS)

    Abdelkhalek, M.M.

    2004-01-01

    The effects of magnetic field and temperature heat source on the free and forced convection flow past an infinite vertical plate is studied analytically. Solutions of the reduced equation appropriate in the forced convection and free convection regime are obtained using perturbation technique. The expression for the velocity field, skin friction and Nusselt number have been obtained

  15. Hydrodynamical simulation of the core helium flash with two-dimensional convection

    International Nuclear Information System (INIS)

    Cole, P.W.

    1981-01-01

    The thermonuclear runaway of helium reactions under the condition of electron degeneracy in the hot, dense central regions of a low mass Population II red giant is investigated. A two-dimensional finite difference approach to time dependent convection has been applied to a peak energy production model of this phenomenon called the core helium flash. The dynamical conservation equations are integrated in two spatial dimensions and time which allow the horizontal variations of the dynamical variables to be followed explicitly. The unbalanced bouyancy forces in convectively unstable regions lead to mass flow (i.e., convective energy transport) by calculation of the velocity flow patterns produced by the conservation laws of mass, momentum, and energy without recourse to any phenomenological theory of convection. The initial phase of this hydrodynamical simulation is characterized by a thermal readjustment via downward convective energy transport into the neutrino cooled core in a series of convection modulated thermal pulses. Each of these pulses is driven by the thermal runaway and quenched by the convective energy transport when the actual temperature gradient in the flash region becomes sufficiently superadiabatic. These convection modulated thermal pulses are observed throughout 95% of the calculation, the duration of which is approximately 570,000 cycles or nearly 96,000 seconds of evolution. After this initial thermal restructuring, there ensues in the simulation a dynamic phase in which the thermonuclear runaway becomes violent. The degree of violence, the final composition, and the peak temperature depend sensitively on the nuclear energy generation rates of those reactions involving alpha particle captures

  16. MODELING THE RISE OF FIBRIL MAGNETIC FIELDS IN FULLY CONVECTIVE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Maria A.; Browning, Matthew K., E-mail: mweber@astro.ex.ac.uk [Department of Physics and Astronomy, University of Exeter, Stocker Road, EX4 4QL Exeter (United Kingdom)

    2016-08-20

    Many fully convective stars exhibit a wide variety of surface magnetism, including starspots and chromospheric activity. The manner by which bundles of magnetic field traverse portions of the convection zone to emerge at the stellar surface is not especially well understood. In the solar context, some insight into this process has been gleaned by regarding the magnetism as consisting partly of idealized thin flux tubes (TFTs). Here we present the results of a large set of TFT simulations in a rotating spherical domain of convective flows representative of a 0.3 M {sub ⊙} main-sequence star. This is the first study to investigate how individual flux tubes in such a star might rise under the combined influence of buoyancy, convection, and differential rotation. A time-dependent hydrodynamic convective flow field, taken from separate 3D simulations calculated with the anelastic equations, impacts the flux tube as it rises. Convective motions modulate the shape of the initially buoyant flux ring, promoting localized rising loops. Flux tubes in fully convective stars have a tendency to rise nearly parallel to the rotation axis. However, the presence of strong differential rotation allows some initially low-latitude flux tubes of moderate strength to develop rising loops that emerge in the near-equatorial region. Magnetic pumping suppresses the global rise of the flux tube most efficiently in the deeper interior and at lower latitudes. The results of these simulations aim to provide a link between dynamo-generated magnetic fields, fluid motions, and observations of starspots for fully convective stars.

  17. Water-induced convection in the Earth's mantle transition zone

    Science.gov (United States)

    Richard, Guillaume C.; Bercovici, David

    2009-01-01

    Water enters the Earth's mantle by subduction of oceanic lithosphere. Most of this water immediately returns to the atmosphere through arc volcanism, but a part of it is expected as deep as the mantle transition zone (410-660 km depth). There, slabs can be deflected and linger before sinking into the lower mantle. Because it lowers the density and viscosity of the transition zone minerals (i.e., wadsleyite and ringwoodite), water is likely to affect the dynamics of the transition zone mantle overlying stagnant slabs. The consequences of water exchange between a floating slab and the transition zone are investigated. In particular, we focus on the possible onset of small-scale convection despite the adverse thermal gradient (i.e., mantle is cooled from below by the slab). The competition between thermal and hydrous effects on the density and thus on the convective stability of the top layer of the slab is examined numerically, including water-dependent density and viscosity and temperature-dependent water solubility. For plausible initial water content in a slab (≥0.5 wt %), an episode of convection is likely to occur after a relatively short time delay (5-20 Ma) after the slab enters the transition zone. However, water induced rheological weakening is seen to be a controlling parameter for the onset time of convection. Moreover, small-scale convection above a stagnant slab greatly enhances the rate of slab dehydration. Small-scale convection also facilitates heating of the slab, which in itself may prolong the residence time of the slab in the transition zone.

  18. Experimental study of natural convective heat transfer in a vertical hexagonal sub channel

    International Nuclear Information System (INIS)

    Tandian, Nathanael P.; Umar, Efrizon; Hardianto, Toto; Febriyanto, Catur

    2012-01-01

    The development of new practices in nuclear reactor safety aspects and optimization of recent nuclear reactors, including the APWR and the PHWR reactors, needs a knowledge on natural convective heat transfer within sub-channels formed among several nuclear fuel rods or heat exchanger tubes. Unfortunately, the currently available empirical correlation equations for such heat transfer modes are limited and researches on convective heat transfer within a bundle of vertical cylinders (especially within the natural convection modes) are scarcely done. Although boundary layers around the heat exchanger cylinders or fuel rods may be dominated by their entry regions, most of available convection correlation equations are for fully developed boundary layers. Recently, an experimental study on natural convective heat transfer in a subchannel formed by several heated parallel cylinders that arranged in a hexagonal configuration has been being done. The study seeks for a new convection correlation for the natural convective heat transfer in the sub-channel formed among the hexagonal vertical cylinders. A new convective heat transfer correlation equation has been obtained from the study and compared to several similar equations in literatures.

  19. Convective overshooting in stars

    NARCIS (Netherlands)

    Andrássy, R.

    2015-01-01

    Numerous observations provide evidence that the standard picture, in which convective mixing is limited to the unstable layers of a star, is incomplete. The mixing layers in real stars are significantly more extended than what the standard models predict. Some of the observations require changing

  20. CRUCIB: an axisymmetric convection code

    International Nuclear Information System (INIS)

    Bertram, L.A.

    1975-03-01

    The CRUCIB code was written in support of an experimental program aimed at measurement of thermal diffusivities of refractory liquids. Precise values of diffusivity are necessary to realistic analysis of reactor safety problems, nuclear waste disposal procedures, and fundamental metal forming processes. The code calculates the axisymmetric transient convective motions produced in a right circular cylindrical crucible, which is surface heated by an annular heat pulse. Emphasis of this report is placed on the input-output options of the CRUCIB code, which are tailored to assess the importance of the convective heat transfer in determining the surface temperature distribution. Use is limited to Prandtl numbers less than unity; larger values can be accommodated by replacement of a single block of the code, if desired. (U.S.)

  1. Basal melting driven by turbulent thermal convection

    Science.gov (United States)

    Rabbanipour Esfahani, Babak; Hirata, Silvia C.; Berti, Stefano; Calzavarini, Enrico

    2018-05-01

    Melting and, conversely, solidification processes in the presence of convection are key to many geophysical problems. An essential question related to these phenomena concerns the estimation of the (time-evolving) melting rate, which is tightly connected to the turbulent convective dynamics in the bulk of the melt fluid and the heat transfer at the liquid-solid interface. In this work, we consider a convective-melting model, constructed as a generalization of the Rayleigh-Bénard system, accounting for the basal melting of a solid. As the change of phase proceeds, a fluid layer grows at the heated bottom of the system and eventually reaches a turbulent convection state. By means of extensive lattice-Boltzmann numerical simulations employing an enthalpy formulation of the governing equations, we explore the model dynamics in two- and three-dimensional configurations. The focus of the analysis is on the scaling of global quantities like the heat flux and the kinetic energy with the Rayleigh number, as well as on the interface morphology and the effects of space dimensionality. Independently of dimensionality, we find that the convective-melting system behavior shares strong resemblances with that of the Rayleigh-Bénard one, and that the heat flux is only weakly enhanced with respect to that case. Such similarities are understood, at least to some extent, considering the resulting slow motion of the melting front (with respect to the turbulent fluid velocity fluctuations) and its generally little roughness (compared to the height of the fluid layer). Varying the Stefan number, accounting for the thermodynamical properties of the material, also seems to have only a mild effect, which implies the possibility of extrapolating results in numerically delicate low-Stefan setups from more convenient high-Stefan ones. Finally, we discuss the implications of our findings for the geophysically relevant problem of modeling Arctic ice melt ponds.

  2. Towards the ultimate variance-conserving convection scheme

    International Nuclear Information System (INIS)

    Os, J.J.A.M. van; Uittenbogaard, R.E.

    2004-01-01

    In the past various arguments have been used for applying kinetic energy-conserving advection schemes in numerical simulations of incompressible fluid flows. One argument is obeying the programmed dissipation by viscous stresses or by sub-grid stresses in Direct Numerical Simulation and Large Eddy Simulation, see e.g. [Phys. Fluids A 3 (7) (1991) 1766]. Another argument is that, according to e.g. [J. Comput. Phys. 6 (1970) 392; 1 (1966) 119], energy-conserving convection schemes are more stable i.e. by prohibiting a spurious blow-up of volume-integrated energy in a closed volume without external energy sources. In the above-mentioned references it is stated that nonlinear instability is due to spatial truncation rather than to time truncation and therefore these papers are mainly concerned with the spatial integration. In this paper we demonstrate that discretized temporal integration of a spatially variance-conserving convection scheme can induce non-energy conserving solutions. In this paper the conservation of the variance of a scalar property is taken as a simple model for the conservation of kinetic energy. In addition, the derivation and testing of a variance-conserving scheme allows for a clear definition of kinetic energy-conserving advection schemes for solving the Navier-Stokes equations. Consequently, we first derive and test a strictly variance-conserving space-time discretization for the convection term in the convection-diffusion equation. Our starting point is the variance-conserving spatial discretization of the convection operator presented by Piacsek and Williams [J. Comput. Phys. 6 (1970) 392]. In terms of its conservation properties, our variance-conserving scheme is compared to other spatially variance-conserving schemes as well as with the non-variance-conserving schemes applied in our shallow-water solver, see e.g. [Direct and Large-eddy Simulation Workshop IV, ERCOFTAC Series, Kluwer Academic Publishers, 2001, pp. 409-287

  3. Convective mass transfer around a dissolving bubble

    Science.gov (United States)

    Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric

    2017-11-01

    Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.

  4. Assessing the impact of aerosol-atmosphere interactions in convection-permitting regional climate simulations: the Rolf medicane in 2011

    Science.gov (United States)

    José Gómez-Navarro, Juan; María López-Romero, José; Palacios-Peña, Laura; Montávez, Juan Pedro; Jiménez-Guerrero, Pedro

    2017-04-01

    A critical challenge for assessing regional climate change projections relies on improving the estimate of atmospheric aerosol impact on clouds and reducing the uncertainty associated with the use of parameterizations. In this sense, the horizontal grid spacing implemented in state-of-the-art regional climate simulations is typically 10-25 kilometers, meaning that very important processes such as convective precipitation are smaller than a grid box, and therefore need to be parameterized. This causes large uncertainties, as closure assumptions and a number of parameters have to be established by model tuning. Convection is a physical process that may be strongly conditioned by atmospheric aerosols, although the solution of aerosol-cloud interactions in warm convective clouds remains nowadays a very important scientific challenge, rendering parametrization of these complex processes an important bottleneck that is responsible from a great part of the uncertainty in current climate change projections. Therefore, the explicit simulation of convective processes might improve the quality and reliability of the simulations of the aerosol-cloud interactions in a wide range of atmospheric phenomena. Particularly over the Mediterranean, the role of aerosol particles is very important, being this a crossroad that fuels the mixing of particles from different sources (sea-salt, biomass burning, anthropogenic, Saharan dust, etc). Still, the role of aerosols in extreme events in this area such as medicanes has been barely addressed. This work aims at assessing the role of aerosol-atmosphere interaction in medicanes with the help of the regional chemistry/climate on-line coupled model WRF-CHEM run at a convection-permitting resolution. The analysis is exemplary based on the "Rolf" medicane (6-8 November 2011). Using this case study as reference, four sets of simulations are run with two spatial resolutions: one at a convection-permitting configuration of 4 km, and other at the

  5. Efficiency of Heat Transfer in Turbulent Rayleigh-Benard Convection

    Czech Academy of Sciences Publication Activity Database

    Urban, Pavel; Musilová, Věra; Skrbek, L.

    2011-01-01

    Roč. 107, č. 1 (2011), 014302:1-4 ISSN 0031-9007 R&D Projects: GA AV ČR KJB200650902 Institutional research plan: CEZ:AV0Z20650511 Keywords : natural convection * thermal convection Subject RIV: BK - Fluid Dynamics Impact factor: 7.370, year: 2011

  6. Convection with local thermal non-equilibrium and microfluidic effects

    CERN Document Server

    Straughan, Brian

    2015-01-01

    This book is one of the first devoted to an account of theories of thermal convection which involve local thermal non-equilibrium effects, including a concentration on microfluidic effects. The text introduces convection with local thermal non-equilibrium effects in extraordinary detail, making it easy for readers newer to the subject area to understand. This book is unique in the fact that it addresses a large number of convection theories and provides many new results which are not available elsewhere. This book will be useful to researchers from engineering, fluid mechanics, and applied mathematics, particularly those interested in microfluidics and porous media.

  7. Large scale circulation in the convection zone and solar differential rotation

    Energy Technology Data Exchange (ETDEWEB)

    Belvedere, G [Instituto di Astronomia dell' Universita di Catania, 95125 Italy; Paterno, L [Osservatorio Astrofisico di Catania, 95125 Italy

    1976-04-01

    In this paper the dependence on depth and latitude of the solar angular velocity produced by a meridian circulation in the convection zone is studied assuming that the main mechanism responsible for setting up and driving the circulation is the interaction of rotation with convection. The first order equations (perturbation of the spherically symmetric state are solved in the Boussinesq approximation and in the steady state for the axissymmetric case. The interaction of convection with rotation is modelled by a convective transport coefficient. The model is consistent with the fact that the interaction of convection with rotation sets up a circulation (driven by the temperature gradient) which carries angular momentum toward the equator against the viscous friction. Unfortunately also a large flux variation at the surface is obtained. Nevertheless it seems that the model has the basic requisites for correct dynamo action.

  8. Ignition in Convective-Diffusive Systems

    National Research Council Canada - National Science Library

    Law, Chung

    1999-01-01

    ... efficiency as well as the knock and emission characteristics. The ignition event is clearly controlled by the chemical reactions of fuel oxidation and the fluid mechanics of convective and diffusive transport...

  9. Simulation of Thermomagnetic Convection in a Cavity Using the Lattice Boltzmann Model

    Directory of Open Access Journals (Sweden)

    Mahshid Hadavand

    2011-01-01

    Full Text Available Thermomagnetic convection in a differentially heated square cavity with an infinitely long third dimension is numerically simulated using the single relaxation time lattice Boltzmann method (LBM. This problem is of considerable interest when dealing with cooling of microelectronic devices, in situations where natural convection does not meet the cooling requirements, and forced convection is not viable due to the difficulties associated with pumping a ferrofluid. Therefore, circulation is achieved by imposing a magnetic field, which is created and controlled by placing a dipole at the bottom of the enclosure. The magnitude of the magnetic force is controlled by changing the electrical current through the dipole. In this study, the effects of combined natural convection and magnetic convection, which is commonly known as “thermomagnetic convection,” are analysed in terms of the flow modes and heat transfer characteristics of a magnetic fluid.

  10. Transition from boiling to two-phase forced convection

    International Nuclear Information System (INIS)

    Maroti, L.

    1985-01-01

    The paper presents a method for the prediction of the boundary points of the transition region between fully developed boiling and two-phase forced convection. It is shown that the concept for the determination of the onset of fully developed boiling can also be applied for the calculation of the point where the heat transfer is effected again by the forced convection. Similarly, the criterion for the onset of nucleate boiling can be used for the definition of the point where boiling is completely suppressed and pure two-phase forced convection starts. To calculate the heat transfer coefficient for the transition region, an equation is proposed that applies the boundary points and a relaxation function ensuring the smooth transition of the heat transfer coefficient at the boundaries

  11. Convection and Overshoot in Models of Doradus and Scuti Stars

    International Nuclear Information System (INIS)

    Lovekin, Catherine C.

    2017-01-01

    We investigate the pulsation properties of stellar models that are representative of δ Scuti and γ Doradus variables. Here we have calculated a grid of stellar models from 1.2 to 2.2 M ⊙, including the effects of both rotation and convective overshoot using MESA, and we investigate the pulsation properties of these models using GYRE. We discuss the observable patterns in the frequency spacing for p modes and the period spacings for g modes. Using the observable patterns in the g mode period spacings, it may be possible to observationally constrain the convective overshoot and rotation of a model. We also calculate the pulsation constant (Q) for all models in our grid and investigate the variation with convective overshoot and rotation. The variation in the Q values of the radial modes can be used to place constraints on the convective overshoot and rotation of stars in this region. Finally, as a test case, we apply this method to a sample of 22 High-Amplitude δ Scuti stars (HADS) and provide estimates for the convective overshoot of the sample.

  12. Microphysics of mass-transport in coupled droplet-pairs at low Reynolds number and the role of convective dynamics

    Science.gov (United States)

    Dong, Qingming; Sau, Amalendu

    2016-06-01

    Interfacial mass-transport and redistribution in the micro-scale liquid droplets are important in diverse fields of research interest. The role of the "inflow" and the "outflow" type convective eddy-pairs in the entrainment of outer solute and internal relocation are examined for different homogeneous and heterogeneous water droplet pairs appearing in a tandem arrangement. Two micro-droplets of pure (rain) water interact with an oncoming outer air stream (Re ≤ 100) contaminated by uniformly distributed SO2. By virtue of separation/attachment induced non-uniform interfacial shear-stress gradient, the well-defined inflow/outflow type pairs of recirculating eddy-based convective motion quickly develops, and the eddies effectively attract/repel the accumulated outer solute and control the physical process of mass-transport in the droplet-pair. The non-uniformly shear-driven flow interaction and bifurcation of the circulatory internal flow lead to growth of important micro-scale "secondary" eddies which suitably regroup with the adjacent "primary" one to create the sustained inflow/outflow type convective dynamics. The presently derived flow characteristics and in-depth analysis help to significantly improve our understanding of the micro-droplet based transport phenomena in a wider context. By tuning "Re" (defined in terms of the droplet diameter and the average oncoming velocity of the outer air) and gap-ratio "α," the internal convective forcing and the solute entrainment efficiency could be considerably enhanced. The quantitative estimates for mass entrainment, convective strength, and saturation characteristics for different coupled micro-droplet pairs are extensively examined here for 0.2 ≤ α ≤ 2.0 and 30 ≤ Re ≤ 100. Interestingly, for the compound droplets, with suitably tuned radius-ratio "B" (of upstream droplet with respect to downstream one) the generated "inflow" type coherent convective dynamics helped to significantly augment the centre-line

  13. Convective heat transfer characteristics in the turbulent region of molten salt in concentric tube

    International Nuclear Information System (INIS)

    Chen, Y.S.; Wang, Y.; Zhang, J.H.; Yuan, X.F.; Tian, J.; Tang, Z.F.; Zhu, H.H.; Fu, Y.; Wang, N.X.

    2016-01-01

    In order to better understand the heat transfer behavior and characteristics of molten salt in heat exchanger, the convective heat transfer characteristics of molten salt in salt-to-oil concentric tube are studied. Overall heat transfer coefficients of the heat exchanger are calculated using Wilson plots. Heat transfer coefficients of tube side molten salt with the range of Reynolds number from 10,000 to 50,000 and the Prandtl number from 11 to 27 are evaluated invoking the calculated overall heat transfer coefficients. The effects of velocity and temperature on the convective heat transfer in the turbulent region of molten salt are studied by comparing with the traditional correlations. The results show that the heat transfer characteristics of molten salt are in line with the empirical heat transfer correlation; however, Dittus–Boelter, Gnielinski, Sieder–Tate and Hausen correlations all give a larger deviation for the experimental data. Finally, based on the experimental data and Sieder–Tate correlation, a modified heat transfer correlation is proposed and good agreement is observed between the experimental data and the modified correlation. The results will also provide an important reference for the design of the heat exchangers in the Thorium-based Molten Salt Reactor.

  14. Spectrally-consistent regularization modeling of turbulent natural convection flows

    International Nuclear Information System (INIS)

    Trias, F Xavier; Gorobets, Andrey; Oliva, Assensi; Verstappen, Roel

    2012-01-01

    The incompressible Navier-Stokes equations constitute an excellent mathematical modelization of turbulence. Unfortunately, attempts at performing direct simulations are limited to relatively low-Reynolds numbers because of the almost numberless small scales produced by the non-linear convective term. Alternatively, a dynamically less complex formulation is proposed here. Namely, regularizations of the Navier-Stokes equations that preserve the symmetry and conservation properties exactly. To do so, both convective and diffusive terms are altered in the same vein. In this way, the convective production of small scales is effectively restrained whereas the modified diffusive term introduces a hyperviscosity effect and consequently enhances the destruction of small scales. In practice, the only additional ingredient is a self-adjoint linear filter whose local filter length is determined from the requirement that vortex-stretching must stop at the smallest grid scale. In the present work, the performance of the above-mentioned recent improvements is assessed through application to turbulent natural convection flows by means of comparison with DNS reference data.

  15. A quasi-one-dimensional theory of sound propagation in lined ducts with mean flow

    Science.gov (United States)

    Dokumaci, Erkan

    2018-04-01

    Sound propagation in ducts with locally-reacting liners has received the attention of many authors proposing two- and three-dimensional solutions of the convected wave equation and of the Pridmore-Brown equation. One-dimensional lined duct models appear to have received less attention. The present paper proposes a quasi-one-dimensional theory for lined uniform ducts with parallel sheared mean flow. The basic assumption of the theory is that the effects of refraction and wall compliance on the fundamental mode remain within ranges in which the acoustic fluctuations are essentially uniform over a duct section. This restricts the model to subsonic low Mach numbers and Helmholtz numbers of less than about unity. The axial propagation constants and the wave transfer matrix of the duct are given by simple explicit expressions and can be applied with no-slip, full-slip or partial slip boundary conditions. The limitations of the theory are discussed and its predictions are compared with the fundamental mode solutions of the convected wave equation, the Pridmore-Brown equation and measurements where available.

  16. On the Sensitivity of the Diurnal Cycle in the Amazon to Convective Intensity

    Science.gov (United States)

    Itterly, Kyle; Taylor, Patrick

    2015-01-01

    This presentation uses publicly available CERES and radiosonde data to investigate the sensitivity of thetropical convective diurnal cycle to atmosphere state. Averaging surface observations into regimes of convective intensitydefined by satellite shows great promise for physical understandingof convection.• Convective processes in the Amazon are highly variable seasonallyand locally.• Buoyancy/CIN more important JJA– Mesoscale/synoptic features easier to separate– Length/depth of buoyancy layer very important in DJF (EL).• Moisture more important DJF, esp. UTH– Humidity of lower atmosphere significantly impacts LTS, LCL and abilityfor parcels to reach LFC.• Lower level jet strength/direction important• Convective initiation correlated with LTS, LR, LTH, EL• Duration/Phase better correlated with humidity variables• Surface Flux amplitude well correlated with convection

  17. Searching for Hysteresis in Models of Mantle Convection with Grain-Damage

    Science.gov (United States)

    Lamichhane, R.; Foley, B. J.

    2017-12-01

    The mode of surface tectonics on terrestrial planets is determined by whether mantle convective forces are capable of forming weak zones of localized deformation in the lithosphere, which act as plate boundaries. If plate boundaries can form then a plate tectonic mode develops, and if not convection will be in the stagnant lid regime. Episodic subduction or sluggish lid convection are also possible in between the nominal plate tectonic and stagnant lid regimes. Plate boundary formation is largely a function of the state of the mantle, e.g. mantle temperature or surface temperature, and how these conditions influence both mantle convection and the mantle rheology's propensity for forming weak, localized plate boundaries. However, a planet's tectonic mode also influences whether plate boundaries can form, as the driving forces for plate boundary formation (e.g. stress and viscous dissipation) are different in a plate tectonic versus stagnant lid regime. As a result, tectonic mode can display hysteresis, where convection under otherwise identical conditions can reach different final states as a result of the initial regime of convection. Previous work has explored this effect in pseudoplastic models, finding that it is more difficult to initiate plate tectonics starting from a stagnant lid state than it is to sustain plate tectonics when already in a mobile lid regime, because convective stresses in the lithosphere are lower in a stagnant lid regime than in a plate tectonic regime. However, whether and to what extent such hysteresis is displayed when alternative rheological models for lithospheric shear localization are used is unknown. In particular, grainsize reduction is commonly hypothesized to be a primary cause of shear localization and plate boundary formation. We use new models of mantle convection with grain-size evolution to determine how the initial mode of surface tectonics influences the final convective regime reached when convection reaches statistical

  18. Convection in the Labrador Sea

    National Research Council Canada - National Science Library

    Davis, R

    1997-01-01

    The long-term goal of this grant was to describe the process of deep oceanic convection well enough to provide critical tests of, and guidance to, models used to predict subsurface ocean conditions...

  19. Natural convection and vapor loss during underground waste storage

    International Nuclear Information System (INIS)

    Plys, M.G.; Epstein, M.; Turner, D.

    1996-01-01

    Natural convection and vapor loss from underground waste storage tanks is examined here. Stability criteria are provided for the onset of natural convection flow within the headspace of a tank, and between tanks and the environment. The flowrate is quantified and used to predict vapor losses during storage

  20. NUMERICALLY DETERMINED TRANSPORT LAWS FOR FINGERING ('THERMOHALINE') CONVECTION IN ASTROPHYSICS

    International Nuclear Information System (INIS)

    Traxler, A.; Garaud, P.; Stellmach, S.

    2011-01-01

    We present the first three-dimensional simulations of fingering convection performed at parameter values approaching those relevant for astrophysics. Our simulations reveal the existence of simple asymptotic scaling laws for turbulent heat and compositional transport, which can be straightforwardly extrapolated from our numerically tractable values to the true astrophysical regime. Our investigation also indicates that thermo-compositional 'staircases', a key consequence of fingering convection in the ocean, cannot form spontaneously in the fingering regime in stellar interiors. Our proposed empirically determined transport laws thus provide simple prescriptions for mixing by fingering convection in a variety of astrophysical situations, and should, from here on, be used preferentially over older and less accurate parameterizations. They also establish that fingering convection does not provide sufficient extra-mixing to explain observed chemical abundances in red giant branch stars.

  1. Soret-driven double diffusive magneto-convection in couple stress liquid

    Directory of Open Access Journals (Sweden)

    Mishra P.

    2012-07-01

    Full Text Available The stability analysis of Soret driven double diffusive convection for electrically conducting couple stress liquid is investigated theoretically. The couple stress liquid is confined between two horizontal surfaces and a constant vertical magnetic field is applied across the surfaces. Linear stability analysis is used to investigate the effect of various parameters on the onset of convection. Effect of magnetic field on the onset of convection is presented by means of Chandrasekhar number. The problem is analyzed as a function of Chandrasekhar number (Q, positive and negative Soret parameter (S r and couple stress parameter (C, mainly. The results show that the Q, both positive and negative Sr and C delay the onset of convection. The effect of other parameters is also discussed in paper and shown by graphs.

  2. Relationships between radiation, clouds, and convection during DYNAMO

    Science.gov (United States)

    Ciesielski, Paul E.; Johnson, Richard H.; Jiang, Xianan; Zhang, Yunyan; Xie, Shaocheng

    2017-03-01

    The relationships between radiation, clouds, and convection on an intraseasonal time scale are examined with data taken during the Dynamics of the Madden-Julian Oscillation (MJO) field campaign. Specifically, column-net, as well as vertical profiles of radiative heating rates, computed over Gan Island in the central Indian Ocean (IO) are used along with an objective analysis of large-scale fields to examine three MJO events that occurred during the 3 month period (October to December 2011) over this region. Longwave (LW) and shortwave radiative heating rates exhibit tilted structures, reflecting radiative effects associated with the prevalence of shallow cumulus during the dry, suppressed MJO phase followed by increasing deep convection leading into the active phase. As the convection builds going into the MJO active phase, there are increasingly top-heavy anomalous radiative heating rates while the column-net radiative cooling rate progressively decreases. Temporal fluctuations in the cloud radiative forcing, being quite sensitive to changes in high cloudiness, are dominated by LW effects with an intraseasonal variation of 0.4-0.6 K/d. While both the water vapor and cloud fields are inextricably linked, it appears that the tilted radiative structures are more related to water vapor effects. The intraseasonal variation of column-net radiative heating enhances the convective signal in the mean by 20% with a minimum in this enhancement 10 days prior to peak MJO rainfall and maximum 7 days after. This suggests that as MJO convective envelope weakens over the central IO, cloud-radiative feedbacks help maintain the mature MJO as it moves eastward.

  3. Large-scale patterns in Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Hardenberg, J. von; Parodi, A.; Passoni, G.; Provenzale, A.; Spiegel, E.A.

    2008-01-01

    Rayleigh-Benard convection at large Rayleigh number is characterized by the presence of intense, vertically moving plumes. Both laboratory and numerical experiments reveal that the rising and descending plumes aggregate into separate clusters so as to produce large-scale updrafts and downdrafts. The horizontal scales of the aggregates reported so far have been comparable to the horizontal extent of the containers, but it has not been clear whether that represents a limitation imposed by domain size. In this work, we present numerical simulations of convection at sufficiently large aspect ratio to ascertain whether there is an intrinsic saturation scale for the clustering process when that ratio is large enough. From a series of simulations of Rayleigh-Benard convection with Rayleigh numbers between 10 5 and 10 8 and with aspect ratios up to 12π, we conclude that the clustering process has a finite horizontal saturation scale with at most a weak dependence on Rayleigh number in the range studied

  4. Convection and crystal settling in sills

    Science.gov (United States)

    Gibb, Fergus G. F.; Henderson, C. Michael B.

    1992-02-01

    It has been advocated that convective and crystal settling processes play significant, and perhaps crucial, roles in magmatic differentiation. The fluid dynamics of magma chambers have been extensively studied in recent years, both theoretically and experimentally, but there is disagreement over the nature and scale of the convection, over its bearing on fractionation and possibly over whether it occurs at all. The differential distribution of modal olivine with height in differentiated alkaline basic sills provides critical evidence to resolve this controversy, at least for small to medium-large magma chambers. Our own and others' published data for such sills show that, irrespective of overall olivine content, modal olivine contents tend to increase in a roughly symmetrical manner inwards from the upper and lower margins of the sill, i.e. the distribution patterns are more often approximately D-shaped rather than the classic S-shape generally ascribed to gravity settling. We concur with the majority of other authors that this is an original feature of the filling process which has survived more or less unchanged since emplacement. We therefore conclude that the magmas have not undergone turbulent convection and that gravity settling has usually played only a minor modifying role since the intrusion of these sills. We offer a possible explanation for the apparent contradiction between fluid dynamical theory and the petrological evidence by suggesting that such sills rarely fill by the rapid injection of a single pulse of magma. Rather, they form from a series of pulses or a continuous pulsed influx over a protracted interval during which marginal cooling severely limits the potential for thermal convection.

  5. Convection and waves on Small Earth and Deep Atmosphere

    Directory of Open Access Journals (Sweden)

    Noureddine Semane

    2015-06-01

    Full Text Available A scaled version of the European Centre for Medium-Range Weather Forecasts (ECMWF spectral hydrostatic forecast model (IFS has been developed with full physics using an Aqua planet configuration. This includes Kuang et al.'s Small Earth Diabatic Acceleration and REscaling (DARE/SE approach bringing the synoptic scale a factor γ closer to the convective scale by reducing the Earth radius by γ, and increasing the rotation rate and all diabatic processes by the same factor. Furthermore, the scaled version also provides an alternative system to DARE/SE, dubbed ‘Deep Atmosphere Diabatic Acceleration and REscaling’ (DARE/DA, which reduces gravity by a factor γ and thereby increases the horizontal scale of convection by γ, while only weakly affecting the large-scale flow. The two approaches have been evaluated using a T159 spectral truncation and γ = 8 with the deep convection scheme switched off. The evaluation is against the baseline unscaled model at T1279 spectral resolution without deep convection parametrisation, as well as the unscaled T159 model using the deep convection parametrisation. It is shown that the DARE/SE and DARE/DA systems provide fairly equivalent results, while the DARE/DA system seems to be the preferred choice as it damps divergent modes, providing a better climatology, and is technically easier to implement. However, neither of the systems could reproduce the motion range and modes of the high-resolution spectral model. Higher equivalent horizontal resolution in the 1–10 km range and the full non-hydrostatic system might be necessary to successfully simulate the convective and large-scale explicitly at reduced cost.

  6. Consequences of high effective Prandtl number on solar differential rotation and convective velocity

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark; Bekki, Yuto

    2018-04-01

    Observations suggest that the large-scale convective velocities obtained by solar convection simulations might be over-estimated (convective conundrum). One plausible solution to this could be the small-scale dynamo which cannot be fully resolved by global simulations. The small-scale Lorentz force suppresses the convective motions and also the turbulent mixing of entropy between upflows and downflows, leading to a large effective Prandtl number (Pr). We explore this idea in three-dimensional global rotating convection simulations at different thermal conductivity (κ), i.e., at different Pr. In agreement with previous non-rotating simulations, the convective velocity is reduced with the increase of Pr as long as the thermal conductive flux is negligible. A subadiabatic layer is formed near the base of the convection zone due to continuous deposition of low entropy plumes in low-κ simulations. The most interesting result of our low-κ simulations is that the convective motions are accompanied by a change in the convection structure that is increasingly influenced by small-scale plumes. These plumes tend to transport angular momentum radially inward and thus establish an anti-solar differential rotation, in striking contrast to the solar rotation profile. If such low diffusive plumes, driven by the radiative-surface cooling, are present in the Sun, then our results cast doubt on the idea that a high effective Pr may be a viable solution to the solar convective conundrum. Our study also emphasizes that any resolution of the conundrum that relies on the downward plumes must take into account the angular momentum transport and heat transport.

  7. Extreme value statistics for two-dimensional convective penetration in a pre-main sequence star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Constantino, T.; Viallet, M.; Popov, M. V.; Walder, R.; Folini, D.

    2017-08-01

    Context. In the interior of stars, a convectively unstable zone typically borders a zone that is stable to convection. Convective motions can penetrate the boundary between these zones, creating a layer characterized by intermittent convective mixing, and gradual erosion of the density and temperature stratification. Aims: We examine a penetration layer formed between a central radiative zone and a large convection zone in the deep interior of a young low-mass star. Using the Multidimensional Stellar Implicit Code (MUSIC) to simulate two-dimensional compressible stellar convection in a spherical geometry over long times, we produce statistics that characterize the extent and impact of convective penetration in this layer. Methods: We apply extreme value theory to the maximal extent of convective penetration at any time. We compare statistical results from simulations which treat non-local convection, throughout a large portion of the stellar radius, with simulations designed to treat local convection in a small region surrounding the penetration layer. For each of these situations, we compare simulations of different resolution, which have different velocity magnitudes. We also compare statistical results between simulations that radiate energy at a constant rate to those that allow energy to radiate from the stellar surface according to the local surface temperature. Results: Based on the frequency and depth of penetrating convective structures, we observe two distinct layers that form between the convection zone and the stable radiative zone. We show that the probability density function of the maximal depth of convective penetration at any time corresponds closely in space with the radial position where internal waves are excited. We find that the maximal penetration depth can be modeled by a Weibull distribution with a small shape parameter. Using these results, and building on established scalings for diffusion enhanced by large-scale convective motions, we

  8. Tests for removal of decay heat by natural convection

    International Nuclear Information System (INIS)

    Kashiwagi, E.; Wataru, M.; Gomi, Y.; Hattori, Y.; Ozaki, S.

    1993-01-01

    Interim storage technology for spent fuel by dry storage casks have been investigated. The casks are vertically placed in a storage building. The decay heat is removed from the outer cask surface by natural convection of air entering from the building wall to the roof. The air flow pattern in the storage building was governed by the natural driving pressure difference and circulating flow. The purpose of this study is to understand the mechanism of the removal of decay heat from casks by natural convection. The simulated flow conditions in the building were assumed as a natural and forced combined convection and were investigated by the turbulent quantities near wall. (author)

  9. Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics

    International Nuclear Information System (INIS)

    Maslov, V.I.; Barchuk, S.V.; Lapshin, V.I.; Volkov, E.D.; Melentsov, Yu.V.

    2006-01-01

    It is shown, that at development of instability due to a radial gradient of density in the crossed electric and magnetic fields in nuclear fusion installations ordering convective cells can be excited. It provides anomalous particle transport. The spatial structures of these convective cells have been constructed. The radial dimensions of these convective cells depend on their amplitudes and on a radial gradient of density. The convective-diffusion equation for radial dynamics of the electrons has been derived. At the certain value of the universal controlling parameter, the convective cell excitation and the anomalous radial transport are suppressed. (author)

  10. Natural convection in heat-generating fluids

    International Nuclear Information System (INIS)

    Bol'shov, Leonid A; Kondratenko, Petr S; Strizhov, Valerii F

    2001-01-01

    Experimental and theoretical studies of convective heat transfer from a heat-generating fluid confined to a closed volume are reviewed. Theoretical results are inferred from analytical estimates based on the relevant conservation laws and the current understanding of the convective heat-transfer processes. Four basic and one asymptotic regime of heat transfer are identified depending on the heat generation rate. Limiting heat-transfer distribution patterns are found for the lower boundary. Heat transfer in a quasi-two-dimensional geometry is analyzed. Quasi-steady-state heat transfer from a cooling-down fluid without internal heat sources is studied separately. Experimental results and theoretical predictions are compared. (reviews of topical problems)

  11. Ten Year Analysis of Tropopause-Overshooting Convection Using GridRad Data

    Science.gov (United States)

    Cooney, John W.; Bowman, Kenneth P.; Homeyer, Cameron R.; Fenske, Tyler M.

    2018-01-01

    Convection that penetrates the tropopause (overshooting convection) rapidly transports air from the lower troposphere to the lower stratosphere, potentially mixing air between the two layers. This exchange of air can have a substantial impact on the composition, radiation, and chemistry of the upper troposphere and lower stratosphere (UTLS). In order to improve our understanding of the role convection plays in the transport of trace gases across the tropopause, this study presents a 10 year analysis of overshooting convection for the eastern two thirds of the contiguous United States for March through August of 2004 to 2013 based on radar observations. Echo top altitudes are estimated at hourly intervals using high-resolution, three-dimensional, gridded, radar reflectivity fields created by merging observations from available radars in the National Oceanic and Atmospheric Administration Next Generation Weather Radar (NEXRAD) network. Overshooting convection is identified by comparing echo top altitudes with tropopause altitudes derived from the ERA-Interim reanalysis. It is found that overshooting convection is most common in the central United States, with a weak secondary maximum along the southeast coast. The maximum number of overshooting events occur consistently between 2200 and 0200 UTC. Most overshooting events occur in May, June, and July when convection is deepest and the tropopause altitude is relatively low. Approximately 45% of the analyzed overshooting events (those with echo tops at least 1 km above the tropopause) have echo tops extending above the 380 K level into the stratospheric overworld.

  12. Subcritical thermal convection of liquid metals in a rapidly rotating sphere

    Science.gov (United States)

    Cardin, P.; Schaeffer, N.; Guervilly, C.; Kaplan, E.

    2017-12-01

    Planetary cores consist of liquid metals (low Prandtl number Pr) that convect as the core cools. Here we study nonlinear convection in a rotating (low Ekman number Ek) planetary core using a fully 3D direct (down to Ek=10-7) and a quasi geostrophic (down to Ek=10-10) numerical simulations. Near the critical thermal forcing (Rayleigh number Ra), convection onsets as thermal Rossby waves, but as Ra increases, this state is superceded by one dominated by advection. At moderate rotation, these states (here called the weak branch and strong branch, respectively) are continuously connected. As the planetary core rotates faster, the continuous transition is replaced by hysteresis cycles and subcriticality until the weak branch disappears entirely and the strong branch onsets in a turbulent state at Ekforcing decreases well below the linear onset of convection (Ra 0.4Racrit in this study for Ek=10-10 and Pr=0.01). We highlight the importance of the Reynolds stress, which is required for convection to persist below the linear onset. We further note the presence of a strong zonal flow that is nonetheless unimportant to the convective subcritical state. Our study suggests that, in the asymptotic regime of rapid rotation relevant for planetary interiors, thermal convection of liquid metals in a sphere onsets and shuts down through a subcritical bifurcation. This scenario may be relevant to explain the lunar and martian dynamo extinctions.

  13. A Wildfire-relevant climatology of the convective environment of the United States

    Science.gov (United States)

    Brian E. Potter; Matthew A. Anaya

    2015-01-01

    Convective instability can influence the behaviour of large wildfires. Because wildfires modify the temperature and moisture of air in their plumes, instability calculations using ambient conditions may not accurately represent convective potential for some fire plumes. This study used the North American Regional Reanalysis to develop a climatology of the convective...

  14. Vigorous convection as the explanation for Pluto's polygonal terrain.

    Science.gov (United States)

    Trowbridge, A J; Melosh, H J; Steckloff, J K; Freed, A M

    2016-06-02

    Pluto's surface is surprisingly young and geologically active. One of its youngest terrains is the near-equatorial region informally named Sputnik Planum, which is a topographic basin filled by nitrogen (N2) ice mixed with minor amounts of CH4 and CO ices. Nearly the entire surface of the region is divided into irregular polygons about 20-30 kilometres in diameter, whose centres rise tens of metres above their sides. The edges of this region exhibit bulk flow features without polygons. Both thermal contraction and convection have been proposed to explain this terrain, but polygons formed from thermal contraction (analogous to ice-wedges or mud-crack networks) of N2 are inconsistent with the observations on Pluto of non-brittle deformation within the N2-ice sheet. Here we report a parameterized convection model to compute the Rayleigh number of the N2 ice and show that it is vigorously convecting, making Rayleigh-Bénard convection the most likely explanation for these polygons. The diameter of Sputnik Planum's polygons and the dimensions of the 'floating mountains' (the hills of of water ice along the edges of the polygons) suggest that its N2 ice is about ten kilometres thick. The estimated convection velocity of 1.5 centimetres a year indicates a surface age of only around a million years.

  15. Regional modelling of tracer transport by tropical convection – Part 1: Sensitivity to convection parameterization

    Directory of Open Access Journals (Sweden)

    J. Arteta

    2009-09-01

    Full Text Available The general objective of this series of papers is to evaluate long duration limited area simulations with idealised tracers as a tool to assess tracer transport in chemistry-transport models (CTMs. In this first paper, we analyse the results of six simulations using different convection closures and parameterizations. The simulations are using the Grell and Dévényi (2002 mass-flux framework for the convection parameterization with different closures (Grell = GR, Arakawa-Shubert = AS, Kain-Fritch = KF, Low omega = LO, Moisture convergence = MC and an ensemble parameterization (EN based on the other five closures. The simulations are run for one month during the SCOUT-O3 field campaign lead from Darwin (Australia. They have a 60 km horizontal resolution and a fine vertical resolution in the upper troposphere/lower stratosphere. Meteorological results are compared with satellite products, radiosoundings and SCOUT-O3 aircraft campaign data. They show that the model is generally in good agreement with the measurements with less variability in the model. Except for the precipitation field, the differences between the six simulations are small on average with respect to the differences with the meteorological observations. The comparison with TRMM rainrates shows that the six parameterizations or closures have similar behaviour concerning convection triggering times and locations. However, the 6 simulations provide two different behaviours for rainfall values, with the EN, AS and KF parameterizations (Group 1 modelling better rain fields than LO, MC and GR (Group 2. The vertical distribution of tropospheric tracers is very different for the two groups showing significantly more transport into the TTL for Group 1 related to the larger average values of the upward velocities. Nevertheless the low values for the Group 1 fluxes at and above the cold point level indicate that the model does not simulate significant overshooting. For stratospheric tracers

  16. Combined convective heat transfer of liquid sodium flowing across tube banks

    International Nuclear Information System (INIS)

    Ma, Ying; Sugiyama, Ken-ichiro; Ishiguro, Ryoji

    1989-01-01

    In order to clarify the heat transfer characteristics of combined convection of liquid sodium, a numerical analysis is performed for liquid sodium which flows through a single horizontal row of tubes in the direction of gravity. The correlation of heat transfer characteristics between liquid sodium and ordinary fluids is also discussed. The heat transfer characteristics at large Reynolds numbers are improved when the Richardson number is increased, and the improvement rate is enlarged with increase in p/d value, since convection effect is relatively large. However heat transfer coefficients do not differ from those of forced convection at small Reynolds numbers even when the Richardson number reaches a high value because of conduction effect. A good consistence of heat transfer characteristics of combined convection between liquid sodium and air is obtained at the same Peclet number and Richardson number. This means that the fundamental heat transfer characteristics of combined convection of liquid sodium can be investigated with ordinary fluids. (author)

  17. Influences of Gravity Waves on Convectively Induced Turbulence (CIT): A Review

    Science.gov (United States)

    Sharman, Robert D.; Trier, S. B.

    2018-03-01

    Thunderstorms are known to produce turbulence. Such turbulence is commonly referred to as convectively induced turbulence or CIT, and can be hazardous to aviation. Although this turbulence can occur both within and outside the convection, out-of-cloud CIT is particularly hazardous, since it occurs in clear air and cannot be seen by eye or onboard radar. Furthermore, due to its small scale and its ties to the underlying convection, it is very difficult to forecast. Guidelines for out-of-cloud CIT avoidance are available, but they are oversimplified and can be misleading. In the search for more appropriate and physically based avoidance guidelines, considerable research has been conducted in recent years on the nature of the phenomenon, and in particular, its connection to gravity waves generated by the convection. This paper reviews the advances in our understanding of out-of-cloud CIT and its relation to convective gravity waves, and provides several detailed examples of observed cases to elucidate some of the underlying dynamics.

  18. International benchmark on the natural convection test in Phenix reactor

    International Nuclear Information System (INIS)

    Tenchine, D.; Pialla, D.; Fanning, T.H.; Thomas, J.W.; Chellapandi, P.; Shvetsov, Y.; Maas, L.; Jeong, H.-Y.; Mikityuk, K.; Chenu, A.; Mochizuki, H.; Monti, S.

    2013-01-01

    Highlights: ► Phenix main characteristics, instrumentation and natural convection test are described. ► “Blind” calculations and post-test calculations from all the participants to the benchmark are compared to reactor data. ► Lessons learned from the natural convection test and the associated calculations are discussed. -- Abstract: The French Phenix sodium cooled fast reactor (SFR) started operation in 1973 and was stopped in 2009. Before the reactor was definitively shutdown, several final tests were planned and performed, including a natural convection test in the primary circuit. During this natural convection test, the heat rejection provided by the steam generators was disabled, followed several minutes later by reactor scram and coast-down of the primary pumps. The International Atomic Energy Agency (IAEA) launched a Coordinated Research Project (CRP) named “control rod withdrawal and sodium natural circulation tests performed during the Phenix end-of-life experiments”. The overall purpose of the CRP was to improve the Member States’ analytical capabilities in the field of SFR safety. An international benchmark on the natural convection test was organized with “blind” calculations in a first step, then “post-test” calculations and sensitivity studies compared with reactor measurements. Eight organizations from seven Member States took part in the benchmark: ANL (USA), CEA (France), IGCAR (India), IPPE (Russian Federation), IRSN (France), KAERI (Korea), PSI (Switzerland) and University of Fukui (Japan). Each organization performed computations and contributed to the analysis and global recommendations. This paper summarizes the findings of the CRP benchmark exercise associated with the Phenix natural convection test, including blind calculations, post-test calculations and comparisons with measured data. General comments and recommendations are pointed out to improve future simulations of natural convection in SFRs

  19. Thermocapillary Bubble Migration: Thermal Boundary Layers for Large Marangoni Numbers

    Science.gov (United States)

    Balasubramaniam, R.; Subramanian, R. S.

    1996-01-01

    The migration of an isolated gas bubble in an immiscible liquid possessing a temperature gradient is analyzed in the absence of gravity. The driving force for the bubble motion is the shear stress at the interface which is a consequence of the temperature dependence of the surface tension. The analysis is performed under conditions for which the Marangoni number is large, i.e. energy is transferred predominantly by convection. Velocity fields in the limit of both small and large Reynolds numbers are used. The thermal problem is treated by standard boundary layer theory. The outer temperature field is obtained in the vicinity of the bubble. A similarity solution is obtained for the inner temperature field. For both small and large Reynolds numbers, the asymptotic values of the scaled migration velocity of the bubble in the limit of large Marangoni numbers are calculated. The results show that the migration velocity has the same scaling for both low and large Reynolds numbers, but with a different coefficient. Higher order thermal boundary layers are analyzed for the large Reynolds number flow field and the higher order corrections to the migration velocity are obtained. Results are also presented for the momentum boundary layer and the thermal wake behind the bubble, for large Reynolds number conditions.

  20. Magnetically Modulated Heat Transport in a Global Simulation of Solar Magneto-convection

    Energy Technology Data Exchange (ETDEWEB)

    Cossette, Jean-Francois [Laboratory for Atmospheric and Space Physics, Campus Box 600, University of Colorado, Boulder, CO 80303 (United States); Charbonneau, Paul [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7 (Canada); Smolarkiewicz, Piotr K. [European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX (United Kingdom); Rast, Mark P., E-mail: Jean-Francois.Cossette@lasp.colorado.edu, E-mail: paulchar@astro.umontreal.ca, E-mail: smolar@ecmwf.int, E-mail: Mark.Rast@lasp.colorado.edu [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, Campus Box 391, University of Colorado, Boulder, CO 80303 (United States)

    2017-05-20

    We present results from a global MHD simulation of solar convection in which the heat transported by convective flows varies in-phase with the total magnetic energy. The purely random initial magnetic field specified in this experiment develops into a well-organized large-scale antisymmetric component undergoing hemispherically synchronized polarity reversals on a 40 year period. A key feature of the simulation is the use of a Newtonian cooling term in the entropy equation to maintain a convectively unstable stratification and drive convection, as opposed to the specification of heating and cooling terms at the bottom and top boundaries. When taken together, the solar-like magnetic cycle and the convective heat flux signature suggest that a cyclic modulation of the large-scale heat-carrying convective flows could be operating inside the real Sun. We carry out an analysis of the entropy and momentum equations to uncover the physical mechanism responsible for the enhanced heat transport. The analysis suggests that the modulation is caused by a magnetic tension imbalance inside upflows and downflows, which perturbs their respective contributions to heat transport in such a way as to enhance the total convective heat flux at cycle maximum. Potential consequences of the heat transport modulation for solar irradiance variability are briefly discussed.

  1. Modeling approaches to natural convection in porous media

    CERN Document Server

    Su, Yan

    2015-01-01

    This book provides an overview of the field of flow and heat transfer in porous medium and focuses on presentation of a generalized approach to predict drag and convective heat transfer within porous medium of arbitrary microscopic geometry, including reticulated foams and packed beds. Practical numerical methods to solve natural convection problems in porous media will be presented with illustrative applications for filtrations, thermal storage and solar receivers.

  2. Performance of a convective, infrared and combined infrared- convective heated conveyor-belt dryer.

    Science.gov (United States)

    El-Mesery, Hany S; Mwithiga, Gikuru

    2015-05-01

    A conveyor-belt dryer was developed using a combined infrared and hot air heating system that can be used in the drying of fruits and vegetables. The drying system having two chambers was fitted with infrared radiation heaters and through-flow hot air was provided from a convective heating system. The system was designed to operate under either infrared radiation and cold air (IR-CA) settings of 2000 W/m(2) with forced ambient air at 30 °C and air flow of 0.6 m/s or combined infrared and hot air convection (IR-HA) dryer setting with infrared intensity set at 2000 W/m(2) and hot at 60 °C being blown through the dryer at a velocity of 0.6 m/s or hot air convection (HA) at an air temperature of 60 °C and air flow velocity 0.6 m/s but without infrared heating. Apple slices dried under the different dryer settings were evaluated for quality and energy requirements. It was found that drying of apple (Golden Delicious) slices took place in the falling rate drying period and no constant rate period of drying was observed under any of the test conditions. The IR-HA setting was 57.5 and 39.1 % faster than IR-CA and HA setting, respectively. Specific energy consumption was lower and thermal efficiency was higher for the IR-HA setting when compared to both IR-CA and HA settings. The rehydration ratio, shrinkage and colour properties of apples dried under IR-HA conditions were better than for either IR-CA or HA.

  3. Characterizing the degree of convective clustering using radar reflectivity and its application to evaluating model simulations

    Science.gov (United States)

    Cheng, W. Y.; Kim, D.; Rowe, A.; Park, S.

    2017-12-01

    Despite the impact of mesoscale convective organization on the properties of convection (e.g., mixing between updrafts and environment), parameterizing the degree of convective organization has only recently been attempted in cumulus parameterization schemes (e.g., Unified Convection Scheme UNICON). Additionally, challenges remain in determining the degree of convective organization from observations and in comparing directly with the organization metrics in model simulations. This study addresses the need to objectively quantify the degree of mesoscale convective organization using high quality S-PolKa radar data from the DYNAMO field campaign. One of the most noticeable aspects of mesoscale convective organization in radar data is the degree of convective clustering, which can be characterized by the number and size distribution of convective echoes and the distance between them. We propose a method of defining contiguous convective echoes (CCEs) using precipitating convective echoes identified by a rain type classification algorithm. Two classification algorithms, Steiner et al. (1995) and Powell et al. (2016), are tested and evaluated against high-resolution WRF simulations to determine which method better represents the degree of convective clustering. Our results suggest that the CCEs based on Powell et al.'s algorithm better represent the dynamical properties of the convective updrafts and thus provide the basis of a metric for convective organization. Furthermore, through a comparison with the observational data, the WRF simulations driven by the DYNAMO large-scale forcing, similarly applied to UNICON Single Column Model simulations, will allow us to evaluate the ability of both WRF and UNICON to simulate convective clustering. This evaluation is based on the physical processes that are explicitly represented in WRF and UNICON, including the mechanisms leading to convective clustering, and the feedback to the convective properties.

  4. Enhanced antisunward convection and F region scintillations at mid-latitudes during storm onset

    International Nuclear Information System (INIS)

    Foster, J.C.; Aarons, J.

    1988-01-01

    Millstone Hill radar observations over a wide span of latitudes detail the onset of 300 m/s antisunward (westward) convection at mid and low latitudes in the morning sector as a region of storm-enhanced sunward convection retreats poleward. Ring current observations reported by Lui et al. (1987) suggest that the magnetospheric shielding layer was coincident with the observed reversal between sunward and antisunward convection. A strong southward component of the F region neutral wind is observed at latitudes equatorward of the convection reversal. These observations are in agreement with the model of Spiro et al. (1988), who find that storm-enhanced neutrral winds at latitudes equatorward of the shielding layer can generate a long-lived perturbation electric field in the inner magnetosphere. The observations show the growth of the subauroral electric field as the shielding boundary moves poleward. They observe 136-MHz scintillations in both the auroral sunwarrd convection region and the region of subauroral antisunward convection when the convection electric fields exceed 5 mV/m

  5. Crystalline heterogeneities and instabilities in thermally convecting magma chamber

    Science.gov (United States)

    Culha, C.; Suckale, J.; Qin, Z.

    2016-12-01

    A volcanic vent can supply different densities of crystals over an eruption time period. This has been seen in Hawai'i's Kilauea Iki 1959 eruption; however it is not common for all Kilauea or basaltic eruptions. We ask the question: Under what conditions can homogenous magma chamber cultivate crystalline heterogeneities? In some laboratory experiments and numerical simulations, a horizontal variation is observed. The region where crystals reside is identified as a retention zone: convection velocity balances settling velocity. Simulations and experiments that observe retention zones assume crystals do not alter the convection in the fluid. However, a comparison of experiments and simulations of convecting magma with crystals suggest that large crystal volume densities and crystal sizes alter fluid flow considerably. We introduce a computational method that fully resolves the crystalline phase. To simulate basaltic magma chambers in thermal convection, we built a numerical solver of the Navier-Stoke's equation, continuity equation, and energy equation. The modeled magma is assumed to be a viscous, incompressible fluid with a liquid and solid phase. Crystals are spherical, rigid bodies. We create Rayleigh-Taylor instability through a cool top layer and hot bottom layer and update magma density while keeping crystal temperature and size constant. Our method provides a detailed picture of magma chambers, which we compare to other models and experiments to identify when and how crystals alter magma chamber convection. Alterations include stratification, differential settling and instabilities. These characteristics are dependent on viscosity, convection vigor, crystal volume density and crystal characteristics. We reveal that a volumetric crystal density variation may occur over an eruption time period, if right conditions are met to form stratifications and instabilities in magma chambers. These conditions are realistic for Kilauea Iki's 1959 eruption.

  6. Hydrothermal convection and uranium deposits in abnormally radioactive plutons

    International Nuclear Information System (INIS)

    1978-09-01

    Hydrothermal uranium deposits are often closely associated with granites of abnormally high uranium content. We have studied the question whether the heat generated within such granites can cause fluid convection of sufficient magnitude to develop hydrothermal uranium deposits. Numerical models of flow through porous media were used to calculate temperatures and fluid flow in and around plutons similar to the Conway Granite, New Hampshire, i.e. with a halfwidth of 17 km, a thickness of 6.25 km, and with a uniform internal heat generation rate of 20 x 10 -13 cal/cm 3 -sec. Fluid convection was computed for plutons with permeabilities between 0.01 and 5 millidarcies (1 x10 -13 cm 2 to 5 x 10 -11 cm 2 . Flow rates and the size and location of convection cells in and around radioactive plutons like the Conway Granite were found to depend critically on the permeability distribution within the pluton and in adjacent country rocks. The depth of burial, the distribution of heat sources within the pluton, and small rates of heat generation in the country rock are only of minor importance. Topographic relief is unlikely to effect flow rates significantly, but can have a major influence on the distribution of recharge and discharge areas. Within a few million years, the mass of water transported by steady state convection through such radioactive plutons can equal the mass of water which can convect through them during initial cooling from magmatic temperatures. If the permeability in a Conway-type pluton is on the order of 0.5 millidarcies, the rate of fluid convection is probably sufficient to develop a hydrothermal ore deposit containing 10,000 tons of uranium in a period of two million years. Such a uranium deposit is most likely to develop in an area of strong upwelling or strong downwelling flow

  7. The Oscillatory Nature of Rotating Convection in Liquid Metal

    Science.gov (United States)

    Aurnou, J. M.; Bertin, V. L.; Grannan, A. M.

    2016-12-01

    Earth's magnetic field is assumed to be generated by fluid motions in its liquid metal core. In this fluid, the heat diffuses significantly more than momentum and thus, the ratio of these two diffusivities, the Prandtl number Pr=ν/Κ, is well below unity. The convective flow dynamics of liquid metal is very different from Pr ≈ 1 fluids like water and those used in current dynamo simulations. In order to characterize rapidly rotating thermal convection in low Pr number fluids, we have performed laboratory experiments in a cylinder using liquid gallium (Pr ≈ 0.023) as the working fluid. The Ekman number, which characterizes the effect of rotation, varies from E = 4 10-5 to 4 10-6 and the dimensionless buoyancy forcing (Rayleigh number, Ra) varies from Ra =3 105 to 2 107. Using heat transfer measurements (Nusselt number, Nu) as well as temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes are identified for the first time in liquid metal laboratory experiments. These wall modes coexist with the bulk inertial oscillatory modes. When the strengh of the buoyancy increases, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr ≈ 1 dynamo models, but in the form of oscillatory motions. Therefore, the flows that drive thermally-driven dynamo action in low Pr geophysical and astrophysical fluids can differ substantively than those occuring in current-day Pr ≈ 1 numerical models. In addition, our results suggest that relatively low wavenumber, wall-attached modes may be dynamically important in rapidly-rotating convection in liquid metals.

  8. Mixed convection between horizontal plates and consequences for chemical vapor deposition flows

    International Nuclear Information System (INIS)

    Chiu, K.C.

    1986-01-01

    To simulate the fluid dynamics of VD systems, mixed convection between horizontal plates (AR = width/height = 10) heated from below was studied by laser Doppler anemometry in a range 1368 < Ra < 8300 and 15 < R3 < 170. The entrance effects were characterized by two lengths: one for the onset of bouyancy-driven instability, and one for the full development of longitudinal convection rolls. Explicit expressions for both entrance lengths are given in terms of Ra and Re. In addition, unsteady longitudinal convection rolls were observed. These are discussed in terms of the admixture of transverse convection rolls and/or contributions from upstream turbulence. For the fully developed region it is shown analytically that the transverse velocities of the longitudinal convection rolls, v and w, are independent of the forced flow and are identical to those of the two-dimensional Rayleigh-Benard convection rolls. These fundamental results serve as a base for the discussion of horizontal CVD flows. The entrance and sidewall effects are found to have pronounced influences on the flow patterns observed in CVD (AR = 2) reactors

  9. The potential for convection and implications for geothermal energy in the Perth Basin, Western Australia

    Science.gov (United States)

    Sheldon, Heather A.; Florio, Brendan; Trefry, Michael G.; Reid, Lynn B.; Ricard, Ludovic P.; Ghori, K. Ameed R.

    2012-11-01

    Convection of groundwater in aquifers can create areas of anomalously high temperature at shallow depths which could be exploited for geothermal energy. Temperature measurements in the Perth Basin (Western Australia) reveal thermal patterns that are consistent with convection in the Yarragadee Aquifer. This observation is supported by Rayleigh number calculations, which show that convection is possible within the range of aquifer thickness, geothermal gradient, salinity gradient and permeability encountered in the Yarragadee Aquifer, assuming that the aquifer can be treated as a homogeneous anisotropic layer. Numerical simulations of convection in a simplified model of the Yarragadee Aquifer show that: (1) the spacing of convective upwellings can be predicted from aquifer thickness and permeability anisotropy; (2) convective upwellings may be circular or elongate in plan view; (3) convective upwellings create significant temperature enhancements relative to the conductive profile; (4) convective flow rates are similar to regional groundwater flow rates; and (5) convection homogenises salinity within the aquifer. Further work is required to constrain the average horizontal and vertical permeability of the Yarragadee Aquifer, to assess the validity of treating the aquifer as a homogeneous anisotropic layer, and to determine the impact of realistic aquifer geometry and advection on convection.

  10. Rotating thermal convection at very large Rayleigh numbers

    Science.gov (United States)

    Weiss, Stephan; van Gils, Dennis; Ahlers, Guenter; Bodenschatz, Eberhard

    2016-11-01

    The large scale thermal convection systems in geo- and astrophysics are usually influenced by Coriolis forces caused by the rotation of their celestial bodies. To better understand the influence of rotation on the convective flow field and the heat transport at these conditions, we study Rayleigh-Bénard convection, using pressurized sulfur hexaflouride (SF6) at up to 19 bars in a cylinder of diameter D=1.12 m and a height of L=2.24 m. The gas is heated from below and cooled from above and the convection cell sits on a rotating table inside a large pressure vessel (the "Uboot of Göttingen"). With this setup Rayleigh numbers of up to Ra =1015 can be reached, while Ekman numbers as low as Ek =10-8 are possible. The Prandtl number in these experiment is kept constant at Pr = 0 . 8 . We report on heat flux measurements (expressed by the Nusselt number Nu) as well as measurements from more than 150 temperature probes inside the flow. We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support through SFB963: "Astrophysical Flow Instabilities and Turbulence". The work of GA was supported in part by the US National Science Foundation through Grant DMR11-58514.

  11. Development of convection along the SPCZ within a Madden-Julian oscillation

    OpenAIRE

    Matthews, Adrian J.; Hoskins, Brian J.; Slingo, Julia M.; Blackburn, Mike

    1996-01-01

    A subtropical Rossby-wave propagation mechanism is proposed to account for the poleward and eastward progression of intraseasonal convective anomalies along the South Pacific convergence zone (SPCZ) that is observed in a significant proportion of Madden–Julian oscillations (MJOs). Large-scale convection, associated with an MJO, is assumed to be already established over the Indonesian region. The latent heating associated with this convection forces an equatorial Rossby-wave response with an u...

  12. Development of convection along the SPCZ within a Madden-Julian oscillation

    OpenAIRE

    Matthews, AJ; Hoskins, BJ; Slingo, JM; Blackburn, M

    1996-01-01

    A subtropical Rossby wave propagation mechanism is proposed to account for the poleward and eastward progression of intraseasonal convective anomalies along the South Pacific Convergence Zone (SPCZ) that is observed in a significant proportion of Madden-Julian Oscillations (MJOs). Large scale convection, associated with an MJO, is assumed to be already established over the Indonesian region. The latent heating associated with this convection forces an equatorial Rossby wave response with an u...

  13. Generalized drying curves in conductive/convective paper drying

    Directory of Open Access Journals (Sweden)

    O.C. Motta Lima

    2000-12-01

    Full Text Available This work presents a study related to conductive/convective drying of paper (cellulose sheets over heated surfaces, under natural and forced air conditions. The experimental apparatus consists in a metallic box heated by a thermostatic bath containing an upper surface on which the paper samples (about 1 mm thick are placed. The system is submitted to ambient air under two different conditions: natural convection and forced convection provide by an adjustable blower. The influence of initial paper moisture content, drying (heated surface temperature and air velocity on drying curves behavior is observed under different drying conditions. Hence, these influence is studied through the proposal of generalized drying curves. Those curves are analyzed individually for each air condition exposed above and for both together. A set of equations to fit them is proposed and discussed.

  14. Convectively Driven Tropopause-Level Cooling and Its Influences on Stratospheric Moisture

    Science.gov (United States)

    Kim, Joowan; Randel, William J.; Birner, Thomas

    2018-01-01

    Characteristics of the tropopause-level cooling associated with tropical deep convection are examined using CloudSat radar and Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation measurements. Extreme deep convection is sampled based on the cloud top height (>17 km) from CloudSat, and colocated temperature profiles from COSMIC are composited around the deep convection. Response of moisture to the tropopause-level cooling is also examined in the upper troposphere and lower stratosphere using microwave limb sounder measurements. The composite temperature shows an anomalous warming in the troposphere and a significant cooling near the tropopause (at 16-19 km) when deep convection occurs over the western Pacific, particularly during periods with active Madden-Julian Oscillation (MJO). The composite of the tropopause cooling has a large horizontal scale ( 6,000 km in longitude) with minimum temperature anomaly of -2 K, and it lasts more than 2 weeks with support of mesoscale convective clusters embedded within the envelope of the MJO. The water vapor anomalies show strong correlation with the temperature anomalies (i.e., dry anomaly in the cold anomaly), showing that the convectively driven tropopause cooling actively dehydrate the lower stratosphere in the western Pacific region. The moisture is also affected by anomalous Matsuno-Gill-type circulation associated with the cold anomaly, in which dry air spreads over a wide range in the tropical tropopause layer (TTL). These results suggest that convectively driven tropopause cooling and associated transient circulation play an important role in the large-scale dehydration process in the TTL.

  15. Wavelet Scale Analysis of Mesoscale Convective Systems for Detecting Deep Convection From Infrared Imagery

    Science.gov (United States)

    Klein, Cornelia; Belušić, Danijel; Taylor, Christopher M.

    2018-03-01

    Mesoscale convective systems (MCSs) are frequently associated with rainfall extremes and are expected to further intensify under global warming. However, despite the significant impact of such extreme events, the dominant processes favoring their occurrence are still under debate. Meteosat geostationary satellites provide unique long-term subhourly records of cloud top temperatures, allowing to track changes in MCS structures that could be linked to rainfall intensification. Focusing on West Africa, we show that Meteosat cloud top temperatures are a useful proxy for rainfall intensities, as derived from snapshots from the Tropical Rainfall Measuring Mission 2A25 product: MCSs larger than 15,000 km2 at a temperature threshold of -40°C are found to produce 91% of all extreme rainfall occurrences in the study region, with 80% of the storms producing extreme rain when their minimum temperature drops below -80°C. Furthermore, we present a new method based on 2-D continuous wavelet transform to explore the relationship between cloud top temperature and rainfall intensity for subcloud features at different length scales. The method shows great potential for separating convective and stratiform cloud parts when combining information on temperature and scale, improving the common approach of using a temperature threshold only. We find that below -80°C, every fifth pixel is associated with deep convection. This frequency is doubled when looking at subcloud features smaller than 35 km. Scale analysis of subcloud features can thus help to better exploit cloud top temperature data sets, which provide much more spatiotemporal detail of MCS characteristics than available rainfall data sets alone.

  16. Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation

    Science.gov (United States)

    Li, Shan; Zhang, Shaoqing; Liu, Zhengyu; Lu, Lv; Zhu, Jiang; Zhang, Xuefeng; Wu, Xinrong; Zhao, Ming; Vecchi, Gabriel A.; Zhang, Rong-Hua; Lin, Xiaopei

    2018-04-01

    Parametric uncertainty in convection parameterization is one major source of model errors that cause model climate drift. Convection parameter tuning has been widely studied in atmospheric models to help mitigate the problem. However, in a fully coupled general circulation model (CGCM), convection parameters which impact the ocean as well as the climate simulation may have different optimal values. This study explores the possibility of estimating convection parameters with an ensemble coupled data assimilation method in a CGCM. Impacts of the convection parameter estimation on climate analysis and forecast are analyzed. In a twin experiment framework, five convection parameters in the GFDL coupled model CM2.1 are estimated individually and simultaneously under both perfect and imperfect model regimes. Results show that the ensemble data assimilation method can help reduce the bias in convection parameters. With estimated convection parameters, the analyses and forecasts for both the atmosphere and the ocean are generally improved. It is also found that information in low latitudes is relatively more important for estimating convection parameters. This study further suggests that when important parameters in appropriate physical parameterizations are identified, incorporating their estimation into traditional ensemble data assimilation procedure could improve the final analysis and climate prediction.

  17. Titan Balloon Convection Model, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative research effort is directed at determining, quantitatively, the convective heat transfer coefficients applicable to a Montgolfiere balloon operating...

  18. Measurements of convective and radiative heating in wildland fires

    Science.gov (United States)

    David Frankman; Brent W. Webb; Bret W. Butler; Daniel Jimenez; Jason M. Forthofer; Paul Sopko; Kyle S. Shannon; J. Kevin Hiers; Roger D. Ottmar

    2012-01-01

    Time-resolved irradiance and convective heating and cooling of fast-response thermopile sensors were measured in 13 natural and prescribed wildland fires under a variety of fuel and ambient conditions. It was shown that a sensor exposed to the fire environment was subject to rapid fluctuations of convective transfer whereas irradiance measured by a windowed sensor was...

  19. Interaction of externally-driven acoustic waves with compressible convection

    International Nuclear Information System (INIS)

    Jones, P.; Merryfield, W.

    1992-01-01

    Two-dimensional numerical simulations are used to examine the interaction of acoustic waves with a compressible convecting fluid. Acoustic waves are forced at the lower boundary of the computational domain and propagate through a three-layer system undergoing vigorous penetrative convection. Energy exchange between the wave and the fluid is analyzed using a work integral formulation

  20. Physics of greenhouse effect and convection in warm oceans

    Science.gov (United States)

    Inamdar, A. K.; Ramanathan, V.

    1994-01-01

    Sea surface temperature (SST) in roughly 50% of the tropical Pacific Ocean is warm enough (SST greater than 300 K) to permit deep convection. This paper examines the effects of deep convection on the climatological mean vertical distributions of water vapor and its greenhouse effect over such warm oceans. The study, which uses a combination of satellite radiation budget observations, atmospheric soundings deployed from ships, and radiation model calculations, also examines the link between SST, vertical distribution of water vapor, and its greenhouse effect in the tropical oceans. Since the focus of the study is on the radiative effects of water vapor, the radiation model calculations do not include the effects of clouds. The data are grouped into nonconvective and convective categories using SST as an index for convective activity. On average, convective regions are more humid, trap significantly more longwave radiation, and emit more radiation to the sea surface. The greenhouse effect in regions of convection operates as per classical ideas, that is, as the SST increases, the atmosphere traps the excess longwave energy emitted by the surface and reradiates it locally back to the ocean surface. The important departure from the classical picture is that the net (up minus down) fluxes at the surface and at the top of the atmosphere decrease with an increase in SST; that is, the surface and the surface-troposphere column lose the ability to radiate the excess energy to space. The cause of this super greenhouse effect at the surface is the rapid increase in the lower-troposphere humidity with SST; that of the column is due to a combination of increase in humidity in the entire column and increase in the lapse rate within the lower troposphere. The increase in the vertical distribution of humidity far exceeds that which can be attributed to the temperature dependence of saturation vapor pressure; that is, the tropospheric relative humidity is larger in convective

  1. LINE BROADENING AND THE SOLAR OPACITY PROBLEM

    Energy Technology Data Exchange (ETDEWEB)

    Krief, M.; Feigel, A.; Gazit, D., E-mail: menahem.krief@mail.huji.ac.il [The Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel)

    2016-06-20

    The calculation of line widths constitutes theoretical and computational challenges in the calculation of opacities of hot, dense plasmas. Opacity models use line broadening approximations that are untested at stellar interior conditions. Moreover, calculations of atomic spectra of the Sun indicate a large discrepancy in the K-shell line widths between several atomic codes and the Opacity-Project (OP). In this work, the atomic code STAR is used to study the sensitivity of solar opacities to line broadening. Variations in the solar opacity profile due to an increase of the Stark widths resulting from discrepancies with OP, are compared, in light of the solar opacity problem, with the required opacity variations of the present day Sun, as imposed by helioseismic and neutrino observations. The resulting variation profile is much larger than the discrepancy between different atomic codes, agrees qualitatively with the missing opacity profile, recovers about half of the missing opacity nearby the convection boundary, and has a little effect in the internal regions. Since it is hard to estimate quantitatively the uncertainty in the Stark widths, we show that an increase of all line widths by a factor of about ∼100 recovers quantitatively the missing opacity. These results emphasize the possibility that photoexcitation processes are not modeled properly, and more specifically, highlight the need for a better theoretical characterization of the line broadening phenomena at stellar interior conditions, and of the uncertainty due to the way it is implemented by atomic codes.

  2. Concentration Distribution of Chloride Ion under the Influence of the Convection-Diffusion Coupling

    Directory of Open Access Journals (Sweden)

    Q. L. Zhao

    2017-01-01

    Full Text Available The transfer process of chloride ion under the action of the convection-diffusion coupling was analyzed in order to predict the corrosion of reinforcement and the durability of structure more accurately. Considering the time-varying properties of diffusion coefficient and the space-time effect of the convection velocity, the differential equation for chloride ion transfer under the action of the convection-diffusion coupling was constructed. And then the chloride ion transfer model was validated by the existing experimental datum and the actual project datum. The results showed that when only diffusion was considered, the chlorine ion concentration increased with the time and decreased with the decay index of time. Under the action of the convection-diffusion coupling, at each point of coupling region, the chloride ion concentration first increased and then decreased and tended to stabilize, and the maximum appeared at the moment of convection velocity being 0; in the diffusion zone, the chloride ion concentration increased over time, and the chloride ion concentration of the same location increased with the depth of convection (in the later period, the velocity of convection (in the early period, and the chloride ion concentration of the surface.

  3. Numerical simulation of mesoscale surface pressure features with trailing stratiform squall lines using WRF -ARW model over Gangetic West Bengal region

    Science.gov (United States)

    Dawn, Soma; Satyanarayana, A. N. V.

    2018-01-01

    In the present study, an attempt has been made to investigate the simulation of mesoscale surface pressure patterns like pre-squall mesolow, mesohigh and wake low associated with leading convective line-trailing stratiform (TS) squall lines over Gangetic West Bengal (GWB). For this purpose, a two way interactive triple nested domain with high resolution WRF model having2 km grid length in the innermost domain is used. The model simulated results are compared with the available in-situ observations obtained as a part of Severe Thunderstorm: Observations and Regional Modeling (STORM) programme, reflectivity products of Doppler Weather Radar (DWR) Kolkata and TRMM rainfall. Three TS squall lines (15 May 2009, 5 May 2010 and 7 May 2010) are chosen during pre-monsoon thunderstorm season for this study. The model simulated results of diurnal variation of temperature, relative humidity, wind speed and direction at the station Kharagpur in GWB region reveal a sudden fall in temperature, increase in the amount of relative humidity and sudden rise in wind speed during the arrival of the storms. Such results are well comparable with the observations though there are some leading or lagging of time in respect of actual occurrences of such events. The study indicates that the model is able to predict the occurrences of three typical surface pressure features namely: pre-squall mesolow, meso high and wake low. The predicted surface parameters like accumulated rainfall, maximum reflectivity and vertical profiles (temperature, relative humidity and winds) are well accorded with the observations. The convective and stratiform precipitation region of the TS squall lines are well represented by the model. A strong downdraft is observed to be a contributory factor for formation of mesohigh in the convective region of the squall line. Wake low is observed to reside in the stratiform rain region and the descending dry air at this place has triggered the wake low through adiabatic

  4. Intensive probing of a clear air convective field by radar and instrumental drone aircraft.

    Science.gov (United States)

    Rowland, J. R.

    1973-01-01

    An instrumented drone aircraft was used in conjunction with ultrasensitive radar to study the development of a convective field in the clear air. Radar data are presented which show an initial constant growth rate in the height of the convective field of 3.8 m/min, followed by a short period marked by condensation and rapid growth at a rate in excess of 6.1 m/min. Drone aircraft soundings show general features of a convective field including progressive lifting of the inversion at the top of the convection and a cooling of the air at the top of the field. Calculations of vertical heat flux as a function of time and altitude during the early stages of convection show a linear decrease in heat flux with altitude to near the top of the convective field and a negative heat flux at the top. Evidence is presented which supports previous observations that convective cells overshoot their neutral buoyancy level into a region where they are cool and moist compared to their surroundings. Furthermore, only that portion of the convective cell that has overshot its neutral buoyancy level is generally visible to the radar.

  5. Experimental transient natural convection heat transfer from a vertical cylindrical tank

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Uhia, Francisco J.; Alberto Dopazo, J.

    2011-01-01

    In this paper heat transfer experimental data is presented and compared to general correlations proposed in the literature for transient laminar free convection from a vertical cylindrical tank. The experimental data has been obtained from heating and cooling experiments carried out with a cylindrical full-scale hot water storage tank working under real operating conditions. The experimental device and the data acquisition system are described. The calculation procedures established to obtain the experimental values of the heat transfer coefficients, as well as the data reduction process, are detailed. The local convection and radiation heat transfer coefficients are obtained from different heating power conditions for local Rayleigh numbers within the range of 1x10 5 -3x10 8 . The great quantity of available experimental data allows a detailed analysis with a reliable empirical base. The experimental local convection heat transfer coefficients are correlated and compared to correlations proposed in open literature for engineering calculations. - Highlights: → Experimental data of transient local convection heat transfer coefficients from a cylindrical tank for heating and cooling processes is obtained. → The transient behaviour of the convection coefficients is dependent on temperature difference evolutions between the surface and the air. → The Nu.Ra -1/4 ratio decreases proportionally in (T s -T ∞ ) -0.9 . → A new correlation based on the semi-infinite region theory for laminar transient free convection is proposed.

  6. The impact of convection in the West African monsoon region on global weather forecasts - explicit vs. parameterised convection simulations using the ICON model

    Science.gov (United States)

    Pante, Gregor; Knippertz, Peter

    2017-04-01

    The West African monsoon is the driving element of weather and climate during summer in the Sahel region. It interacts with mesoscale convective systems (MCSs) and the African easterly jet and African easterly waves. Poor representation of convection in numerical models, particularly its organisation on the mesoscale, can result in unrealistic forecasts of the monsoon dynamics. Arguably, the parameterisation of convection is one of the main deficiencies in models over this region. Overall, this has negative impacts on forecasts over West Africa itself but may also affect remote regions, as waves originating from convective heating are badly represented. Here we investigate those remote forecast impacts based on daily initialised 10-day forecasts for July 2016 using the ICON model. One set of simulations employs the default setup of the global model with a horizontal grid spacing of 13 km. It is compared with simulations using the 2-way nesting capability of ICON. A second model domain over West Africa (the nest) with 6.5 km grid spacing is sufficient to explicitly resolve MCSs in this region. In the 2-way nested simulations, the prognostic variables of the global model are influenced by the results of the nest through relaxation. The nest with explicit convection is able to reproduce single MCSs much more realistically compared to the stand-alone global simulation with parameterised convection. Explicit convection leads to cooler temperatures in the lower troposphere (below 500 hPa) over the northern Sahel due to stronger evaporational cooling. Overall, the feedback of dynamic variables from the nest to the global model shows clear positive effects when evaluating the output of the global domain of the 2-way nesting simulation and the output of the stand-alone global model with ERA-Interim re-analyses. Averaged over the 2-way nested region, bias and root mean squared error (RMSE) of temperature, geopotential, wind and relative humidity are significantly reduced in

  7. Predictions of laminar natural convection in heated cavities

    International Nuclear Information System (INIS)

    Winters, K.H.

    1982-06-01

    Several examples of laminar, natural convection in heated cavities are discussed with illustrative calculations. These include convection in a square cavity at high Rayleigh number; in a narrow cavity at moderate aspect ratio; in a rectangular cavity heated from below; in a trapezoidal cavity, and in a rectangular cavity containing a conducting obstruction. The steady equations for the velocity, pressure and temperature are solved in the Boussinesq approximation, using a standard Galerkin formulation of the finite-element method. (author)

  8. Evidence for Gravity Wave Seeding of Convective Ionosphere Storms Initiated by Deep Troposphere Convection

    Science.gov (United States)

    Kelley, M. C.; Pfaff, R. F., Jr.; Dao, E. V.; Holzworth, R. H., II

    2014-12-01

    With the increase in solar activity, the Communications/Outage Forecast System satellite (C/NOFS) now goes below the F peak. As such, we now can study the development of Convective Ionospheric Storms (CIS) and, most importantly, large-scale seeding of the low growth-rate Rayleigh-Taylor (R-T) instability. Two mechanisms have been suggested for such seeding: the Collisional Kelvin-Helmholtz Instability (CKHI) and internal atmospheric gravity waves. A number of observations have shown that the spectrum of fully developed topside structures peaks at 600 km and extends to over 1000 km. These structures are exceedingly difficult to explain by CKHI. Here we show that sinusoidal plasma oscillations on the bottomside during daytime develop classical R-T structures on the nightside with the background 600 km structure still apparent. In two case studies, thunderstorm activity was observed east of the sinusoidal features in the two hours preceding the C/NOFS passes. Thus, we argue that convective tropospheric storms are a likely source of these sinusoidal features.

  9. An Experimental Study on Rayleigh-Benard Natural Convection

    International Nuclear Information System (INIS)

    Moon, Je Young; Chung, Bum Jin

    2012-01-01

    Core melt in a severe accident condition, forms a molten pool in the reactor vessel lower head. The molten pool is divided by a metallic pool (top) and an oxide pool (bottom) by the density difference. Due to the decay heat generated in oxide pool, Rayleigh- Benard natural convection heated from below and cooled from above occurs in the metallic pool. Experiments were performed to investigate Rayleigh- Benard natural convection as a preparatory study before an in-depth severe accident study. The natural convection heat transfers were measured varying the plate separation distance and the area of plate with and without the side wall. Using the analogy concept, heat transfer experiments were replaced by mass transfer experiments. A cupric acid.copper sulfate (H 2 SO 4 -CuSO 4 ) electroplating system was adopted as the mass transfer system and the electric currents were measured rather than the heat

  10. Modulated convection at high frequencies and large modulation amplitudes

    International Nuclear Information System (INIS)

    Swift, J.B.; Hohenberg, P.C.

    1987-01-01

    Modulated Rayleigh-Benard convection is analyzed for high frequencies and large modulation amplitudes. The linear theory of Gershuni and Zhukhovitskii is generalized to the nonlinear domain, and a subcritical bifurcation to convection is found in agreement with the experiments of Niemela and Donnelly. The crossover between the high-frequency (''Stokes layer'') regime and the low-frequency regime studied previously is analyzed

  11. Heat removal by natural convection in a RPR reactor

    International Nuclear Information System (INIS)

    Sampaio, P.A.B. de

    1987-01-01

    In this paper natural convection in RPR reactor is analysed. The effect of natural convection valves size on cladding temperature is studied. The reactor channel heat transfer problem is solved using finite elements in a two-dimensional analysis. Results show that two valves with Φ = 0.16 m are suited to keep coolant and cladding temperatures below 73 0 C. (author) [pt

  12. Experimental study of laminar mixed convection in a rod bundle with mixing vane spacer grids

    Energy Technology Data Exchange (ETDEWEB)

    Mohanta, Lokanath, E-mail: lxm971@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Cheung, Fan-Bill [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Bajorek, Stephen M.; Tien, Kirk; Hoxie, Chris L. [Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)

    2017-02-15

    Highlights: • Investigated the heat transfer during mixed laminar convection in a rod bundle with linearly varying heat flux. • The Nusselt number increases downstream of the inlet with increasing Richardson number. • Developed an enhancement factor to account for the effects of mixed convection over the forced laminar heat transfer. - Abstract: Heat transfer by mixed convection in a rod bundle occurs when convection is affected by both the buoyancy and inertial forces. Mixed convection can be assumed when the Richardson number (Ri = Gr/Re{sup 2}) is on the order of unity, indicating that both forced and natural convection are important contributors to heat transfer. In the present study, data obtained from the Rod Bundle Heat Transfer (RBHT) facility was used to determine the heat transfer coefficient in the mixed convection regime, which was found to be significantly larger than those expected assuming purely forced convection based on the inlet flow rate. The inlet Reynolds (Re) number for the tests ranged from 500 to 1300, while the Grashof (Gr) number varied from 1.5 × 10{sup 5} to 3.8 × 10{sup 6} yielding 0.25 < Ri < 4.3. Using results from RBHT test along with the correlation from the FLECHT-SEASET test program for laminar forced convection, a new correlation ​is proposed for mixed convection in a rod bundle. The new correlation accounts for the enhancement of heat transfer relative to laminar forced convection.

  13. Non-Boussinesq Dissolution-Driven Convection in Porous Media

    Science.gov (United States)

    Amooie, M. A.; Soltanian, M. R.; Moortgat, J.

    2017-12-01

    Geological carbon dioxide (CO2) sequestration in deep saline aquifers has been increasingly recognized as a feasible technology to stabilize the atmospheric carbon concentrations and subsequently mitigate the global warming. Solubility trapping is one of the most effective storage mechanisms, which is associated initially with diffusion-driven slow dissolution of gaseous CO2 into the aqueous phase, followed by density-driven convective mixing of CO2 throughout the aquifer. The convection includes both diffusion and fast advective transport of the dissolved CO2. We study the fluid dynamics of CO2 convection in the underlying single aqueous-phase region. Two modeling approaches are employed to define the system: (i) a constant-concentration condition for CO2 in aqueous phase at the top boundary, and (ii) a sufficiently low, constant injection-rate for CO2 from top boundary. The latter allows for thermodynamically consistent evolution of the CO2 composition and the aqueous phase density against the rate at which the dissolved CO2 convects. Here we accurately model the full nonlinear phase behavior of brine-CO2 mixture in a confined domain altered by dissolution and compressibility, while relaxing the common Boussinesq approximation. We discover new flow regimes and present quantitative scaling relations for global characters of spreading, mixing, and dissolution flux in two- and three-dimensional media for the both model types. We then revisit the universal Sherwood-Rayleigh scaling that is under debate for porous media convective flows. Our findings confirm the sublinear scaling for the constant-concentration case, while reconciling the classical linear scaling for the constant-injection model problem. The results provide a detailed perspective into how the available modeling strategies affect the prediction ability for the total amount of CO2 dissolved in the long term within saline aquifers of different permeabilities.

  14. The relationships between precipitation, convective cloud and tropical cyclone intensity change

    Science.gov (United States)

    Ruan, Z.; Wu, Q.

    2017-12-01

    Using 16 years precipitation, brightness temperature (IR BT) data and tropical cyclone (TC) information, this study explores the relationship between precipitation, convective cloud and tropical cyclone (TC) intensity change in the Western North Pacific Ocean. It is found that TC intensity has positive relation with TC precipitation. TC precipitation increases with increased TC intensity. Based on the different phase of diurnal cycle, convective TC clouds were divided into very cold deep convective clouds (IR BTs<208K) and cold high clouds (208K

  15. Dynamo action and magnetic buoyancy in convection simulations with vertical shear

    Science.gov (United States)

    Guerrero, G.; Käpylä, P.

    2011-10-01

    A hypothesis for sunspot formation is the buoyant emergence of magnetic flux tubes created by the strong radial shear at the tachocline. In this scenario, the magnetic field has to exceed a threshold value before it becomes buoyant and emerges through the whole convection zone. In this work we present the results of direct numerical simulations of compressible turbulent convection that include a vertical shear layer. Like the solar tachocline, the shear is located at the interface between convective and stable layers. We follow the evolution of a random seed magnetic field with the aim of study under what conditions it is possible to excite the dynamo instability and whether the dynamo generated magnetic field becomes buoyantly unstable and emerges to the surface as expected in the flux-tube context. We find that shear and convection are able to amplify the initial magnetic field and form large-scale elongated magnetic structures. The magnetic field strength depends on several parameters such as the shear amplitude, the thickness and location of the shear layer, and the magnetic Reynolds number (Rm). Models with deeper and thicker shear layers allow longer storage and are more favorable for generating a mean magnetic field. Models with higher Rm grow faster but saturate at slightly lower levels. Whenever the toroidal magnetic field reaches amplitudes greater a threshold value which is close to the equipartition value, it becomes buoyant and rises into the convection zone where it expands and forms mushroom shape structures. Some events of emergence, i.e., those with the largest amplitudes of the amplified field, are able to reach the very uppermost layers of the domain. These episodes are able to modify the convective pattern forming either broader convection cells or convective eddies elongated in the direction of the field. However, in none of these events the field preserves its initial structure. The back-reaction of the magnetic field on the fluid is also

  16. The Fractional Step Method Applied to Simulations of Natural Convective Flows

    Science.gov (United States)

    Westra, Douglas G.; Heinrich, Juan C.; Saxon, Jeff (Technical Monitor)

    2002-01-01

    This paper describes research done to apply the Fractional Step Method to finite-element simulations of natural convective flows in pure liquids, permeable media, and in a directionally solidified metal alloy casting. The Fractional Step Method has been applied commonly to high Reynold's number flow simulations, but is less common for low Reynold's number flows, such as natural convection in liquids and in permeable media. The Fractional Step Method offers increased speed and reduced memory requirements by allowing non-coupled solution of the pressure and the velocity components. The Fractional Step Method has particular benefits for predicting flows in a directionally solidified alloy, since other methods presently employed are not very efficient. Previously, the most suitable method for predicting flows in a directionally solidified binary alloy was the penalty method. The penalty method requires direct matrix solvers, due to the penalty term. The Fractional Step Method allows iterative solution of the finite element stiffness matrices, thereby allowing more efficient solution of the matrices. The Fractional Step Method also lends itself to parallel processing, since the velocity component stiffness matrices can be built and solved independently of each other. The finite-element simulations of a directionally solidified casting are used to predict macrosegregation in directionally solidified castings. In particular, the finite-element simulations predict the existence of 'channels' within the processing mushy zone and subsequently 'freckles' within the fully processed solid, which are known to result from macrosegregation, or what is often referred to as thermo-solutal convection. These freckles cause material property non-uniformities in directionally solidified castings; therefore many of these castings are scrapped. The phenomenon of natural convection in an alloy under-going directional solidification, or thermo-solutal convection, will be explained. The

  17. An experimental study of mixed convection; Contribution a l'etude experimentale de la convection mixte

    Energy Technology Data Exchange (ETDEWEB)

    Saez, M.

    1998-10-20

    The aim of our study is to establish a reliable database for improving thermal hydraulic codes, in the field of turbulent flows with buoyancy forces. The flow considered is mixed convection in the Reynolds and Richardson number range: Re = 10{sup 3} to 6.10{sup 4} and Ri = 10{sup -4} to 1. Experiments are carried out in an upward turbulent flow between vertical parallel plates at different wall temperatures. Part 1 gives a detailed database of turbulent mixed flow of free and forced convection. Part 2 presents the installation and the calibration system intended for probes calibration. Part 3 describes the measurement technique (constant temperature probe and cold-wire probe) and the method for measuring the position of the hot-wire anemometer from the wall surface. The measurement accuracy is within 0.001 mm in the present system. Part 4 relates the development of a method for near wall measurements. This correction procedure for hot-wire anemometer close to wall has been derived on the basis of a two-dimensional numerical study. The method permits to obtain a quantitative correction of the wall influence on hot-wires and takes into account the velocity profile and the effects the wall material has on the heat loss. Part 5 presents the experimental data obtained in the channel in forced and mixed convection. Results obtained in the forced convection regime serve as a verification of the measurement technique close to the wall and give the conditions at the entrance of the test section. The effects of the buoyancy force on the mean velocity and temperature profiles are confirmed. The buoyancy strongly affects the fluid structure and deforms the distribution of mean velocity. The velocity profiles are asymmetric. The second section of part 5 gives an approach of analytical wall functions with buoyancy forces, on the basis of the experimental data obtained in the test section. (author)

  18. Remote sensing of severe convective storms over Qinghai-Xizang Plateau

    Science.gov (United States)

    Hung, R. J.; Liu, J. M.; Tsao, D. Y.; Smith, R. E.

    1984-01-01

    The American satellite, GOES-1 was moved to the Indian Ocean at 58 deg E during the First GARP Global Experiment (FGGE). The Qinghai-Xizang Plateau significantly affects the initiation and development of heavy rainfall and severe storms in China, just as the Rocky Mountains influence the local storms in the United States. Satelite remote sensing of short-lived, meso-scale convective storms is particularly important for covering a huge area of a high elevation with a low population density, such as the Qinghai-Xizang Plateau. Results of this study show that a high growth rate of the convective clouds, followed by a rapid collapse of the cloud top, is associated with heavy rainfall in the area. The tops of the convective clouds developed over the Plateau lie between the altitudes of the two tropopauses, while the tops of convective clouds associated with severe storms in the United States usually extend much above the tropopause.

  19. Natural convection in enclosures. Proceedings of the nineteenth national heat transfer conference, Orlando, FL, July 27-30, 1980

    International Nuclear Information System (INIS)

    Torrance, K.E.; Catton, I.

    1980-01-01

    Natural convection in low aspect ratio rectangular enclosures is considered along with three-dimensional convection within rectangular boxes, natural convection flow visualization in irradiated water cooled by air flow over the surface, free convection in vertical slots, the stratification in natural convection in vertical enclosures, the flow structure with natural convection in inclined air-filled enclosures, and natural convection across tilted, rectangular enclosures of small aspect ratio. Attention is given to the effect of wall conduction and radiation on natural convection in a vertical slot with uniform heat generation of the heated wall, a numerical study of thermal insulation enclosure, free convection in a piston-cylinder enclosure with sinusoidal piston motion, natural convection heat transfer between bodies and their spherical enclosure, an experimental study of the steady natural convection in a horizontal annulus with irregular boundaries, three-dimensional natural convection in a porous medium between concentric inclined cylinders, a numerical solution for natural convection in concentric spherical annuli, and heat transfer by natural convection in porous media between two concentric spheres

  20. Natural Convective Heat Transfer from Narrow Plates

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    Natural Convective Heat Transfer from Narrow Plates deals with a heat transfer situation that is of significant practical importance but which is not adequately dealt with in any existing textbooks or in any widely available review papers. The aim of the book is to introduce the reader to recent studies of natural convection from narrow plates including the effects of plate edge conditions, plate inclination, thermal conditions at the plate surface and interaction of the flows over adjacent plates. Both numerical and experimental studies are discussed and correlation equations based on the results of these studies are reviewed.

  1. Convection-diffusion effects in marathon race dynamics

    Science.gov (United States)

    Rodriguez, E.; Espinosa-Paredes, G.; Alvarez-Ramirez, J.

    2014-01-01

    In the face of the recent terrorist attack event on the 2013 Boston Marathon, the increasing participation of recreational runners in large marathon races has imposed important logistical and safety issues for organizers and city authorities. An accurate understanding of the dynamics of the marathon pack along the race course can provide important insights for improving safety and performance of these events. On the other hand, marathon races can be seen as a model of pedestrian movement under confined conditions. This work used data of the 2011 Chicago Marathon event for modeling the dynamics of the marathon pack from the corral zone to the finish line. By considering the marathon pack as a set of particles moving along the race course, the dynamics are modeled as a convection-diffusion partial differential equation with position-dependent mean velocity and diffusion coefficient. A least-squares problem is posed and solved with optimization techniques for fitting field data from the 2011 Chicago Marathon. It was obtained that the mean pack velocity decreases while the diffusion coefficient increases with distance. This means that the dispersion rate of the initially compact marathon pack increases as the marathon race evolves along the race course.

  2. Analysis of Summertime Convective Initiation in Central Alabama Using the Land Information System

    Science.gov (United States)

    James, Robert S.; Case, Jonathan L.; Molthan, Andrew L.; Jedlovec, Gary J.

    2011-01-01

    During the summer months in the southeastern United States, convective initiation presents a frequent challenge to operational forecasters. Thunderstorm development has traditionally been referred to as random due to their disorganized, sporadic appearance and lack of atmospheric forcing. Horizontal variations in land surface characteristics such as soil moisture, soil type, land and vegetation cover could possibly be a focus mechanism for afternoon convection during the summer months. The NASA Land Information System (LIS) provides a stand-alone land surface modeling framework that incorporates these varying soil and vegetation properties, antecedent precipitation, and atmospheric forcing to represent the soil state at high resolution. The use of LIS as a diagnostic tool may help forecasters to identify boundaries in land surface characteristics that could correlate to favored regions of convection initiation. The NASA Shortterm Prediction Research and Transition (SPoRT) team has been collaborating with the National Weather Service Office in Birmingham, AL to help incorporate LIS products into their operational forecasting methods. This paper highlights selected convective case dates from summer 2009 when synoptic forcing was weak, and identifies any boundaries in land surface characteristics that may have contributed to convective initiation. The LIS output depicts the effects of increased sensible heat flux from urban areas on the development of convection, as well as convection along gradients in land surface characteristics and surface sensible and latent heat fluxes. These features may promote mesoscale circulations and/or feedback processes that can either enhance or inhibit convection. With this output previously unavailable to operational forecasters, LIS provides a new tool to forecasters in order to help eliminate the randomness of summertime convective initiation.

  3. Convection heat transfer

    CERN Document Server

    Bejan, Adrian

    2013-01-01

    Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.

  4. Heat convection in a set of three vertical cylinders

    International Nuclear Information System (INIS)

    Serrano Ramirez, M.L. de.

    1993-01-01

    Experimental results on temperature and heat flow in a set of three vertical cylinders with internal generation of heat, water submerged and in free convection are presented in this work . Temperature distribution, Nusselt number and convective coefficient (h) for each rod, developed for the distance between the axis of cylinders in vertical position, as a consequence of the application of power in its outside, are analyzed. Experimental information about heat transfer by free convection in vertical cylinders and surfaces is analyzed. Information of the several author who have carried out studies about the heat transfer on vertical cylinders was compiled, and the proposed equations with the experimental data obtained in the thermo fluids laboratory of National Institute of Nuclear Research (ININ) were tested. The way in which separation distance, s, distribution temperature array, Nusselt number, and convective coefficient calculated for the proposed channel with the Keyhani, Dutton and experimental equations are tabulated and they are plotted for each power value and for each separation between rods. The scheme of the used equipment and the experimentation description as well as the observations of tests and graphical results are included. (Author)

  5. Turbulence modeling of natural convection in enclosures: A review

    International Nuclear Information System (INIS)

    Choi, Seok Ki; Kim, Seong O

    2012-01-01

    In this paper a review of recent developments of turbulence models for natural convection in enclosures is presented. The emphasis is placed on the effect of the treatments of Reynolds stress and turbulent heat flux on the stability and accuracy of the solution for natural convection in enclosures. The turbulence models considered in the preset study are the two-layer k -ε model, the shear stress transport (SST) model, the elliptic-relaxation (V2-f) model and the elliptic-blending second-moment closure (EBM). Three different treatments of the turbulent heat flux are the generalized gradient diffusion hypothesis (GGDH), the algebraic flux model (AFM) and the differential flux model (DFM). The mathematical formulation of the above turbulence models and their solution method are presented. Evaluation of turbulence models are performed for turbulent natural convection in a 1:5 rectangular cavity ( Ra = 4.3x10 10 ) and in a square cavity with conducting top and bottom walls ( Ra =1.58x10 9 ) and the Rayleigh-Benard convection ( Ra = 2x10 6 ∼ Ra =10 9 ). The relative performances of turbulence models are examined and their successes and shortcomings are addressed

  6. Improving representation of convective transport for scale-aware parameterization: 2. Analysis of cloud-resolving model simulations

    Science.gov (United States)

    Liu, Yi-Chin; Fan, Jiwen; Zhang, Guang J.; Xu, Kuan-Man; Ghan, Steven J.

    2015-04-01

    Following Part I, in which 3-D cloud-resolving model (CRM) simulations of a squall line and mesoscale convective complex in the midlatitude continental and the tropical regions are conducted and evaluated, we examine the scale dependence of eddy transport of water vapor, evaluate different eddy transport formulations, and improve the representation of convective transport across all scales by proposing a new formulation that more accurately represents the CRM-calculated eddy flux. CRM results show that there are strong grid-spacing dependencies of updraft and downdraft fractions regardless of altitudes, cloud life stage, and geographical location. As for the eddy transport of water vapor, updraft eddy flux is a major contributor to total eddy flux in the lower and middle troposphere. However, downdraft eddy transport can be as large as updraft eddy transport in the lower atmosphere especially at the mature stage of midlatitude continental convection. We show that the single-updraft approach significantly underestimates updraft eddy transport of water vapor because it fails to account for the large internal variability of updrafts, while a single downdraft represents the downdraft eddy transport of water vapor well. We find that using as few as three updrafts can account for the internal variability of updrafts well. Based on the evaluation with the CRM simulated data, we recommend a simplified eddy transport formulation that considers three updrafts and one downdraft. Such formulation is similar to the conventional one but much more accurately represents CRM-simulated eddy flux across all grid scales.

  7. Statistics of Deep Convection in the Congo Basin Derived From High-Resolution Simulations.

    Science.gov (United States)

    White, B.; Stier, P.; Kipling, Z.; Gryspeerdt, E.; Taylor, S.

    2016-12-01

    Convection transports moisture, momentum, heat and aerosols through the troposphere, and so the temporal variability of convection is a major driver of global weather and climate. The Congo basin is home to some of the most intense convective activity on the planet and is under strong seasonal influence of biomass burning aerosol. However, deep convection in the Congo basin remains under studied compared to other regions of tropical storm systems, especially when compared to the neighbouring, relatively well-understood West African climate system. We use the WRF model to perform a high-resolution, cloud-system resolving simulation to investigate convective storm systems in the Congo. Our setup pushes the boundaries of current computational resources, using a 1 km grid length over a domain covering millions of square kilometres and for a time period of one month. This allows us to draw statistical conclusions on the nature of the simulated storm systems. Comparing data from satellite observations and the model enables us to quantify the diurnal variability of deep convection in the Congo basin. This approach allows us to evaluate our simulations despite the lack of in-situ observational data. This provides a more comprehensive analysis of the diurnal cycle than has previously been shown. Further, we show that high-resolution convection-permitting simulations performed over near-seasonal timescales can be used in conjunction with satellite observations as an effective tool to evaluate new convection parameterisations.

  8. Topology optimisation of natural convection problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Aage, Niels; Andreasen, Casper Schousboe

    2014-01-01

    This paper demonstrates the application of the density-based topology optimisation approach for the design of heat sinks and micropumps based on natural convection effects. The problems are modelled under the assumptions of steady-state laminar flow using the incompressible Navier-Stokes equations...... coupled to the convection-diffusion equation through the Boussinesq approximation. In order to facilitate topology optimisation, the Brinkman approach is taken to penalise velocities inside the solid domain and the effective thermal conductivity is interpolated in order to accommodate differences...... in thermal conductivity of the solid and fluid phases. The governing equations are discretised using stabilised finite elements and topology optimisation is performed for two different problems using discrete adjoint sensitivity analysis. The study shows that topology optimisation is a viable approach...

  9. Convective Transport of Very-short-lived Bromocarbons to the Stratosphere

    Science.gov (United States)

    Liang, Qing; Atlas, Elliot Leonard; Blake, Donald Ray; Dorf, Marcel; Pfeilsticker, Klaus August; Schauffler, Sue Myhre

    2014-01-01

    We use the NASA GEOS Chemistry Climate Model (GEOSCCM) to quantify the contribution of two most important brominated very short-lived substances (VSLS), bromoform (CHBr3) and dibromomethane (CH2Br2), to stratospheric bromine and its sensitivity to convection strength. Model simulations suggest that the most active transport of VSLS from the marine boundary layer through the tropopause occurs over the tropical Indian Ocean, the Western Pacific warm pool, and off the Pacific coast of Mexico. Together, convective lofting of CHBr3 and CH2Br2 and their degradation products supplies 8 ppt total bromine to the base of the Tropical Tropopause Layer (TTL, 150 hPa), similar to the amount of VSLS organic bromine available in the marine boundary layer (7.8-8.4 ppt) in the above active convective lofting regions. Of the total 8 ppt VSLS-originated bromine that enters the base of TTL at 150 hPa, half is in the form of source gas injection (SGI) and half as product gas injection (PGI). Only a small portion (Br2, together, contribute 7.7 pptv to the present-day inorganic bromine in the stratosphere. However, varying model deep convection strength between maximum and minimum convection conditions can introduce a 2.6 pptv uncertainty in the contribution of VSLS to inorganic bromine in the stratosphere (BryVSLS). Contrary to the conventional wisdom, minimum convection condition leads to a larger BryVSLS as the reduced scavenging in soluble product gases, thus a significant increase in PGI (2-3 ppt), greatly exceeds the relative minor decrease in SGI (a few 10ths ppt.

  10. A meshless method for modeling convective heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, David B [Los Alamos National Laboratory

    2010-01-01

    A meshless method is used in a projection-based approach to solve the primitive equations for fluid flow with heat transfer. The method is easy to implement in a MATLAB format. Radial basis functions are used to solve two benchmark test cases: natural convection in a square enclosure and flow with forced convection over a backward facing step. The results are compared with two popular and widely used commercial codes: COMSOL, a finite element model, and FLUENT, a finite volume-based model.

  11. On the determination of the neutral drag coefficient in the convective boundary layer

    DEFF Research Database (Denmark)

    Grachev, A.A.; Fairall, C.W.; Larsen, Søren Ejling

    1998-01-01

    Based on the idea that free convection can be considered as a particular case of forced convection, where the gusts driven by the large-scale eddies are scaled with the Deardorff convective velocity scale, a new formulation for the neutral drag coefficient, C-Dn, in the convective boundary layer...... for mean wind speed less than about 2 m s(-1). The new approach also clarifies several contradictory results from earlier works. Some aspects related to an alternate definition of the neutral drag coefficient and the wind speed and the stress averaging procedure are considered....

  12. 3/2 or 5/2 for convective thermal transport?

    International Nuclear Information System (INIS)

    Duechs, D.F.

    1989-07-01

    To resolve frequent arguments on the form of the convective part of the thermal energy flux the relevant definitions and equations are compiled. The relative importance of the different terms involved is shown for Joint European Torus (JET) data. The choice of the ''adiabatic source terms'', p''centre dot''div v- ''->'' or v- ''->centre dot''grad p, decides the form of the convective heat flux. (author)

  13. Anomalous Convection Reversal due to Turbulence Transition in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Sun Tian-Tian; Chen Shao-Yong; Huang Jie; Mou Mao-Lin; Tang Chang-Jian; Wang Zhan-Hui; Peng Xiao-Dong

    2015-01-01

    A critical physical model, based on the ion temperature gradient (ITG) mode and the trapped electron mode (TEM), trying to explain the spatio-temporal dynamics of anomalous particle convection reversal (i.e., the particle convective flux reverses from inward to outward), is developed numerically. The dependence of density peaking and profile shape on the particle convection is studied. Only the inward pinch could lead to the increase of the density peaking. The validation of the critical model is also analyzed. A comparison of the estimates calculated by the model and the experimental results from the Tore Supra tokamak shows that they are qualitatively both consistent. (paper)

  14. Modeling polar cap F-region patches using time varying convection

    International Nuclear Information System (INIS)

    Sojka, J.J.; Bowline, M.D.; Schunk, R.W.; Decker, D.T.; Valladares, C.E.; Sheehan, R.; Anderson, D.N.; Heelis, R.A.

    1993-01-01

    Here the authors present the results of computerized simulations of the polar cap regions which were able to model the formation of polar cap patches. They used the Utah State University Time-Dependent Ionospheric Model (TDIM) and the Phillips Laboratory (PL) F-region models in this work. By allowing a time varying magnetospheric electric field in the models, they were able to generate the patches. This time varying field generates a convection in the ionosphere. This convection is similar to convective changes observed in the ionosphere at times of southward pointing interplanetary magnetic field, due to changes in the B y component of the IMF

  15. Mining key elements for severe convection prediction based on CNN

    Science.gov (United States)

    Liu, Ming; Pan, Ning; Zhang, Changan; Sha, Hongzhou; Zhang, Bolei; Liu, Liang; Zhang, Meng

    2017-04-01

    Severe convective weather is a kind of weather disasters accompanied by heavy rainfall, gust wind, hail, etc. Along with recent developments on remote sensing and numerical modeling, there are high-volume and long-term observational and modeling data accumulated to capture massive severe convective events over particular areas and time periods. With those high-volume and high-variety weather data, most of the existing studies and methods carry out the dynamical laws, cause analysis, potential rule study, and prediction enhancement by utilizing the governing equations from fluid dynamics and thermodynamics. In this study, a key-element mining method is proposed for severe convection prediction based on convolution neural network (CNN). It aims to identify the key areas and key elements from huge amounts of historical weather data including conventional measurements, weather radar, satellite, so as numerical modeling and/or reanalysis data. Under this manner, the machine-learning based method could help the human forecasters on their decision-making on operational weather forecasts on severe convective weathers by extracting key information from the real-time and historical weather big data. In this paper, it first utilizes computer vision technology to complete the data preprocessing work of the meteorological variables. Then, it utilizes the information such as radar map and expert knowledge to annotate all images automatically. And finally, by using CNN model, it cloud analyze and evaluate each weather elements (e.g., particular variables, patterns, features, etc.), and identify key areas of those critical weather elements, then help forecasters quickly screen out the key elements from huge amounts of observation data by current weather conditions. Based on the rich weather measurement and model data (up to 10 years) over Fujian province in China, where the severe convective weathers are very active during the summer months, experimental tests are conducted with

  16. Detection of soil moisture impact in convective initiation in the central region of Mexico

    Science.gov (United States)

    Dolores, Edgar; Caetano, Ernesto

    2017-04-01

    Soil moisture is important for understanding hydrological cycle variability in many regions. Local surface heat and moisture fluxes represent a major source of convective rainfall in Mexico during the summer, driven by positive evaporation-precipitation feedback. The effects of soil moisture are directly reflected in the limitation of evapotranspiration, affecting the development of the planetary boundary layer and, therefore, the initiation and intensity of convective precipitation. This study presents preliminary analysis of the role of soil moisture in convective initiations in central Mexico, for which a methodology for the detection of convective initiations similar to Taylor (2015) has been considered. The results show that the moisture fluxes from the surface influence the development of convection favored by mesoscale circulations at low levels. Initiations are more frequent in regions less humid than their surroundings with the very strong signal during the month of September. The knowledge of the soil predisposition to allow the development of deep convection suggests an alternative tool for the prediction of convective rains in Mexico.

  17. Tests of two convection theories for red giant and red supergiant envelopes

    Science.gov (United States)

    Stothers, Richard B.; Chin, Chao-Wen

    1995-01-01

    Two theories of stellar envelope convection are considered here in the context of red giants and red supergiants of intermediate to high mass: Boehm-Vitense's standard mixing-length theory (MLT) and Canuto & Mazzitelli's new theory incorporating the full spectrum of turbulence (FST). Both theories assume incompressible convection. Two formulations of the convective mixing length are also evaluated: l proportional to the local pressure scale height (H(sub P)) and l proportional to the distance from the upper boundary of the convection zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red phase of core helium burning. Since the theoretically predicted effective temperatures for cool stars are known to be sensitive to the assigned value of the mixing length, this quantity has been individually calibrated for each evolutionary sequence. The calibration is done in a composite Hertzsprung-Russell diagram for the red giant and red supergiant members of well-observed Galactic open clusters. The MLT model requires the constant of proportionality for the convective mixing length to vary by a small but statistically significant amount with stellar mass, whereas the FST model succeeds in all cases with the mixing lenghth simply set equal to z. The structure of the deep stellar interior, however, remains very nearly unaffected by the choices of convection theory and mixing lenghth. Inside the convective envelope itself, a density inversion always occurs, but is somewhat smaller for the convectively more efficient MLT model. On physical grounds the FST model is preferable, and seems to alleviate the problem of finding the proper mixing length.

  18. Mixed convection heat transfer experiments using analogy concept

    International Nuclear Information System (INIS)

    Ko, Bong Jin; Chung, Bum Jin; Lee, Won Jea

    2009-01-01

    A Series of the turbulent mixed convective heat transfer experiments in a vertical cylinder was carried out. In order to achieve high Gr and/or Ra with small scale test rigs, the analogy concept was adopted. Using the concept, heat transfer systems were simulated by mass transfer systems, and large Grashof numbers could be achieved with reasonable facility heights. The tests were performed with buoyancy-aided flow and opposed flow for Reynolds numbers from 4,000 to 10,000 with a constant Grashof number, Gr H of 6.2 x 10 9 and Prandtl number of about 2,000. The test results reproduced the typical of the mixed convection heat transfer phenomena in a turbulent situation and agree well with the experimental study performed by Y. Palratan et al. The analogy experimental method simulated the mixed convection heat transfer phenomena successfully and seems to be a useful tool for heat transfer studies for VHTR as well as the systems with high buoyancy condition and high Prandtl number

  19. Fuzzy logic controllers and chaotic natural convection loops

    International Nuclear Information System (INIS)

    Theler, German

    2007-01-01

    The study of natural circulation loops is a subject of special concern for the engineering design of advanced nuclear reactors, as natural convection provides an efficient and completely passive heat removal system. However, under certain circumstances thermal-fluid-dynamical instabilities may appear, threatening the reactor safety as a whole.On the other hand, fuzzy logic controllers provide an ideal framework to approach highly non-linear control problems. In the present work, we develop a software-based fuzzy logic controller and study its application to chaotic natural convection loops.We numerically analyse the linguistic control of the loop known as the Welander problem in such conditions that, if the controller were not present, the circulation flow would be non-periodic unstable.We also design a Taka gi-Sugeno fuzzy controller based on a fuzzy model of a natural convection loop with a toroidal geometry, in order to stabilize a Lorenz-chaotic behaviour.Finally, we show experimental results obtained in a rectangular natural circulation loop [es

  20. Heat and momentum transport scalings in vertical convection

    Science.gov (United States)

    Shishkina, Olga

    2016-11-01

    For vertical convection, where a fluid is confined between two differently heated isothermal vertical walls, we investigate the heat and momentum transport, which are measured, respectively, by the Nusselt number Nu and the Reynolds number Re . For laminar vertical convection we derive analytically the dependence of Re and Nu on the Rayleigh number Ra and the Prandtl number Pr from our boundary layer equations and find two different scaling regimes: Nu Pr 1 / 4 Ra 1 / 4 , Re Pr - 1 / 2 Ra 1 / 2 for Pr > 1 . Direct numerical simulations for Ra from 105 to 1010 and Pr from 0.01 to 30 are in excellent ageement with our theoretical findings and show that the transition between the regimes takes place for Pr around 0.1. We summarize the results from and present new theoretical and numerical results for transitional and turbulent vertical convection. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.

  1. Convection flow study within a horizontal fluid layer under the action of gas flow

    Directory of Open Access Journals (Sweden)

    Kreta Aleksei

    2016-01-01

    Full Text Available Experimental investigation of convective processes within horizontal evaporating liquid layer under shear–stress of gas flow is presented. It is found the structures of the convection, which move in opposite direction relative to each other. First convective structure moves in reverse direction with the flow of gas, and the second convective structure moves towards the gas flow. Convection flow within the liquid layer is registered with help of PIV technique. Average evaporation flow rate of Ethanol liquid layer under Air gas flow is measured. Influence of the gas velocity, at a constant temperature of 20 °C, on the evaporation flow rate has been studied.

  2. The control of convection by fuelling and pumping in the JET pumped divertor

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, P J; Andrew, P; Campbell, D; Clement, S; Davies, S; Ehrenberg, J; Erents, S K; Gondhalekar, A; Gadeberg, M; Gottardi, N; Von Hellermann, M; Horton, L; Loarte, A; Lowry, C; Maggi, C; McCormick, K; O` Brien, D; Reichle, R; Saibene, G; Simonini, R; Spence, J; Stamp, M; Stork, D; Taroni, A; Vlases, G [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    Convection from the scrape-off layer (SOL) to the divertor will control core impurities, if it retains them in a cold, dense, divertor plasma. This implies a high impurity concentration in the divertor, low at its entrance. Particle flux into the divertor entrance can be varied systematically in JET, using the new fuelling and pumping systems. The convection ratio has been estimated for various conditions of operation. Particle convection into the divertor should increase thermal convection, decreasing thermal conduction, and temperature and density gradients along the magnetic field, hence increasing the frictional force and decreasing the thermal force on impurities. Changes in convection in the SOL, caused by gaseous fuelling, have been studied, both experimentally in the JET Mk I divertor and with EDGE2/NIMBUS. 1 ref., 4 figs., 1 tab.

  3. A numerical method for investigating crystal settling in convecting magma chambers

    Science.gov (United States)

    Verhoeven, J.; Schmalzl, J.

    2009-12-01

    Magma chambers can be considered as thermochemically driven convection systems. We present a new numerical method that describes the movement of crystallized minerals in terms of active spherical particles in a convecting magma that is represented by an infinite Prandtl number fluid. The main part focuses on the results we obtained. A finite volume thermochemical convection model for two and three dimensions and a discrete element method, which is used to model granular material, are combined. The new model is validated with floating experiments using particles of different densities and an investigation of single and multiparticle settling velocities. The resulting velocities are compared with theoretical predictions by Stokes's law and a hindered settling function for the multiparticle system. Two fundamental convection regimes are identified in the parameter space that is spanned by the Rayleigh number and the chemical Rayleigh number, which is a measure for the density of the particles. We define the T regime that is dominated by thermal convection. Here the thermal driving force is strong enough to keep all particles in suspension. As the particles get denser, they start settling to the ground, which results in a C regime. The C regime is characterized by the existence of a sediment layer with particle-rich material and a suspension layer with few particles. It is shown that the presence of particles can reduce the vigor of thermal convection. In the frame of a parameter study we discuss the change between the regimes that is systematically investigated. We show that the so-called TC transition fits a power law. Furthermore, we investigate the settling behavior of the particles in vigorous thermal convection, which can be linked to crystal settling in magma chambers. We develop an analytical settling law that describes the number of settled particles against time and show that the results fit the observations from numerical and laboratory experiments.

  4. THE LINE FOR PRODUCTION OF DRIED APPLES, PEARS, CARROTS, PUMPKIN AND CHIPS

    Directory of Open Access Journals (Sweden)

    G. V. Kalashnikov

    2015-01-01

    Full Text Available The line is intended for processing of fruit and vegetable raw materials and receiving dried apples, pears, carrots, pumpkins and the fruit-and-vegetable of chips. The line solves problems of improvement of quality of a ready-made product and thermal production efficiency due to more rational alternation of the technological modes of a moisture increment and dehumidification with high extent of use of an energy potential of the heat carrier, use of the inert heat carrier (steam identical by the form for technological thermal processes, decrease in specific energy consumption and metal consumption, and also an intensification of moisture evaporation and creation of the compact multipurpose technological line for production of fruit and vegetable products with the expanded range. The technological production line of dried apples, pears, carrots, pumpkin and fruit and vegetable chips contains the jet washer, the inspection conveyor, the size grader, the car for removal of a seed nest and the device are sharp fruits and vegetables on plates, the sulfiter, the dryer and the packing automatic packing machine. Thus the line contains the combined toroidal device for heatmoisture of handling continuous action divided into sections: section of heating of raw materials, section of convective drying, section of preliminary hydration, which is located between microwave drying sections, and the section of cooling of the dried-up product intended for bringing a product to final readiness. The equipment complex from the drum car with the washing block and multipurpose installation with crushing of raw materials and office of sunflower seeds taking into account raw materials type is provided in lines. Are used recirculation a contour, the heating of the initial raw material fulfilled after drying of pairs and a condensate in the closed contour for creation energy-saving of the "know-how" of a ready product. The line represents modular blocks and is recustomized

  5. Development of a parameterization scheme of mesoscale convective systems

    International Nuclear Information System (INIS)

    Cotton, W.R.

    1994-01-01

    The goal of this research is to develop a parameterization scheme of mesoscale convective systems (MCS) including diabatic heating, moisture and momentum transports, cloud formation, and precipitation. The approach is to: Perform explicit cloud-resolving simulation of MCSs; Perform statistical analyses of simulated MCSs to assist in fabricating a parameterization, calibrating coefficients, etc.; Test the parameterization scheme against independent field data measurements and in numerical weather prediction (NWP) models emulating general circulation model (GCM) grid resolution. Thus far we have formulated, calibrated, implemented and tested a deep convective engine against explicit Florida sea breeze convection and in coarse-grid regional simulations of mid-latitude and tropical MCSs. Several explicit simulations of MCSs have been completed, and several other are in progress. Analysis code is being written and run on the explicitly simulated data

  6. Suppression of saturated nucleate boiling by forced convective flow

    International Nuclear Information System (INIS)

    Bennett, D.L.; Davis, M.W.; Hertzler, B.L.

    1980-01-01

    Tube-side forced convective boiling nitrogen and oxygen and thin film shell-side forced convective boiling R-11 data demonstrate a reduction in the heat transfer coefficient associated with nucleate boiling as the two-phase friction pressure drop increases. Techniques proposed in the literature to account for nucleate boiling during forced convective boiling are discussed. The observed suppression of nucleate boiling for the tube-side data is compared against the Chen correlation. Although general agreement is exhibited, supporting the interactive heat transfer mechanism theory, better agreement is obtained by defining a bubble growth region within the thermal boundary layer. The data suggests that the size of the bubble growth region is independent of the friction drop, but is only a function of the physical properties of the boiling liquid. 15 refs

  7. Convection-type LH2 absorber R and D for muon ionization cooling

    International Nuclear Information System (INIS)

    Ishimoto, S.; Bandura, L.; Black, E.L.; Boghosian, M.; Cassel, K.W.; Cummings, M.A.; Darve, C.; Dyshkant, A.; Errede, D.; Geer, S.; Haney, M.; Hedin, D.; Johnson, R.; Johnstone, C.J.; Kaplan, D.M.; Kubik, D.; Kuno, Y.; Majewski, S.; Popovic, M.; Reep, M.; Summers, D.; Suzuki, S.; Yoshimura, K.

    2003-01-01

    A feasibility study on liquid hydrogen (LH 2 ) absorbers for muon ionization cooling is reported. In muon ionization cooling, an LH 2 absorber is required to have a high cooling power greater than 100 W to cool heat deposited by muons passing through. That heat in LH 2 can be removed at either external or internal heat exchangers, which are cooled by cold helium gas. As one of the internal heat exchanger types, a convection-type absorber is proposed. In the convection-type absorber, heat is taken away by the convection of LH 2 in the absorber. The heat exchanger efficiency for the convection-type absorber is calculated. A possible design is presented

  8. Scaling rates of true polar wander in convecting planets and moons

    Science.gov (United States)

    Rose, Ian; Buffett, Bruce

    2017-12-01

    Mass redistribution in the convecting mantle of a planet causes perturbations in its moment of inertia tensor. Conservation of angular momentum dictates that these perturbations change the direction of the rotation vector of the planet, a process known as true polar wander (TPW). Although the existence of TPW on Earth is firmly established, its rate and magnitude over geologic time scales remain controversial. Here we present scaling analyses and numerical simulations of TPW due to mantle convection over a range of parameter space relevant to planetary interiors. For simple rotating convection, we identify a set of dimensionless parameters that fully characterize true polar wander. We use these parameters to define timescales for the growth of moment of inertia perturbations due to convection and for their relaxation due to true polar wander. These timescales, as well as the relative sizes of convective anomalies, control the rate and magnitude of TPW. This analysis also clarifies the nature of so called "inertial interchange" TPW events, and relates them to a broader class of events that enable large and often rapid TPW. We expect these events to have been more frequent in Earth's past.

  9. Constraints on the properties of Pluto's nitrogen-ice rich layer from convection simulations

    Science.gov (United States)

    Wong, T.; McKinnon, W. B.; Schenk, P.

    2016-12-01

    Pluto's Sputnik Planum basin (informally named) displays regular cellular patterns strongly suggesting that solid-state convection is occurring in a several-kilometers-deep nitrogen-ice rich layer (McKinnon et al., Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour, Nature 534, 82-85, 2016). We investigate the behavior of thermal convection in 2-D that covers a range of parameters applicable to the nitrogen ice layer to constrain its properties such that these long-wavelength surface features can be explained. We perform a suite of numerical simulations of convection with basal heating and temperature-dependent viscosity in either exponential form or Arrhenius form. For a plausible range of Rayleigh numbers and viscosity contrasts for solid nitrogen, convection can occur in all possible regimes: sluggish lid, transitional, or stagnant lid, or the layer could be purely conducting. We suggest the range of depth and temperature difference across the layer for convection to occur. We observe that the plume dynamics can be widely different in terms of the aspect ratio of convecting cells, or the width and spacing of plumes, and also in the lateral movement of plumes. These differences depend on the regime of convection determined by the Rayleigh number and the actual viscosity contrast across the layer, but is not sensitive to whether the viscosity is in Arrhenius or exponential form. The variations in plume dynamics result in different types of dynamic topography, which can be compared with the observed horizontal and vertical scales of the cells in Sputnik Planum. Based on these simulations we suggest several different possibilities for the formation and evolution of Sputnik Planum, which may be a consequence of the time-dependent behavior of thermal convection.

  10. Covariability in the Monthly Mean Convective and Radiative Diurnal Cycles in the Amazon

    Science.gov (United States)

    Dodson, Jason B.; Taylor, Patrick C.

    2015-01-01

    The diurnal cycle of convective clouds greatly influences the radiative energy balance in convectively active regions of Earth, through both direct presence, and the production of anvil and stratiform clouds. Previous studies show that the frequency and properties of convective clouds can vary on monthly timescales as a result of variability in the monthly mean atmospheric state. Furthermore, the radiative budget in convectively active regions also varies by up to 7 Wm-2 in convectively active regions. These facts suggest that convective clouds connect atmospheric state variability and radiation variability beyond clear sky effects alone. Previous research has identified monthly covariability between the diurnal cycle of CERES-observed top-of-atmosphere radiative fluxes and multiple atmospheric state variables from reanalysis over the Amazon region. ASVs that enhance (reduce) deep convection, such as CAPE (LTS), tend to shift the daily OLR and cloud albedo maxima earlier (later) in the day by 2-3 hr. We first test the analysis method using multiple reanalysis products for both the dry and wet seasons to further investigate the robustness of the preliminary results. We then use CloudSat data as an independent cloud observing system to further evaluate the relationships of cloud properties to variability in radiation and atmospheric states. While CERES can decompose OLR variability into clear sky and cloud effects, it cannot determine what variability in cloud properties lead to variability in the radiative cloud effects. Cloud frequency, cloud top height, and cloud microphysics all contribute to the cloud radiative effect, all of which are observable by CloudSat. In addition, CloudSat can also observe the presence and variability of deep convective cores responsible for the production of anvil clouds. We use these capabilities to determine the covariability of convective cloud properties and the radiative diurnal cycle.

  11. Widespread Amazon forest tree mortality from a single cross-basin squall line event

    Science.gov (United States)

    Negrón-Juárez, Robinson I.; Chambers, Jeffrey Q.; Guimaraes, Giuliano; Zeng, Hongcheng; Raupp, Carlos F. M.; Marra, Daniel M.; Ribeiro, Gabriel H. P. M.; Saatchi, Sassan S.; Nelson, Bruce W.; Higuchi, Niro

    2010-08-01

    Climate change is expected to increase the intensity of extreme precipitation events in Amazonia that in turn might produce more forest blowdowns associated with convective storms. Yet quantitative tree mortality associated with convective storms has never been reported across Amazonia, representing an important additional source of carbon to the atmosphere. Here we demonstrate that a single squall line (aligned cluster of convective storm cells) propagating across Amazonia in January, 2005, caused widespread forest tree mortality and may have contributed to the elevated mortality observed that year. Forest plot data demonstrated that the same year represented the second highest mortality rate over a 15-year annual monitoring interval. Over the Manaus region, disturbed forest patches generated by the squall followed a power-law distribution (scaling exponent α = 1.48) and produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. Basin-wide, potential tree mortality from this one event was estimated at 542 ± 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. Storm intensity is expected to increase with a warming climate, which would result in additional tree mortality and carbon release to the atmosphere, with the potential to further warm the climate system.

  12. Criteria for analysis and optimization of longitudinal fins with convective tip

    International Nuclear Information System (INIS)

    Gomes, E.S.

    1983-01-01

    The problem of heat transfer in longitudinal fins with the main geometries used in equipaments of heat transfer by convection is analyzed. The equation of energy is solved analytically of several geometries fins, with unidimensional formulation, through the use of the convective heat transfer coefficient. The problem of fin optimization is approached analytically yielding the parameters which allow the maximum heat transfer for each particular material waste in the fin. The use of the insulated tip model suggests the use of fins and its optimization for any Biot number of the fin. The use of the convective tip model allows us to determine when is vantageous or disadvantageous to use fins and when fin optimization is possible according to the value of the Biot number and to a convection parameter on the fin tip. (Author) [pt

  13. Asteroseismic Constraints on the Models of Hot B Subdwarfs: Convective Helium-Burning Cores

    Science.gov (United States)

    Schindler, Jan-Torge; Green, Elizabeth M.; Arnett, W. David

    2017-10-01

    Asteroseismology of non-radial pulsations in Hot B Subdwarfs (sdB stars) offers a unique view into the interior of core-helium-burning stars. Ground-based and space-borne high precision light curves allow for the analysis of pressure and gravity mode pulsations to probe the structure of sdB stars deep into the convective core. As such asteroseismological analysis provides an excellent opportunity to test our understanding of stellar evolution. In light of the newest constraints from asteroseismology of sdB and red clump stars, standard approaches of convective mixing in 1D stellar evolution models are called into question. The problem lies in the current treatment of overshooting and the entrainment at the convective boundary. Unfortunately no consistent algorithm of convective mixing exists to solve the problem, introducing uncertainties to the estimates of stellar ages. Three dimensional simulations of stellar convection show the natural development of an overshooting region and a boundary layer. In search for a consistent prescription of convection in one dimensional stellar evolution models, guidance from three dimensional simulations and asteroseismological results is indispensable.

  14. Nonlinear Convective Models of RR Lyrae Stars

    Science.gov (United States)

    Feuchtinger, M.; Dorfi, E. A.

    The nonlinear behavior of RR Lyrae pulsations is investigated using a state-of-the-art numerical technique solving the full time-dependent system of radiation hydrodynamics. Grey radiative transfer is included by a variable Eddington-factor method and we use the time-dependent turbulent convection model according to Kuhfuss (1986, A&A 160, 116) in the version of Wuchterl (1995, Comp. Phys. Comm. 89, 19). OPAL opacities extended by the Alexander molecule opacities at temperatures below 6000 K and an equation of state according to Wuchterl (1990, A&A 238, 83) close the system. The resulting nonlinear system is discretized on an adaptive mesh developed by Dorfi & Drury (1987, J. Comp. Phys. 69, 175), which is important to provide the necessary spatial resolution in critical regions like ionization zones and shock waves. Additionally, we employ a second order advection scheme, a time centered temporal discretizaton and an artificial tensor viscosity in order to treat discontinuities. We compute fundamental as well first overtone models of RR Lyrae stars for a grid of stellar parameters both with and without convective energy transport in order to give a detailed picture of the pulsation-convection interaction. In order to investigate the influence of the different features of the convection model calculations with and without overshooting, turbulent pressure and turbulent viscosity are performed and compared with each other. A standard Fourier decomposition is used to confront the resulting light and radial velocity variations with recent observations and we show that the well known RR Lyrae phase discrepancy problem (Simon 1985, ApJ 299, 723) can be resolved with these stellar pulsation computations.

  15. Laminar flow and convective transport processes scaling principles and asymptotic analysis

    CERN Document Server

    Brenner, Howard

    1992-01-01

    Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis presents analytic methods for the solution of fluid mechanics and convective transport processes, all in the laminar flow regime. This book brings together the results of almost 30 years of research on the use of nondimensionalization, scaling principles, and asymptotic analysis into a comprehensive form suitable for presentation in a core graduate-level course on fluid mechanics and the convective transport of heat. A considerable amount of material on viscous-dominated flows is covered.A unique feat

  16. Modeling mantle convection in the spherical annulus

    Science.gov (United States)

    Hernlund, John W.; Tackley, Paul J.

    2008-12-01

    Most methods for modeling mantle convection in a two-dimensional (2D) circular annular domain suffer from innate shortcomings in their ability to capture several characteristics of the spherical shell geometry of planetary mantles. While methods such as rescaling the inner and outer radius to reduce anomalous effects in a 2D polar cylindrical coordinate system have been introduced and widely implemented, such fixes may have other drawbacks that adversely affect the outcome of some kinds of mantle convection studies. Here we propose a new approach that we term the "spherical annulus," which is a 2D slice that bisects the spherical shell and is quantitatively formulated at the equator of a spherical polar coordinate system after neglecting terms in the governing equations related to variations in latitude. Spherical scaling is retained in this approximation since the Jacobian function remains proportional to the square of the radius. We present example calculations to show that the behavior of convection in the spherical annulus compares favorably against calculations performed in other 2D annular domains when measured relative to those in a fully three-dimensional (3D) spherical shell.

  17. Tropical teleconnections via the ocean and atmosphere induced by Southern Ocean deep convective events

    Science.gov (United States)

    Marinov, I.; Cabre, A.; Gunn, A.; Gnanadesikan, A.

    2016-12-01

    The current generation (CMIP5) of Earth System Models (ESMs) shows a huge variability in their ability to represent Southern Ocean (SO) deep-ocean convection and Antarctic Bottom Water, with a preference for open-sea convection in the Weddell and Ross gyres. A long control simulation in a coarse 3o resolution ESM (the GFDL CM2Mc model) shows a highly regular multi-decadal oscillation between periods of SO open sea convection and non-convective periods. This process also happens naturally, with different frequencies and durations of convection across most CMIP5 models under preindustrial forcing (deLavergne et al, 2014). Here we assess the impact of SO deep convection and resulting sea surface temperature (SST) anomalies on the tropical atmosphere and ocean via teleconnections, with a focus on interannual to multi-decadal timescales. We combine analysis of our low-resolution coupled model with inter-model analysis across historical CMIP5 simulations. SST cooling south of 60S during non-convective decades triggers a stronger, northward shifted SH Hadley cell, which results in intensified northward cross-equatorial moist heat transport and a poleward shift in the ITCZ. Resulting correlations between the cross-equatorial atmospheric heat transport and ITCZ location are in good agreement with recent theories (e.g. Frierson et al. 2013; Donohoe et al. 2014). Lagged correlations between a SO convective index and cross-equatorial heat transports (in the atmosphere and ocean), as well as various tropical (and ENSO) climate indices are analyzed. In the ocean realm, we find that non-convective decades result in weaker AABW formation and weaker ACC but stronger Antarctic Intermediate Water (AAIW) formation, likely as a result of stronger SO westerlies (more positive SAM). The signals of AABW and AAIW are seen in the tropics on short timescales of years to decades in the temperature, heat storage and heat transport anomalies and also in deep and intermediate ocean oxygen. Most

  18. Assessing Intraseasonal Variability Produced by Several Deep Convection Schemes in the NCAR CCM3.6

    Science.gov (United States)

    Maloney, E. D.

    2001-05-01

    The Hack, Zhang/McFarlane, and McRAS convection schemes produce very different simulations of intraseasonal variability in the NCAR CCM3.6. A robust analysis of simulation performance requires an expanded set of diagnostics. The use of only one criterion to analyze model Madden-Julian oscillation (MJO) variability, such as equatorial zonal wind variability, may give a misleading impression of model performance. Schemes that produce strong variability in zonal winds may sometimes lack a corresponding coherent signal in precipitation, suggesting that model convection and the large-scale circulation are not as strongly coupled as observed. The McRAS scheme, which includes a parametrization of unsaturated convective downdrafts, produces the best simulation of intraseasonal variability of the three schemes used. Downdrafts in McRAS create a moister equatorial troposphere, which increases equatorial convection. Composite analysis indicates a strong dependence of model intraseasonal variability on the frictional convergence mechanism, which may also be important in nature. The McRAS simulation has limitations, however. Indian Ocean variability is weak, and anomalous convection extends too far east across the Pacific. The dependence of convection on surface friction is too strong, and causes enhanced MJO convection to be associated with low-level easterly wind perturbations, unlike observed MJO convection. Anomalous vertical advection associated with surface convergence influences model convection by moistening the lower troposphere. Based on the work of Hendon (2000), coupling to an interactive ocean is unlikely to change the performance of the CCM3 with McRAS, due to the phase relationship between anomalous convection and zonal winds. Use of the analysis tools presented here indicates areas for improvement in the parametrization of deep convection by atmospheric GCMs.

  19. ARM Support for the Plains Elevated Convection at Night (AS-PECAN) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D. D. [National Oceanic and Atmospheric Administration (NOAA), Silver Spring, MD (United States); Geerts, B. [Univ. of Wyoming, Laramie, WY (United States)

    2016-04-01

    The Plains Elevated Convection at Night (PECAN) field campaign was a large multi-agency/multi-institutional experiment that targeted nighttime convection events in the central plains of the United States in order to better understand a range of processes that lead to the initiation and upscale growth of deep convection. Both weather and climate models struggle to properly represent the timing and intensity of precipitation in the central United States in their simulations. These models must be able to represent the interactions between the nocturnal stable boundary layer (SBL), the nocturnal low-level jet (LLJ), and a reservoir of convectively available potential energy (CAPE) that frequently exists above the SBL. Furthermore, a large fraction of the nocturnal precipitation is due to the organization of mesoscale convective systems (MCSs). In particular, there were four research foci for the PECAN campaign: •The initiation of elevated nocturnal convection focus seeks to elucidate the mesoscaleenvironmental characteristics and processes that lead to convection initiation (CI) and provide baseline data on the early evolution of mesoscale convective clusters. •The dynamics and internal structure and microphysics of nocturnal MCSs focus will investigatethe transition from surface-based to elevated storm structure, the interaction of cold pools generated by MCSs with the nocturnal stable boundary layer, and how the organization and evolution of elevated convection is influenced by the SBL and the vertical profile of wind and stability above the LLJ. •The bores and wave-like disturbances focus seeks to advance knowledge of the initiation of boredisturbances by convection, how the vertical profile of stability and winds modulate bore structure, the role of these disturbances in the initiation, maintenance, and organization of deep convection, and their impact on the LLJ and SBL. •The LLJ focus seeks to understand the processes that influence the spatial and

  20. Might electrical earthing affect convection of light

    International Nuclear Information System (INIS)

    Budrikis, Z.L.

    1982-01-01

    Partial convection of light by moving media was predicted by Fresnel and verified by Fizeau, Zeeman and others. It is accepted as an important argument in favour of the Special Theory of Relativity. The suggestion is made here that the convection is partial only when the propagating medium is moved with respect to its electrically earthed surroundings and that it would be total if an earthed shield was co-moving with the medium. This is based on a reinterpretation of Maxwell's equations wherein they are seen as macroscopic relationships that are in each case valid only in respect of a particular inertial frame of reference, the local electrical earth frame. (Auth.)

  1. An experimental study of mixed convection

    International Nuclear Information System (INIS)

    Saez, Manuel

    1998-01-01

    The aim of our study is to establish a reliable data base for improving thermal-hydraulic codes, in the field of turbulent flows with buoyancy forces. The flow considered is mixed convection in the Reynolds and Richardson number range: Re=10"3 to 6*10"4 and Ri=10"-"4 to 1. Experiments are carried out in an upward turbulent flow between vertical parallel plates at different wall temperatures. Part 1 gives a detailed data base of turbulent mixed flow of free and forced convection. Part II presents the installation and the calibration system intended for probes calibration. Part III describes the measurement technique (constant-temperature probe and cold-wire probe) and the method for measuring the position of the hot-wire anemometer from the wall surface. The measurement accuracy is within 0.001 mm in the present system. Part IV relates the development of a method for near wall measurements. This correction procedure for hot-wire anemometer close to wall has been derived on the basis of a two-dimensional numerical study. The method permits to obtain a quantitative correction of the wall influence on hot-wires and takes into account the velocity profile and the effects the wall material has on the heat loss. Part V presents the experimental data obtained in the channel in forced and mixed convection. Results obtained in the forced convection regime serve as a verification of the measurement technique close to the wall and give the conditions at the entrance of the test section. The effects of the buoyancy force on the mean velocity and temperature profiles are confirmed. The buoyancy strongly affects the flow structure and deforms the distribution of mean velocity. The velocity profiles are asymmetric. The second section of part V gives an approach of analytical wall functions with buoyancy forces, on the basis of the experimental data obtained in the test section. (author) [fr

  2. Analysis of natural convection in volumetrically-heated melt pools

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Dinh, T.N.; Nourgaliev, R.R.

    1996-12-01

    Results of series of studies on natural convection heat transfer in decay-heated core melt pools which form in a reactor lower plenum during the progression of a core meltdown accident are described. The emphasis is on modelling and prediction of turbulent heat transfer characteristics of natural convection in a liquid pool with an internal energy source. Methods of computational fluid dynamics, including direct numerical simulation, were applied for investigation

  3. Assumed Probability Density Functions for Shallow and Deep Convection

    OpenAIRE

    Steven K Krueger; Peter A Bogenschutz; Marat Khairoutdinov

    2010-01-01

    The assumed joint probability density function (PDF) between vertical velocity and conserved temperature and total water scalars has been suggested to be a relatively computationally inexpensive and unified subgrid-scale (SGS) parameterization for boundary layer clouds and turbulent moments. This paper analyzes the performance of five families of PDFs using large-eddy simulations of deep convection, shallow convection, and a transition from stratocumulus to trade wind cumulus. Three of the PD...

  4. Convectively-driven cold layer and its influences on moisture in the UTLS

    Science.gov (United States)

    Kim, J.; Randel, W. J.; Birner, T.

    2016-12-01

    Characteristics of the cold anomaly in the tropical tropopause layer (TTL) that is commonly observed with deep convection are examined using CloudSat and Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation measurements. Deep convection is sampled based on the cloud top height (>17 km) from CloudSat 2B-CLDCLASS, and then temperature profiles from COSMIC are composited around the deep convection. The composite temperature shows anomalously warm troposphere (up to 14 km) and a significantly cold layer near the tropopause (at 16-18 km) in the regions of deep convection. Generally in the tropics, the cold layer has very large horizontal scale (2,000 - 6,000 km) compared to that of mesoscale convective cluster, and it lasts one or two weeks with minimum temperature anomaly of - 2K. The cold layer shows slight but clear eastward-tilted vertical structure in the deep tropics indicating a large-scale Kelvin wave response. Further analyses on circulation patterns suggest that the anomaly can be explained as a part of Gill-type response in the TTL to deep convective heating in the troposphere. Response of moisture to the cold layer is also examined in the upper troposphere and lower stratosphere using microwave limb sounder (MLS) measurements. The water vapor anomalies show coherent structures with the temperature and circulation anomalies. A clear dry anomaly is found in the cold layer and its outflow region, implying a large-scale dehydration process due to the convectively driven cold layer in the upper TTL.

  5. Two-dimensional turbulent convection

    Science.gov (United States)

    Mazzino, Andrea

    2017-11-01

    We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].

  6. Thermocapillarity in Microfluidics—A Review

    Directory of Open Access Journals (Sweden)

    Alireza Karbalaei

    2016-01-01

    Full Text Available This paper reviews the past and recent studies on thermocapillarity in relation to microfluidics. The role of thermocapillarity as the change of surface tension due to temperature gradient in developing Marangoni flow in liquid films and conclusively bubble and drop actuation is discussed. The thermocapillary-driven mass transfer (the so-called Benard-Marangoni effect can be observed in liquid films, reservoirs, bubbles and droplets that are subject to the temperature gradient. Since the contribution of a surface tension-driven flow becomes more prominent when the scale becomes smaller as compared to a pressure-driven flow, microfluidic applications based on thermocapillary effect are gaining attentions recently. The effect of thermocapillarity on the flow pattern inside liquid films is the initial focus of this review. Analysis of the relation between evaporation and thermocapillary instability approves the effect of Marangoni flow on flow field inside the drop and its evaporation rate. The effect of thermocapillary on producing Marangoni flow inside drops and liquid films, leads to actuation of drops and bubbles due to the drag at the interface, mass conservation, and also gravity and buoyancy in vertical motion. This motion can happen inside microchannels with a closed multiphase medium, on the solid substrate as in solid/liquid interaction, or on top of a carrier liquid film in open microfluidic systems. Various thermocapillary-based microfluidic devices have been proposed and developed for different purposes such as actuation, sensing, trapping, sorting, mixing, chemical reaction, and biological assays throughout the years. A list of the thermocapillary based microfluidic devices along with their characteristics, configurations, limitations, and improvements are presented in this review.

  7. Thermal-chemical Mantle Convection Models With Adaptive Mesh Refinement

    Science.gov (United States)

    Leng, W.; Zhong, S.

    2008-12-01

    In numerical modeling of mantle convection, resolution is often crucial for resolving small-scale features. New techniques, adaptive mesh refinement (AMR), allow local mesh refinement wherever high resolution is needed, while leaving other regions with relatively low resolution. Both computational efficiency for large- scale simulation and accuracy for small-scale features can thus be achieved with AMR. Based on the octree data structure [Tu et al. 2005], we implement the AMR techniques into the 2-D mantle convection models. For pure thermal convection models, benchmark tests show that our code can achieve high accuracy with relatively small number of elements both for isoviscous cases (i.e. 7492 AMR elements v.s. 65536 uniform elements) and for temperature-dependent viscosity cases (i.e. 14620 AMR elements v.s. 65536 uniform elements). We further implement tracer-method into the models for simulating thermal-chemical convection. By appropriately adding and removing tracers according to the refinement of the meshes, our code successfully reproduces the benchmark results in van Keken et al. [1997] with much fewer elements and tracers compared with uniform-mesh models (i.e. 7552 AMR elements v.s. 16384 uniform elements, and ~83000 tracers v.s. ~410000 tracers). The boundaries of the chemical piles in our AMR code can be easily refined to the scales of a few kilometers for the Earth's mantle and the tracers are concentrated near the chemical boundaries to precisely trace the evolvement of the boundaries. It is thus very suitable for our AMR code to study the thermal-chemical convection problems which need high resolution to resolve the evolvement of chemical boundaries, such as the entrainment problems [Sleep, 1988].

  8. Strong convective storm nowcasting using a hybrid approach of convolutional neural network and hidden Markov model

    Science.gov (United States)

    Zhang, Wei; Jiang, Ling; Han, Lei

    2018-04-01

    Convective storm nowcasting refers to the prediction of the convective weather initiation, development, and decay in a very short term (typically 0 2 h) .Despite marked progress over the past years, severe convective storm nowcasting still remains a challenge. With the boom of machine learning, it has been well applied in various fields, especially convolutional neural network (CNN). In this paper, we build a servere convective weather nowcasting system based on CNN and hidden Markov model (HMM) using reanalysis meteorological data. The goal of convective storm nowcasting is to predict if there is a convective storm in 30min. In this paper, we compress the VDRAS reanalysis data to low-dimensional data by CNN as the observation vector of HMM, then obtain the development trend of strong convective weather in the form of time series. It shows that, our method can extract robust features without any artificial selection of features, and can capture the development trend of strong convective storm.

  9. Rotating Rayleigh-Bénard convection at low Prandtl number

    Science.gov (United States)

    Aguirre Guzman, Andres; Ostilla-Monico, Rodolfo; Clercx, Herman; Kunnen, Rudie

    2017-11-01

    Most geo- and astrophysical convective flows are too remote or too complex for direct measurements of the physical quantities involved, and thus a reduced framework with the main physical constituents is beneficial. This approach is given by the problem of rotating Rayleigh-Bénard convection (RRBC). For large-scale systems, the governing parameters of RRBC take extreme values, leading to the geostrophic turbulent regime. We perform Direct Numerical Simulations to investigate the transition to this regime at low Prandtl number (Pr). In low- Pr fluids, thermal diffusivity dominates over momentum diffusivity; we use Pr = 0.1 , relevant to liquid metals. In particular, we study the convective heat transfer (Nusselt number Nu) as a function of rotation (assessed by the Ekman number Ek). The strength of the buoyant forcing (Rayleigh number Ra) is Ra = 1 ×1010 to ensure turbulent convection. Varying Ek , we observe a change of the power-law scaling Nu Ekβ that suggests a transition to geostrophic turbulence, which is likely to occur at Ek = 9 ×10-7 . The thermal boundary layer thickness, however, may suggest a transition at lower Ekman numbers, indicating that perhaps not all statistical quantities show a transitional behaviour at the same Ek .

  10. Modeling the overall heat conductive and convective properties of open-cell graphite foam

    International Nuclear Information System (INIS)

    Tee, C C; Yu, N; Li, H

    2008-01-01

    This work develops analytic models on the overall thermal conductivity, pressure drop and overall convective heat transfer coefficient of graphite foam. The models study the relationship between the overall heat conductive and convective properties, and foam microstructure, temperature, foam surface friction characteristics and cooling fluid properties. The predicted thermal conductivity, convective heat transfer coefficient and pressure drop agree well with experimental data

  11. An Update to the Warm-Season Convective Wind Climatology of KSC/CCAFS

    Science.gov (United States)

    Lupo, Kevin

    2012-01-01

    Total of 1100 convective events in the 17-year warm-season climatology at KSC/CCAFS. July and August typically are the peak of convective events, May being the minimum. Warning and non-warning level convective winds are more likely to occur in the late afternoon (1900-2000Z). Southwesterly flow regimes and wind directions produce the strongest winds. Storms moving from southwesterly direction tend to produce more warning level winds than those moving from the northerly and easterly directions.

  12. Chemical composition and effective temperatures of metallic line white dwarfs

    International Nuclear Information System (INIS)

    Hammond, G.L.

    1974-01-01

    Model atmosphere techniques have been employed to determine the composition, effective temperatures, radii, masses and surface gravities of white dwarfs Ross 640 and van Maanen 2. The non-gray, LTE, convective, constant flux models employed collisional damping constants for the Ca II H and K lines that were measured in a laboratory device that simulated white dwarf atmospheric conditions. Ross 640 was found to have an extremely helium-rich composition and T/sub eff/ = 8500K, while the observed properties of van Maanen 2 were fitted best by a model with 91 percent helium, 9 percent hydrogen and T/sub eff/ = 6100K. The laboratory measurements of pressure shifts for the Ca II lines casts some doubt on the interpretation of recent radial velocity determinations for van Maanen 2. (U.S.)

  13. A strategy for representing the effects of convective momentum transport in multiscale models: Evaluation using a new superparameterized version of the Weather Research and Forecast model (SP-WRF)

    Science.gov (United States)

    Tulich, S. N.

    2015-06-01

    This paper describes a general method for the treatment of convective momentum transport (CMT) in large-scale dynamical solvers that use a cyclic, two-dimensional (2-D) cloud-resolving model (CRM) as a "superparameterization" of convective-system-scale processes. The approach is similar in concept to traditional parameterizations of CMT, but with the distinction that both the scalar transport and diagnostic pressure gradient force are calculated using information provided by the 2-D CRM. No assumptions are therefore made concerning the role of convection-induced pressure gradient forces in producing up or down-gradient CMT. The proposed method is evaluated using a new superparameterized version of the Weather Research and Forecast model (SP-WRF) that is described herein for the first time. Results show that the net effect of the formulation is to modestly reduce the overall strength of the large-scale circulation, via "cumulus friction." This statement holds true for idealized simulations of two types of mesoscale convective systems, a squall line, and a tropical cyclone, in addition to real-world global simulations of seasonal (1 June to 31 August) climate. In the case of the latter, inclusion of the formulation is found to improve the depiction of key synoptic modes of tropical wave variability, in addition to some aspects of the simulated time-mean climate. The choice of CRM orientation is also found to importantly affect the simulated time-mean climate, apparently due to changes in the explicit representation of wide-spread shallow convective regions.

  14. The Stochastic Multicloud Model as part of an operational convection parameterisation in a comprehensive GCM

    Science.gov (United States)

    Peters, Karsten; Jakob, Christian; Möbis, Benjamin

    2015-04-01

    An adequate representation of convective processes in numerical models of the atmospheric circulation (general circulation models, GCMs) remains one of the grand challenges in atmospheric science. In particular, the models struggle with correctly representing the spatial distribution and high variability of tropical convection. It is thought that this model deficiency partly results from formulating current convection parameterisation schemes in a purely deterministic manner. Here, we use observations of tropical convection to inform the design of a novel convection parameterisation with stochastic elements. The novel scheme is built around the Stochastic MultiCloud Model (SMCM, Khouider et al 2010). We present the progress made in utilising SMCM-based estimates of updraft area fractions at cloud base as part of the deep convection scheme of a GCM. The updraft area fractions are used to yield one part of the cloud base mass-flux used in the closure assumption of convective mass-flux schemes. The closure thus receives a stochastic component, potentially improving modeled convective variability and coherence. For initial investigations, we apply the above methodology to the operational convective parameterisation of the ECHAM6 GCM. We perform 5-year AMIP simulations, i.e. with prescribed observed SSTs. We find that with the SMCM, convection is weaker and more coherent and continuous from timestep to timestep compared to the standard model. Total global precipitation is reduced in the SMCM run, but this reduces i) the overall error compared to observed global precipitation (GPCP) and ii) middle tropical tropospheric temperature biases compared to ERA-Interim. Hovmoeller diagrams indicate a slightly higher degree of convective organisation compared to the base case and Wheeler-Kiladis frequency wavenumber diagrams indicate slightly more spectral power in the MJO range.

  15. Study on the improvement of the convective differencing scheme for the high-accuracy and stable resolution of the numerical solution

    International Nuclear Information System (INIS)

    Shin, J. K.; Choi, Y. D.

    1992-01-01

    QUICKER scheme has several attractive properties. However, under highly convective conditions, it produces overshoots and possibly some oscillations on each side of steps in the dependent variable when the flow is convected at an angle oblique to the grid line. Fortunately, it is possible to modify the QUICKER scheme using non-linear and linear functional relationship. Details of the development of polynomial upwinding scheme are given in this paper, where it is seen that this non-linear scheme has also third order accuracy. This polynomial upwinding scheme is used as the basis for the SHARPER and SMARTER schemes. Another revised scheme was developed by partial modification of QUICKER scheme using CDS and UPWIND schemes (QUICKUP). These revised schemes are tested at the well known bench mark flows, Two-Dimensional Pure Convection Flows in Oblique-Step, Lid Driven Cavity Flows and Buoyancy Driven Cavity Flows. For remain absolutely monotonic without overshoot and oscillation. QUICKUP scheme is more accurate than any other scheme in their relative accuracy. In high Reynolds number Lid Driven Catity Flow, SMARTER and SHARPER schemes retain lower computational cost than QUICKER and QUICKUP schemes, but computed velocity values in the revised schemes produced less predicted values than QUICKER scheme which is strongly effected by overshoot and undershoot values. Also, in Buoyancy Driven Cavity Flow, SMARTER, SHARPER and QUICKUP schemes give acceptable results. (Author)

  16. Turbulent convection in liquid metal with and without rotation

    OpenAIRE

    King, Eric M.; Aurnou, Jonathan M.

    2013-01-01

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, . Most analog models of planetary dynamos, however, use moderate fluids, and the systematic influence of reducing is not well understood. We perform rotating Rayleigh–Bénard convection experiments in the liquid metal gallium over a range of nondimensional bu...

  17. Analysis of natural convection in volumetrically-heated melt pools

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Dinh, T.N.; Nourgaliev, R.R. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    1996-12-01

    Results of series of studies on natural convection heat transfer in decay-heated core melt pools which form in a reactor lower plenum during the progression of a core meltdown accident are described. The emphasis is on modelling and prediction of turbulent heat transfer characteristics of natural convection in a liquid pool with an internal energy source. Methods of computational fluid dynamics, including direct numerical simulation, were applied for investigation. Refs, figs, tabs.

  18. Climatology and Impact of Convection on the Tropical Tropopause Layer

    Science.gov (United States)

    Robertson, Franklin; Pittman, Jasna

    2007-01-01

    Water vapor plays an important role in controlling the radiative balance and the chemical composition of the Tropical Tropopause Layer (TTL). Mechanisms ranging from slow transport and dehydration under thermodynamic equilibrium conditions to fast transport in convection have been proposed as regulators of the amount of water vapor in this layer. However,.details of these mechanisms and their relative importance remain poorly understood, The recently completed Tropical Composition, Cloud, and Climate Coupling (TC4) campaign had the opportunity to sample the.TTL over the Eastern Tropical Pacific using ground-based, airborne, and spaceborne instruments. The main goal of this study is to provide the climatological context for this campaign of deep and overshooting convective activity using various satellite observations collected during the summertime. We use the Microwave Humidity Sensor (MRS) aboard the NOAA-18 satellite to investigate the horizontal extent.and the frequency of convection reaching and penetrating into the TTL. We use the Moderate Resolution I1l1aging Spectroradiometer (MODIS) aboard the Aqua satellite to investigate the frequency distribution of daytime cirrus clouds. We use the Tropical Rainfall Measuring Mission(TRMM) and CloudSat to investigate the vertical structure and distribution of hydrometeors in the convective cells, In addition to cloud measurements; we investigate the impact that convection has on the concentration of radiatively important gases such as water vapor and ozone in the TTL by examining satellite measurement obtained from the Microwave Limb Sounder(MLS) aboard the Aura satellite.

  19. Estimation and prediction of convection-diffusion-reaction systems from point measurement

    NARCIS (Netherlands)

    Vries, D.

    2008-01-01

    Different procedures with respect to estimation and prediction of systems characterized by convection, diffusion and reactions on the basis of point measurement data, have been studied. Two applications of these convection-diffusion-reaction (CDR) systems have been used as a case study of the

  20. Study on natural convection characteristics in a narrow annular gap, 2

    International Nuclear Information System (INIS)

    Naohara, Nobuyuki; Uotani, Masaki; Kinoshita, Izumi; Arazeki, Hideo

    1987-01-01

    To clarify the characteristics of natural convection in a narrow annular gap at the roof-slab penetration in pool-type LMFBR, experimental study was carried out. Experiment is to investigate the effect of annular gap width. The results are summarized as follows. (1) A chart showing the presence of natural convection was drawn, and it was showed that the natural convection in an annular gap was influenced by gap width. (2) Dimensionless circumferential temperature in annular wall could be rearranged by new parameter taking account of the annular gap width and a characteristics curve was obtained. (author)

  1. Feedback control and heat transfer measurements in a Rayleigh-Bénard convection cell

    Science.gov (United States)

    Vial, M.; Hernández, R. H.

    2017-07-01

    We report experimental results on the heat transfer and instability onset of a Rayleigh-Bénard convection cell of aspect ratios 6:3:1 filled with a high Prandtl aqueous solution of glycerol under feedback control. We investigate the transient and stationary response of both local temperature readings and heat transfer fluxes on the Rayleigh Bénard cell in both conductive and convective states when we perform two independent feedback control actions on both hot and cold walls. We evaluate the performance of both controllers to maintain a temperature gradient independently if the system is below or above the convection threshold. As the convection cell can be rotated at 180° about the shorter axis of the cell, it was possible to perform transitions between thermal conduction and convection regimes and vice versa under a constant temperature difference maintained by both independent controllers. The experimental setup provided an accurate measurement of the critical Rayleigh number and the evolution of the Nusselt number as a function of the Rayleigh number in the moderately supercritical regime (R a cellular convection pattern formed by 6 transverse rolls throughout the range of Rayleigh numbers.

  2. Snow precipitation on Mars driven by cloud-induced night-time convection

    Science.gov (United States)

    Spiga, Aymeric; Hinson, David P.; Madeleine, Jean-Baptiste; Navarro, Thomas; Millour, Ehouarn; Forget, François; Montmessin, Franck

    2017-09-01

    Although it contains less water vapour than Earth's atmosphere, the Martian atmosphere hosts clouds. These clouds, composed of water-ice particles, influence the global transport of water vapour and the seasonal variations of ice deposits. However, the influence of water-ice clouds on local weather is unclear: it is thought that Martian clouds are devoid of moist convective motions, and snow precipitation occurs only by the slow sedimentation of individual particles. Here we present numerical simulations of the meteorology in Martian cloudy regions that demonstrate that localized convective snowstorms can occur on Mars. We show that such snowstorms--or ice microbursts--can explain deep night-time mixing layers detected from orbit and precipitation signatures detected below water-ice clouds by the Phoenix lander. In our simulations, convective snowstorms occur only during the Martian night, and result from atmospheric instability due to radiative cooling of water-ice cloud particles. This triggers strong convective plumes within and below clouds, with fast snow precipitation resulting from the vigorous descending currents. Night-time convection in Martian water-ice clouds and the associated snow precipitation lead to transport of water both above and below the mixing layers, and thus would affect Mars' water cycle past and present, especially under the high-obliquity conditions associated with a more intense water cycle.

  3. Combined convective heat and airborne pollutant removals in a slot vented enclosure under different flow schemes: Parametric investigations and non unique flow solutions

    International Nuclear Information System (INIS)

    Ren, Xiu-Hong; Hu, Jiang-Tao; Liu, Di; Zhao, Fu-Yun; Li, Xiao-Hong; Wang, Han-Qing

    2016-01-01

    Highlights: • Combined convective heat and airborne transports under different flow schemes. • Natural and forced convection dominated regimes were identified with transition. • Dual solution branches were sustained for the transitional mixing flow scheme. • Rest solutions evolving from motionless flows coincided with other solution branch. • Heat and species lines were presented to delineate heat and mass transport structures. - Abstract: This paper reports a numerical study of mixed convection on a heated and polluted strip within a slot ventilated enclosure in which the displacement and mixing flow schemes are considered. Contours of streamfunction, heatfunction, and massfunction are presented to clearly scrutinize the mechanism of heat and airborne pollutant transports. For the displacement flow scheme, thermal Nusselt and pollutant Sherwood numbers under different Reynolds numbers remain almost constant as the value of Gr/Re 2 decreases down to the regime of forced convection dominated. However, as Ar increases up to the regime of natural convection dominated, both Nu and Sh increase sharply with Ar (Gr/Re 2 ). Similar trends could be observed for the situation of mixing ventilated flow scheme. In the mixing scheme, non unique steady flow solutions could be observed for the range of transitional flow regime. Upward solutions, downward solutions and rest solutions have been exemplified with varying Gr/Re 2 . Dual solution branches could be sustained at the range of 39.0 ≤ Gr/Re 2  ≤ 6.0 × 10 3 , while the rest solutions obtained from rest states were completely coinciding with former continuous solutions. The present work could be significant for the natural optimization and passive control of heat and pollutant removals from the electronic boxes or building enclosures.

  4. A perturbational h4 exponential finite difference scheme for the convective diffusion equation

    International Nuclear Information System (INIS)

    Chen, G.Q.; Gao, Z.; Yang, Z.F.

    1993-01-01

    A perturbational h 4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h 2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes. Besides, the h 4 accuracy of the perturbational scheme is verified using double precision arithmetic

  5. Modeling a forced to natural convection boiling test with the program LOOP-W

    International Nuclear Information System (INIS)

    Carbajo, J.J.

    1984-01-01

    Extensive testing has been conducted in the Simulant Boiling Flow Visualization (SBFV) loop in which water is boiled in a vertical transparent tube by circulating hot glycerine in an annulus surrounding the tube. Tests ranged from nonboiling forced convection to oscillatory boiling natural convection. The program LOOP-W has been developed to analyze these tests. This program is a multi-leg, one-dimensional, two-phase equilibrium model with slip between the phases. In this study, a specific test, performed at low power where non-boiling forced convection was changed to boiling natural convection and then to non-boiling again, has been modeled with the program LOOP-W

  6. Heat transport in bubbling turbulent convection.

    Science.gov (United States)

    Lakkaraju, Rajaram; Stevens, Richard J A M; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-06-04

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection.

  7. A-Train Observations of Deep Convective Storm Tops

    Science.gov (United States)

    Setvak, Martin; Bedka, Kristopher; Lindsey, Daniel T.; Sokol, Alois; Charvat, Zdenek; Stastka, Jindrich; Wang, Pao K.

    2013-01-01

    The paper highlights simultaneous observations of tops of deep convective clouds from several space-borne instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS) of the Aqua satellite, Cloud Profiling Radar (CPR) of the CloudSat satellite, and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) flown on the CALIPSO satellite. These satellites share very close orbits, thus together with several other satellites they are referred to as the "A-Train" constellation. Though the primary responsibility of these satellites and their instrumentation is much broader than observations of fine-scale processes atop convective storms, in this study we document how data from the A-Train can contribute to a better understanding and interpretation of various storm-top features, such as overshooting tops, cold-U/V and cold ring features with their coupled embedded warm areas, above anvil ice plumes and jumping cirrus. The relationships between MODIS multi-spectral brightness temperature difference (BTD) fields and cloud top signatures observed by the CPR and CALIOP are also examined in detail to highlight the variability in BTD signals across convective storm events.

  8. Modeling the natural convective flow of micropolar nanofluids

    KAUST Repository

    Bourantas, Georgios

    2014-01-01

    A micropolar model for nanofluidic suspensions is proposed in order to investigate theoretically the natural convection of nanofluids. The microrotation of the nanoparticles seems to play a significant role into flow regime and in that manner it possibly can interpret the controversial experimental data and theoretical numerical results over the natural convection of nanofluids. Natural convection of a nanofluid in a square cavity is studied and computations are performed for Rayleigh number values up to 106, for a range of solid volume fractions (0 ≤ φ ≤ 0.2) and, different types of nanoparticles (Cu, Ag, Al2O3 and TiO 2). The theoretical results show that the microrotation of the nanoparticles in suspension in general decreases overall heat transfer from the heated wall and should not therefore be neglected when computing heat and fluid flow of micropolar fluids, as nanofluids. The validity of the proposed model is depicted by comparing the numerical results obtained with available experimental and theoretical data. © 2013 Elsevier Ltd. All rights reserved.

  9. Application of supercomputers to 3-D mantle convection

    International Nuclear Information System (INIS)

    Baumgardner, J.R.

    1986-01-01

    Current generation vector machines are providing for the first time the computing power needed to treat planetary mantle convection in a fully three-dimensional fashion. A numerical technique known as multigrid has been implemented in spherical geometry using a hierarchy of meshes constructed from the regular icosahedron to yield a highly efficient three-dimensional compressible Eulerian finite element hydrodynamics formulation. The paper describes the numerical method and presents convection solutions for the mantles of both the earth and the Moon. In the case of the Earth, the convection pattern is characterized by upwelling in narrow circular plumes originating at the core-mantle boundary and by downwelling in sheets or slabs derived from the cold upper boundary layer. The preferred number of plumes appears to be on the order of six or seven. For the Moon, the numerical results indicate that development of a predominately L = 2 pattern in later lunar history is a plausible explanation for the present large second-degree non-hydrostatic component in the lunar figure

  10. Chaotic dynamics of large-scale double-diffusive convection in a porous medium

    Science.gov (United States)

    Kondo, Shutaro; Gotoda, Hiroshi; Miyano, Takaya; Tokuda, Isao T.

    2018-02-01

    We have studied chaotic dynamics of large-scale double-diffusive convection of a viscoelastic fluid in a porous medium from the viewpoint of dynamical systems theory. A fifth-order nonlinear dynamical system modeling the double-diffusive convection is theoretically obtained by incorporating the Darcy-Brinkman equation into transport equations through a physical dimensionless parameter representing porosity. We clearly show that the chaotic convective motion becomes much more complicated with increasing porosity. The degree of dynamic instability during chaotic convective motion is quantified by two important measures: the network entropy of the degree distribution in the horizontal visibility graph and the Kaplan-Yorke dimension in terms of Lyapunov exponents. We also present an interesting on-off intermittent phenomenon in the probability distribution of time intervals exhibiting nearly complete synchronization.

  11. Convective growth of broadband turbulence in the plasma sheet boundary layer

    International Nuclear Information System (INIS)

    Dusenbery, P.B.

    1987-01-01

    Convective growth of slow and fast beam acoustic waves in the plasma sheet boundary layer (PSBL) is investigated. It has been shown previously that a could ion population must be present in order to excite beam acoustic waves in the PSBL. However, growth rates are significantly enhanced when warm plasma sheet boundary layer ions are present. Net wave growth along a ray path is determined by convective growth. This quantity is calculated for particle distribution models consistent with the PSBL where the intensity of broadband turbulence is observed to peak. Total number density dependence on beam acoustic convective growth is evaluated, and it is found that even for low density conditions of ∼0.01 cm -3 , a measurable level of broadband turbulence is expected. Relative drift effects between cold and warm ion populations are also considered. In particular, it is found that slow mode convective growth can be enhanced when slowly streaming cold ions are present, compared to fast ion streams

  12. Numerical Solutions for Convection-Diffusion Equation through Non-Polynomial Spline

    Directory of Open Access Journals (Sweden)

    Ravi Kanth A.S.V.

    2016-01-01

    Full Text Available In this paper, numerical solutions for convection-diffusion equation via non-polynomial splines are studied. We purpose an implicit method based on non-polynomial spline functions for solving the convection-diffusion equation. The method is proven to be unconditionally stable by using Von Neumann technique. Numerical results are illustrated to demonstrate the efficiency and stability of the purposed method.

  13. Overview of the Deep Convective Clouds and Chemistry Experiment

    Science.gov (United States)

    Barth, M. C.; Brune, W. H.; Cantrell, C. A.; Rutledge, S. A.; Crawford, J. H.; Flocke, F. M.; Huntrieser, H.

    2012-12-01

    The Deep Convective Clouds and Chemistry (DC3) project conducted a 7-week field campaign during May and June 2012 to study thunderstorm dynamical, physical, and electrical characteristics, as well as their effects on the atmosphere's composition, especially ozone and particles in the climate-sensitive upper troposphere near the thunderstorm tops. The NSF/NCAR Gulfstream V (GV) and the NASA DC-8 aircraft flew 17 coordinated flights to sample low-level inflow and upper troposphere outflow air near thunderstorms and to sample convective outflow air as it chemically aged during the next 24 hours. The DLR Falcon aircraft observed the fresh storm outflow and also obtained measurements of aged outflow. In total, 19 cases of active thunderstorms and over 6 cases of photochemical aging were flown. The DC3 aircraft, based in Salina, Kansas, were equipped with instruments to measure a variety of gases, aerosols, and cloud particle characteristics in situ as well as the NASA DC-8 measuring the ozone and aerosol distribution by lidar. The aircraft targeted storms predicted to occur within range of coverage by ground-based radar pairs, lightning mapping arrays (LMAs), and frequent launches of balloon-borne instruments that could measure the storm's physical, kinematic, and lightning characteristics. This coverage occurred in three regions: 1) northeastern Colorado, 2) central Oklahoma to western Texas, and 3) northern Alabama. DC3 demonstrated that it is possible to sample with two aircraft the inflow and outflow of storms, which were simultaneously sampled by the ground radars, LMAs, and soundings. The DC3 data set is extensive and rich. This presentation will summarize the overall statistics of the DC3 measurements giving a general idea of storm characteristics, transport of trace gases, and photochemical aging of species. Examples will be given of specific thunderstorm cases, including a Colorado case where a biomass-burning plume was ingested by a storm, and of sampling a

  14. Cold pool organization and the merging of convective updrafts in a Large Eddy Simulation

    Science.gov (United States)

    Glenn, I. B.; Krueger, S. K.

    2016-12-01

    Cold pool organization is a process that accelerates the transition from shallow to deep cumulus convection, and leads to higher deep convective cloud top heights. The mechanism by which cold pool organization enhances convection remains not well understood, but the basic idea is that since precipitation evaporation and a low equivalent potential temperature in the mid-troposphere lead to strong cold pools, the net cold pool effect can be accounted for in a cumulus parameterization as a relationship involving those factors. Understanding the actual physical mechanism at work will help quantify the strength of the relationship between cold pools and enhanced deep convection. One proposed mechanism of enhancement is that cold pool organization leads to reduced distances between updrafts, creating a local environment more conducive to convection as updrafts entrain parcels of air recently detrained by their neighbors. We take this hypothesis one step further and propose that convective updrafts actually merge, not just exchange recently processed air. Because entrainment and detrainment around an updraft draws nearby air in or pushes it out, respectively, they act like dynamic flow sources and sinks, drawing each other in or pushing each other away. The acceleration is proportional to the inverse square of the distance between two updrafts, so a small reduction in distance can make a big difference in the rate of merging. We have shown in previous research how merging can be seen as collisions between different updraft air parcels using Lagrangian Parcel Trajectories (LPTs) released in a Large Eddy Simulation (LES) during a period with organized deep convection. Now we use a Eulerian frame of reference to examine the updraft merging process during the transition from shallow to organized deep convection. We use a case based on the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) for our LES. We directly measure the rate of entrainment and the properties

  15. A two-column formalism for time-dependent modelling of stellar convection. I. Description of the method

    Science.gov (United States)

    Stökl, A.

    2008-11-01

    Context: In spite of all the advances in multi-dimensional hydrodynamics, investigations of stellar evolution and stellar pulsations still depend on one-dimensional computations. This paper devises an alternative to the mixing-length theory or turbulence models usually adopted in modelling convective transport in such studies. Aims: The present work attempts to develop a time-dependent description of convection, which reflects the essential physics of convection and that is only moderately dependent on numerical parameters and far less time consuming than existing multi-dimensional hydrodynamics computations. Methods: Assuming that the most extensive convective patterns generate the majority of convective transport, the convective velocity field is described using two parallel, radial columns to represent up- and downstream flows. Horizontal exchange, in the form of fluid flow and radiation, over their connecting interface couples the two columns and allows a simple circulating motion. The main parameters of this convective description have straightforward geometrical meanings, namely the diameter of the columns (corresponding to the size of the convective cells) and the ratio of the cross-section between up- and downdrafts. For this geometrical setup, the time-dependent solution of the equations of radiation hydrodynamics is computed from an implicit scheme that has the advantage of being unaffected by the Courant-Friedrichs-Lewy time-step limit. This implementation is part of the TAPIR-Code (short for The adaptive, implicit RHD-Code). Results: To demonstrate the approach, results for convection zones in Cepheids are presented. The convective energy transport and convective velocities agree with expectations for Cepheids and the scheme reproduces both the kinetic energy flux and convective overshoot. A study of the parameter influence shows that the type of solution derived for these stars is in fact fairly robust with respect to the constitutive numerical

  16. A hybrid radial basis function-pseudospectral method for thermal convection in a 3-D spherical shell

    KAUST Repository

    Wright, G. B.

    2010-07-01

    A novel hybrid spectral method that combines radial basis function (RBF) and Chebyshev pseudospectral methods in a "2 + 1" approach is presented for numerically simulating thermal convection in a 3-D spherical shell. This is the first study to apply RBFs to a full 3-D physical model in spherical geometry. In addition to being spectrally accurate, RBFs are not defined in terms of any surface-based coordinate system such as spherical coordinates. As a result, when used in the lateral directions, as in this study, they completely circumvent the pole issue with the further advantage that nodes can be "scattered" over the surface of a sphere. In the radial direction, Chebyshev polynomials are used, which are also spectrally accurate and provide the necessary clustering near the boundaries to resolve boundary layers. Applications of this new hybrid methodology are given to the problem of convection in the Earth\\'s mantle, which is modeled by a Boussinesq fluid at infinite Prandtl number. To see whether this numerical technique warrants further investigation, the study limits itself to an isoviscous mantle. Benchmark comparisons are presented with other currently used mantle convection codes for Rayleigh number (Ra) 7 × 103 and 105. Results from a Ra = 106 simulation are also given. The algorithmic simplicity of the code (mostly due to RBFs) allows it to be written in less than 400 lines of MATLAB and run on a single workstation. We find that our method is very competitive with those currently used in the literature. Copyright 2010 by the American Geophysical Union.

  17. Heat Transfer Convection in The Cooking of Apple Using a Solar Cooker Box-Type

    International Nuclear Information System (INIS)

    Terres, H; Chávez, S; Lizardi, A; López, R; Vaca, M; Flores, J; Salazar, A

    2015-01-01

    In this work, experimental results to determine the convection heat transfer coefficient in the cooking process of apple using a solar cooker box-type are presented. Experimental data of temperatures for water, surface and central point of the apple were used. To determine the convection coefficient, the apple was modelled as a sphere. The temperatures evolution was defined using thermocouples located at water, surface and central point in the vegetables. Using heat transfer convection equations in transitory state and the temperatures measured, the Biot number and the convection coefficient were determined

  18. Heat Transfer Convection in The Cooking of Apple Using a Solar Cooker Box-Type

    Science.gov (United States)

    Terres, H.; Chávez, S.; Lizardi, A.; López, R.; Vaca, M.; Flores, J.; Salazar, A.

    2015-01-01

    In this work, experimental results to determine the convection heat transfer coefficient in the cooking process of apple using a solar cooker box-type are presented. Experimental data of temperatures for water, surface and central point of the apple were used. To determine the convection coefficient, the apple was modelled as a sphere. The temperatures evolution was defined using thermocouples located at water, surface and central point in the vegetables. Using heat transfer convection equations in transitory state and the temperatures measured, the Biot number and the convection coefficient were determined.

  19. For how long can we predict the weather? - Insights into atmospheric predictability from global convection-allowing simulations

    Science.gov (United States)

    Judt, Falko

    2017-04-01

    A tremendous increase in computing power has facilitated the advent of global convection-resolving numerical weather prediction (NWP) models. Although this technological breakthrough allows for the seamless prediction of weather from local to global scales, the predictability of multiscale weather phenomena in these models is not very well known. To address this issue, we conducted a global high-resolution (4-km) predictability experiment using the Model for Prediction Across Scales (MPAS), a state-of-the-art global NWP model developed at the National Center for Atmospheric Research. The goals of this experiment are to investigate error growth from convective to planetary scales and to quantify the intrinsic, scale-dependent predictability limits of atmospheric motions. The globally uniform resolution of 4 km allows for the explicit treatment of organized deep moist convection, alleviating grave limitations of previous predictability studies that either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. Error growth is analyzed within the context of an "identical twin" experiment setup: the error is defined as the difference between a 20-day long "nature run" and a simulation that was perturbed with small-amplitude noise, but is otherwise identical. It is found that in convectively active regions, errors grow by several orders of magnitude within the first 24 h ("super-exponential growth"). The errors then spread to larger scales and begin a phase of exponential growth after 2-3 days when contaminating the baroclinic zones. After 16 days, the globally averaged error saturates—suggesting that the intrinsic limit of atmospheric predictability (in a general sense) is about two weeks, which is in line with earlier estimates. However, error growth rates differ between the tropics and mid-latitudes as well as between the troposphere and stratosphere, highlighting that atmospheric predictability is a complex

  20. Increased risk of a shutdown of ocean convection posed by warm North Atlantic summers

    Science.gov (United States)

    Oltmanns, Marilena; Karstensen, Johannes; Fischer, Jürgen

    2018-04-01

    A shutdown of ocean convection in the subpolar North Atlantic, triggered by enhanced melting over Greenland, is regarded as a potential transition point into a fundamentally different climate regime1-3. Noting that a key uncertainty for future convection resides in the relative importance of melting in summer and atmospheric forcing in winter, we investigate the extent to which summer conditions constrain convection with a comprehensive dataset, including hydrographic records that are over a decade in length from the convection regions. We find that warm and fresh summers, characterized by increased sea surface temperatures, freshwater concentrations and melting, are accompanied by reduced heat and buoyancy losses in winter, which entail a longer persistence of the freshwater near the surface and contribute to delaying convection. By shortening the time span for the convective freshwater export, the identified seasonal dynamics introduce a potentially critical threshold that is crossed when substantial amounts of freshwater from one summer are carried over into the next and accumulate. Warm and fresh summers in the Irminger Sea are followed by particularly short convection periods. We estimate that in the winter 2010-2011, after the warmest and freshest Irminger Sea summer on our record, 40% of the surface freshwater was retained.